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Abstract. In public key encryption (PKE), anonymity is essential to
ensure privacy by preventing the ciphertext from revealing the recipient’s
identity. However, the literature has addressed the anonymity of PKE
under different attack scenarios to a limited extent. Benhamouda et al.
(TCC 2020) introduced the first formal definition of anonymity for PKE
under corruption, and Huang et al. (ASIACRYPT 2022) made further
extensions and provided a generic framework.

In this paper, we introduce a new security notion named enhanced
decryption key exposure resistance (En-DKER) for revocable identity-
based encryption (RIBE). This notion ensures that the exposure of de-
cryption keys within any time period will not compromise the confi-
dentiality and anonymity of ciphertexts encrypted during different pe-
riods. Meanwhile, we construct the first RIBE scheme with En-DKER
and prove its security under the learning with errors (LWE) assumption.
Our scheme offers several advantages. Firstly, the periodic workload of
the key generation center (KGC) in our scheme is nearly zero. Secondly,
the encryptor does not need to handle real-time revocation information
of users within the system. Thirdly, the size of user secret keys remains
constant in multi-bit encryption.

Additionally, we present a novel approach to delegate a lattice basis.
Diverging from the work of Cash et al. (J CRYPTOL 2012), our ap-
proach allows for the outsourcing of subsequent sampling operations to
an untrusted server. Leveraging this approach, our scheme significantly
reduces the periodic workload for users to generate decryption keys. Fi-
nally, we efficiently implemented our scheme using the number theory
library (NTL) and multi-threaded parallel program. The experimental
results confirm the advantages of our scheme.

Keywords: Revocable identity-based encryption · Anonymity · Decryp-
tion key exposure · Lattice-based cryptography · Lattice basis delegation.

1 Introduction

Identity-based encryption (IBE) is an advanced form of public key encryption
(PKE) that eliminates the need for certificates by allowing any string to serve
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as a user’s public key. This simplifies the traditional PKE process but presents
a challenge when it comes to revoking malicious users without a certificate in-
validation mechanism. Boneh and Franklin [9] proposed a solution in which the
key generation center (KGC) periodically generates and broadcasts keys for all
non-revoked users. However, their scheme incurs a periodic workload of O(N−r)
for the KGC, which can become the system’s bottleneck as the number of users
grows, where N is the maximum number of users and r is the number of revoked
users. Boldyreva et al. [8] proposed an indirect revocation model, that employs a
binary tree structure and subset-cover framework, to reduce the periodic work-
load of the KGC to O(r log(N/r)).

In order to ensure the comprehensive utilization of the revocable identity-
based encryption (RIBE) scheme, it is imperative to consider additional attack
scenarios and privacy requirements. Key exposure happens frequently due to
external attacks or user errors. Seo and Emura [24] introduced an important se-
curity notion called decryption key exposure resistance (DKER), which requires
that the exposure of decryption keys for any time period cannot compromise
the confidentiality of ciphertexts that are encrypted for different time periods
within RIBE schemes. Furthermore, they constructed the first RIBE scheme
with DKER by re-randomizing the decryption keys in Boldyreva et al.’s indirect
revocation IBE scheme [8]. Subsequently, more efficient and secure schemes have
been proposed [13,14,27].

However, the above-mentioned RIBE schemes with DKER are all based on
number theoretical assumptions, such as bilinear maps and multilinear maps.
The algebraic structure of lattices, which is believed to be resistant against
quantum attacks, has traditionally been considered unsuitable for the key re-
randomization property. This is because if a user generates a new decryption
key that satisfies the correctness without knowledge of the trapdoor, he can
also solve the small integer solution (SIS) problem. Therefore, constructing a
lattice-based RIBE scheme with DKER without the ability to re-randomize the
decryption keys in [8] has become an open problem.

Until 2019, Katsumata et al. [17] combined the first lattice-based indirect re-
vocation IBE scheme by Chen et al. [12] and the lattice basis delegation scheme
by Cash et al. [11], thereby achieving a two-level structure and successfully con-
structing the first lattice-based RIBE scheme with DKER. Specifically, lattice
basis delegation scheme allows for the extension of any short basis from a lattice
A to a short basis of any higher-dimensional lattice [A|B]. In [17], the decryp-
tion key of the first level, similar to [12], cannot be re-randomized, while the
other level is generated through extended lattice basis sampling and can be re-
duced to random values over the field during security proofs. This partial key
re-randomization ensures the DKER property. By following the idea, Wang et
al. [26] constructed a more efficient scheme, and Zhang et al [28] proposed a
lattice-based server-aided RIBE with DKER.

IBE allows using a user’s identity information (such as email address or user-
name) as the public key. This eliminates the need for a traditional public key
infrastructure (PKI) to distribute and maintain separate key pairs for each user.
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In this scenario, anonymity becomes crucial because users’ identity information
is typically sensitive and should not be exposed in the ciphertext [6]. Neverthe-
less, if the decryption key for any time period is exposed, the two-level structure
proposed in [17] fails to ensure the anonymity of ciphertexts encrypted during
different time periods. Takayasu and Watanabe [25] explained this point in de-
tail and constructed an anonymity RIBE scheme with bounded decryption key
exposure resistance (B-DKER) which is a weaker version of DKER, ensuring the
security of RIBE schemes in the case of a-priori bounded number of decryption
keys exposure.

Open Problem: If decryption key exposure for any time period, is it possible
to construct an RIBE scheme that ensures the confidentiality and anonymity of
ciphertexts encrypted for different time periods?

Not only under lattice assumptions but also under number theoretical as-
sumptions, Boyen and Waters [10] mentioned that anonymity appears unattain-
able when re-randomization elements are included in the public parameters.
Moreover, the anonymity of PKE under different attack scenarios is less studied
in the literature. Recently, Benhamouda et al. [7] introduced the first formal
definition of anonymity for PKE under corruption. Then, Huang et al. [16] pro-
vided a generic framework of the anonymous PKE scheme under corruption. To
the best of our knowledge, there is currently no RIBE scheme that can address
the aforementioned problem.

