
Best of Both Worlds
Revisiting the Spymasters Double Agent Problem

Anasuya Acharya1, Carmit Hazay2, Oxana Poburinnaya3, and
Muthuramakrishnan Venkitasubramaniam4

1 Bar-Ilan University
acharya@biu.ac.il

2 Bar-Ilan University
carmit.hazay@biu.ac.il

3 oxanapob@bu.edu
4 Georgetown University
mv783@georgetown.edu

Abstract. This work introduces the notion of secure multiparty com-
putation: MPC with fall-back security. Fall-back security for an n-party
protocol is defined with respect to an adversary structure Z wherein
security is guaranteed in the presence of both a computationally un-
bounded adversary with adversary structure Z, and a computationally
bounded adversary corrupting an arbitrarily large subset of the parties.
This notion was considered in the work of Chaum (Crypto 89) via the
Spymaster’s double agent problem where he showed a semi-honest secure
protocol for the honest majority adversary structure.
Our first main result is a compiler that can transform any n-party pro-
tocol that is semi-honestly secure with statistical security tolerating an
adversary structure Z to one that (additionally) provides semi-honest
fall-back security w.r.t Z. The resulting protocol has optimal round com-
plexity, up to a constant factor, and is optimal in assumptions and the
adversary structure. Our second result fully characterizes when malicious
fall-back security is feasible. More precisely, we show that malicious fall-
back secure protocol w.r.t Z exists if and only if Z admits unconditional
MPC against a semi-honest adversary (namely, iff Z ∈ Q2).

Keywords: MPC with Fall-back Security· Best of Both Worlds · MPC Proto-
cols Compiler

1 Introduction

The problem of secure multiparty computation (MPC) considers a set of parties
with private inputs that wish to jointly compute some function of their inputs
while preserving certain security properties, like privacy (nothing but the out-
put is learned), and correctness (output is computed correctly according to the
specified function). These properties are required to hold in the presence of an
adversary that controls a subset of the parties and launches an attack on the

https://orcid.org/0000-0002-9111-5641
https://orcid.org/0000-0002-8951-5099
https://orcid.org/0000-0001-9765-7911

2 Authors Suppressed Due to Excessive Length

protocol in an attempt to breach its security (e.g., to learn more than it should
about the honest parties’ inputs).

A standard classification distinguishes adversaries that are computationally
unbounded from those that are computationally bounded (i.e. probabilistic poly-
nomial time algorithms). MPC protocols secure against the former can be de-
signed only when the adversary corrupts fewer than half of the parties but un-
conditionally, whereas, MPC protocols secure against the latter can be designed
for arbitrary corruptions (i.e. up to all-but-one of the parties) but require mak-
ing cryptographic assumptions (such as the hardness of factoring or discrete
logarithm). In this work, we revisit the question of achieving the “best of both
worlds”, as considered in the work of Chaum [Cha89] motivated by the following
scenarios:

1. Bringing people of different beliefs. Is it possible to design an MPC
protocol where some of the parties want unconditional security while some
parties demand security against arbitrary collusion?

2. Resistance to future attacks. Can we design an MPC protocol with
security against arbitrary collusion that offers some security even when the
underlying cryptographic assumption is broken? For example, can we build
an MPC based on quantum un-safe primitives that can offer some protection
should quantum computers become feasible?

3. David versus many Goliaths. Can we design an n party MPC protocol
where a single (designated) party can be unconditionally protected against
an (unbounded) adversary colluding with the rest of the world (i.e. remaining
n− 1 parties)?

We answer all these questions in the affirmative by studying MPC protocols
that offer best of both worlds security, namely, unconditional security against
minority collusion and computational security against arbitrary collusion.

Chaum in [Cha89] motivated this notion of security via the “Spymasters dou-
ble agent problem” where a set of countries are willing to perform an MPC to
identify “double agents”. The main concern for spymasters is that a majority of
the countries could collude or a minority of them could break the cryptosystem
to uncover secrets. In the same work, Chaum designed an “optimal” n-party
MPC protocol in the passive (semi-honest) setting, namely, security holds un-
conditionally against fewer than n/2 corruptions whereas computational security
holds against arbitrary corruptions in the presence of a passive adversary. In the
active setting, Chaum constructed a protocol with unconditional security against
fewer than n/3 corruptions and computational security against fewer than n/2
corruptions. However, this protocol was subsumed by later results that provided
a stronger security guarantee, namely, unconditional security against fewer than
n/2 corruptions. Thus, the main challenge of designing an MPC protocol with
best-of-both-worlds security against an active adversary still remains open. More
precisely, we investigate in this work the following question:

Under what circumstances can we achieve best of both worlds security
against an active adversary?

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 3

1.1 Our Contributions

In this work, we completely characterize when best of both worlds security is
feasible. Roughly speaking, any adversary structure that admits an information-
theoretically secure MPC against a passive adversary can be compiled into one
that simultaneously provides information-theoretically security against an active
adversary w.r.t the same adversary structure and additionally provides compu-
tational security against arbitrary corruptions. In fact, for this reason, we call
our best-of-both-worlds security notion as fall-back security.

MPC with Fall-Back Security. We introduce a new notion of secure mul-
tiparty computation: MPC with fall-back security. Fall-back security for an n-
party protocol is defined with respect to an adversary structure ZS wherein
security is guaranteed in the presence of both a computationally unbounded ad-
versary with adversary structure ZS, and a computationally bounded adversary
corrupting an arbitrary subset of the parties. We consider this definition in the
context of semi-honest and malicious adversaries.

Fall-Back Security w.r.t semi-honest adversaries. We show that for
any adversary structure ZS that admits an MPC protocol with unconditional
security in the presence of a passive adversary, we can compile it to another
MPC protocol that additionally provides computational security w.r.t arbitrary
corruption of parties (again with a passive adversary). We build our compiler in
two steps:

– First, we design an MPC protocol for a specific adversary structure. In fact,
this will correspond to the "David vs many Goliaths" setting. More precisely,
consider the adversary structure Z over n parties such that one designated
party can never be corrupted. We describe an n-party protocol that can
compute any functionality with semi-honest fall-back security tolerating Z.

– Let Πstat be an n-party protocol that is secure in the presence of a semi-
honest unbounded adversary with adversary structure ZS. We use the pro-
tocol designed in the first step as a building block to compile Πstat into a
protocol with semi-honest fall-back security tolerating ZS.

More precisely, we achieve the following theorem:

Theorem (Informal) 1.1 Assuming the existence of an rOT -round oblivious
transfer (OT) protocol with one-sided statistical security (i.e. statistical sender
security or statistical receiver security) against a passive adversary. Then, any n-
party function that can be securely implemented via an r-round n-party protocol
Πstat, that is secure in the presence of an unbounded semi-honest adversary w.r.t
adversary structure ZS, can be compiled to an O(r · rOT)-round n-party protocol
for the same functionality with semi-honest fall-back security tolerating ZS.

We remark that the existence of OT with one-sided statistical security is nec-
essary and therefore minimal assumption. This result re-establishes the result of
Chaum [Cha89] for threshold adversary structures. The main difference is that

4 Authors Suppressed Due to Excessive Length

our construction is round optimal up to a constant factor, relies on the under-
lying assumption in a black-box manner, and generalizes to arbitrary adversary
structures. Moreover, we achieve optimality in terms of adversary structures
since we can compile any information-theoretic MPC for ZS to one with fall-
back security. Recalling from [HM97] that an MPC protocol is feasible in the
semi-honest setting iff the adversary structure ZS ∈ Q2 where ZS ∈ Q2 if for any
two Z1, Z2 ∈ ZS, it holds that Z1∪Z2 ̸= {1, . . . , n}. Thus, we have the corollary:

Corollary 1.2 We can securely compute any functionality with semi-honest fall-
back security w.r.t ZS if and only if ZS ∈ Q2.

Fall-Back Security w.r.t malicious adversaries. Next, we construct a
protocol that can compute any functionality with maliciously secure fall-back
security tolerating any possible adversary structure for statistical security. We
use the SPDZ-type paradigm [DPSZ12], where we first generate authenticated
Beaver triples and then use that to securely compute a function. Since the SPDZ
online phase is essentially information-theoretically secure against arbitrary cor-
ruption by an unbounded adversary, it will suffice to design an MPC protocol
with fall-back security with respect to malicious parties, for the authenticated
Beaver triples functionality. We use a variant of the [HVW20] compiler (which,
in turn, is a variant of [IPS08]) that “generically” compiles semi-honest protocols
to malicious ones in a “modular” way. Formally, we prove the following theorem:

Theorem (Informal) 1.3 Assume the existence of an OT protocol with one-
sided statistical security against semi-honest adversaries. Then if the authen-
ticated Beaver triples functionality can be securely implemented via a n-party
protocol Πstat secure in the presence of an unbounded semi-honest adversary
w.r.t adversary structure ZS, then any function can be compiled to an n-party
protocol that computes the same functionality with malicious fall-back security
tolerating ZS.

We remark that our result is optimal in terms of adversary structure and
assumptions. Since any MPC protocol that is malicious fall-back secure w.r.t ZS

is also information-theoretically secure w.r.t ZS against a passive adversary and
as alluded before, implies OT with one-sided statistical security. Therefore, both
assumptions are necessary. Thus, we have the following corollary.

Corollary 1.4 We can securely compute any functionality with malicious fall-
back security w.r.t ZS if and only if ZS ∈ Q2.

We remark here that [HM97] showed that malicious security in the information-
theoretic setting is achievable iff ZS ∈ Q3. Our result does not violate this since
we only achieve security w.r.t abort in both the information-theoretic and com-
putational settings.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 5

1.2 Related Work

Several variants of best-of-both-worlds notions have been considered in the lit-
erature. The works of [Kat07, IKK+11] consider achieving full security and is
closest to our security notion. In these works, the authors consider an MPC pro-
tocol that provides guaranteed output delivery when there is an honest majority
and security with abort against arbitrary corruption. They identify the necessary
conditions for feasibility and design a protocol that offers only computational
security in both corruption scenarios. Our work, in contrast, does not offer guar-
anteed output delivery but achieves unconditional security when a minority of
the parties are corrupted.

In [KM20], Khurana and Mughees studied the round complexity of designing
a 2PC protocol that offers unconditional security against one party and com-
putational against the other (which is optimal as we cannot achieve statistical
security against both parties). They showed that 4 rounds are sufficient to de-
sign such a protocol where the output is delivered to one designated party and
5 rounds if both parties receive output. This is optimal as previous works have
shown matching lower bounds that hold even for the standard computational se-
curity against both parties [KO04,GMPP16]. This work has been improved more
recently by [BPS22] showing a wide variety of assumptions to design such a pro-
tocol. Our work can be viewed as a generalization of their work from two-party
to multiparty where even feasibility was previously unknown.

The work of Chaum et al. [CDvdG87] shows how to construct a protocol
in the dishonest majority setting where one designated party’s view is uncon-
ditionally hidden from the rest of the parties. Their protocol solves our third
motivating question of David versus many Goliaths, however, their protocol is
based on a specific assumption and proceeds in a round-robin fashion. Our pro-
tocol is optimal in round complexity up to a constant factor, and can be based
on the minimal assumption of existence of oblivious transfer with one-sided sta-
tistical security.

1.3 Technical Overview

We define our notion of MPC with fall-back security. We also construct protocols
that satisfy this in the presence of semi-honest and malicious adversaries.

Fall-Back Security. For an n-party functionality F , we define the notion of
Fall-Back security with respect to an adversary structure ZS. Let P be the set
of n parties executing a protocol to realize this functionality. We say that the
protocol achieves fall-back security if it is secure in the presence of a compu-
tationally unbounded adversary corrupting any subset of parties Z ∈ ZS. The
protocol is additionally secure in the presence of a PPT adversary corrupting
any Z ⊂ P. We state formally two flavours of fall-back security, one in the pres-
ence of semi-honest adversaries and one in the presence of malicious adversaries
in Section 3.

6 Authors Suppressed Due to Excessive Length

Protocols with Fall-Back Security: the 2PC case. Before describing
our n-party protocol that achieves fall-back security, let us examine the toy case
of the 2-party setting. Recall that the standard 2-party Yao’s Garbled circuit
protocol where one party, referred to as the garbler, creates a garbled circuit
computing the function and gives this to the other party, referred to as the
evaluator, along with the input labels corresponding to its inputs. Then both
parties engage in multiple instances of oblivious transfer (OT) through which the
evaluator securely learns input labels corresponding to its inputs. The evaluator
evaluates the garbled circuit and shares the output with the garbler.

In this protocol, suppose we instantiate the OT protocol with one that is
secure in the presence of a semi-honest unbounded corrupt sender, then the view
of the garbler contains the garbled circuit and input labels corresponding to its
inputs (which are both independent of the evaluator’s inputs) and the messages
in the OT protocol that statistically secure against the sender. Therefore, we can
argue that this protocol is secure against a semi-honest unbounded adversary
corrupting the garbler and computational security against the evaluator, thus
fall-back secure. We extend this to the multiparty setting for the "David and
multiple Goliaths" case.

n-party semi-honest fall-back
secure protocol for ZS

Figure 6

Theorem 4.1

n-party semi-honest unbounded
secure protocol for ZS

n-party semi-honest
fall-back security compiler

n-party semi-honest fall-back secure
protocol for Z computing any f

Figure 4

Lemma 3.4

n-out-of-n secret-sharing

n-party semi-honest FGS

protocol with n− 1 Garblers

[BLO16]

2-party OT with semi-honest
fall-back security for sender

[EGL82]

Fig. 1. An overview of the building blocks of the construction in Section 4. Z is an
adversary structure over n-parties having all subsets that don’t include a designated
party. Dotted boxes indicate primitives from prior work.

Warmup: Solving the David and multiple Goliaths problem. Let P =
{Pi}i∈[n] be a set of n-parties and let Z be an adversary structure containing
all subsets of P that do not include Pn. We describe an n-party protocol that
can compute any function with semi-honest fall-back security tolerating Z. We

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 7

remark that the work of [CDvdG87] solves this using a specific assumption and
proceeds in a round-robin manner. Here, we describe a protocol that proceeds
in O(r)-rounds, assuming an r-round OT protocol with one-sided statistical se-
curity, that is optimal in rounds and assumptions.

The protocol designates the first n − 1 parties as garblers and Pn as the
evaluator. First, the parties in {Pi}i∈[n−1] jointly compute a garbled circuit for
the computed function using a distributed garbling protocol such as [BLO16]
and hand it to Pn. This computation also produces certain ‘masking bits’ such
that each party can XOR its inputs and masking bits to create a ‘masked input’
that reveals no information about the input itself. Each garbler then gives its
masked input to Pn, which engages in multiple instances of oblivious transfer
as the receiver, with each garbler being the sender. After these executions, Pn

has received the input labels corresponding to all the masked inputs from each
garbler. Finally, it uses these input labels to evaluate the garbling and sends the
output to all the other parties.

The protocol is secure in the presence of a semi-honest unbounded adversary
corrupting any subset of the garbling parties. This follows from the fact that a
simulator for such an adversary would just need to honestly participate in the
garbling, the oblivious transfer is secure in the presence of an unbounded sender
and, since the adversary does not corrupt Pn, it never gets to see the masked
inputs or input labels used for evaluation. The protocol is also secure in the
presence of a semi-honest PPT adversary corrupting an arbitrary subset of P.
Hence any n-party function can be computed with semi-honest fall-back security
tolerating Z. Details for this protocol can be found in Section 3.1.

Compiling to Semi-Honest Fall-Back Security. The protocol above can
be used as a building-block to construct a compiler that can convert any n-party
protocol Πstat that satisfies semi-honest security in the presence of an unbounded
adversary tolerating an adversary structure ZS, to a protocol Πin that satisfies
semi-honest fall-back security tolerating the same adversary structure ZS.

The idea is to first parse Πstat as a sequence of next-message functions, one
for each party i in round j. For each such function, we define a functionality
that receives as input from n parties corresponding to the shares of the view of
party i, reconstructs this view, computes the next-message function, and shares
the output among n parties using n-out-of-n secret-sharing.

Our compiler works by first having each party Pi ∈ P secret-share its in-
puts to Πstat, to all other parties using n-out-of-n secret-sharing. Then for each
next-message function for the ith party in Πstat, we use the protocol ΠDG from
the “David and multiple Goliaths” setting outlined above to compute the cor-
responding functionality with party Pi as David, i.e. the designated evaluator.
Once this has been executed for all next-message functions, all parties have a
share of the output of every party in protocol Πstat. Then, all parties (except Pi)
give the shares of the ith party in Πstat to Pi. Each Pi reconstructs and obtains
the output of the protocol.

We argue the security of the protocol in the presence of computational and
unbounded adversaries. The computational setting follows directly as the next-

8 Authors Suppressed Due to Excessive Length

message functions of Πstat can be viewed as a functionality that computes the
same functionality as the target functionality on secret shares and we rely on
our warm-up protocol that offers security in the dishonest majority setting to
implement each step in Πin. Thus, essentially by composition, we obtain that
every internal computation and message in the emulation of Πstat remains hidden
to any subset of the parties.

To argue security against a semi-honest unbounded adversary tolerating ZS,
we analyze the case when the adversary corrupts a subset Z ∈ ZS. For every
i ̸∈ Z, it holds that the next-message computations of the virtual party Si in
Πin has Pi as the Evaluator when executed via our warmup protocol. We have
that the evaluator Pi is not corrupted by the adversary, and the security of
the warmup protocol guarantees that the view of the virtual party Si will be
statistically hidden from Z (as Z does not include Pi). However, when i ∈ Z,
an unbounded adversary controls Pi, and the warmup protocol is secure only if
an unbounded adversary corrupts everyone but Pi. Since we are in the passive
setting, we can conclude that each of these instances of the warmup protocol will
proceed correctly. Still, an unbounded adversary can obtain the entire view of
the virtual party Si. This amounts to corrupting all parties indexed i ∈ Z in the
virtual protocol. We conclude from the statistical security of the virtual protocol
Πin against Z that the compiled protocol will also offer statistical security with
respect to Z.

n-party maliciously fall-back secure
protocol for ZS computing f

Theorem 5.5

n-party maliciously fall-back
secure online phase for ZS

computing any f
Figure 13

n-party maliciously fall-back
secure pre-processing for ZS

computing FAuthTriples

Protocol 5.4

Lemma 5.6

n-party unbounded
maliciously secure
online protocol in

FCom-hybrid [DPSZ12]

n-party fall-back
maliciously secure
protocol for ZS

computing FCom

Figure 10

n-party semi-honest
adaptive fall-back secure

protocol for ZS

computing FAuthTriples

Section 5.2

Fig. 2. An overview of the building blocks of the construction in Section 5. Dotted
boxes indicate primitives from prior work.

Maliciously Secure Fall-Back Security. Next, we describe our protocol
that achieves malicious fall-back security with respect to an adversary structure
ZS. The classical GMW paradigm is to rely on coin-tossing and distributed zero-
knowledge proofs to compile a semi-honest secure protocol to a malicious one.
Such an approach will require designing distributed commit-and-prove protocols

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 9

with fall-back security with respect to ZS and typically results in a non-black-
box construction in the underlying primitives. Instead, we will pursue another
approach pioneered by Ishai, Prabhakaran, and Sahai [IPS08] that is based on
player virtualization and allows compiling a “semi-honest” protocol to malicious
in a modular way. This will have the benefit of not relying on distributed zero-
knowledge proofs. We will use a slight variant of the compiler designed by Hazay
et al. [HVW20], which is based on the IPS compiler.

In slightly more detail, we will rely on the offline-online paradigm refined
in the SPDZ line of works [DPSZ12], where the parties first generate so-called
authenticated Beaver triples in an offline input-independent phase and then con-
sume them in an online phase. The main feature of this protocol relevant to
our setting is that once the offline protocol is executed, the online protocol is
unconditionally secure, assuming commitment schemes. Therefore, designing a
malicious protocol with fall-back security reduces to designing a malicious fall-
back secure protocol for the authenticated Beaver triples functionality and dis-
tributed commitment scheme with fall-back security. For our protocol to realize
the authenticated triples functionality, we will need the following ingredients:

1. Fall-back secure extractable commitment scheme: We need a scheme where a
single committer commits a value v to the n−1 parties that is unconditionally
secure against ZS, and computationally secure against arbitrary collusion.
We will additionally need the commitment to be extractable.

2. Fall-back secure coin-tossing and coin-tossing-in-the-well protocols. We can
use standard applications of FCom to obtain these protocols.

3. Semi-honest fall-back secure protocol for a simple functionality (closely re-
lated to the authenticated Beaver triples functionality).

Realizing FCom. In the fall-back setting, the committer and (any one of) the
receivers could be corrupted by an unbounded adversary (depending on ZS). Re-
call that it is impossible to design a commitment scheme that is simultaneously
unconditionally hiding and binding. Instead, we will rely on both a statistically
hiding commitment ComSH and a statistically binding commitment ComSB. Addi-
tionally, we will need a secret-sharing scheme with respect to adversary structure
ZS. First, we design a fall-back secure extractable commitment scheme and then
compile it to a protocol that realizes FCom.

The committer takes its value v, secret shares it to v1, . . . , vn, and commits
to vi, with Pi being the receiver, using a statistically binding scheme, and com-
mits to v using a statistically hiding commitment scheme. This scheme is hiding
against a dishonest majority as both commitments are hiding against a compu-
tational adversary. This is statistically hiding against an unbounded adversary
since it can only break the statistically-binding commitment scheme and learn
secret shares of v that statistically hid it against corruption in ZS. This commit-
ment is binding in the dishonest majority setting because the committer uses a
statistically hiding commitment scheme to commit v to every party. When an
unbounded adversary corrupts in ZS (that includes the committer), the values
of the secret shares committed to the honest parties and the statistically binding

10 Authors Suppressed Due to Excessive Length

commitment statistically bind the value v. To make the scheme extractable, the
committer uses computational zero-knowledge proof-of-knowledge (cZKPOK)
to prove the knowledge of the values committed within ComSB and a statisti-
cal zero-knowledge argument-of-knowledge (sZKAOK) to prove the knowledge
of the values committed via ComSH. The simulator invokes the extractor of the
sZKAOK in order to extract the inputs in the dishonest majority case and that
of the cZKPOK to extract the input shares in the statistical case.

Next, to realize FCom, we will rely on the lookahead trapdoor commitment
scheme of [PW09]. Roughly speaking, in this commitment scheme, the commit-
ter, instead of committing to a bit σ, commits to κ 2× 2-matrices(

ηi ηi ⊕ σ
ηi ηi ⊕ σ

)
where κ is the statistical security parameter and ηi’s are chosen uniformly at
random. Then the receiver provides a random κ-bit challenge to determine which
columns in each of the κ matrices should be decommitted by the committer. The
receiver accepts the commitment if the decommitment values in each column
are equal. In the decommit phase, the committer picks a random row in each
matrix and decommits the remaining value. This commitment can be made
“equivocal” by having the receiver commit to its challenge before the committer’s
first commitment. This allows a simulator to “look ahead” the challenge and
rewind to provide an equivocal commitment. Namely, each matrix will have
identical values in the opened column and different bits in the unopened column
so that in the decommitment phase, the simulator can choose the right opening
depending on what value it needs to decommit to.

In our setting, we can essentially rely on this protocol, where in the first
round, we have n− 1 parties commit to a random string which it will decommit
to in the third round, and the challenge will be the XOR of all strings. Next,
the committer will use the weak-extractable commitment described above to
commit to each entry of the matrices. The weak extractability suffices to extract
the value, and the lookahead trapdoor property will help to equivocate.

Fall-back secure coin-tossing and coin-tossing in the well. Once we
have a commitment scheme, we can rely on the standard mechanisms to design
coin-tossing and coin-tossing-in-the-well schemes.

Putting it together. In the IPS-type compiler, the parties emulate a virtual
“outer” malicious information theoretic MPC protocol among m parties (also de-
noted by servers) by maintaining each party’s view in a secret-shared state and
securely computing the next message functions via semi-honest “inner” protocol.
In this work, we will rely on a vanilla outer protocol (such as BGW [BGW88]),
whereas the inner protocol is instantiated using our semi-honest fall-back secure
protocol. Since we are only implementing the authenticated Beaver triples func-
tionality with a small depth, we can consider an outer protocol where the parties
do not communicate with each other (i.e., all computations are local). This is
not necessary for our compiler but simplifies our description and analysis.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 11

On a high-level, our protocol proceeds in the following phases:

– Phase 1: The parties commit to a coin-tossing (by simply having each party
commit to a random string) that will be opened in Phase 5.

– Phase 2: The parties secretly share their inputs for the m virtual parties
and then commit to the shares using our fall-back extractable commitment
scheme.

– Phase 3: The parties execute a coin-tossing-in-the-well protocol to generate
randomness for the m virtual parties.

– Phase 4: All parties engage in m execuctions of the semi-honest fall-back
secure protocol to emulate the m virtual parties.

– Phase 5: The parties open the coin-tossing and sample t of the m virtual
parties where all parties open the randomness and inputs used for emulating
those t parties.

The security proof follows a similar approach to [IPS08] and [HVW20]. We
remark that (similar to [IPS08]), we will need the inner protocol to meet some
adaptive security guarantees. We describe our protocol assuming this property
but later argue that we can use an inner protocol without additional assumptions.

