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Abstract

Recently, a number of highly optimized threshold signing protocols for Schnorr signatures
have been proposed. A key feature of these protocols is that they produce so-called “presig-
natures” in a “offline” phase (using a relatively heavyweight, high-latency subprotocol), which
are then consumed in an “online” phase to generate signatures (using a relatively lightweight,
low-latency subprotocol). The idea is to build up a large cache of presignatures in periods
of low demand, so as to be able to quickly respond to bursts of signing requests in periods
of high demand. Unfortunately, it is well known that using such presignatures naively leads
to subexponential attacks. Thus, any protocols based on presignatures must mitigate against
these attacks.

One such notable protocol is FROST, which provides security even with an unlimited
number of presignatures; moreover, assuming unused presignatures are available, signing re-
quests can be processed concurrently with minimal latency. Unfortunately, FROST is not a
robust protocol, at least in the asynchronous communication model (arguably the most realis-
tic model for such a protocol). Indeed, a single corrupt party can prevent any signatures from
being produced. Recently, a protocol called ROAST was developed to remedy this situation.
Unfortunately, ROAST is significantly less efficient that FROST (each signing request runs
many instances of FROST concurrently).

A more recent protocol is SPRINT, which provides robustness without synchrony assump-
tions, and actually provides better throughput than FROST. Unfortunately, SPRINT is only
secure in very restricted modes of operation. Specifically, to avoid a subexponential attack,
only a limited number of presignatures may be produced in advance of signing requests, which
somewhat defeats the purpose of presignatures.

Our main new result is to show how to securely combine the techniques used in FROST
and SPRINT, allowing one to build a threshold Schnorr signing protocol that (i) is secure
and robust without synchrony assumptions (like SPRINT), (ii) provides security even with an
unlimited number of presignatures, and (assuming unused presignatures are available) signing
requests can be processed concurrently with minimal latency (like FROST), (iii) achieves high
throughput (like SPRINT), and (iv) achieves optimal resilience.

Besides achieving this particular technical result, one of our main goals in this paper is
to provide a unifying framework in order to better understand the techniques used in various
protocols. To that end, we attempt to isolate and abstract the main ideas of each protocol,
stripping away superfluous details, so that these ideas can be more readily combined and
implemented in different ways. More specifically, we generally avoid talking about distributed
protocols at all, and rather, we examine the security of the ordinary, non-threshold Schnorr
scheme in “enhanced” attack modes that correspond to attacks on various types of threshold
signing protocols.

Another one of our goals to carry out a security analysis of these enhanced attack modes in
the Generic Group Model (GGM), sometimes in conjunction with the Random Oracle Model
(ROM). Despite the limitations of these models, we feel that giving security proofs in the GGM
or GGM+ROM provides useful insight into the concrete security of the various enhanced attack
modes we consider.
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1 Introduction

1.1 Background

Recently, a number of highly optimized threshold signing protocols for Schnorr signatures
have been proposed. Threshold signing protocols are useful in that they can provide both
security and robustness, even if some of the parties on the signing committee are corrupt
— security, in the sense that even if a bounded number parties are corrupt, they cannot
forge a signature, and robustness, in the sense that even if a bounded number parties are
corrupt, they cannot stop the honest parties from producing signatures.

Recall that for the Schnorr signature scheme, the public key is of the form D = dG,
where d ∈ Zq is the secret key and G is a generator for a group E of prime order q (which
we write here using additive notation to reflect the fact that E is nowadays typically an
elliptic curve). A signature on a message m is a pair (R, z) ∈ E × Zq, where zG = R+ hD
and h ∈ Zq is a hash of R and m (and typically D as well). To generate such a signature in
the non-threshold setting, the signer generates r ∈ Zq at random, computes R ← rG and
z ← r + hd, and outputs the signature (R, z).

In the threshold setting, we have n parties on a signing committee, some of which may
be corrupt, and a certain threshold number of parties is needed to sign a message (and
assuming this threshold is high enough, some honest party must actually participate in
signing the message). The usual technique used is Shamir secret sharing, so that each of
the n parties obtains D and its share of d. To generate a public-key/secret-key pair, some
kind of distributed key generation (DKG) protocol must be executed, which can be rather
expensive.

To sign an individual message, in principle, the same DKG protocol could be used to
generate the “ephemeral” public-key/secret-key pair (R, r), where each party obtains R and
its share of r. Once this is done, each party can locally compute its share of the signature
(since this is a linear operation), and then these shares can be revealed and combined to
form a signature.

The problem with this approach is that an expensive DKG protocol must be run for
each signing operation. To reduce this cost, a few optimizations have been considered.

One obvious optimization follows from the observation that the “ephemeral” public-
key/secret-key pair (R, r) is completely independent of the message to be signed. Therefore,
we could potentially use an “offline/online” strategy, in which we generate such ephemeral
key pairs in an offline fashion, building up a cache of them in advance of actual signing
requests. In this context, such an ephemeral public key is called a presignature. The idea
is to build up a large cache of presignatures in periods of low demand, so as to be able to
quickly respond to bursts of signing requests in periods of high demand. Note, however,
that while computing presignatures in this way can improve latency, it does not improve
throughput.

Unfortunately, using presignatures naively in this way breaks the security of Schnorr
signatures. Indeed, the usual proof of security of ordinary, non-threshold Schnorr signatures
relies in an essential way on the fact that the randomly generated group element R is not
revealed before the request to sign m is given. Moreover, this is not just an artifact of the
proof: there are actual subexponential attacks on signing protocols that use presignatures
in this way [DEF+18] (which we review below).
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To mitigate against these presignature attacks, the FROST protocol [KG20, CKM21]
was introduced. FROST provides security even with an unlimited number of presignatures;
moreover, assuming unused presignatures are available, signing requests can be processed
concurrently with minimal latency. However, FROST is not a robust protocol. Indeed, a
single corrupt party can prevent any signatures from being produced. Nevertheless, FROST
does enjoy a property called identifiable abort, which allows misbehaving parties that prevent
protocol termination to be identified and removed from the signing committee. The use
of identifiable aborts in the context of threshold signatures is also found in the work of
[GG20]. However, the notion of identifiable aborts only makes sense in a synchronous
communication setting. Indeed, in an asynchronous communication setting, it is impossible
to tell the difference between a party that is misbehaving by staying silent and a party
that is just slow or temporarily disconnected from the rest of the parties. Thus, at least in
an asynchronous communication setting, FROST does not provide robustness. This makes
FROST unusable in distributed systems for which both security and robustness are required
without synchrony assumptions. Indeed, for a protocol with parties distributed around the
globe, synchrony assumptions seem quite unrealistic.

This limitation of FROST was highlighted in [RRJ+22], who propose a new protocol
called ROAST. To obtain robustness without synchrony assumptions, the ROAST protocol
uses FROST (or any protocol with similar security properties) as a subprotocol, running
it concurrently O(n) times per signing request. Thus, while ROAST achieves robustness
without synchrony assumptions, this comes at a significant performance cost.

More recently, the SPRINT protocol [BHK+23] was proposed, which aims to achieve se-
curity and robustness without synchrony assumptions, and to do so while actually providing
better throughput than FROST by using improved presignature generation protocols based
on batch randomness extraction techniques (an idea that goes back to [HN06]). While
SPRINT does achieve this goal, it is only secure in very restricted modes of operation.
Specifically, only a limited number of presignatures may be generated in advance of signing
requests, which somewhat defeats the purpose of presignatures. Indeed, the security theo-
rem in [BHK+23] only applies to a chosen message attack in which a single, fixed-size batch
of presignatures is generated, which are subsequently used to sign a corresponding batch
of messages. As we discuss below in Section 4.1, if many such batches of presignatures are
generated in advance, the same subexponential attacks mentioned above can be used on
SPRINT.

1.2 Our contributions

On a purely technical level, our main new result is to show how the batch randomness
extraction technique used in SPRINT can be securely combined with the main technical
idea of FROST for making presignatures safe, thus allowing one to build a threshold Schnorr
signing protocol that

• is secure and robust without synchrony assumptions (like SPRINT),

• provides security even with an unlimited number of presignatures, and (assuming
unused presignatures are available) signing requests can be processed concurrently
with minimal latency (like FROST),
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• achieves high throughput (like SPRINT), and

• achieves optimal resilience (i.e., tolerates up to f < n/3 corrupt parties).

Note that one variant of SPRINT also considers so-called “packed” secret sharing, which
can give even higher throughput at the cost of suboptimal resilience.1 We do not consider
this type of protocol here, although our techniques and analysis may well apply.