1.1 Related Works

Following the work of Boldyreva et al. [8], Attrapadung and Imai [5] introduced
a direct revocation model that eliminates the need for periodic key updates by
both the KGC and users. Under this model, data owners can manage the revo-
cation list and generate ciphertext that can only be decrypted by non-revoked
users within specific scenarios. However, aside from its limited applicability, this
model is restricted to fine-grained revocable encryption schemes, such as re-
vocable attribute encryption (RABE) [19] and revocable predicate encryption
(RPE) [18]. For a single recipient, the data owner can verify the non-revocation
status of the recipient and share data using IBE schemes without needing RIBE
schemes. In 2015, Qin et al. [22] proposed a server-aided revocation model in
which almost all user workloads are delegated to an untrusted server. However,
the periodic workload of the KGC is still remains logarithmic.

1.2 Technical Overview

Because under lattice assumptions, the decryption keys in the indirect revocation
model cannot be re-randomized, our scheme is improved based on the direct
revocation model.

First, we need to address the issue of incongruence between the direct re-
vocation model and RIBE schemes. Specifically, in the direct revocation model
proposed by Attrapadung and Imai [5], the encryptor uses the revocation list
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RLt to generate the set KUNodes(RLt) which represents the smallest nodes sub-
set of non-revoked users on time period t. What is interesting is that the set
KUNodes(RLt) does not reveal any information about the revocation list RLt
since the adversary is unable to determine which user corresponds to each leaf
node. Therefore, in our model, the KGC periodically generates and broadcasts
the set KUNodes(RLt), thereby eliminating the encryptor’s need to handle any
revocation list information and making our model free from specific scenarios.
Moreover, our model inherits the benefits of the direct revocation model, and
the periodic workload of the KGC is nearly zero.

Second, by combining the lattice-based delegation algorithm with our im-
proved revocation model, we utilize the extended lattice basis as the user’s se-
cret key. Simultaneously, users employ this extended lattice basis for sampling
to generate decryption keys, which can be reduced to random values in the field
during security proofs. Consequently, we achieve complete re-randomization of
decryption keys, thereby ensuring the confidentiality and anonymity of cipher-
texts from different time periods in the event of decryption key exposure in any
time period.

1.3 Our Contributions

This paper presents three significant contributions.
First, we propose a stronger security notion named enhanced decryption

key exposure resistance (En-DKER). Simultaneously, we define the scheme and
security model for the RIBE scheme with En-DKER. For details, see Sect. 3.

Second, this paper presents a novel approach to achieving the lattice basis
delegation, which enables the outsourcing of subsequent sampling operations to
an untrusted server. For details, see Sect. 4.1.

Third, we construct the first RIBE scheme with En-DKER, which is suitable
for multi-bit encryption and scenarios where the KGC has a high computational
workload. In addition, we outsource the majority of user’s workload to an un-
trusted server. At the same time, we prove the security of our scheme under the
LWE assumption. For details, see Sect. 4. Moreover, our scheme is efficiently im-
plemented through the number theory library (NTL) and multi-threaded parallel
programming. The experimental results validate the benefits of our revocation
model and scheme. See Sect. 5.1 for details.

2 Preliminaries

2.1 Notations

Throughout this paper, we denote λ as the security parameter. For two dis-
tributions D and D′, the statistical distance between D and D′ is defined as
SD(D,D′). A family of distributions D = {Dλ}λ∈N and D′ = {D′λ}λ∈N are said
to be statistically indistinguishable if there is a negligible function negl(·) such
that SD(Dλ,D′λ) ≤ negl(λ) for all λ ∈ N, where negl(·) represents a function that
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for every constant c > 0 there exists an integer Nc satisfying negl(λ) ≤ λ−c for
all λ > Nc. Let PPT denote probabilistic polynomial time.

If n is a positive integer, we let [n] = {1, . . . , n}. For a column vector x ∈ Zn,
||x|| denotes the standard Euclidean norm of x. For a matrix A ∈ Rn×m, denote
Ã as the Gram-Schmidt orthogonalization of matrix A and denote ||A|| as the
Euclidean norm of the longest column in A.

Smudging The given lemma, originally established in [4], asserts that adding
large noise can “smudges out” any small values.

Definition 1 (B-Bounded). For a family of distributions D = {Dλ}λ∈N over
the integers and a bound B = B(λ) > 0, if for every λ ∈ N it holds that
Prx←Dλ

[|x| ≤ B(λ)] = 1, we say that D is B-bounded.

Lemma 1 (Smudging Lemma). Let B1, B2 be two polynomials over the inte-
gers, and let D = {Dλ}λ be any B1-bounded distribution family. Let U = {Uλ}λ
be the uniform distribution over [−B2(λ), B2(λ)]. The family of distributions
D + U and U are statistically indistinguishable if there exists a negligible func-
tion negl(·) such that for all λ ∈ N it holds that B1(λ)/B2(λ) ≤ negl(λ).

Leftover Hash Lemma Here, we recall the leftover hash lemma from [1].

Lemma 2. Suppose that m > (n + 1) log q + ω(log n), and k = k(n) be some
polynomial in n. Then, the distribution (A,AR) is statistically indistinguishable
to the distribution (A,B), where A and B are uniformly matrices in Zn×m

q and
Zn×k
q , and R is a uniformly matrix in {−1, 1}n×k.

Full-Rank Different Map We need this tool to encode identities and time
periods as matrices in Zn×n

q .

Definition 2. A function H : Zn
q → Zn×n

q is a full-rank different map if the
matrix H(u) − H(v) ∈ Zn×n

q is full rank, for all distinct u,v ∈ Zn
q , and H is

computable in O(n log q).

2.2 Background on Lattices

Lattice. An m-dimensional lattice L is a discrete subgroup of Rm. Let L⊥q (A)
denote the q-ary lattice {x ∈ Zm | Ax = 0 mod q}, where n, m, q are positive
integers and A is a matrix in Zn×m

q . For any u in Zn
q , let Lu

q (A) denote the
coset {x ∈ Zm | Ax = u mod q}.

Discrete Gaussians. For any parameter σ > 0, the discrete Gaussian distri-
bution ρL,σ(x) = ρσ(x)/ρσ(L), where ρσ(x) = exp(−π||x||2/σ2) and ρσ(L) =∑

x∈L ρσ(x). The following lemmas are important properties of discrete Gaus-
sian [15].
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Lemma 3. Let n, m, q be positive integers with m > n, q > 2, and A be a
matrix in Zn×m

q . Then, there is a negligible function negl(·) such that Pr[||x|| >
σ
√
m : x← DL⊥

q (A),σ] ≤ negl(n), when σ = Ω̃(n).