In more detail, in Phase 1, the simulator executes the coin-tossing honestly
but extracts the outcome of the coin-toss and identifies the virtual servers whose
views will be opened (referred to as watched executions) in the cut-and-choose
phase (Phase 5 above). In Phase 2, the simulator extracts the adversary’s in-
puts, sends the adversary’s triples shares to the ideal functionality, and receives
the offset as the output. Before discussing Phase 3, we mention that the idea
for simulating Phase 4 is to have the simulator simulate the messages for the
honest parties in the watched virtual parties honestly and rely on a simulation
of the semi-honest fall-back secure protocol for the unwatched sessions. Since
the outputs of the watched sessions are fixed, the simulator first generates the
outputs for all of the remaining virtual parties in the outer protocol so that it is
consistent with the output received from the ideal functionality and the output
of the watched sessions. Next, it runs the semi-honest fall-back secure protocol
simulator for the unwatched sessions to determine the randomness of the parties
corrupted by the adversary in the unwatched sessions. Now, it proceeds with
simulation, where in Phase 3, it will manipulate the coin-tossing-in-the-well pro-
tocol to fix the adversary’s random tape in the unwatched sessions corresponding
to the simulated views. Next, it will simulate Phase 5, hoping the adversary will
not deviate in the unwatched sessions. If the adversary does indeed deviate in
the emulation of one of the virtual parties, the simulator will invoke the adaptive
simulation for that instance.

We will consider an outer protocol that is t private with t/2 sessions to
watch. This will allow the simulator to generate inputs of the virtual parties (by
simply sampling them uniformly at random) for up to t/2 more sessions where
the adversary deviates. If it deviates in more than t/2 unwatched sessions, the
simulator fails (where this will happen only with negligible probability due to
the cut-and-choose check).

12 Authors Suppressed Due to Excessive Length

As with the analysis in [IPS08], proving security additionally requires the
“inner” protocol, i.e. the semi-honest fall-back secure protocol to be adaptively
secure where an adversary can eventually corrupt all parties. However, our semi-
honest fall-back security does not satisfy this guarantee. In Section 5.5, we show
how to modify our semi-honest protocol (without incurring any additional as-
sumptions) to additionally satisfy a weaker adaptive security guarantee that will
be sufficient to prove the security of our whole protocol.

2 Preliminaries

We denote by κ a computational security parameter and s a statistical security
parameter that captures a statistical error of up to 2−s. We assume s ≤ κ.

Definition 2.1 Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N
defined over a finite domain D are statistically indistinguishable, denoted
X

s≡ Y , if every positive polynomial p(·) and all sufficiently large n’s,

∆(Xn, Yn) <
1

p(n)

where,

∆(Xn, Yn) =
1

2
·
∑
α∈D
|Pr[Xn = α]− Pr[Yn = α]|

Definition 2.2 Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N
are computationally indistinguishable, denoted X

c≡ Y , if for every PPT
distinguisher D, every positive polynomial p(·) and all sufficiently large n’s,

|Pr[D(Xn, 1
n) = 1]− Pr[D(Yn, 1

n) = 1]| < 1

p(n)

Secure Multiparty Computation. Let P = {Pi}i∈[n] be a set of n parties.
MPC involves the computation of a random process that maps a tuple of in-
puts to a tuple of outputs (one for each party). This random process is referred
to as a functionality f : {0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗ × · · · × {0, 1}∗ where
f = (f1, . . . , fn). Each party Pi has input xi. For simplicity and without loss
of generality, we work over functionalities for which xi ∈ {0, 1}. For every tu-
ple of inputs x⃗ = (xi, . . . , xn), the vector output by f is a random variable
(f1(x⃗), . . . , fn(x⃗)) ranging over tuples of strings where Pi receives fi(x⃗). The
following notation describes a functionality:

(x1, . . . , xn) 7→ (f1(x⃗), . . . , fn(x⃗))

We prove the security of our MPC protocols in the presence of semi-honest and
malicious adversaries in the dishonest majority setting.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 13

In the semi-honest setting, an adversary can control a subset of the partici-
pating parties and always follows the protocol specification but may try to learn
additional information from the transcript of messages received and its internal
state. Let f = (f1, . . . , fn) be a multiparty functionality and Π be an n-party
protocol computing f in t rounds. The view of party Pi in an execution of Π on
inputs x⃗ = (x1, . . . , xn) is,

ViewΠ,i(κ, x⃗) = (κ, xi, ri, {mj
k→i}j∈[t],k ̸=i∈[n])

where κ is the security parameter, ri is the content of Pi’s internal random
tape, and each mj

k→i represents the message received from party Pk in round
j. The output of Pi in an execution of Π on x⃗ is denoted outputΠ,i(x⃗) and can
be computed from ViewΠ,i(κ, x⃗). The set of corrupted parties is denoted by
Z ⊂ P and the set of honest parties by Z. We extend the view notation to
capture any subset of parties, denoting by ViewΠ,T (κ, x⃗) the joint view of all
parties in T ⊆ P on (κ, x⃗).

Definition 2.3 Let f and Π be as above, and let ZC ⊆ 2P be an adversary
structure. The protocol Π is said to securely compute f in the presence of a
PPT semi-honest adversary tolerating adversary structure ZC if there exists
a PPT simulator Sim such that for every Z ∈ ZC,{

Sim(1κ, Z, {xi, fi(x⃗)}i∈Z), {fi(x⃗)}i ̸∈Z
}

κ∈N,x⃗∈{0,1}∗

c≡
{
ViewΠ,Z(κ, x⃗), outputΠ,Z(κ, x⃗)

}
κ∈N,x⃗∈{0,1}∗

where κ is the computational security parameter. The distribution is considered
over the randomness of the simulator and random tapes of parties in the protocol.

Definition 2.4 Let f and Π be as above, and let ZS ⊆ 2P be an adversary
structure. The protocol Π is said to securely compute f in the presence of an
unbounded semi-honest adversary tolerating adversary structure ZS if there
exists a PPT simulator Sim such that for every Z ∈ ZS,{

Sim(1s, Z, {xi, fi(x⃗)}i∈Z), {fi(x⃗)}i ̸∈Z
}

s∈N,x⃗∈{0,1}∗

s≡
{
ViewΠ,Z(s, x⃗), outputΠ,Z(s, x⃗)

}
s∈N,x⃗∈{0,1}∗

where s is the statistical security parameter. The distribution is considered over
the simulator’s randomness and the parties’ random tapes in the protocol.

In the malicious setting, an adversary controlling a subset of the participat-
ing parties can have them deviate arbitrarily from the protocol specification.
Security in this setting is defined by a comparison between an execution of the

14 Authors Suppressed Due to Excessive Length

functionality in an ideal model and an execution of the protocol in the real model.

Execution in the ideal model. An ideal execution is an interaction between
all the parties in P and a trusted party F , wherein the parties submit their input
to the trusted party that computes the output and returns it. An honest party
receives input for the computation and forwards it to the trusted party. In con-
trast, a corrupt party can replace its input with an arbitrary value of the same
length. On receiving these, F computes the output and first sends the outputs
of the corrupt parties to the adversary. The adversary then decides whether the
honest parties will receive their outputs from F or an abort symbol ⊥. For a
multiparty functionality f = (f1, . . . , fn), let A be a non-uniform probabilistic
machine and Z ⊂ P be the set of corrupted parties. Then the ideal execution
of f on inputs (κ, x⃗), auxiliary input z to A and security parameter κ is defined
as the output tuple of the honest parties and the adversary from this execution
and is denoted as IDEALf,A(z),Z(κ, x⃗).

Execution in the real model. This is an interaction directly among the parties
in P wherein the honest parties follow the instructions in the protocol Π. The
adversary A sends all messages in place of the corrupted parties and may follow
any arbitrary strategy. Letting Π be a protocol that computes f as above, A
be a non-uniform probabilistic machine, and let Z ⊂ P be the set of corrupted
parties, the real execution of Π on inputs (κ, x⃗), auxiliary input z to A and
security parameter κ is defined as the output tuple of the honest parties and the
adversary from this execution and is denoted as REALΠ,A(z),Z(κ, x⃗).

Definition 2.5 Let f and Π be as above, and let ZC ⊆ 2P be an adversary
structure. The protocol Π is said to securely compute f with abort in the pres-
ence of PPT malicious adversaries tolerating adversary structure ZC if there
exists a PPT adversary Sim in the ideal model such that for every PPT A in the
real model and Z ∈ ZC,{

IDEALf,Sim(z),Z(κ, x⃗)

}
κ∈N,x⃗,z∈{0,1}∗

c≡
{
REALΠ,A(z),Z(κ, x⃗)

}
κ∈N,x⃗,z∈{0,1}∗

where κ is the computational security parameter. The distribution is considered
over the adversaries’ randomness and all the parties’ random tapes.

Definition 2.6 Let f and Π be as above, and let ZS ⊆ 2P be an adversary struc-
ture. The protocol Π is said to securely compute f with abort in the presence of
unbounded malicious adversaries tolerating adversary structure ZS if there
exists an adversary Sim in the ideal model such that for every computationally
unbounded A in the real model and every Z ∈ ZS,{

IDEALf,Sim(z),Z(s, x⃗)

}
s∈N,x⃗,z∈{0,1}∗

s≡
{
REALΠ,A(z),Z(s, x⃗)

}
s∈N,x⃗,z∈{0,1}∗

where s is the computational security parameter. The distribution is considered
over the adversaries’ randomness and all the parties’ random tapes.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 15

Oblivious Transfer. This is a 2-party functionality FOT between a sender S
and a receiver R of the form:

OT : ((s0, s1), b) 7→ (⊥, sb)

S has two strings s0, s1 ∈ {0, 1}ℓ as inputs and R has a choice bit b ∈ {0, 1}.
The functionality gives sb as output to R. In our construction, we require a sub-
protocol ΠOT that computes FOT and is secure even when the sender is corrupted
by a computationally unbounded adversary (and a receiver is corrupted by a
PPT adversary). We require such a protocol in the semi-honest [EGL82] setting.

Garbling Schemes. For a function f : {0, 1}n → {0, 1}m, let C be its circuit
representation. A garbling scheme [BHR12] is a cryptographic primitive that has
the following structure:

Definition 2.7 (Garbling Scheme) Let f : {0, 1}n → {0, 1}m be a func-
tion. Let κ be a computational security parameter. A garbling scheme GS =
(Gb,En,De,Ev) consists of four polynomial-time algorithms:

– (F, e, d)← Gb(1κ, f): returns a garbling F , input encoding set e, and output
decoding set d.

– X ← En(e, x): returns the encoding X for function input x.
– Y ← Ev(F,X): returns the output labels Y by evaluating F on X.
– {⊥, y} ← De(Y, d): returns either the failure symbol ⊥ or a value y = f(x).

These algorithms must satisfy the following properties:

– Correctness: For every κ, function f and input x,

Pr[y = f(x) : (F, e, d)← Gb(f), X = En(e, x), Y = Ev(F,X), y = De(d, Y)] = 1

– Privacy: Let Algorithm 1 denote the actions of the challenger C in a sim-
ulation game. For all PPT adversaries A there exists a PPT simulator Sim
such that for all f and x, for a negligible function µ, A’s advantage is,

Adv(κ) =

∣∣∣∣Pr[A(f, x, F,X, d) = b]− 1

2

∣∣∣∣ < µ(κ)

Algorithm 1 Privacy
1: proc Challenger(f, x)
2: b← {0, 1}
3: if b == 0,
4: (F, e, d)← Gb(1κ, f)
5: X = En(e, x)
6: if b == 1,
7: (F,X, d)← Sim(1κ, f(x), f)
8: Return (F,X, d)

16 Authors Suppressed Due to Excessive Length

Multi-Party Garbling. For a function f : {0, 1}n → {0, 1}m, let C be its
circuit representation. Let q be the number of gates in C. Each gate g ∈ [q] is
defined by a gate functionality fg ∈ {AND,XOR}, two input wires A,B and an
output wire g where, A,B, g ∈ [n+ q] and topological ordering holds: A,B < g.

A multi-party garbling protocol is one in which a set of parties use their
combined randomness to create a garbled representation of a function. In such
a protocol, it should hold that even when all-but-one of the garblers collude,
no information about the randomness contributed by the non-colluding party
is revealed beyond what can be deduced from the final garbling. There exist
protocols in the literature [BMR90, BLO16] that compute this for an n-party
garbling protocol in the presence of a semi-honest corruption of any n−1 parties.
In our construction, we require a multi-party garbling functionality that operates
as in Figure 3. Our protocols use a multi-party garbling protocol that implements
the functionality FGS (Figure 3) as a sub-protocol where N = n − 1 parties
participate in the joint garbling process. We require one such protocol that is
secure in the presence of PPT semi-honest adversaries.

Zero-Knowledge Proofs. Zero-Knowledge Proofs of Knowledge are an in-
teraction between a prover P and a verifier V such that the interaction convinces
V that for a public value x, P has a secret witness w such that (x,w) ∈ R for a
public relation R but the interaction reveals nothing beyond that fact. We use
two variants of zero-knowledge proofs. The first is a statistical zero-knowledge
argument of knowledge where the prover is computationally bounded, but the
protocol is zero-knowledge even in the presence of an unbounded verifier.

Definition 2.8 Let µ be a negligible function, and for computational security
parameter κ, let ϵ = µ(κ). A pair of machines SZKAoK = (P, V) is a statistical
zero-knowledge argument of knowledge for a relation R if for every V ,

– Perfect Completeness: For every (x,w) ∈ R,

Pr[⟨P (w), V ⟩(x) = 1] ≥ 1− ϵ

– ϵ-Soundness: For every x such that ̸ ∃w for which (x,w) ∈ R, and every
malicious PPT P ∗,

Pr[⟨P ∗, V ⟩(x) = 1] ≤ ϵ

– Statistical Zero-Knowledge: For every unbounded V ∗ there is a PPT S∗,

{⟨P (w), V ∗⟩(x)}(x,w)∈R
s≡ {S∗(x)}(x,w)∈R

– Knowledge Soundness: There exists a PPT E∗ such that for every PPT
prover P ∗, if Pr[⟨P ∗, V ⟩(x) = 1] ≥ 1− ϵ then,

Pr[⟨P ∗, E∗⟩(x) = w] ≥ 1− ϵ− σ

where σ (negligible in κ) is the knowledge error.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 17

Distributed Garbling

Setting: Let f be a function with input x = {xi}i∈[n] and circuit representa-
tion C. Let κ = ℓ be a security parameter and PN = {Pi}i∈[N] be the set of gar-
blers where PN ⊆ P = {Pi}i∈[n]. Let PRF : {0, 1}κ×{0, 1}κ×{0, 1}log q+log N →
{0, 1}κ+1 be a pseudo-random function. The functionality FGS operates as fol-
lows:

– Inputs: Each party Pi ∈ PN has the following inputs:
• for each input wire w ∈ [n], if w = i or w ̸∈ [N], then λi

w ← {0, 1};
else λi

w = 0
• for each gate output wire w ∈ [q], sample λi

w ← {0, 1}
• for each wire w ∈ [n+ q], sample labels ki

w,0, k
i
w,1 ← {0, 1}ℓ

• for all j ∈ [N], (a, b) ∈ {0, 1}2 and gate g ∈ [q] with inputs A and B,

F i,j,g
a,b = PRFki

A,a
,ki

B,b
(g||j)

FGS gets from Pi:

{λi
w, k

i
w,0, k

i
w,1}w∈[n+q], {F i,j,g

a,b }g∈[q],j∈[N],(a,b)∈{0,1}2

Each party Pi ∈ P − PN does not provide any input.
– Computation: The functionality FGS computes for all gate g ∈ [q] with

functionality fg, ∀(a, b) ∈ {0, 1}2, ∀j ∈ [N]:

Gj
a,b =

(
N⊕

i=1

F i,j,g
a,b

)
⊕ ((λw ⊕ fg(a, b))||kj

w,fg(a,b)
)

– Outputs: FGS gives to all parties Pi ∈ P:
• The garbling

{Gj
a,b}j∈[N],g∈[q],(a,b)∈{0,1}2

• For each circuit output wire w ∈ [n+ q −m,n+ q], λw =
⊕N

i=1 λ
i
w

Each party Pi ∈ P − PN gets for input wire w = i, λw =
⊕N

i=1 λ
i
w

Each garbler Pi ∈ PN sets for input wire w = i, λw = λi
w

Fig. 3. Distributed Garbling

The second variant is a computational zero-knowledge proof of knowledge
protocol between an unbounded prover and a computationally bounded verifier.

Definition 2.9 Let µ be a negligible function, and for computational security
parameter κ, let ϵ = µ(κ). The tuple ZKPoK = (P, V) is a computational
zero-knowledge proof of knowledge for a relation R if for every PPT V ,

– Perfect Completeness: For every (x,w) ∈ R,

Pr[⟨P (w), V ⟩(x) = 1] ≥ 1− ϵ

18 Authors Suppressed Due to Excessive Length

– ϵ-Soundness: For every x such that ̸ ∃w for which (x,w) ∈ R, and every
malicious P ∗,

Pr[⟨P ∗, V ⟩(x) = 1] ≤ ϵ

– Computational Zero-Knowledge: For every PPT V ∗ there is a PPT S∗,

{⟨P (w), V ∗⟩(x)}(x,w)∈R
c≡ {S∗(x)}(x,w)∈R

– Knowledge Soundness: There exists a PPT E∗ such that for every prover
P ∗, if Pr[⟨P ∗, V ⟩(x) = 1] ≥ 1− ϵ then,

Pr[⟨P ∗, E∗⟩(x) = w] ≥ 1− ϵ− σ

where σ (negligible in κ) is the knowledge error.

Commitment Schemes. A commitment scheme Com is a 2-party protocol be-
tween a committer C with an input x and a receiver R in which C samples
randomness r and creates a ‘commitment’ to the value x. This commitment
should be hiding: no information about x should be revealed. At a later point in
time, C can send a ‘decommit’ to message to R showing that the value commit-
ted to was indeed x. This property by which C cannot deceive R into believing
that the value committed to was something different x′ ̸= x is called the bind-
ing property of the commitment. In our protocols, we use statistically binding
commitments to ensure that an unbounded malicious adversary cannot deviate
from the protocol.

Definition 2.10 ComSB(m; r) is a Statistically Binding Commitment for
messages m ∈ {0, 1}ℓ if it satisfies:

– Statistical Binding: For all messages m0,m1 ∈ {0, 1}ℓ it holds that,

{ComSB(m0; r)}r∈{0,1}∗ ∩ {ComSB(m1; s)}s∈{0,1}∗ = ϕ

– Computationally Hiding: For all choice of m0,m1 ∈ {0, 1}ℓ it holds that,

{ComSB(m0; r)}r∈{0,1}∗
c≡ {ComSB(m1; s)}s∈{0,1}∗

– Decommitment to a commitment τ is (m, r) such that τ = ComSB(m; r)

Since the binding and hiding properties of commitments are contradicting, a
commitment scheme cannot be both statistically binding and hiding. But there
exist commitment schemes that are either statistically hiding and computation-
ally binding, or statistically binding and computationally hiding. In our work,
we require both kinds of commitment schemes.

Definition 2.11 A non-interactive Statistically Hiding Commitment scheme
for a message space {0, 1}ℓ is a PPT algorithm ComSH satisfying:

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 19

– Computationally Binding: ∀ PPT adversaries A there exists a negligible
function µ such that,

Pr[A(1κ)→ (c,m0, r0,m1, r1)|ComSH(m0; r0) = c;

ComSH(m1; r1) = c;

m0,m1 ∈ {0, 1}ℓ] < µ(κ)

– Statistically Hiding: For all choice of m0,m1 ∈ {0, 1}ℓ it holds that,

{ComSH(m0; r)}r∈{0,1}∗
s≡ {ComSH(m1; s)}s∈{0,1}∗

– Decommitment to a commitment c is (m, r) such that c = ComSH(m; r)

Secret Sharing. A secret-sharing scheme is a tuple of PPT functions SS =
(Share,Recon). It is defined with security against an adversary structure Z ⊂
2P over n parties. For a message m, the function Share(m) returns n values
{[m]i}i∈[n] such that for any set Z ∈ Z, the set of shares {[m]i}Pi∈Z reveal no
information about m, even to a computationally unbounded adversary. How-
ever, for any set Z ̸∈ Z, the set of shares {[m]i}Pi∈Z reveal the message:
m = Recon({[m]i}Pi∈Z).

Let SSn,n = (Sharen,n,Reconn,n) be an n-out-of-n secret-sharing scheme.
That is, for any message m, the tuple {[m]i}i∈[n] ← Sharen,n(m) is such that
any proper subset of this set of shares reveal no information about m to an
unbounded adversary. However, it holds that m = Reconn,n({[m]i}i∈[n]). Such a
scheme exists [Sha79] and it is also additively homomorphic:

{[m1]i}i∈[n] ← Sharen,n(m1)

{[m2]i}i∈[n] ← Sharen,n(m2)

∀i ∈ [n], [m1 +m2]i = [m1]i + [m2]i s.t.
m1 +m2 = Reconn,n({[m1 +m2]i}i∈[n])

Similarly, we denote by SSt,n = (Sharet,n,Recont,n) an t-out-of-n thresh-
old secret-sharing scheme. That is, for any message m, the tuple {[m]i}i∈[n] ←
Sharet,n(m) is such that any subset of t elements of this set of shares reveal no
information about m to an unbounded adversary. However, for any set Z ⊆ P
where |Z| > t, it holds that m = Recont,n({[m]i}Pi∈Z). Such a scheme exists for
any t < n [Sha79] and it is additively homomorphic. It is also homomorphic over
multiplication at the cost of increasing the threshold:

{[m1]i}i∈[n] ← Sharet,n(m1)

{[m2]i}i∈[n] ← Sharet,n(m2)

∀i ∈ [n], [m1 ∗m2]i = [m1]i ∗ [m2]i s.t. ∀Z ∈ P, |Z| > 2t,

m1 ∗m2 = Recon2t,n({[m1 ∗m2]i}i∈Z)

20 Authors Suppressed Due to Excessive Length

Finally, in its complete generality, for an adversary structure Z ⊂ 2P , we
denote by SSZ = (ShareZ ,ReconZ) a secret-sharing scheme that tolerates Z.
That is, for any message m, the tuple {[m]i}i∈[n] ← ShareZ(m) is such that for
any Z ∈ Z, the elements of this set {[m]i}Pi∈Z reveal no information about
m to an unbounded adversary. However, for any set Z ̸∈ Z it holds that m =
ReconZ({[m]i}Pi∈Z). Such a scheme exists for any ZS [BK95] that is an adversary
structure under which there exist MPC protocols realizing general functionalities
in the presence of a semi-honest unbounded adversary.

3 MPC with Fall-Back Security

We define a new notion of multi-party computation: MPC with fall-back security.
Informally, a multi-party protocol satisfies fall-back security if it is secure when
certain subsets of parties are corrupted by a computationally unbounded adver-
sary. However, if more parties than that are corrupted, computational security
is still guaranteed.

Definition 3.1 (Semi-Honest Fall-Back Security) For a set of parties P =
{Pi}i∈[n] where Pi has input xi, let Π = ⟨P⟩ be an n-party protocol computing
a function f with input x⃗ = {xi}i∈[n]. Let ZC = 2P and ZS ⊆ ZC be adversary
structures for PPT and unbounded semi-honest adversaries, respectively. The
protocol Π satisfies fall-back security in the semi-honest setting tolerat-
ing ZS if there exists a PPT Sim such that for every Z ∈ ZC,{

Sim(1κ, Z, {xi, fi(x⃗)}i∈Z), {fi(x⃗)}i ̸∈Z
}

κ∈N,x⃗∈{0,1}∗

c≡
{
ViewΠ,Z(κ, x⃗), outputΠ,Z(κ, x⃗)

}
κ∈N,x⃗∈{0,1}∗

where κ is the computational security parameter; and there exists a PPT simu-
lator Sim such that for every Z ∈ ZS,{

Sim(1s, Z, {xi, fi(x⃗)}i∈Z), {fi(x⃗)}i ̸∈Z
}

s∈N,x⃗∈{0,1}∗

s≡
{
ViewΠ,Z(s, x⃗), outputΠ,Z(s, x⃗)

}
s∈N,x⃗∈{0,1}∗

where s is the statistical security parameter. The distribution is considered over
the randomness of the simulator and all random tapes of parties in the protocol.

Malicious Fall-Back Security. Fall-back security can be similarly defined
also in the malicious setting.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 21

Definition 3.2 (Malicious Fall-Back Security) For a set of parties P =
{Pi}i∈[n] where Pi has input xi, let Π = ⟨P⟩ be an n-party protocol computing
a function f with input x⃗ = {xi}i∈[n]. Let ZC = 2P and ZS ⊆ ZC be adver-
sary structures for PPT and computationally unbounded malicious adversaries,
respectively. The protocol Π satisfies fall-back security in the malicious set-
ting tolerating ZS if there exists a PPT adversary Sim in the ideal model such
that for every PPT A in the real model and every Z ∈ ZC,{

IDEALf,Sim(z),Z(κ, x⃗)

}
κ∈N,x⃗,z∈{0,1}∗

c≡
{
REALΠ,A(z),Z(κ, x⃗)

}
κ∈N,x⃗,z∈{0,1}∗

where κ is the computational security parameter; and there exists an adversary
Sim in the ideal model such that for every computationally unbounded A in the
real model and every Z ∈ ZS,{

IDEALf,Sim(z),Z(s, x⃗)

}
s∈N,x⃗,z∈{0,1}∗

s≡
{
REALΠ,A(z),Z(s, x⃗)

}
s∈N,x⃗,z∈{0,1}∗

where s is the statistical security parameter. The distribution is considered over
the randomness of the simulator and all random tapes of parties in the protocol.

