
Monolith: Circuit-Friendly Hash Functions with
New Nonlinear Layers for Fast and
Constant-Time Implementations

Lorenzo Grassi2,5, Dmitry Khovratovich3,8, Reinhard Lüftenegger1, Christian
Rechberger1, Markus Schofnegger4, and Roman Walch1,6,7

1 Graz University of Technology (Austria)
2 Ponos Technology (Switzerland)

3 Ethereum Foundation (Luxembourg)
4 Horizen Labs (United States)

5 Ruhr University Bochum (Germany)
6 Know-Center (Austria)

7 TACEO (Austria)
8 ABDK Consulting (Estonia)

Abstract. Hash functions are a crucial component in incrementally ver-
ifiable computation (IVC) protocols and applications. Among those, re-
cursive SNARKs and folding schemes require hash functions to be both
fast in native CPU computations and compact in algebraic descriptions
(constraints). However, neither SHA-2/3 nor newer algebraic construc-
tions, such as Poseidon, achieve both requirements.
In this work we overcome this problem in two steps. First, for certain
prime field domains we propose a new design strategy called Kintsugi,
which explains how to construct nonlinear layers of high algebraic de-
gree which allow fast native implementations and at the same time also
an efficient circuit description for zero-knowledge applications. Then we
suggest another layer, based on the Feistel Type-3 scheme, and prove
wide trail bounds for its combination with an MDS matrix.
Finally, we propose a new permutation design named Monolith to be
used as a sponge or compression function. It is the first arithmetization-
oriented function with a native performance comparable to SHA3-256.
At the same time, it outperforms Poseidon in a circuit using the Merkle
tree prover in the Plonky2 framework. Contrary to previously proposed
designs, Monolith also allows for efficient constant-time native imple-
mentations which mitigates the risk of side-channel attacks.

1 Introduction

1.1 Hash Functions in Zero-Knowledge Frameworks

Zero-knowledge use cases and particularly the area of computational integrity
combined with zero knowledge have seen a rise in popularity in the last couple
of years. Many new protocols [GWC19; ZGK+22; KST22; BC23] and low-level

primitives [AGR+16; AAE+20; GKR+21] have been designed and published re-
cently, in an attempt to increase the performance in this setting. The emergence
of folding techniques and recursive SNARKs (incrementally verifiable computa-
tion, or IVC [Val08]) make it possible to efficiently prove the integrity of complex
computations. Proofs with 227 steps have been recorded1 whereas SNARK-based
verifiable delay functions (VDFs) might require proving up to 240 operations
[KMT22]. A single IVC operation is typically a compact arithmetic computation
(polynomial) in a certain prime field or an assertion to some low-degree poly-
nomial predicate. With VC programs (also called circuits) being that large and
containing cryptographic protocols, more and more programs contain hash func-
tions as subroutines. Hash functions and their underlying permutations are used
not only for data integrity checks, but also to instantiate commitment schemes,
authenticated encryption [PSS19; CFG+22], non-interactive proofs based on the
Fiat–Shamir transform, and many other techniques.

Hash Functions in IVC Applications. For “classical” applications of hash
functions, general-purpose standard choices like SHA-2 or SHA-3 are usually not
the bottleneck.2 However, the situation is different in the IVC applications men-
tioned above. For hashing and membership proofs in ZK, with folding schemes
[KST22; KS23; BC23] and private mixers like Tornado being an example [PSS19],
the size of hash function as an arithmetic circuit over a prime field is more
important as a cost metric than the “native” software performance (e.g., on a
x86 architecture). New hash functions have tried to bridge this gap [AGR+16;
AAE+20; GHR+23; GKR+21; SAD20; BBC+23].

Another example is using hash functions as a commitment tool in IVC frame-
works where the underlying commitment scheme may not be homomorphic –
with STARKs being a notable example [BBH+19]. With a prover and a veri-
fier engaging in commit-open protocols (again, over certain prime fields), this
use case requires to efficiently construct an entire Merkle tree in a prime field
domain over large amounts of data. So far, though, the computations were per-
formed natively on x86 hardware and not (yet) inside a circuit. Here, classical
hash functions have been used up until recently.

Both cases appear in recursive schemes, in particular in recursive STARKs
[COS20], which are an attractive IVC concept due to relatively little overhead
and the possibility of parallelism for large or long computations. These schemes
are used in an increasing number of applications, including zero-knowledge vir-
tual machines [22a; 22b; Zha22] and decentralized signature aggregation [But22]
protocols as notable examples. In recursive STARKs the computation and its
proof are broken into chunks C1, C2, . . . , Ck such that the proof πi certifies that
chunks from C1 to Ci are computed correctly using the previous proof πi−1 and
a proof of computing Ci. On each recursion step a prover computes a Merkle
tree over the witness data and then proves some tree openings in a circuit. Thus,
the same hash function is used in the circuit and in the native computation. In
1 https://research.protocol.ai/sites/snarks/
2 Newer choices that are faster by a small factor do exist [ANW+13; BDP+18].

2

https://research.protocol.ai/sites/snarks/

this scenario, up to 90% of a prover’s computation may be spent on the hash
function call and proofs [COS20; RIS23a], and a construction of a function that
excels in both areas is a crucial open problem.

Relevant IVC Techniques: Lookups and Small Domains. Two major
developments in IVC have helped us in this work. The first one is the lookup
technique. Starting with Plookup, the IVC operations include not only arith-
metic expressions and predicates but also lookup statements of form a ∈ T ,
where T is a table available to the verifier [GW20; PH23; STW23]. Depending
on the polynomial commitment used within IVC, the table may be preprocessed
[ZBK+22; ZGK+22; EFG22], so that in the former case only the number of
lookups contribute to the prover cost, whereas in the latter case the table size
itself is the minimal cost. STARKs use non-homomorphic FRI commitments
and thus belong to the second group. The lookup technique not only reduced
the cost of traditional hash functions in circuits3 but also allowed for cheap
transformations of high algebraic degree [GKL+22; SLS+23].

The second improvement is purely technical but nevertheless vital for the
performance. It consists of using small prime fields of ≤ 64 bits with primes of
special forms like 2k−1 [Pol22; Pol23; RIS23b], which gained special attention for
high performance of arithmetic operations in the field. STARKs [BBH+19] can
use them since they do not require a group where the discrete logarithm problem
is assumed to be hard. The performance growth is significant: Switching to an
efficient 64-bit field improves the performance by a factor of up to 10 for the
Poseidon hash function [GKS23]. An important feature of these domains is
that the modular reduction can be implemented with mere additions and bit
shifts, which are vectorizable on modern CPU architectures and are much faster
than their counterparts in large prime fields. There are also various works in the
recent literature discussing smaller primes for IVC applications [HLN23; Hab23].

1.2 Our Contributions

We approach the problem of creating a fast and circuit-friendly hash function
in several steps. First we summarize the technical ideas of the new design, and
then we introduce the construction of the new hash function Monolith.

Efficient Nonlinearity and Compact Circuits over Prime Fields. Our
first main contribution is a generic design of components over certain prime
fields Fp, which, on one hand, can be implemented with just a few (and possibly
vector) constant-time instructions on the x86 architecture, and on another hand
can be written as a small circuit over Fp. This strategy, which we call Kintsugi,
is an evolution of the ideas behind the Reinforced Concrete [GKL+22] and
Tip5 [SLS+23] components. First, an element from a bigger field is efficiently
split into smaller bitarrays, which is possible due to the form of the prime. Then
3 https://zcash.github.io/halo2/design/gadgets/sha256/table16.html

3

https://zcash.github.io/halo2/design/gadgets/sha256/table16.html

we apply constant-time S-boxes, which are instantiated by Daemen’s χ function
and similar ones [Dae95] that can be implemented in a batch using fast vector
instructions, or as lookup tables in circuits. Finally, the outputs are assembled
back to a field element with no overflow or collision, which is asserted in circuits
with minimal overhead.

Low-Degree Components with Provable Differential Bounds. Our sec-
ond contribution is a concept of using a Feistel Type-3 [ZMI89] function together
with an MDS layer. It is offered as a replacement to the power function xd in
Poseidon [GKR+21] and similar constructions. The advantage is that we can
use faster squarings x2 instead of more expensive (as d must be coprime with
p− 1) power functions over Fp, and simultaneously obtain predicates of low de-
gree in circuits. Whereas the Feistel layer alone is known to have weak diffusion,
we show that together with an MDS it comes close to a regular SPN.

To the best of our knowledge, we are the first to prove the results on the
differential properties of the component using a strategy analogous to the wide
trail design [DR02]. In particular, we prove lower bounds on the number of active
nonlinear functions in trails. Similar to extended generalized Feistel networks
introduced in [BMT13], we believe that this result and its possible extension to
Feistel structures of other types may be useful in the design of any symmetric
primitive, not only for arithmetization-friendly schemes, but also in the case of
more classical use cases (as already happened for the Lilliput cipher [BFM+16]).

Monolith: Fast, Constant-Time, ZK-Oriented Hashing. The combination
of such techniques leads us to the design of Monolith4, a family of permutations
which are both efficient in native and inside of circuits and can be turned into
hash functions and other permutation-based schemes.

Construction of Monolith. Our scheme consists of a few rounds, each using the
following three components.

– The first one is Bricks (Section 4.3), which is instantiated with a Feistel
Type-3 construction with square mappings.

– The second component is Concrete (Section 4.4), which is the multiplication
with a circulant MDS matrix. Together with Bricks it provides the diffusion
necessary to protect against statistical attacks.

– Finally, the third component is Bars (Section 4.5), which is based on the
Kintsugi outlined above. We prove that each such Bar operation has a high
degree and provides high security against algebraic attacks. The Bar function
is applied only to a few field elements in each round.

The combination of these three components provides security against statistical
and algebraic attacks while allowing for an efficient implementation. Our initial
4 A monolithic building is a seamless structure where components are intimately fused

in order to provide the most secure and robust construction.

4

Mo
no
li
th

-64

Po
se
id
on

Po
se
id
on

2

Re
in
fo
rc
ed

Co
nc
re
te

Tip5

Re
sc
ue

-P
rim

e

SH
A3-2

56

SH
A-25

6

0

1,000

2,000

3,000

4,000

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

N
at

iv
e

ru
nt

im
e

[n
s]

Time is input-dependent
Time is constant
Predicted constant time
Plonky2 prove time
Predicted Plonky2 prove time

0

2

4

6

8

P
ro

of
ru

nt
im

e
[m

s]

Fig. 1. Runtime comparison of different hash functions. The benchmarks are from
Table 3 and the numbers for Monolith-64, Poseidon, and Poseidon2 are taken for
the 64-bit prime field and a state size of t = 12 (sponge mode). Proof times are
benchmarks for a proof of preimage knowledge (Table 5). Numbers for SHA3-256 and
SHA-256 are extrapolated from a circom implementation using R1CS [Bal23].

analysis has found a 3-round attack on a weakened version, and also suggests
that all potential attacks should stop at at most 4 rounds. Since improvements
are expected (we encourage third-party cryptanalysis), we set the number of
rounds uniformly to 6. Details can be found in Section 5.

Performance Evaluation. We give an extensive comparison between our new
proposal and its competitors in Section 6. Our benchmarks confirm that the
native performance of Monolith is comparable to SHA-3, which makes it the
first circuit-friendly compression function achieving this goal. At the same time,
Monolith is efficient within IVC systems. In contrast to Reinforced Concrete
and Tip5, Monolith also has the crucial advantage that it allows for a constant-
time implementation without significant performance losses, and it can also be
reasonably used in proof systems without lookup arguments. A quick overview
of the performance numbers is given in Fig. 1. We focus on the Plonky2 proving
system since it is currently one of the most popular ones for FRI-based proofs.

Further, compared to Tip5, Monolith is around twice as fast and gives the
user more freedom regarding the choice of the prime number. It can even be
used with prime fields as low as 31 bits, which is a setting recently considered in
applications and various proving frameworks [RIS23b] due to advantageous im-
plementation characteristics. Moreover, compared to the widely used Poseidon
permutation, Monolith shows a native performance improvement by a factor of
around 15. Finally, Monolith allows for an efficient circuit implementation, since
it can be represented by a low number of degree-2 constraints, leading to a faster

5

prover and verifier performance compared to Poseidon when implemented in
the FRI-based Plonky2 proof system [Pol22] (see Table 5).

2 Fast and Circuit-Friendly Functions over Fp

We suggest a generic strategy to create nonlinear components over Fp that are
efficient in native, constant-time, and circuit implementations.

2.1 The Kintsugi Design Strategy

When working over Fp, informally, we cannot just split a field element into
smaller chunks, process them independently, and then reassemble. This is due
to the fact that the field size is a prime and thus cannot be represented as a
product of smaller domains.