Lemma 4. Let n, m, q be positive integers with m > 2n log q. Then, for A ←
Zn×m
q and e ← DZm,σ, the distribution of u = Ae mod q is statistically close

to the uniform distribution over Zn
q .

Sampling Algorithms. We review some sampling algorithms from [2,3, 20].

Lemma 5. Let n ≥ 1, m ≥ 2n ⌈log q⌉, q ≥ 2, we have the following polynomial
time algorithms:

– TrapGen(1n, 1m, q)→ (A,TA): On input n, m, q, output a matrix A ∈ Zn×m
q

and its trapdoor TA ∈ Zm×m, satisfying ||TA|| ≤ O(n log q).

– SamplePre(A,TA, σ,u) → s: On input a matrix A ∈ Zn×m
q and its trapdoor

TA, a vector u ∈ Zn
q , and a parameter σ ≥ ||T̃A|| · ω(

√
logm), output a vector

s ∈ Zm
q , satisfying A · s⊤ = u⊤ and ||s|| ≤

√
mσ.

– SampleLeft(A,M ,TA, σ,u) → s: On input a matrix A ∈ Zn×m
q and its trap-

door TA, a matrix M ∈ Zn×m0
q , a vector u ∈ Zn

q , and a parameter σ ≥
||T̃A|| · ω(

√
log(m+m0)), output a vector s ∈ Zm+m0

q distributed statistically
close to DLu

q ([A|M ]),σ.

– There is a gadget matrix G, which is a full rank matrix in Zn×m
q and has a

publicly known trapdoor TG with ||T̃G|| ≤
√
5.

– SampleRight(A,G,R,TG, σ,u)→ s: On input a matrix A ∈ Zn×m
q , the gadget

matrix G and its trapdoor TG, a uniform random matrix R← {−1, 1}m×m, a
vector u ∈ Zn

q , and a parameter σ ≥ ||T̃G|| ·
√
m · ω(

√
logm), output a vector

s ∈ Z2m
q distributed statistically close to DLu

q ([A|AR+G]),σ.

LWE Assumption. Our RIBE scheme is based on the learning with errors
(LWE) assumption.

Assumption 1 (Learning with Errors [23]). Let n, q be positive integers, and
a parameter σ ∈ R, for any PPT adversary A, there exists a negligible function
negl(·) that satisfies |Pr[A(α, s⊤α+ e) = 1]− Pr[A(α, γ) = 1]| ≤ negl(λ), where
α← Zn

q , s← Zn
q , γ ← Zq, and e← DZ,σ.

2.3 The Complete Subtree Method

The complete subtree (CS) method, proposed by Naor et al. [21], effectively
improves the efficiency of the revocation schemes. In this method, the system
will build a complete binary tree BT. For a non-leaf node θ ∈ BT, θl and θr
denote the left and right child node of θ, and η denote the leaf node in BT.
Path(η) denote the set of nodes on the path from η to the root. Inputting the
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revocation list RLt on the time period t, then the KUNodes algorithm proceeds
as follows: sets two empty sets X and Y ; adds Path(η) to X, for each η ∈ RLt;
for each θ ∈ X, adds θl to Y if θl /∈ X, adds θr to Y if θr /∈ X; if Y is still the
empty set, then adds root to Y ; finally, outputs Y which is the smallest nodes
subset of non-revoked users on the time period t.

3 Formal Definition for RIBE with En-DKER

Definition 3 (En-DKER). The exposure of users’ decryption keys for any
time period does not compromise the anonymity and confidentiality of ciphertexts
that are encrypted for different time periods.

It should be noted that En-DKER is different from achieving both DKER and
anonymity since current anonymous IBE schemes are constructed under the
assumption that the user’s decryption keys will not be exposed. In other words,
RIBE with En-DKER scheme cannot be constructed by simply combining the
RIBE with DKER scheme with an anonymous IBE scheme. Therefore, it is
necessary to define a new security notion to avoid confusion for readers.

3.1 Scheme Model of RIBE with En-DKER

Our RIBE scheme consists of the six algorithms (Setup, GenSK, NodesUp, GenDK,
Enc, Dec) with associated message spaceM, identity space ID, and time period
space T . The KGC maintains a revocation list RL which is dynamically updated
following the time period t.

– Setup(λ,N): This algorithm is run by the KGC. Input a security parameter λ
and a maximal number N of users, output public parameters PP and a master
secret key MSK.

– GenSK(PP,MSK, ID): This algorithm is run by the KGC. Input the public
parameters PP, the master secret key MSK, and an identity ID ∈ ID, output
a secret key SKID for the user with the identity ID.

– NodesUp(BT,RLt): This algorithm is run by the KGC. Input the binary tree
BT and the revocation list RLt, the KGC generates and broadcasts a node set
KUNodes(RLt) for the time period t.

– GenDK(PP,SKID,KUNodes(RLt)): This algorithm is run by the receiver. In-
put the public parameters PP, the secret key SKID, and the set KUNodes(RLt),
output a decryption key DKID,t.

– Enc(PP, ID, t,KUNodes(RLt), µ): This algorithm is run by the sender. Input
the public parameters PP, an identity ID ∈ ID, a time period t ∈ T , the set
KUNodes(RLt), and message µ, output a ciphertext CTID,t.

– Dec(CTID,t,DKID,t): This algorithm is run by the receiver. Input the ciphertext
CTID,t and the decryption key DKID,t, output message µ′ ∈M.
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Correctness. An RIBE scheme is correct if for all λ ∈ N, N ∈ N, (PP,MSK)←
Setup(λ, l,N), µ ∈M, ID ∈ ID, t ∈ T and revocation lists RL it holds that

Pr


SKID ← GenSK(PP,MSK, ID)

KUNodes(RLt)← NodesUp(BT,RLt)
µ′ = µ DKID,t ← GenDK(PP,SKID,KUNodes(RLt))

CTID,t ← Enc(PP, ID, t,KUNodes(RLt), µ)
µ′ ← Dec(CTID,t,DKID,t)

=1-negl(λ).