Besides achieving this particular technical result, one of our main goals in this paper
is to provide a unifying framework in order to better understand the techniques used in
various papers. Indeed, the analyses in the papers [KG20, CKM21, BHK+23] are quite
targeted to very specific protocols (although [CKM21] makes some attempt to be a bit
more modular), and it is not clear how ideas from one protocol can be used in a different
context. Here, we attempt to isolate and abstract the main ideas of each protocol, stripping
away superfluous details, so that these ideas can be more readily combined and implemented
in different ways. Indeed, our approach is much more like that of [GS21], in that we try
to avoid talking about distributed protocols at all, and rather, we examine the security of
the ordinary, non-threshold Schnorr scheme in “enhanced” attack modes that correspond
to attacks on various types of threshold signing protocols (which may use presignatures,
for example) — the details of these threshold protocols do not matter that much, so long
as they are designed in a reasonably modular way so as to satisfy certain natural security
properties. Because of this, our results can be used to easily analyze protocols that work
very differently from SPRINT, such as those in the more recent work of [GS23].2

Another one of our goals to carry out a security analysis of these enhanced attack modes
in the Generic Group Model (GGM). Such an analysis in the GGM has already been done
by [NSW09] for the basic attack mode on Schnorr, but not for any of the enhanced attack
modes we consider here. The analysis in [NSW09] proves the security of Schnorr for the
basic attack mode in the GGM under specific preimage assumptions on the underlying hash
function. In fact, we reprove the results in [NSW09]. Our main reason for this is that we
want to establish a general framework for proving results on various Schnorr attack modes.
This framework is very similar to that introduced in [GS21], in which at attack in the GGM
is reduced to a purely “symbolic” attack that allows for a much more modular and intuitive
security analysis. We actually prove a bit more than what is proved in [NSW09], observing
that if we use both the GGM and Random Oracle Model (ROM), where the hash function
is modeled as a random oracle, we get a very tight security bound: any adversary that
makes at most N oracle queries (to either the signing, group, or random oracles) forges a
signature with probability O(N2/q+N/M). Here, M is the size of the output space of the
hash function. Note that this tight security bound is not new: it was proved already in
[BL19].

We feel that giving security proofs in the GGM or GGM+ROM provides useful insight
into the practical security of the various enhanced attack modes we consider. For example,

1“Packed” secret sharing is a technique introduced in [FY92], in which many secrets are packed into
a single Shamir secret sharing, and is not to be confused with “batched” secret sharing, in which many
independent Shamir secret sharings are generated concurrently, as in [DN07], for example. Indeed, protocols
that implement the strategies we outline here may very well use “batched” secret sharing.

2The original version of this paper preceded the paper [GS23], but has been subsequently updated to
take advantage of some of the concepts discussed in that paper.
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the attack modes that correspond to FROST and SPRINT have been analyzed in the
literature in the ROM, with reductions to the one-more discrete logarithm problem (for
FROST) or the discrete logarithm problem (for SPRINT). However, these reductions all
go via the so-called “forking lemma” [PS96], which yields very “loose” security reductions.
Even though security proofs in the GGM or GGM+ROM have limitations in the generality
of attacks they consider, they also have value by giving a better understanding of concrete
security against the types of attacks that are arguably most likely to be carried out in
practice.

We give security proofs in the GGM+ROM for a number of enhanced attack modes,
including those corresponding to FROST, SPRINT, and our new technique that combines
the best of both FROST and SPRINT. In all cases, we find that the adversary’s forging
probability is still O(N2/q+N/M), just as for the basic attack mode. For several enhanced
attack modes, we also give security proofs in the GGM under specific preimage assumptions
on the hash function. Note that our analysis of our new technique combining FROST and
SPRINT (which is covered in Section 4.3) is only done in the GGM+ROM. We speculate
that a security proof in the ROM via a reduction to the one-more discrete logarithm problem
should be possible — we leave that as an open problem.

In addition to all of the above, we also model additive key derivation. Here, when
the adversary makes a signing query, he additionally specifies an additive tweak e ∈ Zq to
derive the effective public key as D′ := D + eG. This corresponds to using a scheme like
BIP32 [Wui20] to derive subkeys from a master key. This type of key derivation is especially
important in a threshold setting, as there is a significant cost to maintaining a secret key
— for example, it will likely need to be reshared with regular frequency, both to achieve
proactive security and to support membership changes to the signing committee. With
additive key derivation, a signing committee can just maintain a single master key, and
derive subkeys as necessary on behalf of individual external users (or “smart contracts” in a
blockchain setting). Moreover, because of the simple additive nature of the key derivation,
it is generally trivial to deal with these derived keys in a distributed computation. Not
surprisingly, including the (effective) public key in the hash used to derive h is necessary
and sufficient to obtain security proofs for all of the attack modes we consider.

2 Preliminaries

2.1 Schnorr Signatures

From now on, we consider the Schnorr signature scheme over an elliptic curve. Let E be an
elliptic curve defined over Zp and generated by a point G of prime order q, and let E∗ be
the set of points (x, y) on the curve excluding the point at infinity O.

The secret key for ECDSA is a random d ∈ Zq, the public key is D = dG ∈ E. The
scheme makes use of a hash function H : {0, 1}∗ → Zq. The signing and verification
algorithms are shown in Figure 1. Here, we assume a serialization function

〈·〉 : E → {0, 1}∗

that is prefix-free and is 1-1 (as well as easy to compute and to invert).
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Sign message m:

r
$← Zq, R ← rG ∈ E

h← H(〈D〉 ‖ 〈R〉 ‖ m) ∈ Zq

z ← r + hd
return the signature (R, z)

Verify signature (R, z) ∈ E × Zq on m:

h← H(〈D〉 ‖ 〈R〉 ‖ m) ∈ Zq

check that zG = R+ hD

Figure 1: Schnorr signing and verification algorithms

NOTE: The scheme presented in Figure 1 does not quite fully capture either BIP340 (the
bitcoin version of Schnorr) or EdDSA — each have there own quirks. However, it seems
reasonable to speculate that all of the results proved here can easily be adapted to those
particular schemes.

2.2 Enhanced attack modes

In the basic attack game for signatures, the adversary makes a series of signing queries and
then must forge a signature on some message that was not submitted as a signing query.
This attack game needs to be modified in order to model attacks that can be carried out in
the threshold setting. There are three variations to consider:

Presignatures. Here, the adversary instructs the challenger to generate presignatures
R1,R2, . . . , which are random elements of E that are given to the adversary. In
a signing query, the adversary specifies the index k of an unused presignature and a
message mk; the challenger then signs mk using Rk.
This models the situation in the threshold setting where we do the expensive presigna-
ture computation in advance using a secure DKG protocol. Any secure DKG protocol
may be used. For example, [GS22] provides fairly efficient DKG protocols that are
secure and robust, with optimal resilience, in the asynchronous setting.

Biased presignatures. Here, when the adversary makes a signing query, in addition to
specifying k and mk, the adversary specifies a “bias” (uk, u

′
k) ∈ Z∗q×Zq; the challenger

then signs mk using R′k := ukRk + u′kG.

This models a common situation in the threshold setting where we utilize a simple
DKG protocol in which each party securely distributes shares of an ephemeral secret
key and publishes the corresponding ephemeral public key, after which a collection
of these ephemeral keys is agreed upon and added together to obtain a presignature.
This protocol is not a secure DKG, as the adversary can bias the result. Indeed, the
adversary may use the values of the ephemeral public keys to influence the choice of
his own secret keys and the choice of ephemeral keys to include in the agreed-upon
collection.

This type of biasing was discussed in [GJKR07] in the synchronous communication
setting, and in [GS22] in the asynchronous communication setting. In [GS22] it was
shown, by means of a random self-reduction, that the effects of this biasing can be
simply modeled as we have here. See also [GS23] for more context.
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Additive key derivation. Here, when the adversary makes a signing query, he addi-
tionally specifies an additive tweak ek ∈ Zq to derive the effective public key as
D′k := D+ekG. With this modification, the notion of a forgery must also be appropri-
ately modified, so that the forgery includes a tweak e∗ ∈ Zq in addition to a message
m∗, and the forgery counts so long as (m∗, e∗) 6= (mk, ek) for any (mk, ek) submitted
as part of a signing query.

This corresponds to using a scheme like BIP32 [Wui20] to derive subkeys from a
master key.

Additive key derivation can be considered either by itself, or in combination of one of
the two variants above.

2.3 Proof techniques and known attacks

In the usual analysis of Schnorr, we model H as a random oracle. The main idea of the
security proof is to reduce an attack on the signature scheme to an attack on the interactive
identification scheme. In the latter attack, the adversary, playing the role of prover, may
initiate many conversations with the challenger, who is playing the role of verifier. The
adversary wins the attack game if he can make any of these verifiers accept.3 To carry out
this reduction, we program the random oracle, which allows us to (a) simulate signing queries
and (b) translate the random challenges in the identification attack game into random oracle
outputs in the signature attack game.

