
Zombie: Middleboxes that Don’t Snoop

Collin Zhang,∗ Zachary DeStefano,∗ Arasu Arun,∗ Joseph Bonneau,∗ Paul Grubbs,† Michael Walfish∗

∗NYU †University of Michigan

Abstract

Zero-knowledge middleboxes (ZKMBs) are a recent
paradigm in which clients get privacy while middleboxes
enforce policy: clients prove in zero knowledge that the plain-
text underlying their encrypted traffic complies with network
policies, such as DNS filtering. However, prior work had im-
practically poor performance and was limited in functionality.

This work presents Zombie, the first system built using the
ZKMB paradigm. Zombie introduces techniques that push
ZKMBs to the verge of practicality: preprocessing (to move
the bulk of proof generation to idle times between requests),
asynchrony (to remove proving and verifying costs from the
critical path), and batching (to amortize some of the verifica-
tion work). Zombie’s choices, together with these techniques,
provide a factor of 3.5× speedup in total computation done by
client and middlebox, lowering the critical path overhead for
a DNS filtering application to less than 300ms (on commodity
hardware) or (in the asynchronous configuration) to 0.

As an additional contribution that is likely of independent
interest, Zombie introduces a portfolio of techniques to effi-
ciently encode regular expressions in probabilistic (and zero
knowledge) proofs; these techniques offer significant asymp-
totic and constant factor improvements in performance over
a standard baseline. Zombie builds on this portfolio to sup-
port policies based on regular expressions, such as data loss
prevention.

1 Introduction

A fundamental conflict frequently arises in network secu-
rity: administrators’ policy enforcement vs. users’ privacy.
Organizations want, or in some cases need (by legal obliga-
tion), to enforce network usage policies. Users want end-to-
end encrypted protocols like TLS to provide privacy against
network observers, including administrators. Traditionally,
policy enforcement requires a middlebox to scan traffic and
block policy-violating use. End-to-end encryption is in di-
rect conflict with this approach: by design, middleboxes can’t
see plaintext and therefore can’t assess policy compliance.
This conflict has led some administrators to take draconian
steps, like inserting themselves as an all-seeing middleperson
(MITM) proxying TLS connections (“split TLS”) or even
blocking the use of TLS completely.

Resolving this conflict has been a goal of the network se-
curity research community for some time. While many ap-
proaches exist, they have thus far fallen into two categories,
each with significant downsides. First are protocols that use
novel cryptography to enable policy checks on encrypted
data, but require server support and/or changes to standard
protocols like TLS [60, 76, 95] (§7). Changing TLS is a huge
task though: it took ten years of extensive design effort to
go from TLS 1.2 [27] to TLS 1.3 [87]. Deploying server-side
changes is also slow: five years after the standardization of
TLS 1.3, only 60% of HTTPS servers on the web support
it [57]. Furthermore, implementing TLS securely is notori-
ously complex and subtle [21], meaning that protocol changes
are risky. Second, by contrast, are middleboxes designed to
work with standard TLS-encrypted traffic but require users to
disclose keys to trusted hardware enclaves (TEEs) to enforce
policy [28, 40]. Unfortunately, relying on trusted hardware is
an increasingly unappealing risk given the litany of attacks
on TEE implementations [43, 74, 89, 99, 105–108].

Our goal is to support policy enforcement on standard TLS
1.3 traffic, inheriting its existing security guarantees and avoid-
ing any changes to existing TLS code bases. We eschew any
trusted hardware assumptions. We do, however, accept modi-
fications to clients, observing that modern browser vendors
can push code updates to the vast majority of users within
months [110].

Zero-knowledge middleboxes. We build on top of the re-
cently proposed ZKMB paradigm [45]. With ZKMBs, clients
can prove (in zero knowledge [39]) to the middlebox that
the plaintext underlying their encrypted traffic is policy-
compliant. Middleboxes verify these proofs, ensuring that
only policy-compliant traffic is allowed to pass, while learn-
ing nothing about the underlying plaintext beyond the fact
that it is policy-compliant. ZKMBs require no changes to
existing encryption protocols, no trusted hardware, and are
extensible in principle to verifying any network policy. Thus
they promise an elegant solution to the policy vs. privacy con-
flict. Unfortunately, the initial prototype offered implausible
performance for most network applications, adding several
seconds of latency to traffic even under optimistic assump-
tions and with a relatively simple policy of checking DNS
queries against a static block/allow list.

The key question remains: Can ZKMBs perform well

1

enough, and express a wide-enough range of policies, for real-
world use? This paper gives a cautious affirmative answer,
with the design, implementation, and experimental evaluation
of a system called Zombie.

Contributions and results. Zombie contributes a set of
context-specific techniques to reduce end-to-end delay (both
client proving costs and middlebox verifying costs on the crit-
ical path). First, Zombie splits the computation to be proved,
moving one part off the critical path, to be precomputed (and
pre-proved) when the client is idle (§3.1). This part includes
legacy cryptographic primitives like ChaCha20 encryption,
which, for reasons we explain later (§2, §3.1), are expensive
to represent in proof frameworks. Such a split is perhaps sur-
prising: how could a client precompute an encryption before
the plaintext is known? The crucial observation is that TLS
1.3 uses only stream ciphers (AES-CTR and ChaCha20). This
enables clients to compute the key stream before plaintext is
available, and only compute an XOR of the key stream with
the plaintext on the critical path.

Zombie’s next performance enhancement is optimistic ap-
proval (§3.2). Middleboxes can perform proof validation af-
ter forwarding packets and therefore off the critical path. We
make the simple but consequential observation that, in many
applications, administrators may be willing to allow client traf-
fic to proceed as normal, on the condition that clients supply
valid proofs in short order, with consequences (for example,
future blocklisting) if clients don’t supply a valid proof. A
similar approach, near-real-time verification, is already taken
by some real-world middleboxes [15, 20, 35].

Finally, Zombie supports batch proof verification by the
middlebox, reducing the overall verification burden by amor-
tizing it across proofs for multiple packets (§3.3). Optimistic
approval complements batch proof verification, allowing the
middlebox to postpone verification until a larger batch has
been assembled. Batch verification offers significant savings,
increasing middlebox throughput by almost 5× in our experi-
ments (§6).

Another set of contributions enables Zombie to handle
policies based on regular expression matching, a crucial build-
ing block in various kinds of middleboxes, including intru-
sion detection systems (IDS), network traffic classification,
and data loss prevention (DLP). Regular expression match-
ing is tricky to implement efficiently in proof frameworks.
The core challenge is that, in order to represent any compu-
tation to be proved, one must translate it to arithmetic cir-
cuits or constraints, an inefficient and inhospitable formal-
ism (§2). Zombie tackles this challenge with a collection
of techniques (§4), including a new encoding of substring
matching in arithmetic constraints, a new encoding of Boolean
algebra in arithmetic constraints, a new finite automaton for-
malism, optimizations to preprocess regular expressions to
target the new encodings, and an efficient way to perform
context-dependent matches. These techniques apply well be-

yond regular-expression matching and are very likely to be
of independent interest for other applications of probabilistic
proofs.

We implement Zombie for TLS 1.3 with the
ChaCha20/Poly1305 cipher suite (§5). The result of
all this work is near-practicality for some ZKMB uses (§6).
For example, in the precomputation regime, Zombie adds less
than 300 ms of delay to DNS queries. This may be tolerable;
by comparison traditional satellite Internet connections1

typically add at least 600 ms of latency [10]. Futhermore, in
the optimistic approval regime, there is almost no critical
path delay from Zombie.

Limitations. While our implementation shows that Zombie
can offer practical performance in some application scenarios,
this carries several important caveats. First, its proofs are
large: for DNS, roughly ten times the size of DNS query traffic
itself (although these proofs never leave the local network).
Zombie also relies on bursty workloads (providing enough
downtime to precompute and post-verify proofs). Optimistic
approval requires state-keeping by the middlebox. Also, our
implementation is heavily tailored to TLS 1.3; our stream
cipher precomputation technique would not work for TLS
1.2. Optimizing for other end-to-end encrypted protocols is
an important open problem. Zombie also inherits some of
the general limitations of the ZKMB paradigm. As examples,
identifying policy-relevant traffic can be difficult for some
policies, and using local commitments to middlebox state to
apply policies that span multiple packets is open work.

2 Background

We present some basic background on zero-knowledge proofs
(ZKPs). There is a deep cryptographic literature on ZKPs; for
a general overview we refer the reader to Thaler [100].

Overview of zero-knowledge proofs. At a high level, a ZKP
is a cryptographic protocol between two parties: a prover and
a verifier. The protocol pertains to a computation S (we also
call this the “statement”), which we formulate as having two
inputs X and W, each a vector of variables, and producing
an output Y. We call X the public input and Y the output,
respectively.

In this paper, we consider non-interactive ZKPs, which
work as follows. Both the verifier and the prover agree on
a computation S. To convince the verifier that a particular
(X,Y) pair known to both parties is valid, the prover sends
the verifier a proof π. Validity here is defined as the existence
of a witness W such that S(X,W) = Y for a particular (X,Y).
The proof also convinces the verifier that the prover knows
this witness—this guarantee is called knowledge soundness.
Moreover, it hides the witness from the verifier—this is the
zero-knowledge guarantee. The notions of soundness and

1Modern low-earth-orbit satellite Internet service offers significantly
lower latency, as low as 25 ms [67].

2

zero-knowledge have precise cryptographic definitions that
we elide here; Zombie inherits these properties directly from
the underlying cryptographic tools.

A concrete example. Consider using ZKPs to prove that an
encrypted packet does not contain a DNS query for a blocked
domain [45, §7]. The output Y is true/false, the input X is
the encrypted packet, and the witness W includes the decryp-
tion key. The computation S asserts that the packet, after
decrypting to plaintext using the decryption key and extract-
ing the domain name, does not contain a domain included in
the blocklist. Note that, by design, this statement cannot be
efficiently checked using just X and Y without knowing W
(the decryption key).

Zero-knowledge proof pipelines. Most generic ZKP
schemes decompose into a front-end and a back-end. The
front-end takes a high-level specification of a program, for
example in C code or a domain-specific language (DSL). The
front-end compiles this program into an intermediate repre-
sentation, often called a circuit (see below). This circuit acts
as a blueprint for provers to show that a program produces
specific outputs, given specific inputs.

The back-end then enables the prover to take the circuit
representation of the program, along with X, Y, and W, and
output a proof π. The verifier also has access to a circuit
representation of the program and uses the back-end, X, and
Y to verify a proof π, outputting a true/false value.

R1CS instances. Most modern ZKP front-ends compile
programs to a generalization of arithmetic circuits called
rank-one constraint systems (R1CS). An R1CS instance is a
collection of algebraic constraints. The instance is parameter-
ized by a finite field F, a number of constraints m, a number
of variables n, and three m× n matrices A,B,C. An input-
output pair (X,Y) satisfies the R1CS instance if there exists
a W such that for the vector z = (X,Y,1,W), Az ◦Bz = Cz,
where the operation ◦ is entry-wise multiplication. Notice
that an R1CS instance consists of m constraints in n variables,
where each constraint i ∈ {1, . . . ,m} restricts any satisfying
z = (z1, . . . ,zn) as follows:

(Ai,1z1 + . . .+Ai,nzn) · (Bi,1z1 + · · ·+Bi,nzn)

= (Ci,1z1 + · · ·+Ci,nzn).

Following convention, we sometimes refer to an R1CS repre-
sentation as a set of constraints or loosely as a circuit.

Efficiently expressing a computation as a circuit is chal-
lenging. First, the primary efficiency metric of a circuit rep-
resentation is the number of constraints, as the back-end’s
costs—specifically, the prover’s costs—scale linearly or super-
linearly in this quantity. Second, circuits are frequently ver-
bose, as they are algebraic constructs, not hardware circuits
or a general-purpose processor.

Among other limitations, circuits do not support loop-
ing, conditionality, order comparisons, bitwise operations, or

random-access memory. Compiling a high-level computation
to a circuit requires the front-end to unroll all loops to their
maximum iteration count, inline all function calls, represent
all branches of conditionals explicitly, and then arithmetize
each statement (translating it into constraints), often introduc-
ing additional variables [13, 14, 82, 91, 93, 111, 120].