3.2 Security Model of RIBE with En-DKER

Now, we give a formal security definition for RIBE with En-DKER by the game
between adversary A and challenger C. Different from the security definition of
RIBE with DKER, we replace the challenge identity ID with ID(0) and ID(1).
When C randomly chooses a bit b, the challenge plaintext µ(b) will be encrypted
with the identity ID(b). Assuming the scheme does not satisfy anonymity, the
adversary can distinguish between ID(0) and ID(1), then get the value of challenge
bit b and win the game. So in this setting, our security definition can verify the
anonymity while proving the security of the RIBE schemes.

In addition, since the revocation list RL is dynamically updated following the
time period t, so we set a global variable tcu ∈ T , whose initial value is 1, to
assist in generating the decryption key DKID,t of any time period queried by A.

Initialize: A sets the challenge identities ID(0) and ID(1), the challenge time
period t∗, and the challenge node set KUNodes(RLt∗)

∗.
Setup Phase: C runs Setup and gives the public parameters PP to A.
Query Phase: A adaptively makes a polynomial number queries to C:

1. A sets Q0 = {ID} for the establishment of the binary tree BT. C randomly
picks an unassigned leaf node ηID for ID.1 At the end of the quiry, C obtains
RL∗t∗ based on KUNodes(RLt∗)

∗ and BT, and sends it to A.
2. A sets Q1 = {ID} for the secret key queries, subject to the restriction:

ID ∈ Q0; if ID = ID(0) or ID(1), ID ∈ RL∗t∗ . C replies with the corresponding
secret key SKID ← GenSK(PP,MSK, ID).

3. Let tcu = 1, and loop through the following steps:
(a) A sets Q2 = {(ID, tcu)} for the decryption key queries, subject to the

restriction: ID ∈ Q0; ID /∈ RLtcu ; if tcu = t∗, ID ̸= ID(0) and ID(1). C replies
with the decryption key DKID,t ← GenDK(PP,SKID,KUNodes(RLt)).

(b) A sets Q3 = {(ID, tcu)} for revocation queries, subject to the restriction:
ID ∈ Q0; ID(0) and ID(1) are either queried at the same time period t or
neither,2; RLt∗ = RL∗t∗ . C adds ID to the revocation list RL, and updates
RLtcu+1 = RL. Then, C sent KUNodes(RLtcu+1) to A.

1 This step moves from the algorithm GenSK to the Query Phase.
2 If the two challenge identities are revoked at different time periods, the adversary

can distinguish them in the subsequent key queries phase.
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(c) tcu = tcu + 1.
Challenge Phase: A outputs the challenge plaintexts µ(0) and µ(1). Then C
chooses a random bit b ← {0, 1} and replies with the corresponding ciphertext
CTID(b),t∗ ← Enc(PP, ID(b), t∗, {µ(b)

i }i∈[l]).
Guess: A outputs a guess b′ of b.

Definition 4. An RIBE with En-DKER scheme is selectively secure if the ad-
vantage AdvSEL-En-CPARIBE,A (λ) is at most negligible for any PPT adversaries A, where
AdvSEL-En-CPARIBE,A (λ) = |Pr[b = b′]− 1/2|.

Remark 1. According to the challenge identities ID(0) and ID(1), and the chal-
lenge time period t∗, it needs to be divided into two cases:
– If ID(0) and ID(1) are revoked before t∗, adversary A can perform the secret key

queries and decryption key queries according to the corresponding restrictions.

– If ID(0) and ID(1) have not been revoked before t∗, A can perform decryption
key queries according to the corresponding restrictions. It is important to note
that the RIBE without En-DKER schemes cannot support queries in this case.

4 Revocable IBE with En-DKER from Lattices

In this section, we present our proposed lattice-based RIBE scheme with En-
DKER. We begin by introducing our approach for lattice basis delegation in
Sect. 4.1. We present our scheme in Sect. 4.2 and prove the security in Sect. 4.3.

4.1 Lattice Basis Delegation

Lattice basis delegation enables the extension of a short basis from a lattice A
to a short basis of any higher-dimensional lattice [A|BID]. This extension basis
must not disclose any information about the short basis of A. Subsequently, the
user ID can employ the extension basis to generate decryption keys. Our novel
approach can outsource this sampling calculation to an untrusted server. The
details are as follows.

First, the KGC runs the algorithm TrapGen to generate a pair of matrix
with trapdoor (A,TA), where A is the public parameters PP and TA is the
master secret key MSK. Additionally, we need to use a gadget matrix G and
a publicly known trapdoor TG as defined in Lemma 5. Then, by utilizing the
SampleLeft algorithm and TA, the KGC generates KID, satisfying [A|BID]KID =
G. Meanwhile, KID can serve as the short basis for the user ID, because for any
vector x ∈ Zn

q , the user can also calculate a bounded small key k by using KID,
satisfying [A|BID]k = x. The difference is that the majority of the workload to
generate k can be outsourced to an untrusted server. Specifically, by utilizing the
SampleLeft algorithm and the public trapdoor TG, the server generates k′ and
sends it to the user, satisfying Gk′ = x. Then, the user only needs to calculate
KIDk

′ as the key k.



10 Wang et al.

However, KIDk
′ is only a bounded small key. To make the key k satisfy

the re-randomization property, we introduce an important tool called smudging
lemma [4]. Specifically, the user first uniformly select an random vector K′ in
a relatively large distribution, and set x′ = x − [A|BID]K

′. Subsequently, by
employing the sampling outsourcing approach, the server can generate the key
k′, satisfying Gk′ = x′. The user can obtain the key k by adding K ′ and KIDk

′

in a component-wise fashion, satisfying [A|BID]k = x. Smudging lemma can
guarantee the randomness of the decryption key.

Correctness. Now, we analyze the correctness of our approach.

[A|BID]k = [A|BID]K
′ + [A|BID]KIDk

′

= [A|BID]K
′ +Gk′

= [A|BID]K
′ + x− [A|BID]K

′ = x.

Furthermore, given the untrusted nature of the server, users must verify
whether Gk′ is equal to x′ after receiving k′. We will no longer mention this in
the subsequent scheme construction.