To simulate signing queries, when we get a message m to sign, we generate z, h ∈ Zq at
random, compute R ← zG − hD, and program the random oracle representing H so that
H(〈D〉 ‖ 〈R〉 ‖ m) := h. This simulation fails only if H(〈D〉 ‖ 〈R〉 ‖ m) was already defined,
which happens only with negligible probability since R is chosen after m is specified.

With presignatures, the above proof falls apart, precisely because R is chosen and given
to the adversary before the adversary specifies m. Indeed, as is well known [DEF+18], there
are attacks. Suppose the adversary is given presignatures R1, . . . ,RK . The adversary sets

R∗ :=
∑
k∈[K]

Rk,

and attempts to find messages m∗,m1, . . . ,mK such that

H(〈D〉 ‖ 〈R∗〉 ‖ m∗) =
∑
k∈[K]

H(〈D〉 ‖ 〈Rk〉 ‖ mk).

This is an instance of the (K + 1)-sum problem, a generalization of the Birthday Problem
studied by Wagner [Wag02]. Indeed, the adversary can generate (K + 1) lists of random
numbers, where the first list is obtained by computing H(〈D〉 ‖ 〈R∗〉 ‖ m∗) for various
messages m∗, the second by computing H(〈D〉 ‖ 〈R1〉 ‖ m1) for various messages m1, and
so on. This can generally be done much faster than the time O(

√
q) needed to break the

discrete logarithm problem in E. Once this is done, the adversary can obtain signatures
(Rk, zk) on mk for k ∈ [K]. From this, the adversary can compute z∗ ←

∑
k∈[K] zk so that

(R∗, z∗) is a valid signature on m∗.

3One can then reduce the security of the interactive identification scheme to the hardness of the discrete
logarithm using the “forking lemma”.
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2.4 Re-randomized presignatures

One mitigation to this security weakness is to use re-randomized presignatures, just as
in [GS21]. The idea is that a random tweak δk ∈ Zk is chosen by the challenger after the
signing request is made, so that the original presignature Rk is replaced by the effective
presignature R′k := Rk + δkG (the value δk is given to the adversary to model that once
chosen by the system it is publicly known). The same mitigation can be applied to biased
presignatures: the effective presignature is then R′k := ukRk + (u′k + δk)G.

To implement this technique in a threshold setting, some type of “Random Beacon”
must be used. A Random Beacon is a mechanism for obtaining public random values that
remain hidden and unpredictable until a time determined by the protocol. For example,
a Random Beacon can be efficiently implemented using a threshold BLS signature scheme
[BLS01, Bol03]. Since the re-randomization is linear, in terms of working with linear secret
sharing, the impact is negligible. Depending on the details of the system, obtaining the value
δk from the Random Beacon may result in some additional latency — but not necessarily
so. For example, on a distributed system such as the Internet Computer [DFI22], signing
requests must go through a consensus mechanism, which itself may be implemented so that
it uses a threshold BLS signature to achieve finalization; that very same threshold BLS
signature can be used to derive δk.

Let us reconsider the proof of security with this mitigation. We will consider the re-
randomized biased presignature setting (which includes the re-randomized presignature set-
ting as a special case where uk = 1 and u′k = 0). We will also combine this with additive key
derivation. Again, the main part of the proof is to simulate signing queries by programming
the random oracle representing H. The simulator generates the presignature Rk as

Rk ← ζkG − ηkD,

where ζk, ηk ∈ Zq are chosen at random. At a later time, the adversary makes a corre-
sponding signing query, where he specifies a message mk an additive key tweak ek ∈ Zq,
and an presignature tweak (uk, u

′
k) ∈ Z∗q ×Zq. So the effective public key is D′k := D+ ekG,

the effective presignature (used in the actual signature) is R′k := ukR+ (u′k + δk)G and the
resulting signature is (R′k, zk), where

zkG = R′k + hkD′k = (ukRk + (u′k + δk)G) + hk(Dk + ekG),

which is equivalent to

u−1k (zk − u′k − δk − ekhk)︸ ︷︷ ︸
=ζk

G = Rk + u−1k hk︸ ︷︷ ︸
=ηk

D.

So the simulator can simply compute

hk ← ukηk

and
zk ← ukζk + u′k + δk + ekhk,
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and then program the random oracle so that H(〈D′k〉 ‖ 〈R′k〉 ‖ mk) := hk. Because δk is
chosen only after the adversary makes the signing request, the input is unlikely to have been
used before and the programming of the oracle will fail only with negligible probability.

We give an alternative proof of security of re-randomized presignatures in the generic
group model, below in Section 3.2.

2.4.1 Batch re-randomization

Another variation worth considering is an attack game in which the adversary may submit
a batch of signing queries, and a single random tweak δ ∈ Zq is used to update all the
corresponding presignatures in the batch. That is, the adversary submits several signing
queries mk1 ,mk2 , . . . in a batch, which are paired with presignatures Rk1 ,Rk2 , . . . , and the
effective presignatures are then computed as R′k1 := Rk1 + δG, R′k2 := Rk2 + δG, and so on.

This attack mode corresponds to a setting where a threshold signing protocol has signing
requests coming in so fast that it makes sense to process these signing requests in batches,
so as to amortize the cost of generating δ and computing δG over the size of the batch.

One can easily verify that the above security proof extends to cover batch re-
randomization.

2.5 Re-randomizing presignatures via hashing

The FROST [KG20] and FROST2 protocols [CKM21] use a hash function to derive the re-
randomization tweak and uses a second random group element as a part of the presignature.
We abstract away the details of that protocol in a way that is still useful in the context of
a threshold Schnorr scheme built using robust MPC primitives, such as in [GS22]. To this
end, a presignature consists of a pair of random group elements (Rk,Sk). To sign a message
mk, the effective presignature (used in the actual signature) is

R′k := Rk + δkSk,

where
δk := ∆(〈D〉 ‖ 〈Rk〉 ‖ 〈Sk〉 ‖ 〈k〉 ‖ mk).

Here, ∆ is a hash function whose output space is Zq. Note that Rk and Sk could be biased
presignatures.

The main advantage of this approach to re-randomizing presignatures is that in the
threshold setting, we do not need a Random Beacon, as in Section 2.4.

The FROST2 protocol was analyzed in [CKM21] in the random oracle model, giving
a reduction to one-more discrete log (OMDL). Below in Section 3.3, we give an analysis
of the above abstract variant in the generic group model (where we also model the hash
functions as random oracles). We believe this is useful because (a) the reduction to OMDL
is extremely loose and our analysis here gives what is probably a more realistic bound on
the effectiveness of any generic attacks, and (b) working in the generic group model allows
us to examine further variants more quickly and easily.
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NOTE: If we instead derive R′k := Rk + δkG, where

δk := ∆(〈D〉 ‖ 〈Rk〉 ‖ 〈k〉 ‖ mk).

one can carry out essentially the same attack as in Section 2.3. Indeed, suppose the adver-
sary is given presignatures R1, . . . ,RK . For k ∈ [K], define

δk(m) := ∆(〈D〉 ‖ 〈Rk〉 ‖ 〈k〉 ‖ m)

and
hk(m) := H(〈D〉 ‖ 〈Rk + δk(mk)G〉 ‖ m).

The adversary sets

R∗ :=
∑
k∈[K]

Rk,

and tries to find messages m∗,m1, . . . ,mK such that

H(〈D〉 ‖ 〈R∗〉 ‖ m∗) =
∑
k∈[K]

hk(mk).

This can again be done by solving an instance of an instance of the (K + 1)-sum problem.
Once this is done, the adversary asks for signatures (Rk + δk(mk)G, zk) on mk for k ∈ [K],
computes

z∗ ←
∑
k∈[K]

(zk − δk(mk)),

and outputs the forgery (R∗, z∗) on m∗.

3 Generic Group Model analysis

In the above analysis, we give a reduction to breaking the interactive Schnorr identification
scheme. That security property can be reduced to the DL problem via a “forking lemma”
argument. This gives a very “loose” reduction. An alternative approach is to carry out an
analysis in the Generic Group Model (GGM). For the basic Schnorr attack game, this has
already been done in [NSW09]. However, we want to extend this to various extended attack
games.

3.1 Analysis of basic attack

Our approach and proof technique will be as in [GS21].