To solve this problem, we present a generic strategy for specifically chosen
prime numbers. Elements of it can be found in earlier works on Reinforced
Concrete [GKL+22] and Tip5 [SLS+23]. The main principles are the following.

1. Assume we work in a prime field where the prime is a sum of just a few
(possibly negative) powers of two, such as pgen1 = 2n−1 or pgen2 = 2n−2η+1.

2. Split the integer form of a field element into chunks according to carefully
chosen boundaries aligned with these powers of two (more details to follow)
and such that the resulting (smaller) chunks fit a lookup table in a ZK circuit.

3. Identify the combination of chunk values that never appear due to the fact
that p is not a power of two.

4. Design intra-chunk transformations Si such that
– impossible chunk combinations never appear (this is, e.g., done by mak-

ing some chunk values fixed points), and
– they can be implemented in constant time, for example with an AndRX

(AND-rotation-XOR) transformation [AJN14].
5. Combine the chunks back into a large element, after a possible shuffle (note

that only the shuffles that guarantee that the output element is in the field
are possible).

We call this strategy Kintsugi.5 An illustration is shown in Fig. 2. More
formally, it can be defined as

x 7→ C ◦ S ◦ D(x). (1)

with the following components.

5 Kintsugi is the Japanese art of repairing broken pottery by mending the areas of
breakage with lacquer dusted or mixed with e.g. powdered gold. Here, we break the
state and we recombine it after applying a particular function to each small chunk.

6

x

y

x1

S1

y1

x2

S2

y2

· · ·

· · ·

· · ·

xm

Sm

ym

P

Fig. 2. The Kintsugi strategy, where Si(2si−1) = 2si−1, Si(0si) = 0si if p is of
the form pgen2, and P denotes a potential shuffling operation applied to the vector
(S1(x1),S2(x2), . . . ,Sm(xm)).

Decomposition D. The decomposition D decomposes the original field element
x ∈ Fp into m > 1 smaller elements x′

1, x
′
2, . . . , x

′
m, such that

x =

m∑
i=1

2
∑i−1

j=1 sj · x′
i

over integers, where x′
i ∈ Z2si ≡ F2si and

∑
si = n = ⌈log2(p)⌉, i.e., we apply

binary decomposition. If p = pgen2, we additionally require that s1+s2+· · ·+sl =
η for some l. Equivalently, xi := (x ≫ (s1 + s2 + · · ·+ si−1))⊙ (2si − 1).

S-Boxes S. The operation S is the parallel application of m S-boxes, i.e.,

S(x′
1, x

′
2, . . . , x

′
m) = S1(x

′
1) || S2(x

′
2) || · · · || Sm(x′

m), (2)

where Si : Fsi
2 → Fsi

2 . We additionally require certain fixed points. If p is of the
form pgen1 or pgen2, then Si(1

si = 2si − 1) = 1si . If p is of the form pgen2, then
also Si(0

si) = 0si .
Almost any invertible AndRX transformation works well for S and can be

implemented in constant time as its components are basic x86 operations. Here
we limit ourselves to give some concrete examples for the case pgen1 = 2n − 1.

– Bit Shuffle. Clearly, both 1s and 0s are fixed points under the bit shuffling
operation. Moreover, it is essentially for free in hardware.

– Efficient Linear Operations. Linear operations over Fn
2 of the form

x 7→ x⊕ (x ≪ i)⊕ (x ≪ j)

with non-null i ̸= j, and where ≪ denotes the circular shift operation, are
(i) invertible for odd s and (ii) result in 1s and 0s being fixed points.

– Efficient Nonlinear Operations. Nonlinear operations over Fn
2 such as

x 7→ x⊕ (x̄ ≪ 1)⊙ (x ≪ 2)

7

for odd n, where x̄ := x ⊕ 1s, are also possible. This corresponds to the χ-
function [Dae95, Table A.1] already used in Keccak/SHA-3, which is known
to be invertible for gcd(n, 2) = 1. Moreover, 1s and 0s are fixed points.

A rotation of the bits at the output of Si may be necessary in order to reduce the
number of fixed points. Similar examples can be constructed for other primes,
as given in Section 4.

Composition C. The final operation C is the inverse of the decomposition.
Given (x′

1, x
′
2, . . . , x

′
m) we interpret them as integers and compute

y =

m∑
i=1

2
∑i−1

j=1 sj · x′
i mod p.

One may additionally permute {x′
i}i, but our construction does not need this

extra operation and we omit it for brevity.

2.2 Well-Definition and Bijectivity

Here we prove that our C ◦ S ◦ D(·) defined in Eq. (1) and in particular its S
components are invertible and well-defined.

Lemma 1. Let Si be a permutation over Fsi
2 such that Si(1

si) = 1si , where
i ∈ {1, 2, . . . ,m}. If p = 2

∑
i≤m si − 1 = 2n − 1, C ◦ S ◦ D(·) is a bijection on Fp.

Proof. Clearly, C ◦ S ◦ D(·) is a bijection over Z2n as it is merely a chunkwise
application of invertible S-boxes. Note that 2n − 1 is mapped to itself, as D and
C preserve it by definition, and each Si maps the binary 1-vector to itself also
by definition. Therefore, C ◦ S ◦D(·) maps Z2n−1 = Z2n \ {2n − 1} bijectively to
itself.

Lemma 2. Let Si be a permutation over Fsi
2 such that Si(0

si) = 0si and Si(1
si) =

1si . If p = 2n − 2η + 1 = 2
∑

i≤m si − 2
∑

i≤ℓ si + 1, then C ◦ S ◦ D(·) is a bijection
on Fp.

Proof. Again, C ◦ S ◦ D(·) is a bijection over Z2n as it is merely a chunkwise
application of invertible S-boxes. Let us investigate its behaviour on x ≥ 2n−2η.

– If x = 2n − 2η, it is decomposed into (2sm − 1, 2sm−1 − 1, . . . , 2st+1 − 1, 0, 0,
. . . , 0). All these values are fixed points under Si, and hence 2n−2η is mapped
to itself by Bar.

– If x > 2n − 2η, it is decomposed into (2sm − 1, 2sm−1 − 1, . . . , 2sl+1−1, al, . . . ,
a2, a1) where at least one of ai is nonzero. All first m − t values are fixed
points, whereas at least one of the last l values is nonzero and thus not
mapped to zero. Therefore, x is mapped to some y > 2n − 2η.

Due to the bijectivity of C◦S◦D(·) over Z2n , we obtain that the set {x > 2n−2η}
is mapped to itself and therefore Z2n−2η+1 is mapped to itself as well.

8

2.3 Kintsugi, Earlier Bars, and Side-Channel Considerations

Here, we briefly explain the differences and the analogies between the Kintsugi
strategy just described and the Bars functions proposed in Reinforced Concrete
(and subsequently used in Tip5). Recall that in Reinforced Concrete an ele-
ment of Fp is represented as a vector from Zp1

× Zp2
× · · · × Zpl

.

– We rely on the structure of the prime p. Thanks to its composition of a few
powers of two, the decomposition now is simply a bit extraction rather than
a chain of modular reductions, which is expensive both natively and inside
the proof system. The bijectivity of Kintsugi is guaranteed under the minor
and easily satisfied condition that some specific inputs are fixed points.

– The S-boxes of Reinforced Concrete or Tip5 do not have a simple repre-
sentation, and must be implemented as tables both for native and circuit
computations. The Kintsugi strategy instantiates the S-boxes with AndRX
transformations, which are fast and constant-time in native x86 implemen-
tations but can easily be transformed to table lookups for circuits.

Side-Channel Leakage and Countermeasures. Lookup tables in symmet-
ric primitives are a well-known source of side channel leakage. When confidential
information is processed (e.g., committing to coin secrets with ZK hash func-
tions in privacy-preserving payment systems), an adversary may recover a large
portion of it from timing differences of lookups into memory or caches. These
works are well-known since at least two decades in the context of encryption
[Pag02; Ber05; OST06], and the high-level ideas have found first applications in
zero-knowledge proof systems [TBP20]. The lookup-oriented designs Reinforced
Concrete and Tip5 use specific tables for which a constant-time implementation
with reasonable overhead is nontrivial. It is thus of utmost importance to have
a design where lookups can be replaced with constant-time operations.

2.4 Statistical and Algebraic Properties

In this section we prove generic statement that link together algebraic and sta-
tistical properties of mappings over Fp, which we will use in the security analysis
of our construction Monolith.

Lemma 3. Let p ≥ 3 be a prime number, and let F denote the squaring function
x → x2 over Fp. Let F be any interpolant of F over F⌈log2 p⌉

2 , i.e., for any a < p
and its bit representation a we have that F(a) is the bit representation of F(a).
Then F has degree at least d, where d is the maximum positive integer such that
d < log2

√
p and

⌈
2d−0.5

⌉
is odd.6

Proof. We prove this result by contradiction. Suppose that the degree of F is
smaller than d. Then the XOR sum of its output over any hypercube of degree d

6 For example,
⌈
2d−0.5

⌉
is odd for d ∈ {2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, . . . }.

9

is equal to zero [Lai94], including the hypercube

H := {a0 = (0, 0, . . . , 0), . . . , a2d−1 = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
d ones

)}.

Note that F(ai) = i2 < p by the definition of d. Now consider B = {ai ∈ H | i >
2d−0.5}, so that (i) 22d > F(b ∈ B) > 22d−1 and (ii) the 2d-th least significant
bit is set. By simple computation, the size of B is 2d − ⌈2d−0.5⌉. Whenever this
number is odd, F does not XOR to 0 at the 2d-th least significant bit, which
contradicts the previous fact. As a result, the squaring has at least degree d if⌈
2d−0.5

⌉
is odd and d < log2

√
p.

Lemma 4 (Differential). Let F be a function that maps Fp to itself with
a differential ∆I → ∆O holding with probability 0 < α < 1, i.e., |{x ∈ Fp |
F(x+∆I) = F(x) +∆O}| = p · α. Then we have

deg(F) > α · p , (3)

where deg(F) is the degree of F as a polynomial over Fp.

Proof. By definition, F(x + δin) = F(x) + δout has at most α · p < p solutions
x1, x2, . . . , xαp. Therefore, the polynomial G(x) := F(x + δin) − F(x) − δout is
divisible by the polynomial (x−x1) · (x−x2) · · · · · (x−xα·p) of degree α · p, and
so it has a degree of at least α · p. As the degree of the polynomial G is smaller
than the degree of F by 1, we obtain that deg(F) > α · p.

Lemma 5 (Linear Approximation). Let F be a function that maps Fp to
itself such that there exists a linear approximation (a, b) with probability 0 <

β < 1, that is, |{x∈Fp|F(x)=a·x+b}|
p = β. Then we have

deg(F) ≥ β · p . (4)

Proof. By definition, the equation F(x) = A · x+B has at most β · p solutions
x1, x2, . . . , xβ·p. Therefore, the polynomial G(x) := F(x)− (a · x+ b) is divisible
by the polynomial (x − x1) · (x − x2) · · · · · (x − xβp) of degree β · p. Similar to
before, we conclude that F has degree at least equal to β · p.

Based on the previous result, we can immediately conclude the following.

Corollary 1. Let F be a function that maps Fp to itself with b < p fixed points,
that is, |{x ∈ Fp : F (x) = x}| = b. It follows that

deg(F) ≥ b . (5)

3 Feistel Type-3 Layer and the Wide Trail Strategy

Here we introduce another component and explore its security properties. This
component, which is the Feistel Type-3 layer [ZMI89], is nonlinear and comple-
ments Kintsugi Bars. The reason is that even though Bars is a high-degree

10

function, and thus counteracts algebraic attacks, it also has weak differential
properties and is thus vulnerable to differential cryptanalysis. In contrast, this
new layer has a low degree but strong resistance against differential attacks. We
follow the naming convention of Reinforced Concrete (the first look-up based
hash function) where the nonlinear layer providing protection against statistical
attacks is called Bricks, and use the same name for uniformity.

The Feistel Type-3 layer is a member of a larger Feistel family [HR10], which
has been largely neglected in the favour of SPN schemes in block cipher and
hash function design, primarily for its complexity and worse diffusion properties.
However, we have found its simple version with the square mapping particularly
attractive as it is cheaper in circuits and, most importantly, its blend with an
MDS layer yields differential properties similar to those in regular SPNs.