4.2 Construction

In our scheme, we set the message space M = {0, 1}, the identity space ID ⊂
Zn
q \ {0n}, and the time period space T ⊂ Zn

q . For any B ∈ N, let UB denote the
uniform distribution on Z∩ [−B,B]. In addition, our system parameters satisfy
the following constraints: m > 2n log q and σ >

√
m · ω(

√
m) (for sampling);

O(m3/2Bσ) < q/4 (for correctness); n = O(λ), χLWE = DZ,σ (for security);
χbig = UB , where B > (mσ2 + 1)2λ (for smudging).

Multi-Bit Encryption. Agrawal et al. [1] proposed an approach for multi-bit
encryption, in which encrypts l bits message using a single random vector s ∈ Zn

q .
Specifically, they set l vectors (u1, . . . ,ul) from Zn

q into the public parameters
PP, as opposed to the basic scheme which utilizes only a single vector u. Message
bit number i is encrypted using the vector ui.

However, in current lattice-based RIBE schemes, changing the vector u from
one column to l column results in the size of user secret keys, update keys, and
decryption keys growing by a factor of l. The workload for the KGC and users
also increases by a factor of l. Fortunately, in our scheme, the size of user secret
keys remains constant, periodic workload of the KGC remains nearly zero, and
the majority of the workload for generating decryption keys is outsourced to the
server with the advantages of our lattice basis delegation approach.

Now, we describe our lattice-based RIBE with En-DKER construction.

Setup(λ, l,N): On input a security parameter λ, number of encryption bits l,
and maximum number of users N . The specific process is as follows:

1. Choose an LWE modulus q and dimensions n,m.
2. Run the algorithm TrapGen(1n, 1m, q) to generat a pair of matrix with trap-

door (A,TA).
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3. Select uniformly random matrices B, and W in Zn×m
q , and uniformly ran-

dom vectors {ui}i∈[l] in Zn
q .

4. Build a binary tree BT with at least N leaf nodes. For each node θ ∈ BT,
select a uniformly random matrix Dθ in Zn×m

q .
5. Output PP = {A,B,W , {ui}i∈[l], {Dθ}θ∈BT}, MSK = {TA,BT}.

GenSK(PP,MSK, ID): On input the public parameters PP, the master secret
key MSK, and an identity ID ∈ ID. The specific process is as follows:

1. Randomly pick an unassigned leaf node ηID from BT and store ID in it.
2. Set BID = B + H(ID)G, where H(·) is a full-rank different map defined in

Definition 2 and G is a gadget matrix defined in Lemma 5.
3. For each θ ∈ Path(ηID), generate KID,θ satisfying [A|BID|Dθ]KID,θ = G.

(a) Set ZID = [A|BID]K
′
ID, where K ′ID is a uniformly random matrix selected

in χ2m×m
LWE .

(b) Sample K ′′ID,θ ← SampleLeft(A,Dθ,TA, σ,G−ZID).
(c) Split K ′ID and K ′′ID,θ into two parts, K ′1,ID, K ′2,ID and K ′′1,ID,θ, K

′′
2,ID,θ, m

rows per part. Then, generate

KID,θ =

[(
K ′1,ID +K ′′1,ID,θ

)⊤ (
K ′2,ID

)⊤ (
K ′′2,ID,θ

)⊤ ]⊤
∈ Z3m×m

q .

4. Output SKID = {KID,θ}θ∈Path(ηID).

NodesUp(BT,RLt): On input the binary tree BT and the revocation list RLt,
the KGC generates and broadcasts a set KUNodes(RLt) for the time period t.

GenDK(PP,SKID,KUNodes(RLt)): On input the public parameters PP, the se-
cret key SKID, and the node set KUNodes(RLt). The specific process is as follows:

1. Perform node matching, and let θ∗ = Path(ηID) ∩ KUNodes(RLt). If θ∗ = ∅,
outputs ⊥. Otherwise, continue the following steps.

2. For i ∈ [l], generate dki,ID,θ∗,t satisfying [A|BID|Dθ∗ |Wt]dki,ID,θ∗,t = ui,
where dki,ID,θ∗,t ∈ Z4m

q .
(a) Set hi,ID,t = [A|BID|Dθ∗ |Wt]ki,t and send to the server, where ki,t is a

uniformly random vector selected in χ4m
big , Wt = W + H(t)G.

(b) The server samples k′
i,ID,t ← SamplePre(G,TG, σ,ui − hi,ID,t) and sends

to the user.
(c) Compute k′′

i,ID,θ∗,t = KID,θ∗k′
i,ID,t, satisfying [A|BID|Dθ∗ ]k′′

i,ID,θ∗,t = ui−
hi,ID,t, where k′′

i,ID,θ∗,t ∈ Z3m
q .

(d) Split ki,t into four parts, k1,i,t, k2,i,t, k3,i,t, k4,i,t, and k′′
i,ID,θ∗,t into three

parts k′′
1,i,ID,θ∗,t, k

′′
2,i,ID,θ∗,t, k

′′
3,i,ID,θ∗,t, m rows per part. Then, generate

dki,ID,θ∗,t =

[(
k1,i,t + k′′

1,i,ID,θ∗,t

k2,i,t + k′′
2,i,ID,θ∗,t

)⊤ (
k3,i,t + k′′

3,i,ID,θ∗,t

k4,i,t

)⊤ ]⊤
∈ Z4m

q .

3. Output DKID,t = {dki,ID,θ∗,t}i∈[l].
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Enc(PP, ID, t,KUNodes(RLt), {µi}i∈[l]): On input the public parameters PP, an
identity ID ∈ ID, a time period t ∈ T , the set KUNodes(RLt), and message
µi ∈M, where i ∈ [l]. The specific process is as follows:

1. Select uniformly random matrices R, Sθ, and V in {−1, 1}m×m, where θ ∈
KUNodes(RLt), and a uniformly random vector s in Zn

q .
2. Choose noise ei ← χLWE and a noise vector e′ ← χm

LWE, where i ∈ [l].
3. Set Ci = s⊤ui +

⌊
q
2

⌋
· µi + ei, where i ∈ [l].