3.1 Example Protocol with Semi-Honest Fall-Back Security

The protocol in Figure 4 is an n-party protocol Π in the (FOT ,FGS)-hybrid
that can compute any function f . In the protocol, out of the set of parties
P = {Pi}i∈[n], the parties {Pi}i∈[n−1] are designated the garblers and Pn is the
evaluator. The garblers collectively create a garbled circuit F for the function
f . This garbled circuit F and the output decoding information d are given to
Pn. The evaluator Pn also receives from each garbling party Pi a ‘masked value’
Λi that hides its private input xi. It then engages as a receiver in an OT pro-
tocol with each garbling party Pi as the sender and receives the active labels
corresponding to all the masked values. Pn, with all the active labels, evaluates
the garbled circuit to derive the output f(x⃗). It then sends f(x⃗) to all the other
parties.

Figure 4 is a protocol with fall-back security against an unbounded adversary
corrupting any subset of PN and a PPT adversary corrupting any subset of
parties in P. This also holds in the plain model when FOT is replaced with
a semi-honest secure OT protocol that is secure against an unbounded sender
and PPT receiver [EGL82]; and when FGS is replaced by a multiparty garbling
protocol [BLO16] that involves only the parties in PN for garbling the circuit.

Remark 3.3 (On the necessity of OT.) One may initially assume that, as
in a protocol secure in the presence of PPT adversaries, once a garbler Pi ∈ PN

publishes Λi, then every other garbler can publish its labels corresponding to
these values without requiring OT. However, this violates privacy in the case of
an unbounded adversary corrupting a strict subset of the garblers. Here, there
exists an honest garbler participating in the Garbling Phase. However, since the

22 Authors Suppressed Due to Excessive Length

Semi-honest Fall-Back Secure Protocol

Setting: Let P = {Pi}i∈[n] be such that Pi has input xi. Let f be a function,
x⃗ = {xi}i∈[n] be its input and the protocol outputs f(x⃗) to all parties in P.

1. Garbling Phase: Letting the garblers be PN = {Pi}i∈[n−1], P invokes
the garbling functionality FGS as in Figure 3 for N = n− 1.
– Each Pi ∈ PN inputs to FGS:
• for each wire w ∈ [n+ q], values λi

w, k
i
w,0, k

i
w,1

• ∀j ∈ [N], (a, b) ∈ {0, 1}2, g ∈ [q], F i,j,g
a,b = PRFki

A,a
,ki

B,b
(g||j)

– All Pi ∈ P get output from FGS:
• the garbled circuit {Gj

a,b}j∈[N],g∈[q],(a,b)∈{0,1}2

• colour bit for each output wire {λw}w∈[n+q−m,n+q]

• for input wire i, colour bit λi

2. OT Phase:
– Each party Pi ∈ PN sends Λi = xi ⊕ λi to Pn

– Pn computes Λn = xn ⊕ λn

– ∀i ∈ [n], j ∈ [N], FOT is invoked where Pn is the receiver with input
Λi and Pj is the sender with inputs (kj

i,0, k
j
i,1)

– After all FOT calls, Pn receives {kj
i,Λi
}j∈[n−1],i∈[n]

3. Evaluation Phase: Pn evaluates the garbled circuit:
– for each gate g ∈ [q] in topological order, and public values a and b

on the input wires A and B, for all j ∈ [N], compute

c||kj
g,c = Gj

a,b ⊕

(
n−1⊕
i=1

PRFki
A,a

,ki
B,b

(g||j)

)

– for each output wire w with value Λw, compute actual value Λw ⊕λw

– Pn sends f(x⃗) to all parties

Fig. 4. Semi-honest Fall-Back Secure Protocol

security of garbling holds only under computational assumptions, the adversary
can derive (brute-force) all the randomness of this honest garbler, including the
masking bit λi. In such a case, the adversary can easily derive the input of this
honest party, violating privacy.

Lemma 3.4 Let ZS be the set of all subsets of {Pi}i∈[n−1].

– Let ΠGS be an n-party protocol computing FGS that is secure against a semi-
honest PPT adversary corrupting any subset of n − 1 parties, with PN =
{Pi}i∈[n−1] as the set of garblers.

– Let ΠOT be a protocol computing FOT that is secure against a semi-honest
unbounded sender and a semi-honest PPT receiver.

Then Figure 4 securely computes any function f with fall-back security (Defini-
tion 3.1) tolerating ZS for semi-honest adversaries in the plain model when the
functionalities FOT and FGS are replaced by ΠOT and ΠGS respectively.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 23

The complete proof for this can be found in Appendix A.1.

Proof Outline. The protocol in Figure 4 is an n-party protocol in which
the first n − 1 parties engage in a multi-party garbling protocol that is secure
in the presence of a PPT adversary corrupting any subset of these garblers.
This sub-protocol outputs a garbling that is given to the last party. Each party
additionally gives this last party a bit representing its input (but masks it). The
last party uses this set of bits to engage in n instances of oblivious transfer with
all other parties as senders to get the input labels for the garbling. Finally, this
party evaluates the garbled circuit and gives everyone the output.

Firstly, note that this protocol is secure in the presence of a PPT semi-honest
adversary corrupting any subset of the parties. This is derived from the fact that
both the multi-party garbling sub-protocol and all instances of the OT protocols
are secure in the presence of a PPT adversary corrupting any of the parties. A
simulator, for this case, works by making black-box calls to the simulators of
these sub-protocols.

It remains to handle the case of corruption by an unbounded adversary.
We need to show that the protocol in Figure 4 is secure in the presence of an
unbounded semi-honest adversary corrupting any subset of the garblers. To this
effect, note that in all the OT protocol executions, the garblers only act as
senders. The OT protocol is secure in the presence of an unbounded adversary
corrupting the sender. The receiver is always the last (evaluating) party and this
is never corrupted by the adversary. Next, note that the multi-party garbling
sub-protocol only involves each garbler’s randomness and is independent of the
function input.

So a simulator in the presence of an unbounded adversary would work by first
participating in the garbling protocol on behalf of the honest garblers, exactly
as in the real protocol execution. Next, it would make black-box calls to the OT
simulator for each execution of OT involving a corrupt garbler. Finally, it would
send the output f(x) to all corrupt parties.

4 Compiling to Semi-Honest Fall-Back Security

In this section, we will describe an MPC protocol for general functionalities that
satisfies semi-honest fall-back security for ZS containing any subset of less than
n
2 parties. At the heart of this protocol is a compiler that we construct that
can upgrade any MPC protocol that is secure against semi-honest unbounded
adversaries with an adversary structure ZS to a protocol with semi-honest fall-
back security for ZS. The final protocol combines two components: a ‘virtual
protocol’ that is secure in the presence of semi-honest unbounded adversaries;
and a ‘real protocol’ compiling this into a protocol with fall-back security.

Virtual Protocol. Let V = {Vi}i∈[n] be a set of n virtual parties. Let Πstat

be an n-party protocol executed among V with security against a semi-honest
unbounded adversary corrupting < n

2 of the parties in V. For any function f

24 Authors Suppressed Due to Excessive Length

there exists such a protocol [BGW88] that computes it. For a party Vi ∈ V, we
refer to its complete view in Πstat as ViewΠstat,i and by Viewj

Πstat,i
, we refer to

the partial view of Vi in the protocol up to round j. This includes the security
parameter κ, the input xi, contents of the random tape ri, and all the messages
received from all parties in V up to round j.

Viewj
Πstat,i

= (κ, xi, ri, {mj′

k→i}j′∈[j],k ̸=i∈[n])

Here mj′

k→i is the message that party Vk sends Vi in round j′. Let NxtMsg be
the next message function such that,

NxtMsgji (Viewj−1
Πstat,i

) = {mj
i→k}k ̸=i∈[n]

This function is parameterized by i ∈ [n] that indexes the virtual party Vi ∈ V.
It takes as input the view up to round j − 1 and creates all the messages to be
delivered to all the parties in round j. Note that after each round,

Viewj
Πstat,i

= Viewj−1
Πstat,i

∪ {mj
k→i}k ̸=i∈[n]

Letting r be the number of rounds in Πstat, the complete protocol Πstat itself can
be described as a set of the next message functions,

Πstat = {NxtMsgji (Viewj−1
Πstat,i

)}i∈[n],j∈[r]

Finally, for any subset of parties Z ⊆ V we denote by ViewΠstat,Z the combined
view of Πstat for all the parties in Z and similarly, we denote by Viewj

Πstat,Z
the

combined view up to round j in the protocol.

Real Protocol. Let P = {Pi}i∈[n] be n parties that need to compute a multi-
party function f on x⃗ = {xi}i∈[n]. Each party Pi ∈ P has input xi. Let Πstat be
an n-party protocol for the function f defined as follows:

– Each party Vi ∈ V has the input bit xi and this is given to F .
– F uses x⃗ = {xi}i∈[n] to compute f(x⃗) and gives it to each party Vi ∈ V.

This protocol Πstat can be re-written as a set of next message functions Πstat =
{NxtMsgji}i∈[n],j∈[r]. Let SSn,n = (Sharen,n,Reconn,n) be an n-out-of-n secret-
sharing scheme. For each i ∈ [n], j ∈ [r] let FNxtMsgji

be a functionality as in
Figure 5.

Note that FNxtMsgji
is a functionality whose output is symmetric. Let Π be a

protocol that computes any functionality exactly as in Figure 4. For each i ∈ [n],
let Πi denote the protocol Π with party Pi playing the role of the evaluator and
all other parties as the garbler. Let ΠNxtMsgji

denote a protocol Πi executed to
compute the functionality FNxtMsgji

. That is, it is an n-party protocol with n− 1

garblers and one evaluator that is secure against the corruption of any subset
of the garblers by a semi-honest unbounded adversary, and the corruption of
any subset of parties by a PPT semi-honest adversary. The protocol ΠNxtMsgji

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 25

Next Message Functionality F
NxtMsg

j
i

Setting: Let P = {Pi}i∈[n] be n parties. Let SSn,n = (Sharen,n,Reconn,n) be
an n-out-of-n secret-sharing scheme. For a protocol Πstat computing F let

NxtMsgji (Viewj−1
Πstat,i

) = {mj
i→k}k ̸=i∈[n]

be the next message function for party Vi in round j. The n-party functionality
F

NxtMsg
j
i

operates as follows:

– Inputs: Each party Pk ∈ P has:
• Let ℓ′ = |{[mj

i→i′]k}i′ ̸=i∈[n]|. Sample a random mask Mk ← {0, 1}ℓ
′
.

• Share of the view of Vi until round (j − 1) in Πstat,

[Viewj−1
Πstat,i

]k =
(
κ, [xi]k, [ri]k, {[mj′

i′→i]k}j′∈[j−1],i′ ̸=i∈[n]

)
Pk gives to F

NxtMsg
j
i

the inputs,

[Viewj−1
Πstat,i

]k,Mk

– Computation: The functionality F
NxtMsg

j
i

computes:

Viewj−1
Πstat,i

← Reconn,n({[Viewj−1
Πstat,i

]k}k∈[n])

{mj
i→i′}i′ ̸=i∈[n] = NxtMsgji (Viewj−1

Πstat,i
)

∀i′ ̸= i ∈ [n], {[mj
i→i′]k}k∈[n] ← Sharen,n(m

j
i→i′)

c⃗ = {ck = Mk ⊕ {[mj
i→i′]k}i′ ̸=i∈[n]}k∈[n]

– Output: F
NxtMsg

j
i

gives c⃗ to each Pk ∈ P.

Fig. 5. Next Message Functionality

is executed by the parties P = {Pk}k∈[n] and the party Pi is designated as the
evaluator, while all other parties are the garblers.

Combined Protocol. The complete protocol Πin is the set of all the protocols
{ΠNxtMsgji

}i∈[n],j∈[r] for any virtual protocol Πstat with r rounds computing F .
It is formally described in Figure 6.

Theorem 4.1 Let Πstat be a n-party protocol that securely computes a function
f in the presence of an unbounded semi-honest adversary with adversary struc-
ture ZS. Assuming protocol Π is an n-party protocol that computes any function
with fall-back security with respect to Z ′S = {Z ⊆ {Pi}i∈[n−1]}, the protocol in
Figure 6 securely compiles Πstat to compute f with fall-back security (Defini-
tion 3.1) tolerating ZS in the presence of semi-honest adversaries.

A detailed proof for this can be found in Appendix A.2.

26 Authors Suppressed Due to Excessive Length

Compiler for Semi-honest Fall-Back Security

Setting: For function f on x⃗ = {xi}i∈[n], let Πstat = {NxtMsgji}i∈[n],j∈[r] be
a protocol computing the functionality F among V = {Vi}i∈[n]. Πstat securely
computes F against a semi-honest unbounded adversary corrupting < n

2
par-

ties. Let P = {Pi}i∈[n] be the set of real parties where Pi has input xi.

1. Initialize shared state. Each party Pi ∈ P does the following:
– Compute Sharen,n(xi)→ {[xi]i′}i′∈[n]

– Sample ri ←R(κ) and compute Sharen,n(ri)→ {[ri]i′}i′∈[n]

– ∀i′ ̸= i ∈ [n], send ([xi]i′ , [ri]i′) to Pi′

– ∀k ∈ [n], set the share of the initial state of virtual party Vk ∈ V as,

[View0
Πstat,k]i = ([xk]i, [rk]i)

2. Compute virtual protocol. For each NxtMsgji ∈ Πstat, let Π
NxtMsg

j
i

be an
n-party protocol as in Figure 4 with Pi as the evaluator and PN = P−{Pi}
as the garblers. Each party Pi′ ∈ P does the following:
– Pi′ has input [Viewj−1

Πstat,i
]i′ and samples Mi′ ← {0, 1}ℓ

′

– Pi′ participates in an execution of Π
NxtMsg

j
i

with input

[Viewj−1
Πstat,i

]i′ ,Mi′

Let View
NxtMsg

j
i ,i

′ be the view of Pi′ in this protocol.

– Pi′ gets the output c⃗ = {ck = Mk ⊕ {[mj
i→k′]k}k′ ̸=i∈[n]}k∈[n]

– Pi′ extracts {[mj
i→k′]i′}k′ ̸=i∈[n] = ci′ ⊕Mi′

– Pi′ updates the view for each virtual party Vk ∈ V − {Vi},

[Viewj
Πstat,k

]i′ = [Viewj
Πstat,k

]i′ ∪ {[Viewj−1
Πstat,k

]i′ , [m
j
i→k]i′}

Π
NxtMsg

j
i

is computed for all Vi ∈ V and rounds indexed j ∈ [r] in Πstat

3. Derive the output. After the complete virtual protocol is computed,
each party Pi ∈ P has a share of the view of each virtual party,

{[ViewΠstat,j]i}j∈[n]

– Each party Pi ∈ P extracts the shares of the output:

{[fj(x⃗)]i}j∈[n] ← {[ViewΠstat,j]i}j∈[n]

– Pi sends [fj(x⃗)]i to Pj ∈ P
– On receiving {[fi(x⃗)]j}j∈[n], Pi reconstructs the output fi(x⃗) = f(x⃗)

Fig. 6. Compiler for Semi-honest Fall-Back Security

Proof Outline. Firstly, the compiled protocol as in Figure 6 is a sequence
of protocols Π that are composed using n-out-of-n secret sharing of the views
of the parties participating in the virtual protocol Πstat. Each such protocol Π

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 27

satisfies fall-back security in the presence of semi-honest adversaries. This, along
with the fact that an adversary not corrupting all the parties does not learn
any information about a secret from its shares, guarantees that the compiled
protocol, Figure 6, is secure in the presence of a semi-honest PPT adversary
corrupting any subset of the parties in P.

It remains to handle the case of corruption by an unbounded adversary.
The protocol Π tolerates an adversary structure of the form Z ′S that includes
all subsets of P that exclude a designated party Pi. Intuitively, in Figure 6, if
a semi-honest unbounded adversary A corrupts any subset of parties Z ∈ ZS

where Z ⊂ P, this corresponds to corrupting every execution of Π in which a
corrupted party Pi ∈ Z is the party excluded in the adversary structure Z ′S. That
is, the adversary has in its view all the inputs, randomness, and messages for all
these executions. Corrupting each such Pi in Πin corresponds to corrupting Vi

in Πstat since the corrupt executions of Π completely reveal the view of Vi.
For every Pi ̸∈ Z, no information about view of Vi is revealed. This is due to

the fact that the views of all virtual parties are shared using n-out-of-n secret
sharing and the unbounded adversary, not having the honest parties’ shares,
has no information about the view. Furthermore, for every execution of Π cor-
responding to such a NxtMsgji , the set of corrupt parties Z ∈ P are such that
Z ∈ Z ′S. Finally, note that the view of parties Z ∈ ZS where Z ⊂ V is simulatable
since Πstat tolerates ZS. So it follows that the view of the compiled protocol is
also simulatable.

For any protocol Πstat for any set of parties Z ∈ ZS, there would exist a PPT
simulator Simstat that can simulate the view of the protocol in a way that is
statistically close to the real view. This simulator can also be written in terms of
next-message functions. The protocol Π computes any n-party functionality and
so can compute these simulated next-message functions as well. A simulator for
the compiled protocol, Figure 6, in the presence of an unbounded semi-honest
protocol, would make black-box calls to simulators for the view of Π executing
the simulated next-message functions of the virtual protocol. This can be shown
as statistically close to the view in the real execution of the protocol using a
sequence of hybrids first replacing each simulated view of Π with the real view.
Finally, the set of next-message functions of the virtual protocol simulation are
replaced by the next-message functions of an actual virtual protocol execution.

Round Complexity. In Figure 6, let r be the number of rounds that the
virtual protocol Πstat takes. Let c be the number of rounds of protocol Π (Fig-
ure 4). Then Figure 6 requires cr+2 rounds. Our result implies that assuming a
constant-round statistical oblivious-transfer, then protocol Π (Figure 4) is con-
stant round and our compiler (Figure 6) yields a protocol with linear round
complexity in the number of rounds in the virtual (information-theoretic) proto-
col. In comparison, previous work [CDvdG87] solves the former with a number of
rounds proportional to the number of participating parties. Using their protocol
within our compiler would yield a number of rounds proportional to both the
number of parties and rounds in the virtual protocol. We remark here that we
essentially achieve the best possible round complexity (up to constant factors).

28 Authors Suppressed Due to Excessive Length

Corollary 4.2 Let Πstat be a n-party protocol that securely computes a function
f in the presence of an unbounded semi-honest adversary with adversary struc-
ture ZS. For each i ∈ [n], let Πi be an n-party protocol that can compute any
functionality with semi-honest fall-back security with respect to the adversary
structure Zi

S = {Z : Z ∈ ZS, Pi ̸∈ Z}. Then Figure 6 securely compiles Πstat to
compute f with fall-back security (Definition 3.1) with respect to ZS and in the
presence of semi-honest adversaries.

5 MPC with Fall-Back Security – Malicious Security

This section will describe an MPC protocol for general functionalities that sat-
isfies malicious fall-back security. Let ZS be any adversary structure for which
there exists a protocol for computing any functionality in the presence of a mali-
cious unbounded adversary tolerating ZS [HM97]. We construct a protocol that
is maliciously fall-back secure with respect to ZS.

Our protocol works in the offline-online paradigm with a function-and-input-
independent pre-processing phase based on [HVW20]. This phase has an n-party
protocol computing the authenticated triples functionality FAuthTriples as given in
Figure 7 with malicious fall-back security tolerating ZS. Then, given the output
of this phase, we use a protocol in the online phase, based on that in [DPSZ12],
that computes any function f with malicious fall-back security. Our focus here
is on designing the protocol for the pre-processing phase and providing a con-
struction for the commitment scheme used in the online phase.

Pre-Processing. This phase contains an n-party protocol for computing au-
thenticated multiplication triples with malicious fall-back security tolerating ZS.
The protocol conceptually contains three main components:

– Authenticated Triples Generation Functionality. Our starting point is
the Authenticated Triples functionality FAuthTriples as given in Figure 7. This
is the n-party functionality that the pre-processing phase aims to realize.
Details can be found in Section 5.1.

– Semi-honest adaptively secure protocol with fall-back security. We
require a protocol realizing FAuthTriples that is fall-back secure tolerating ZS

in the presence of semi-honest adaptive adversaries. Our starting point for
this is an n-client-m-server protocol realizing FAuthTriples in the presence of
an unbounded semi-honest adversary that can corrupt any number of the
clients and up to a threshold t of the servers (Protocol 5.1). In this protocol,
each server works by receiving inputs from all the clients, performing local
computation, and giving outputs to these clients. As such, the actions of
each server can be abstracted into a functionality FS (Figure 8). The final
semi-honest fall-back secure protocol for FAuthTriples that we need works by
having all the n parties act as the clients and also jointly compute FS for
each of the m servers. This computation of FS is done by a semi-honest fall-
back secure protocol that is secure in the presence of adaptive adversaries.
This is discussed in detail in Section 5.2.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 29

– Compiling to maliciously secure fall-back security. The adaptively
secure protocol with semi-honest fall-back security as described above is then
lifted to provide malicious fall-back security tolerating the same adversary
structure ZS. This is done using an n-party commitment protocol with fall-
back security tolerating ZS as a building block. The construction for this is
discussed in Section 5.3. The details of the final pre-processing protocol can
be found in Section 5.4.

Online Phase. Given the output of the pre-processing phase, our online pro-
tocol (Figure 13) follows the online phase closely in [DPSZ12] that can compute
any functionality in the presence of an unbounded malicious adversary corrupt-
ing any subset of the parties in the FCom-hybrid, with FCom being an n-party
commitment functionality. We describe our protocol in the plain model, instan-
tiating FCom with a commitment protocol with fall-back security tolerating ZS.

5.1 Authenticated Triples Generation

We describe an n-party Authenticated Triples Generation functionality FAuthTriples

(Figure 7). Let f be a function and x⃗ be its input. Let P = {Pi}i∈[n] where each
party Pi has private input xi ∈ x⃗ such that xi ∈ {0, 1}. Let C be a circuit
representing f using only binary addition and multiplication gates. Let T ∈ N
be the number of multiplication gates in C. The functionality FAuthTriples creates
an n-out-of-n additive sharing of T random multiplication triples of the form
{aj , bj , cj = (aj · bj)}j∈[T] and gives one share to each party. Additionally, it
additively secret-shares a MAC key ∆ and MACs on the multiplication triples
{MAC(aj) = (aj ·∆), MAC(bj) = (bj ·∆), MAC(cj) = (cj ·∆)}j∈[T] among the
parties. Finally, for each input bit xi, it samples a random number ri and gives
it to Pi. It distributes among all parties a sharing of ri and MAC(ri) = (ri ·∆).
The functionality first allows corrupted parties to sample their own shares and
then samples shares for the honest parties, setting the shares of a designated
party P1 such that the constraints are met.

5.2 Authenticated Triples with Semi-Honest Fall-Back Security

In this section, we describe the protocol computing FAuthTriples with semi-honest
fall-back security tolerating ZS for adaptive corruption. This is the starting point
from which we lift semi-honest to malicious security. However, before discussing
the fall-back secure protocol, consider the semi-honest protocol as in Proto-
col 5.1.

For a security parameter κ, let t = κ be a threshold and set m = 16t.
Protocol 5.1 is a semi-honest secure protocol for computing FAuthTriples among n
clients P = {Pi}i∈[n] and m virtual servers S = {Sj}j∈[m]. In this protocol, the
clients have the inputs and receive the outputs of the functionality and the servers
only aid in computation. The protocol works by having each client sample its
inputs and use t-out-of-m threshold secret-sharing to share it among the servers.

