
ARC-FSM-G: Automatic Security Rule Checking
for Finite State Machine at the Netlist Abstraction

Rasheed Kibria, Farimah Farahmandi, and Mark Tehranipoor
Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida

Email: rasheed.kibria@ufl.edu, farimah@ece.ufl.edu, tehranipoor@ece.ufl.edu

Abstract—Modern system-on-chip (SoC) designs are becoming
prone to numerous security threats due to their critical appli-
cations and ever-growing complexity and size. Therefore, the
early stage of the design flow requires comprehensive security
verification. The control flow of an SoC, generally implemented
using finite state machines (FSMs), is not an exception to this
requirement. Any deviations from the desired flow of FSMs can
cause serious security issues. On the other hand, the control
FSMs may be prone to fault-injection and denial-of-service (DoS)
attacks or have inherent information leakage and access control
issues at the gate-level netlist abstraction. Therefore, defining a set
of security rules (guidelines) for obtaining FSM implementations
free from particular security vulnerabilities after performing
logic synthesis is crucial. Unfortunately, as of today, no solution
exists in the state-of-the-art domain to verify the security of
control FSMs. In this paper, we propose a set of such security
rules for control FSM design and a verification framework called
ARC-FSM-G to check for those security rule violations at pre-
silicon to prevent any security vulnerabilities of FSM against
fault-injection, access control, and information leakage threats.
Experimental results on several benchmarks varying in size and
complexity illustrate that ARC-FSM-G can effectively check for
violations of all the proposed rules within a few seconds.

Index Terms—Security Rules, Finite State Machine, Gate-Level
Netlist Analysis, Security Validation

I. INTRODUCTION

System-on-Chips (SoCs) are integral parts of state-of-the-art
Internet of Things (IoT) devices and their applications. Aside
from the security requirements of these smart devices and
their applications, an SoC might possess tens of intellectual
property (IP) cores. The IP cores (analog, memory, digital,
re-configurable fabric, etc.) may have distinct and complex
functionalities, may contain security-critical information, and
can introduce unique security concerns. Furthermore, vulner-
abilities might get introduced when such IP cores interact
with each other under real-world workloads. Therefore, the
security of SoCs must be validated at the pre-silicon design
phase before manufacturing and deployment in real-world
systems. Additionally, implementing a secure SoC is chal-
lenging since vulnerabilities might appear at various stages
of its design lifecycle. Generally, SoC vulnerabilities can
be classified into multiple categories: information leakage,
access control violations, side-channel leakage, hidden ma-
licious functionalities, test and debug structures exploitation,
and susceptibility to fault-injection attacks [1]–[3]. Some of
these security flaws may be introduced accidentally by the
mistakes of the designers or a lack of awareness of potential
security issues. Moreover, computer-aided design (CAD) tools
may inadvertently introduce new vulnerabilities in an SoC [1].

Traditionally, the very large-scale integration (VLSI) design
industry devotes significant time and effort to SoC verification
to fulfill several requirements, such as functional correctness,
power, performance, and area (PPA) validation. With the

continuous shrinking of device geometry, the size of an SoC is
increasing as numerous complex and large-scale IPs are being
integrated. Consequently, it is challenging for the verification
engineers to perform the functional verification of the entire
SoC once. On the other hand, verification has become much
more challenging for assuring security [4]. Due to the diversity
of attacks and lack of rules and metrics, manual approaches are
mostly used to detect such issues. However, manual detection
of security bugs is challenging, ineffective, and not scalable.
Furthermore, the verification engineers are typically unaware
of potential security concerns at the early stage of the design
process, such as register-transfer level (RTL) designs and in the
post-synthesis gate-level netlists. It is crucial to fix potential
security issues as soon as possible in the VLSI design flow
since detection and fixing of security bugs in the later stages
generally come at a higher cost and effort, which can be
thought of as increasing by a factor of ten after each phase, as
a rule of thumb [5]. Verifying an SoC’s control logic is one of
the most crucial tasks in security verification since the security
of the entire SoC can be compromised if its control logic can
be successfully attacked. The control logic of an SoC, realized
using finite state machines (FSMs), is susceptible to fault-
injection and denial-of-service (DoS) attacks or may possess
inherent information leakage or access control issues [9], [18].

The design of an FSM can be functionally correct at the RTL
abstraction. Still, the state-of-the-art commercial synthesis
tools might introduce particular security-critical bugs at the
gate-level netlist, which may cause the implementation to be
vulnerable to fault-injection and DoS attacks or suffer from
access control and information leakage problems. Hence, after
performing logic synthesis, a security verification framework
for the control logic of an SoC is required to detect and
enable fixing such security bugs. These bugs can be fixed by
modifying the employed state encoding scheme or tweaking
the FSM design at the RTL abstraction. Unfortunately, such
a promising solution is absent in the state-of-the-art SoC
security verification domain. Moreover, a set of security rules
(guidelines) must be defined to fix those security bugs and
assist in achieving secure implementation of control FSMs of
an SoC. In this paper, we propose a number of such security
rules and a verification framework called Automatic Security
Rule Checker for Finite State Machine Design at the Gate-
level Netlist Abstraction (ARC-FSM-G) to effectively and
quickly detect violations of the proposed rules. Specifically,
our significant contributions in this paper are as follows-

• Identification of the origin of the security-critical bugs
present in the gate-level netlist implementation of FSMs;

• Developing a set of rules to obtain a secure implementa-
tion of FSMs free from security-critical bugs;

• Developing an automated framework named ARC-FSM-

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



G to validate the proposed rules after logic synthesis;
• Demonstrating the efficacy of ARC-FSM-G on 15 open-

source designs from [23]–[25] and other resources vary-
ing in size, complexity, and functionality.