3.1.1 The EC-GGM

We review the EC-GGM (Elliptic Curve Generic Group Model), introduced in [GS21]. We
assume an elliptic curve E is defined by an equation y2 = F (x) over Zp and that the curve
contains q points including the point at infinity O. Here, p and q are odd primes. Let E∗ be
the set of non-zero points (excluding the point at infinity) on the curve, i.e., (x, y) ∈ Zp×Zp
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that satisfy y2 = F (x). From now on, we shall not be making any use of the usual group
law for E, but simply treat E as a set; however, for a point P = (x, y) ∈ E∗, we write −P
to denote the point (x,−y) ∈ E∗.

An encoding function for E is a function

π : Zq 7→ E

that is

• injective,

• identity preserving, meaning that π(0) = O, and

• inverse preserving, meaning that for all i ∈ Zq, π(−i) = −π(i).

In the EC-GGM, parties know E and interact with a group oracle Ogrp that works as
follows:

• Ogrp on initialization chooses an encoding function π at random from the set of all
encoding functions

• Ogrp responds to two types of queries:

– (map, i), where i ∈ Zq:
∗ return π(i) // models computing iG

– (add,P1,P2, c1, c2), where P1,P2 ∈ E and c1, c2 ∈ Zq:
∗ return π

(
c1π
−1(P1) + c2π

−1(P2) ) // models computing c1P1 + c2P2

NOTES:

1. The intuition is that the random choice of encoding function hides relations between
group elements.

2. However, to make things more realistic, the encodings themselves have the same
format as in a concrete elliptic curve, even though we do not at all use the group
law of an elliptic curve.

3. Also to make things more realistic, the trivial relationship between a point and its
inverse (that they share the same x-coordinate) is preserved.

4. Our model only captures the situation of elliptic curves over Zp of prime order and
cofactor 1. This is sufficient for many settings, and it covers all of the “secp” curves
in [Cer10].

5. We have enhanced slightly the EC-GCM model from [GS21]: in that paper, the
add query only supports coefficients c1 = c2 = 1. This “enhanced add query” only
strengthens the model and brings it more in line with other formulations of the GGM
(such as [Zha22]).

11



3.1.2 Modeling the attack on Schnorr in the EC-GCM

In the EC-GGM model, the generator G is encoded as π(1) and the public key D is encoded
as π(d) for randomly chosen d ∈ Zq. These encodings of G and D are given to the adversary
at the start of the signing attack game.

The adversary then makes a sequence of queries to both the group and signing oracles.
The signing oracle on a message m itself works as usual, generating r ∈ Zq at random, but
it uses the group oracle to compute the encoding of R = rG. After that, the signing oracle
computes h← H(〈D〉 ‖ 〈R〉 ‖ m) ∈ Zq and z ← r+ hd, and then gives the signature (R, z)
to the adversary.

At the end of the signing attack game, the adversary outputs a forgery (R∗, z∗) on a
message m∗. The signature is then verified using the verification algorithm, computing
h∗ ← H(〈D〉 ‖ 〈R∗〉 ‖ m∗) ∈ Zq and checking that z∗G = R∗ + h∗D using the group oracle.
WLOG, we may assume that the adversary has already performed this check and made
the corresponding calls to the group oracle. The adversary wins the signing attack game if
(R∗, z∗) is a valid signature on m∗ and m∗ was not submitted as an input to the signing
oracle.

We let Nsig be a bound on the number of signing queries made by the adversary, and Ngrp

be a bound on the number of group oracle queries made by the adversary. For simplicity,
we assume that Ngrp includes the group oracle queries made in the initialization step and
in the verification step of the adversary’s forgery attempt. We let N be a bound on the
number of group oracle and signing queries made by during the attack. Later in the paper,
we will consider scenarios where the adversary also makes queries to a random oracle, and
in these scenarios, N will also bound the number of random oracle queries as well.

A lazy simulation of the signature attack game. Instead of choosing the encoding
function π at random at the beginning of the attack game, we can lazily construct π a bit
at a time. That is, we represent π as a set of pairs (i,P) which grows over time — such
a pair (i,P) represents the relation π(i) = P. Here, we give the entire logic for both the
group and signing oracles in the forgery attack game. Figure 2 gives the details of Lazy-
Sim. This is exactly the same as the lazy simulator in Fig. 2 in [GS21], except for the logic
for processing signing requests, which has been changed to Schnorr signatures instead of
ECDSA signatures (and the “enhanced add queries”)

This lazy simulation is perfectly faithful. Specifically, the advantage of any adversary
in the signature attack game using this lazy simulation of the group oracle is identical to
that using the group oracle as originally defined.

A symbolic simulation of the signature attack game. We now define a symbolic
simulation of the attack game. The essential difference in this game is that Domain(π)
will now consist of polynomials of the form a + bD, where a, b ∈ Zq and D is a variable (or
indeterminant). Here, D symbolically represents the value of d. Note that π will otherwise
still satisfy all of the requirements of an encoding function. Figure 3 gives the details of
Symbolic-Sym. This is exactly the same as the lazy simulator in Fig. 3 in [GS21], except
for the logic for processing signing requests (and the “enhanced add queries”).

Essentially, the signing oracle in the symbolic simulation (i) chooses R ∈ E and z ∈ Zq

12



1. Initialization:

(a) π ← {(0,O)}.
(b) d

$← Zq

(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
(e) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;

while P ∈ Range(π) do: P $← E∗

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query
(add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

while i ∈ Domain(π) do: i
$← Z∗q

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2))
and return the result

4. To process a request to sign m:

(a) r
$← Zq

(b) invoke (map, r) to get R
(c) h← H(〈D〉 ‖ 〈R〉 ‖ m) ∈ Zq

(d) z ← r + hd

(e) return (R, z)

Figure 2: Lazy-Sim

1. Initialization:

(a) π ← {(0,O)}.
(b) invoke (map, 1) to obtain G
(c) invoke (map, D) to obtain D
(d) return (G,D)

2. To process a group oracle query (map, i):

(a) if i /∈ Domain(π):

i. P $← E∗;
if P ∈ Range(π) then abort

ii. add (−i,−P) and (i,P) to π

(b) return π(i)

3. To process a group oracle query
(add,P1,P2, c1, c2):

(a) for j = 1, 2: if Pj /∈ Range(π):

i. i
$← Z∗q ;

if i ∈ Domain(π) then abort

ii. add (−i,−Pj) and (i,Pj) to π

(b) invoke (map, c1π
−1(P1) + c2π

−1(P2))
and return the result

4. To process a request to sign m:

(a) R $← E, z
$← Zq

(b) h← H(〈D〉 ‖ 〈R〉 ‖ m) ∈ Zq

(c) r ← z − hD
(d) if r ∈ Domain(π) or R ∈ Range(π)

then abort

(e) add (−r,−R) and (r,R) to π

(f) return (R, z)

Figure 3: Symbolic-Sim
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at random, (ii) sets r ← z − hD, where h = H(〈D〉 ‖ 〈R〉 ‖ m), (iii) “programs” π so that
π(r) = R and π(−r) = −R, and (iv) returns the signature (R, z).

The following lemma is fairly straightforward, and can be proved along the same lines
as Lemma 1 in [GS21].

Lemma 1. The difference between the adversary’s forging advantage in the Lazy-Sim and
Symbolic-Sim games is O(N2/q).

Indeed, throughout this paper, we hew closely to the general strategies developed in
[GS21], one of which is to carry out the generic group analysis in a modular fashion, moving
first from the real attack to a symbolic simulation of the attack, and then to finish off the
analysis in this symbolic simulation. The move from real attack to symbolic simulation is
usually straightforward and fairly mechanical, and allows us to then focus fashion on the
“meat” of the proof in a more intuitive fashion.

3.1.3 Proving security in the EC-GGM

By virtue of Lemma 1, it suffices to prove the security of Schnorr in the Symbolic-Sim game.
We do this by reducing the security to specific preimage resistance security properties of H.

Assume the adversary’s forgery is the signature (R∗, z∗) on the message m∗. Suppose
π−1(R∗) = a + bD. By the verification equation, we must also have π−1(R∗) = z∗ − h∗D.
Let h∗ := H(〈D〉 ‖ 〈R∗〉 ‖ m∗). Then we must have a = z∗ and b = −h∗.

Type I forgery: R∗ = ±R for some R output by the signing oracle.

Let R∗ = εR, with ε ∈ {±1}. Suppose m was the input to signing oracle that
produced the signature (R, z), and let h := H(〈D〉 ‖ 〈R〉 ‖ m). Then we must have

z∗ − h∗D = ε(z − hD).

In particular, h∗ = εh.

In this case, the adversary must essentially win a UOWHF-like attack on H, which
we call Preimage Attack I — details below.

Type II forgery: not type I and h∗ 6= 0.

Since b = −h∗ 6= 0, the group element R∗ was generated at random as the result of
a group oracle query made by the adversary. (Note that the assumption h∗ 6= 0 is
used here to rule out the possibility of R∗ being cooked up directly by the adversary,
which is allowed in the EC-GGM model.)