30 Authors Suppressed Due to Excessive Length

Authenticated Triples Generation FAuthTriples

Setting: Let P = {Pi}i∈[n] be a set of parties. Let f be a function and
x⃗ ∈ {0, 1}n be its input such that each party Pi ∈ P has input xi ∈ x⃗. Let
F be a field and T ∈ N be the number of multiplication gates in a circuit C
representing f . Let Z ⊂ P be the corrupt parties. The functionality FAuthTriples

operates as follows:

– Inputs: Each corrupt party Pi ∈ Z samples:
• ∀j ∈ [T], triples shares aj

i , b
j
i , c

j
i ,MACi(a

j),MACi(b
j),MACi(c

j) ∈ F
• ∀k ∈ [n], input mask shares rki ,MACi(r

k) ∈ F
• key share ∆i ∈ F

– Computation: The functionality FAuthTriples computes,
• ∀Pi ∈ P − Z, sample

∆i ← F,
{
r
k
i ,MACi(r

k
)← F

}
k∈[n]{

a
j
i , b

j
i , c

j
i ,MACi(a

j
),MACi(b

j
),MACi(c

j
)← F

}
j∈[T]

• Compute,

∀k ∈ [n], r
k
=

∑
i∈[n]

r
k
i

MAC′
(r

k
) =

(∑
i∈[n]

r
k
i

)
·
(∑

i∈[n]

∆i

)
−

(∑
i∈[n]

MACi(r
k
)
)

∀j ∈ [T], c
′j

=
(∑

i∈[n]

a
j
i

)
·
(∑

i∈[n]

b
j
i

)
−

(∑
i∈[n]

c
j
i

)
MAC′

(a
j
) =

(∑
i∈[n]

a
j
i

)
·
(∑

i∈[n]

∆i

)
−

(∑
i∈[n]

MACi(a
j
)
)

MAC′
(b

j
) =

(∑
i∈[n]

b
j
i

)
·
(∑

i∈[n]

∆i

)
−

(∑
i∈[n]

MACi(b
j
)
)

MAC′
(c

j
) =

(∑
i∈[n]

a
j
i

)
·
(∑

i∈[n]

b
j
i

)
·
(∑

i∈[n]

∆i

)
−

(∑
i∈[n]

MACi(c
j
)
)

– Outputs: FAuthTriples gives to each Pi ̸= P1 ∈ P,

∆i, r
i
,
{
r
k
i ,MACi(r

k
)}k∈[n],

{
a
j
i , b

j
i , c

j
i ,MACi(a

j
),MACi(b

j
),MACi(c

j
)
}
j∈[T]

FAuthTriples gives to P1,

∆1, r
1
,
{
r
k
1 ,MAC1(r

k
) =MAC1(r

k
) + MAC′

(r
k
)}k∈[n],{

a
j
1, b

j
1, c

j
1 = c

j
1 + c

′j
,MAC1(a

j
) = MAC1(a

j
) + MAC′

(a
j
),

MAC1(b
j
) = MAC1(b

j
) + MAC′

(b
j
),MAC1(c

j
) = MAC1(c

j
) + MAC′

(c
j
)
}
j∈[T]

Fig. 7. Authenticated Triples Generation

Then each server performs some symmetric local computation to produce shares
of the outputs of the functionality. The actions of each server can be captured

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 31

by an n-party functionality FS (Figure 8). Each server then gives these shares
to the respective clients and each client reconstructs its outputs.

Protocol 5.1 For a security parameter κ, let t = κ be a threshold and for m >
16t, let S = {Si}i∈[m] be a set of m virtual servers. Let SSt,m = (Sharet,m,Recont,m)
be a t-out-of-m threshold secret-sharing scheme [Sha79]. Let V = {Vi}i∈[n] be a
set of n virtual parties.

– Each party Vi ∈ V first samples,

∆i ← F,
{
rki ,MACi(r

k)← F
}
k∈[n]{

aji , b
j
i , c

j
i ,MACi(a

j),MACi(b
j),MACi(c

j)← F
}
j∈[T]

It then computes a 3t-out-of-m threshold secret-sharing of each element in{
MACi(c

j)
}
j∈[T] and a t-out-of-m threshold secret-sharing of all other ele-

ments.
– Each party Vi ∈ V gives to server Sj ∈ S the shares,

[∆i]j ,
{
[rki]j ,[MACi(r

k)]j
}
k∈[n]{

[aj
′

i]j , [b
j′

i]j , [c
j′

i]j , [MACi(a
j′)]j , [MACi(b

j′)]j , [MACi(c
j′)]j

}
j′∈[T]

– Each server Sj ∈ S computes the functionality FS (Figure 8). It gives to
party V1 ∈ V the values,

[r1]j ,
{
[MAC′(rk)]j}k∈[n],

{
[c′j

′
]j , [MAC′(aj′)]j , [MAC′(bj

′
)]j , [MAC′(cj

′
)]j
}
j′∈[T]

It gives each party Vi ∈ V the share [ri]j.
– The party V1 reconstructs,

∆1, r
1,
{
rk1 ,MAC1(r

k) =MAC1(r
k) +MAC′(rk)}k∈[n],{

aj1, b
j
1, c

j
1 = cj1 + c′j ,MAC1(a

j) = MAC1(a
j) +MAC′(aj),

MAC1(b
j) = MAC1(b

j) +MAC′(bj),MAC1(c
j) = MAC1(c

j) +MAC′(cj)
}
j∈[T]

– Each Vi ̸= V1 reconstructs ri.

Lemma 5.2 Protocol 5.1 securely realizes functionality FAuthTriples (Figure 7)
in the presence of an unbounded semi-honest adversary corrupting all-but-one
parties in V and any subset of t servers in S.

The semi-honest secure Protocol 5.1 is secure in the presence of a semi-honest
unbounded adversary corrupting all-but-one of the clients and up to t servers. We
define a protocol ΠS to be an n-party protocol realizing FS (Figure 8) with semi-
honest fall-back security tolerating ZS in the presence of adaptive corruptions.
Given such a protocol, we can define a protocol ΠAuthTriples that realizes FAuthTriples

with semi-honest fall-back security tolerating ZS for adaptive adversaries. This
protocol would work by first having each of the n parties generate their inputs
and create t-out-of-m threshold secret-shares. Then execute m instances of ΠS ,
each with a different set of shares as input. The output of these executions is
reconstructed to get the output of FAuthTriples.

32 Authors Suppressed Due to Excessive Length

Virtual Server Functionality FS

Setting: Let κ be a computational security parameter, T ∈ N and F be a field.
Let V = {Vi}i∈[n] be a set of parties. The functionality FS operates as follows:

– Inputs: Each party Vi ∈ V has:

[∆i]j ,
{
[rki]j ,[MACi(r

k)]j
}
k∈[n]{

[aj′

i]j , [b
j′

i]j , [c
j′

i]j , [MACi(a
j′)]j , [MACi(b

j′)]j , [MACi(c
j′)]j

}
j′∈[T]

as in Protocol 5.1.
– Computation: The functionality FS computes,

∀k ∈ [n], [r
k
]j =

∑
i∈[n]

[r
k
i]j

[MAC′
(r

k
)]j =

(∑
i∈[n]

[r
k
i]j

)
·
(∑

i∈[n]

[∆i]j
)
−

(∑
i∈[n]

[MACi(r
k
)]j

)
∀j′ ∈ [T], [c

′j′
]j =

(∑
i∈[n]

[a
j′
i]j

)
·
(∑

i∈[n]

[b
j′
i]j

)
−

(∑
i∈[n]

[c
j′
i]j

)
[MAC′

(a
j′
)]j =

(∑
i∈[n]

[a
j′
i]j

)
·
(∑

i∈[n]

[∆i]j
)
−

(∑
i∈[n]

[MACi(a
j′
)]j

)
[MAC′

(b
j′
)]j =

(∑
i∈[n]

[b
j′
i]j

)
·
(∑

i∈[n]

[∆i]j
)
−

(∑
i∈[n]

[MACi(b
j′
)]j

)
[MAC′

(c
j′
)]j =

(∑
i∈[n]

[a
j′
i]j

)
·
(∑

i∈[n]

[b
j′
i]j

)
·
(∑

i∈[n]

[∆i]j
)
−

(∑
i∈[n]

[MACi(c
j′
)]j

)
– Outputs: FS gives to V1:

[r
1
]j , {[MAC′

(r
k
)]j}k∈[n]{[c

′j′
]j , [MAC′

(a
j′
)]j , [MAC′

(b
j′
)]j , [MAC′

(c
j′
)]j}j′∈[T]

It gives [ri]j to each Vi ̸= V1 ∈ V.

Fig. 8. Virtual Server Functionality

Remark 5.3 (A note on adaptive security.) Note that our final protocol re-
quires this semi-honest secure protocol to satisfy adaptive security for the same
reason the IPS compiler does. Recall that every virtual party is emulated via this
semi-honest secure inner protocol, where the adversary can choose to deviate at
any point. This implies that the simulator of this virtual protocol needs to provide
the randomness for these corrupted parties consistent with the inputs provided
by the real protocol simulator upon corruption. In Section 5.5, we show that
such a simulation can be performed without actually requiring adaptive security
for the individual primitives (garbled circuit and oblivious transfer) by carefully
considering the different adaptive corruption scenarios.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 33

Commitment Functionality FCom

Setting: Let P = {Pi}i∈[n] be a set of parties. Let C ∈ P be the committer
with input x ∈ X . The functionality FCom operates as follows:

– Inputs: C has input x. All other parties have no input.
– Commit Phase: C gives x or ⊥ to FCom.
– Decommit Phase: FCom gives x to all parties in P if input is not ⊥.

Fig. 9. n-party Commitment Functionality

Commitment Protocol with Fall-Back Security

Setting: Let P = {Pi}i∈[n] and ZS ⊂ 2P . Let C ∈ P be the committer with
input x ∈ X . There exist secure point-to-point and broadcast channels for all
parties. Let ComSB (Definition 2.10) be a statistically binding commitment.
For the adversary structure ZS let SSZS = (ShareZS ,ReconZS) be a secret-
sharing scheme over X . Let ComSH (Definition 2.11) be a statistically hiding
commitment. The commitment protocol ΠCom operates as follows:

1. Commit Phase.
– C computes shares {[x]k}k∈[n] ← ShareZS(x).
– For each Pk ∈ P such that Pk ̸= C, C samples randomness rkCom and

computes ckComSB
= ComSB([x]k; r

k
Com).

– C samples rComSH and broadcasts cComSH = ComSH(x; rComSH).
2. Decommit Phase.

– C sends rkCom to each Pk ∈ P and broadcasts (rComSH , x, {[x]k}k∈[n]).
– Each party Pk ̸= C ∈ P, checks if

x == ReconZS
({[x]k}k∈[n])

cComSH
== ComSH(x; rComSH

)

c
k
ComSB

== ComSB([x]k; r
k
Com)

If this holds, accept x as output.

Fig. 10. Commitment Protocol with Fall-Back Security

5.3 Commitment Protocols with Fall-Back Security

Both the pre-processing and online phases require commitment schemes that are
maliciously fall-back secure tolerating ZS. Let FCom be an n-party commitment
functionality (Figure 9). Note that this functionality proceeds in a ‘Commit
Phase’ and a ‘Decommit Phase’. We realize this functionality with an n-party
maliciously fall-back secure protocol. For this, we need to define simulators for
the case where the adversary does not corrupt the committer C, where it needs
to de-commit to the correct value without the knowledge of the input committed

34 Authors Suppressed Due to Excessive Length

Extractable Commitment with Fall-Back Security

Setting: Let P = {Pi}i∈[n] and ZS ⊂ 2P . Let C ∈ P be the committer with
input x ∈ X . There exist secure point-to-point and broadcast channels for all
parties. Let ComSB (Definition 2.10) be a statistically binding commitment. For
the adversary structure ZS let SSZS = (ShareZS ,ReconZS) be a secret-sharing
scheme over X . Let ComSH (Definition 2.11) be a statistically hiding commit-
ment and let SZKAoK be a statistical zero-knowledge argument of knowledge
protocol (Definition 2.8) for the statement:

∃x, r s.t. cComSH = ComSH(x; r)

For each k ∈ [n], let ZKPoK be a zero-knowledge proof of knowledge (Defini-
tion 2.9) for the statements of the form:

∃[x]k, rkCom s.t. ckComSB
= ComSB([x]k; r

k
Com)

The extractable commitment protocol ΠECom operates as follows:

1. Commit Phase.
– C computes shares {[x]k}k∈[n] ← ShareZS(x).
– For each Pk ∈ P such that Pk ̸= C, C samples randomness rkCom and

computes ckComSB
= ComSB([x]k; r

k
Com).

– For each Pk ∈ P such that Pk ̸= C, C executes ZKPoK as the prover
and Pk as the verifier.

– C samples rComSH and broadcasts cComSH = ComSH(x; rComSH).
– C executes SZKAoK as the prover with all other parties as verifiers.

2. De-commit Phase.
– C sends rkCom to each Pk ∈ P and broadcasts (rComSH , x, {[x]k}k∈[n]).
– Each party Pk ̸= C ∈ P, checks if

x == ReconZS
({[x]k}k∈[n])

cComSH
== ComSH(x; rComSH

)

c
k
ComSB

== ComSB([x]k; r
k
Com)

If this holds, accept x as output.

Fig. 11. Extractable Commitment with Fall-Back Security

to and without being able to rewind to the previous phase. As building-blocks,
we first describe an n-party commitment protocol (Figure 10) between one com-
mitter and n − 1 viewers that preserves fall-back security. This protocol oper-
ates in a commit phase and a decommit phase. It uses as its building-blocks a
2-party statistically binding commitment scheme, a statistically hiding commit-
ment scheme, and an n-party secret-sharing scheme for which a secret cannot
be reconstructed for adversary structure ZS.

We also require another variant (Figure 11) that is extractable: there exists a
PPT extractor that can extract the value committed to while playing the role of

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 35

one of the viewers. We rely on a statistical zero-knowledge argument of knowledge
and a computational zero-knowledge proof of knowledge to achieve extraction.
We remark that, since we only need weak extraction, we can achieve this by
simply having the committer commit to multiple 2-out-of-2 secret sharings of
the message where the receiver challenges the committer to open one out of the
two in each of those sharings (e.g., see [PW09]).

n-Party Commitment with Fall-Back Security. Given the two fall-back
secure protocols described above, we construct in Figure 12 a protocol that real-
izes FCom (Figure 9) with malicious fall-back security. It allows us to equivocate
the committed message in the decommit phase of the simulation. This proto-
col realizes the required functionality but only for binary inputs in {0, 1}. For
it to work for any input domain, we convert the required input into a binary
string and execute multiple executions of this protocol to bit-wise commit to the
complete string. In our final construction, we denote by ΠCom this commitment
protocol for an arbitrary input domain.

5.4 Malicious Fall-Back Secure Protocol for Authenticated Triples

We compile ΠAuthTriples as given in Section 5.2 to provide malicious fall-back
security tolerating ZS. This requires putting mechanisms in place that ensure
that all the parties execute the protocol ΠAuthTriples in a semi-honest manner.
This is done in three steps.

1. Randomness Generation. For each of the n parties and each of the m
executions of ΠS , all the parties execute a coin-tossing in-the-well protocol to
sample uniformly the random tape to be used by a party in the execution of
ΠS . In each such execution, a designated party receives the random tape and
all other parties receive a commitment to this randomness. This is done in
a way that preserves malicious fall-back security tolerating ZS and uses the
commitment and extractable commitment protocols described in Section 5.3.
Executing n ·m such protocols determines all the randomness to be used in
the execution of ΠAuthTriples, with the exception of the randomness involved
in secret-sharing the inputs of each party to create the inputs for each ΠS .

2. Input Commitment. Each of the n parties sample their inputs to ΠAuthTriples

and creates a t-out-of-m threshold-secret-sharing of each of these values as
given in Protocol 5.1. The party then uses the fall-back secure extractable
commitment protocol to commit to these shares to all other parties.

3. Consistency Checks. Intuitively, compiling the semi-honest protocol to
malicious security involves first having all the parties commit to all their
inputs and randomness and then executing the protocol with the values
committed. Owing to the t-out-of-m secret sharing, the semi-honest protocol
ΠAuthTriples is secure in the presence of up to t failed executions of ΠS . So
an adversary corrupting too few of these executions cannot affect security.
First, a degree-test needs to be conducted to ensure that the inputs to all the
instances of ΠS when looked at collectively are indeed a t-out-of-m secret

36 Authors Suppressed Due to Excessive Length

n-party protocol realizing FCom

Setting: Let P = {Pi}i∈[n] and ZS ⊂ 2P . Let C ∈ P be the committer with
input x ∈ {0, 1}. There exist secure point-to-point and broadcast channels
for all parties. Let Com (Figure 10) be a fall-back secure commitment protocol
and ECom (Figure 11) be an extractable fall-back secure commitment protocol
tolerating ZS. Let κ be a security parameter.
The commitment protocol ΠCom operates as follows:

1. Commit Phase.
– Each party Pi ∈ P such that Pi ̸= C samples a string ri ∈ {0, 1}κ and

executes the ‘commit phase’ of Com with this as input.
– For each j ∈ [κ], C samples νj and creates a matrix:

Mj =

[
νj , νj + x
νj , νj + x

]
Execute the ‘commit phase’ of ECom with each element of Mj as input.

– For each party Pi ∈ P such that Pi ̸= C the ‘decommit phase’ of Com
is executed and all parties learn ri.

– C can compute r =
∑

Pi ̸=C∈P ri. For each j ∈ [κ], For the r[j]th

column in Mj , the ‘decommit phase’ of ECom is executed and all
parties learn (ν∗

j , ν
∗∗
j).

– For each Pi ∈ P where Pi ̸= C, for each j ∈ [κ], Pi checks if ν∗
j == ν∗∗

j .
If all checks pass, it accepts {Mj}j∈[κ] as the commitment to x.

2. De-commit Phase.
– For each j ∈ [κ], C samples bj ← {0, 1} at random and executes the

‘decommit phase’ of ECom for the commitment in the bthj row of the
(¬r[j])th column. All parties learn ν′

j and compute x′
j = ν∗

j − ν′
j .

– If ∀j ∈ [κ], x′
j is equal to the same value x, accept x as the output.

Fig. 12. Realizing FCom with malicious fall-back security

sharing of the inputs of ΠAuthTriples.
Next, for malicious security, t

2 out of the m instances of the ΠS executions
are chosen at random, and all the parties need to decommit to the inputs
and randomness used for these executions. All parties then check if these
have been computed correctly where security in the presence of a malicious
adversary is based on the fact that if the adversary deviates in the protocol
in more than t of the instances, it would, with overwhelming probability, be
detected within the opened executions.

Protocol 5.4 describes the final pre-processing protocol realizing FAuthTriples.
For completeness, Figure 13 describes the online phase protocol.

Protocol 5.4 Let P = {Pi}i∈[n] and ZS ⊂ 2P . Let f be function and x⃗ ∈ {0, 1}n
be the input such that Pi ∈ P has input xi ∈ x⃗. Let F be a field and T ∈ N be the

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 37

number of multiplication gates in circuit C representing f . There exist secure
point-to-point and broadcast channels for all parties.
Let κ be a security parameter, t = κ and m ≥ 16t. Let ΠAuthTriples be a semi-
honest fall-back secure protocol tolerating ZS for adaptive adversaries. For each
j ∈ [m], let Πj

S denote the jth instance of ΠS in ΠAuthTriples. Let ΠCom (Figure 12)
be a protocol realizing FCom with fall-back security for any input domain.

1. Coin Toss Phase. Execute the commit phase of a coin-tossing protocol.
Let Rt = {0, 1}s where s = t

2 logm. Let r⃗ ∈ Rt be a vector containing t
2

elements r⃗ = {j ∈ {0, 1}logm} indicating the set of Πj
S executions to be

opened in the ‘Watch-list’ step of the ‘Check Phase’.
– Inputs: Each Pi ∈ P generates randomness r⃗i ← Rt.
– Protocol Πcoin – Commit Phase:
• Sequentially for each Pi ∈ P, execute the commit phase of ΠCom

with Pi as the committer and input r⃗i.
• Let Viewi,k

Com,r denote the view of party Pk ̸= Pi in this execution.
– Outputs: Every Pi ∈ P accepts {Viewk,i

Com,r}k∈[n].
Let F2n+6T+1 be the space of inputs of each party Pi to Πj

S. Execute the
commit phase of Πcoin as above:
– Inputs: Each Pi ∈ P samples d⃗i ← F2n+6T+3 where d⃗ =

∑
i∈[n] d⃗i

becomes the randomness used in the ‘Degree Test’ step of the ‘Check
Phase’ to verify the correctness of threshold secret-sharing.

– Outputs: Every Pi ∈ P accepts {Viewk,i
Com,d}k∈[n].

2. Input Commitment Phase. ∀i ∈ [n], Pi commits to its inputs in ΠAuthTriples.
– Inputs: Pi generates a vector v⃗i containing the random elements,

∆i ← F,
{
rki ,MACi(r

k)← F
}
k∈[n]{

aji , b
j
i , c

j
i ,MACi(a

j),MACi(b
j),MACi(c

j)← F
}
j∈[T]

– Protocol Πi
Com – Commit Phase:

• Pi computes for each v ∈ v⃗i the shares {[v]j}j∈[m] ← Sharet,m(v).

Let ⃗
vji = {[v]j}v∈v⃗i

be Pi’s inputs to Πj
S.

• Sequentially for each j ∈ [m], execute the commit phase of ΠCom

where Pi is the committer with input ⃗
vji . Let Viewi,k

Com,j,v be the view
of each Pk ̸= Pi in this execution.

– Outputs:
• Every Pk ̸= Pi accepts {Viewk,i

Com,j,v}j∈[m].

• Pi sets for each j ∈ [m], the input to Πj
S the vector ⃗

vji of the form,

⃗
vji =

(
[∆i]j ,

{
[rki]j , [MACi(r

k)]j
}
k∈[n],

{
[aj

′

i]j , [b
j′

i]j , [c
j′

i]j ,

[MACi(a
j′)]j , [MACi(b

j′)]j , [MACi(c
j′)]j

}
j′∈[T]

)
3. Randomness Generation Phase. Sequentially ∀i ∈ [n], j ∈ [m], the com-

mit phase of a coin-tossing-in-the-well protocol Πi,j
CTW is executed.

Let Pi ∈ P be the receiver, R be the space of random tapes.

38 Authors Suppressed Due to Excessive Length

– Inputs: Each Pk ∈ P generates randomness rki,j ← R.
– Protocol Πi,j

CTW – Commit Phase:
• Sequentially for each Pk ∈ P, execute the commit phase of ΠCom

where Pk is the committer with input rki,j. Let Viewk,k′,i,j
Com be the

view of each Pk′ ̸= Pk.
• ∀Pk ̸= Pi, execute decommit phase of ΠCom with committer Pk.

– Outputs:
• Pi sets ri,j =

∑
k∈[n] r

k
i,j as its randomness for Πj

S.
• Every Pk ̸= Pi accepts (Viewi,k,i,j

Com , {rki,j}Pk ̸=Pi∈P).
4. Compute Phase. ∀j ∈ [m], execute Πj

S (functionality FS – Figure 8).

– Inputs: Each Pi ∈ P uses ⃗
vji as the input to Πj

S.

– Outputs: Party Pi ∈ P gets the output vector ⃗
sji .

Each Pi ∈ P computes s⃗i ← Recon4t,m({⃗sji}j∈[m]).
5. Check Phase. Perform consistency checks on the execution of ΠAuthTriples.

(a) Degree Test:
– Each Pi ∈ P samples z0, z1 ← F.

It computes z⃗0 ← Sharet,m(z0) and z⃗1 ← Sharet,m(z1).
– Complete the ‘reveal phase’ of Πcoin with domain F2n+6T+1:
• Sequentially for each Pi ∈ P, execute the decommit phase of

ΠCom where Pi is the committer and receive d⃗i.
Every party Pi ∈ P accepts d⃗ =

∑
k∈[n] d⃗k ∈ F2n+6T+3.

– ∀j ∈ [m], Pi ∈ P broadcast di,j = ⟨d⃗, s⃗ij⟩ where s⃗ij = (z0[j], z1[j], v⃗ij).
– All parties check ∃i ∈ [n],Recont,m({di,j}j∈[m]) ==⊥ then ABORT.

(b) Watch-list:
– Complete the ‘reveal phase’ of Πcoin with domain Rt:
• Sequentially for each Pi ∈ P, execute the decommit phase of

ΠCom where Pi is the committer and receive r⃗i.
• Each party Pi ∈ P accepts r⃗ =

∑
k∈[n] r⃗k.

– For each j ∈ r⃗, ∀Pi ∈ P, execute the ‘reveal phase’ of Πi,j
CTW:

• Execute the decommit phase of ΠCom where Pi is the committer
and receive rii,j.

• Each Pk ̸= Pi accepts ri,j =
∑

k′∈[n] r
k′

i,j.
– For each j ∈ r⃗, ∀Pi ∈ P, reveal the input commitments in Πi

Com:
• Broadcast z0[j] and z1[j] and execute the decommit phase of

ΠCom where Pi is the committer and receive ⃗
vji .

– ∀j ∈ r⃗, check if the view of the execution of Πj
S in the Com-

pute Phase equals the view produced on computing Πj
S with inputs

{⃗vji }i∈[n] and randomness {ri,j}i∈[n]. Also for each i ∈ [n], check if
di,j == ⟨d⃗, s⃗ij⟩. If the check fails, ABORT.

Theorem 5.5 For a set of n parties P = {Pi}i∈[n], let ZS ⊂ 2P be an adversary
structure for unbounded malicious adversaries.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 39

– Let ΠAuthTriples be an n-party protocol that realizes FAuthTriples (Figure 7) with
semi-honest fall-back security tolerating ZS for adaptive adversaries.

– Let Πonline be an n-party protocol that can compute F with malicious fall-back
security tolerating ZS, in the FAuthTriples-hybrid.

Then Protocol 5.4 and Figure 13 can compute any function f with malicious
fall-back security (Definition 3.2) tolerating ZS.