The rest of the paper is organized as follows. Section II
presents definitions of the terminologies used in this paper.
In Section III, we discuss the underlying motivation behind
this work. Section IV presents the proposed security rules for
control FSM design to be followed at the gate-level netlist
abstraction. Section V illustrates our proposed ARC-FSM-G
framework. We present experimental results with algorithmic
complexity and efficacy analysis of ARC-FSM-G in Section
VI. Finally, Section VII concludes the paper.

II. DEFINITIONS AND PRELIMINARIES

Finite State Machine (FSM): From analytical viewpoint,
a Finite State Machine is a 6-tuple entity (S, I, O, s0, ϕ, λ).
Here, S represents a finite set of states, I stands for a finite
set of inputs, O denotes a finite set of outputs, s0 signifies
the reset state of the FSM, ϕ : S × I → S is the function that
determines the state transition conditions between the states of
the FSM, and λ denotes the function determining the output
logic. The generic architecture of an FSM is shown in Fig. 1.

Fig. 1: General architecture of an FSM. The orange dashed
line exists only in the generic architecture of the Mealy FSM.

State Transition Graph (STG): From the mathematical
perspective, the State Transition Graph (STG) of an FSM is a
directed graph where each vertex stands for a particular state
s ∈ S, and each edge presents a specific state transition, t = T
(si, sj) from the present state si to the next state sj [1]. The
STG of a particular control FSM is illustrated in Fig. 2.

Fig. 2: State transition graph (STG) of a certain control FSM.
Don’t-Care State: The states of a control FSM specified

in the RTL description are the designer-defined FSM states.
However, don’t-care states can be added if the FSM is incom-
plete. A particular control FSM is defined as incomplete if the
number of states present in the RTL description of the FSM
is not equal to the maximum allowable one according to the
size of the FSM state register. An incomplete FSM’s unused
(unspecified) states are termed don’t-care states.

Protected State: A Protected State of a particular control
FSM is a certain state considered crucial to be protected from
a security viewpoint. Such a state can be where a security-
critical signal is asserted, or bypassing or illegally accessing
it may compromise the overall security of the design. The de-
signer should identify the security-critical states of the control
FSM to define the protected states of the FSM based on such
intuition. A state of the control FSM, which should have access
to the protected state, is an authorized state. For example,
for the control FSM of SHA-512 design [24], the state of

the FSM, which indicates that the encryption operation is
completed, can be regarded as the protected state. It is because
such an indication is vital from the security viewpoint. The
encryption operation can be bypassed by accessing this state
from an unspecified (don’t-care) state without going through
the required sequence of states [1]. A designer can define
single or multiple protected states based on the functionality
of the control FSM. The other states of the FSM defined in the
RTL design will be treated as unprotected (or normal) states.

Security Rules: In this paper, Security Rules are defined as
a set of guidelines to make the design of an FSM free from cer-
tain security-critical bugs, which are sometimes introduced at
the netlist implementation after logic synthesis. Such security
rules are validated at the netlist abstraction, and violations of
these rules indicate that such security bugs exist in the design,
which may potentially cause the final implementation of the
FSM to be prone to various known security threats. These
security rules focus on particular threat models and make the
designer aware of security issues in the FSM implementation.
Moreover, such rules will aid the designers in minimizing the
possibility of obtaining an insecure FSM implementation by
adopting appropriate countermeasures during RTL design.

III. PREVIOUS WORK AND MOTIVATION

In the state-of-the-art SoC security verification domain,
numerous security verification techniques have been proposed
to identify security-critical bugs. These techniques can be
broadly classified into 3 categories: property-based formal
verification [7]–[9], information flow tracking (IFT) [10], [11],
and run-time or dynamic detection [12]–[14]. These proposed
techniques heavily rely on simulation or are suitable for in-
field operations. First, the property-based formal security veri-
fication methodology requires the engineers to understand the
design-under-verification (DUV) quite well. The verification
engineers must write security properties to check whether
the security requirements are met for specific threat models
[7]–[9]. The quality of the security properties depends on
the knowledge and experience of the verification engineers
[9]. Secondly, the IFT techniques [10], [11] increase the
complexity of the design as all the input variables need to be
tainted for IFT utilization. Therefore, the IFT techniques are
not scalable due to the high design overheads (timing, power,
and area) required by such instrumentation and associated with
higher computational time and memory resource utilization.
Finally, the fuzz testing and run-time detection methods [12]–
[14] inject invalid or unexpected inputs into an SoC to reveal
vulnerabilities and require simulation to detect security bugs.
These techniques are unsuitable for identifying particular
security-critical bugs of control FSMs at the gate-level netlist.
These bugs can exist not only in the RTL codes but also in
the gate-level netlist implementation.