As a simple example, consider this line of C code:
y = (x == 0);

where the mathematical variable x (representing the program
variable x) is in X and y (likewise representing y) is in Y. To
compile this to constraints, one introduces a variable W in W
and writes the following, called EQUALS-ZERO [93, Appx D]:{

y · x = 0
W · x = 1− y

}

The constraints can be satisfied only if y is 1 when x is 0 and y
is 0 otherwise, thus enforcing the desired computation. These
constraints can be expressed in the form of an R1CS instance
as the following A, B, and C matrices:

x y 1 W[]
0 1 0 0

0 0 0 1

A

x y 1 W[]
1 0 0 0

1 0 0 0

B

x y 1 W[]
0 0 0 0

0 −1 1 0

C

Spartan ZKP. As its back-end, Zombie uses Spartan [90],
specifically the SpartanNIZK variant (which we refer to as
just Spartan for simplicity). Spartan is a non-interactive ZKP
protocol that strikes an attractive balance among prover time,
verifier time, and proof size. It also has a transparent setup,
meaning that there are no secrets required during parameter
generation, only a secure source of public randomness to seed
the setup algorithm. A transparent setup makes it feasible to
establish global public parameters that provers (clients) can
use across different verifiers (networks).

For an R1CS instance C with public input X, public out-
put Y, and witness W, Spartan works by transforming the
validity check for (X,Y) into a polynomial that equals zero at
every point if (and only if) (X,Y) satisfies the constraints C .
This polynomial is large and some of its coefficients are ele-
ments of W, so the verifier cannot do this check itself; instead,
the prover and verifier engage in a subprotocol that lets the
verifier check whether the polynomial is zero efficiently, by
evaluating it at a random point. The details of this process are
unimportant for us, save for one: in the last step of the subpro-
tocol, the verifier must evaluate a special polynomial encoding
(a multilinear extension) of each R1CS matrix at a random
point. These evaluations are the single most expensive part of
the protocol for the verifier; in fact, they are asymptotically
as expensive as re-running the entire computation.

3

Client Middlebox Server

Policy SP

Handshake to Establish K

πK , hK

Ci, πi Ci

Policy Setup

Key Setup

Enforcement

Figure 1: The ZKMB paradigm with amortized key setup [45] di-
vided into 3 phases. The policy setup step occurs once when the
client connects to the middlebox; the middlebox sends the policy SP
to the client. The key setup step occurs once per session; it involves
a handshake between the client and the server, a commitment to a
session key K, and a proof of this commitment via SE.1. Finally, in
per-packet enforcement, the client sends the middlebox ciphertext
Ci and a proof πi of the policy-compliance of the plaintext corre-
sponding to Ci and to the key commitment; πi is with reference to
the composition of the SE.2, SF, and SP subcomputations.

3 Zombie’s protocol

Zombie is built using the zero-knowledge middlebox (ZKMB)
paradigm [45]. In this section we begin by describing the exist-
ing ZKMB approach and establishing notation, as context for
what follows. We then describe Zombie’s enhancements: pre-
computation (§3.1), asynchronous verification mode (§3.2),
and batching (§3.3).

Figure 1 sketches the protocol flow for this paradigm. The
middlebox’s goal is to ensure that clients are following some
usage policy P that pertains to the traffic that they send to a
server; a client’s goal is to communicate with a server using
some encryption protocol E, such as TLS 1.3.

The middlebox begins with protocol E, content type F, and
policy P with the goal of enforcing P on all traffic of type F
that is sent via E. It creates the following sub-computations:

(1) From E, it creates a channel-opening subcircuit SE that
takes as input a packet and the information required
to re-derive a session key, and outputs the decrypted
packet.

(2) From F, it creates a parse-and-extract subcircuit SF that
takes as input the decrypted packet and outputs a snippet
of policy-relevant data from the packet.

(3) From P, it creates a policy-check subcircuit SP that takes
as input the snippet of policy-relevant data and outputs
whether or not the policy is satisfied (for example if a
domain being queried is part of a blocklist or not).

The middlebox sends SP to each client when they join the
network [45]. We follow the amortized ZKMB model, which
reuses the expensive work of channel opening over multiple
per-packet proofs. There are two broad phases after the mid-
dlebox communicates the policy to the client, as outlined in
Figure 1. To facilitate these two phases, the TLS 1.3 channel

opening subcomputation, SE, is split into two parts SE.1 and
SE.2.

When a client wants to communicate with a particular
server, it first negotiates the shared key K using a protocol
known as the handshake, the transcript of which is public but
also involves secrets known only to the client and the server.
The first subcomputation part, SE.1 (derive-and-commit), re-
derives this session key K by taking the handshake transcript
as public input and the client’s secrets as witness, and then
hashes it to produce hK . The client sends to the middlebox
the proof πK of this statement SE.1, along with hK . This proof
convinces the middlebox that hK is the commitment to some
key that is consistent with the handshake.

The second part, SE.2 (decrypt), takes the packet’s cipher-
text C and the key commitment hK as public inputs, and the
session key K as witness and outputs the decrypted packet
after verifying that K hashes to hK . Note that this decrypted
packet is not revealed to the middlebox, but instead it serves
as an input for the sub-circuit SF. Then, whenever the client
wants to send this server an encrypted packet C, it needs to
convince the middlebox that C is valid with respect to hK
and the composition of the subcomputations SE.2, SF, and
SP. It does so with a proof π. When the middlebox receives
(C,hK ,π), it verifies π, and only then forwards C.

Zombie’s enhancements. Departing from prior work, Zom-
bie introduces three important changes to the existing ZKMB
paradigm: precomputation, asynchronous verification, and
batching. Precomputation (§3.1) allows Zombie to generate
and verify the most expensive part of the proof during idle
times, before the ciphertext is known to the client, reducing
proving times in the critical latency path. Zombie’s asyn-
chronous verification mode (§3.2) relaxes the requirement
that proofs about traffic are verified before each packet leaves
the network. This moves the main ZKP-related costs out of
the critical path entirely, greatly reducing delay but chang-
ing Zombie’s security model. Batching (§3.3) lets Zombie
middleboxes reuse expensive computations across all verify
operations in a batch of proofs created by the client. Both pre-
computation and batching are most useful for settings where
Zombie’s workload is bursty.

3.1 Precomputation
Precomputation in Zombie changes both the statement being
proved and the protocol flow (adding an extra message). At a
high level, precomputation splits the per-packet computation
SE.2 (decrypt) into two subcomputations SE.2a (pad-commit)
and SE.2b (decrypt-from-pad), the first of which can be com-
puted before the plaintext is known. As noted in the intro-
duction, it may be surprising that it is possible to prove SE.2a
before plaintext is known, but when using stream ciphers the
keystream can be generated (and proved) independently of
the plaintext. We explain how this works for TLS 1.3 below.
Before continuing, we note that this technique may be more
broadly relevant; it is orthogonal (and complementary) to the

4

split between SE.1 and SE.2.
Let K be the session key output by the TLS 1.3 handshake.

TLS 1.3 encrypts session data using a stream cipher, which
can be thought of as a pseudorandom one-time pad. This pad
is derived via a function PadGen that takes K, a packet num-
ber SN, and a length ℓ, and outputs an ℓ-byte pseudorandom
pad pad. For an ℓ-byte message M, its TLS 1.3 ciphertext is
pad⊕M. This is a simplification; it omits some operations,
such as computing a MAC, whose details are unimportant
here.

We make two key observations. First, the inputs to PadGen
are independent of the message, so the value pad can be com-
puted by the client before M is known. Second, computing
PadGen is the most expensive part of the channel-opening
subcircuit SE. This is because PadGen involves legacy cryp-
tographic algorithms (specifically AES or ChaCha20), which
are difficult to represent in the constraint formalism used
for ZKPs (§2). In our evaluation of a DNS filtering applica-
tion [45] (§6), we find that PadGen contributes to over 40%
of the proving time incurred by the client in each per-packet
proof.

Zombie uses these observations to move PadGen into the
subcomputation SE.2a (pad-commit in Figure 2), out of the
critical path of operations which must be performed before
packets can leave the network. This involves running PadGen
to produce the pad corresponding to the next sequence num-
ber SN using the secret key K provided as witness, and then
computing its hash hpadSN . Also, K is hashed to verify that it
corresponds to the hash hK provided as a public input. The
client computes the proof πE.2a for this subcomputation and
sends it, along with the pad hash hpadSN , to the middlebox.
The middlebox verifies this proof and stores the hash with the
corresponding sequence number. Thus, when the next packet
needs to be sent, the client can provide the required pad as a
witness and have it be verified against the respective stored
hash instead of re-running PadGen. The client can precom-
pute any number of such proofs for future sequence numbers.
As we’ll see in Section 3.3, Zombie’s batching technique
allows the client to batch together multiple such proofs for
faster verification.

The second part of the protocol, run once the Zombie client
receives the plaintext M, is as follows: the client first encrypts
M with the pad for sequence number SN to get the cipher-
text C. Then, it generates the proof for the statement SE.2b
(see decrypt-from-pad in Figure 2), which takes padSN as the
witness, verifies that it hashes to the stored hash hpadSN cor-
responding to the right sequence number, and then passes
the decrypted M = pad⊕C to the next stages of the proof
statement (that is, the SF and SP subcomputations).

The security of Zombie’s precomputation reduces to the
soundness and zero-knowledge properties of the proof proto-
col, and the hiding and binding properties of the hash function
H. Neither the hash hpad nor the precomputation proof reveal
the pad, and the soundness of the proof system prevents the

pad-commit(hK ,SN, ℓ ; K):

padSN← PadGen(K,SN, ℓ)

hpadSN ← H(padSN)

Return (hK = H(K)) ? hpadSN : ⊥

decrypt-from-pad(C,hpadSN ,SN ;pad):

M← pad⊕C
Return (hpadSN = H(pad)) ? M : ⊥

Figure 2: Pseudocode for the statements SE.2a (pad-commit) and
SE.2b (decrypt-from-pad) used in Zombie’s precomputation tech-
nique.

client from lying about the pad (and thus equivocating about
the sent message M).

3.2 Asynchronous verification
While precomputation can greatly reduce the per-packet de-
lay incurred by proof generation (down to a quarter of a
second (§6)), it may still be too slow for latency-sensitive
applications like web browsing.

In this section we describe how Zombie can generate and
verify proofs asynchronously to reduce delay. Namely, Zom-
bie can be configured to perform the ZKP-related parts of its
protocol independent of the flow of non-ZKP network traffic.
Thus, client traffic can be handled more or less as it would be
in a non-ZKMB network, but the middlebox can still detect
policy violations retroactively.

In Zombie’s asynchronous variant, first the client encrypts
its packet to get the ciphertext C. The client immediately
sends C to the middlebox, which forwards it to the server
without delay, but notes that it expects a proof for C to be
received soon. Then the client generates π and sends it to
the middlebox. The middlebox checks π; if the proof is valid
the middlebox does nothing. If the proof is invalid, or not
received by a deadline, the middlebox may take some action
such as adding the client’s MAC address to a blocklist. We can
view asynchronous mode as optimistic approval in that the
middlebox forwards client packets with no delay, assuming
that valid proofs will almost always be received.

In addition to reducing delay, asynchronous mode lets Zom-
bie take full advantage of batching (that is, generating and
verifying multiple proofs at once; see §3.3). Though batching
can be done in Zombie even in synchronous mode, in async
mode clients and middleboxes can wait for larger batches
without affecting delay.

A performance drawback of asynchronous verification is
an increase in the amount of state stored on the middlebox.
First, the middlebox must track which packets have been
optimistically forwarded and when corresponding proofs are
expected. Second, recall that proof verification requires the
ciphertext C as input; the proof π pertains to the contents
of a specific C. Since asynchronous verification occurs after

5

the middlebox has already sent C, it needs to remember C
until it receives and verifies π. An alternative (which we do
not implement) is for the middlebox to store a hash H(C)
instead of the full C (the hash serving as a cryptographic
commitment). This would require clients to store and re-send
the full value C along with π. We did not pursue this approach
as it doubles bandwidth requirements on the local network
(with the advantage of decreasing the middlebox’s memory
requirements.