So in this case, the adversary must essentially win a certain type of preimage attack
game on H, which we call Preimage Attack II — details below.

Type III forgery: not type I and h∗ = 0.

In this case, the adversary must find a preimage of zero under H, which we call
Preimage Attack III. (Note this case does not arise in the analysis of [NSW09]
because they do not allow access to π−1 as is done in the EC-GCM.)
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3.1.4 Preimage attack games

In the above analysis, we sketched a reduction to various preimage attacks on H. Here,
we state these preimage attacks in more detail. (Preimage Attacks I and II are stated in
greater generality than what we need here to cover other situations we will encounter later.)

Preimage Attack I on H.

• For k = 1, 2, . . . , the adversary makes a challenge query, giving (mk,D′k) to challenger,
who responds with random Rk.
Let h∗k = H(〈D′k〉 ‖ 〈Rk〉 ‖ mk).

• To win, the adversary outputs k, (m∗,D∗) 6= (mk,D′k), and ε ∈ {±1} such that

H(〈D∗〉 ‖ 〈εRk〉 ‖ m∗) = εh∗k.

Preimage Attack II on H.

• For i = 1, 2, . . . , the adversary makes a challenge query, giving h∗i to challenger, who
responds with random R∗i .

• To win, the adversary outputs i, (m∗,D∗), and ε ∈ {±1} such that

H(〈D∗〉 ‖ 〈εR∗i 〉 ‖ m∗) = εh∗i .

Preimage Attack III on H. To win, the adversary outputs a bit string x such that
H(x) = 0.

3.1.5 Concrete security bounds

We can derive concrete security bounds for the analysis in Section 3.1.3. If an adversary A
has an advantage ℵ in forging a signature, then

ℵ = O(N2/q + ℵI + ℵII + ℵIII). (1)

Here, ℵX is the advantage of an adversary AX in winning Preimage Attack X, for X ∈
{I, II, III}. Each AX has roughly the same running time as A. Moreover, AI makes at most
Nsig challenge queries and AII makes at most Ngrp challenge queries. This follows from
Lemma 1, together with the analysis in Section 3.1.3.

Suppose we model H as a random oracle (as well as working in the EC-GGM). In this
paper, we generally assume that the output space of H is Zq. However, it is useful to
consider a smaller output space as well, as this can be used to generate shorter signatures
(using the standard technique where a signature consists of (h, z), rather than (R, z)).

So suppose H has an output space of size M . Also, assume that N also bounds the
number of queries made by A to the random oracle representing H. Note that this also
bounds the number of random oracle queries made by each AX. Then (1) implies

ℵ = O(N2/q +N/M). (2)
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Indeed, consider an adversary that carries out Preimage Attack I or II and makes at most Nh

random oracle queries and Nch challenge queries. Then such an adversary wins this attack
with probability at most O(N2

ch/q + Nh/M). The term O(N2
ch/q) bounds the probability

that there are collisions among the any of the Nch random group elements generated by
the challenger. Similarly, an adversary that carries out Preimage Attack III and makes at
most Nh random oracle queries wins this attack with probability O(Nh/M). The bound (2)
immediately follows.

The above analysis is similar to that in [NSW09], except that they consider preimage
attacks with only a single challenge, and then make a “guessing” argument to complete the
reduction to the hardness of winning such a single-challenge preimage attack. This leads to
somewhat artificially pessimistic security bounds. Note that a similar security bound was
proved already in [BL19].

3.2 Analysis of attack with re-randomized presignatures

We assume unbiased presignatures and no key derivation, but with presignatures re-
randomized (as in Section 2.4). Our approach for designing the symbolic simulation in
this setting is similar to that [GS21], specifically Fig. 7 of that paper, in which each presig-
nature Rk corresponds to a variable Rk, meaning that π(Rk) = Rk. When a signing query
on a message mk is made that uses the presignature Rk, in the symbolic simulation, the
signing oracle computes

δk
$← Zq, R′k

$← E, zk
$← Zq, hk ← H(〈D〉 ‖ 〈R′k〉 ‖ mk).

Before returning the signature (R′k, zk) and the tweak δk, the signing oracle programs π so
that π(Rk + δk) = R′k, and then substitutes

Rk 7→ zk − δk − hkD

throughout Domain(π). The symbolic simulation will “fail” if any of these substitutions
cause Domain(π) to “collapse” (i.e., if two distinct elements of Domain(π) before the sub-
stitution become equal afterwards).

This same “substitution strategy” for dealing with presignatures in the GGM was used
extensively in [GS21], and works equally well here. The analog of Lemma 1 above for this
symbolic simulator can easily be proven along the same lines as Lemma 2 in [GS21].

Type I forgery: R∗ = ±R for some R output by signing oracle.

This is handled exactly the same as Type I in the basic attack in Section 3.1.3.

Type II forgery: not type I and h∗ 6= 0.

By some simple case analysis, we can assume that R∗ was randomly generated in
processing a group oracle query made by the adversary. Suppose that initially

π−1(R∗) = a+ bD +
∑
k

ckRk,
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where the ck’s are all nonzero. If the sum on k is empty, this can be handled the same
as Type II in the basic attack in Section 3.1.3. Otherwise, in order for the forgery to
be valid, the Rk variables need to be eliminated by substitution, to end up with

π−1(R∗) = z∗ − h∗D.

Suppose that all but one has been eliminated, say R`, so that at that time,

π−1(R∗) = a′ + b′D + c`R`.

The last substitution is R` 7→ z` − δ` − h`D, yielding

π−1(R∗) = {a′ + c`(z` − δ`)}︸ ︷︷ ︸
=z∗

+ {b′ − c`h`}︸ ︷︷ ︸
=−h∗

D.

So in this case, the adversary can win a certain type of preimage attack game on H,
which we call Preimage Attack II′ — details below.

Type III forgery: not type I and h∗ = 0.

This is handled exactly the same as Type III in the basic attack in Section 3.1.3.

3.2.1 Another preimage attack

We describe in more detail the preimage attack used in the above security analysis. This
attack is stated in greater generality than what we need here to cover other situations we
will encounter later.

Preimage Attack II′ on H.

• The challenger gives a collection {R∗i }
Nch
i=1 of random challenges to the adversary (each

R∗i is a random element of E).

• For k = 1, 2, . . . , the adversary submits a completion query to the challenger consisting
of an index set Ik ⊆ {1, . . . , Nch} that is disjoint from I1 ∪ · · · ∪ Ik−1, along with D′k,
mk, and {(bi, ci)}i∈Ik , where each (bi, ci) ∈ Zq × Z∗q .

– The challenger generates R′k at random and returns this to the adversary.

– Let hk = H(〈D′k〉 ‖ 〈R′k〉 ‖ mk) and h∗i = bi − ci · hk for i ∈ Ik.

• To win, the adversary outputs i ∈ I, (m∗,D∗), and ε ∈ {±1} such that

H(〈D∗〉 ‖ 〈εR∗i 〉 ‖ m∗) = εh∗i .

In the above attack game, the various R∗i values correspond to outputs from the group
oracle in the symbolic simulation of the signing attack, while the various R′k values corre-
spond to the outputs of the signing oracle. The kth completion query in the above attack
game corresponds to the kth signing query in the symbolic simulation of the signing attack,
and the set of indices Ik represents those group elements that were output by the group
oracle whose last remaining presignature variable is being eliminated by substitution from
this signing request.
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3.2.2 Concrete security bounds

If an adversary A has an advantage ℵ in forging a signature, then

ℵ = O(N2/q + ℵI + ℵII + ℵII′ + ℵIII). (3)

Here, ℵX is the advantage of an adversary AX in winning Preimage Attack X, for X ∈
{I, II, II′, III}. Each AX has roughly the same running time as A, plus time O(LN), where
L is the maximum number of unused presignatures that are extant at any time. Moreover,
AI makes at most Nsig challenge queries, AII makes at most Ngrp challenge queries, and
AII′ receives at most Ngrp challenges and makes at most Nsig completion queries.