4. Set cID,θ,t = s⊤[A|BID|Dθ|Wt] + e′⊤[Im|R|Sθ|V ], where Im is an identity
matrix, θ ∈ KUNodes(RLt).

5. Output CTID,t = {{Ci}i∈[l], {cID,θ,t}θ∈KUNodes(RLt)}.
Dec(CTID,t,DKID,t): On input the ciphertext CTID,t and the decryption key
DKID,t. The specific process is as follows:

1. Compute C ′i = Ci − cID,θ∗,tdki,ID,θ∗,t, where i ∈ [l].
2. For each i ∈ [l], output µi = 1 if |C ′i −

⌊
q
2

⌋
| <

⌊
q
4

⌋
, otherwise µi = 0.

Correctness. Now, we analyze the correctness of our scheme,

C ′i = Ci − cID,θ∗,tdki,ID,θ∗,t

= s⊤ui +
⌊q
2

⌋
· µi − s⊤[A|BID|Dθ∗ |Wt]dki,ID,θ∗,t + noisei

=
⌊q
2

⌋
· µi + noisei,

for each i ∈ [l], where

noisei = ei − e′⊤[Im|R|Sθ∗ |V ]dki,ID,θ∗,t

= ei − e′⊤[Im|R|Sθ∗ |V ]


k1,i,t +K ′1,IDk

′
i,ID,t +K ′′1,ID,θ∗k′

i,ID,t

k2,i,t +K ′2,IDk
′
i,ID,t

k3,i,t +K ′′2,ID,θ∗k′
i,ID,t

k4,i,t

 .

Correctness now follows since noisei is small and should not affect
⌊
q
2

⌋
· µi.

Moreover, the following inequalities hold except with negligible probability:

– From Lemma 2, we have ||R||, ||Sθ∗ ||, and ||V || ≤ O(
√
m).

– From Lemma 1, we have ||k1,i,t||, ||k2,i,t||, ||k3,i,t||, and ||k4,i,t|| ≤
√
mB.

– From Lemma 5, we have ||K ′1,IDk′
i,ID,t||, ||K ′′1,ID,θ∗k′

i,ID,t||, ||K ′2,IDk′
i,ID,t||, and

||K ′′2,ID,θ∗k′
i,ID,t|| ≤ m3/2σ, and ||ei|| ≤ σ, ||e′|| ≤

√
mσ.

||noisei|| = ||ei − e′⊤[Im|R|Sθ∗ |V ]dki,ID,θ∗,t||
≤ ||ei||+ ||e′⊤|| · ||[Im|R|Sθ∗ |V ]dki,ID,θ∗,t||
≤ σ + (

√
mσ)[(2m3/2σ +

√
mB) + (2m3/2σ + 3

√
mB)O(

√
m)]

≤ O(m3/2Bσ) < q/4,

and we can get µi by judging |C ′i −
⌊
q
2

⌋
| = |

⌊
q
2

⌋
· µi + noisei −

⌊
q
2

⌋
| <

⌊
q
4

⌋
.
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4.3 Security Analysis

Theorem 1. If the LWE assumption holds, the proposed RIBE scheme with En-
DKER is selectively secure.

Proof. We set a series of games, and A’s advantage changes only by a negligible
amount between each adjacent games. The first game corresponds to the real
selective security for the proposed RIBE scheme, and the final game’s ciphertext
is independent of the bit b, whereby the advantage of A is zero. The proof of
Theorem 1 is completed.

The Series of Games. Let A be the adversary in the security definition of the
RIBE with En-DKER. We consider the following series of games.

Game
(b)
0 : This game corresponds to the real selective security game for the

proposed RIBE scheme. B chooses a random bit b← {0, 1}.
Game

(b)
1 : This game is analogous to Game

(b)
0 except the generation of matrices

B, {Dθ}θ∈BT, and W during the Setup phase.
1. Select uniformly random matrices R∗, S∗θ and V ∗ in {−1, 1}m×m, where

θ ∈ BT.3

2. Set B = AR∗ − H(ID(b))G, W = AV ∗ − H(t∗)G, and

Dθ =

{
AS∗θ , if θ ∈ KUNodes(RLt∗)

∗,
AS∗θ +G, otherwise.

Game
(b)
2 : This game is analogous to Game

(b)
1 except the generation of the secret

key SKID while answering the Q1 key queries during the Query phase. We divide
the generation of K ′ID and K ′′ID,θ into the following cases, and other steps are the
same as Game

(b)
1 .

– Case 1: ID = ID(b). In this case, due to the Q1 key queries restriction in
the security definition, the user with the identity ID must have been revoked
before the challenge time period t∗. So Path(ηID) ∩ KUNodes(RLt∗)

∗ = ∅, and
Dθ = AS∗θ +G for each node θ ∈ Path(ηID).
1. Perform the operation 3.(a) in algorithm GenSK.
2. Sample K ′′ID,θ ← SampleRight(A,S∗θ ,G,TG, σ,G−ZID), θ ∈ Path(ηID).

– Case 2: ID ̸= ID(b) and Path(ηID) ∩ KUNodes(RLt∗)
∗ ̸= ∅.

1. Sample K ′′ID,θ∗ ← χ2m×m
LWE and set ZID = [A|Dθ∗ ]K ′′ID,θ∗ .

2. K ′′ID,θ ← SampleRight(A,S∗θ ,G,TG, σ,ZID), where θ ∈ Path(ηID)( ̸= θ∗).

3. K ′ID ← SampleRight(A,R∗, (H(ID)− H(ID(b)))G,TG, σ,G−ZID).

– Case 3: ID ̸= ID(b) and Path(ηID) ∩ KUNodes(RLt∗)
∗ = ∅. In this case, Dθ =

AS∗θ +G for each node θ ∈ Path(ηID).

3 This step moves from the algorithm Enc to the Setup phase.
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1. Select uniformly random matrix ZID in Zn×m
q for the identity ID.

2. Sample K ′′ID,θ ← SampleRight(A,S∗θ ,G,TG, σ,ZID), where θ ∈ Path(ηID).

3. K ′ID ← SampleRight(A,R∗, (H(ID)− H(ID(b)))G,TG, σ,G−ZID).

Game
(b)
3 : This game is analogous to Game

(b)
2 except the generation of the de-

cryption key DKID,t while answering the Q2 key queries during the Query phase
when ID = ID(b), Path(ηID) ∩ KUNodes(RLt∗)

∗ ̸= ∅ and t ̸= t∗. 4

1. Sample K̃t ← SampleRight(A,V ∗, (H(t)− H(t∗))G,TG, σ,G).
2. Perform the operation 2.(a) and 2.(b) in algorithm GenDK.

3. Compute k̃′′i,ID,t = K̃tk
′
i,ID,t, satisfying [A|Wt]k̃

′′
i,ID,t = ui − hi,ID,t, where

k̃′′i,ID,t ∈ Z2m
q .