Security. Asynchronous verification also changes the se-
curity model in a fundamental way. By design, with asyn-
chronous verification the middlebox cannot prevent non-
compliant packets from leaving the network; it will only even-
tually learn if this has occurred given if these packets are
followed up with invalid or non-existent proofs. Observe that
clients may also receive response packets from servers before
sending proofs.

We claim, though, that this relaxed security is sufficient
for many applications: for example, for DNS filtering, the
goal of the policy is to prevent users from browsing blocked
sites. Even if the user is able to learn the IP address of a
blocked site by sending a non-compliant DNS query, as long
as the middlebox can detect this reasonably quickly, further
browsing can be blocked. As another example, if Zombie is
used to stop users from uploading sensitive data to external
sites, it may be sufficient to detect and shut down uploads in
time to prevent too much sensitive data from being uploaded,
even if (say) a file prefix is successfully uploaded. Other
context-specific policies may be appropriate, for example a
middlebox might optimistically send packets out but hold
response packets pending proof verification.

3.3 Batching in Zombie
The final protocol improvement Zombie makes is batch proof
generation and verification. Concretely, given ciphertexts
C1, . . . ,Cb, Zombie can generate one proof π that all b un-
derlying plaintexts are policy-compliant. Importantly, this
proof is much more efficient for the middlebox to verify than
b separate proofs would be. Batching is especially useful in
Zombie’s asynchronous mode (§3.2), because the Zombie
client can wait to collect many packets before generating their
proofs. It is orthogonal, but complementary, to precomputa-
tion (§3.1), as multiple πE.2a proofs can be batched.

At a high level, batching works by modifying Zombie’s
underlying ZKP protocol, Spartan [90]. The modification
allows the MB to re-use the most expensive part of the Spartan
verification algorithm for each proof in the batch. We explain
the details in Appendix A.

4 Regular expressions in Zombie

This section describes how Zombie supports middlebox
functionality based on regular expressions. Regular expres-
sions feature in real-world policies for data loss prevention

(DLP) [68], intrusion detection (IDS) [19, 36], and network
traffic classification [115, 116]. For example, DLP systems
might use a regular expression to specify that all outgo-
ing packets containing a social security number should be
blocked.

The high level picture is as follows. Zombie begins with a
policy P that uses regular expressions. This policy (§2) is a
restriction on the plaintext payloads (which this section calls
simply payloads) allowed to pass through the middlebox, and
is expressed as a computation SP that takes the payload as
input and returns 1 or 0 depending on whether the policy is
satisfied. The policy can be as simple as whether any sub-
string of the payload matches the given regular expression
(which we sometimes call a regexp). Or it could include more
sophisticated combinations, for example, whether two reg-
exps match within close proximity, or whether there are more
than four matches to a given regexp.

Zombie produces both a constraint representation of the
computation SP and a prover recipe for executing this com-
putation and satisfying those constraints. The constraints CP
are constructed to be satisfiable if and only if the prover cor-
rectly reports whether P is satisfied. Thus, the prover can, and
will be expected to, prove both positives and negatives. For
example, if P is a simple regular expression match, and the
payload does not contain a substring that matches the regular
expression, then CP will be satisfiable—and thus a back-end
proof is possible—if and only if the prover correctly claims
that the output of SP is 0.

As we have described (§1–§2), constraints are an inefficient
way to represent general-purpose computations. The same
holds for regular expressions: one cannot simply take SP to be
a “regexp library” parameterized by a specific regexp, because
that would involve compiling, say, C code that uses program
constructs that are prohibitive when expressed in constraints.

Accordingly, unlike prior work on regular expressions [115,
116], we do not focus on making matching fast. Matching, for
us, is the step where the prover executes its recipe to identify
a satisfying assignment to the constraints. In our context,
the costs of this step are swamped by the cost of proving
and verifying. Those steps, particularly proving, depend on
the number of constraints (§2). Accordingly, and following
Section 2, our metric will be constraints per character in the
payload, which we want to be small.

The rest of this section describes how Zombie lowers this
metric versus a naive approach. Zombie introduces a series
of techniques that achieve substantial improvements in both
constants and asymptotics, which significantly reduce the size
of the generated constraints (§6).

4.1 Setup and framework
A given policy P comprises one or more regexps, Boolean
combinations of them, and proximity checks. So SP has one
or more SR subcomputations.

The input to one such SR is the payload T (of length LT);

6

typically, LT is in the thousands (the number of bytes in a
plaintext network packet). The output of a given SR is an
array of LT Boolean variables; slot ℓ is True if there is a
match to R ending at position ℓ and False otherwise; notice
that SR thus captures not only whether the given R matches
any substring(s) of T but also the (ending) position of the
match(es). One can think of SR and its output as the usual un-
rolling that happens when translating a looping computation
to constraints.

SP processes the output array produced by SR, or multiple
such arrays if there are multiple regexps. Section 4.7 describes
that process in detail; until then, we focus on a given SR.

Zombie encodes SR in constraints via several translation
phases: R→ FA→ IR→ CR, where CR is the constraint rep-
resentation of SR, FA is a finite automaton, and IR is an in-
termediate representation that has Boolean logic (AND, OR,
NOT), augmented with equality and inequality tests (==, !=,
<=, etc.).

Sections 4.2–4.6 describe the main ideas in this translation:
a new string matching primitive (§4.2), Zombie’s translation
from NFAs to constraints (§4.3), a new arithmetization of
Boolean logic to substantially lower the cost of encoding
Boolean OR (at the expense of Boolean NOT) (§4.4), tech-
niques for rewriting the regular expression to admit a more
efficient translation (§4.5), a new FA formalism that memo-
izes the results of character class matching (§4.6), and finally
exploiting structure in character classes (§4.6).

4.2 Efficient string matching in constraints

Imagine R represents a fixed string, say a{k} (a repeated k
times), so SR must determine for each ℓ ∈ {0, . . . ,LT − 1}
whether the pattern appears in the payload, ending at position
ℓ. If so, a Boolean b(ℓ) is 1 and otherwise 0. For illustration,
we skip FA, so the translations are R→ IR→ CR. The IR is:

b(ℓ) := (T [ℓ]==a)∧ (T [ℓ−1]==a)∧·· ·∧ (T [ℓ− k+1]==a).

To encode this in R1CS constraints (§2), one expresses ∧
using field multiplication and == using EQUALS-ZERO (§2,
see also [93, Appx D]):

b(ℓ)k−1 := EQUALS-ZERO(T [ℓ− k+1]−a)

b(ℓ)k−2 := b(ℓ)k−1 ·EQUALS-ZERO(T [ℓ− k+2]−a)
. . .

b(ℓ)1 := b(ℓ)2 ·EQUALS-ZERO(T [ℓ−1]−a)

b(ℓ) := b(ℓ)1 ·EQUALS-ZERO(T [ℓ]−a) (1)

Notice that b(ℓ) equals 1 iff there is a match, and 0 otherwise.
Of course, expression (1) is not literal constraints. To

produce those, one expands lines of the form b(ℓ)i = b(ℓ)i+1 ·

EQUALS-ZERO(T [ℓ− i]−a), as follows:
b(ℓ)i = b(ℓ)i+1 ·Mi,

Mi · (T [ℓ− i]−a) = 0,

Zi · (T [ℓ− i]−a) = 1−Mi


The variable Mi represents the outcome of
EQUALS-ZERO(T [ℓ− i]−a), and Zi is non-deterministically
supplied. Altogether, SR for this pattern requires roughly 3 · k
constraints per character position, so 3 · k ·LT in all.

As a more efficient alternative, Zombie introduces a prim-
itive: STRING-MATCH. STRING-MATCH exploits the observa-
tion that, in constraints, the indivisible unit (akin to a bit on a
CPU) is a finite field element, which holds many bits, and thus
conceptually “has room” for packing the information about
whether many characters matched. Letting Λ be the alphabet,
|Λ| be its size (256 for ASCII), and S1,S2 be two strings:

STRING-MATCH(S1[0] . . .S1[k−1], S2[0] . . .S2[k−1])

≜ EQUALS-ZERO

(
k−1

∑
i=0
|Λ|i · (S1[i]−S2[i])

)
.

Zombie replaces expression (1) with
STRING-MATCH(T [ℓ−k+1] . . .T [ℓ], a....a), which (as-
suming loose limits on k; see below) is 2 constraints per input
character, down from 3 ·k. To see why, note that the argument
to EQUALS-ZERO is a weighted sum of the variables T [i] plus
a constant term, with the weights and constant term known
at compile time. Plugging that argument into EQUALS-ZERO
keeps the constraints in R1CS format (§2).

The loose limits are determined by the size of the alphabet
and the size of the field that the constraints are expressed
over. Assuming an alphabet of size |Λ| and a field of size
q, the maximum length of a pattern that can be compiled
into a single STRING-MATCH is ⌊log|Λ|(q)⌋. For our applica-
tion, we consider the alphabet of ASCII characters (|Λ|= 28)
and a 255-bit prime field (the base field of curve25519 [9]).
This means that with our parameters, patterns of at most 31
characters can be compiled into a single STRING-MATCH.

If these loose limits do not hold, the pattern compiles into
several STRING-MATCHs, connected by AND (∧).

4.3 From regular expressions to constraints
Real-world systems [22, 55, 64] translate regular expressions
to executable code in two steps. First, they produce a non-
deterministic finite automaton (NFA), via Thompson’s algo-
rithm [101]. Second, they determinize the NFA to get an
DFA [98, Ch. 1]. The second step represents the DFA’s state
transition function as a table: an entry for every state and
every character. This approach makes execution very fast.
However, in our context, the entire exponentially-sized table
would turn into constraints, dramatically slowing the prover’s
and verifier’s running time.

7

Thus, Zombie stops after the Thompson step. Because of
its packing technique, Zombie produces FAs that have string
transitions instead of the usual character transitions. As an
example, consider the regular expression: aa(b|cc). Here is
the NFA (ε refers to the empty string; s and a are the start and
accepting states):

sstart 0
1 2

3 4
aaa

ε

ε

b
ε

cc
ε

Zombie’s IR representation of this FA uses functions, one
for the final state and each intermediate state that has non-
epsilon incoming transitions. Each function encodes, for each
character position ℓ, whether the FA could be in the given
state at character position ℓ.

f0(ℓ) := STRING-MATCH(T [ℓ−1]T [ℓ], aa)
f2(ℓ) := f0(ℓ−1)∧ (T [ℓ]==b)
f4(ℓ) := f0(ℓ−2)∧STRING-MATCH(T [ℓ−1]T [ℓ], cc)
fa(ℓ) := f2(ℓ)∨ f4(ℓ) (2)

Translating a function f (·) to constraints means that each
evalution f (0), . . . , f (LT − 1) is separately translated and
possibly assigned to a constraint variable. For example,
f2(ℓ)∨ f4(ℓ) translates to f2[ℓ] + f4[ℓ]− f2[ℓ] · f4[ℓ], where
f2[ℓ] is a constraint variable that represents f2(ℓ). Notice that
the translation of ∨ requires a constraint, because of the mul-
tiplication. Also, each AND (∧) translates to a constraint that
multiplies (·) its terms. So, expression (2) is 9 constraints for
each position ℓ (2 for ==, 2 for each of two STRING-MATCH,
and 1 for each of the three multiplications). Notice from the
definition of STRING-MATCH earlier that the cost is relatively
insensitive to the length of the substrings. For example, if
the pattern were a{k}(b{k}|c{k}) (a k-length run of a fol-
lowed by a k-length run of either b or c), then the number
of constraints is unchanged (assuming the loose limits on k
given earlier).