However, the static analysis-based methodology can provide
a promising solution to detect specific security bugs in such a
scenario if performed by analyzing the RTL source codes and
the FSM STGs obtained after logic synthesis. Static analysis
is a powerful, very fast, and well-established technique in
the software domain. A lint tool based on static analysis for
analyzing source codes written in C was first proposed in
1978 [15]. Since then, the linting concept has been adopted
in several languages to analyze source code to detect specific
bugs rapidly. The SoC verification domain was not an excep-
tion to adopting lint technology since linting helps to reduce

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



TABLE I: The proposed eight security rules for control FSM design to be validated after performing logic synthesis.
Source Class ID Description

State encoding issues I R1 When state transition occurs between two consecutive unprotected states, the Hamming Distance (HD) between them should be ‘1’
R2 When state transition occurs between two consecutive unprotected states, the Fault-Injection Feasibility (FIF) metric should be ‘0’

Accessibility issue II R3 A protected state should not be accessed by any unauthorized state
Bypassing issue III R4 The sequence of states specified by the designer should be maintained properly

Structural issues in STG IV

R5 Dead (inactive) states should be absent in the extracted state transition graph (STG) of a control FSM from the netlist
R6 Unreachable states with a transition to a non-reset state should not exist in the obtained STG of a control FSM from the netlist
R7 States with static deadlock conditions should not be present in the extracted STG of a control FSM from the netlist
R8 Group of states with a dynamic deadlock loop that includes a protected state should be absent in the gate-level STG of an FSM

overall verification time and effort by fixing certain functional
bugs at the very early design stage. Note that some functional
bugs can only be detected using static analysis. State-of-the-art
commercial lint tools, such as SpyGlass from Synopsys [6], are
excellent examples that incorporate static analysis techniques
with formal methodology.

Such tools perform functional and structural checks to detect
bugs. These tools focus on fixing functional bugs and can
detect custom or pre-defined rule violations focusing primarily
on logic synthesis issues. Nevertheless, such tools are unaware
of security issues and cannot detect security bugs introduced
in the FSM design by CAD tools after logic synthesis. These
bugs may arise from state encoding issues or hidden don’t-
care states and transitions, as presented in Section IV, which
may eventually make the design prone to fault-injection or
DoS attacks or cause the design to have inherent information
leakage and access control issues [1], [9], [18]. It motivated
us to identify such security bugs and develop a static analysis-
based framework named ARC-FSM-G to detect those without
requiring simulation in the analysis process. After performing
logic synthesis, we assume the designer will use this pro-
posed security verification framework for control FSM design.
Therefore, the design netlist and its associated RTL codes are
accessible to the designer. Identifying security issues for the
datapath logic of an SoC is beyond the scope of this paper.

IV. SECURITY RULES FOR CONTROL FSM DESIGN

Security rules for control FSM design can act as guide-
lines for designers who do not have security expertise. As
mentioned in Section II, we propose these security rules to
be validated at the gate-level netlist abstraction and make the
designer aware of particular security-critical bugs existing in
the FSM implementation obtained after the logic synthesis.
We have categorized the proposed security rules into four
classes and provided them identifiers (IDs) from R1 to R8,
as presented in Table I. Such security-critical bugs may arise
from state encoding issues (see R1 and R2) or hidden don’t-
care states and transitions introduced after logic synthesis by
state-of-the-art CAD tools (see R3 to R8) and can be fixed
by adopting proper countermeasures in the RTL design stage.
Furthermore, such bugs do not require simulation and test
vectors to get detected. These rules will help the designers
to achieve a secure implementation of FSMs resilient against
certain fault-injection and denial-of-service (DoS) attacks and
free from potential information leakage and access control
issues. The proposed security rules are discussed as follows.

R1: When state transition occurs between two consecutive
unprotected states, the Hamming Distance (HD) between them
should be ‘1’. A control FSM can be prone to fault-injection
attacks due to state encoding issues [1], [9], [18]. This rule
focuses on making the FSM design resilient against setup
time violation-based fault-injection attack [17]. It requires low-
cost equipment to perform such an attack and poses a severe
security threat. If the Hamming Distance (HD) between two

Fig. 3: An attacker may perform setup time violation-based
fault-injection attack if the HD between two unprotected states
of an FSM is greater than 1. In (a), such an attack is possible
as HD is 2, but in (b), it is impossible since HD is 1. The
control FSM of SHA-512 from [24] is shown in (c), which
might be susceptible to this attack.