Concretely, a generalized BricksF on t elements x1, x2, . . . , xt is defined by

BricksF (x1, . . . , xt) := (x1, x2+F1(x1), x3+F2(x2), . . . , xt+Ft−1(xt−1)), (6)

where Fi are nonlinear functions. While alone it does not provide fast diffusion, a
combination with a matrix layer (as suggested in [BMT13; BFM+16]) increases
the differential properties. This approach is well-known in the SPN design as the
wide trail design strategy [DR01], where one proves a lower bound for the number
of “active” nonlinear components in any differential trail and thus establishes an
upper bound for the success probability of a differential attack. Here we follow
this line of research, and for the first time we derive bounds for the SPN structure
where the nonlinear layer is a Feistel Type-3 function.7

Proposition 1. Consider an r-round construction, where each round consists
of the application of BricksF over Ft

q (for q = ps with p ≥ 2 and s ≥ 1) as in
Eq. (6) followed by the multiplication with a t × t MDS matrix. The minimum
number smin of active functions Fi in any differential trail satisfies

smin ≥ (t− 1) ·
(
3r − 2− (−2)1−r

9

)
≥ (t− 1) ·

(
3r − 2.5

9

)
.

Proof. Denote the number of active words in the input and the output of the
i-th BricksF layer by ai and bi, respectively. Then we exploit two properties.

– Each active input word xi to BricksF activates Fi if i < t, hence a words
activate at least a− 1 functions Fi.

– Each active output word yi of BricksF implies that Fi−1 or Fi−2 is active
if i > 1. Hence b words activate at least b−1

2 functions.

Together with the MDS property, which states that bk + ak+1 ≥ t + 1 for each
k ≥ 1, we obtain the following inequalities for the number sk of active functions

7 Our new bound improves the ones recently proposed in [Gra23] for an analogous
(but different) scheme.

11

Fi in round k:

s1 ≥ max
{
a1 − 1, b1−1

2

}
, b1 + a2 ≥ t+ 1,

s2 ≥ max
{
a2 − 1, b2−1

2

}
, b2 + a3 ≥ t+ 1,

...

sr−1 ≥ max
{
ar−1 − 1,

br−1−1

2

}
, br−1 + ar ≥ t+ 1,

sr ≥ max
{
ar − 1, br−1

2

}
,

where r is the number of rounds.
Now let (s1, s2, . . . , sr) be a tuple of values of some valid trail that minimizes

smin := s1+s2+s3+ . . .+sr. Note that this tuple turns all inequalities into strict
equations, as otherwise we could reduce smin. Now consider any MDS property
bi + ai+1 = t+ 1. If (bi − 1)/2 < si, we can increase bi to make those equal and
to not increase smin. Similarly, if ai+1 < si+1, we can increase ai to make those
equal and to not increase smin. Thus we conclude that for an optimal tuple the
values bi and ai+1 are the maxima that determine si and si+1 respectively. This
simplifies our system, i.e.,

s1 = b1−1
2

, b1 + a2 = t+ 1, s2 = a2 − 1 = b2−1
2

, b2 + a3 = t+ 1,

s3 = a3 − 1 = b3−1
2

, b3 + a4 = t+ 1, . . . sr = ar − 1,

and even further, i.e.,

2s1 + s2 = t− 1, 2s2 + s3 = t− 1, 2s3 + s4 = t− 1,

. . . 2sr−1 + sr = t− 1, sr = ar − 1.

It is simple to note that if sr > 0, then we could decrease smin. Indeed, if we
decrease sr to 0, we would have to increase sr−1 by sr/2, then decrease sr−2 by
sr/4 and so on, altogether decreasing smin by sr · (1−1/2+1/4−1/8+ · · ·) > 0.
Note also that for sr ≤ t − 1 all other si are non-negative. Thus, the minimum
is achieved by sr = 0 and

sr−1 = t−1
2 , sr−2 = t−1

4 , sr−3 = 3(t−1)
8 , . . . , sr−i =

t−1
3 ·

(
1 + (−1)i+1

2i

)
.

Substituting these values into the formula for smin, we obtain

smin =

r−1∑
i=0

t− 1

3
·
(
1 +

(−1)i+1

2i

)
=

t− 1

3
·
r−1∑
i=0

(
1 +

(−1)i+1

2i

)

=
t− 1

3
·

(
r −

r−1∑
i=0

(−2)−i

)
=

t− 1

3
·
(
r − 2 · (1− (−2)−r)

3

)
= (t− 1) ·

(
3r − 2− (−2)1−r

9

)
.

12

4 Specification of Monolith

Monolith is a family of permutations which can be used within hash functions
and other symmetric constructions. We define the permutation Monolith-64 over
pGoldilocks = 264 − 232 + 1 with the state consisting of t = 8 or t = 12 elements.
The permutation Monolith-31 is defined over pMersenne = 231 − 1 with the state
consisting of t = 16 or t = 24 elements.

4.1 Modes of Operation

Monolith supports sponge modes and a 2-to-1 compression function.

Sponge-Based Schemes. First, Monolith can instantiate a sponge [BDP+07;
BDP+08] and thus various symmetric constructions such as variable-length hash
functions, commitment schemes, authenticated encryption, and stream ciphers.
The recently proposed SAFE framework [AKM+22; KBM23] instructs how to
handle domain separation and padding in these constructions. In a sponge, the
permutation state is split into an outer part with a rate of r elements and an
inner part with a capacity of c elements. As we uniformly suggest the 128-bit
security level, we set c =

⌊
256

log2 p

⌋
and r = 2c.

2-to-1 Compression Function. We also suggest a fixed-length 2-to-1 com-
pression function. Concretely, it takes t Fp elements as input and produces t/2
Fp elements as output. It is defined as x ∈ Ft

p 7→ Trt/2(P(x) + x) ∈ Ft
p, where

Trt/2 yields the first t/2 elements of the inputs. This compression function can be
used in Merkle trees and has recently also been applied in similar constructions,
including Anemoi [BBC+23], Griffin [GHR+23], and Poseidon2 [GKS23]. For
the 128-bit security level, we set t =

⌊
512

log2 p

⌋
, i.e., t = 8 for the 64-bit field and

t = 16 for the 31-bit field (thus factually yielding a little less than 128 bits).

4.2 Permutation Structure

The Monolith permutation is defined as

Monolith(·) = Rr ◦ · · · ◦ R2 ◦ R1 ◦ Concrete(·),

where r is the number of rounds and Ri over Ft
p are defined as

Ri(·) = c(i) + Concrete ◦ Bricks ◦ Bars(·), ∀i ∈ {1, 2, . . . , r} ,

where Concrete is a linear operation, Bars and Bricks are nonlinear operations
over Ft

p, c(1), . . . , c(r−1) ∈ Ft
p are pseudo-random round constants, and c(r) =

0. Note that a single Concrete operation is applied before the first round. A
graphical overview of one round of the construction is shown in Fig. 3.

13

x1

y1

x2

y2

· · ·

· · ·

xt

yt

S S · · · S S S · · · S · · ·Bars

x2 x2 x2· · ·Bricks

M × (x1, x2, . . . , xt)
T + (c1, c2, . . . , ct)

TConcrete,
constants

Fig. 3. One round of the Monolith construction, where xi, yi ∈ Fp.

4.3 Bricks

The component Bricks over Ft
p is defined as a Feistel Type-3 BricksF (6) with

the square map x 7→ x2, i.e.,

Bricks(x1, x2, . . . , xt) := (x1, x2 + x2
1, x3 + x2

2, . . . , xt + x2
t−1).

4.4 Concrete

The Concrete layer is defined as

Concrete(x1, x2, . . . , xt) := M × (x1, x2, . . . , xt)
T ,

where M ∈ Ft×t
p is an MDS matrix. Since the multiplication with an MDS

matrix is in general expensive and requires a number of operations in O(t2), we
use matrices with special properties.

– Goldilocks Prime pGoldilocks. We use the circulant matrix circ(23, 8, 13, 10,
7, 6, 21, 8) for t = 8 and the matrix circ(7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8) for
t = 12, as found and implemented by the Winterfell STARK library.8 These
matrices have the unique advantage of having small elements in the time
and frequency domain (i.e., before and after DFT application), allowing for
especially fast native performance.

– Mersenne Prime pMersenne. We instantiate M via the matrix used in Tip5
[SLS+23] for t = 16, since it is also MDS for pMersenne.9 Since we are not
aware of any fast MDS matrix for t = 24, we suggest to use a random
Cauchy matrix [YMT97] in the concrete layer at the cost of a slower native
performance. The problem of finding a fast MDS matrix for this larger state
size (which would significantly increase the native performance of Monolith-
31 with t = 24) is left as future work.

8 https://github.com/facebook/winterfell/tree/main/crypto/src/hash/mds
9 https://github.com/Neptune-Crypto/twenty-first/blob/master/
twenty-first/src/shared_math/tip5.rs

14

https://github.com/facebook/winterfell/tree/main/crypto/src/hash/mds
https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/shared_math/tip5.rs
https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/shared_math/tip5.rs

4.5 Bars

The Bars layer is defined as

Bars(x1, x2, . . . , xt) := Bar(x1) || Bar(x2) || · · · || Bar(xu) || xu+1 || · · · || xt (7)

for a t-element state, where u ∈ {1, . . . , t} denotes the number of Bar applications
in a single round. Each Bar application is defined as

Bar(x) = C ◦ S ◦ D(x),

where C,S and D are the operations defined in Section 2. In the following, we
describe them individually for Monolith-64 and Monolith-31.

Bars for Monolith-64. In Eq. (7) we set t ∈ {8, 12} (compression or sponge use
case, resp.) and we set u = 4 (i.e., 4 Bar operations are applied in each round).

Operations D and C. We use a decomposition into 8-bit values s.t.

x = 256x′
8 + 248x′

7 + 240x′
6 + 232x′

5 + 224x′
4 + 216x′

3 + 28x′
2 + x′

1.

The composition C is the inverse operation of the decomposition D.

S-Boxes S. In Eq. (2) we set m = 8. Then all Si over F8
2 are identical as (see

[Dae95, Table A.1])

Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1, (8)

where ≪ is a circular shift (here we interpret an integer as a big-endian 8-bit
string) and y is the bitwise negation.

Bars for Monolith-31. In Eq. (7) we set t ∈ {16, 24} (compression or sponge
use case, resp.) and we set u = 8 (i.e., 8 Bar operations are applied in each
round).

Operations D and C. The decomposition D is given by

x = 224x′
4 + 216x′

3 + 28x′
2 + x′

1,

where x′
4 ∈ Z7

2 and x′
3, x

′
2, x

′
1 ∈ Z8

2. The composition C is the inverse operation
of the decomposition D.

S-Boxes S. In Eq. (2) we set m = 4 using {8, 7}-bit lookup tables. Then the
S-boxes are defined as (see [Dae95, Table A.1])

∀i ∈ {1, 2, . . . ,m− 1} : Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1,

Sm(y′) =
(
y′ ⊕

(
(y′ ≪ 1)⊙ (y′ ≪ 2)

))
≪ 1,

(9)
where y ∈ F8

2 and y′ ∈ F7
2.

15

4.6 Round Constant Generation

The actual values of pseudo-randomly chosen round constants have no impact on
the security. For completeness we provide a generation method in Appendix A.3.

4.7 Number of Rounds

In Table 1, we propose to use r = 6 rounds for Monolith-64 and Monolith-31,
for which we claim 2 log2(pGoldilocks) ≈ 128 bits and 4 log2(pMersenne) ≈ 124 bits
of security, respectively. These numbers are conservatively chosen based on the
security analysis proposed in Section 5.

Table 1. Parameters for Monolith.

Name p Security Rounds r
Width t # Bar u2-to-1 Sponge

Monolith-64 264 − 232 + 1 128 6 8 12 4
Monolith-31 231 − 1 124 6 16 24 8

5 Security Analysis

As some of the components or combinations are new, our analysis contains sev-
eral nontrivial ideas and may be of separate interest to cryptanalysts and de-
signers. Here are several insights.

– In the spirit of the wide trail strategy [DR02], we prove tight bounds for
the number of active squarings in differential characteristics for the Type-3
Feistel-MDS combination in Section 5.1.

– We study rebound attacks in Section 5.2, a research direction that is often
missed in the ZK hash function design. We demonstrate practical attacks on
a reduced version of Monolith and argue the security of the full version.

– Using differential and linear properties of Bar, we prove lower bounds on
its algebraic degree in Section 5.3, which imply resistance against algebraic
attacks after a few rounds.

– While arguing the security of Monolith against algebraic attacks, we study
the complexity of Gröbner basis attacks on toy versions of Monolith with
smaller primes but still realistic Bars layers in Section 5.4.

To summarize, we are not able to break 6 rounds of the proposed scheme or a
weaker version of it (i.e., without some of the components) with any basic attacks
proposed in the literature. As future work, we encourage to study reduced-round
or/and toy variants of our design.

16

5.1 Differential Cryptanalysis

Given pairs of inputs with some fixed input differences, differential cryptanal-
ysis [BS90] considers the probability distribution of the corresponding output
differences produced by the cryptographic primitive. Since the Bars layer is not
supposed to have good statistical properties, we simply assume that the attacker
can skip it with probability 1.