4.4 A new arithmetization of Boolean logic
Traditionally, when arithmetized—that is, translated to
constraints—Boolean logic maps True to 1 and False to 0.
Letting p,q,r be Boolean variables [7, 82, 91–94]:

r := p∧q customarily translates to: r = p ·q.
r := p∨q customarily translates to: r = p+q− p ·q.
q := ¬p customarily translates to: q = 1− p.

Above, multiplication (·) and addition (+,−) are over the
underlying finite field F (§2).

Zombie introduces an alternate arithmetization: False still
maps to 0 but any non-zero value in the underlying finite field

functions as True:

r := p∧q now translates to: r = p ·q, as above.
r := p∨q now translates to: r = p+q (assuming no over-

flow; see below).
q := ¬p now translates to: q = EQUALS-ZERO(p).

For example, in (2), fa(ℓ) translates to f2[ℓ]+ f4[ℓ], shed-
ding the term f2[ℓ] · f4[ℓ]. This concretely goes from 9 to 8
constraints.The source of the savings is that fa(ℓ) no longer
needs a constraint itself: any other constraint that uses fa(ℓ)
can substitute in the sum f2[ℓ]+ f4[ℓ]. Notice that any such
substitution retains R1CS format (§2), whether the substitu-
tion happens in the “A”-part of the constraint, the “B”-part,
the “C”-part, or combinations thereof. That is, f2[ℓ] and f4[ℓ]
are components of the z vector from Section 2, and their in-
clusion in a constraint simply adds 1 to the corresponding
coefficients. More generally, arithmetizations that are linear
combinations (that is, no degree-2 terms, meaning no multi-
plications of variables) cost no constraints. We will use this
fact over and over again.

Consequently, OR has become mostly free: addition of
degree-1 terms doesn’t require constraints (because the sum
is a linear combination, as above). We say mostly because,
for this to work, p+q must be prohibited from overflowing,
that is, wrapping around the finite field modulus and becom-
ing 0 when at least one of the summands is non-zero. Our
implementation of Zombie (§5) handles this issue at compile
time. The compiler tracks the maximum possible value of
variables and, if overflow is possible, inserts constraints to
“reduce” a summand to a 0-1 term. The specific constraints
are NOT-EQUALS-ZERO [93, Appx D], which maps 0 to 0 and
non-zero values to 1.

By contrast, NOT (¬) has gone from free (because it
was a linear combination) to requiring two constraints, for
EQUALS-ZERO (see §2). Finally, AND (∧) costs one constraint
in both arithmetizations. The overall trade, then, is to make
NOTs more expensive in exchange for free ORs.

This trade not only is a dramatic improvement but also
carries broader significance. In our context, the 9-to-8 savings
in the earlier example is a restricted case; in fact, this arithme-
tization has a quadratic-to-linear improvement. To see why,
consider a state that has s−1 inbound paths, one for each of
the other states in an s-state FA. For example:

fa(ℓ) = f1(ℓ)∨ f2(ℓ)∨·· ·∨ fs−1(ℓ)

In the traditional arithmetization, each disjunct requires a
constraint with a field multiplication, each of which costs
one constraint; the total for fa(ℓ) in the example above is
s constraints. In the worst case, then, O(s) states can each
require O(s) constraints, for a total of O(s2) constraints for
each ℓ∈{1, . . .LT}. In Zombie, by contrast, fa would be trans-
lated into f1[ℓ]+ f2[ℓ]+ · · ·+ fs−1[ℓ]. This costs 0 constraints,
because it is a linear combination.

8

Qualitatively, this arithmetization means that Zombie gains
enormously from devising IR representations that use mainly
OR, with AND entering only when necessary. This point could
be of independent interest, as it applies to the constraint trans-
lation of any problem naturally expressed with many conjunc-
tions and disjunctions, such as 3-SAT.

4.5 Preprocessing regular expressions
Another technique in Zombie is to rewrite the regular expres-
sion at compile time, to favor longer substring matches. Doing
so exploits packing (§4.2) to reduce the number of ANDs and
the number of states in the IR. For example, Zombie rewrites
aa(b|cc) as (aab|aacc), yielding the following IR, which
should be compared to (2):

f0(ℓ) := STRING-MATCH(T [ℓ−2]T [ℓ−1]T [ℓ],aab)
f1(ℓ) := STRING-MATCH(T [ℓ−3]T [ℓ−2]T [ℓ−1]T [ℓ],aacc)
fa(ℓ) := f0(ℓ)∨ f1(ℓ) (3)

Whereas the formulation in (2) costs 8 constraints for each
character position ℓ, expression (3) costs 4 constraints (two
for each STRING-MATCH, with fa being a linear combination
and thus not costing a constraint).

4.6 Character classes and a new FA formalism
A common and convenient feature of regular expressions is
character classes, for example, [0-9] or [A-Za-z], which
respectively match any digit and any ASCII alphabet charac-
ter. Naively treating a character class as a union (using the |
operator) would be expensive. Although real-world regexp
frameworks have special optimizations for character classes,
these would not contribute to efficient constraint representa-
tions, for the reasons discussed at the beginning of this section.
Instead, Zombie applies several of its own optimizations.

First, Zombie deduplicates so that the costs associated with
matching to a class are paid once, even if there are multiple
instances of the class in the regular expression. To do so,
Zombie constructs a new kind of FA, one that uses “sub-FAs”
to write to separate tapes (FAs are not typically modeled
as writing to a tape) and then reads the tapes in the “main”
FA. The sub-FAs are each supposed to produce an array of
Booleans. As an example, consider the regexp [0-9]a[0-9].
Zombie produces the following IR:

t0[ℓ] := MATCH-CLASS(T [ℓ],[0-9])
fa(ℓ) := STRING-MATCH(t0[ℓ−2]T [ℓ−1]t0[ℓ],1Fa1F) (4)

1F is 1 in the finite field and is used to encode the Boolean
result of MATCH-CLASS. Think of t0 as memoizing the sites
of matches found by a sub-FA; notice how the values in t0 are
reused in fa(·).

Outside of the present context, the requirement for an ad-
ditional tape would seemingly require more memory for the
prover. In our context (constraints), each extra tape saves

memory, by reducing the number of variables necessary to
represent a match to the character class.

Besides deduplication, another benefit of Zombie’s FA for-
malism is that it enables longer substring matches. The idea is
similar to the example in Section 4.5. Here, the packing tech-
nique (§4.2), this time applied to the results of other tapes, lets
fa consist of a single STRING-MATCH. Conversely, one might
wonder whether we could use deduplication on that earlier
example. The answer is no, because the union components
were different lengths.

As another optimization, Zombie exploits structure in the
character class. For example, Zombie encodes the regexp
[A-Za-z] with only 25 constraints (fewer than the number
of characters in the class!). Here is an example of the basic
idea:

MATCH-CLASS(T [ℓ],[A-Za-z]) =

(T [ℓ] >= A)∧ (T [ℓ] <= z)∧·· ·

The elided terms check that T [ℓ] is not one of the few ASCII
characters between Z and a. This approach relies on the IR
primitives <= and >=, which translate to log2 |Λ| + 1 con-
straints [93], which is 9 if Λ is the 8-bit ASCII characters.
Given a large character class, the idea of using inclusion,
exclusion, and range encoding is beneficial. The Zombie com-
piler attempts to optimize the encoding of a particular class
using the best arithmetic tools possible; for example, treating
this class [0-9] as a range with <= and >= operators is not
worthwhile.

4.7 Applying regexp-based policies in ZK
In this section, we move from considering a single SR to a
higher-level policy P, expressed as SP.

One-shot matching and non-matching expressions. Sup-
pose the higher-level policy of interest, P, is whether there
is a match somewhere in the payload, and in that case
SP returns 1 and 0 otherwise. Recall that SR is already
encoded as constraints for { fa(ℓ)}ℓ=0,...,L−1. SP, then, is
NOT-EQUALS-ZERO(fa(0)∨ fa(1)∨·· ·∨ fa(LT −1)). Assum-
ing no overflow (in which case ∨ is free; see §4.4), the over-
head of SP (beyond SR) is two constraints total, stemming
from NOT-EQUALS-ZERO (§4.4)). If overflow is possible, the
Zombie compiler handles that as in Section 4.4.

Context and proximity. In the context of network security,
simple regexp searches can have too many false positives.
Thus, the policy P is sometimes concerned with context: in-
dividually two patterns are not sensitive, but close together
they are. For example, a DLP policy might disallow a pat-
tern matching a driver’s license number within 100 charac-
ters of strings like “driving license,” “driver’s license,” “DL,”
etc. (§6).

Perhaps surprisingly, Zombie can handle such context-
dependent policies with very little overhead beyond the cost

9

of simply matching the individual regular expressions. Con-
sider a computation SP that returns 1 if there are respective
matches to two regular expressions R1 and R2 within d char-
acters of each other. Notice that, for correctness, all possible
combinations of occurrences of the two patterns have to result
in SP returning 1.

To capture these possibilities, SP performs two steps. First,
it takes the fa array of R1, call it fr1 , and produces a new array
f d
r1

, which for each position ℓ holds a Boolean indicating
whether there is a match within d characters of ℓ. Concretely,

f d
r1
[ℓ] =

d−1

∑
k=1−d

fr1 [ℓ+ k].

Because each f d
r1
[ℓ] is a linear combination of existing vari-

ables, there is no cost in constraints to produce it. Second,
SP checks whether the entrywise product of f d

r1
and the fa

array of R2, call it fr2 , has any non-zero entries. This check
requires LT +2 constraints: one for each product, and two for
a NOT-EQUALS-ZERO applied to the sum of these products.

Thus, in total, the requirement for proximity costs an amor-
tized 1 constraint per character in the payload.

5 Implementation
Our implementation of Zombie has two main components:
a client and a middlebox (MB). We currently support two
classes of applications. The first is DNS filtering [45] (see
also §2), as applied to the DNS-over-TLS and DNS-over-
HTTPS protocols. The second is arbitrary policies involving
regular expressions, for example DLP policies for files sent by
clients via HTTPS. Currently, our implementation supports
policy scans for text files, not more complex formats like PDF.

5.1 ZKP implementation

Circuits. The circuits used for Zombie’s ZKPs were spec-
ified in the ZoKrates domain-specific language (DSL) [31]
and compiled to R1CS using CirC [81], a ZKP compiler
framework. The circuits comprise 1832 hand-written lines of
ZoKrates code and 630 lines automatically generated by our
own regexp compiler. The handwritten code was optimized
and features a large improvement in the encoding of SF, re-
sulting from replacing RAM with a barrel shifter over bytes
of the plaintext.

The regexp compiler takes as input a policy specified as
a list of regular expressions and a list of pairs of indices to
generate proximity constraints, and it outputs ZoKrates code
realizing this high-level policy, which can be integrated with
the rest of Zombie, benchmarked in isolation, or integrated
with other projects. This compiler uses a built-in understand-
ing of the constraint-level costs of ZoKrates’ semantics and
performs several optimization passes to minimize the number
of constraints accordingly. These passes apply the techniques
in Section 4. The compiler is 5425 lines of C++, 463 lines of
yacc, and 50 lines of lex code on top of the BNFC library [1].

ZKP improvements. In implementing Zombie, we made
several important improvements to CirC and the Spartan
implementation. First, we created an adapter that integrates
CirC with Spartan. We have also configured Spartan to use
curve25519 [9] as its underlying cryptographic group, a stan-
dard choice believed to offer ≈128 bits of security.

Our CirC improvements focused on making witness gener-
ation more efficient. This is important, because CirC needs
to generate a satisfying assignment for the R1CS instance
before Spartan can begin proving. In early experiments, this
witness generation was in fact slower than proof generation.
We modified internal CirC data structures to prevent unneces-
sary memory copying, which greatly improved performance.

Our Spartan improvements focused on rewriting both the
prover and verifier to take full advantage of parallelism, re-
sulting in better performance for generating multiple proofs
even in the non-batch setting.