unprotected states is greater than 1, then the control FSM
will be susceptible to this type of fault-injection attack. It
has been illustrated in Fig. 3. An attacker can cause a setup
time constraint violation for the most significant bit (MSB)
state flip-flop while maintaining the setup time constraint for
the least significant bit (LSB) state flip-flop to inject such
a fault successfully [1]. In Fig. 3(a), the current and next
state’s LSB gets flipped. Hence, an adversary can perform
the setup time violation-based attack at the LSB position to
drive the FSM to the ‘11’ state, which might be unwanted and
lead to a potential security breach. Since the LSB remains
unchanged, such an attack is not possible for Fig. 3(b). It
can be mathematically modeled as finding and checking the
HD between two unprotected (normal) states in a particular
state transition, thus leading to this security rule. Hence,
violations of this rule will warn the designers of the pres-
ence of this security bug. It can be fixed by utilizing the
secure state encoding scheme proposed in [18]. For example,
as shown in Fig. 3(c), the unprotected-to-unprotected state
transition marked as red indicates a violation of R1, if the
states of the control FSM of SHA-512 design from [24] are
encoded as {CTRL IDLE, CTRL ROUNDS, CTRL DONE} =
{01, 10, 00}. Those states can be encoded as {CTRL IDLE,
CTRL ROUNDS, CTRL DONE} = {00, 01, 11} to satisfy R1
when ‘CTRL DONE’ is regarded as the protected state.

FIF =

n−1∏
i=0

[(Sxi ⊙ Spi) + (Syi ⊙ Spi)] (1)

R2: When state transition occurs between two consecutive
unprotected states, the Fault-Injection Feasibility (FIF) metric
should be ‘0’. The FIF metric aims to identify the potentially
vulnerable state transitions in which a fault can be injected
to access a protected state. Suppose the FIF metric is 1 for
a particular unprotected-to-unprotected state transition. During
such a transition, an attacker may perform the mentioned setup
time violation-based fault-injection attack (see R1) to access a
protected state illegally utilizing the FSM don’t-care states [1],
[18], [22]. As proposed in [1], the Fault-Injection Feasibility
(FIF) metric is defined according to Eq. 1, where n, Sx, Sy ,
and Sp denote the state register width, the state encoding
bits of the source state, destination state, and protected state

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



respectively. For calculating the FIF metric, bit-wise XNOR
of the encoding values of a protected state and the source
state of a particular unprotected-to-unprotected state transition
is calculated first. Next, the bit-wise XNOR of the encoding
values of the protected state and the destination state of that
transition is calculated. Then, the bit-wise OR value of these
parts is obtained, and the logical AND of all the bits present
in the result is calculated. Like R1, this rule targets to make
the FSM design robust against setup time violation-based
fault-injection attacks. However, R1 and R2 must be satisfied
individually due to the computational methods’ differences.

However, Eq. 1 applies only when a single protected state is
defined. We have extended this metric to support scenarios if
the designer specifies multiple protected states. Analytically,
it can be done by calculating the final FIF metric value by
taking the logical OR of all the individual FIF metric values
arising from considering a single protected state once at a
time. A warning will be provided to the designers in case
of a violation of R2 that the control FSM implementation
might be vulnerable to the setup time violation-based fault-
injection attacks. The designer can clear this security bug by
adopting the secure state encoding scheme proposed in [18].
For instance, the red-colored unprotected-to-unprotected state
transition shown in Fig. 3(c) presents a violation of R2, if the
states of the control FSM of SHA-512 design from [24] are
encoded as {CTRL IDLE, CTRL ROUNDS, CTRL DONE} =
{01, 10, 00}. Such states can be encoded as {CTRL IDLE,
CTRL ROUNDS, CTRL DONE} = {00, 10, 11} to satisfy the
rule violation for R2 when ‘CTRL DONE’ is treated as the
only protected state. Last but not least, it needs to be noted
that the number of options for secure state encoding of an
FSM can be quite limited in certain scenarios. In those cases,
using the secure state encoding approach proposed in [18] to
satisfy the R1 and R2 rules will increase the overall area of the
design. Nonetheless, the area overhead after using this secure
encoding approach is less than 2% with no delay overhead
and a negligible effect on overall power consumption.

Fig. 4: An unauthorized state accesses a protected state of a
security-critical FSM. The state ‘101’ is a protected state with
a single authorized state ‘001’. However, the ‘101’ state is
being accessed illegally by the unauthorized state ‘100’, which
may lead to information leakage and access control issues.

R3: A protected state should not be accessed by any
unauthorized state. As mentioned in Section II, a protected
state of an FSM, defined by the designer, is a critical state
of a control FSM, which is wholly or partly responsible
for controlling the critical operation of a particular design.
The designers should also identify and specify the authorized
states of an FSM as required to check for this security rule
violations. The rest of the states of the FSM are treated as
unauthorized states to have access to a particular protected
state. As shown in Fig. 4, the control FSM is vulnerable to
potential information leakage and access control issues since
the protected state ‘101’ is accessible by the unauthorized state

‘100’. Such a scenario will violate this security rule R3. If an
unauthorized state can access a particular protected state in the
gate-level netlist abstraction, it is dangerous from the security
viewpoint. The reason is that an attacker may implant a Trojan
to access that unauthorized state and may have access to the
protected state, bypassing the typical execution sequence of
the FSM. It may eventually lead to information leakage and
access control issues. Furthermore, during logic synthesis and
optimization, sometimes CAD tools can introduce don’t-care
states and transitions, potentially adding vulnerability to the
FSM implementation. It is because a protected state can be
accessed illegally through the don’t-care states [1], [18], [22].
Hence, a violation of this security rule implies the presence
of a security-critical bug in the FSM implementation. This
security rule can be satisfied by reverting to the reset state of
the FSM in case of violations.