Now suppose we model H as a random oracle with an output space of size M . Also,
assume that N also bounds the number of queries made by A to the random oracle repre-
senting H. Note that this also bounds the number of random oracle queries made by each
AX. Then (3) implies

ℵ = O(N2/q +N/M). (4)

To see this, suppose that in Preimage Attack II′, the adversary receives Nch random
challenges, and makes at most Ncmp completion queries and at most Nh random oracle
queries. Assume no collisions among the random challenges occur. This means that for a
given random oracle query of the form

H(〈D∗〉 ‖ 〈εR∗i 〉 ‖ m∗), (5)

there is a unique index i and values bi, ci, the hk such that

H(〈D∗〉 ‖ 〈εR∗i 〉 ‖ m∗) = bi − ci · hk

must hold in order for the random oracle query (5) to lead to a win. Here, k is the index
of the completion query which included i in Ik. Moreover, assuming that D′k 6= ±R∗i and
the adversary did not happen to query H(〈D′k〉 ‖ 〈R′k〉 ‖ mk) before the kth completion
query was made, the value hk := H(〈D′k〉 ‖ 〈R′k〉 ‖ mk) is random and independent of
H(〈D∗〉 ‖ 〈εR∗i 〉 ‖ m∗), bi, and ci, and so the random oracle query (5) leads to a win
with probability at most 1/M . From this, we see that the adversary wins the attack with
probability at most

O((Nch +Ncmp +Nh)2/q +Nh/M).

The bound (4) now follows.

3.2.3 Variations

If we use biased presignatures, then effectively Rk gets replaced by ukRk + u′kG just before
signing a message, where uk 6= 0 and u′k are explicitly given by the adversary. So in the
symbolic simulation, the signing oracle programs π so that π(ukRk + u′k + δk) = R′k and
substitutes

Rk 7→ u−1k (zk − u′k − δk − hkD).

The general argument does not really change at all. If we use additive key derivation,
deriving D′k := D + ekG, then this substitution becomes

Rk 7→ u−1k (zk − hkek − u′k − δk − hkD).
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The argument is also easily adapted to deal with batch re-randomization (see Section 2.4.1).
The same concrete security bounds in Section 3.2.2 also hold here.

3.3 Re-randomizing presignatures via hashing

We now analyze the security of Schnorr signatures in the GGM with presignatures that are
re-randomized via hashing, as discussed in Section 2.5. Here, we will model ∆ as a random
oracle with output space Zq. We will also model as H as random oracle.

We will assume unbiased presignatures for now and later examine biased presignatures
as well as additive key derivation. When a signing query on a message mk is made that
uses the presignature (Rk,Sk), a preliminary computation

δk ← ∆(〈D〉 ‖ 〈Rk〉 ‖ 〈Sk〉 ‖ 〈k〉 ‖ mk),

R′k ← Rk + δkSk,
hk ← H(〈D〉 ‖ 〈R′k〉 ‖ mk)

is made. WLOG, we can assume that the adversary has already computed these values
himself before making the signing query. Moreover, to simplify the analysis, we make one
more assumption about the adversary. Namely, whenever the adversary makes a random
oracle query of the form

δk ← ∆(〈D〉 ‖ 〈Rk〉 ‖ 〈Sk〉 ‖ 〈k〉 ‖ mk),

we assume it immediately makes a “special add query”

(add,Rk,Sk, 1, δk)

to the group oracle to obtain the encoding of the group element R′k := Rk + δkSk. We may
also assume that it then immediately makes the random oracle query

hk ← H(〈D〉 ‖ 〈R′k〉 ‖ mk).

So to model this situation in the symbolic simulation, we introduce variables Rk and
Sk, where π(Rk) = Rk and π(Sk) = Sk. When a signing as above is made, on a message
mk that uses the presignature (Rk,Sk), the signing oracle generates zk at random. Before
returning the signature (R′k, zk), the signing oracle also substitutes

Rk 7→ zk − δkSk − hkD (6)

throughout Domain(π). The symbolic simulation will “fail” if any of these substitutions
cause Domain(π) to “collapse” (i.e., if two distinct elements of Domain(π) before the sub-
stitution become equal afterwards).

We leave it to the reader to verify that the analog of Lemma 1 above holds as well for
this symbolic simulator.

As usual, suppose the forgery is a signature (R∗, z∗) on a message m∗. Note that the
signing oracle does not generate any new group elements, so we do not categorize forgeries
as we did before. We may assume that R∗ was randomly generated by a group oracle
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query — otherwise, the adversary must essentially win Preimage Attack III on H (as in
Section 3.1.4, but where H is modeled as a random oracle).

Suppose that initially

π−1(R∗) = a+ bD +
∑
k

(ckRk + dkSk), (7)

where each (ck, dk) is nonzero (as a pair). Note that the constants a, b, and ck, dk for all
indices k are fixed before R∗ is randomly generated. In order for this forgery to be valid,
the Rk variables need to be eliminated by substitution, to end up with

π−1(R∗) = z∗ − h∗D.

In fact, after substitution, we have

π−1(R∗) = {a+
∑
k

ckzk}︸ ︷︷ ︸
=z∗

+ {b−
∑
k

ckhk}︸ ︷︷ ︸
=−h∗

D +
∑
k

{dk − ckδk}︸ ︷︷ ︸
=0

Sk. (8)

For the forgery to be valid, we must have dk − ckδk = 0 for each index k. If ck = 0, then
dk = 0 as well; moreover, since we are assuming that (ck, dk) 6= (0, 0), this implies ck 6= 0.
In particular,

δk =
dk
ck

for each index k. This means that at the time we generate R∗, we can inspect the queries
to the random oracle ∆ to find for each index k an input

(〈D〉 ‖ 〈Rk〉 ‖ 〈Sk〉 ‖ 〈k〉 ‖ mk)

to ∆ that yields the output dk/ck. If the forgery is to be valid, then except with negligible
probability, the adversary must have already made such a query and it will be unique.
Thus, at the time we generate R∗ at random, the inputs to H that determine the hk’s have
already been determined. More precisely, by our assumptions on the adversary, either

(i) this is a “special add query” as discussed above, or

(ii) all of the hk’s have already been computed.

In the first case, the adversary must essentially win Preimage Attack I on H, while in the
second case, he must essentially win Preimage Attack II on H (as in Section 3.1.4, but
where H is modeled as a random oracle).

Concrete security bounds. To make the above analysis concrete, we have to calculate
the probability that the above inspection process fails. For it to fail, it means that either
(a) the adversary finds a collision in ∆, or (b) for some R∗ output by the group oracle, for
each k in (7) for which the adversary has not already made a relevant query to ∆ whose
output hits dk/ck, the adversary must make such a query at a later time whose output (by
pure luck) hits dk/ck. The probability that (a) or (b) occurs is at most O(N2/q) — more
precisely, (a) occurs with probability O(N2

h) and (b) occurs with probability O(NgrpNh).
From this, it follows that if H is modeled as a random oracle with an output space of size
M , the adversary’s forging advantage is O(N2/q +N/M).
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3.3.1 Variations

If we use biased presignatures, then effectively Rk gets replaced by R̃k := ukRk + u′kG and
Sk gets replaced by S̃k := vkSk + v′kG, where uk 6= 0, u′k, vk 6= 0, and v′k are explicitly given
by the adversary. The input to ∆ used to derive δk is then

(〈D〉 ‖ 〈R̃k〉 ‖ 〈S̃k〉 ‖ 〈k〉 ‖ mk) (9)

The substitution (6) then becomes

Rk 7→ u−1k (zk − u′k − δkv′k − δkvkSk − hkD) (10)

and (8) becomes

π−1(R∗) = {a+
∑
k

cku
−1
k (zk − u′k − δkvk)}︸ ︷︷ ︸

=z∗

+ {b−
∑
k

cku
−1
k hk}︸ ︷︷ ︸

=−h∗

D +

∑
k

{dk − cku−1k vkδk}︸ ︷︷ ︸
=0

Sk.

(11)

The main argument does not change too much. One thing we may have to adjust is that
now we are inspecting the queries to ∆, looking for inputs that output

δk =
uk
vk

dk
ck
.

However, we have to look for such inputs before the signing request is made that determines
uk and vk. Nevertheless, since the biased presignatures R̃ and S̃ are input to ∆, we can
actually use the GGM to determine uk and vk. That is, we are looking for inputs to ∆ of
the form (9) such that

• π−1(R̃) = (ukRk + · · · ) and π−1(S̃) = (vkSk + · · · ), and

• the output is
uk
vk

dk
ck
.

Indeed, we can assume WLOG that for all queries to ∆, the corresponding group element
encodings R̃ and S̃ are already in Range(π). Moreover, π−1(R̃) and π−1(S̃) need to be of
this form if they are to be of the required form ukRk + u′k and vkSk + v′k at the time the
actual signing request is made (none of the substitutions performed between now and then
will affect the coefficients of Rk or Sk).

If we use additive key derivation, deriving D′k := D + ekG, then we also need to include
D′k as input to ∆, in place of D. The substitution (10) then becomes

Rk 7→ u−1k (zk − u′k − hkek − δkv′k − δkvkSk − hkD) (12)

and the constant term in (11) is adjusted accordingly. Again, the main argument does not
change too much.
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Concrete security bounds. For each of these variations, the same security bounds as
above: if H is modeled as a random oracle with an output space of size M , the adversary’s
forging advantage is O(N2/q +N/M).