As the maximum differential probability of a squaring is 1/p, Proposition 1
immediately implies the following bound.

Corollary 2. Any 4-round differential characteristic for Monolith has a prob-
ability of at most p

−9(t−1)
8 .

As a result, any characteristic that spans over 5 rounds and more would
cover more squarings than the number of state elements, and thus a solution to
it cannot be found by standard means. Therefore, a differential-based collision
attack on 5 rounds looks infeasible.

5.2 Other Statistical Attacks

We claim that 6 rounds are sufficient for preventing other statistical attacks as
well. Here we provide argument to support such conclusion for one of the most
powerful statistical attacks against a hash function, that is, the rebound attack.
For that goal, we propose an analysis of the number of the fixed points and of
the truncated differential characteristics.

Fixed Points. Contrary to Reinforced Concrete, the Bars layer of Monolith
has very few fixed points. Both local maps x⊕

(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

)
and x⊕

(
(x ≪ 1)⊙ (x ≪ 2)

)
have about (7/4)n fixed points (for even and odd

n, respectively) when considered over Fn
2 (a bit value is preserved if the product

of nearby bits is 0). However, all of them except 0 and 1 = 2n − 1 are destroyed
by the circular shift (verified experimentally).

A Bar of Monolith-64, consisting of 8 such S-boxes, admits 28−24+1 = 241
fixed points out of 264 − 232 + 1. This implies that the probability that a point
is fixed is approximately 2−56 for Bar and less than 2−56·4 = 2−224 for Bars.
Similarly, a Bar of Monolith-31 admits 24 − 1 = 15 fixed points out of 231 − 1.
This implies that the probability that a point is fixed is approximately 2−27 for
Bar and less than 2−27·8 = 2−216 for Bars.

For comparison, we recall that a Bar of Reinforced Concrete has 2134.5

fixed points out of 2254 possibilities. Hence, the probability of encountering a
fixed point is approximately 2−119.5·3 = 2−358.5 for Bars. At the current state of
the art, we are not aware of any attack that exploits these fixed points.

Truncated Differential and Rebound Attacks. Truncated differential at-
tacks [Knu94] are used mostly against primitives that have incomplete diffusion
over a few rounds. This is not the case here as the Concrete matrix is MDS. We

17

have not found any other attacks where a truncated differential can be used as
a subroutine either.

Rebound attacks [MRS+09] are widely used to analyze the security of various
types of hash functions against shortcut collision attacks since the beginning of
the SHA-3 competition. It starts by choosing internal state values in the middle
of the computation, and then computing in the forward and backward directions
to arrive at the inputs and outputs. It is useful to think of it as having central
(often called "inbound") and the above mentioned "outbound" parts. In the
attack, solutions to the inbound phase are first found, and then are filtered in
the outbound phase.

Whereas it is not possible to prove the resistance to the rebound attacks
rigorously, we can provide some meaningful arguments to demonstrate that they
are not feasible. The inbound phase deals with truncated and regular differen-
tials. By Corollary 2 we see that a solution for a 5-round differential cannot
be found, and so the inbound phase cannot cover more than 4 Bricks layers.
In the outbound phase, the Concrete layers that surround these Bricks layers
make all differentials diffuse to the entire state, so that the next Bricks layers
destroy all of those. We hence conclude that 6 rounds of Monolith are sufficient
to prevent rebound attacks.

The best attack of this kind that we were able to conduct ourselves is a near-
collision attack on the reduced 3-round permutation without the Bars layer. In
our attack we show how to find a state that satisfies a differential ∆1 → ∆8

for certain ∆1, ∆8 which are equal in the last Fp word, i.e., ∆1,t = ∆8,t. As a
concrete application, this yields a zero difference in this word for the compression
function x 7→ Truncn(P(x) + x), which is a near-collision.

The inbound phase covers 3 layers of Bricks separated by 2 Concrete layers:

∆1
Concrete←−−−−−
t→1

∆2
Bricks←−−−−

1
∆3

Concrete−−−−−→
1→t

∆4
Bricks←−−→

t
∆5

Concrete−−−−−→
t←2

∆6
Bricks−−−−→

2
∆7︸ ︷︷ ︸

inbound phase

Concrete−−−−−→
2→t

∆8.

To find such a state pair, we apply the following approach.

1. In the inbound phase we arbitrarily choose δ and set ∆3 = [0, 0, . . . , 0, δ] such
that its non-zero difference is in the last word only and propagates through
Bricks−1 untouched. That is, ∆2 = ∆3. Let ∆1 be Concrete−1(∆2).

2. The inbound phase covers the expansion of ∆2 to t words and back to
the 2-word difference ∆7 = [0, 0, . . . , 0, δ2, δ3]. Note that we have ∆6 =
[0, 0, . . . , 0, δ2, δ4]. We arbitrarily set δ2, δ3 such that ∆8,t = ∆1,t and then
choose δ4 such that

Concrete(∆2) = ∆4,1 = ∆5,1 = Concrete−1(∆6).

3. As a result, the differential path for the full 3-round scheme is established,
and we determine the state. The (δ3, δ4) differential determines the input
word xt−1 of the third Bricks layer, and the equation

Bricks(X+∆4) = Bricks(X) +∆5.

18

determines input words x1, x2, . . . , xt−1 of the second Bricks layer. Note
that this is a system of linear equations, and solving it we can determine the
full state.

Overall we obtain a partial collision at a negligible cost (the cost for solving the
linear system of equations can be approximated by O(t3), which is much smaller
than the cost for constructing the collision in the case of a random permutation
approximated by O(p1/2)). We are not aware of any possible extension of such
attack to more rounds and/or including Bars, which is left as an open problem
for future work.

5.3 Algebraic Analysis: Degree and Density of the Bars Polynomials

Lower Bound on the Degree over F2. Using the fact that
⌈
2d−0.5

⌉
is odd

for d = 15 and d = 30, Lemma 3 implies the following bound on the degree over
F2.

Proposition 2. Let p ∈ {pMersenne, pGoldilocks}. Let F ′ be an interpolant over
F⌈log2 p⌉
2 of the squaring operation F(x) = x2 over Fp.Then F ′ has degree at

least d, where (i) d = 30 for p = 264 − 232 + 1, and (ii) d = 15 for p = 231 − 1.

As the squaring operation is a component of Bricks, we get that it has degree
d ≥ 30 as well.

Lower Bound on the Degree over Fp.

Lemma 6. Let n > 4.

– The maximum differential probability over Fn
2 of the S-box Eq. (8)

y 7→
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1

is at least 13/32.
– The maximum differential probability over Fn

2 of the S-box Eq. (9)

y′ 7→
(
y′ ⊕

(
(y′ ≪ 1)⊙ (y′ ≪ 2)

))
≪ 1

is at least 1/8.

In particular we have input pairs of form (x1, x2, . . . , xn−1, 0), (x1, x2, . . . , xn−1, 1)
mapping to (y1, y2, . . . , 0, yn), (y1, y2, . . . , 1, yn) with at least the same probability
(13/32 and 1/8, resp.).

Proof. Consider two input states x, y with a single bit difference in bit i such
that xi = 1− yi = 0. Let us derive sufficient conditions when the output states
x′, y′ differ in bit i− 1 only and x′

i = 1− y′i = 0. This happens if the product in
the S-box bit mapping is 0 whenever bit i is XORed or is part of the product, i.e.,

yi+1 ⊙ yi+2 ⊙ yi+3 = 0, yi+1 ⊙ yi+2 = 0,

yi−1 ⊙ yi+1 = 0, yi−2 ⊙ yi−1 = 0.

19

The number of 5-tuples satisfying this system is 13 out of 32 possible. Therefore,
a differential holds with probability 13/32.

For the S-box Eq. (9) we observe that a single bit difference in bit i is mapped
to a single bit difference in bit i− 1 if

yi+1 ⊙ yi+2 = 0, yi+1 = 0, yi−1 = 0,

which holds for one 3-tuple out of 8 ones. Therefore, the differential holds with
probability 1/8.

Lemma 7. The Bar function for p = 264 − 232 + 1. The Bar function for p =
231 − 1 has a differential probability of at least 2−1.2.

Proof. The differential probability of Bar as a function over F2 is at least the
probability of a single S-box, as we can select inputs that activate only one S-box.
By Lemma 6 the F2-differential in the last bit implies the Fp differential 1 → 2
of the same probability. When 8 S-boxes are used, the F64

2 differential holds for
at least 13 ·259 64-bit inputs. To get to Fp we should exclude from those the ones
that possibly exceed p, i.e., 232 ones. The probability is then lower-bounded by
2−1.4.

Similarly, for 31-bit inputs, Lemma 6 implies that 3+1 concatenated S-boxes
together yield a differential probability of at least 13/32 (we activate the weaker
8-bit S-box) both when viewed over F31

2 and over Fp.

Proposition 3. The Bars operation (and its inverse) has degree at least (i) 262

for p = 264 − 232 + 1, and (ii) 229 for p = 231 − 1.

The real degree and density values for smaller p are presented in Appendix.

5.4 The CICO Problem for Keyless Algebraic Attacks

A large class of attacks on permutation-based hash functions is reduced to the
CICO problem [BDP+09].

Definition 1 (CICO Problem). A permutation P : Ft
p → Ft

p is secure against
the v-CICO problem if no algorithm with expected complexity smaller than pv

finds I1 ∈ Ft−v
p and O2 ∈ Ft−v

p such that P(I1 || 0︸︷︷︸
v words

) = 0︸︷︷︸
v words

|| O2.

We use to argue the security of Monolith against some classes of algebraic
attacks (in particular Gröbner basis ones) as follows. First, we interpret the
output elements as polynomials of the input elements. Then we find a solution
to the system of v polynomial equations of t−v input variables (as the remaining
v ones are set to zero). Let us now consider two situations.

20

Univariate Case. A univariate system appears if v = t−1 or we guess t−v+1
variables. Note that our guess may be invalid if the number of equations exceeds
the number of variables, so we have to repeat the guess pv−1 times.

– If v = 1 and we have guessed t− 2 variables, then we have to solve a single
polynomial equation faster than in time p. The degree of the polynomial
reaches p after 2 applications of the Bars layer, i.e., after 2 rounds. Therefore,
solving the equation will require time ≈ p.

– If v > 1, and we have guessed t− v− 1 variables, then the chance of a CICO
solution for a guess is pv−1. A system of polynomial equations has degree
close to p. Solving a system of univariate dense polynomials of degree d is
close to d, so we expect spending at least time p to obtain the value of a last
variable. Therefore the total complexity still exceeds p · pv−1 = pv.

Multivariate Case: Gröbner Bases. In a more general case we work with
a system of v polynomial equations of t − v input variables. The system likely
remains solvable if we guess extra t− 2v variables to have both v equations and
variables. The main technique of solving these systems is to use Gröbner bases,
as described with the following steps.

1. Compute a Gröbner basis for the zero-dimensional ideal of the system of
polynomial equations with respect to the degrevlex term order.

2. Convert the degrevlex Gröbner basis into a lex Gröbner basis using the
FGLM algorithm [FGL+93].

3. Factor the univariate polynomial in the lex Gröbner basis and determine the
solutions for the corresponding variable. Back-substitute those solutions, if
needed, to determine solutions for the other variables.

The total complexity of a Gröbner basis attack is hence the sum of the respective
complexities of the above steps. We argue that even the first step is prohibitively
expensive for Monolith.

The complexity of computing a degrevlex Gröbner basis, which we denote as
CGB, is difficult to estimate for structured primitives like Monolith. For regular
sequences with m equations of degree d1, d2, . . . , dm and m variables it is shown
to be

Cregular
GB = O

((
m+ dth

m

)ω)
(10)

where dth is called the (theoretical) degree of regularity and computed as 1 +∑m
i=1(di − 1), and ω, the linear algebra exponent, for equations of reasonable

size is close to 2.8.
Unfortunately for real usecases the complexity of GB computation is known

to be quite volatile [BGL20; Sau21]. The main source of discrepancy is arguably
the degree of regularity, which is practically the maximum degree reached by
polynomials in the GB algorithms. Another problem is scalability: it is nontrivial
to scale down an original system of equations to some variant that is solvable
on a PC, and get estimates from there. We tackle these problems and the full
algebraic security of Monolith as follows:

21

– We consider a very small, weakened version of Monolith, denoted Monolith-
Weak1R – with a small prime p, a state with t = 4 elements, only one round
F := Concrete ◦ Bricks ◦ Bars ◦ Concrete, and only two Bar instances in
the round.

– We suggest an arguably optimal representation of Monolith-Weak1R as a
system of polynomial equations of small degree.

– For various small primes we run an actual GB computation and show that
the experimental degree of regularity, dmag, is lower bounded by dth/4.