Fig. 5: The STG of the AES encryption operation controller
FSM from [25] extracted by RTL-FSMx [19].

R4: The sequence of states specified by the designer
should be maintained properly. It is crucial from the security
viewpoint since improperly implementing standard security
compliance may lead to information leakage issues [1], [18],
[22]. For example, for the IP core obtained from [25] to
implement the AES encryption operation, the control FSM
is responsible for sequencing and controlling the processes in
the AES design’s datapath. For the security assurance of this
cryptographic module, the state transactions should happen in
the appropriate order as defined in the associated standard AES
algorithm. The STG of the control FSM extracted by the RTL-
FSMx tool [19] from its RTL description is shown in Fig. 5.
According to the standard AES encryption algorithm, the state
‘DO ROUND’ must be reached before the ‘FINAL ROUND’
state, which is evident from the extracted STG of the FSM.

Nevertheless, it is critical to validate whether this order of
states of the control FSM (DO ROUND → FINAL ROUND)
is maintained in the gate-level netlist implementation obtained
after logic synthesis. The primary motivation is that in the
gate-level netlist abstraction, hidden don’t-care transitions can
be introduced by the state-of-the-art commercial logic synthe-
sizers [18]. Such don’t-care state transitions are absent in the
RTL description of a control FSM. Due to such transitions,
an attacker can bypass the specified order of the states, which
was supposed to be followed rigorously. If, due to such an
improper implementation of the FSM, the mentioned order of
states is not held, then it may aid an attacker in reaching the
‘FINAL ROUND’ state directly from the other states, such as
from the reset state. Herefore, the encryption operation will not
be effective or can eventually lead to the encryption operation’s
intermediate result or key leakage. Additionally, the output
result of the encryption might be corrupted. As a result, the

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



performance, security, and reliability of the entire system
might be affected [1], [18]. Therefore, in such a scenario,
this security rule will be violated, and a warning message
will be provided to the designer to indicate the existence of
this security flaw. The designer can clear this bug by taking
appropriate countermeasures, such as tweaking the RTL design
to ensure that the specified order of critical states is always
maintained at the gate-level netlist abstraction.

R5: Dead (inactive) states should be absent in the extracted
state transition graph (STG) of a control FSM from the netlist.
In this paper, the dead state of an FSM is defined as a state
which never gets visited and has no input and output transition
conditions. Sometimes, this state may have a self-transition
scenario. In the STG shown in Fig. 6, the state ‘010’ is
dead. Since a dead state can never be triggered using any
input transition condition, such a state remains undetected if a
simulation-based approach is used. The presence of dead states
in the extracted STG of a control FSM is potentially dangerous
from a security standpoint. It is because such an undetectable
state may aid an attacker in inserting a stealthy Trojan utilizing
that state. This scenario may lead to information leakage or
access control issues [1]. Removing the dead states can readily
fix such a security-critical bug.

Fig. 6: The STG of a particular control FSM with potential
structural issues from the hardware security standpoint.

R6: Unreachable states with a transition to a non-reset
state should not exist in the obtained STG of a control FSM
from the netlist. In this paper, we define the unreachable
state of an FSM as a state without any input transition
condition but having single or multiple transitions to other
states. In Fig. 6, the state ‘100’ is unreachable. The presence of
unreachable states in the STG with a transition to a non-reset
state indicates the existence of a security-critical structural
flaw. It is dangerous from the security perspective since an
attacker can insert a malicious Trojan utilizing this state to
access the protected states of an FSM, which are crucial to
the designers. Therefore, the existence of such unreachable
states indicates the presence of a security bug in the FSM
design. This issue should be detected and resolved as soon as
possible. The designers will receive warnings on such a bug if
this security rule is violated. The designers can either remove
those unreachable states if unnecessary, take necessary steps to
cause the unreachable states to transit to the reset state only, or
make those reachable by other states of the FSM to fix such a
bug in the control FSM implementation. However, sometimes,
a particular unreachable state may only transit to the reset state
of an FSM, and it is not dangerous from a security perspective.
For instance, if the ‘default’ statement is used to cover the
unused states of an FSM in the RTL description, then such a
scenario will be found if the extracted gate-level STG of the
FSM is analyzed. This rule violation will not occur in such a
case, and a warning will not be provided to the designer.

R7: States with static deadlock conditions should not be
present in the extracted STG of a control FSM from the

Fig. 7: Overview of the ARC-FSM-G framework.

netlist. The state of a control FSM is said to be in static
deadlock condition if there exist only entry points to the
state but no exit point from that state. The state may have
a self-transition condition. As shown in Fig. 6, the ‘011’
state has this characteristic. The control FSM freezes upon
entering such a state. Hence, it is potentially dangerous from
the hardware security point of view because such a state may
aid an attacker in exploiting this state and thus launching a
successful DoS attack. This security-critical flaw should be
detected and fixed as early as possible. The designers can
resolve this issue by transitioning to a secure state from the
state with a static deadlock scenario upon encountering a
warning on the violation of security rule R7.