5.2 Client implementation
The client implementation comprises 1976 lines of Python.
When performing DNS filtering, the Zombie client acts as a
local DNS proxy. It accepts UDP DNS requests, then sends
them to a recursive DNS resolver (we use Google’s 8.8.8.8
resolver [42]) over TLS (DoT [49]) or HTTPS (DoH [48]).
The web browser is configured to point to the local proxy for
DNS resolution. The client performs the channel-opening (§3)
with the Zombie middlebox on startup to setup a session. It
uses this same session for as long as the recursive resolver
will allow (up to five minutes in our testing). The client gen-
erates proofs via CirC’s interface to Spartan, described in
the preceding section. It sends proofs and forwards traffic
to the middlebox; we ensure this via routing tables. For the
application of arbitrary policies, the client acts as a work-
load generator and hasn’t yet been integrated into an actual
application like a browser.

Precomputation. In our implementation, the client has a
child process for precomputation (§3.1) that has lower prior-
ity than the main proxy process, constantly generating proofs
when the proxy is idle. As described in Figure 2, there are
two free parameters for the client to choose: the number of
pads to generate (m) and the length of the pad (ℓ). In our
implementation, each time the child process is triggered, it
generates m = 16 pads with proofs; a higher m value would
be less likely to be exhausted by a burst of traffic, but risks per-
forming excess precomputation that may not actually be used.
Choosing ℓ depends on expected packet sizes. For the DNS
application, packets are fairly short, so our implementation
sets ℓ= 255.

5.3 Middlebox implementation
The middlebox is implemented in 1595 lines of Rust. The
middlebox configures IP packet filter rules using iptables.
When packets arrive at the middlebox, they are put on a queue
implemented via the Linux netfilter-queue library. The Zom-

10

0100200300400

Zombie-Async

Zombie-Precomp

Zombie-Standard

ZKMB (est.)

Non-Critical Overhead (ms/packet)

100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

Critical Overhead (ms/packet)

Per-Packet Overhead (DNS)

Client

Middlebox
Client

Middlebox

Figure 3: Per-Packet critical and non-critical overheads for enforcing a blocklist on DNS requests over TLS in zero-knowledge with ZKMB [45]
and with Zombie-Standard, Zombie-Precomputation, and Zombie-Asynchronous configurations.

bie MB takes packets off this queue and performs the follow-
ing steps. First, it determines whether they are policy-relevant
or not. If so, the MB increments the TLS sequence number; it
needs to have an accurate count of the sequence number to
verify proofs. Then, it buffers the received packet for verifi-
cation. When the MB receives the proof from the client, it
links the proof to the packet by sequence number, verifies the
proof, and forwards it.

6 Evaluation

We evaluate Zombie with these questions:

(1) What are the overheads of Zombie?
(2) What are the individual performance contributions of

the techniques in Zombie (§3.1–§3.3)?
(3) How close does Zombie’s regexp framework (§4) bring

real-world zero-knowledge DLP applications to practi-
cality?

Method, applications, and baselines. Our experiments mea-
sure client, server, and overall end-to-end delay introduced by
Zombie, and we compare these overheads against those intro-
duced by the original ZKMB work [45]. We evaluate Zombie
for DNS filtering and DLP policies applied to traffic over
TLS 1.3. The DNS filtering benchmarks use a representative
adult-content domain blocklist from prior work [45, 66] (with
2 million domains). The DLP benchmarks are policies from
Microsoft DLP Purview [68] that are expressed using combi-
nations of regular expressions. Additionally, we quantify the
impact of precomputation (§3.1), asynchronous mode (§3.2),
batching (§3.3), and our regexp encoding (§4) on Zombie’s
performance.

Our experiments that require networking run on Cloud-
Lab [30] while those that do not are run on Amazon Web
Services (AWS). On CloudLab, we use c6525-25g instances.
Each has a 16-core 3GHz AMD 7302P CPU, with 128GB
RAM, SSDs, and two Mellanox 25Gb/s NICs. Our bench-
marks that run on AWS use similarly powerful instances.

We measure performance by taking the average of multiple
runs unless otherwise specified.

6.1 Computational overhead and delay
We begin by measuring the overhead of Zombie in different
configurations. We use the DNS filtering benchmark. The
workload generator sends a DNS request every five seconds.

For the ZKMB baseline (which we call “ZKMB (est.)”), we
provide conservative estimates of the prior work extrapolated
from microbenchmarks we ran on the same hardware.

We run three configurations of Zombie, with the following
settings of precomputation and synchrony:

(1) Zombie-Standard: No precomputation, no asynchrony.
(2) Zombie-Precomputation: Precomputation, no asyn-

chrony.
(3) Zombie-Asynchronous: No precomputation, asynchrony.

We don’t include the combination of precomputation and
asynchrony. Asynchrony already moves all overheads to the
non-critical path, so precomputation would have no effect in
this case. Batching can be applied to all of the above, so we
benchmark it independently (below).

Figure 3 depicts the additional latency incurred by
ZKMB [45] and by Zombie. As expected, Zombie-
Precomputation moves a non-negligible portion of the critical
overhead to the non-critical path while Zombie-Asynchronous
successfully moves all of the critical overhead to the non-
critical path. All three Zombie configurations show similar
overheads, with Zombie-Precomputation being slightly faster.
This is expected because, as described in Section 3.1, the
client batches 16 pad-commit proofs for faster verification,
and at the same time, as noted in Section 5, generating multi-
ple proofs together achieves higher parallelism, reducing the
average proving cost per DNS request. Overall, both Zombie-
Precomputation and Zombie-Asynchronous significantly re-
duce the latency observed by the user when compared to
Zombie-Standard and ZKMB [45].

The average additional latency is about 400 ms for Zom-

11

1 4 16 64
0

80

160

240

320

400

480

Batch Size (packets)

T
hr

ou
gh

pu
t(

pa
ck

et
s/

se
c)

Throughput vs. Batch Size

Empirical
Model

Figure 4: Middlebox throughput vs batch size for Zombie-Async-
batch

bie with no optimizations. Of that, proof generation time is
approximately 350 ms and verification time is about 50 ms.
With precomputation, the average response time is lower,
about 250 ms. While this is much better than the estimated
performance of prior work, it is still much worse than the
average latency for a DNS request, which is about 20 ms [83].
Thus, Zombie in the synchronous configuration has about an
order of magnitude latency increase over a setting that doesn’t
enforce policy.

When in asynchronous mode, Zombie introduces no addi-
tional latency. This suggests that Zombie-Asynchronous is
plausibly practical. Of course, asynchronous mode brings the
requirement to buffer packets at the middlebox; we cover that
when evaluating batching, as the effects on storage are more
pronounced under batching.

A notable weakness of Zombie is the communication over-
head of sending proofs for packets. In the synchronous setting
with precomputation, each online proof is approximately 30
KB. Though these proofs are not large when compared to
the average website size of 2–3 MB [4], they are 12–20×
larger than the 255-byte DNS packets themselves. Because
these proofs are transmitted only from client to middlebox,
which are typically on the same local network, in a setting
where most packets do not need proofs (for example, only
DNS requests), the overall increase in required bandwidth is
expected to be small. We leave a thorough treatment of this
question to future work.

Middlebox resources. We now investigate middlebox re-
source requirements and to what degree batching (§3.3) eases
these requirements. We investigate the effect of this technique
on the throughput (number of (proof, packet) pairs processed
per second) and the storage requirements of the middlebox.

To investigate this technique, we run a new Zombie-Async-
batch configuration, which is parameterized by batch size. We
model each client as a Poisson process, and for a fixed batch
size, we vary offered load until we reach a target offered load.
To reach this target offered load, we scale the parameter of

the Poisson process by the batch size. For example, if the
batch size is 8, then we set the average interarrival time to be
8× longer than when the batch size is 1, and when an arrival
event happens, the client sends 8 packets. For each batch size,
as offered load increases, throughput does not collapse, but
instead it approaches a maximum. We interpret this maximum
throughput as the middlebox’s empirical capacity for that
particular batch size.

Figure 4 depicts both a theoretical model of maximum
capacity and the empirical maximum capacity for various
batch sizes. For the model, we measured the time to verify
a single Zombie DNS proof on one thread on CloudLab and
decomposed this time into a marginal cost of 38 ms per proof
and a fixed cost of 121 ms. When running on multiple cores,
the performance scales almost perfectly with respect to these
parameters.

When we used this model to predict the maximum through-
put of the batch verifier for different batch sizes and compared
it to the actual achievable throughput, we see experimentally
that the divergence between the model and the actual through-
put is around 5%. This discrepancy owes to lower-order mid-
dlebox costs related to packet forwarding, listening, and proof
parsing. The maximum throughput we observe is 380 packets
per second, at a batch size of 64.

This is too low for practicality if every packet needs to
be verified, but for the DNS filtering case we believe the
implied overhead (roughly 38 ms per amortized verification
on a single core measured on CloudLab)is tolerable, because
DNS packets are a small fraction of all traffic. While waiting
to batch 64 packets might be suitable for the asynchronous
setting, it is less practical for synchronous clients. Despite this,
we see that even a modest batch size of 4 offers a substantial
improvement in throughput over no batching.

Batching increases throughput, but this comes at the cost
of additional storage requirements in the middlebox. This
is because the middlebox needs to accumulate ciphertexts
in order to batch validate proofs about them later. Despite
this, storage capacity is not a limiting factor in this context
due to both the small size of DNS packets and the observed
capacity of 380 packets per second. Even if we assume that the
middlebox is exactly at capacity, never falls behind, always
has a proof to check (even if it might we waiting on other
proofs), and has a generous window of 60 seconds for proofs
to arrive after the first corresponding ciphertext in the batch,
then the middlebox would still need to store less than 6 MB of
ciphertexts at any given time. This is well within the capacity
of even the smallest of middleboxes [80].

6.2 Regular expressions
We use Microsoft Purview [68] as a source of real-world pol-
icy information in addition to several standard regexp bench-
marks for more general comparisons. We implement five
policies designed to detect sensitive information in the US
locale. These are: bank account number [69], driver’s license

12

Benchmark Payload Size Constraints Prover Time Verifier Time
DNS Blocklist [66], Isolated 255 B 40295 190 ms 33 ms
DNS Blocklist [66], Zombie 255 B 128702 345 ms 44 ms

Date [62], Isolated
100 B 2117 40 ms 18 ms

2000 B 43917 122 ms 32 ms

Email [62], Isolated
100 B 489 27 ms 14 ms

2000 B 9989 62 ms 25 ms

URI [62], Isolated
100 B 5019 46 ms 20 ms

2000 B 105719 207 ms 38 ms

URI | Email [62], Isolated
100 B 5493 50 ms 21 ms

2000 B 117593 255 ms 44 ms

Microsoft DLP [68], Isolated
100 B 20080 114 ms 26 ms

2000 B 490966 5263 ms 357 ms

Microsoft DLP [68], Zombie
100 B 64438 193 ms 33 ms

2000 B 1186241 6658 ms 453 ms

Figure 5: Constraints, prover time, and verifier time, for Zombie DNS, Zombie DLP and Isolated DNS, DLP, and pure regular expression
circuits with various payload sizes.

Optimizations Cost Prover Time Verifier Time
Baseline 1566 / B 18763 ms 1420 ms

+ STRING-MATCH 996 / B 11417 ms 857 ms

+ Alt Arithmetization 901 / B 10192 ms 764 ms

+ Regex Preprocessing 873 / B 9831 ms 736 ms

+ Additional Tapes 288 / B 2292 ms 159 ms

+ Optimized Classes 242 / B 1705 ms 38 ms

Figure 6: Approximate Constraints per Byte, Prover Time, and Veri-
fier Time for our combined Microsoft DLP policy with various levels
of optimization in the order they are introduced in Section 4. The
final line is the result of running CirC on the zok file produced from
all optimizations. The other lines are estimates from the compiler
with all prior optimizations enabled and all subsequent optimizations
still disabled. Prover and Verifier Time come from from applying
the policy on to a 1 KB payload.

number [70], taxpayer number (ITIN) [71], social security
number [72], and passport number [73]. These policies in-
dividually combine substring matches, regular expressions,
and proximity checks. We combine these policies so that a
message must pass all five for a proof to be produced; for
brevity we refer to this combination simply as our benchmark
Microsoft DLP, and we benchmark the overhead of enforcing
this combination of policies in zero knowledge.