The proof for Theorem 5.5 follows from the fact that Πonline computes any
function in the FAuthTriples-hybrid with malicious fall-back security. So it remains
to prove the following lemma.

Lemma 5.6 For a set of n parties P = {Pi}i∈[n], let ZS ⊂ 2P be an adversary
structure for unbounded malicious adversaries. Let ΠAuthTriples be an n-party pro-
tocol that realizes FAuthTriples (Figure 7) with semi-honest fall-back security tol-
erating ZS for adaptive adversaries. Then Protocol 5.4 realizes FAuthTriples with
malicious fall-back security (Definition 3.2) tolerating ZS.

The complete proof for this can be found in Appendix A.3. The main theorem
requires the semi-honest fall-back secure to be adaptively secure. We argue in
Section 5.5 how to relax this requirement and design a protocol without any
additional assumptions.

5.5 Removing the Adaptive Security Requirement

We now provide an overview of how to remove the adaptive security requirement
on the semi-honest fall-back secure protocol in the malicious compilation.

Let us recall our protocol on a high-level. We emulate a virtual outer protocol
where the state of the virtual party is secret shared among the set of parties,
and each step of the virtual party in the outer protocol is emulated via an inner
protocol. The virtual parties can either be “watched”, i.e., the adversary has “full
view” of the virtual party, or “unwatched”. In particular, for watched parties,
the adversary has full information about their input and randomness. In the
simulation, the simulator emulates the actions of the honest parties following
an honest algorithm for all instances of the inner protocol corresponding to
watched virtual parties, but relies on the semi-honest adaptive simulation of the
inner protocol to generate the honest parties’ messages in the inner protocol
executions corresponding to the unwatched virtual parties.

We need the inner protocol simulation to tolerate adaptive corruption to
simulate the scenario when the adversary deviates in any inner protocol corre-
sponding to an unwatched virtual party. Specifically, we rely on two properties
to simulate when such a deviation occurs: (1) The simulator can identify the
precise step when the adversary deviates since it extracts the input and ran-
domness the adversary is supposed to use in emulating all virtual parties at the
beginning of the protocol, and (2) When a deviation occurs, the simulator can
obtain the real inputs of the honest parties in that inner protocol execution be-
cause with high probability the number of unwatched virtual parties on which

40 Authors Suppressed Due to Excessive Length

Online Protocol using Authenticated Triples Πonline

Setting: Let P = {Pi}i∈[n] and F be an n-party functionality with input
x⃗ = {xi}i∈[n] where each party Pi ∈ P has xi. There exist secure point-
to-point and broadcast channels for all parties. Let ΠCom (Figure 10) be a
commitment protocol with malicious fall-back security with a ‘commit’ phase
and ‘de-commit’ phase. Each party Pi ∈ P has:

s⃗i =
{
∆i, r

i,
{
rki ,MACi(r

k)}k∈[n],{
aj
i , b

j
i , c

j
i ,MACi(a

j),MACi(b
j),MACi(c

j)
}
j∈[T]

}
The parties compute F step-by-step using the following:

1. Input Sharing. All parties create authenticated shares of their inputs.
– Let xi be the input of party Pi to be shared.
– Pi has ri, rii,MACi(r

i),∆i ∈ s⃗i and broadcasts di = (xi − ri).
– Pi computes xi

i = rii + di and MACi(x
i) = MACi(r

i) + (∆i · di).
– Each party Pj ̸= Pi ∈ P has rij ,MACj(r

i),∆j ∈ s⃗j .
It computes xi

j = rij and MACj(x
i) = MACj(r

i) + (∆j · di).
2. Addition Gate Evaluation. Let the secret inputs be x and y.

– Each Pi ∈ P has (xi,MACi(x)) and (yi,MACi(y)).
– Each Pi ∈ P computes (x+ y)i = xi + yi

and MACi(x+ y) = MACi(x) +MACi(y).
3. Adding Public Constant. Let d be a public constant and x be a secret.

– Each Pi ∈ P has (xi,MACi(x)) and ∆i ∈ s⃗i.
– P1 computes (x+d)1 = x1+d and MAC1(x+d) = MAC1(x)+(∆1 ·d).
– Each Pi ̸= P1 ∈ P computes (x+ d)i = xi

and MACi(x+ d) = MACi(x) + (∆i · d).
4. Reconstruction. Let x be the secret value to be reconstructed.

– Each Pi ∈ P has (xi,MACi(x)) and ∆i ∈ s⃗i.
– Each Pi ∈ P broadcasts xi and then computes x′ =

∑
k∈[n] xk.

– Each Pi ∈ P computes di = ∆i · x′ −MACi(x) and commit to it.
– Each Pi ∈ P decommit to di and checks if

∑
k∈[n] dk == 0. If this

is true, accept x′ = x.
5. Multiplication Gate Evaluation. Let the secret inputs be x and y.

– Each Pi ∈ P has (xi,MACi(x)) and (yi,MACi(y)).
– Each Pi ∈ P also has ∆i, ai, bi, ci,MACi(a),MACi(b),MACi(c) ∈ s⃗i.
– Each Pi ∈ P follows the steps in ‘Addition Gate Evaluation’ to

compute ei = (x− a)i and MACi(e); and di = (y − b)i and MACi(d).
– Each Pi ∈ P does ‘Reconstruction’ to get e and d, and compute ed.
– Each Pi ̸= P1 ∈ P computes (xy)i = ci + e · bi + d · ai

and MACi(xy) = MACi(c) + e ·MACi(b) + d ·MACi(a) + ed∆i

– Each P1 computes (xy)1 = c1 + e · b1 + d · a1 + ed
and MAC1(xy) = MAC1(c) + e ·MAC1(b) + d ·MAC1(a) + ed∆1

Fig. 13. Online Protocol using Authenticated Triples

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 41

the adversary deviates is bounded and we can rely on the adaptive simulation of
the outer protocol to generate their inputs and randomness. Therefore, when the
deviation occurs, the simulator obtains the actual inputs for the honest parties
for that inner protocol execution and provides it to the adaptive simulator to
complete the simulation.

[IPS08] proved the security of their protocol, assuming honest parties can
erase data. Our main observation is that it suffices that the inner protocol admits
adaptive simulation with erasures, but the honest parties in the real world do
not have to erase anything. Before we argue this, we briefly explain how our
inner protocol, namely the semi-honest fall-back secure protocol, can be modified
slightly to admit adaptive simulation with erasures.

Adaptive erasures property of the inner protocol. Recall that the
warmup protocol proceeds in two phases. First, a designated subset of n−1 par-
ties jointly build a garbled circuit. Then the designated nth party executes multi-
ple oblivious transfers as a receiver (that is secure unconditionally against passive
senders) with the remaining n − 1 parties as senders. We modify the warmup
protocol by having the n−1 parties execute sufficiently many oblivious-transfers
on random inputs with the nth party in the first phase and then use a reduction
to random OTs in the second phase when executing the actual OTs. Observe
that the first phase is input independent (for both the garbling and random
OT). Therefore, we will have all the parties erase their local randomness used
in the first phase and only carry forward the garbling result and the inputs and
outputs of the random OTs. This variant of the inner protocol admits adaptive
simulation with erasures. Observing that semi-honest protocols of Yao’s garbled
circuits and GMW have been previously observed to be adaptively secure in the
presence of erasures [IPS08], we briefly explain why our protocol satisfies adap-
tive simulation with erasures as well. In the first phase, the simulator simulates
the honest parties honestly; thereby, any corruption can be simulated perfectly.
In the second phase, any adaptive corruption will require the simulator only to
reveal the garbled circuit and the random OT inputs and outputs, but not the
randomness used to generate them as they have been erased.

Honest parties do not have to erase in the real world. Finally, we
argue why the honest parties do not actually have to erase their data in any
of the executions of the warmup protocol in our main protocol. The idea here
is that when the adversary deviates in an inner protocol instance, it does not
actually (adaptively) corrupt any honest party in the real world. So it does not
obtain the view of any honest party. Hence, we only need a mechanism for the
simulator to continue simulating the honest parties and not have to share the
internal state of the honest parties with the adversary (which is required if the
adversary corrupted the honest parties). Our main observation is that we can
rely on the adaptive simulation assuming erasures for such a mechanism.

More precisely, in the simulation, when the adversary deviates in an instance
of the internal protocol, the main simulator invokes the adaptive simulation
of the outer protocol to obtain the partial view of the corresponding virtual

42 Authors Suppressed Due to Excessive Length

party. From this view, the main simulator can obtain the inputs of the honest
parties within the inner protocol instance on which the adversary deviated. We
recall here that each inner protocol instance corresponds to some next-message
computation of a virtual party, and the parties hold secret-shares of the state of
that virtual party. Thus, determining the inputs and outputs of the honest parties
in an inner protocol instance becomes sampling shares for the honest parties that
reconstruct to the right value (i.e., the inputs and outputs inferred from the view
of the virtual party). Given the inputs and outputs of the honest parties in the
inner protocol instance, the main simulator emulates an adaptive corruption of
the honest parties in that instance. Now, we rely on the adaptive simulator of the
inner protocol (with erasures), where the main simulator provides the inputs and
outputs of the honest parties to provide a view of the honest parties consistent
with the simulation thus far. From there on, the main simulator uses the honest
algorithm to generate the honest parties’ messages for the adaptively corrupted
instance. We emphasize that the main simulator obtains the view of the honest
parties but does not share that with the adversary.

To argue security, we observe that any adversary A that can distinguish the
real world from this simulation can be transformed into another adversary B that
can break the adaptive security with erasures property of the warmup/inner pro-
tocol. This is because B can emulate the adversary A, and whenever a deviation
occurs, it will adaptively corrupt the honest parties and receive their internal
state of the honest parties but ignore it as A does not need it. If A breaks the
security in an execution of our protocol, it will imply an instance of the warmup
protocol where the B breaks the adaptive security with erasures property.

Acknowledgments

Anasuya Acharya and Carmit Hazay are supported by ISF grant No. 1316/18.
Carmit Hazay is also supported by the Algorand Centres of Excellence pro-
gramme managed by Algorand Foundation. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of Algorand Foundation. The fourth au-
thor was supported by a JPMorgan Chase Faculty Research Award, Technology,
and Humanity Fund from the McCourt School of Public Policy at Georgetown
University, and a Google Research Award.

References

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, pages 1–10, 1988.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In ACM CCS, pages 784–796, 2012.

BK95. G. R. Blakley and Gregory Kabatianskii. General perfect secret sharing
schemes. In CRYPTO 1995, pages 367–371. Springer, 1995.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 43

BLO16. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest
secure multiparty computation for the internet. In ACM SIGSAC, pages
578–590, 2016.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In ACM, pages 503–513, 1990.

BPS22. Saikrishna Badrinarayanan, Sikhar Patranabis, and Pratik Sarkar. Sta-
tistical security in two-party computation revisited. In TCC 2022, pages
181–210, 2022.

CDvdG87. David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty com-
putations ensuring privacy of each party’s input and correctness of the
result. In CRYPTO 1987, pages 87–119, 1987.

Cha89. David Chaum. The spymasters double-agent problem: Multiparty compu-
tations secure unconditionally from minorities and cryptographically from
majorities. In CRYPTO 1989, pages 591–602, 1989.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO
2012, pages 643–662, 2012.

EGL82. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. In CRYPTO 1982, pages 205–210, 1982.

GMPP16. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Poly-
chroniadou. The exact round complexity of secure computation. In EU-
ROCRYPT 2016, pages 448–476, 2016.

HM97. Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries
tolerable in secure multi-party computation (extended abstract). In PODC
1997, pages 25–34, 1997.

HVW20. Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss.
The price of active security in cryptographic protocols. In EUROCRYPT
2020, pages 184–215, 2020.

IKK+11. Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez
Petrank. On achieving the "best of both worlds" in secure multiparty
computation. SIAM J. Comput., 40(1):122–141, 2011.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In CRYPTO 2008, pages 572–591, 2008.

Kat07. Jonathan Katz. On achieving the "best of both worlds" in secure multiparty
computation. In ACM STOC 2007, pages 11–20, 2007.

KM20. Dakshita Khurana and Muhammad Haris Mughees. On statistical security
in two-party computation. In TCC 2020, pages 532–561, 2020.

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party
computation. In CRYPTO 2004, pages 335–354, 2004.

LPSY15. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient
constant round multi-party computation combining BMR and SPDZ. In
CRYPTO, pages 319–338, 2015.

PW09. Rafael Pass and Hoeteck Wee. Black-box constructions of two-party pro-
tocols from one-way functions. In TCC 2009, pages 403–418, 2009.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

44 Authors Suppressed Due to Excessive Length

A Omitted Proofs

A.1 Proof of Lemma 3.4

Proof. The proof of this lemma follows in two parts. First we show that there
exists a PPT simulator SimS that for any subset of parties Z ∈ ZS can output
a view whose distribution is statistically close to the view in the real protocol
in the plain model. Next, we go on to show that there exists a PPT simulator
SimC that for any subset of parties Z ∈ ZC = 2P can output a view that is
computationally indistinguishable from the distribution of the view in the real
protocol.

In order to examine the security of Figure 4 in the plain model, it becomes
necessary to describe the properties of its various building blocks:

1. FGS used in Figure 4 is replaced by protocol ΠGS [BLO16] that computes a
multi-party garbling and decoding information for the function f . Since FGS

does not take the function inputs x⃗, the execution of ΠGS is also independent
of it. The protocol requires each of the garblers in PN to sample randomness
and create the inputs that are listed in the description of FGS. Then the
garblers execute a protocol that generates output of the functionality and
this is also given to the evaluator Pn. The complete protocol ΠGS is secure
against a semi-honest PPT adversary corrupting any subset Z of n−1 parties
in P. Therefore, there exists a PPT simulator SimGS

C that takes the inputs
and outputs of all the corrupt parties and produces a view of the protocol
that is computationally indistinguishable from the real view:

ˆView
Z

GS ← SimGS
C (1κ, {λi

w, k
i
w,0, k

i
w,1}w∈[n+q],Pi∈Z ,

{F i,j,g
a,b }g∈[q],j∈[N],(a,b)∈{0,1}2,Pi∈Z ,

{Gj
a,b}j∈[N],g∈[q],(a,b)∈{0,1}2 ,

{λw}w∈[n+q−m,n+q], {λi}Pi∈Z)

Here, ˆView
Z

GS denotes the view of Z ⊂ P output by simulator SimGS
C .

2. FOT used in Figure 4 is replaced by a protocol ΠOT [EGL82] that computes
2-party oblivious transfer. ΠOT is a protocol that is secure in the presence
of a computationally unbounded semi-honest adversary corrupting the OT
sender. That is, there exists a simulator SimOT

S that takes the inputs of the
sender and produces a view of the protocol that is statistically close to that
of the real view:

ˆView
S

OT ← SimOT
S (1s, s0, s1)

ΠOT is also secure in the presence of a PPT semi-honest adversary corrupting
the OT receiver. That is, there exists a PPT simulator SimOT

C that takes the
input and output of the receiver and produces a view of the protocol that is
computationally indistinguishable from the real view:

ˆView
R

OT ← SimOT
C (1κ, b, sb)

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 45

Given the sub-protocols ΠGS and ΠOT as above, we are now ready to prove our
theorem in the plain model.

Let us first consider the case of statistical security against any Z ∈ ZS where
Z ⊆ {Pi}i∈[n−1]. In the plain model, the PPT simulator SimS for Figure 4,
making black-box calls to SimOT

S , operates as follows:

1. SimS has the input of all the corrupt parties {xi}Pi∈Z and the function
output f(x). Let R be the domain of each party’s randomness. SimS samples
randomness {ri ← R}Pi∈Z for all corrupt parties.

2. In the Garbling Phase of Figure 4, SimS samples {ri ← R}Pi∈[n]−Z on
behalf of all the honest garblers. It executes ΠGS as in the real execution
with inputs derived from r⃗ = {ri}Pi∈[n]. Let ViewZ

GS denote the view of Z
in this execution of ΠGS.

3. In the OT Phase of Figure 4, first SimS computes {Λi}Pi∈Z for the corrupt
parties. It then samples Λi ← {0, 1} uniformly at random for each honest
party. Next, for each i ∈ [n], Pj ∈ Z, SimS makes black-box calls to SimOT

S ,
obtaining the views:

∀i ∈ [n], Pj ∈ Z, ˆView
S

OT,i,j ← SimOT
S (1s, kji,0, k

j
i,1)

4. Finally, in the Evaluation Phase, SimS sets f(x⃗) as the output.

Let κ be the computational security parameter. The view of the adversary in
the above execution of SimS is distributed as,{

{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,ViewZ
GS, { ˆView

S

OT,i,j}i∈[n],Pj∈Z

}
κ∈N,r⃗∈Rn

Note that this view differs from the real view only in the view of the oblivious
transfer. Let d = |Z|. For each i ∈ [n], Pj ∈ Z, let ViewS

OT,i,j be the view of
oblivious transfer in the real OT execution where Pj is the sender and Pn is the
receiver for the choice bit Λi. In order to show that the simulated view and the
real view of the protocol is statistically close, consider dn+1 hybrids of the form:

– Hybrid H0,0. This is the distribution of the output of SimS. This is identical
to the view in the real execution up to before the OT executions.

H0,0 =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,ViewZ

GS, { ˆView
S

OT,i,j}i∈[n],Pj∈Z

}
κ∈N,r⃗∈Rn

– Hybrid Hi,j . For i ∈ [n] and corrupted party Pj ∈ Z, this hybrid experiment
contains the real execution of Protocol 4 up to the OT execution where Pj

is the sender and Λi is the input bit of Pn. The rest of the OT execution

46 Authors Suppressed Due to Excessive Length

views are created as in the simulation using calls to SimOT
S .

Hi,j =

{
{xi′}Pi′∈Z , f(x⃗), {ri′}Pi′∈Z ,ViewZ

GS,

{ViewS
OT,i′,j′}i′∈[i−1],(i′=i,j′≤j),

{ ˆView
S

OT,i′,j′}i′>i,(i′=i,j′>j)

}
κ∈N,r⃗∈Rn

– Hybrid Hn,d. This has the distribution of the view in the real execution of
Protocol 4.

Hn,d =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,ViewZ

GS, {ViewS
OT,i,j}i∈[n],Pj∈Z

}
κ∈N,r⃗∈Rn

Claim. Assuming that the OT protocol ΠOT is secure against an unbounded
semi-honest adversary corrupting the sender, the view in the hybrid distribution
Hi,j is statistically indistinguishable from the view in Hi,j+1.

Proof. Note that each adjacent pair of hybrids Hi,j and Hi,j+1 (similarly, H0,0

and H1,1, and each Hi,d and Hi+1,1) differ only in the view of one OT execution. In
Hi,j , the view of the OT execution ˆView

S

OT,i,j is the simulated OT view output
by SimOT

S . In Hi,j+1, this is ViewS
OT,i,j , as in the real OT execution. The rest of

the hybrid is created and distributed the same way. We already have that the
view produced by SimOT

S is statistically close to the real view of OT. Let ϵ be the
statistical difference between the distributions { ˆView

S

OT,i,j} and {ViewS
OT,i,j}

of the simulated and real OT execution. Then the statistical difference between
the hybrid distributions Hi,j and Hi,j+1 is no more than ϵ.

It follows from the triangle inequality of statistical differences that the difference
between the distribution of the simulated view H0,0 output by SimS and the real
view Hn,d in Figure 4 is ≤ ndϵ. Therefore, the distributions of the real and
simulated views are statistically close.

It remains to handle the case of security against any Z ∈ ZC. Here a PPT semi-
honest adversary has in its view Z ⊆ P. The difference between this case and
the previous case is that the evaluator of the garbling, Pn, can also be corrupted
by the adversary. As such the PPT simulator SimC needs to give the adversary
a garbled circuit that evaluates to the correct function output, without knowing
the inputs of the honest parties to this function. The simulator SimC for Figure 4
in the plain model, making black-box calls to SimGS

C and SimOT
C , works as follows:

1. SimC has as input the input of all the corrupt parties {xi}Pi∈Z and the
function output f(x⃗). It samples randomness {ri}Pi∈Z for all corrupt parties.
If Pn is not corrupted, SimC behaves the same as SimS.

2. Otherwise, in the Garbling Phase of Figure 4, SimC first samples random-
ness on behalf of all the honest garblers and creates a garbling that always

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 47

outputs f(x⃗). This is done by computing,

Gj∗
a,b =

(
N⊕

i=1

F i,j,g
a,b

)
⊕ (λw||kjw,0) ∀j ∈ [N], g ∈ [q], (a, b) ∈ {0, 1}2

λ∗w = Λw ⊕ yw′ ∀yw′ ∈ f(x⃗), w = n+ q −m+ w′

That is, for a garbled gate g ∈ [q] and j ∈ [N], all the 4 ciphertexts mask the
same label kjw,0. Finally, for each circuit output wire, the apparent value Λw

is mapped to the output bit y ∈ f(x⃗) by setting λw = Λw ⊕ y.
Next, SimC makes a black-box call to SimGS

C with the inputs of the corrupted
parties and the above garbling:

ˆView
Z

GS ← SimGS
C (1κ, {λi

w, k
i
w,0, k

i
w,1}w∈[n+q],Pi∈Z ,

{F i,j,g
a,b }g∈[q],j∈[N],(a,b)∈{0,1}2,Pi∈Z ,

{Gj∗
a,b}j∈[N],g∈[q],(a,b)∈{0,1}2 ,

{λ∗w}w∈[n+q−m,n+q], {λi}Pi∈Z)

Such a simulator exists [BLO16] and produces a view ˆView
Z

GS that is com-
putationally indistinguishable from the view of Z in a real execution of ΠGS.

3. In the OT Phase of Figure 4, first SimC samples for each honest party
Pi ∈ P − Z, a random bit Λi ← {0, 1}. Next, for each i ∈ [n], Pj ∈ P − Z,
SimC makes black-box calls to SimOT

C , obtaining the views:

∀i ∈ [n], Pj ∈ P − Z, ˆView
R

OT,i,j ← SimOT
C (1κ, Λi, k

j
i,Λi

)

4. Finally, in the Evaluation Phase, SimC accepts f(x⃗) as the result of gar-
bling evaluation.

Let κ be a computational security parameter and r⃗ be the randomness sampled
for all the corrupt parties and internally in the garbling simulator SimGS

C . The
view of the adversary in the above execution of SimC is distributed as,{

{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,
ˆView

Z

GS, { ˆView
R

OT,i,j}i∈[n],Pj ̸∈Z

}
κ∈N,r⃗∈Rn

It remains to argue that the above distribution is computationally indistinguish-
able from that of the real view of the adversary in Figure 4. This view differs
from the real view in that the garbling view ˆView

Z

GS and the view of the OT
executions { ˆView

R

OT,i,j}i∈[n],Pj ̸∈Z are created differently. Let d be the number
of corrupt parties. In order to show that the distribution of the output of SimC

is indistinguishable from the real view, consider the following set of n(n− d)+2
hybrids:

48 Authors Suppressed Due to Excessive Length

– Hybrid H0. This is the distribution of the output of SimC.

H0 =

{
{xi′}Pi′∈Z , f(x⃗), {ri′}Pi′∈Z ,

ˆView
Z

GS, { ˆView
R

OT,i′,j′}i′∈[n],Pj′ ̸∈Z

}
κ∈N,r⃗∈Rn

– Hybrid H1. This is an intermediate distribution where the view is generated
by first executing the real Protocol 4 up to the end of ΠGS. Then the views
of the OT protocols are generated as in the simulation SimC.

H1 =

{
{xi′}Pi′∈Z , f(x⃗), {ri′}Pi′∈Z ,

ViewZ
GS, { ˆView

R

OT,i′,j′}i′∈[n],Pj′ ̸∈Z

}
κ∈N,r⃗∈Rn

This distribution differs from H0 only in that the view ViewZ
GS here is derived

from a real execution of ΠGS.
– Hybrid Hi,j . For i ∈ [n] and honest party Pj ̸∈ Z, this hybrid experiment

contains the view of the real execution of Protocol 4 up to the OT execution
where Pj is the sender and Λi is the input bit of Pn. The rest of the OT
execution views are created as in the simulation using calls to SimOT

C .

Hi,j =

{
{xi′}Pi′∈Z , f(x⃗), {ri′}Pi′∈Z ,ViewZ

GS,

{ViewR
OT,i′,j′}i′<i,(i′=i,j′≤j),

{ ˆView
R

OT,i′,j′}i′>i,(i′=i,j′>j)

}
κ∈N,r⃗∈Rn

– Hybrid Hn,(n−d). This has the distribution of the view in the real execution
of Protocol 4.

Hn,(n−d) =

{
{xi′}Pi′∈Z , f(x⃗), {ri′}Pi′∈Z ,

ViewZ
GS, {ViewR

OT,i′,j′}i′∈[n],Pj′ ̸∈Z

}
κ∈N,r⃗∈Rn

Claim. Assuming that the protocol ΠGS is secure against a PPT semi-honest
adversary corrupting any subset Z ⊂ P of the parties, the view in the hybrid
distribution H0 is computationally indistinguishable from that in H1.