– We argue that the actual GB computation cost in our experiments can be
lower bounded by a modified version of (10) with a high security margin:

CMonolith−1R
GB ≫ Cbound(n, dth) =

(
n+ dth/4

n

)
(11)

where n is uniformly 10 in our model and D depends on p and the S-box
structure. We note, we use ω = 1 in Cbound(n, dth).

– We show that the application of (10) to the full-size state of Monolith and
the original primes yields a complexity estimate of 2334 and higher.

Based on that, we argue that the full version of Monolith is secure against a
GB attack.

Algebraic Model for Bar. We suggest the following algebraic model for
Bar for a decomposition of a prime field element into m buckets with sizes
2s1 , 2s2 , . . . , 2sm :

x = x1b1 + x2b2 + · · ·+ xmbm,

0 =
∏2si−1

j=0 (xi − j), 1 ≤ i ≤ m,

y = L1(x1)b1 + L2(x2)b2 + · · ·+ Lm(xm)bm.

Here, b1 = 1 and bi := 2s1+···+si for 2 ≤ i ≤ m and Li(xi) is the interpolation
polynomial of degree 2si − 1 for S-box Si given by

Li(xi) :=
∑

0≤k≤2si−1

Si(k)
∏

0≤j≤2si−1
j ̸=k

xi − j

k − j
.

The resulting system consists of m+2 equations, namely m equations of respec-
tive degrees 2s1 , . . . , 2sm , 1 equation of degree maxi 2

si − 1, and 1 equation of
degree 1. The m+ 2 variables are x1, . . . , xm, x, y.

Algebraic Model for One Round of Monolith-Weak1R. We consider a
CICO problem with t = 4 words, i.e., we are looking for x2, x3, x4 ∈ Fp and
y2, y3, y4 ∈ Fp such that

F(0, x2, x3, x4) = (0, y2, y3, y4) ,

22

Table 2. Results of Gröbner basis computations on small-scale instances of a single
round of Monolith-Weak1R in the CICO setting. dmag denotes the maximum degree
reached during a GB computation with Magma. T is time in microseconds (10−6).
Extrapolated estimates are in italic.

Monolith-Weak1R Monolith-1R
p 13 29 61 113 31-bit 64-bit

m, n 10, 10 10, 10 10, 10 10, 10 64, 64 48, 48
si 2, 2 2, 3 2, 4 4, 3 8,8,8,7 8,. . . ,8
dth 18 34 66 74 9177 9181
dmag 11 14 19 24 2295 2296
dth : dmag 1.62 2.43 3.47 3.08 4 4
log2 T 16.5 21.5 25.5 30.5

log2 Cbound(n, dth) 10.8 16 23 24.3 419.8 333.7

where Monolith-Weak1R’s function F := Concrete ◦ Bricks ◦ Bars ◦ Concrete
is a single round of Monolith with an added Concrete layer. For Concrete, we
use the circulant matrix M = circ(2, 1, 1, 1), which is not MDS and can thus
be seen as an optimistic choice (from the attacker’s perspective). We use the
following system of equations:

0 = Concrete−1(u1, u2, u3, u4)0,

v1 = Bar(u1),

v2 = Bar(u2),

0 = (Concrete ◦ Bricks)(v1, v2, u3, u4)0,

where H(·)i denotes the i-th element of the output of the function H for i ∈
{1, 2, 3, 4}. We note, each Bar function decomposes a prime field element into 2
buckets and vi = Bar(ui) denotes above algebraic model for Bar with m = 2.
The resulting equation system consists of 10 equations with

– 4 equations for each Bar system vi = Bar(ui), i = 1, 2, and
– 2 equations for modelling the CICO constraint at the input and the output.

In total, we have 10 variables, namely u1, u2, u3, u4, v1, v2 and 2 internal variables
for each Bar system.

Discussion of Gröbner Basis Experiments. The results of our Gröbner
basis experiments on small-scale instances of one round of Monolith with t = 4
words and modelled as a CICO problem are depicted in Table 2. We conducted
our experiments on a machine with an Intel Xeon E5-2630 v3 @ 2.40GHz (32
cores) and 378GB RAM under Debian 11 using Magma V2.26-2.

We see that the real degree dmag is always higher than dreg/4, and we also
see that Cbound values are indeed a safe lower bound for the actual computation
time for instances of Monolith-Weak1R. Assuming the Cbound lower bound, and

23

taking into account that Monolith-1R is stronger than Monolith-Weak1R, we
obtain that the Gröbner basis cost for the Monolith-1R CICO problem should
be at least 2420 for 31-bit and 2333 for the 64-bit version. This hints that the
full Monolith is secure against Gröbner basis attacks. We conclude that using
Monolith with 6 rounds provides ample security margin against Gröbner basis
attacks.

6 Performance Evaluation

6.1 Native Performance

In this section we compare the native performance of Monolith to its competitors
with results in Table 3. All benchmarks were taken on an AMD Ryzen 9 7900X
CPU (singlethreaded, 4.7GHz).

We included implementations of Monolith into the framework in [IAI21], and
also added instantiations of widely popular Poseidon [GKR+21], its modifica-
tion Poseidon2 [GKS23], and also Griffin [GHR+23] with p = 264 − 232 + 1
following their original instance generation scripts.10 11 We benchmark these
hash functions with a state size of t = 8 for the compression mode and of
t = 12 for the sponge mode in order to have a fair comparison. We also com-
pare against Tip5 with its fixed state size of t = 16 using the implementation
from [SLS+23],12 and against Tip4′, a faster instance of Tip5 with a fixed state
size t = 12, using the implementation from [Sal23].13 We also compare against
Reinforced Concrete instantiated with the scalar field of the BN254 curve,
and against SHA3-256/SHA-256 as implemented in RustCrypto.14

Finally, we compare Monolith-31 with Poseidon and Poseidon2 over the
pMersenne prime field and state sizes of t = 16 and t = 24 (again for sponge and
compression mode), as well as for a constant time implementation (constant time
Fp operations and no lookup tables).

We see that Monolith-64 is significantly faster than any other arithmetization-
oriented hash function. For example, the fastest one, i.e., Poseidon2, is slower
by a factor 7.3 for t = 8. Tip4′, the fastest lookup table based design, is also
slower by a factor of 1.9 when using Monolith with the compression mode, and
also slower by 36ns compared to Monolith with the same state size t = 12.

Most interestingly, the performance gap between arithmetization-friendly
hash functions and traditional ones is now closed, with SHA3-256 being slower
than Monolith-64 with t = 8 and only faster by 21ns than Monolith-64 in the
sponge mode with t = 12.

Regarding Monolith-31 for the 31 bit Mersenne prime field we observe that
we still get a fast native performance with 210ns for t = 16. This is significantly
10 The source code is available at https://extgit.iaik.tugraz.at/krypto/

zkfriendlyhashzoo/-/tree/master/plain_impls.
11 See, e.g., https://github.com/anemoi-hash/hash_f64_benchmarks
12 https://github.com/Neptune-Crypto/twenty-first
13 https://github.com/Nashtare/winterfell
14 https://github.com/RustCrypto/hashes

24

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://github.com/anemoi-hash/hash_f64_benchmarks
https://github.com/Neptune-Crypto/twenty-first
https://github.com/Nashtare/winterfell
https://github.com/RustCrypto/hashes

Table 3. Native performance comparison in nano seconds (ns) of different hash func-
tions for variable and constant time implementations. Benchmarks are given for one
permutation call, i.e., hashing ≈ 500 bits for all but SHA functions.

Hashing algorithm Time (ns) Const. Time (ns)
2-to-1 sponge 2-to-1 sponge

p = 264 − 232 + 1: t = 8 t = 12 t = 8 t = 12

Monolith-64 129.9 210.5 148.5 230.4
Poseidon 1897.6 3288.7 2347.6 4059.1
Poseidon2 944.6 1291.5 1149.2 1617.9
Rescue-Prime 12128.0 19095.0
Griffin 1815.0 1988.4
Tip5 (t = 16) 463.6
Tip4′ 247.9

p = 231 − 1: t = 16 t = 24 t = 16 t = 24

Monolith-31 210.3 1015.3 237.9 1120.5
Poseidon 4478.8 8539.7 4372.9 8538.0
Poseidon2 792.8 1257.4 840.7 1355.3

Other:

Reinforced Concrete (BN254) 1467.1
SHA3-256 189.8
SHA-256 45.3

faster than Tip5 which has the same state size, but is implemented with the larger
64 bit prime field. Only for t = 24 we observe a slower native performance which
is due to the usage of a generic MDS matrix in the Concrete layer instead of an
optimized circular matrix as we use for the other state sizes. However, competing
designs, such as Tip5 also rely on MDS matrices and thus will suffer from the
same performance loss. Despite this unoptimized linear layer one can observe
that Monolith-31 is still faster than the fastest competitor for the same prime
field and state size, i.e., Poseidon2.

Another advantage of Monolith over Tip5, Tip4′, and Reinforced Concrete
is that its native performance does not rely on lookup tables and its structure
allows for constant-time implementations without significant performance loss.
The binary χ-like layer can be efficiently implemented using a vectorized imple-
mentation that does not require an explicit (de-)composition, while unrolling the
lookup-tables containing repeated power maps in Reinforced Concrete, Tip5,
and Tip4′ adds considerable workload to the computation. Thus, the overhead
of going to a constant-time implementation only consists of supporting constant-
time prime field arithmetic for Monolith, which can help in efficiently preventing
side-channel attacks such as the ones proposed in [TBP20].

We observe, that using a constant-time modular reduction leads to a slight
slowdown of all benchmarked designs. However, the resulting runtimes are still
significantly faster than the non-constant-time runtimes of traditional arith-
metization friendly hash functions, such as Poseidon and Griffin, and the
variable-time version of Tip4′ for t = 8 and t = 12. Moreover, a constant time

25

Table 4. Plonkish arithmetization comparison for various 64-bit schemes. The numbers
are for a single permutation.

Primitive Lookups Nonlinear
constraints Degree Witness size Area-degree

product

Monolith-64-compression 192 44 2 460 920
Monolith-64-sponge 192 64 2 480 960
Tip5 160 60 7 380 2660
Tip4′ 160 40 7 360 2520
Poseidon/Poseidon2 (sponge) 0 118 7 118 826
Rescue-Prime (sponge) 0 96 7 96 672

Table 5. Performance of proving a Poseidon and Monolith permutation using
pGoldilocks and sponge mode in the Plonky2 proof system.

Primitive Prove Time Verify Time Proof Size
ms ms B

Monolith-64-sponge 3.49 0.63 112732
Poseidon 6.23 1.12 70288

Monolith-64 in compression mode is still faster than SHA3-256 for t = 8 (even
if we acknowledge the different security margin of the two constructions).

Finally, for completeness, we give the runtime of each part of the Monolith
permutation for both a constant- and variable-time version in Appendix C.

6.2 Performance in Proof Systems

A modern zero-knowledge proof system defines arithmetization rules for the cir-
cuit it attempts to prove. Most new proof systems support the Plonkish arith-
metization, where all input, output, and intermediate variables are placed into a
witness matrix W with m columns and n rows. The data in each row is restricted
by polynomial equations determining the values and computations being used.
One of these generic equations of degree 2 is aix1x2 + bix3 + cix4 + di = 0,
where ai, bi, ci, di are public constants for the i-th row [GWC19]. The Plonk-
ish arithmetization allows for different tradeoffs between the number of columns
or variables being used and the resulting degrees. Additionally, various tuples
within a row may be constrained to a set of values in a predefined table T.

A precise comparison of different arithmetizations is hard without imple-
menting and testing. However, a significant part of the work is to construct m
degree-n polynomials for the witness columns and to prove that they satisfy
the polynomial equations. The total work is then estimated as an element in
O(d · n ·m), where d is the maximum degree of a row polynomial. The cost of
using table lookups for FRI-based schemes is currently equivalent to the use of
a single polynomial of degree t = max{n, |T|}.

In this section we give possible arithmetizations for translating Monolith into
a set of Plonkish constraints and refer to Appendix D.1 for R1CS constraints.

26

Our Plonkish arithmetization is designed to accommodate lookup constraints
capable of efficiently looking up 8-bit values. If the proof system is able to use
larger tables (e.g., 16-bit ones), then multiple lookup constraints can be combined
into just one larger constraints, reducing the total number of constraints.

Plonkish Arithmetization. Each composition Concrete◦Bricks is described
with t polynomial equations of degree 2. Then, for each Bar in the Bars layer, we
enforce the correct relations with x =

∑m
i=1 2

∑i
j=1 sjx′

i and y =
∑m

i=1 2
∑i

j=1 sjy′i,
while also making sure that the limbs in the decomposition correspond to field
elements. For pGoldilocks, this means enforcing that either the least significant 32
bits of Bar’s input are 0 or the most significant bits are not all 1, i.e.,

(x42
24 + x32

16 + x22
8 + x1) · (x82

24 + x72
16 + x62

8 + x5 − z) = 0 ,

(z − 232 + 1) · z′ = 1 .