We encode this policy using Zombie’s regex pipeline (§4–
§5) and benchmark it on HTTP POST messages of varying
sizes. We run these experiments once since there is little ex-
perimental variation across trials. Specifically, we perform
macro-benchmarks to compare it to the balance of Zombie
(Figure 5) and micro-benchmarks of the impact of our regex
optimizations in isolation (Figure 6). This setup approximates
a DLP setting where the network administrator wants assur-
ance that US PII is not being uploaded to a cloud storage
service.

Figure 5 allows one to directly compare the overheads of
enforcing the Microsoft DLP policy to the DNS policy and to
non-policy overheads in Zombie. The DLP policy is cheaper
than the DNS policy and the non-policy overheads on a per-
byte basis, owing to the optimizations described in Section 4.
The complexity of Zombie for DLP (constraint count, prover
time, and verifier time) scales roughly linearly with the size of
the message. Despite being competitive with the DNS policy
and non-policy overheads, the DLP use case is still not quite
practical given the larger sizes of HTTP POST messages,
when compared with DNS.

Figure 6 depicts the results of our regular expression opti-
mizations on the per-byte overheads of enforcing the pol-
icy. The most substantive improvements come from our
STRING-MATCH primitive (§4.2) and from creating multiple
tapes (§4.6). The combination of our regular expression op-
timizations takes the cost of enforcing the policy from com-
pletely dominating the rest of Zombie’s DLP circuit to some-
thing competitive with (and in some cases smaller than) the
non-policy related overheads.

7 Related work

Systems built using probabilistic proofs. Probabilistic
proofs are a foundational concept in complexity theory with a
deep and rich literature [5,6,8,38,39]; for a survey we recom-
mend Goldreich [37]. The last decade has seen rapidly grow-
ing interest from the applied cryptography community, with a
particular emphasis on zero-knowledge proofs. For a survey
we recommend Walfish and Blumberg [113] or Thaler [100].

Zombie is built on several strands of probabilistic proof
work. As noted earlier, its back-end (§2) is Spartan [90],
and its front-end (§2) is CirC [81] with the ZoKrates lan-
guage [31]. For comparison, the earlier ZKMBs work used the

13

Groth16 [44] back-end and xJsnark [54] to compile circuits.
While Spartan has a more expensive verifier, proof computa-
tion is faster, and there is no trusted setup, only transparent
setup (§2).

Zombie is part of a growing line of work applying proba-
bilistic proofs to solve practical problems, such as privacy-
preserving payments [25, 88] private smart contracts [12,
16, 53], proofs of solvency [3, 24], verifiable delay func-
tions [11, 51], proofs of software vulnerability [23] or crypto-
graphic transparency logs [18, 103, 104]. Of particular rele-
vance to our work are DECO [119] and Reclaim [97], which
employ probabilistic proofs about TLS plaintext. However,
both systems aim to prove some statement about a TLS ses-
sion (e.g. “My bank account balance is greater than $X”) to
an out-of-band third party, rather than an in-band middlebox.
This makes the proof more challenging, as the verifier needs
to be convinced that the claimed ciphertext really came from
a session with the claimed server. To solve this, DECO relies
on multiparty computation between the client and a third-
party notary. However, these applications do not face tight
latency constraints, as ZKMBs do, enabling much different
performance tradeoffs.

Regular expressions in zero knowledge. One of the contri-
butions of Zombie is a portfolio of techniques for encoding
regular expressions in probabilistic proofs. We are aware of
only two other works, both concurrent with Zombie, that ad-
dress this problem; like Zombie, both target network security
applications.

Exciting work by Luo et al. [65] transforms a regular ex-
pression to a Thompson NFA [101], like Zombie does (§4.3).
Unlike Zombie, Luo et al. transform the NFA to a Boolean cir-
cuit and then use MPC-in-the-head [26,50]. In addition to the
setting where the client knows the policy, Luo et al. also con-
sider the setting where the middlebox wants to keep the policy
private but still apply it to the client’s traffic. This part of their
application thus has a significantly different performance pro-
file than ours (an extra logarithmic term is introduced in the
size of the regexp, and extra overheads are incurred to pre-
serve the privacy of the policy itself.) Additionally, because
most of our optimizations rely on arithmetic over large finite
fields, our techiques are not applicable to their system and
their Boolean circuit techniques are not applicable to our sys-
tem. While a detailed comparison has yet to be done, Zombie
appears to have an order of magnitude lower communication
cost (proof size) and computation (prover time) in the public
policy case.

The other concurrent work, zkreg [86], compiles a large
collection of regular expressions (mostly string matches) into
an Aho-Corasick automaton [2], encodes this automaton as an
arithmetic circuit, and then uses a custom Commit-and-Prove
scheme [17] to prove membership and non-membership in
zero knowledge on extremely large dictionaries of strings.
For example, they consider proofs involving an automaton

with 19 million states and over 300 million transitions. To
handle an automaton this large, they represent it as a multiset
of transitions and handle transition checking partially using
set membership. This incurs a significantly higher computa-
tional overhead than our transition checking, but it scales far
better for large automatons (for which is it explictly designed).
Future work is to investigate ways of combining relevant tech-
niques in zkreg with Zombie to efficiently support larger
policies.

Middlebox architectures. Many systems proposed novel
middlebox architectures which aim to enforce policies on
encrypted traffic. For helpful surveys, we refer the reader to
Sherry [96] and Naylor et al. [75]. Work prior to ZKMB [45]
largely falls into two broad categories:

Trusted hardware. ETTM [28] first proposed shifting pol-
icy enforcement logic from middleboxes to network users
(end hosts) themselves. This requires trusted hardware to as-
sert that a virtual machine run by the end host is faithfully
checking that the plaintext is policy-compliant. Endbox [40]
refined this vision using the then-emerging trusted execution
environment (TEE) abstraction, built using Intel’s SGX imple-
mentation. An obvious limitation is that all users must have a
TEE to take advantage of this approach.

mbTLS [75] proposes relying on a TEE at the middlebox
itself, acting as a middleperson (MITM) between a TLS ses-
sion established with the client machine and one with the
server (which can also be extended to multiple hops). This
undermines the typical end-to-end nature of TLS, but if the
TEE remains secure users can trust that their plaintext will
only be used by the TEE for policy checks.

Another approach is to shift policy enforcement from a
local middlebox to a TEE run on a cloud server [47, 84, 102].
All of these works (and many others [29, 41, 46, 56, 114])
inherently rely on trusted hardware; however, we wish to
avoid trusted hardware, given the growing cavalcade of ex-
ploits demonstrated against real-world TEE implementa-
tions [33, 43, 74, 77, 89, 99, 105–108]

TLS modifications. Early proposals to reconcile widespread
TLS adoption with network policy enforcement envisioned
modifying TLS to make it “middlebox-aware,” with middle-
boxes gaining the ability to read and/or modify some (but not
necessarily all) of the plaintext data sent in a TLS connec-
tion. An example is “multi-context TLS” or mcTLS [76], with
different middleboxes on the network path receiving context-
specific keys based on the permissions the client and server
are willing to grant. In the case of DNS filtering, a middle-
box might require read-only access to the request body of a
DNS query. While this approach enables finer-grained trade-
offs than disabling encryption completely, it is still a blunt
instrument which still sacrifices user privacy considerably; in
the DNS example users fully give up privacy of their query
history. It also requires server-side changes.

Blindbox [95] proposed modifying TLS to support policy-

14

enforcement by middleboxes. Specifically, Blindbox supple-
ments the standard, semantically-secure symmetric encryp-
tion used in TLS with searchable encryption. This second
ciphertext, along with techniques from circuit garbling and
oblivious transfer, allows middleboxes to obliviously execute
policy checks on ciphertext, specifically tailored to searching
for keywords in text. A rich line of follow-up work extends
this basic model [32, 52, 58–61, 63, 78, 79, 85, 117, 118].

All of these works use some variant of functional encryp-
tion, which allows middleboxes to compute a limited function
of the underlying plaintext, with different proposals tailored
to different functionality. These works all face the challenging
requirement of changing TLS servers, as well as relying on
servers to check consistency of the TLS plaintext and that of
the supplemental functional encryption (without this check,
clients might send policy-violating traffic over TLS but ap-
pend a functional encryption of benign traffic to satisfy the
middlebox). A key goal in our work is not to require changes
to, or participation of, existing TLS servers.

A Details of Spartan Batch
A.1 Protocol details
Recall from Section 2 that Spartan works by transforming
the statement about the validity of (X,Y) for S into a state-
ment about an associated polynomial being zero. The associ-
ated polynomial contains polynomial encodings Ã, B̃,C̃ of the
R1CS matrices A,B,C. In the last part of the subprotocol that
convinces the verifier this polynomial is zero, the verifier must
compute three expensive polynomial evaluations: Ã(rx,ry),
B̃(rx,ry), and C̃(rx,ry), each at random points rx,ry ∈ Flogn

chosen by hashing prefixes of the proof as the prover gen-
erates it (that is, via the Fiat-Shamir transform [34]). We
observe that, since these expensive operations depend only
on the R1CS statement and not the input (in our setting, the
ciphertext), they can be done just once for a batch of proofs
as long as each of their respective subprotocols “coordinate”,
that is, use the same rx,ry values. We ensure this by having the
prover hash the prefixes of each proof in the batch together,
instead of separately. (Some hashing steps in Spartan gener-
ate randomness that is not part of rx or ry; we do not batch
generate randomness for these steps.) We call the resulting
protocol SpartanBatch. Below, we show SpartanBatch retains
the security guarantees of Spartan; in particular we show that
a malicious client has about the same (very low) probabil-
ity of proving a false statement with SpartanBatch as it does
with Spartan. Our analysis is based on analogous results for
AND-composition in Σ-protocols and related results [92,109].

A.2 Security proof
Theorem 1 SpartanBatch is a succinct non-interactive argu-
ment of knowledge for the language Lb, where b is the batch
size.

Proof:

We analyze the interactive version of SpartanBatch with a
verifier party providing randomness whenever required. We
can remove interactivity while retaining all desired properties
proven below by using the standard Fiat-Shamir heuristic.
Recall that (interactive) SpartanBatch is identical to b parallel
instances of (interactive) Spartan with the verifier following
two different methods depending on the step involved:

• Coordinated steps are those where the verifier provides
the random values that determine the evaluation point
(rx,ry) for the polynomials Ã, B̃,C̃ in the final step of
Spartan’s verification algorithm. In these steps, the Ver-
ifier provides a single random value that is taken to be
the response to all parallel instances.

• All other steps are uncoordinated. Here, the verifier
provides a b-tuple of responses, one for each parallel
proof.

Completeness: The verifier for SpartanBatch can be seen as
performing the checks of b separate Spartan verifiers. Com-
pleteness is thus immediate from the completeness of Spartan.

Soundness: Using an argument similar to standard AND-
composition analysis in Σ-protocols, we show that the sound-
ness error of SpartanBatch is at most the soundness error (ε)
of Spartan. The proof proceeds by contradiction. Assume that
there exists a false instance x∗ /∈ L and a SpartanBatch prover
PB that produces a convincing proof of a batch of statements
X∗ = {x∗,x2, . . . ,xb} with probability ≥ 1− ε (we place the
false instance in the first position without loss of generality).
We use PB to construct a Spartan prover P that convinces a
Spartan verifier V of the same false statement x∗ with the
same probability.

In this reduction, P doubles as the SpartanBatch verifier when
interacting with PB: that is, ⟨P,V ⟩ run an instance of Spartan
on input x∗ while ⟨PB,P⟩ run an instance of SpartanBatch on
input X∗. The reduction proceeds as follows:

• When PB provides a tuple of values, P forwards the value
corresponding to the false instance (here, the first one)
to V .

• When V sends randomness r, P forwards the following
to PB based on the step:

– In coordinated steps: P forwards r.
– In uncoordinated steps: P sample randomness

r2, . . . ,rb and forwards (r,r2, . . . ,rb).

Thus, if PB passes the SpartanBatch verification checks, P
must pass the Spartan verification checks. This is a contradic-
tion as PB was assumed to pass with probability ≥ 1− ε.