R8: Group of states with a dynamic deadlock loop that
includes a protected state should be absent in the extracted
STG of a control FSM. Apart from the states with static
deadlock scenarios, certain states of the control FSM may
form a group with a dynamic deadlock loop. Such a group
of states may have single or multiple entering paths; however,
it does not have any exit from that group. Once entering the
group, the control FSM circulates in the loop containing only
those states, and there is no exit point from the loop. This
situation is dangerous from a security standpoint if the group
includes one or more protected states specified by the designer,
and such a group is undesirable to the designer. As illustrated
in Fig. 6, the group of states {‘101’, ‘110’, ‘111’} is such
an example, where ‘110’ is a protected state. The presence of
such a group may indirectly assist an attacker in getting access
to the protected state by somehow entering the group once the
FSM starts running in the dynamic deadlock loop. Reverting to
the FSM’s initial (reset) state is impossible without applying a
hardware reset. Hence, the designers should be able to identify
and fix this sort of security bug as early as possible. The
designers can create a transition to a secure state from the
group of states existing in such a dynamic deadlock loop for
a quick fix to satisfy the security rule R8.

V. ARC-FSM-G FRAMEWORK

The high-level overview of our proposed ARC-FSM-G
framework is illustrated in Fig. 7. As shown in the figure, there
are three primary inputs to the ARC-FSM-G framework. The
first input is the RTL design written in HDL (e.g., VHDL or
Verilog) to be analyzed. The ARC-FSM-G framework incorpo-
rates RTL-FSMx [19] as an integral and constituting module, a
fast and accurate control FSM extractor from RTL code. RTL-
FSMx is a static analysis-based solution, and the framework
analyzes the input high-level RTL code to extract the states of
the control FSMs with the associated state encoding values.
The second input to the ARC-FSM-G framework is the gate-
level STGs of the control FSMs existing in the input RTL
design. The input RTL design is first synthesized. Next, the

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



Fig. 8: Algorithmic flow of the Class I Security Rules Checker.
obtained gate-level netlist is analyzed using the techniques
like FSMx-Ultra framework [20] to recognize and isolate the
control FSMs precisely from other registers and extract the
corresponding gate-level STGs of the FSMs.

The FSMx-Ultra framework also yields FSM Register Can-
didates Report, which contains all the names and sizes of
the FSM state registers extracted from the gate-level netlist
with other relevant information. This secondary output aids
our proposed ARC-FSM-G framework to map the obtained
gate-level STGs with the corresponding FSM state registers
from the RTL description extracted by RTL-FSMx [19]. It is
because the naming of the registers is conserved in the logic
synthesis stage of the input RTL design [18]. For instance, if
an FSM state register is defined as ‘reg [2:0] state’ in the RTL
code, then the RTL description is transformed into 3 flip-flops
with the names ‘state reg[0], state reg[1], and state reg[2]’
after logic synthesis by the state-of-the-art commercial logic
synthesis tools. These 3 flip-flops form a register named
‘state reg’ in the obtained gate-level netlist. Our framework
utilizes this fact for the successful mapping process. Moreover,
ARC-FSM-G checks whether the STG extracted from the RTL
description using RTL-FSMx [19] is a subset of the gate-level
STG yielded by FSMx-Ultra [20] to verify the control-flow
equivalence of the FSM state register under assessment. Such
a structural validation phase strengthens the mapping stage
further. This mapping phase is the crucial stage which makes
the connecting bridge between the information of the control
FSMs obtained from the RTL description through static anal-
ysis performed by RTL-FSMx and their associated gate-level
STGs extracted by FSMx-Ultra. Finally, after mapping, the
Security Rules Checker module analyzes the gate-level STGs
to validate whether the proposed security rules mentioned in
Table I for FSM design are followed.

The third and final one is several user inputs defined
by the designer. These inputs include the list of protected
states, authorized states, and the specific order of visiting
two states that must be maintained. The designer can provide
this information for single or multiple control FSMs. The
ARC-FSM-G framework generates a comprehensive security
rules-checking report after analysis. This report warns the
designers of existing security bugs in the gate-level netlists
of the FSMs of the input RTL design in case any of the
proposed security rules are violated. Then the designers can
review the obtained report to get an idea about the security-
critical bugs and fix those according to the sample guidelines
presented in Section IV. The rule violation detection schemes
for the classes mentioned in Table I are presented below and
implemented by the Security Rules Checker module. It needs
to be noted that the ARC-FSM-G framework gets aware of

the control FSMs present in the design and their associated
gate-level STGs after the mapping process mentioned before.
Hence, this mapping stage is crucial in the further analysis
phases of our proposed framework. These analysis phases are
performed on the extracted gate-level STGs of the control
FSMs one after another and considering one at a time.