4. Split ki,t into four parts, k1,i,t, k2,i,t, k3,i,t, k4,i,t, and k̃′′i,ID,t into two parts
k̃′′1,i,ID,t, k̃

′′
2,i,ID,t, m rows per part. Then, generate

dki,ID,θ∗,t =

[(
k1,i,t + k̃′′1,i,ID,t

k2,i,t

)⊤ (
k3,i,t

k4,i,t + k̃′′2,i,ID,t

)⊤ ]⊤
∈ Z4m

q .

Game
(b)
4 : This game is analogous to Game

(b)
3 except the generation of the matrix

A and the ciphertexts.
1. Select a uniformly random matrix A in Zn×m

q .
2. Choose C ′i ← Zq and cID(b),θ,t∗ ← Z4m

q , where θ ∈ KUNodes(RLt∗)
∗, i ∈ [l].

Analysis Set function PA,x(λ): N → [0, 1] denote the probability that A cor-
rectly guesses the challenge bit b on input the security parameter λ ∈ N in the
game Game(b)x . From the definition of Game

(b)
0 , it follows that the advantage of A

is AdvSEL-En-CPARIBE,A (λ) = |PA,0(λ)− 1/2|. In addition, PA,4(λ) = 1/2 since we make
the ciphertext independent of bit b through the LWE assumption in Game

(b)
4 . So

for all λ ∈ N, we have

AdvSEL-En-CPARIBE,A (λ) ≤
∑
x∈[4]

|PA,x−1(λ)− PA,x(λ)| ≤
∑
x∈[4]

neglx(λ)

We will demonstrate that the difference between successive games is only by a
negligible amount neglx(λ), as proven in a series of lemmas in Appendix A.

5 Implementation and Evaluation

In this section, we first compare our scheme with existing revocation models
in theory. Then, the performance of our scheme is further evaluated by using
simulation experiments.
4 In this case, challenger C cannot simulate the secret key {KID,θ}θ∈Path(ηID), but C can

construct a secret key K̃t that satisfies [A|Wt]K̃t = G.
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Table 1: Revocation model comparison. Where SK and CT represent the size of
secret key and ciphertext, KGC’s pw represents the KGC’s periodic workload,
and RL permission refers to the entity responsible for managing real-time revo-
cation information of users in the system.

Revocation model SK KGC’s pw CT RL permission
Indirect [8] O(logN) O(r log(N/r)) O(1) KGC
Direct [5] O(logN) – O(r log(N/r)) Encryptor
Server-aided [22] O(1) O(r log(N/r)) O(1) KGC
Ours O(logN) ≈ 0 O(r log(N/r)) KGC

5.1 Theoretical evaluation

As shown in Table 1, we compare our scheme with three existing revocation
models, indirect revocation [8], direct revocation [5], and server-aided revoca-
tion [22]. It can be observed that our scheme has two main advantages, periodic
workload of the KGC is nearly zero, and the encryptor is not required to handle
real-time revocation information of users within the system.

5.2 Experimental evaluation

Our scheme runs on a Ubuntu laptop with an AMD Ryzen7 6800HS CPU and
16GB of memory. For better portability, we implement our program using the
NTL library and C++ language. Based on the limitations of m > 2n log q,
O(m3/2Bσ) < q/4, and B > (mσ2+1)2λ, we set two sets of parameters: n = 64,
m = 390, q = 220, and n = 128, m = 774, q = 223.

The Sampling Algorithms. This paper mainly employs three sampling algo-
rithms: TrapGen, SamplePre, and SampleLeft, which are the cornerstone of our
scheme and also the most time-consuming in the implementation. To ensure ef-
ficient algorithm execution, we concentrate on two optimizations: extracting the
Schmidt orthogonalization operation as a preprocessing step to eliminate redun-
dant calculations during each sampling, and harnessing parallel programming to
improve computational efficiency. As shown in Table 2, we provide the average
runtime of these algorithms over ten executions.

Our scheme. Now, we compare the runtime overhead of our scheme with Kat-
sumata et al.’s lattice-based RIBE scheme with DKER [17]. Our scheme consists
of the six algorithms (Setup, GenSK, NodesUp, GenDK, Enc, Dec), where Setup
and Dec is similar to other schemes, and we record the runtime in Table 2.
The NodesUp algorithm only involves one KUNodes operation, so the runtime is
nearly zero.

As shown in Fig 1a, the runtime overhead for the KGC to generate secret
keys remains constant in multi-bit encryption. Referring to Fig 1b, as the number
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Table 2: The running time of sampling, Setup, and Dec algorithms.
Time(ms) TrapGen SamplePre SampleLeft Setup Dec

n = 64 114 159 167 323 0.1386
n = 128 396 314 330 1362 0.342

of encrypted bits increases, the workload for users to generate decryption keys
in our system grows slowly. It only involves some matrix operations, while the
time-consuming sampling process is completely outsourced to the server.
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Fig. 1: The main runtime of our scheme.

In our scheme, the runtime overhead of the Enc algorithm can be divided into
two parts: Ci, which is related to the plaintext, and cID,θ,t, which is unrelated
to the plaintext. As shown in Fig 1c, we set the maximum number of users N is
5000, and the number of revoked users r is 100, the shaded area represents the
time overhead of the cID,θ,t part of the encryption, which remains constant as
the number of encrypted bits increases. Moreover, Ci part takes 0.006ms when
encrypting one bit.

6 Conclusion

In this paper, we propose a lattice-based RIBE scheme with En-DKER, which is
the first RIBE scheme to ensure confidentiality and anonymity under decryption
key exposure. Additionally, we introduce a novel approach to delegate a lattice
basis. Leveraging this approach, our scheme significantly reduces the periodic
workload for users to generate decryption keys. We prove the security of our
scheme under the LWE assumption and efficiently implemented through the
NTL and multi-threaded parallel program. The experimental results show that
our scheme is suitable for multi-bit encryption and scenarios where the KGC
has a high computational workload. Lastly, how to construct an adaptive secure
RIBE with En-DKER is the direction of our future research.
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A The Series of Lemmas

Lemma 6. For any adversary A, there exists a negligible function negl1(·) sat-
isfying |PA,0(λ)− PA,1(λ)| ≤ negl1(λ).