Proof. We show that if there existed a PPT distinguisher D that can distinguish
between H0 and H1 with non-negligible advantage ϵ, then D can be used in a
black-box way by a PPT adversary AGS that distinguishes between the distribu-
tions {ViewZ

GS}κ∈N,r⃗∈Rn from the real execution of ΠGS and { ˆView
Z

GS}κ∈N,r⃗∈Rn

from the output of SimGS
C . The adversary works as follows:

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 49

– The adversary AGS has the values (x⃗, f(x⃗)) and samples the randomness
r⃗ ← Rn for all parties.

– AGS sends (f(x⃗), r⃗) to the challenger C that internally samples a bit b.
– If b = 0, C computes,

Gj∗
a,b =

(
N⊕

i=1

F i,j,g
a,b

)
⊕ (λw||kjw,0) ∀j ∈ [N], g ∈ [q], (a, b) ∈ {0, 1}2

λ∗w = Λw ⊕ yw′ ∀yw′ ∈ f(x⃗), w = n+ q −m+ w′

ViewGS ← SimGS
C (1κ, {λi

w, k
i
w,0, k

i
w,1}w∈[n+q],Pi∈Z ,

{F i,j,g
a,b }g∈[q],j∈[N],(a,b)∈{0,1}2,Pi∈Z ,

{Gj∗
a,b}j∈[N],g∈[q],(a,b)∈{0,1}2 ,

{λ∗w}w∈[n+q−m,n+q], {λi}Pi∈Z)

Otherwise, C computes ViewGS to be the view of the parties in Z in the real
execution of ΠGS.

– C gives ViewGS to AGS and, with this, AGS computes the rest of the view
View as in SimC. Note that if b = 0, View is distributed as in H0 and if
b = 1, it distributed as in H1.

– Finally, AGS passes View on to D and outputs whatever D outputs.

In the above strategy, AGS has the same distinguishing advantage as D, which is
non-negligible. However, since the protocol ΠGS is secure against a PPT semi-
honest adversary corrupting any subset Z ⊂ P of the parties, no such AGS

can exist [LPSY15, BLO16], and it follows that no such D can exist. So the
distributions H0 and H1 are computationally indistinguishable.

Claim. Assuming that the OT protocol ΠOT is secure against a PPT semi-
honest adversary corrupting the receiver, the view in the hybrid distribution
Hi,j is computationally indistinguishable from the view in Hi,j−1.

Proof. Note that each adjacent pair of hybrids Hi,j and Hi,j−1 (similarly, H1 and
H1,1, and each Hi,(n−d) and Hi+1,1) differ only in the view of one OT execution.

In Hi,j−1, the view of the OT execution ˆView
R

OT,i,j is the simulated OT view
output by SimOT

C . In Hi,j , this is ViewR
OT,i,j , as in the real OT execution. The

rest of the hybrid is created and distributed the same way.
We show that if there existed a PPT distinguisher D that can distinguish be-

tween Hi,j and Hi,j−1 with non-negligible advantage ϵ, then D can be used in a
black-box way by a PPT adversary AOT that distinguishes between the distribu-
tions {ViewR

OT,i,j}κ∈N,r∈R from the execution of ΠOT and { ˆView
R

OT,i,j}κ∈N,r∈R
from the output of SimOT

C . The adversary works as follows:

– AOT has the indices i, j and the values (x⃗, f(x⃗)). It samples randomness
r⃗ ← Rn and computes ViewZ

GS as in a real execution of the protocol ΠGS.

50 Authors Suppressed Due to Excessive Length

– Then, for all OT instances (i′, j′) where i′ < i or i′ = i and j′ < j, it creates
ViewR

OT,i′,j′ as in the real OT execution. For all OT instances (i′, j′) where

i′ > i or i′ = i and j′ > j, it creates ˆView
R

OT,i′,j′ as in the simulated OT
execution.

– Corresponding to the (i, j)th OT execution, AOT sends inputs kji,0, k
j
i,1 and

Λi to the challenger C.
– C internally samples a bit b and if b = 0, it computes,

ViewOT ← SimOT
C (1κ, Λi, k

j
i,Λi

)

Otherwise it computes ViewOT to be the view of the receiver in the real
execution of ΠOT.

– C gives ViewOT to AOT and, with this, AOT completes the view View to
be input to D. Note that if b = 0, View is distributed as in Hi,j−1 and if
b = 1, it is distributed as in Hi,j .

– Finally, AOT passes View to D and outputs whatever D outputs.

In the above strategy, AOT has the same distinguishing advantage as D, which is
non-negligible. However, since the protocol ΠOT is secure against a PPT semi-
honest adversary corrupting the receiver, no such AOT can exist, and it follows
that no such D can exist. So the distributions Hi,j and Hi,j−1 are computationally
indistinguishable.

Since none of the listed set of adjacent hybrids are distinguishable, it fol-
lows that the real view of the protocol Hn,(n−d) and the simulated view H0 are
computationally indistinguishable.

A.2 Proof of Theorem 4.1

Proof. The proof of this theorem follows in two parts. First, we show that there
exists a PPT simulator SimC that for any subset of parties Z ∈ ZC = 2P can
output a view that is computationally indistinguishable to the view in the real
protocol. Next, we show that there exists a simulator SimS that for any subset
of parties Z ∈ ZS can output a view that is statistically close to the view in the
real protocol.

In order to examine the security of Figure 6 in the plain model, it becomes
necessary to describe the properties of its building blocks:

1. Πstat is a virtual n-party protocol computing the function f on input x⃗. Πstat

is secure in the presence of a semi-honest unbounded adversary corrupting
any subset Z ⊂ V of the parties where Z ∈ ZS. This means that there exists
a simulator Simstat [BGW88] that, given the inputs and outputs of the parties
in Z can generate a view of this adversary that is statistically close to its
view in the real execution of Πstat.

ˆView
Z

stat ← Simstat(1
s, {xi}Vi∈Z , f(x⃗)){

ˆView
Z

stat

}
κ∈N,r⃗∈Rn

s≡
{
ViewZ

stat

}
κ∈N,r⃗∈Rn

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 51

2. Much like how Πstat can be written as the set of functions {NxtMsgji}i∈[n],j∈[r],
the simulator Simstat can also be written as,

Simstat = {NxtMsgj∗i }i∈[n],j∈[r]

Here, for each corrupted party Vi ∈ Z, the functions {NxtMsgj∗i }j∈[r] =

{NxtMsgji}j∈[r] are as in the real protocol Πstat. However, for each honest
party Vi ̸∈ Z, for each round j ∈ [r], the next-message function has the same
structure as the real function but produces simulated messages that do not
depend on the party’s input:

{mj′

i→k}k ̸=i∈[n] ← NxtMsgj∗i (ˆView
j−1
stat,i)

Here ˆView
j−1
stat,i is the simulated view with all the messages that the corrupt

party sends to Vi up to round j − 1. The set {mj′

i→k}k ̸=i∈[n] is the set of
simulated messages output on behalf of Vi to the other parties in round j.

3. The real protocol Πin is composed of the set of protocols {ΠNxtMsgji
}i∈[n],j∈[r]

corresponding to the Πstat in question. Each sub-protocol ΠNxtMsgji
works as

described in Figure 4 with Pi as the evaluator and the rest of the parties
as the garblers. Due to Theorem 3.4, we know that for a PPT semi-honest
adversary corrupting Z ⊆ P there exists a simulator Sim

NxtMsgji
C that given

the inputs and outputs of the parties in Z can produce a view that is compu-
tationally indistinguishable to the distribution from a real execution of the
sub-protocol:

ˆView
Z

NxtMsgji
← Sim

NxtMsgji
C (1κ,{[Viewj−1

Πstat,i
]k,Mk}Pk∈Z ,

{ck = Mk ⊕ {[mj
i→i′]k}i′ ̸=i∈[n]}k∈[n])

{
ˆView

Z

NxtMsgji

}
κ∈N,r⃗∈Rn

c≡
{
ViewZ

NxtMsgji

}
κ∈N,r⃗∈Rn

We also have that for an unbounded semi-honest adversary corrupting Z ⊆
P − {Pi} there exists a simulator Sim

NxtMsgji
S that, given the inputs and

outputs of the parties in Z, can produce a view that is statistically close to
the distribution from a real execution of the sub-protocol:

ˆView
Z

NxtMsgji
← Sim

NxtMsgji
S (1s,{[Viewj−1

Πstat,i
]k,Mk}Pk∈Z ,

{ck = Mk ⊕ {[mj
i→i′]k}i′ ̸=i∈[n]}k∈[n])

{
ˆView

Z

NxtMsgji

}
κ∈N,r⃗∈Rn

s≡
{
ViewZ

NxtMsgji

}
κ∈N,r⃗∈Rn

Similarly to the above, if this simulator is given the inputs of the adversar-
ial parties and the outputs are based on {[mj′

i→i′]k}i′ ̸=i∈[n]}k∈[n], as output

52 Authors Suppressed Due to Excessive Length

by the simulator of the virtual protocol NxtMsgj∗i ∈ Simstat, the view simu-
lated is a view that is still statistically close to that in the real execution of
ΠNxtMsgji

:

ˆView
Z

NxtMsgj∗i
← Sim

NxtMsgji
S (1s,{[ˆView

j−1
stat,i]k,Mk}Pk∈Z ,

{ck = Mk ⊕ {[mj′

i→i′]k}i′ ̸=i∈[n]}k∈[n]){
ˆView

Z

NxtMsgj∗i

}
κ∈N,r⃗∈Rn

s≡
{
ViewZ

NxtMsgji

}
κ∈N,r⃗∈Rn

Given these building-blocks, we can prove the theorem in the plain model.

Let us first consider the case of security against a PPT semi-honest adversary
that corrupts any subset Z ⊆ P of the parties. The simulator for Figure 6,
making black-box calls to simulators in {SimNxtMsgji

C }i∈[n],j∈[r], works as follows:

1. SimC has the input of all the corrupt parties {xi}Pi∈Z and the function
output f(x⃗). It samples randomness {ri}Pi∈Z for all corrupt parties.

2. In the ‘Initialize shared state’ phase, SimC, on behalf of each honest
party Pi′ ̸∈ Z, samples a random input xi′ ← {0, 1} and creates shares
{[xi′]i}i∈[n] ← Sharen,n(xi′). For each i′ ∈ [n], it creates shares also of
the randomnesses {[ri′]i}i∈[n] ← Sharen,n(ri′). It sends the set of shares
{[xi′]i, [ri′]i}Pi′ ̸∈Z to the corrupt party Pi ∈ Z.

3. For each virtual party Vi ∈ V and each round j ∈ [r] of the virtual protocol
Πstat, for the protocol ΠNxtMsgji

as in Figure 4, SimC makes a black-box call

to the PPT simulator Sim
NxtMsgji
C that can simulate the view of the corrupt

parties in a way that is computationally indistinguishable from the real view.
Let this set of views be,

{ ˆView
Z

NxtMsgji
}i∈[n],j∈[r]

4. In the phase to ‘Derive the output’, SimC gives the adversary shares of
the output such that they reconstruct to {f(x⃗) = fi(x⃗)}Pi∈Z

This completes the simulation. The view of the adversary in the above execution
of SimC is distributed as,{

{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z , { ˆView
Z

NxtMsgji
}i∈[n],j∈[r]

}
κ∈N,r⃗∈Rn

It remains to argue that the above view is computationally indistinguishable
to the real view of the adversary in Figure 6. Note that this view differs from
the real view in the protocol in that the views of the next-message protocols
are composed of calls to Sim

NxtMsgji
C in the simulation. In order to show that the

output of SimC is indistinguishable from the real view, consider the following set
of rn+ 1 hybrids:

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 53

– Hybrid H0. This is the distribution of the output of SimC.

H0 =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z , { ˆView

Z

NxtMsgji
}i∈[n],j∈[r]

}
κ∈N,r⃗∈Rn

– Hybrid Hi,j . For each i ∈ [n] and j ∈ [r], this hybrid experiment contains the
view of parties in Z in the real protocol execution up to the execution of the
sub-protocol ΠNxtMsgji

. The rest of the view is generated as in the simulation
SimC.

Hi,j =

{
{xi′}Pi′∈Z , f(x⃗), {ri′}Pi′∈Z ,

{ViewZ

NxtMsgj
′

i′
}i′<i,(i′=i,j′≤j),

{ ˆView
Z

NxtMsgj
′

i′
}i′>i,(i′=i,j′>j)

}
κ∈N,r⃗∈Rn

– Hybrid Hn,r. Note that the last hybrid of the above form is distributed
exactly as the real execution of Protocol 6.

Hn,r =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z , {ViewZ

NxtMsgji
}i∈[n],j∈[r]

}
κ∈N,r⃗∈Rn

Claim. Assuming that the protocol ΠNxtMsgji
is secure in the presence of a PPT

semi-honest adversary corrupting any subset Z ⊆ P of the parties, the view in
the hybrid distribution Hi,j is computationally indistinguishable from that in
Hi,j−1.

Proof. Note that in the hybrid distributions described above, each pair of ad-
jacent hybrids Hi,j and Hi,j−1 (similarly, H0 and H1,1; and each pair Hi,r and
Hi+1,1) differ only the view of the execution of the sub-protocol ΠNxtMsgji

. In

Hi,j−1, this view is the simulated view ˆView
Z

NxtMsgji
output by Sim

NxtMsgji
C . In

Hi,j this is the view of the parties in Z in the real execution of ΠNxtMsgji
.

We show that if there existed a PPT distinguisher D that can distinguish
between the hybrid distributions Hi,j and Hi,j−1 with non-negligible advantage
ϵ, then D can be used in a black-box way by a PPT adversaryA that distinguishes
between the distributions { ˆView

Z

NxtMsgji
}κ∈N,r⃗∈Rn from the output of SimNxtMsgji

C

and {ViewZ
NxtMsgji

}κ∈N,r⃗∈Rn from the real execution of the sub-protocol as in
Figure 4. The adversary A works as follows:

– A has the indices (i, j), the set of corrupted parties Z ⊆ P and (x⃗, f). It
samples randomness r⃗ ← Rn for all parties.

– For the next message functions NxtMsgj
′

i′ of Πstat where i′ < i or i′ = i and
j′ < j, it creates the view as in the real protocol: ViewZ

NxtMsgj
′

i′
. For the

instances where i′ > i or i′ = i and j′ > j, it creates the view as in the
simulation ˆView

Z

NxtMsgj
′

i′
.

54 Authors Suppressed Due to Excessive Length

– Corresponding to the (i, j)th instance, A sends all the inputs and outputs to
the challenger C that samples a bit b. If b = 0, C computes,

ViewNxtMsg ← Sim
NxtMsgji
C (1κ,{[Viewj−1

Πstat,i
]k,Mk}Pk∈Z ,

{ck = Mk ⊕ {[mj
i→i′]k}i′ ̸=i∈[n]}k∈[n])

Otherwise it computes ViewNxtMsg to be the views of the parties in Z in the
real execution of ΠNxtMsgji

.
– C gives ViewNxtMsg to A and, with this, A completes the view View to be

input to D. Note that if b = 0, View is distributed as in Hi,j−1 and if b = 1,
it is distributed as in Hi,j .

– Finally, A passes View to D and outputs whatever D outputs.

In the above strategy, A has the same distinguishing advantage as D, which is
non-negligible. However, since the protocol ΠNxtMsgji

is secure in the presence of
a PPT semi-honest adversary corrupting any subset Z ⊆ P of the parties, no
such A can exist and therefore no such D can exist. So the distributions Hi,j and
Hi,j−1 are computationally indistinguishable.

Since none of the listed set of adjacent hybrids are distinguishable, it follows
that the real view of the protocol Hn,r and the simulated view H0 are com-
putationally indistinguishable. Therefore, it follows that the view produced by
SimC is overall computationally indistinguishable to that of the real execution
of Figure 6 for any Z ∈ ZC.

Let us now consider the case of statistical security against an unbounded semi-
honest adversary corrupting any Z ∈ ZS. Let ZV ⊂ V be the set of cor-
rupted parties such that ZV = {Vi}Pi∈Z . The virtual protocol Πstat is secure
against an unbounded semi-honest adversary corrupting ZV since ZV ∈ ZS.
The simulator SimS for protocol 6, making black-box calls to the simulators in
{SimNxtMsgji

S }i∈[n],j∈[r], operates as follows:

1. SimS has the input of all the corrupt parties {xi}Pi∈Z and the function
output f(x⃗). It samples randomness {ri}Pi∈Z for all corrupt parties.

2. In the ‘Initialize shared state’ phase, SimS, on behalf of each honest
party Pi′ ̸∈ Z, samples a random input xi′ ← {0, 1} and creates shares
{[xi′]i}i∈[n] ← Sharen,n(xi′). For each i′ ∈ [n], it creates shares of the ran-
domnesses {[ri′]i}i∈[n] ← Sharen,n(ri′). It sends the set {[xi′]i, [ri′]i}Pi′ ̸∈Z to
the corrupt party Pi ∈ Z.

3. For each round j ∈ [r], for each virtual party Vi ∈ V where Pi ̸∈ Z is honest,
SimS computes the inputs and outputs of the simulator Simstat of the virtual
protocol,

{mj′

i→k}k ̸=i∈[n] ← NxtMsgj∗i (ˆView
j−1
stat,i)

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 55

Then, shares of these inputs and outputs are used to generate the view in
the real protocol:

ˆView
Z

NxtMsgj∗i
← Sim

NxtMsgji
S (1s,{[ˆView

j−1
stat,i]k,Mk}Pk∈Z ,

{ck = Mk ⊕ {[mj′

i→i′]k}i′ ̸=i∈[n]}k∈[n])

For each round j ∈ [r], for each virtual party Vi ∈ V where Pi ∈ Z is
corrupted, SimS computes the inputs and outputs of the real-world execution
of the virtual protocol,

{mj
i→k}k ̸=i∈[n] ← NxtMsgji (

ˆView
j−1
stat,i)

Then, shares of these inputs and outputs are used to generate the view in
the real protocol:

ViewZ
NxtMsgji

← ΠNxtMsgji
(1s, {[ˆView

j−1
stat,i]k,Mk}k∈[n])

In the end of this phase, the adversary’s view consists of,{
ˆView

Z

NxtMsgj∗i

}
j∈[r],Pi ̸∈Z

,
{
ViewZ

NxtMsgji

}
j∈[r],Pi∈Z

4. In the phase to ‘Derive the output’, SimS gives the adversary shares of
the output such that when combined with the shares that it derives from its
own views, they reconstruct to {f(x⃗) = fi(x⃗)}Pi∈Z

This completes the simulation. The view of the adversary in the above execution
of SimS is distributed as,{

{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,
{

ˆView
Z

NxtMsgj∗i

}
j∈[r],Pi ̸∈Z

,

{
ViewZ

NxtMsgji

}
j∈[r],Pi∈Z

}
κ∈N,r⃗∈Rn

It remains to argue that the above view is statistically close to the real view of
the adversary in Figure 6. For this, consider the following hybrids:

– Hybrid H0. This is the distribution of the output of SimS.

H0 =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,

{
ˆView

Z

NxtMsgj∗i

}
j∈[r],Pi ̸∈Z

,

{
ViewZ

NxtMsgji

}
j∈[r],Pi∈Z

}
κ∈N,r⃗∈Rn

– Hybrid H1. An intermediate hybrid distribution with the simulated virtual
protocol Simstat for the view of ZV but with each protocol execution among

56 Authors Suppressed Due to Excessive Length

the real parties P being a real execution:

H1 =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,

{
ViewZ

NxtMsgj∗i

}
j∈[r],Pi ̸∈Z

,

{
ViewZ

NxtMsgji

}
j∈[r],Pi∈Z

}
κ∈N,r⃗∈Rn

This differs from H0 in that the view of real protocol corresponding to the
next-message functions of the simulator of the virtual protocol is generated
as in a real execution of Protocol 4, instead of using the simulation.

– Hybrid H2. The distribution of the view of the parties in Z in a real execution
of Protocol 6.

H2 =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,

{
ViewZ

NxtMsgji

}
j∈[r],i∈[n]

}
κ∈N,r⃗∈Rn

Claim. Assuming that for each i ∈ [n] and j ∈ [r], the protocol ΠNxtMsgji
as in

Protocol 4 is secure in the presence of a semi-honest unbounded adversary that
can corrupt any subset of P −{Pi}, the view in the hybrid distributions H0 and
H1 are statistically close.

Proof. Let (n − d) be the number of honest parties and let r be the number of
rounds in Πstat. In order to show that the hybrids H0 and H1 are statistically
close, consider the following set of r(n− d) + 1 hybrids:

– Hybrid A0. This is a hybrid that is distributed identically to H0.

A0 =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,

{
ˆView

Z

NxtMsgj∗i

}
j∈[r],Pi ̸∈Z

,

{
ViewZ

NxtMsgji

}
j∈[r],Pi∈Z

}
κ∈N,r⃗∈Rn

– Hybrid Ai,j . For each i ∈ [n − d] and j ∈ [r], this hybrid distribution is
derived using the next message functions of the simulated virtual protocol
Simstat where for the sub-protocols up to ΠNxtMsgj∗i

a view of the parties in
Z of the real execution of the protocol is included, instead of a simulated
one as in H0. The rest of the view is generated as in SimS.

Ai,j =

{
{xi′}Pi′∈Z , f(x⃗), {ri′}Pi′∈Z ,{
ViewZ

NxtMsgj
′∗

i′

}
i′<i,(i′=i,j′≤j),{

ˆView
Z

NxtMsgj
′∗

i′

}
i′>i,(i′=i,j′>j)

,{
ViewZ

NxtMsgj
′

i′

}
j′∈[r],Pi′∈Z

}
κ∈N,r⃗∈Rn

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 57

– Hybrid An−d,r. Note that the last hybrid distribution as above is distributed
the same way as in H1.

An−d,r =

{
{xi}Pi∈Z , f(x⃗), {ri}Pi∈Z ,

{
ViewZ

NxtMsgj∗i

}
j∈[r],Pi ̸∈Z

,

{
ViewZ

NxtMsgji

}
j∈[r],Pi∈Z

}
κ∈N,r⃗∈Rn

In the above set of hybrids, note that adjacent pairs of hybrids Ai,j and
Ai,j−1 (similarly, A0 and A1,1 and each Ai,r and Ai+1,1) differ only in the view
of one execution of the sub-protocol ΠNxtMsgj∗i

where NxtMsgj∗i ∈ Simstat. In

Ai,j−1, the view of this execution is the simulated view ˆView
Z

NxtMsgj∗i
. In Ai,j ,

this is ViewZ
NxtMsgj∗i

, as in the real execution. The rest of the hybrid is dis-
tributed the same way. We already have that the simulated view produced by
Sim

NxtMsgji
S is distributed in a way that is statistically close to the real view of the

protocol ΠNxtMsgj∗i
. Let ϵ be the statistical difference between the distributions

{ ˆView
Z

NxtMsgj∗i
}κ∈N,r⃗∈Rn and {ViewZ

NxtMsgj∗i
}κ∈N,r⃗∈Rn of the simulated and real

executions respectively. Then the statistical difference between the hybrids is no
more than ϵ. It also follows from the triangle inequality of statistical differences
that the difference between the simulated view H0 output by SimS and the hybrid
H1 is ≤ r(n− d)ϵ. Therefore, these hybrid distributions are statistically close.

Claim. Assuming that the protocol Πstat is secure in the presence of a semi-
honest unbounded adversary with adversary structure ZS, the view in the hybrid
distributions H1 and H2 are statistically close.

Proof. We already have that the distribution of the view produced by Simstat

is statistically close to that in the real execution of the protocol Πstat. Let ϵ be
the statistical difference between these views. Since this is the only difference
between the two hybrids H1 and H2, the statistical difference between them is
also no more than ϵ. Therefore, these hybrid distributions are statistically close.

So it follows that the view produced by SimS is statistically close to that of
the real execution of Figure 6 for any Z ∈ ZS.

A.3 Proof of Lemma 5.6

Proof. The proof for Lemma 5.6 follows in two parts. First we show that Pro-
tocol 5.4 is secure in the presence of a PPT malicious adversary corrupting any
subset of the parties Z ⊆ P. Next, we show that the same protocol is secure in
the presence of an unbounded malicious adversary corrupting a subset of parties
Z ∈ ZS. In order to examine the security of Protocol 5.4 in the plain model, it
becomes necessary to first prove the following lemma:

58 Authors Suppressed Due to Excessive Length

Lemma A.1 Let ComSB be a statistically binding commitment. Let ComSH be a
statistically hiding commitment and let SZKAoK be a statistical zero-knowledge
argument of knowledge protocol. Let ZKPoK be a zero-knowledge proof of knowl-
edge protocol. Then the n-party commitment protocol ΠCom in Figure 12 is a
maliciously fall-back secure realization of FCom tolerating ZS.

Proof. The proof for this lemma follows in 2 parts. First, we need to show that
Figure 12 securely realizes FCom in the presence of a PPT malicious adversary
corrupting any subset of the parties Z ⊆ P. Next we need to show that the same
protocol realizes the functionality in the presence of an unbounded malicious
adversary corrupting a subset of parties Z ∈ ZS.