4 Batch randomness extraction

In Section 2.2, we introduced biased presignatures. As discussed there, this models a com-
mon situation in the threshold setting where we utilize a simple DKG protocol in which
each party securely distributes shares of an ephemeral secret key and publishes the corre-
sponding ephemeral public key, after which a collection of these ephemeral keys is agreed
upon and added together to obtain a presignature. All if this is done just to create a single
presignature. However, it is possible to use the same approach to generate many presig-
natures for the price of one, leading to significantly more efficient protocols. Specifically,
instead of just adding these ephemeral keys together, we can take several different linear
combinations of them, producing several presignatures. This general technique of “batch
randomness extraction” first appeared in [HN06] in a somewhat different setting. It was
first proposed in the context of threshold Schnorr signatures in [BHK+23].

We do not need to go into the details of how this batching done, as it can all be
abstracted away as a more general type of biased presignature, as discussed in [GS23]. This
generalized biasing works as follows. Let P ≤ Q be fixed parameters. A batch of “initial”

presignatures R(1)
k , . . . ,R(Q)

k is generated at random and given to the adversary. Here, there
may be many such batches and k is the index of the batch. The adversary then specifies
a “bias” (Uk,u

′
k), where Uk ∈ ZP×Qq is a full rank matrix and u′k ∈ ZP×1q is an arbitrary

column vector. This batch of initial presignatures is then converted to a batch of “derived”

presignatures R̄(1)
k , . . . , R̄(P )

k as follows:R̄
(1)
k
...

R̄(P )
k

 = Uk

R
(1)
k
...

R(Q)
k

+ u′kG. (13)

A particular signing query specifies a pair of indices (k, i) so that a message mk,i is

signed using the derived presignature R̄(i)
k .

4.1 Re-randomized presignatures

Just as in Section 2.4, when signing a message mk,i we can re-randomize the derived pres-

ignature R̄(i)
k , replacing it with

R̂(i)
k := R̄(i)

k + δk,iG,

where δk,i is generated at random only after the signing request has been made (this corre-
sponds to accessing a Random Beacon in the threshold setting).

As in Section 2.4, we give an efficient reduction from this scheme to the security of the
interactive Schnorr identification scheme, modeling H as a random oracle. As usual, the key
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is to show how to simulate the signing queries. For the kth batch of initial presignatures,

for each j ∈ [Q], our simulator will generate ζ
(j)
k , η

(j)
k ∈ Zq at random, and then compute

R(j)
k ← ζ

(j)
k G − η

(j)
k D.

The adversary then specifies the bias

Uk =
(
σ
(j)
k,i

)
i∈[P ],j∈[Q]

, u′k = (µk,i)i∈[P ],

and we have
R̄(i)
k =

∑
j∈[Q]

σ
(j)
k,iR

(j)
k + µk,iG (14)

for i ∈ [P ]. Therefore, we have

R̄(i)
k =

∑
j∈[Q]

σ
(j)
k,iR

(j)
k + µk,iG

= {µk,i +
∑
j∈[Q]

σ
(j)
k,i ζ

(j)
k }G − {

∑
j∈[Q]

σ
(j)
k,iη

(j)
k }D.

This implies that the re-randomized presignature is

R̂(i)
k = R̄(i)

k + δk,iG = {δk,i + µk,i +
∑
j∈[Q]

σ
(j)
k,i ζ

(j)
k }G − {

∑
j∈[Q]

σ
(j)
k,iη

(j)
k }D

So to sign a message mk,i, the simulator will choose δk,i at random, and output the signature

(R̂(i)
k , zk,i) along with the value δk,i, where

zk,i := δk,i + µk,i +
∑
j∈[Q]

σ
(j)
k,i ζ

(j)
k ,

and, additionally, programs the random oracle so that

H(〈D〉 ‖ 〈R̂(i)
k 〉 ‖ mk,i) := hk,i,

where
hk,i :=

∑
j∈[Q]

σ
(j)
k,iη

(j)
k .

The fact that the matrix Uk has full rank and that the η
(j)
k ’s are random and independent

(of each other as well as everything in the adversary’s view, including the values σ
(j)
k,i ) means

that the hk,i’s are also random and independent, so the output of the random oracle has
the right distribution.

The above analysis carries over in a straightforward way to handle additive key deriva-
tion. If the effective key for a given signing request is D′k,i = D + ek,iG, then in the above
simulation, we have to subtract ek,ihk,i from the value zk,i we originally computed, and pro-
gram the random oracle at the point corresponding to D′k,i, rather than D. The argument
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is also easily adapted to deal with batch re-randomization (see Section 2.4.1) — note that
the batches of signing requests used in batch re-randomization do not have to align at all
with the batches of presignatures.

It is a curious fact that the above proof relies crucially on the assumption that the
output space of H is all of Zq. However, this appears to just be an artifact of the proof, as
we can prove security in the GGM without this restriction (see below in Section 4.2).

Relation to SPRINT. Our analysis here highlights and presents in a more simplified
and modular form ideas that are already in present in the SPRINT protocol from [BHK+23].
Note that in SPRINT, rather than the δk,i’s being the output of a Random Beacon, they
are actually the output of a hash function modeled as a random oracle. In fact, in SPRINT,
the inputs to this random oracle includes a batch of messages {mk,i}i to be signed using
the corresponding batch of derived presignatures {R̄k,i}i, so that all of δk,i’s for this entire
batch are generated at once (in fact, just a single δ-value is used for the entire batch).
However, the analysis really calls for a Random Beacon, rather than a random oracle.
Indeed, the security theorem proved in [BHK+23] actually only analyzes an attack with
just a single batch of signing requests. It works by guessing which random oracle query
represents the Random Beacon, and this (among other things) results in a quite inefficient
security reduction. To be useful, one must model an attack in which many batches of
signing requests are processed. While [BHK+23] is mute on this point, it would appear
that their theorem could be extended to prove the security in an attack in which batches of
signing requests are processed sequentially. However, this means that only a single batch
of unused presignatures can be outstanding at a time: if there are many such batches of
unused presignatures, the same attack as described in Section 2.5 can be carried out (using
one presignature per batch).

This seems to somewhat defeat the purpose of presignatures — the goal is to build up
a large cache of presignatures in periods of low demand, so as to be able to quickly process
bursts of signing requests in periods of high demand. However, with SPRINT, after a single
batch of presignatures is produced, it must be consumed by processing a corresponding
batch of signing requests before the next batch of presignatures can be produced. Regardless
of the size of these batches, latency and/or throughput will be adversely affected by this
restriction. For example, when an individual signing request comes in, we will have to make
it wait until the batch of signing requests is full, or we can process it, discarding any unused
presignatures in the batch and initiating production of the next batch of presignatures. In
the latter case, by discarding unused presignatures, the overall throughput of the system
is reduced; moreover, the next signing request that comes in will have to wait for the
production of that next batch of presignatures to complete.

4.2 Generic group model analysis

In Section 4.1, we analyzed the scheme with re-randomized presignatures in the random
oracle model, giving a reduction to the security of Schnorr’s identification scheme. Here,
we give an analysis in the generic group model.
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Analogous to (14), we have

R̄
(i)
k =

∑
j∈[Q]

σ
(j)
k,iR

(j)
k + µk,i, (15)

for i ∈ [P ], where the R
(j)
k and R̄

(i)
k are variables which symbolically represent the discrete

logarithms of the group elements R(j)
k and R̄(i)

k .
It is convenient to extend (15) to all i ∈ [Q]. To do this, we can simply add Q−P rows

to the matrix Uk and the column vector u′k in an arbitrary way, subject to the constrain
that Uk is now a nonsingular Q×Q matrix. This defines a bijective Zq-linear map between

the Zq-vector spaces Zq +
∑

j∈[Q] ZqR
(j)
k and Zq +

∑
i∈[Q] ZqR̄

(i)
k (which acts as the identity

on Zq).
Note that for a given k, this bijective map is only defined after the adversary specifies

the bias (Uk,u
′
k). In the symbolic simulation, when this occurs, we use this bijective map

to substitute, throughout Domain(π), each variable R
(j)
k , for j ∈ [Q], by its corresponding

value in Zq +
∑

i∈[Q] ZqR̄
(i)
k under this map.