For pMersenne = 0x7fffffff we need to make sure that the combined values are
̸= p, which is equivalent to them not being 28 − 1 (three) or 27 − 1 (one), i.e.,

(x4 + x3 + x2 + x1 − 27 − 3 · 28 + 4) · z′ = 1.

We describe the application of m individual S-boxes with m lookup constraints
(x1, y1), (x2, y2), . . . , (xm, ym). These also include the range checks for each input
which are also necessary for the correctness of the constraints above.

Apart from 2m lookup variables per Bar, we define u variables at the out-
put of the first Concrete layer (these are the inputs to the Bars layer) and t
variables at the output of each of the following Concrete layers (except for the
last one). The reason is that the variables after the first Concrete layer store
linear relations in the input, and only the u variables entering the Bars layer are
needed. For the last layer, the output variables can be used directly. In total, we
have 6 · (2um + u) + 5t + u variables, where {u = 4,m = 8} for the pGoldilocks
case and {u = 8,m = 4} for the pMersenne case (considering S-boxes of ≈ 8 bits).

In Table 4 we compare the (non-optimized) arithmetization of Monolith
with the ones of other 64-bit designs (see Appendix D.2 for details). To achieve
a fair comparison, we do not apply any constraint or witness optimization but
try to follow the same approach. We see that both the number of lookups and
constraints in Monolith is slightly larger than in Tip5 and Tip4’, but the con-
straint degree is smaller by the factor of 3.5, which should result in an overall
decrease of the prover time by a factor of at least 2 (estimated as area-degree
product). This is reasonable since Tip5 and Tip4’ are able to process more field
elements with a permutation call. Poseidon, Poseidon2, and Rescue-Prime
due to their comparably small witness size and no lookup tables are estimated
to still provide faster proving performance, closely followed by Monolith-64 with
its low-degree nonlinear layers. Again, we stress that these numbers are derived
from non-optimized arithmetizations and are subject to change. For example,
one can leverage the low degree of Monolith to reduce witness size by trad-
ing with a larger degree round function. We refer to Appendix D.3 for details.

27

Furthermore, these estimates are based on a simplified performance metric (are-
degree-product) which does not consider every aspect of prover performance and
benchmarks in real proof systems might differ.

Benchmarks in Plonky2. We implemented Monolith-64 in the Plonky215

proof system to verify the estimations of Table 4.16 Since Plonky2 already comes
with a custom gate of Poseidon in sponge mode (t = 12) using pGoldilocks where
the whole gate is put into just one row of the trace, we implement Monolith-64-
sponge with the same parameters. To highlight the main advantage of Monolith-
64, namely its fast native performance, we benchmark proving a Monolith-64
permutation while using Monolith-64 as the hash function to build the Merkle
trees in Plonky2. Similarly, we benchmark Poseidon when using Poseidon
as the Plonky2 hash function (which is the default setting in Plonky2). The
results can be seen in Table 5. One can observe that since Monolith requires
more witnesses than Poseidon and both gates use just one row in the trace,
the resulting proof is larger. However, the combination of proving Monolith-64
while using it at as the Plonky2 hash function leads to half the prover and verifier
runtime compared to Poseidon.

Acknowledgments

This work was partially supported by a gift from the Ethereum foundation.
Lorenzo Grassi is partially supported by the German Research foundation (DFG)
within the framework of the Excellence Strategy of the Federal Government
and the States – EXC 2092 CaSa – 39078197. Roman Walch was supported by
the "DDAI" COMET Module within the COMET – Competence Centers for
Excellent Technologies Programme, funded by the Austrian Federal Ministry for
Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry
for Digital and Economic Affairs (bmdw), the Austrian Research Promotion
Agency (FFG), the province of Styria (SFG) and partners from industry and
academia. The COMET Programme is managed by FFG.

Finally, we thank Nicholas Mainardi for helping with the implementation of
Monolith in Plonky2 and for improving the efficiency of the gate.

References

[22a] ZKEVM Introduction. https://github.com/privacy-scaling-
explorations/zkevm-specs/blob/master/specs/introduction.
md. 2022 (cit. on p. 2).

[22b] Polygon zkEVM Documentation. https : / / docs . hermez . io /
zkEVM/Overview/Overview/. 2022 (cit. on p. 2).

15 https://github.com/mir-protocol/plonky2
16 Our implementation is available at https://github.com/HorizenLabs/monolith.

28

https://github.com/privacy-scaling-explorations/zkevm-specs/blob/master/specs/introduction.md
https://github.com/privacy-scaling-explorations/zkevm-specs/blob/master/specs/introduction.md
https://github.com/privacy-scaling-explorations/zkevm-specs/blob/master/specs/introduction.md
https://docs.hermez.io/zkEVM/Overview/Overview/
https://docs.hermez.io/zkEVM/Overview/Overview/
https://github.com/mir-protocol/plonky2
https://github.com/HorizenLabs/monolith

[AAE+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe,
and Alan Szepieniec. “Design of Symmetric-Key Primitives for Ad-
vanced Cryptographic Protocols”. In: IACR Trans. Symmetric Cryp-
tol. 2020.3 (2020), pp. 1–45 (cit. on p. 2).

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen. “MiMC: Efficient Encryption and Cryp-
tographic Hashing with Minimal Multiplicative Complexity”. In:
ASIACRYPT 2016. Vol. 10031. LNCS. 2016, pp. 191–219 (cit. on
p. 2).

[AJN14] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves.
“NORX: Parallel and Scalable AEAD”. In: ESORICS 2014. Vol. 8713.
LNCS. 2014, pp. 19–36 (cit. on p. 6).

[AKM+22] Jean-Philippe Aumasson, Dmitry Khovratovich, Bart Mennink,
and Porçu Quine. SAFE (Sponge API for Field Elements) - A
Toolbox for ZK Hash Applications. https://eprint.iacr.org/
2023/522. 2022 (cit. on p. 13).

[ANW+13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn,
and Christian Winnerlein. “BLAKE2: Simpler, Smaller, Fast as
MD5”. In: ACNS 2013. Vol. 7954. LNCS. 2013, pp. 119–135 (cit.
on p. 2).

[Bal23] Balazs Komuves. hash-circuits. 2023. url: https://github.com/
bkomuves/hash-circuits (visited on 10/06/2023) (cit. on p. 5).

[BBC+23] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin
Salen, Vesselin Velichkov, et al. “New Design Techniques for Effi-
cient Arithmetization-Oriented Hash Functions: Anemoi Permuta-
tions and Jive Compression Mode”. In: CRYPTO 2023. Vol. 14083.
LNCS. 2023, pp. 507–539 (cit. on pp. 2, 13).

[BBH+19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
“Scalable Zero Knowledge with No Trusted Setup”. In: CRYPTO
2019. Vol. 11694. LNCS. 2019, pp. 701–732 (cit. on pp. 2, 3).

[BC23] Benedikt Bünz and Binyi Chen. “ProtoStar: Generic Efficient Ac-
cumulation/Folding for Special Sound Protocols”. In: IACR Cryp-
tol. ePrint Arch. (2023). https://eprint.iacr.org/2023/620,
p. 620 (cit. on pp. 1, 2).

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière.
“Higher-Order Differential Properties of Keccak and Luffa”. In:
FSE 2011. Vol. 6733. LNCS. 2011, pp. 252–269 (cit. on pp. 38,
39).

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gre-
gor Leander, Gaëtan Leurent, et al. “Out of Oddity - New Crypt-
analytic Techniques Against Symmetric Primitives Optimized for
Integrity Proof Systems”. In: CRYPTO 2020. Vol. 12172. LNCS.
2020, pp. 299–328 (cit. on p. 38).

[BDP+07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge
functions. In: Ecrypt Hash Workshop 2007, http://www.csrc.

29

https://eprint.iacr.org/2023/522
https://eprint.iacr.org/2023/522
https://github.com/bkomuves/hash-circuits
https://github.com/bkomuves/hash-circuits
https://eprint.iacr.org/2023/620
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html

nist.gov/pki/HashWorkshop/PublicComments/2007_May.html.
2007 (cit. on p. 13).

[BDP+08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. “On the Indifferentiability of the Sponge Construction”. In:
EUROCRYPT 2008. Vol. 4965. LNCS. 2008, pp. 181–197 (cit. on
p. 13).

[BDP+09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. “Keccak sponge function family main document”. In: Submis-
sion to NIST (Round 2) 3.30 (2009), pp. 320–337 (cit. on p. 20).

[BDP+11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. Note on zero-sum distinguishers of Keccak-f. Available at
https://keccak.team/files/NoteZeroSum.pdf. 2011 (cit. on
p. 39).

[BDP+18] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Ass-
che, Ronny Van Keer, and Benoît Viguier. “KangarooTwelve: Fast
Hashing Based on Keccak-p”. In: ACNS 2018. Vol. 10892. LNCS.
2018, pp. 400–418 (cit. on pp. 2, 39).

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. Avaiable at
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
2005 (cit. on p. 9).

[BFM+16] Thierry P. Berger, Julien Francq, Marine Minier, and Gaël Thomas.
“Extended Generalized Feistel Networks Using Matrix Represen-
tation to Propose a New Lightweight Block Cipher: Lilliput”. In:
IEEE Trans. Computers 65.7 (2016), pp. 2074–2089 (cit. on pp. 4,
11).

[BGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK Friendly
Hash – Survey and Recommendation. Cryptology ePrint Archive,
Paper 2020/948. https://eprint.iacr.org/2020/948. 2020 (cit.
on p. 21).

[BMT13] Thierry P. Berger, Marine Minier, and Gaël Thomas. “Extended
Generalized Feistel Networks Using Matrix Representation”. In:
SAC 2013. Vol. 8282. LNCS. 2013, pp. 289–305 (cit. on pp. 4,
11).

[BS90] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like
Cryptosystems”. In: CRYPTO 1990. Vol. 537. LNCS. 1990, pp. 2–
21 (cit. on p. 17).

[But22] Vitalik Buterin. What we want out of STARK signature aggrega-
tion. available at https://t.ly/UZMKw. 2022 (cit. on p. 2).

[CFG+22] Shumo Chu, Boyuan Feng, Brandon H. Gomes, Francisco Hernán-
dez Iglesias, and Todd Norton. MantaPay Protocol Specification.
available at https://github.com/Manta-Network/spec/blob/
main/manta-pay/spec.pdf. 2022 (cit. on p. 2).

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-
quantum and Transparent Recursive Proofs from Holography”. In:

30

http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
https://keccak.team/files/NoteZeroSum.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://eprint.iacr.org/2020/948
https://t.ly/UZMKw
https://github.com/Manta-Network/spec/blob/main/manta-pay/spec.pdf
https://github.com/Manta-Network/spec/blob/main/manta-pay/spec.pdf

EUROCRYPT 2020. Vol. 12105. LNCS. 2020, pp. 769–793 (cit. on
pp. 2, 3).

[Dae95] Joan Daemen. Cipher and hash function design strategies based on
linear and differential cryptanalysis. Doctoral Dissertation. Avail-
able at https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.
pdf. 1995 (cit. on pp. 4, 8, 15).

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block
Cipher Square”. In: FSE 1997. Vol. 1267. LNCS. 1997, pp. 149–165
(cit. on p. 38).

[DR01] Joan Daemen and Vincent Rijmen. “The Wide Trail Design Strat-
egy”. In: Cryptography and Coding - IMA International Conference
2001. Vol. 2260. LNCS. 2001, pp. 222–238 (cit. on p. 11).

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES
- The Advanced Encryption Standard. Information Security and
Cryptography. Available at https://cs.ru.nl/~joan/papers/
JDA_VRI_Rijndael_2002.pdf. Springer, 2002 (cit. on pp. 4, 16).

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. “cq: Cached quotients
for fast lookups”. In: IACR Cryptol. ePrint Arch. (2022). https:
//eprint.iacr.org/2022/1763 (cit. on p. 3).

[FGL+93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo
Mora. “Efficient Computation of Zero-Dimensional Gröbner Bases
by Change of Ordering”. In: J. Symb. Comput. 16.4 (1993), pp. 329–
344 (cit. on p. 21).

[GHR+23] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofneg-
ger, Roman Walch, and Qingju Wang. “Horst Meets Fluid-SPN:
Griffin for Zero-Knowledge Applications”. In: CRYPTO 2023. Vol. 14083.
LNCS. 2023, pp. 573–606 (cit. on pp. 2, 13, 24, 39).

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Chris-
tian Rechberger, Markus Schofnegger, and Roman Walch. “Rein-
forced Concrete: A Fast Hash Function for Verifiable Computa-
tion”. In: ACM CCS. 2022, pp. 1323–1335 (cit. on pp. 3, 6).