Security against a PPT Adversary. Let A be a PPT adversary corrupting
any subset of parties Z ⊂ P. There exists a PPT simulator SimC that simulates
the view of A in the protocol in the ideal world, in a way that is computationally
indistinguishable from the view in the real execution. SimC would operate as
follows:

– If C is honest,
1. In the commit phase of ΠCom, first for each Pi ∈ Z participate honestly

in the commitment protocol Com with Pi as the committer. Note that
for each such corrupted committer, this sub-protocol is computationally
binding:
• A PPT adversary corrupting an arbitrary subset of parties in P

including the committer cannot equivocate the view of an opening
to the commitment to the honest parties. This holds due to the fact
that the statistically binding commitment used here for the input
shares is also computationally binding. Further, the protocol also
uses a statistically hiding commitment to commitment to the input
as a whole, to each viewer. This scheme is computationally binding
and so a PPT adversary cannot equivocate, no matter how large the
collusion set.

Then for each Pi ̸∈ Z, such that Pi ̸= C, it acts honestly as in the
protocol and creates the commitments with Com. Note that for each
such honest committer, this sub-protocol is computationally hiding:
• A PPT adversary corrupting an arbitrary subset of parties in P ex-

cluding the committer cannot know any information about the value
committed to. This holds directly from the fact that a statistically
hiding commitment is also computationally hiding and the statisti-
cally binding commitment is computationally hiding as well. So there
must exist a simulator SimCom

C that can simulate the view of the ad-
versary in a way that is computationally indistinguishable from the
real view.

2. For each j ∈ [κ] it samples x∗ at random and honestly computes what
the committer C would with input x∗.

3. All parties decommit to Com from step 1 and SimC learns r.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 59

4. Now SimC rewinds to Step 2 and for each j ∈ [κ], it first samples νj ←
{0, 1} at random and for the matrix Mj both elements in the r[j]th

column is set as νj . In the other column, at random, one element is set
as νj and the other is set as νj + 1.

5. Then the rest of the commit phase is executed honestly. Note here that
the protocol ECom is also computationally hiding:
• This is true due to the same reasons as for Com. Additionally, the
SZKAoK and ZKPoK protocols used are zero-knowledge in the pres-
ence of PPT verifiers.

6. In the decommit phase of ΠCom, simulator SimC learns x from FCom.
7. Now, for each j ∈ [κ], in the (¬r[j])th column of matrix Mj , the simulator

de-commits to the element containing νj + x[j].
– If A corrupts C,

1. In the commit phase of ΠCom, first for each Pi ∈ Z participate honestly
in the commitment protocol Com with Pi as the committer. Then for each
Pi ̸∈ Z, such that Pi ̸= C, it acts honestly as in the protocol and creates
the commitments with Com.

2. For each j ∈ [κ] it engages with the adversary A corrupting C in the 4
executions of ECom where,
• Along with being computationally binding, the value committed in
ECom is extractable. That is within the ‘commit phase’, when a PPT
adversary is corrupting an arbitrary subset of parties in P including
the committer, there exists an extractor that can interact with the
adversary in the ideal execution and extract the input of the com-
mitter. Such an extractor ECom.E∗C would make a black-box call to
the extractor of the SZKAoK, deriving the input to the statistically
hiding commitment.

So the simulator extracts from ECom all the elements of {Mj}j∈[κ] that
C commits to.

3. These are used to derive x and this is given to FCom. If this extraction
fails, or the matrices are not well-formed, send ⊥ to FCom.

4. The rest of the protocol is executed honestly by the simulator on behalf
of the honest parties.

Let ViewCom
Z,i (x) be the view of the adversary in a real execution of the proto-

col Com where party Pi is the committer with input x. Similarly, let ViewECom
Z,i (x)

be the view of the adversary in a real execution of the protocol ECom where party
Pi is the committer with input x. For the case that the committer C is honest,
the view produced by SimC is distributed as:{{

ViewCom
Z,i (ri)}i∈[n], r,

{
ViewECom

Z,i (M∗j [a, b])}j∈[κ],a,b∈{0,1},{
M∗j [r[j], a]}j∈[κ],a∈{0,1},

{
M∗j [¬r[j], bj]}j∈[κ],bj :M∗

j [¬r[j],bj]−M∗
j [r[j],a]=x

}
This differs from that in the real distribution only in Step 4 where for all

j ∈ [κ], in one column, M∗j [¬r[j], ·], of matrix M∗j , the two values committed

60 Authors Suppressed Due to Excessive Length

to using ECom are not equal. This is not the case in the real distribution where
both values in the column not checked in Mj are equal and they equal the sum
of the value opened and the committer’s input to the commitment protocol.
This amounts to having κ different commitments ECom in SimC with different
messages from that in the real view. Everything other than these commitments
are created identically. In order to argue that the view produced by the real
protocol is distributed computationally indistinguishable from in the simulation,
consider the following set of κ+ 1 hybrids:

– H0 : Let this be the distribution of the view as produced in the simulation.
– ∀j ∈ [κ],Hj : Let this be the distribution of the view in which the first j

matrices committed to M1, · · · ,Mj are created as in the real distribution
and the rest are created as in the simulation.
The last such hybrid Hκ is distributed as in the real view.

Note here that adjacent hybrids ∀j ∈ [κ],Hj and Hj−1 differ only in the value
of one element in the matrix Mj . A PPT distinguisher that can distinguish be-
tween these views with non-negligible advantage can be used in a black-box way
by a PPT adversary A to break the computational hiding property of ECom.
This is done by A first constructing the complete view except Mj , then the
three other elements of Mj (the ones opened in the cut-and-choose, and the
one opened in the release phase) and committing to them. The last element of
Mj is directly replaced by the challenge commitment. If the underlying message
equals the value opened in the release phase, the hybrid is Hj . Otherwise, this
forms hybrid Hj−1. The adversary A passes this to the distinguisher and outputs
whatever it outputs. Such an adversary would have the same advantage as the
distinguisher, which is non-negligible. But since ECom is computationally hiding
and no such adversary can exist, no such distinguisher can exist. Hence the dis-
tributions of the simulated and real views are computationally indistinguishable.

For the case that the committer C is corrupted, the view produced by SimC

as indicated above, differs from that in the real distribution only in Step 2 where
for all j ∈ [κ], the extractor for ZKPoK is executed for all ECom executions for
each element in the matrix Mj . This is not the case in the real distribution
where the ECom protocol is honestly executed. This amounts to having 4κ dif-
ferent commitment executions ECom in SimC. However, the transcripts produced
by these are identical to that in the real execution. Therefore, the real and sim-
ulated views are identically distributed. This holds for all executions for which
a cheating committer is caught cheating in the cut-and-choose. If, however, a
committer cheats in the cut-and-choose execution and is not caught in the real
execution, its view would differ from the simulation where cheating will always
be detected. The probability of success corresponds to the event in which it can
guess the complete challenge r correctly and this happens with probability 1

2κ

which is negligible in κ.

Security against an Unbounded Adversary. Let A be an unbounded
adversary corrupting any subset of parties Z ∈ ZS. There exists a PPT simulator

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 61

SimS that simulates the view of A in the protocol in the ideal world, in a way
that is statistically indistinguishable from the view in the real execution. SimS

would operate as follows:

– If C is honest,
1. In the commit phase of ΠCom, first for each Pi ∈ Z participate honestly

in the commitment protocol Com with Pi as the committer. Note that for
each such corrupted committer, this sub-protocol is statistically binding:
• An unbounded adversary corrupting any Z ∈ ZS that includes the

committer cannot equivocate the view of an opening to that com-
mitment to the honest parties. This is ensured owing to the fact that
the committer uses a 2-party statistically binding commitment to
interact with all other parties. It shares its input using SSZS

and so
it follows that the shares of the honest parties, when reconstructed
uniquely determine the input. Therefore, corrupted viewers cannot
change this value by falsely claiming to have shares.

Then for each Pi ̸∈ Z, such that Pi ̸= C, it acts honestly as in the
protocol and creates the commitments with Com. Note that for each
such honest committer, this sub-protocol is statistically hiding:
• An unbounded adversary corrupting any Z ∈ ZS not including the

committer cannot know any information about the value committed
to. This holds since the 2-party commitment used to commit to the
input is statistically hiding. While it may be true that the statis-
tically binding commitment is not hiding for this adversary, this is
only used to commit to shares of the input. As such, since SSZS

is
used for secret-sharing, the adversary corrupting Z will never have
enough shares to reconstruct the secret. So there exists a simulator
SimCom

S that can simulate the view of the adversary in a way that is
statistically close to the real view.

2. For each j ∈ [κ] it samples x∗ at random and honestly computes what
the committer C would with input x∗.

3. All parties decommit to Com from step 1 and SimS learns r.
4. Now SimS rewinds to Step 2 and for each j ∈ [κ], it first samples νj ←
{0, 1} at random and for the matrix Mj both elements in the r[j]th

column is set as νj . In the other column, at random, one element is set
as νj and the other is set as νj + 1.

5. Then the rest of the commit phase is executed honestly. Note here that
the protocol ECom is also statistically hiding:
• This also holds the same way as in Com. Additionally, although the
ZKPoK used is only zero-knowledge for a PPT verifier, an unbounded
adversarial verifier getting the witnesses still only gets shares of a
SSZS

secret-sharing and cannot reconstruct the input.
6. In the decommit phase of ΠCom, simulator SimS learns x from FCom.
7. Now, for each j ∈ [κ], in the (¬r[j])th column of matrix Mj , the simulator

de-commits to the element containing νj + x[j].
– If A corrupts C,

62 Authors Suppressed Due to Excessive Length

1. In the commit phase of ΠCom, first for each Pi ∈ Z participate honestly
in the commitment protocol Com with Pi as the committer. Then for each
Pi ̸∈ Z, such that Pi ̸= C, it acts honestly as in the protocol and creates
the commitments with Com.

2. For each j ∈ [κ] it engages with the adversary A corrupting C in the 4
executions of ECom where,
• ECom is statistically binding for Z, same way as Com is. Additionally,

note that the SZKAoK used is only sound for a PPT prover, but an
unbounded adversarial prover still cannot cheat as it can’t equivocate
in the statistically binding commitment.

• Within the ‘commit phase’ of ECom, when an unbounded adversary
corrupts any Z ∈ ZS including the committer, there exists an ex-
tractor that can interact with the adversary in the ideal execution
and extract the input of the committer. For this case, such an ex-
tractor ΠECom.E

∗
S would work by participating in the commit phase

on behalf of all the honest parties and making black-box calls to the
extractor of the ZKPoK, deriving the shares that were committed to
in each statistically binding commitment. Once all the honest par-
ties’ shares have been extracted, these can be reconstructed to get
the committer’s input.

So the simulator extracts from ECom all the elements of {Mj}j∈[κ] that
C commits to.

3. These are used to derive x and this is given to FCom. If this extraction
fails, or the matrices are not well-formed, send ⊥ to FCom.

4. The rest of the protocol is executed honestly by the simulator on behalf
of the honest parties.

Let ViewCom
Z,i (x) be the view of the adversary in a real execution of the proto-

col Com where party Pi is the committer with input x. Similarly, let ViewECom
Z,i (x)

be the view of the adversary in a real execution of the protocol ECom where party
Pi is the committer with input x. For the case that the committer C is honest,
the view produced by SimS is distributed as:{{

ViewCom
Z,i (ri)}i∈[n], r,

{
ViewECom

Z,i (M∗j [a, b])}j∈[κ],a,b∈{0,1},{
M∗j [r[j], a]}j∈[κ],a∈{0,1},

{
M∗j [¬r[j], bj]}j∈[κ],bj :M∗

j [¬r[j],bj]−M∗
j [r[j],a]=x

}
This differs from that in the real distribution only in Step 4 where for all

j ∈ [κ], in one column of matrix M∗j , the two values committed to using ECom
are not equal. This is not the case in the real distribution where both values in
the column not checked are equal and they equal the sum of the value opened
and the value committed to. This amounts to having κ different commitments
ECom in SimS with different messages from that in the real view. In order to
argue that the view produced by the real protocol is distributed statistically
indistinguishable than in the simulation, consider the following set of κ + 1
hybrids:

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 63

– H0 : Let this be the distribution of the view as produced in the simulation.
– ∀j ∈ [κ],Hj : Let this be the distribution of the view in which the first j

matrices committed to M1, · · · ,Mj are created as in the real distribution
and the rest are created as in the simulation.
The last such hybrid Hκ is distributed as in the real view.

Note here that adjacent hybrids ∀j ∈ [κ],Hj and Hj−1 differ only in the value of
one element in the matrix Mj and M∗j respectively. Such hybrid distributions are
statistically close since ECom is a statistically hiding commitment. Since there
are κ many such hybrids, it follows that the real and simulated distribution are
statistically close.

For the case that the committer C is corrupted, the view produced by SimS

differs from that in the real distribution only in Step 2 where for all j ∈ [κ],
the extractor for SZKAoK is executed for all ECom executions for each element
in the matrix Mj . This is not the case in the real distribution where the ECom
protocol is honestly executed. This amounts to having 4κ different commitment
executions ECom in SimS. However, the transcripts produced by these are iden-
tical to that in the real execution. Therefore, the real and simulated views are
identically distributed.

It therefore follows that Figure 12 realizes FCom with fall-back security in the
presence of malicious adversaries.

Proof of Security for the Offline Phase against a PPT Adversary.
We start by showing that for any PPT malicious adversary A corrupting any
subset of parties Z ⊆ P, there exists a PPT simulator SimC that can interact
with it for an ideal execution of FAuthTriples (Figure 7) and produce a view that
is computationally indistinguishable from the real view of Protocol 5.4. The
simulator SimC works by playing the adversary in the execution of ΠAuthTriples

and simulates the execution of the compiled protocol to A. SimC works as follows:

1. Simulating the Coin Toss Phase. In both the executions of the commit
phase of Πcoin, SimC participates honestly with the following exception:
– SimC uses ΠCom.SimC in each commitment protocol to extract the inputs

of the corrupt parties. If this succeeds, compute r⃗ for the watch-list or
d⃗ for the degree test in the Check Phase as required.

– If extraction fails and returns⊥, then SimC sets r⃗ =⊥ or d⃗ =⊥ as required
and continues the execution.

2. Simulating the Input Commitment Phase. For all i ∈ [n], SimC par-
ticipates in the commit phase of each execution Πi

Com as follows:
– If Pi is honest, then SimC samples the elements in v⃗i at random and hon-

estly computes the protocol on its behalf, giving {Viewi,k
Com,j,v}j∈[m],Pk∈Z

to A. Here, each Viewi,k
Com,j,v contains commitments that Pi gives to Pk

corresponding to the jth virtual server execution.

64 Authors Suppressed Due to Excessive Length

– If Pi ∈ Z, SimC receives {Viewi,k
Com,j,v}j∈[m],Pk∈P−Z . For each j ∈ [m],

makes a black-box call to the extractor ΠECom.SimC and collects {⃗vji }j∈[m].

– If this extractor fails and returns ⊥, then SimC stores ⃗
vji =⊥ as the

extracted input for this execution of Πi
Com.

At the end of this phase, SimC has the set of inputs {⃗vji }j∈[m],i∈[n] out of
which the adversary’s inputs are extracted and that of the honest parties is
generated by SimC. Note again that this set may contain multiple ⊥ symbols
corresponding to executions in which extraction had failed.

3. Input Extraction.
– SimC computes for each Pi ∈ Z, the inputs v⃗i ← Recont,m({⃗vji }j∈[m])

where reconstruction is done with error-correction.
– If reconstruction succeeds for all Pi ∈ Z, SimC gives {v⃗i}Pi∈Z to FAuthTriples

and receives the tuples {s⃗i}Pi∈Z as output. It sets Flag = TRUE.
– If for any Pi ∈ Z, the reconstruction fails, then SimC sends⊥ to FAuthTriples

and does not receive an output. It internally sets Flag = FALSE.
For each Pi ∈ Z, it samples ri ← F uniformly at random and assigns it
to the output vector s⃗i. All other elements of this vector are as in the
(partially reconstructed) input vector v⃗i.
If P1 ∈ Z, it samples cj

′

1 ,MAC1(a
j′),MAC1(b

j′),MAC1(c
j′)← F also uni-

formly at random and assigns it to s⃗1. The remaining elements of this
vector are as in the (partially reconstructed) input vector v⃗1.

4. Setting the Inputs and Outputs of each Πj
S. This is a step in which SimC

performs some internal computation, without interacting with the adversary
A, in preparation for the Compute Phase.
– If Flag = FALSE and the interaction with FAuthTriples was not successful,

then on behalf of each honest party Pi ∈ P −Z, SimC sets ⃗
vji as sampled

and committed to in the Input Commitment Phase as the input to
the execution Πj

S . The randomness used is ri,j as will be derived in the
Randomness Generation Phase next.

– If Flag = TRUE but r⃗ =⊥, then also the same actions as above are taken.
– Otherwise if Flag = TRUE and r⃗ ̸=⊥, then SimC knows which executions

of Πj
S will be checked in the watch-list step and which will not.

The details of the simulators actions for the last case are given below:
– For each watched instance j ∈ r⃗, SimC internally simulates the actions

of the adversary assuming it is semi-honest (not by interacting with the
malicious adversary A), and derives the outputs and randomness of the
malicious parties.
• SimC sets {ri,j}i∈[n] sampled uniformly at random as the randomness

used by each party in this execution.
• It sets {⃗vji }i∈[n] as derived from the Input Commitment Phase

as the input used by each party in this execution.
• SimC internally computes Πj

S using this input and randomness to get

{⃗sji}i∈[n]. Let ViewΠj
S

be the view generated in this computation.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 65

The outputs of these executions and the output of FAuthTriples are required
to set the outputs of the corrupt parties in the un-watched instances, that
need to be input to Sim

Πj
S

C .
– For each un-watched instance j ∈ [m] − r⃗, it suffices to initially only

compute the output of the corrupted parties.
• For each Pi ∈ Z, SimC has ri ∈ s⃗i from FAuthTriples, or otherwise, sam-

pled at random. It computes {[ri]j}j∈[m] ← Sharet,m(ri) under the
constraint that {[ri]j}j∈r⃗ are exactly as in the view of the watched
executions {ViewΠj

S
}j∈r⃗ computed above.

• For each Pi ∈ Z such that i ̸= 1, set the input as ⃗
sji as extracted

from the Input Commitment Phase. Set the output as,

⃗
sji =

[∆i]j ∈ ⃗

vji , [r
i]j

[rki]j , [MACi(r
k)]j ∈ ⃗

vji ∀k ∈ [n]

[aj
′

i]j , [b
j′

i]j , [c
j′

i]j ∈
⃗
vji ∀j′ ∈ [T]

[MACi(a
j′)]j , [MACi(b

j′)]j , [MACi(c
j′)]j ∈ ⃗

vji ∀j′ ∈ [T]

• If party P1 is corrupted, then ∀k ∈ [n], SimC has received MAC1(r
k) ∈

s⃗1. It computes {[MAC1(r
k)]j}j∈[m] ← Share2t,m(MAC1(r

k)) such
that {[MAC1(r

k)]j}j∈r⃗ are exactly as in the watched execution views
{ViewΠj

S
}j∈r⃗.

Similarly, ∀j′ ∈ [T], SimC has received the computed values for
cj

′

1 ,MAC1(a
j′),MAC1(b

j′),MAC1(c
j′) ∈ s⃗1. It computes the sharings,

{[cj
′

1]j}j∈[m] ← Share2t,m(cj
′

1)

{[MAC1(a
j′)]j}j∈[m] ← Share2t,m(MAC1(a

j′))

{[MAC1(b
j′)]j}j∈[m] ← Share2t,m(MAC1(b

j′))

{[MAC1(c
j′)]j}j∈[m] ← Share4t,m(MAC1(c

j′))

such that the shares corresponding to j ∈ r⃗ are exactly as in the
watched execution views {ViewΠj

S
}j∈r⃗. Then the output is set as,

⃗
sj1 =

[∆1]j ∈ ⃗

vj1, [r
1]j

[rk1]j ∈
⃗
vj1, [MAC1(r

k)]j ∀k ∈ [n]

[aj
′

1]j , [b
j′

1]j ∈
⃗
vj1 ∀j′ ∈ [T]

[cj
′

1]j , [MAC1(c
j′)]j , [MAC1(a

j′)]j , [MAC1(b
j′)]j ∀j′ ∈ [T]

• SimC internally executes Sim
Πj

S

C with these inputs and outputs and
generates the random tapes {ri,j}Pi∈Z of the corrupt parties.

5. Simulating the Randomness Generation Phase. For all i ∈ [n], j ∈ [m],
SimC participates in the commit phase of each execution Πi,j

CTW as follows:

66 Authors Suppressed Due to Excessive Length

– For each honest party Pk ∈ P − Z such that k ̸= i, SimC executes the
simulator for commit phase ΠCom.SimC.

– For each corrupt party Pk ∈ Z such that k ̸= i, SimC receives from
A the set of views {Viewk,k′,i,j

Com }Pk′∈P−Z . Each such view contains the
commitments that Pk gives to Pk′ .

– It also makes a black-box call to the extractor ΠCom.SimC and receives
rki,j . If this extractor fails and returns ⊥, then SimC stores ri,j =⊥ as the
extracted randomness for this execution of Πi,j

CTW.
– Then SimC sets the input in ΠCom.SimC for each honest party such that

they sum to ri,j as given in Step 4. This execution is completed until the
end of the commit phase.

– For each Pk ∈ P such that k ̸= i, SimC performs the decommit phase
of each ΠCom.SimC and receives from A the randomness {rki,j}Pk∈Z . If
the adversary fails to decommit properly, SimC sends ABORT on behalf
of the honest parties and halts the execution.

– If extraction had succeeded for the execution of ΠECom.SimC, SimC com-
putes ri,j =

∑
k∈[n] r

k
i,j .

At the end of this phase, SimC has the set of randomness {ri,j}i∈[n],j∈[m]

where the adversary’s input randomnesses are as decided in Step 4. Note
that this set may contain multiple ⊥ symbols corresponding to executions
in which extraction had failed.

6. Simulating the Compute Phase. If Flag = FALSE, or Flag = TRUE but
r⃗ =⊥, then for each j ∈ [m], SimC participates honestly in an execution of
Πj

S as in the real execution, on behalf of each honest party. It runs each

honest party Pi ∈ P − Z using the input ⃗
vji and randomness ri,j .

Otherwise, if Flag = TRUE and r⃗ ̸=⊥, then for each j ∈ [m], SimC simulates
the watched and un-watched instances Πj

S differently.
– For each watched instance j ∈ r⃗, SimC uses the honest party’s generated

input shares {⃗vji }Pi∈P−Z and randomness {ri,j}Pi∈P−Z and interacts
with the adversary A as in a real execution of the protocol Πj

S . Let
View∗

Πj
S

be the view of the adversary in this interaction.
– For each un-watched instance j ∈ [m]− r⃗,

• SimC internally uses the PPT semi-honest simulator SimΠj
S

C with the

adversary A’s inputs as {⃗vji }Pi∈Z , the randomness {ri,j}Pi∈Z and

output as {⃗sji}Pi∈Z . Let this view be ViewΠj
S
.

• Note that SimC, in its interaction with A, can detect where A devi-
ates from semi-honest behaviour as it can compare the messages in
the interaction with the expected messages in the view generated in
ViewΠj

S
.

• If there is an inconsistency and A has behaved maliciously, this cor-
responds to that execution Πj

S being corrupted. Since the protocol
ΠAuthTriples is secure in the presence of semi-honest adaptive corrup-
tion, this corresponds to SimC adaptively corrupting all the honest

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 67

parties P −Z in the execution of ΠAuthTriples. SimC uses {⃗sji ,
⃗
vji }Pi∈Z

to create the inputs of the honest parties as follows:
– Let Pi∗ ∈ P − Z be a designated honest party. For all honest

parties Pi ̸= Pi∗ , sample the values in ⃗
vji uniformly at random.

– It remains to determine the inputs for Pi∗ . This is set as follows:
· For each Pk ∈ Z, get [rk]j ∈ ⃗

sjk, and the set {[rki]j ∈
⃗
vji }Pi ̸=Pi∗∈P .

Set each [rki∗]j = [rk]j −
∑

i ̸=i∗∈[n][r
k
i]j and assign [rki∗]j to ⃗

vji∗ .

· If P1 ̸∈ Z, then sample the rest of the values in ⃗
vji∗ uniformly

at random.
· Otherwise, sample [∆i∗]j ← F and for all j′ ∈ [T], [aj

′

i∗]j , [b
j′

i∗]j ←
F uniformly at random and assign them to ⃗

vji∗ .
For each k ∈ [n], set [MACi∗(r

k)]j such that computation in
functionality FS (Figure 8) for [MAC′(rk)]j is the difference

between [MAC1(r
k)]j ∈ ⃗

vj1 and [MAC1(r
k)]j ∈ ⃗

sj1.
Similarly, for each j′ ∈ [T], set the shares ([cj

′

i∗]j , [MACi∗(a
j′)]j ,

[MACi∗(b
j′)]j , [MACi∗(c

j′)]j) such that the computation in FS

(Figure 8) gives the difference in the output shares in ⃗
sj1 and

input shares in ⃗
vj1. These are also assigned in ⃗

vji∗ .