Now consider what happens at a later time in the symbolic simulation (after we have

already substituted the variables R
(j)
k with the variables R̄

(i)
k ) when we sign a message mk,i

using the derived presignature R̄(i)
k , which is re-randomized as R̂(i)

k := R̄(i)
k +δk,iG. Here, δk,i

is generated at random by only after the signing request has been made (this corresponds
to accessing a Random Beacon in the threshold setting). Here, the symbolic simulation

chooses zk,i, δk,i ∈ Zq and R̂(i)
k ∈ E at random, programs π so that π(R̄

(i)
k + δk,i) = R̂(i)

k , and
makes the substitution

R̄
(i)
k 7→ zk,i − δk,i − hk,iD.

throughout Domain(π).
After defining the symbolic simulation in this way, the rest of the argument is essen-

tially the same as in Section 3.2. The argument is also easily adapted to handle addi-
tive key derivation. In addition, the argument is easily adapted to deal with batch re-
randomization (see Section 2.4.1) — note that the batches of signing requests used in batch
re-randomization do not have to align at all with the batches of presignatures. For all of
these variations, we get essentially the same reduction to the various preimage problems
as in Section 3.2, with the same concrete security bounds as in Section 3.2.2, except the
running times of the various adversaries in the reductions may be somewhat higher.4 If we
are only interested in security bounds in the GGM+ROM, then the same bounds hold.

4.3 Re-randomizing presignatures via hashing

In this section, we present a protocol that combines the technique of re-randomization via
hashing (as in Section 3.3) with batch randomness extraction. We analyze the protocol in
the GGM plus ROM.

We assume that we create batches of presignatures in pairs. So we first create a batch

R(1)
k , . . . ,R(Q)

k and a batch S(1)k , . . . ,S(Q)
k of initial presignatures, after which the adversary

4This is because they need to track variables in Domain that may never disappear, so that now the value
of L in the additive term O(LN) has to be replaced by a bound on the total number presignatures generated.
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specifies biases (Uk,u
′
k) and (Vk,v

′
k), from which we then obtain a batch R̄(1)

k , . . . , R̄(P )
k of

derived presignatures (using the first bias) a batch S̄(1)k , . . . , S̄(P )
k of derived presignatures

(using the second bias). We also assume that after these biases are given, a random value
ρk is chosen at random from some set of size at least q and published (in the threshold
setting, this corresponds to accessing a Random Beacon, but it is only needed in the offline
preprocessing phase).

To sign a message mk,i, for any k and i ∈ I, the derived presignature is

R̂(i)
k := R̄(i)

k + δk,iS̄
(i)
k ,

where
δk,i := ∆(〈D〉 ‖ 〈k〉 ‖ 〈i〉 ‖ 〈ρk〉 ‖ mk,i).

As in Section 3.3, both ∆ and H are modeled as a random oracles.

NOTES:

1. If we use additive key derivation, then the signing request includes ek,i ∈ Zq, and we
replace the public key D by D′k,i := D+ ek,iG in the calculation of δk,i, and we replace
the secret key d by d + ei,k in the signing algorithm. While we will not analyze this
variation in detail, the analysis we present applies equally well to this variation.

2. We can easily apply an additional layer of batching, so that we generate many batches
at once. This means we can use “batched asynchronous VSS” protocols to more
efficiently generate many dealings at once (for example, as in [GS23]), leading to even
more efficient protocols.

Analogous to (15), we have

S̄
(i)
k =

∑
j∈[Q]

τ
(j)
k,i R

(j)
k + νk,i, (16)

for i ∈ [P ], where S
(j)
k and S̄

(i)
k are variables which symbolically represent the discrete

logarithms of the group elements S(j)k and S̄(i)k . Just as we did in relation to (15), we can
extend this to all i ∈ [Q]. This defines a bijective Zq-linear map between the Zq-vector

spaces Zq +
∑

j∈[Q] ZqS
(j)
k and Zq +

∑
i∈[Q] ZqS̄

(i)
k (which acts as the identity on Zq).

Analogous to what we did in Section 4.2, in the symbolic simulation, when the corre-
sponding bias has been specified, and this bijective map has been determined, we use this

bijective map to substitute, throughout Domain(π), each variable R
(j)
k , for j ∈ [Q], by its

corresponding value in Zq+
∑

i∈[Q] ZqR̄
(i)
k under this map, and each variable S

(j)
k , for j ∈ [Q],

by its corresponding value in Zq +
∑

i∈[Q] ZqS̄
(i)
k .

Analogous to what we did in Section 3.3, when a signing query on a message mk,i is
made that uses the derived presignature (R̄k,i, S̄k,i), a preliminary computation

δk,i ← ∆(〈D〉 ‖ 〈k〉 ‖ 〈i〉 ‖ 〈ρk〉 ‖ mk,i),

R̂k,i ← R̄k,i + δk,iS̄k,i,
hk,i ← H(〈D〉 ‖ 〈R̂k,i〉 ‖ mk,i)
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is made. WLOG, we can assume that the adversary has already computed these values
himself. Next, the signing oracle generates zk,i at random. Before returning the signature

(R̂k,i, zk), the signing oracle also substitutes

R̄
(i)
k 7→ zk,i − δk,iS̄

(i)
k − hk,iD (17)

throughout Domain(π).
Analogous to what we did in Section 3.3, we make some additional assumptions on the

adversary. Namely, after the bias has been specified for the kth pair of batches, and the
corresponding value ρk has been generated, we ensure that whenever the adversary makes
a random oracle query

δk,i ← ∆(〈D〉 ‖ 〈k〉 ‖ 〈i〉 ‖ 〈ρk〉 ‖ mk,i),

it immediately makes a “special add query” to the group oracle

(add, R̄k,i, S̄k,i, 1, δk,i)

to obtain the encoding of the group element R̂k,i ← R̄k,i + δk,iS̄k,i. We may also assume
that it then immediately makes the random oracle query

hk,i ← H(〈D〉 ‖ 〈R̂k,i〉 ‖ mk,i).

Analogous to what we did in Section 3.3, suppose the forgery is a signature (R∗, z∗)
on a message m∗. We may assume that R∗ was randomly generated by the a group oracle
query — otherwise, the adversary must essentially win Preimage Attack III on H (as in
Section 3.1.4, but where H is modeled as a random oracle).

Suppose that initially

π−1(R∗) = a+ bD +∑
`,j

(c`,jR
(j)
` + d`,jS

(j)
` ) +

∑
k,i

(c̄k,iR̄
(i)
k + d̄k,iS̄

(i)
k ).

Here,

• the sum on `, j corresponds to presignatures from pairs of batches whose bias has
not yet been specified (and whose corresponding random values ρ` have not yet been
generated), while

• the sum on k, i corresponds to presignatures from pairs of batches whose bias been
specified (and whose corresponding random values ρ` have been generated).

Note that all of the constants a, b, c`,j , d`,j , c̄k,i, d̄k,i are fixed before R∗ is generated at
random. In order for the forgery to be valid, all of the variables except D must be eliminated
by substitution to end up with

π−1(R∗) = z∗ − h∗D.
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We argue below that the sum on `, j must be empty, as otherwise the forgery will be
valid with only negligible probability. Assuming this for now, we focus on the sum on k, i.
After substitution, we have

π−1(R∗) = {a+
∑
k,i

c̄k,izk,i}︸ ︷︷ ︸
=z∗

+ {b−
∑
k,i

c̄k,ihk,i}︸ ︷︷ ︸
=−h∗

D +
∑
k,i

{d̄k,i − c̄k,iδk,i}︸ ︷︷ ︸
=0

S̄
(i)
k . (18)

For the forgery to be valid, we must have d̄k,i − c̄k,iδk,i = 0 for each k, i.
The rest of the argument is analogous to what we did in the Generic Group Model

analysis in Section 3.3. Namely, if the forgery is to be valid, then with overwhelming
probability, the adversary must have already made queries to ∆ that produce the outputs
d̄k,i/c̄k,i. Thus, at the time we generate R∗, the inputs to H that determine the hk,i’s
have already been determined. Therefore, in order for the adversary to find m∗, he must
essentially win Preimage Attack I or II on H (as in Section 3.1.4, but where H is modeled
as a random oracle).

We now return to the claim that the sum on `, j must be empty. Suppose it is not. Then
for some ` the corresponding the bias for the corresponding pair of batches has not yet been
specified at the time R∗ is generated, which means that the corresponding random value ρ`
has not yet been generated either. For the forgery to be valid, the corresponding bias must
be specified, which only then determines values c̄`,i and d̄`,i before ρ` is generated, and then
we must also make the coefficient d̄`,i − c̄`,iδ`,i on S̄`,i vanish for each i via substitution.
Since ρ` is input to the hash ∆ to determine each δ`,i, the probability that the adversary
can find other inputs to ∆ so that d̄`,i − c̄`,iδ`,i = 0 for each i will be negligible.

Concrete security bounds. One can show that if H is modeled as a random oracle with
an output space of size M , the adversary’s forging advantage is O(N2/q +N/M).
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