Class I: The Class I Security Rules Checker module checks
for the violations of 2 security rules (R1 and R2) as discussed
in Section IV. After the mapping phase, for each of the
detected control FSMs by the FSMx-Ultra framework [20], the
algorithmic flow illustrated in Fig. 8 is implemented. The rules
violation detection phase starts with reading the yielded STG
of the control FSM by FSMx-Ultra. Next, all the unprotected
states of the control FSM description are identified. The set of
protected states specified by the designer is considered in this
process. Then, all the state transitions between two unprotected
states are recognized. Finally, the Hamming Distance (HD) is
calculated for all such transitions. If HD is greater than 1, the
transition is marked as potentially dangerous, and a security
flag will be raised later to warn the designers. Moreover, the
values of the FIF metric for all the unprotected-to-unprotected
state transitions of a control FSM are found using Eq. 1 with
the extension mentioned in Section IV. Suppose the FIF metric
value is 1 for such a particular state transition. In that case,
the transition is potentially vulnerable to setup time violation-
based fault-injection attacks, and a security flag will be raised.
In this manner, the two security flags are raised individually.

Fig. 9: Algorithmic flow of the Class II Security Rule Checker.

Class II: The Class II Security Rule Checker module aims
to check whether any of its protected states is accessible by an
unauthorized state of an FSM netlist. Its algorithmic flow to
detect the violations of rule R3 is presented in Fig. 9. First, the
rule checker module reads the FSM extraction report generated
by FSMx-Ultra. Secondly, the state encoding values of the
authorized and protected states specified by the designer as the
input are obtained. After successful mapping, the ARC-FSM-
G framework knows the associated protected and authorized
states of a particular control FSM. Thirdly, the transitions to
the protected states are identified, which were specified by the
designer. Finally, it is checked if any unauthorized state can
access a particular protected state by analyzing the incoming
transitions of that state, thus raising the security flag to point
out that rule R3 has been violated. Such a flag will warn the
designers of security bugs in the FSM netlist.

Class III: The Class III Security Rule Checker module
focuses on validating whether the sequence of the states
specified by the designer is rigorously maintained in the gate-
level implementation of the FSM. The algorithmic flow of
the module is illustrated in Fig. 10. The analysis phase starts
with reading the extracted gate-level STG of a particular

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



control FSM. The designer can specify the order of the states
using the symbolic representation of the FSM states present
in the high-level RTL description. Hence, after the mapping
phase, the ARC-FSM-G framework obtains the associated
encoding values of the states existing in the mentioned order
in binary format. A particular specified order is deconstructed
into source and destination states. The source state must be
visited first before transiting to the destination state. The
designer can also provide state-visit orders for multiple control
FSMs or multiple orders for a single FSM as input to the
proposed ARC-FSM-G framework. Then, a directed graph
representation of the STG is generated. Next, all the paths
from the reset state to the destination state are obtained using
the Depth-First Search (DFS) algorithm. Finally, the obtained
paths are analyzed to detect if the source state of the state-
visit order under analysis is always present in the path. Since
the STG is directed in nature, this fact ensures that the source
state is always visited before reaching the destination state. If
the source state is not present in such a path, it is marked as a
security-critical bug, and a security flag is raised. It will warn
the designer about the violation of R4, and the path violating
the rule with the missing source state will be reported.

Fig. 10: Algorithmic flow of Class III Security Rule Checker.

Class IV: The primary purpose of the Class IV Security
Rules Checker module is to check for structural issues in the
extracted gate-level STGs of the control FSMs present in the
netlist and warn the designers accordingly. The algorithmic
flow of this module is presented in Fig. 11. The security rules-
checking process initiates with reading the extracted gate-
level STGs of the associated control FSMs by FSMx-Ultra
one at a time. Next, the module creates a directed graph
representation of the extracted gate-level STG to perform
appropriate structural analysis on the STG. Then, the dead
states present in the STG are identified. The ARC-FSM-G
framework marks a particular state of an FSM as a dead state if
all of these 3 requirements are met: (i) no transition to it from
the other states, (ii) may or may not have a self transition, and
(iii) no transition to the other states. Moreover, the dangerous
unreachable states of the FSM are detected. These 3 conditions
must be satisfied to label such a particular state of the FSM
under assessment: (i) no transition from the other states, (ii)
may or may not have a self transition, and (iii) has single or
multiple transitions to the other non-reset states.

Finally, the module recognizes the states with static dead-
lock conditions and the groups of states with dynamic dead-
lock loop that includes one or multiple protected states. A
particular state of an FSM is treated as a state with static
deadlock condition if it satisfies these 3 prerequisites: (i) has
at least one incoming transition from the other states, (ii) may
or may not have a self transition, and (iii) no transition to

Fig. 11: Algorithmic flow of Class IV Security Rules Checker.

the other states. The mentioned requisites for detecting the
dead, unreachable, and states with static deadlock scenarios
can be checked by analyzing a particular state’s incoming and
outgoing transitions. Last but not least, the group of states
forming a loop and containing single or multiple protected
states are identified using [21], and it is checked whether
such a group has these 2 characteristics: (i) single or multiple
incoming transitions to at least a state of the group from the
other states, and (ii) no outgoing transition. Security flags are
raised to warn the designers about violations from R5 to R8,
depending on the existence of such states or groups of states.