SimC sends the inputs of the honest parties {⃗vji }Pi∈P−Z to Sim
Πj

S

C .

• Sim
Πj

S

C gives to SimC the randomness that explains the transcript thus
far with respect to these inputs. Then SimC uses this to continue the
the execution of Πj

S by interacting with A.
7. Simulating the Check Phase. Here, SimC first honestly executes the pro-

tocol by emulating the honest parties in the interaction with A. If any of the
checks fail or r⃗ =⊥, the simulator sends ABORT to the adversary.
If Flag = FALSE then also SimC sends ABORT to the adversary. SimC addi-
tionally checks if among all j ∈ [m] − r⃗, there exist more than t instances
of Πj

S in which A has deviated from the protocol. If this holds, SimC sends
ABORT in the interaction with the adversary.
Otherwise SimC accepts.

Note that for every adversary, if the execution of the protocol in the real world
aborts, so does the simulated execution in the ideal world. Additionally, with
negligible probability, it may be the case that the simulation aborts but the
real execution does not. This happens when there is no ABORT in the check
phase, but more that t un-watched executions of Πj

S are corrupted. Another case
where possibly the real execution can be accepting but the simulation aborts is
if Flag = FALSE in the simulation but there is no abort in the check phase.
However, note that if Flag = FALSE, this would imply that the inputs of the
corrupted parties could not be extracted and are therefore not well-formed. If
this occurs the degree-test would fail except with negligible probability in the
size of the field F. If the execution doesn’t abort, the view generated by SimC is

68 Authors Suppressed Due to Excessive Length

distributed as,{{
ViewΠi,j

CTW
}i∈[n],j∈[m],

{
ViewΠi

Com
}i∈[n],

{
View

Π
Rt
coin

,View
ΠF2n+6T+3

coin
},{

View∗
Πj

S

← Πj
S({

⃗
vji }i∈[n]; {ri,j}i∈[n])

}
j∈r⃗,{

ViewΠj
S
← Sim

Πj
S

C ({⃗vji }Pi∈Z ; {ri,j}Pi∈Z ; {
⃗
sji}Pi∈Z)

}
j∈[m]−r⃗

}
It remains to argue that the above view is computationally indistinguishable
from the real view in Protocol 5.4. For this, consider the following hybrids:

1. Hybrid H0. This is constructed as the view of the environment in the real
execution of the protocol.

2. Hybrid H1. This is constructed in the same way as H0, with the exception
that in this experiment, the protocol aborts even in the case where there is
no ABORT in the check phase, but more than t un-watched executions of
Πj

S are corrupted.
The distribution of this view is statistically close to the that of the real
distribution of hybrid H0. This stems from the fact that, as stated above,
the probability of the difference in the abort conditions is negligible in the
security parameter κ.

3. Hybrid H2. This is constructed in the same way as H1, except for the view
in each un-watched execution of Πj

S . For each of these executions, the view

is generated using a call to the PPT semi-honest adaptive simulator Sim
Πj

S

C

with the correctly committed inputs and randomness, and outputs as would
have been generated in H1 for the corrupted parties.
The distributions of H1 and H2 can be shown as computationally indistin-
guishable using a set of m− t

2 +1 intermediate hybrid distributions wherein
each hybrid H′j has real executions views for each un-watched execution up
to the jth run, and the rest of the views are simulated. Adjacent such hy-
brids differ only in one execution of an un-watched Πj

S . Such hybrids can
be shown as computationally indistinguishable by reducing to the fall-back
security of protocol Πj

S . Hence, it follows that H1 and H2 are also computa-
tionally indistinguishable.

4. Hybrid H3. In this hybrid, in the ‘Input Commitment Phase’, on behalf of the
honest parties, different inputs are used corresponding to all the un-watched
executions as compared to the inputs to the real protocol. The rest of the
distribution is created using these inputs of the honest parties, as in H2.
The distributions of H2 and H3 can be shown as computationally indistin-
guishable by reducing to the ‘fall-back secure hiding property’ of the n-party
commitment ΠCom. Let s be the number of executions of such commitment
protocols where an honest party is a committer. Then we can define s + 1
different hybrids where in each hybrid H′k all the executions of ΠCom up to
the kth execution uses the real inputs of the honest parties in the protocol
execution. Each execution beyond this generates its inputs independently

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 69

and as in the simulation SimC. Each pair of adjacent hybrids differ only in
the input to one execution of ΠCom and such adjacent hybrids can be show as
computationally indistinguishable by reducing to the fall-back secure hiding
property of ΠCom.

5. Hybrid H4. In this hybrid, in the ‘Randomness Generation Phase’, for all the
parties, the commitments are created just as in SimΠCom

C . The rest of distri-
bution is created as in H3.
The distributions of H4 and H3 can be shown as computationally indistin-
guishable by reducing to the indistinguishability of the real execution of the
n-party commitment ΠCom and the output distribution of SimΠCom

C . Let s
be the number of executions of such commitment protocols. Then we can
define s + 1 different hybrids where in each hybrid H′k all the executions
of ΠCom up to the kth execution is the real execution of the commitment
protocol. Each execution beyond this generates its inputs independently and
as in the simulation SimC. Each pair of adjacent hybrids differ only in the
input to one execution of ΠCom and such adjacent hybrids can be show as
computationally indistinguishable by reducing to security of the simulation
of ΠCom.

6. Hybrid H5. This hybrid is distributed in exactly the same way as the the
output of SimC. This conceptually differs from the distribution of H4 in that
the honest parties’ inputs are never used in creating its contents and the
randomness for all corrupt parties is generated by the simulator Sim

Πj
S

C .
In both hybrids, the watched executions are generated and distributed the
same way. For the un-watched executions, the output of corrupt parties
that is input to the semi-honest simulator Sim

Πj
S

C is generated using the
output of the functionality FAuthTriples instead of being directly generated
from the inputs of the honest party in the real protocol. However, both
of these are identically distributed since in the real protocol, the complete
protocol output would be generated in the same way as FAuthTriples does. For
each individual execution of Πj

S , the output is set as a share of a correct
t-out-of-m secret-sharing in the simulation, same as in the real execution.
Hence the hybrids H5 and H4 are identically distributed.

Claim. The view in the hybrid distributions H0 and H1 are statistically close.

Proof. The hybrid H0 is distributed as in the view of the environment in the real
execution of the protocol. The hybrid H1 differs from this only in that for the
protocol execution where it has not aborted in the check phase, but more than
t un-watched semi-honest executions of Πj

S are corrupted, the complete offline
phase protocol execution aborts. Let X be the set of indices of corrupted Πj

S

executions and r⃗ be the set of t
2 checked instances. This case happens with the

following probability over a random choice of r⃗:

Pr
r⃗∈Rt

[(X ∩ r⃗ = Φ) ∧ (|X| > t)] ≤

(
m−t

t
2

)(
m
t
2

) ≤ (1− t

m

) t
2

70 Authors Suppressed Due to Excessive Length

This is negligible in the security parameter κ = t. It therefore follows that the
two distributions are statistically close.

Claim. Assuming that the protocol Πj
S is secure in the presence of a semi-honest

PPT adaptive adversary arbitrarily corrupting the set of parties, the hybrid
distributions H1 and H2 are computationally indistinguishable.

Proof. In order to show that the distributions of H1 and H2 are computationally
indistinguishable consider the following set of m − t

2 + 1 intermediate hybrid
distributions:

– Hybrid H′0 = H2. This hybrid distribution contains simulated views of all the
un-watched protocol executions of ΠS .

– Hybrid H′j . For each j ∈ [m− t
2], this hybrid experiment has real executions

views for each un-watched execution of Πj
S up to the jth run, and the rest

of the views are simulated.
– Hybrid H′

m− t
2
= H1. In this last hybrid, the views of all the un-watched

executions of the protocols ΠS are real views of the semi-honest protocol
execution.

Adjacent such hybrids above differ only in one execution of an un-watched Πj
S .

We show that if there existed a distinguisher D that can distinguish between
the adjacent hybrid distributions H′j and H′j−1 with non-negligible advantage ϵ,
then D can be used in a black-box way by a PPT adversary A that distinguishes
between the simulated distribution {ViewΠj

S
}κ∈N,r⃗∈Rn output by Sim

Πj
S

C and

the real distribution {View∗
Πj

S

}κ∈N,r⃗∈Rn of the protocol Πj
S . The adversary A

works as follows:

– A has the index j, the set of corrupt parties Z ⊆ P and the complete set of
inputs. It samples randomness for all the parties.

– It begins generating the view of the offline protocol exactly as in the real
execution until before the compute phase. In the compute phase, for all the
watched instances of the semi-honest virtual protocol, it creates a real view
of the protocol. For each un-watched instance up to the execution of Πj−1

S ,
the view is generated according to the real execution again.

– For the execution of Πj
S , give the input and randomness of all the parties

to the challenger. It will interact with the adversary (on behalf of all the
honest parties) and return a view Viewj that is created either according to
the real or the simulated distribution by the adaptive corruption simulator.

– The rest of the un-watched execution view are created as in the simulation
of the virtual protocol. The view of the whole protocol is then completed as
in the real distribution, except that the execution aborts each time it would
have aborted in the simulation.

– This completed view is passed onto the distinguisher D and then A outputs
whatever D outputs.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 71

In the above strategy, A has the same distinguishing advantage as D, which is
non-negligible. However, since the protocol Πj

S is secure in the presence of a PPT
semi-honest adaptive adversary corrupting any subset Z ⊆ P of the parties, no
such A can exist and therefore no such D can exist. Hence, it follows that H1

and H2 are also computationally indistinguishable.

Claim. Assuming that the protocol ΠCom securely realizes FCom producing a
computationally hiding view in the presence of a malicious PPT adversary arbi-
trarily corrupting any set of the parties, the hybrid distributions H2 and H3 are
computationally indistinguishable.

Proof. Let s be the number of executions of ΠCom in the protocol where an
honest party is the committer. The distributions of H2 and H3 can be shown
as computationally indistinguishable by considering the following set of s + 1
intermediate hybrid distributions:

– Hybrid H′0 = H3. This is the hybrid distribution where all the inputs used
for the honest parties are as in the protocol simulation SimC, independent of
the real protocol inputs. The view produced here is composed of the view of
these commitment protocols, and that of the rest of the real offline protocol
created depending on these inputs, with the exception, of course, that all
the un-watched executions of the virtual protocol are replaced by simulated
views, and the protocol aborts whenever the SimC aborts.

– Hybrid H′k. For each k ∈ [s], in this hybrid, in up to the kth execution of the
commitment protocol, all the inputs used for the honest parties are as in the
real execution and the rest are as in the protocol simulation SimC.

– Hybrid H′s = H2. This hybrid distribution contains all honest party inputs
and commitment executions as in the real execution of the protocol. The
rest of the view of the offline protocol is generated with this as the basis.

Note that for k ∈ [s], each pair of adjacent hybrids H′k and H′k−1 differ only
in that the kth execution of ΠCom uses a different input. The rest of the view
is generated on its basis, in the same way. Let x be the input to this protocol
in the real execution and x′ be this input in the simulation. We show that
if there existed a distinguisher D that can distinguish between the adjacent
hybrid distributions H′k and H′k−1 with non-negligible advantage ϵ, then D can
be used in a black-box way by a PPT adversary A that distinguishes between
the distribution {ViewΠCom

(x)}κ∈N,r⃗∈Rn as in SimC and the real distribution
{ViewΠCom

(x′)}κ∈N,r⃗∈Rn . The adversary A works as follows:

– A has the index k, the set of corrupt parties Z ⊆ P and the complete set of
inputs including x and x′. It samples randomness for all the parties.

– It begins generating the view of the offline protocol exactly as in the real
execution until before the input commitment phase. In this phase, for all
instances of ΠCom where an honest party is the committer, up to the k− 1th

execution, the view is generated using the inputs as in the real execution.
– For the kth execution of ΠCom, give the inputs x and x′ to the challenger. It

will return a view Viewk that is created either using x as the input to the
commitment or with x′.

72 Authors Suppressed Due to Excessive Length

– The rest of the commitment execution views are created as in the simula-
tion SimC. The view of the whole protocol is then completed as in the real
distribution, except that all the un-watched virtual protocol executions are
replaced by their simulations and the execution aborts each time it would
have aborted in the simulation.

– This completed view is passed onto the distinguisher D and then A outputs
whatever D outputs.

In the above strategy, A has the same distinguishing advantage as D, which is
non-negligible. However, since the protocol ΠCom is secure in the presence of
a PPT malicious adversary corrupting any subset Z ⊆ P of the parties and
will produce a view that computationally hides the input, no such A can exist
and therefore no such D can exist. Hence, it follows that H3 and H2 are also
computationally indistinguishable.

Claim. Assuming that the protocol ΠCom securely realizes FCom in the presence
of a malicious PPT adversary arbitrarily corrupting any set of the parties, the
hybrid distributions H3 and H4 are computationally indistinguishable.

Proof. Let s be the number of executions of ΠCom in the protocol in the ran-
domness generation phase. The distributions of H4 and H3 can be shown as
computationally indistinguishable by considering the following set of s+1 inter-
mediate hybrid distributions:

– Hybrid H′0 = H4. This is the distribution in which all the commitment proto-
col executions in the randomness generation phase are replaced by executions
of SimΠCom

C .
– Hybrid H′k. For all k ∈ [s], in this hybrid, in up to the kth instance of

the commitment protocol, the real protocol ΠCom is executed, and all other
executions are replaced by executions of SimΠCom

C .
– Hybrid H′s = H3. In this distribution, all the commitment protocol executions

in the randomness generation phase are executions of the real protocol ΠCom.

Note that for k ∈ [s], each pair of adjacent hybrids H′k and H′k−1 differ only
in the view of the kth execution of ΠCom in the randomness generation phase.
We show that if there existed a distinguisher D that can distinguish between
the adjacent hybrid distributions H′k and H′k−1 with non-negligible advantage ϵ,
then D can be used in a black-box way by a PPT adversary A that distinguishes
between the distribution {ViewΠCom

}κ∈N,r⃗∈Rn as output by SimΠCom

C and the real
distribution {View∗ΠCom

}κ∈N,r⃗∈Rn in the protocol ΠCom. The adversary A works
as follows:

– A has the index k, the set of corrupt parties Z ⊆ P and the complete set of
inputs. It samples randomness for all the parties.

– It begins generating the view of the offline protocol as in the simulation
until before the randomness generation phase. In this phase, for all instances
of ΠCom up to the k − 1th execution, the view is generated as in the real
execution.

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 73

– For the kth execution of ΠCom, give the input and randomness to the chal-
lenger. It will return a view Viewk that is created either according to the
real protocol execution or the simulation SimΠCom

C .

– The rest of the commitment execution views are created as in the simula-
tion SimC. The view of the whole protocol is then completed as in the real
distribution, except that all the un-watched virtual protocol executions are
replaced by their simulations and the execution aborts each time it would
have aborted in the simulation.

– This completed view is passed onto the distinguisher D and then A outputs
whatever D outputs.

In the above strategy, A has the same distinguishing advantage as D, which is
non-negligible. However, since the protocol ΠCom is secure in the presence of a
PPT malicious adversary corrupting any subset Z ⊆ P, no such A can exist
and therefore no such D can exist. Hence, it follows that H3 and H4 are also
computationally indistinguishable.

Since we have now shown that hybrid H0
c≡ H4 and H4 ≡ H5, it holds that

the simulated and the real view of the protocol are computationally indistin-
guishable.

Security for the Offline Phase against an Unbounded Adversary.
Next we need to show that for any unbounded malicious adversary A corrupting
any subset of parties Z ∈ ZS, there exists a PPT simulator SimS that can interact
with it for an ideal execution of FAuthTriples (Figure 7) and produce a view that is
statistically indistinguishable from the real view of Protocol 5.4. The simulator
SimS works in exactly the same way as SimC described above, with the following
exceptions:

– In the Randomness Generation Phase, Commit Phase, and Coin
Toss Phase, for each instance of the ‘commit phase’ of the commitment
protocol ΠCom, input extraction for the corrupt parties is no longer done
using calls to ΠCom.SimC. Instead, for each honest party Pi ∈ P − Z, SimS

works by calling ΠCom.SimS to extract the inputs.
If this extraction or reconstruction fails, then SimS works the same way as
SimC would if a call to ΠCom.SimC returns ⊥.

– Simulating the Compute Phase. When Flag = TRUE and r⃗ ̸=⊥, then
for each un-watched instance j ∈ [m] − r⃗, SimS works by using the PPT

semi-honest simulator Sim
Πj

S

S instead of SimΠj
S

C . It is used in the same way
as SimC does in the above simulation.

74 Authors Suppressed Due to Excessive Length

If the execution does not abort, the view generated by SimS is distributed as,{{
ViewΠi,j

CTW
}i∈[n],j∈[m],

{
ViewΠi

Com
}i∈[n],

{
View

Π
Rt
coin

,View
ΠF2n+6T+3

coin
},{

View∗
Πj

S

← Πj
S({

⃗
vji }i∈[n]; {ri,j}i∈[n])

}
j∈r⃗,{

ViewΠj
S
← Sim

Πj
S

S ({⃗vji }Pi∈Z ; {ri,j}Pi∈Z ; {
⃗
sji}Pi∈Z)

}
j∈[m]−r⃗

}
It remains to argue that the above view is statistically indistinguishable from
the real view in Protocol 5.4. For this, consider the following hybrids:

1. Hybrid H0. This is constructed as the view of the environment in the real
execution of the protocol.

2. Hybrid H1. This is constructed the same way as H0, except that in this
experiment, the protocol aborts even in the case where the check phase does
not ABORT, but more than t un-watched executions of Πj

S are corrupted.
The distribution of this view is statistically close to the that of the real
distribution of hybrid H0. This stems from the fact that the probability of
the difference in the abort conditions is negligible in the security parameter
κ. It has been formally shown in the security proof in the presence of a PPT
adversary.

3. Hybrid H2. This is constructed in the same way as H1, except for the view
in each un-watched execution of Πj

S . For each of these executions, the view

is generated using a call to the PPT semi-honest adaptive simulator Sim
Πj

S

S

with the correctly committed inputs and randomness, and outputs as would
have been generated in H1 for the corrupted parties.
The hybrid distributions H1 and H2 can be shown to be statistically in-
distinguishable owing to the fact that each Sim

Πj
S

S produces a view that is
statistically close to the real view of the semi-honest protocol for any Z ∈ ZS.

4. Hybrid H3. In this hybrid, in the ‘Input Commitment Phase’, on behalf of
the honest parties, different inputs are used corresponding to all the un-
watched executions as compared to the inputs to the real protocol. The rest
of distribution is created as in H2.
The distributions of H2 and H3 can be shown as statistically indistinguishable
owing to the ‘fall-back secure hiding property’ of the n-party extractable
commitment ΠCom.

5. Hybrid H4. In this hybrid, in the ‘Randomness Generation Phase’, for all
the parties, the commitments are created just as in SimΠCom

S . The rest of
distribution is created as in H3.
The distributions of H4 and H3 can be shown as statistically indistinguishable
owing to the security of the simulation SimΠCom

S of the n-party extractable
commitment ΠCom.

6. Hybrid H5. This hybrid is distributed in exactly the same way as the the
output of SimS. This conceptually differs from the distribution of H4 in that
the honest parties’ inputs are never used in creating its contents and the

Best of Both Worlds: Revisiting the Spymasters Double Agent Problem 75

randomness for all corrupt parties is generated by Sim
Πj

S

S .
However since the outputs of the corrupt parties derived from the ideal
functionality and that in the real execution are identically distributed, it
follows that both hybrids H5 and H4 are identically distributed.

Claim. Assuming that the protocol Πj
S is secure in the presence of a semi-honest

computationally unbounded adaptive adversary with adversary structure ZS, the
hybrid distributions H1 and H2 are statistically close.

Proof. In order to show that the distributions of H1 and H2 are statistically close
consider the following set of m− t

2 + 1 intermediate hybrid distributions:

– Hybrid H′0 = H2. This hybrid distribution contains simulated views of all the
un-watched protocol executions of ΠS .

– Hybrid H′j . For each j ∈ [m− t
2], this hybrid experiment has real executions

views for each un-watched execution of Πj
S up to the jth run, and the rest

of the views are simulated.
– Hybrid H′

m− t
2
= H1. In this last hybrid, the views of all the un-watched

executions of the protocols ΠS are real views of the semi-honest protocol
execution.

Adjacent such hybrids above differ only in one execution of an un-watched Πj
S .

Let ϵ be the statistical difference between the view output by Sim
Πj

S

S and that
in the real execution, which is negligible. Then the statistical difference between
the adjacent hybrids can be no more than ϵ. It also follows from the triangle
inequality of statistical differences that the difference between the hybrid distri-
butions H1 and H2 is ≤ (m− t

2)ϵ. Therefore these distributions are statistically
close.

Claim. Assuming that the protocol ΠCom securely realizes FCom producing a sta-
tistically hiding view in the presence of a malicious computationally unbounded
adversary with adversary structure ZS, the hybrid distributions H2 and H3 are
statistically close.

Proof. Let s be the number of executions of ΠCom in the protocol where an
honest party is the committer. The distributions of H2 and H3 can be shown as
statistically close by considering the following set of s + 1 intermediate hybrid
distributions:

– Hybrid H′0 = H3. This is the hybrid distribution where all the inputs used
for the honest parties are as in the protocol simulation SimS, independent of
the real protocol inputs. The view produced here is composed of the view of
these commitment protocols, and that of the rest of the real offline protocol
created depending on these inputs, with the exception, of course, that all
the un-watched executions of the virtual protocol are replaced by simulated
views, and the protocol aborts whenever the SimS aborts.

76 Authors Suppressed Due to Excessive Length

– Hybrid H′k. For each k ∈ [s], in this hybrid, in up to the kth execution of the
commitment protocol, all the inputs used for the honest parties are as in the
real execution and the rest are as in the protocol simulation SimS.

– Hybrid H′s = H2. This hybrid distribution contains all honest party inputs
and commitment executions as in the real execution of the protocol. The
rest of the view of the offline protocol is generated with this as the basis.

Note that for k ∈ [s], each pair of adjacent hybrids H′k and H′k−1 differ only
in that the kth execution of ΠCom uses a different input. The rest of the view
is generated on its basis, in the same way. Let x be the input to this protocol
in the real execution and x′ be this input in the simulation. Let ϵ be the sta-
tistical difference between the distribution {ViewΠCom

(x)}κ∈N,r⃗∈Rn as in SimS

and the real distribution {ViewΠCom
(x′)}κ∈N,r⃗∈Rn . Then the statistical differ-

ence between the adjacent hybrids can be no more than ϵ, which is negligible. It
follows from the triangle inequality of statistical differences that the difference
between the distributions H2 and H3 is ≤ sϵ. Therefore, these distributions are
statistically close.

Claim. Assuming that the protocol ΠCom securely realizes FCom in the presence
of a malicious computationally unbounded adversary with adversary structure
ZS, the hybrid distributions H3 and H4 are statistically close.

Proof. Let s be the number of executions of ΠCom in the protocol in the ran-
domness generation phase. The distributions of H4 and H3 can be shown as
statistically close by considering the following set of s + 1 intermediate hybrid
distributions:

– Hybrid H′0 = H4. This is the distribution in which all the commitment proto-
col executions in the randomness generation phase are replaced by executions
of SimΠCom

S .
– Hybrid H′k. For all k ∈ [s], in this hybrid, in up to the kth instance of

the commitment protocol, the real protocol ΠCom is executed, and all other
executions are replaced by executions of SimΠCom

S .
– Hybrid H′s = H3. In this distribution, all the commitment protocol executions

in the randomness generation phase are executions of the real protocol ΠCom.

Note that for k ∈ [s], each pair of adjacent hybrids H′k and H′k−1 differ only in
the view of the kth execution of ΠCom in the randomness generation phase. Let ϵ
be the statistical difference between the distribution {ViewΠCom

}κ∈N,r⃗∈Rn as in
SimS and the real distribution {View∗ΠCom

}κ∈N,r⃗∈Rn . Then the statistical differ-
ence between the adjacent hybrids can be no more than ϵ, which is negligible. It
follows from the triangle inequality of statistical differences that the difference
between the distributions H3 and H4 is ≤ sϵ. Therefore, these distributions are
statistically close.

Since we have now shown that hybrid H0
s≡ H4 and H4 ≡ H5, it holds that

the simulated and the real view of the protocol are statistically close.

	Best of Both Worlds
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Technical Overview

	2 Preliminaries
	3 MPC with Fall-Back Security
	3.1 Example Protocol with Semi-Honest Fall-Back Security

	4 Compiling to Semi-Honest Fall-Back Security
	5 MPC with Fall-Back Security – Malicious Security
	5.1 Authenticated Triples Generation
	5.2 Authenticated Triples with Semi-Honest Fall-Back Security
	5.3 Commitment Protocols with Fall-Back Security
	5.4 Malicious Fall-Back Secure Protocol for Authenticated Triples
	5.5 Removing the Adaptive Security Requirement

	A Omitted Proofs
	A.1 Proof of Lemma 3.4
	A.2 Proof of Theorem 4.1
	A.3 Proof of Lemma 5.6