Zero-knowledge: Like Spartan, SpartanBatch being a public-
coin interactive protocol allows us to leverage existing com-
pilers to satisfy zero-knowledge [112].

15

Knowledge soundness: We prove the stronger notion of
witness-extended emulation. As this property is satisfied by
Spartan, we have an emulator E that interacts with any Spar-
tan prover P as an oracle and is allowed to rewind P to any
step and resume with new verifier randomness. Using E, we
construct EPB

B that runs on input X = {x1, . . . ,xb} interacting
with a SpartanBatch prover PB as follows:

• For each i, EB runs emulator E on input xi.

• When E sends randomness r to its oracle, EB sends the
following values to its oracle PB based on the step:

– In coordinated steps, EB forwards value r.

– In uncoordinated steps, EB forwards a b-tuple with
value r in position i and freshly sampled random-
ness in all other positions.

• When PB responds with a tuple of values, EB forwards
the value at position i to E as a response to E’s oracle
query.

• When E rewinds its prover P to a step, EB rewinds PB
(and thus rewinding all parallel instances in the batch)
to that step, as well.

This way, EB accurately simulates the required oracle for
E and thus has it extract witness wi for all inputs xi in the
batch. As EB sequentially runs E on b inputs, EB also runs in
expected polynomial time when b is a constant.

References
[1] Bnf converter. http://bnfc.digitalgrammars.com/.
[2] Efficient string matching: an aid to bibliographic search. Com-

munications of The ACM, 18(6):333–340, 1975.
[3] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel.

Non-Interactive Zero-Knowledge Proofs for Composite State-
ments. In CRYPTO, 2018.

[4] HTTP Archive. Web almanac http archive’s annual state
of the web report. https://almanac.httparchive.org/
en/2022/page-weight#request-bytes.

[5] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,
and Mario Szegedy. Proof Verification and the Hardness of
Approximation Problems. Journal of the ACM, 45(3), 1998.

[6] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of
Proofs: A New Characterization of NP. Journal of the ACM,
45(1), 1998.

[7] László Babai and Lance Fortnow. Arithmetization: A new
method in structural complexity theory. Computational Com-
plexity, 1:41–66, 03 1991.

[8] László Babai, Lance Fortnow, Leonid A Levin, and Mario
Szegedy. Checking Computations in Polylogarithmic Time.
In ACM STOC, 1991.

[9] Daniel J. Bernstein. Curve25519: new diffie-
hellman speed records. https://cr.yp.to/ecdh/
curve25519-20060209.pdf, 2006.

[10] Anas A Bisu, Alan Purvis, Katharine Brigham, and Hongjian
Sun. A framework for end-to-end latency measurements
in a satellite network environment. In 2018 IEEE Inter-
national Conference on Communications (ICC), pages 1–6.
IEEE, 2018.

[11] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch.
Verifiable eelay functions. In CRYPTO, 2018.

[12] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers,
Pratyush Mishra, and Howard Wu. Zexe: Enabling decen-
tralized private computation. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 947–964. IEEE, 2020.

[13] Benjamin Braun. Compiling computations to constraints for
verified computation. UT Austin Honors thesis HR-12-10,
December 2012.

[14] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath
Setty, Andrew J. Blumberg, and Michael Walfish. Verifying
computations with state. In ACM SOSP, 2013.

[15] Broadcom Near Real-Time Scan.
https://techdocs.broadcom.com/us/
en/symantec-security-software/
endpoint-security-and-management/
cloud-workload-protection-for-storage/
1-0/Scan_Configuration_7/
about-near-real-time-scan-v123769597-d4995e65807.
html, 2023.

[16] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan
Boneh. Zether: Towards privacy in a smart contract world. In
Financial Crypto, 2020.

[17] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoS-
NARK: Modular design and composition of succinct zero-
knowledge proofs. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’19, page 2075–2092, New York, NY, USA, 2019. Association
for Computing Machinery.

[18] Weikeng Chen, Alessandro Chiesa, Emma Dauterman, and
Nicholas P. Ward. Reducing Participation Costs via Incre-
mental Verification for Ledger Systems. Cryptology ePrint
Archive, Paper 2020/1522, 2020.

[19] Cisco. Snort intrusion detection system. https://www.
snort.org/.

[20] Cisco Umbrella. https://umbrella.cisco.com/, 2023.
[21] Jeremy Clark and Paul C Van Oorschot. SoK: SSL and

HTTPS: Revisiting past challenges and evaluating certificate
trust model enhancements. In IEEE Security & Privacy, 2013.

[22] Russ Cox. Regular expression matching can be simple and
fast. https://swtch.com/ rsc/regexp/regexp1.html, 2007.

[23] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pernsteiner,
and Eran Tromer. Cheesecloth: Zero-Knowledge Proofs of
Real-World Vulnerabilities. arXiv preprint arXiv:2301.01321,
2023.

[24] Gaby G Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy
Clark, and Dan Boneh. Provisions: Privacy-preserving Proofs
of Solvency for Bitcoin Exchanges. In ACM CCS.

[25] George Danezis, Cedric Fournet, Markulf Kohlweiss, and
Bryan Parno. Pinocchio Coin: building Zerocoin from a suc-
cinct pairing-based proof system. In ACM workshop on Lan-
guage Support for Privacy-Enhancing Technologies, 2013.

[26] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge MPCitH-

16

http://bnfc.digitalgrammars.com/
https://almanac.httparchive.org/en/2022/page-weight#request-bytes
https://almanac.httparchive.org/en/2022/page-weight#request-bytes
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/cloud-workload-protection-for-storage/1-0/Scan_Configuration_7/about-near-real-time-scan-v123769597-d4995e65807.html
https://www.snort.org/
https://www.snort.org/
https://umbrella.cisco.com/

based arguments. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’21, page 3022–3036, New York, NY, USA, 2021. Association
for Computing Machinery.

[27] Tim Dierks and Eric Rescorla. RFC 5246: The transport layer
security (TLS) protocol version 1.2. RFC 5246, 2008.

[28] Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane
Brandon, Thomas Anderson, and Arvind Krishnamurthy.
ETTM: A scalable fault tolerant network manager. In
USENIX NSDI, 2011.

[29] Huayi Duan, Xingliang Yuan, and Cong Wang. Lightbox:
SGX-assisted secure network functions at near-native speed.
arXiv preprint arXiv:1706.06261, 2017.

[30] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary
Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,
David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang,
Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink,
Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra.
The design and operation of CloudLab. In Proceedings of the
USENIX Annual Technical Conference (ATC), pages 1–14,
July 2019.

[31] Jacob Eberhardt and Stefan Tai. ZoKrates - Scalable Privacy-
Preserving Off-Chain Computations. In IEEE Conference on
Internet of Things (iThings), 2018.

[32] Jingyuan Fan, Chaowen Guan, Kui Ren, Yong Cui, and Chun-
ming Qiao. Spabox: Safeguarding privacy during deep packet
inspection at a middlebox. IEEE/ACM Transactions on Net-
working, 25(6), 2017.

[33] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. Se-
curity vulnerabilities of SGX and countermeasures: A survey.
ACM Computing Surveys, 54(6), 2021.

[34] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems. In
CRYPTO, 1986.

[35] Fortra Digital Guardian. https://www.digitalguardian.
com/, 2023.

[36] Open Information Security Foundation. Suricata intrusion
detection system. https://suricata.io/.

[37] Oded Goldreich. Probabilistic proof systems – a primer. Foun-
dations and Trends in Theoretical Computer Science, 3(1),
2008.

[38] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum.
Delegating computation: interactive proofs for muggles. Jour-
nal of the ACM, 62(4), 2015.

[39] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1), 1989.

[40] David Goltzsche, Signe Rüsch, Manuel Nieke, Sébastien
Vaucher, Nico Weichbrodt, Valerio Schiavoni, Pierre-Louis
Aublin, Paolo Cosa, Christof Fetzer, Pascal Felber, et al. End-
box: Scalable middlebox functions using client-side trusted
execution. In IEEE/IFIP DSN, 2018.

[41] Deli Gong, Muoi Tran, Shweta Shinde, Hao Jin, Vyas Sekar,
Prateek Saxena, and Min Suk Kang. Practical verifiable in-
network filtering for DDoS defense. In 2019 IEEE ICDCS,
2019.

[42] Google. Google public dns. https://developers.
google.com/speed/public-dns.

[43] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and

Tilo Müller. Cache attacks on Intel SGX. In Proceedings of
the 10th European Workshop on Systems Security, pages 1–6,
2017.

[44] Jens Groth. On the size of pairing-based non-interactive
arguments. In IACR Eurocrypt, 2016.

[45] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and
Michael Walfish. Zero-Knowledge Middleboxes. In Usenix
Security, 2022.

[46] Juhyeng Han, Seongmin Kim, Daeyang Cho, Byungkwon
Choi, Jaehyeong Ha, and Dongsu Han. A Secure Middlebox
Framework for Enabling Visibility Over Multiple Encryption
Protocols. IEEE/ACM Transactions on Networking, 28(6),
2020.

[47] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu
Han. SGX-Box: Enabling visibility on encrypted traffic using
a secure middlebox module. In Asia-Pacific Workshop on
Networking, 2017.

[48] Paul E. Hoffman and Patrick McManus. DNS Queries over
HTTPS (DoH). RFC 8484, 2018.

[49] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane
Wessels, and Paul E. Hoffman. Specification for DNS over
Transport Layer Security (TLS). RFC 7858, 2016.

[50] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Zero-knowledge from secure multiparty computation.
In Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, STOC ’07, page 21–30, New York,
NY, USA, 2007. Association for Computing Machinery.

[51] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Ti-
wari. MinRoot: Candidate Sequential Function for Ethereum
VDF. Cryptology ePrint Archive, Paper 2022/1626, 2022.

[52] Jongkil Kim, Seyit Camtepe, Joonsang Baek, Willy Susilo,
Josef Pieprzyk, and Surya Nepal. P2DPI: Practical and
Privacy-Preserving Deep Packet Inspection. AsiaCCS, 2021.

[53] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and
Charalampos Papamanthou. Hawk: The Blockchain Model
of Cryptography and Privacy-Preserving Smart Contracts. In
IEEE Security & Privacy, 2016.

[54] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi.
xJsnark: a framework for efficient verifiable computation. In
IEEE Security & Privacy, 2018.

[55] Feodor Kulishov. DFA-based and SIMD NFA-based regular
expression matching on cell BE for fast network traffic filter-
ing. In 2nd Intl. Conference on Security of Information and
Networks (SIN). ACM Press, 2009.

[56] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona Vij. Snort
intrusion detection system with Intel software guard extension
(Intel SGX). arXiv preprint arXiv:1802.00508, 2018.

[57] SSL Labs. Ssl pulse. https://www.ssllabs.com/
ssl-pulse/.

[58] Shangqi Lai, Xingliang Yuan, Joseph K Liu, Xun Yi, Qi Li,
Dongxi Liu, and Surya Nepal. OblivSketch: Oblivious Net-
work Measurement as a Cloud Service. In ISOC NDSS, 2021.

[59] Shangqi Lai, Xingliang Yuan, Shifeng Sun, Joseph K. Liu,
Ron Steinfeld, Amin Sakzad, and Dongxi Liu. Practical En-
crypted Network Traffic Pattern Matching for Secure Middle-
boxes. IEEE TDSC, 2021.

[60] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Rat-
nasamy, and Zhi Liu. Embark: Securely outsourcing middle-
boxes to the cloud. In USENIX NSDI, 2016.

17

https://www.digitalguardian.com/
https://www.digitalguardian.com/
https://suricata.io/
https://developers.google.com/speed/public-dns
https://developers.google.com/speed/public-dns
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/

[61] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi,
Selin Chun, Taejoong Chung, and Ted Taekyoung Kwon.
maTLS: How to make TLS middlebox-aware? In ISOC
NDSS, 2019.

[62] Heng Li. Benchmark of regex libraries. https://lh3lh3.
users.sourceforge.net/reb.shtml.