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. “Poseidon: A New Hash Function
for Zero-Knowledge Proof Systems”. In: USENIX Security Sympo-
sium. USENIX Association, 2021, pp. 519–535 (cit. on pp. 2, 4, 24,
39).

[GKS23] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger.
“Poseidon2: A Faster Version of the Poseidon Hash Function”. In:
AFRICACRYPT 2023. Vol. 14064. LNCS. 2023, pp. 177–203 (cit.
on pp. 3, 13, 24).

[GLL+20] Jian Guo, Guohong Liao, Guozhen Liu, Meicheng Liu, Kexin Qiao,
and Ling Song. “Practical Collision Attacks against Round-Reduced
SHA-3”. In: J. Cryptol. 33.1 (2020), pp. 228–270 (cit. on p. 39).

31

https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://cs.ru.nl/~joan/papers/JDA_VRI_Rijndael_2002.pdf
https://cs.ru.nl/~joan/papers/JDA_VRI_Rijndael_2002.pdf
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763

[Gra23] Lorenzo Grassi. “Bounded Surjective Quadratic Functions over Fnp
for MPC-/ZK-/FHE-Friendly Symmetric Primitives”. In: IACR Trans.
Symmetric Cryptol. 2023.2 (2023), pp. 94–131 (cit. on p. 11).

[GW20] Ariel Gabizon and Zachary J. Williamson. “plookup: A simplified
polynomial protocol for lookup tables”. In: IACR Cryptol. ePrint
Arch. (2020) (cit. on p. 3).

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over Lagrange-bases for Oecumenical Noninterac-
tive arguments of Knowledge. Cryptology ePrint Archive, Report
2019/953. 2019 (cit. on pp. 1, 26).

[Hab23] Ulrich Haböck. Brakedown’s expander code. Cryptology ePrint Archive,
Paper 2023/769. https://eprint.iacr.org/2023/769. 2023 (cit.
on p. 3).

[HLN23] Ulrich Haböck, Daniel Lubarov, and Jacqueline Nabaglo. Reed-
Solomon Codes over the Circle Group. Cryptology ePrint Archive,
Paper 2023/824. https://eprint.iacr.org/2023/824. 2023 (cit.
on p. 3).

[HR10] Viet Tung Hoang and Phillip Rogaway. “On generalized Feistel net-
works”. In: Annual Cryptology Conference. Springer. 2010, pp. 613–
630 (cit. on p. 11).

[IAI21] IAIK. Hash functions for Zero-Knowledge applications Zoo. https:
//extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo. IAIK,
Graz University of Technology. Aug. 2021 (cit. on p. 24).

[KBM23] Dmitry Khovratovich, Mario Marhuenda Beltrán, and Bart Men-
nink. “Generic Security of the SAFE API and Its Applications”. In:
IACR Cryptol. ePrint Arch. (2023). to appear at ASIACRYPT’23,
p. 520 (cit. on p. 13).

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari.
“MinRoot: Candidate Sequential Function for Ethereum VDF”. In:
IACR Cryptol. ePrint Arch. (2022) (cit. on p. 2).

[Knu94] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In:
FSE 1994. Vol. 1008. LNCS. 1994, pp. 196–211 (cit. on pp. 17, 38).

[KS23] Abhiram Kothapalli and Srinath T. V. Setty. “HyperNova: Re-
cursive arguments for customizable constraint systems”. In: IACR
Cryptol. ePrint Arch. (2023). https://eprint.iacr.org/2023/
573, p. 573 (cit. on p. 2).

[KST22] Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. “Nova:
Recursive Zero-Knowledge Arguments from Folding Schemes”. In:
CRYPTO 2022. Vol. 13510. LNCS. 2022, pp. 359–388 (cit. on pp. 1,
2).

[Lai94] Xuejia Lai. “Higher Order Derivatives and Differential Cryptanal-
ysis”. In: Communications and Cryptography: Two Sides of One
Tapestry. Springer US, 1994, pp. 227–233 (cit. on p. 10).

[MRS+09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren
S. Thomsen. “The Rebound Attack: Cryptanalysis of Reduced Whirlpool

32

https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/824
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573

and Grøstl”. In: FSE 2009. Vol. 5665. LNCS. 2009, pp. 260–276 (cit.
on p. 18).

[Nat15] National Institute of Standards and Technology. “SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions”. In:
Federal Information Processing Standards Publication (FIPS) (202
2015) (cit. on p. 39).

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: The Case of AES”. In: CT-RSA 2006. Vol. 3860.
LNCS. 2006, pp. 1–20 (cit. on p. 9).

[Pag02] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. Cryptology ePrint Archive. https://eprint.iacr.
org/2002/169. 2002 (cit. on p. 9).

[PH23] Shahar Papini and Ulrich Haböck. “Improving logarithmic deriva-
tive lookups using GKR”. In: IACR Cryptol. ePrint Arch. (2023).
https://eprint.iacr.org/2023/1284 (cit. on p. 3).

[Pol22] Polygon. Introducing Plonky2. 2022 (cit. on pp. 3, 6).
[Pol23] Polygon. Plonky3. 2023. url: https://github.com/Plonky3/

Plonky3 (visited on 06/12/2023) (cit. on p. 3).
[PSS19] Alexey Pertsev, Roman Semenov, and Roman Storm. Tornado

Cash Privacy Solution Version 1.4. available at https://t.ly/
ys_pW. 2019 (cit. on p. 2).

[RIS23a] Jeremy Bruestle (RISC0). private communication. 2023 (cit. on
p. 3).

[RIS23b] RISC Zero. RISC Zero : General-Purpose Verifiable Computing.
2023 (cit. on pp. 3, 5).

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-Prime:
a Standard Specification (SoK). Cryptology ePrint Archive, Report
2020/1143. 2020 (cit. on p. 2).

[Sal23] Robin Salen. Two additional instantiations from the Tip5 hash
function construction. https://toposware.com/paper_tip5.
pdf. 2023 (cit. on p. 24).

[Sau21] Jan Ferdinand Sauer. Blog: Gröbner Basis – Attacking a Tiny
Sponge. available at https://jfs.sh/blog/gb- attacking-
tiny-sponge/. 2021 (cit. on p. 21).

[SLS+23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, Bob-
bin Threadbare, and Al-Kindi. The Tip5 Hash Function for Recur-
sive STARKs. Cryptology ePrint Archive, Paper 2023/107. https:
//eprint.iacr.org/2023/107. 2023 (cit. on pp. 3, 6, 14, 24).

[STW23] Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. “Unlocking
the lookup singularity with Lasso”. In: IACR Cryptol. ePrint Arch.
(2023). https://eprint.iacr.org/2023/1216 (cit. on p. 3).

[TBP20] Florian Tramèr, Dan Boneh, and Kenny Paterson. “Remote Side-
Channel Attacks on Anonymous Transactions”. In: USENIX Secu-
rity Symposium. USENIX Association, 2020, pp. 2739–2756 (cit.
on pp. 9, 25).

33

https://eprint.iacr.org/2002/169
https://eprint.iacr.org/2002/169
https://eprint.iacr.org/2023/1284
https://github.com/Plonky3/Plonky3
https://github.com/Plonky3/Plonky3
https://t.ly/ys_pW
https://t.ly/ys_pW
https://toposware.com/paper_tip5.pdf
https://toposware.com/paper_tip5.pdf
https://jfs.sh/blog/gb-attacking-tiny-sponge/
https://jfs.sh/blog/gb-attacking-tiny-sponge/
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/1216

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of
Knowledge Imply Time/Space Efficiency”. In: TCC 2008. Vol. 4948.
LNCS. 2008, pp. 1–18 (cit. on p. 2).

[YMT97] A. M. Youssef, S. Mister, and S. E. Tavares. “On the Design of
Linear Transformations for Substitution Permutation Encryption
Networks”. In: School of Computer Science, Carleton University.
1997, pp. 40–48 (cit. on p. 14).

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller,
Anca Nitulescu, and Mark Simkin. “Caulk: Lookup Arguments in
Sublinear Time”. In: CCS. ACM, 2022, pp. 3121–3134 (cit. on p. 3).

[ZGK+22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller,
and Carla Ràfols. Baloo: Nearly Optimal Lookup Arguments. Cryp-
tology ePrint Archive. https://eprint.iacr.org/2022/1565.
2022 (cit. on pp. 1, 3).

[Zha22] Ye Zhang. Introducing zkEVM. https://scroll.io/blog/zkEVM.
2022 (cit. on p. 2).

[ZMI89] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. “On the
Construction of Block Ciphers Provably Secure and Not Relying on
Any Unproved Hypotheses”. In: CRYPTO 1989. Vol. 435. LNCS.
1989, pp. 461–480 (cit. on pp. 4, 10).

34

https://eprint.iacr.org/2022/1565
https://scroll.io/blog/zkEVM

Table of Contents

1 Introduction . 1
1.1 Hash Functions in Zero-Knowledge Frameworks 1
1.2 Our Contributions . 3

2 Fast and Circuit-Friendly Functions over Fp . 6
2.1 The Kintsugi Design Strategy . 6
2.2 Well-Definition and Bijectivity . 8
2.3 Kintsugi, Earlier Bars, and Side-Channel Considerations 9
2.4 Statistical and Algebraic Properties . 9

3 Feistel Type-3 Layer and the Wide Trail Strategy 10
4 Specification of Monolith . 13

4.1 Modes of Operation . 13
4.2 Permutation Structure . 13
4.3 Bricks . 14
4.4 Concrete . 14
4.5 Bars . 15
4.6 Round Constant Generation . 16
4.7 Number of Rounds . 16

5 Security Analysis . 16
5.1 Differential Cryptanalysis . 17
5.2 Other Statistical Attacks . 17
5.3 Algebraic Analysis: Degree and Density of the Bars Polynomials 19
5.4 The CICO Problem for Keyless Algebraic Attacks 20

6 Performance Evaluation . 24
6.1 Native Performance . 24
6.2 Performance in Proof Systems . 26

A Fast Reduction for Primes of the Form ϕ2 − ϕ+ 1 and 2ρ − 1 36
A.1 Fast Reduction for Primes of the Form ϕ2 − ϕ+ 1 36
A.2 Fast Reduction for Primes of the Form 2ρ − 1 36
A.3 Generation of Round Constants . 36

B Security Analysis – Additional Material . 37
B.1 Degree and Density over Fp: Practical Results. 37
B.2 Non-Applicable Attacks . 38

C Benchmarks of Different Round Functions . 39
D Arithmetization Details . 39

D.1 R1CS . 39
D.2 Circuits for Other Hash Functions . 40
D.3 Multiround Constraints for Monolith . 40

SUPPLEMENTARY MATERIAL

A Fast Reduction for Primes of the Form ϕ2 − ϕ + 1 and
2ρ − 1

A.1 Fast Reduction for Primes of the Form ϕ2 − ϕ + 1

Here we describe the fast reduction modulo a prime number of the form ϕ2−ϕ+1.
Note that this includes p = 264−232+1, where ϕ = 232. We focus on the case of
a multiplication, where two n-bit inputs result in an output of at most 2n bits.

Given Fp for p = ϕ2 − ϕ+ 1, it follows that

ϕ2 = ϕ− 1 =⇒ ϕ3 = ϕ2 − ϕ = −1.

Now, let us write a value x to be reduced as

x = x0 + ϕ2x1 + ϕ3x2,

where x0 ∈ Z2n and x1, x2 ∈ Z2n/2 . Then

x = x0 + (ϕ− 1)x1 − x2 (mod p),

where note that log2(x0 + (ϕ − 1)x1 − x2) ≈ log2(p). This reduction can be
computed using only a small number of additions and subtractions.

A.2 Fast Reduction for Primes of the Form 2ρ − 1

Here we describe the fast reduction modulo a prime number of the form 2ρ − 1
which includes p = 231 − 1. We focus on the case of a multiplication, where two
ρ-bit inputs result in an output of at most 2ρ bits.

Given Fp for p = 2ρ − 1, it follows that 2ρ = 1+ p. Now, let us write a value
x to be reduced as

x = x0 + 2ρx1,

where x0 ∈ Z2ρ and x1 ∈ Fp. Then

x = x0 + x1 + (2ρ − 1) · x1︸ ︷︷ ︸
=0 (mod p)

= x0 + x1 (mod p).

This reduction can be computed using only a small number of additions and
binary shifts.