Proof. The difference between Game
(b)
0 and Game

(b)
1 is the generation of matrices

B, {Dθ}θ∈BT, and W . For the matrix B, by Lemma 4, AR∗ is statistically close
to the uniform random matrix in Zn×m

q , and the difference between AR∗ and
AR∗−H(ID(b))G are merely syntactic. So in the adversary’s view, the matrix B

in Game
(b)
0 and Game

(b)
1 are statistically indistinguishable. Moreover, the proof of

the matrices W and {Dθ}θ∈BT are similar. The proof of Lemma 6 is completed.

Lemma 7. For any adversary A, there exists a negligible function negl2(·) sat-
isfying |PA,1(λ)− PA,2(λ)| ≤ negl2(λ).

Proof. The difference between Game
(b)
1 and Game

(b)
2 is the generation of matrices

K ′ID, K ′′ID,θ and ZID. For the matrix K ′ID, by the properties of sampling algo-
rithms, sampled via algorithm SampleLeft is statistically close to randomly cho-
sen in χ2m×m

LWE and also statistically close to sampled via algorithm SampleRight.
So in the adversary’s view, the matrix K ′ID in Game

(b)
1 and the three cases in

Game
(b)
2 are statistically indistinguishable. The proof of the matrix K ′′ID,θ is sim-

ilar. So we can also derive that ZID = [A|BID]K
′
ID and ZID = [A|Dθ∗ ]K ′′ID,θ∗

are statistically indistinguishable from a uniformly random matrix selected in
Zn×m
q . The proof of Lemma 7 is completed.

Lemma 8. For any adversary A, there exists a negligible function negl3(·) sat-
isfying |PA,2(λ)− PA,3(λ)| ≤ negl3(λ).

Proof. The difference between Game
(b)
2 and Game

(b)
3 is the generation of the

decryption key DKID,t. In Game
(b)
2 and Game

(b)
3 ,

dki,ID,θ∗,t =

[(
k1,i,t + k′′

1,i,ID,θ∗,t

k2,i,t + k′′
2,i,ID,θ∗,t

)⊤ (
k3,i,t + k′′

3,i,ID,θ∗,t

k4,i,t

)⊤ ]⊤
∈ Z4m

q ,

dki,ID,θ∗,t =

[(
k1,i,t + k̃′′1,i,ID,t

k2,i,t

)⊤ (
k3,i,t

k4,i,t + k̃′′2,i,ID,t

)⊤ ]⊤
∈ Z4m

q ,

respectively. By the triangle inequality for statistical distance and Lemma 1,
since B > (mσ2+1)2λ holds, we can argue that there exists a negligible function
neglsmudge(·) such that for all λ ∈ N,

SD(k1,i,t + k′′
1,i,ID,θ∗,t,k1,i,t + k̃′′1,i,ID,t)

≤ SD(k1,i,t + k′′
1,i,ID,θ∗,t,k1,i,t) + SD(k1,i,t,k1,i,t + k̃′′1,i,ID,t)

≤ m · neglsmudge(·) +m · neglsmudge(·)
= 2m · neglsmudge(·).
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Other 3m dimensional vector proves the same. So in the adversary’s view,

|PA,2(λ)− PA,3(λ)| ≤ 5m · neglsmudge(·).

The proof of Lemma 8 is completed.

Lemma 9. If the LWE assumption holds, for any adversary A, there exists a
negligible function negl4(·) satisfying |PA,3(λ)− PA,4(λ)| ≤ negl4(λ).

Proof. Proof by contradiction, assuming there exists a non-negligible function
δ(·) such that |PA,3(λ) − PA,4(λ)| ≥ δ(·). We can use A to construct an LWE

algorithm B such that AdvLWE
B (λ) ≥ δ(λ) for all λ ∈ N.

Initialize: A sets the challenge identities ID(0) and ID(1), the challenge time
period t∗, and the challenge node set KUNodes(RLt∗)

∗.
Setup Phase: B uses LWEn,q,σ challenger to define the matrix A ∈ Zn×m

q

and the vector u ∈ Zn
q in public parameters PP. B makes m + l times queries

and receives {αi, γi}i∈[m+l] ⊂ Zn
q × Zq from LWEn,q,σ challenger, where γi =

s⊤αi + ei mod q, ei ← χLWE. Then set the matrix A = (α1| · · · |αm) and the
vector ui = αm+i, where i ∈ [l]. Other steps are the same as Game

(b)
3 .

Query Phase: B replies to the corresponding secret key, decryption key, and
revocation queries as in Game

(b)
3 .

Challenge Phase: B performs the following computation and replies. Ci =

γm+i +
⌊
q
2

⌋
· µ(b)

i and cID(b),θ,t∗ = γ⊤[Im|R∗|S∗θ |V ∗], where γ = (γ1, . . . , γm) ∈
Zm
q , i ∈ [l], and θ ∈ KUNodes(RLt∗)

∗.
Guess: A outputs a guess b′ of b. Then B outputs A’s guess as the answer to
the LWEn,q,σ challenge. Note that

Ci = γm+i +
⌊q
2

⌋
· µ(b)

i = s⊤ui +
⌊q
2

⌋
· µ(b)

i + ei,

cID(b),θ,t∗ = γ⊤[Im|R∗|S∗θ |V ∗] = s⊤[A|BID(b) |Dθ|Wt∗ ] + e′⊤[Im|R∗|S∗θ |V ∗],
where ei = em+i and e′ = (e1, . . . , em). So the game simulated by the reduction
algorithm B coincides with Game

(b)
3 . Simultaneously, based on LWE assumption,

Ci and cID(b),θ,t∗ are uniformly and independently distributed over Zq and Zm
q , so

the game simulated by the reduction algorithm B coincides with Game
(b)
4 . Hence,

the advantage of B in solving LWEn,q,σ problem is the same as the advantage of
A in distinguishing Game

(b)
3 and Game

(b)
4 . The proof of Lemma 9 is completed.
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