[63] Cong Liu, Yong Cui, Kun Tan, Quan Fan, Kui Ren, and Jian-
ping Wu. Building generic scalable middlebox services over
encrypted protocols. In IEEE INFOCOM, 2018.

[64] Yanbing Liu, Li Guo, Ping Liu, and Jianlong Tan. Compress-
ing regular expressions’ dfa table by matrix decomposition.
In Michael Domaratzki and Kai Salomaa, editors, Implemen-
tation and Application of Automata, pages 282–289, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[65] Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica
Piskac, and Mariana Raykova. Privacy-preserving regular
expression matching using nondeterministic finite automata.
Cryptology ePrint Archive, Paper 2023/643, 2023. https:
//eprint.iacr.org/2023/643.

[66] Chad Mayfield. my-pihole-
blocklists/pi_blocklist_porn_all.list. https://github.
com/chadmayfield/my-pihole-blocklists, 2021.

[67] François Michel, Martino Trevisan, Danilo Giordano, and
Olivier Bonaventure. A First Look at Starlink Performance.
In IMC, 2022.

[68] Microsoft. Data loss prevention. learn.
microsoft.com/en-us/microsoft-365/compliance/
dlp-learn-about-dlp.

[69] Microsoft. U.S. bank account number. https:
//learn.microsoft.com/en-us/microsoft-365/
compliance/sit-defn-us-bank-account-number.

[70] Microsoft. U.S. drivers license number. https://learn.
microsoft.com/en-us/microsoft-365/compliance/
sit-defn-us-drivers-license-number.

[71] Microsoft. U.S. individual taxpayer identifi-
cation number. https://learn.microsoft.
com/en-us/microsoft-365/compliance/
sit-defn-us-individual-taxpayer-identification-number.

[72] Microsoft. U.S. social security number. https://learn.
microsoft.com/en-us/microsoft-365/compliance/
sit-defn-us-social-security-number.

[73] Microsoft. U.S./U.K. passport number. https:
//learn.microsoft.com/en-us/microsoft-365/
compliance/sit-defn-us-uk-passport-number.

[74] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-
based fault injection attacks against Intel SGX. In IEEE
Security & Privacy, 2020.

[75] David Naylor, Richard Li, Christos Gkantsidis, Thomas Kara-
giannis, and Peter Steenkiste. And Then There Were More:
Secure Communication for More Than Two Parties. In ACM
CoNEXT, 2017.

[76] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leon-
tiadis, Jeremy Blackburn, Diego R López, Konstantina Papa-
giannaki, Pablo Rodriguez Rodriguez, and Peter Steenkiste.
Multi-context TLS (mcTLS): Enabling secure in-network
functionality in TLS. ACM SIGCOMM Computer Communi-
cation Review, 45(4), 2015.

[77] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brors-

son. A survey of published attacks on Intel SGX. arXiv
preprint arXiv:2006.13598, 2020.

[78] Jianting Ning, Xinyi Huang, Geong Sen Poh, Shengmin Xu,
Jia-Chng Loh, Jian Weng, and Robert H Deng. Pine: Enabling
privacy-preserving deep packet inspection on TLS with rule-
hiding and fast connection establishment. In ESORICS, 2020.

[79] Jianting Ning, Geong Sen Poh, Jia-Ch’ng Loh, Jason Chia,
and Ee-Chien Chang. PrivDPI: privacy-preserving encrypted
traffic inspection with reusable obfuscated rules. In ACM
CCS, 2019.

[80] OpenWrt. OpenWrt table of hardware. https://openwrt.
org/toh/views/toh_extended_all.

[81] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC: com-
piler infrastructure for proof systems, software verification,
and more. In IEEE S&P, 2022.

[82] Bryan Parno, Craig Gentry, Jon Howell, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In IEEE Security & Privacy, 2013.

[83] PerfOps. Dns performance analytics and comparison. https:
//www.dnsperf.com/#!dns-resolvers.

[84] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia
Ratnasamy. Safebricks: Shielding network functions in the
cloud. In USENIX NSDI, 2018.

[85] Geong Sen Poh, Dinil Mon Divakaran, Hoon Wei Lim,
Jianting Ning, and Achintya Desai. A Survey of Privacy-
Preserving Techniques for Encrypted Traffic Inspection over
Network Middleboxes. arXiv preprint arXiv:2101.04338,
2021.

[86] Michael Raymond, Gillian Evers, Jan Ponti, Diya Krishnan,
and Xiang Fu. Efficient zero knowledge for regular language.
Cryptology ePrint Archive, Paper 2023/907, 2023. https:
//eprint.iacr.org/2023/907.

[87] Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, 2018.

[88] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from Bitcoin.
In IEEE Security & Privacy, 2014.

[89] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. Malware guard extension:
Using SGX to conceal cache attacks. In DIMVA, 2017.

[90] Srinath Setty. Spartan: Efficient and general-purpose zk-
SNARKs without trusted setup. In IACR CRYPTO, 2020.

[91] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blum-
berg, Bryan Parno, and Michael Walfish. Resolving the con-
flict between generality and plausibility in verified computa-
tion. In Eurosys, 2013.

[92] Srinath Setty, Richard McPherson, Andrew Blumberg, and
Michael Walfish. Making argument systems for outsourced
computation practical (sometimes). 01 2012.

[93] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun,
Andrew J. Blumberg, and Michael Walfish. Taking proof-
based verified computation a few steps closer to practicality.
In USENIX Security, 2012.

[94] Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, oct 1992.
[95] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia

Ratnasamy. BlindBox: Deep packet inspection over encrypted
traffic. In ACM SIGCOMM, 2015.

[96] Justine M. Sherry. Middleboxes as a Cloud Service. PhD

18

https://lh3lh3.users.sourceforge.net/reb.shtml
https://lh3lh3.users.sourceforge.net/reb.shtml
https://eprint.iacr.org/2023/643
https://eprint.iacr.org/2023/643
https://github.com/chadmayfield/my-pihole-blocklists
https://github.com/chadmayfield/my-pihole-blocklists
learn.microsoft.com/en-us/microsoft-365/compliance/dlp-learn-about-dlp
learn.microsoft.com/en-us/microsoft-365/compliance/dlp-learn-about-dlp
learn.microsoft.com/en-us/microsoft-365/compliance/dlp-learn-about-dlp
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-bank-account-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-bank-account-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-bank-account-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-drivers-license-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-drivers-license-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-drivers-license-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-individual-taxpayer-identification-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-individual-taxpayer-identification-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-individual-taxpayer-identification-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-social-security-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-social-security-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-social-security-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-uk-passport-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-uk-passport-number
https://learn.microsoft.com/en-us/microsoft-365/compliance/sit-defn-us-uk-passport-number
https://openwrt.org/toh/views/toh_extended_all
https://openwrt.org/toh/views/toh_extended_all
https://www.dnsperf.com/#!dns-resolvers
https://www.dnsperf.com/#!dns-resolvers
https://eprint.iacr.org/2023/907
https://eprint.iacr.org/2023/907

thesis, University of California, Berkeley, 2016.
[97] Adhiraj Singh, Madhavan Malolan, and Abhilash Inu-

mella. Reclaim Protocol: Privacy preserving consensus
to export reputation from webservers. https://www.
reclaimprotocol.org/, 2022.

[98] Michael Sipser. Introduction to the Theory of Computation.
Boston, MA, third edition, 2013.

[99] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read
Sprabery, Josep Torrellas, and Christopher W Fletcher. Micro-
scope: Enabling microarchitectural replay attacks. In ISCA,
2019.

[100] Justin Thaler. Proofs, Arguments, and Zero-Knowledge.
http://people.cs.georgetown.edu/jthaler/
ProofsArgsAndZK.html, 2020.

[101] Ken Thompson. Programming techniques: Regular expres-
sion search algorithm. Commun. ACM, 11(6):419–422, jun
1968.

[102] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnau-
tov, Pramod Bhatotia, and Christof Fetzer. Shieldbox: Secure
middleboxes using shielded execution. In Symposium on SDN
Research, 2018.

[103] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and
Stefano Tessaro. VeRSA: Verifiable Registries with Efficient
Client Audits from RSA Authenticated Dictionaries. In ACM
CCS, 2022.

[104] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath
Setty. Transparency Dictionaries with Succinct Proofs of
Correct Operation. In NDSS, 2022.

[105] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security, 2018.

[106] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz
Lippi, Marina Minkin, Daniel Genkin, Yuval Yarom, Berk
Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking
transient execution through microarchitectural load value in-
jection. In IEEE Security & Privacy, 2020.

[107] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and
Yuval Yarom. SGAxe: How SGX fails in practice. https:
//sgaxeattack.com/, 2020.

[108] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. CacheOut: Leaking Data on Intel
CPUs via Cache Evictions. In S&P, 2021.

[109] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael
Walfish. A hybrid architecture for interactive verifiable com-
putation. In 2013 IEEE Symposium on Security and Privacy,
pages 223–237, 2013.

[110] W3Schools. Chrome statistics. https://www.w3schools.
com/browsers/browsers_chrome.asp.

[111] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J.
Blumberg, and Michael Walfish. Efficient RAM and control
flow in verifiable outsourced computation. In ISOC NDSS,
2015.

[112] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler,
and Michael Walfish. Doubly-efficient zkSNARKs without
trusted setup. In IEEE Security & Privacy, 2018.

[113] Michael Walfish and Andrew J. Blumberg. Verifying compu-
tations without reexecuting them: from theoretical possibility

to near practicality. Communications of the ACM, 58(2), 2015.
[114] Juan Wang, Shirong Hao, Yi Li, Zhi Hong, Fei Yan, Bo Zhao,

Jing Ma, and Huanguo Zhang. TVIDS: Trusted virtual IDS
with SGX. China Communications, 16(10), 2019.

[115] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park,
Geoff Langdale, Jiayu Hu, and Heqing Zhu. Hyperscan: A
fast multi-pattern regex matcher for modern cpus. In Sym-
posium on Networked Systems Design and Implementation,
2019.

[116] Yu Wang, Yang Xiang, Wanlei Zhou, and Shunzheng Yu. Gen-
erating regular expression signatures for network traffic classi-
fication in trusted network management. Journal of Network
and Computer Applications, 35(3):992–1000, 2012. Special
Issue on Trusted Computing and Communications.

[117] Florian Wilkens, Steffen Haas, Johanna Amann, and Math-
ias Fischer. Passive, transparent, and selective TLS de-
cryption for network security monitoring. arXiv preprint
arXiv:2104.09828, 2021.

[118] Xingliang Yuan, Huayi Duan, and Cong Wang. Assur-
ing string pattern matching in outsourced middleboxes.
IEEE/ACM Transactions on Networking, 26(3), 2018.

[119] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data using
decentralized oracles for TLS. In ACM CCS, 2020.

[120] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Pa-
padopoulos, and Charalampos Papamanthou. vSQL: Verify-
ing arbitrary SQL queries over dynamic outsourced databases.
In IEEE Security & Privacy, 2017.

19

https://www.reclaimprotocol.org/
https://www.reclaimprotocol.org/
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://sgaxeattack.com/
https://sgaxeattack.com/
https://www.w3schools.com/browsers/browsers_chrome.asp
https://www.w3schools.com/browsers/browsers_chrome.asp

	1 Introduction
	2 Background
	3 Zombie's protocol
	3.1 Precomputation
	3.2 Asynchronous verification
	3.3 Batching in Zombie

	4 Regular expressions in Zombie
	4.1 Setup and framework
	4.2 Efficient string matching in constraints
	4.3 From regular expressions to constraints
	4.4 A new arithmetization of Boolean logic
	4.5 Preprocessing regular expressions
	4.6 Character classes and a new FA formalism
	4.7 Applying regexp-based policies in ZK

	5 Implementation
	5.1 ZKP implementation
	5.2 Client implementation
	5.3 Middlebox implementation

	6 Evaluation
	6.1 Computational overhead and delay
	6.2 Regular expressions

	7 Related work
	A Details of Spartan Batch
	A.1 Protocol details
	A.2 Security proof