A.3 Generation of Round Constants

The round constants c
(i)
1 , c

(i)
2 , . . . , c

(i)
t for the i-th round are generated using the

well-known approach of seeding a pseudo-random number generator and reading
its output stream. In particular, we use SHAKE-128 with rejection sampling, i.e.,
we discard elements which are not in Fp. SHAKE-128, thereby, is seeded with

36

the initial seed “Monolith” followed by the state size t and number of rounds r,
each represented as one byte, the prime p represented by ⌈log2(p)/8⌉ bytes in
little endian representation, and the decomposition sizes in the bar layer, where
each si is represented as one byte. Thus, the seed is

b’Monolith\x08\x06\x01\x00\x00\x00\xff\xff\xff\xff

\x08\x08\x08\x08\x08\x08\x08\x08’

for Monolith-64 with t = 8, r = 6 and

b’Monolith\x10\x06\xff\xff\xff\x7f\x08\x08\x08\x07’

for Monolith-31 with t = 16, r = 6.

B Security Analysis – Additional Material

B.1 Degree and Density over Fp: Practical Results.

Evaluating the actual density of the polynomial resulting from Bar applied to
a single field element in Fp, where p ∈ {264 − 232 + 1, 231 − 1}, is infeasible in
practice. Indeed, any enumeration and subsequent interpolation approach would
take far too long.

Therefore, in our experiments we focus on smaller finite fields defined by
“similar” prime numbers. In particular, we focus on n-bit primes of the form
2n−2η +1 for η as close to n as possible. We then apply the S-box Si to smaller
parts of the field element, exactly as in Bar where the S-box is applied to each
8-bit part of the larger field element. We also vary the sizes of the parts to which
the Si are applied in order to get a broader picture.

The results of our evaluation are shown in Table 6. For example, in the
first case, where p = 28 − 24 + 1, Si is applied to the first 4 bits (starting
from the least significant bit) and then to the next 4 bits, covering the entire
field element. The size of these parts is indicated in the second column. As
we can see, the maximum degree is reached for all tested primes of the form
2n − 2η +1, where η > 1. Moreover, for these primes, the density is always close
to 100%, mostly matching it. We also applied Si to elements of F2n−1 directly,
where n ∈ {5, 7, 13}, which resulted in almost maximum-degree polynomials of
low density (specifically, only 6, 18, and 630 monomials exist in the polynomial
representation, respectively). This suggests that increasing the number of S-box
applications per field element (i.e., increasing the number of smaller parts to
which Si are applied) is beneficial for the density of the resulting polynomial.

We also evaluated the degrees and density values resulting from the inverse S-
boxes applied to the field elements, in order to get an estimation of the algebraic
strength of the inverse operation. The results match the results given in Table 6,
where always more than 99% monomials are reached together with a degree close
to the maximum.

37

Table 6. Degree and density of the polynomials resulting from Bar applied to various
field elements.

p Bit splittings Degree Density

28 − 24 + 1 {4, 4} 239 (= p− 2) 100%
213 − 28 + 1 {8, 5}, {4, 4, 5} 7935 (= p− 2) > 99% (7934/7935)
213 − 25 + 1 {5, 8}, {5, 4, 4} 8159 (= p− 2) > 99% (8157/8159)
214 − 210 + 1 {10, 4}, {5, 5, 4} 15359 (= p− 2) > 99% (15358/15359)
214 − 24 + 1 {4, 10} 16367 (= p− 2) 100%
214 − 24 + 1 {4, 5, 5} 16367 (= p− 2) > 99% (16364/16367)

213 − 1 {5, 8}, {8, 5}, {4, 9}, {9, 4} 8189 (= p− 2) > 99% (8188/8189)
27 − 1 {3, 4}, {4, 3} 125 (= p− 2) > 99% (124/125)

25 − 1 – 26 (= p− 5) ≈ 21% (6/29)
27 − 1 – 120 (= p− 7) ≈ 14% (18/125)
213 − 1 – 8178 (= p− 13) ≈ 8% (629/8189)

Table 7. Degree and density of the polynomials after a single round, where t = 4 and
two input variables are used (with the other two input elements being fixed).

p Bit splittings Degree Density

28 − 24 + 1 {4, 4} 239 (= p− 2) > 99% (28785/28920)
27 − 1 {3, 4} 125 (= p− 2) > 98% (7919/8001)
27 − 1 {4, 3} 125 (= p− 2) > 98% (7919/8001)

Degree and Density over Ft
p: Practical Results. We also ran tests regard-

ing the density over the entire state. Naturally, this task gets harder with an
increased number of rounds, since the degrees are rising too quickly. In our tests
we focused on p ∈ {28−24+1, 27−1} and t = 4, and we give the results together
with the sizes of the smaller S-boxes in Table 7.

As can be seen, the maximum number of monomials is almost reached after
a single round. We suspect that some of the monomials are not reached due
to cancellations, which is reasonable when considering these small prime fields.
Still, we acknowledge this fact by adding another round on top of that in order to
ensure that all polynomial representations of the state are dense and of maximum
degree. Thus, having 6 rounds achieves 4 rounds of security margin regarding
degrees and density of polynomials.

B.2 Non-Applicable Attacks

We emphasize that we do not claim security of Monolith against zero-sum
partitions [BCC11] (which can be set up via higher-order differentials [Knu94;
BCD+20] and/or integral/square attacks [DKR97]). In such an attack, the goal
is to find a collection of disjoint sets of inputs and corresponding outputs for the
given permutation that sum to zero (i.e., satisfy the zero-sum property). Our

38

choice is motivated by the fact that, to the best of our knowledge, it is not pos-
sible to turn such a distinguisher into an attack on the hash and/or compression
function. For example, in the case of SHA-3/Keccak [Nat15; BDP+11], while
24 rounds of Keccak-f can be distinguished from a random permutation using
a zero-sum partition [BCC11] (that is, full Keccak-f), preimage/collision at-
tacks on Keccak can only be set up for up to 6 rounds of Keccak-f [GLL+20].
Indeed, the authors of Keccak-f deem a 12-round version of the primitive to
provide ample security margin [BDP+18]. For this reason and as already done
in similar work [GKR+21; GHR+23], we ignore zero-sum partitions for practical
applications.

C Benchmarks of Different Round Functions

In Table 8, we give the runtime of each part of the Monolith permutation for
both a constant- and variable-time implementation.

Table 8. Native performance of each different round function in Monolith. Imple-
mented in Rust. ⋆ indicates an implementation without circulant MDS matrix.

Operation Time (ns) Const. Time (ns)

p = 264 − 232 + 1: t = 8 t = 12 t = 8 t = 12

Concrete 19.5 33.6 19.5 33.6
Bricks 12.2 19.3 16.0 21.8
Bars 10.4 12.9 10.4 12.9

p = 231 − 1: t = 16 t = 24 t = 16 t = 24

Concrete 31.8 138.1⋆ 31.9 138.1⋆

Bricks 17.0 21.7 17.0 21.7
Bars 8.4 12.0 8.4 12.0

D Arithmetization Details

D.1 R1CS

It is possible, though more expensive, to implement Monolith in legacy proof
systems that only support R1CS equations without any table lookups. In con-
trast to Reinforced Concrete, our design admits a reasonably small R1CS
representation described in the following. First, we use t− 1 constraints to gen-
erate equations for Bricks. For Bars, we decompose each element that goes into
a Bar into bits thus using one constraint per Bar for the actual decomposition
plus log2(p) ·#Bar constraints for ensuring that the bits are either 0 or 1. Then
each output bit of Bar requires 3 multiplications (2 for AND and 1 for XOR) for

39

the 8-bit S-box and 2 multiplications for the 7-bit one as used in Monolith-31.
By combining the composition constraints with the following bricks layer we get
1028 constraints for Monolith-64 and 944 constraints for Monolith-31 per Bars.
Finally, the Concrete layer can be included in the constraints of Bricks and
Bars, resulting in a total for R · (1027 + t) R1CS constraints for Monolith-64
and R · (943+ t) constraints for Monolith-31, where R is the number of rounds.

D.2 Circuits for Other Hash Functions

The Tip5 function applies four 64-bit S-boxes with lookups per round, so 32
8-bit lookups per round. It also uses 12 degree-7 power functions per round. We
allocate variables for the outputs of the power functions in addition to 64 lookup
variables per round.

Similarly, the Tip4’ function also applies 32 8-bit lookups per round to the
smaller state. However, it uses 8 degree-7 power functions per round, propor-
tionally reducing the number of variables.

The Poseidon2 function (as well as Poseidon which has the same number
of rounds and the same arithmetization) with t = 12 defined for pGoldilocks has
8 full and 22 partial rounds, thus 118 degree-7 functions in total. We allocate
variables for all outputs of the S-boxes, and link the others via linear equations.

Regarding Rescue-Prime, an instance with t = 12 defined for pGoldilocks re-
quires 8 rounds which each consist of two subrounds which alternate between
nonlinear layers featuring the xd and x1/d power maps. Due to this construction
one can find degree-7 constraints spanning a whole round of rescue, leading to
96 degree-7 constraints in total.

D.3 Multiround Constraints for Monolith

We consider p = pGoldilocks and t = 12. When implementing both Monolith
and Tip5 in a single gate, we can immediately observe various similarities. For
example, considering 8-bit lookups, the number of lookups is almost the same,
with Tip5 using slightly fewer ones due to its lower number of rounds (note that
both permutations use four lookup words per round). Moreover, the number of
necessary columns is similar in a round-based approach.

The major advantage of Monolith becomes apparent after considering the de-
gree of the constraints. Indeed, while Tip5 uses a maximum degree of 7 (which is
the smallest integer d such that gcd(pGoldilocks−1, d) = 1), Monolith uses a max-
imum degree of only 2. Not only does this lead to more efficient constraints, but it
allows for different tradeoffs. For example, consider p = pGoldilocks, t = 12 and a
state after the Concrete layer defined by 12 variables w(1)

1 , . . . w
(1)
12 . After the sub-

sequent application of Bars, we add 4 new variables w
(2)
1 , . . . , w

(2)
4 for the state

elements modified by the lookup table. We now apply Bricks and then Concrete
to the state. Note that describing the state in w

(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 after

these transformations results in degree-2 constraints (ignoring the table lookups),
since only one Bricks layer has been applied. Hence, we may now choose to only

40

add 4 new variables w(3)
1 , . . . , w

(3)
4 after the application of the last Concrete layer

at the positions of the table lookups. After the next Bars layer, the state is de-
fined by 8 polynomial equations in w

(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 of degree 2 and

by the 4 new variables w(4)
1 , . . . , w

(4)
4 resulting from the table lookups. After ap-

plying the next Bricks and Concrete layers, we arrive at a state defined by 12

polynomial constraints in w
(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 , w

(4)
1 , . . . , w

(4)
4 of degree 4.

A graphical overview of this approach is shown in Fig. 4.

Concrete

Bars

Bricks

Concrete

Bars

Bricks

Concrete

...

w
(1)
1 , . . . , w

(1)
t , Degree: 1

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , Degree: 1

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(3)

1 , . . . , w
(3)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 2

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 4

w
(1)
u+1, . . . , w

(1)
t , w(2)

1 , . . . , w
(2)
u , w(4)

1 , . . . , w
(4)
u , Degree: 4

Fig. 4. Variables (or trace elements) when using Monolith with degree-4 constraints.
Newly added variables are emphasized in bold and the degree indicates the maximum
degree of the polynomial equations describing the corresponding state in the given
variables.

As a result, with degree-4 constraints we can save t−u trace elements in each
pair of rounds, where u is the number of Bar applications in the Bars layers. This
allows us to achieve a slimmer row with even fewer columns. We point out that
this advantage of Monolith’s low degree also applies in a similar fashion when
comparing to other hash functions which use xd, such as Poseidon, Poseidon2,
Rescue, Griffin, Anemoi, and many more.

41

	Introduction
	Hash Functions in Zero-Knowledge Frameworks
	Our Contributions

	Fast and Circuit-Friendly Functions over Fp
	The Kintsugi Design Strategy
	Well-Definition and Bijectivity
	Kintsugi, Earlier Bars, and Side-Channel Considerations
	Statistical and Algebraic Properties

	Feistel Type-3 Layer and the Wide Trail Strategy
	Specification of Monolith
	Modes of Operation
	Permutation Structure
	Bricks
	Concrete
	Bars
	Round Constant Generation
	Number of Rounds

	Security Analysis
	Differential Cryptanalysis
	Other Statistical Attacks
	Algebraic Analysis: Degree and Density of the Bars Polynomials
	The CICO Problem for Keyless Algebraic Attacks

	Performance Evaluation
	Native Performance
	Performance in Proof Systems

	Fast Reduction for Primes of the Form 2 - + 1 and 2-1
	Fast Reduction for Primes of the Form 2 - + 1
	Fast Reduction for Primes of the Form 2-1
	Generation of Round Constants

	Security Analysis – Additional Material
	Degree and Density over Fp: Practical Results.
	Non-Applicable Attacks

	Benchmarks of Different Round Functions
	Arithmetization Details
	R1CS
	Circuits for Other Hash Functions
	Multiround Constraints for Monolith