In summary, the RTL-FSMx [19] module of our proposed
ARC-FSM-G framework performs static analysis on the input
RTL source codes of the design to recognize the control
FSMs with their associated states. Then, the Security Rules
Checker module performs appropriate mathematical and graph
algorithmic analysis on the gate-level STGs of the control
FSMs extracted by FSMx-Ultra [20] to detect the violations
of the proposed security rules (R1 to R8) in this paper. The
ARC-FSM-G framework generates a comprehensive security
rules-checking report based on the security flags raised in case
of violations. This report warns the designers of potentially
dangerous bugs from the hardware security perspective. Such
security bugs can be fixed according to the sample guidelines
discussed in Section IV to satisfy the proposed rules for secure
control FSM implementation at the netlist abstraction.

VI. EXPERIMENTAL RESULTS

A. Complexity of ARC-FSM-G
The algorithmic complexity of the proposed ARC-FSM-

G framework can be evaluated by analyzing its overall time
complexity and space (memory) complexity. As presented in
Section V, the ARC-FSM-G framework incorporates the RTL-
FSMx framework with the Security Rules Checker module.
Hence, both of these components contribute to the overall
algorithmic complexity of our proposed ARC-FSM-G frame-
work. RTL-FSMx requires storing the abstract syntax tree
(AST) representation of the entire RTL source code in the
memory, a tree-like data structure having numerous nodes. The
time complexity of RTL-FSMx is O(M) approximately, where
M is the total number of ‘always’ blocks present in the input
RTL source code. Moreover, the space complexity of RTL-
FSMx is O(N) where N is the total number of nodes of the
AST [19]. Finally, the overall algorithmic complexity of the
Security Rules Checker module is primarily dominated by the
complexity of the Johnson’s Algorithm [21] since this analysis
phase is the most intensive one in terms of computation and
memory. Therefore, the overall time complexity of this module
is O((V + E)(c + 1)) roughly, where V and E are the total

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



TABLE II: FSM extraction results for 15 benchmarks obtained from [23]–[25] and other resources using [19] and [20].
Benchmark Name Line Count ‘always’ Block Count Gate Count FF Count Control FSM Count State Register Size RTL STG State Count GL STG State Count GL STG Edge Count

I2C CORE 1263 22 1451 125 2 18, 6 18, 6 752, 64 764, 109
SAYEH CPU 1280 12 3218 170 1 4 11 16 72

SUBTERRANEAN 1222 5 4800 263 1 6 33 64 66
XTEA CIPHER 601 6 5095 105 1 2 4 4 6

ROMULUS 816 8 8977 585 1 4 9 16 28
GIFT-COFB 917 5 9237 337 1 3 7 8 21

ASCON AED 1571 7 9803 459 1 6 44 64 87
MEMORY CONTROLLER (V1) 5824 175 9843 992 1 7 66 128 334
MEMORY CONTROLLER (V2) 5824 175 10057 1051 1 66 66 133 155

PICORV32 CPU 3044 39 17101 1680 3 3, 2, 2 8, 4, 3 8, 4, 4 32, 8, 11
SAEAES 1694 9 23329 403 2 2, 4 3, 9 4, 16 7, 42
COMET 1747 8 24439 530 2 2, 4 3, 12 4, 16 7, 46
SHA-512 1485 16 45142 3673 1 2 3 4 7

GCM AES (V1) 1760 39 45192 1692 1 4 10 16 28
GCM AES (V2) 1760 39 45402 1696 1 10 10 144 147

numbers of nodes and edges of the gate-level STG of an FSM,
respectively, and c is the number of cycles (loops) in the gate-
level STG. Furthermore, the overall time complexity of the
rules checker module can be approximated as O(V 2), where
V is the total node count of the gate-level STG of an FSM. The
overall algorithmic complexity of the ARC-FSM-G framework
combines the associated complexities of its two component
modules. It can be roughly determined by the complexity of
the graph algorithmic analysis performed on the gate-level
STGs of the control FSMs using the Johnson’s Algorithm [21]
since the complexity of the RTL-FSMx module is negligible.

B. Performance of ARC-FSM-G

We have analyzed 15 RTL benchmarks from various open-
source repositories [23]–[25] and other resources to evaluate
the efficacy of our proposed ARC-FSM-G framework. These
benchmarks vary in size, complexity, and functionality (cryp-
tographic cores, processor cores, communication controllers,
etc.). The total number of lines and the total count of ‘always’
blocks (M) existing in the high-level RTL codes are shown in
Table II. These RTL designs were synthesized using Design
Compiler [26], and SAED90nm was used as the target technol-
ogy library. However, Genus from Cadence can be also used
as the logic synthesizer. The associated gate count and flip-flop
count can be obtained from the generated synthesis report. The
total count of control FSMs with their associated state register
size was obtained from the FSM extraction report generated by
RTL-FSMx [19]. Moreover, the total number of states present
in the STG extracted from the RTL description (RTL STG)
was also obtained from that report. These states are the user-
defined states existing in the RTL description of the control
FSMs. As evident from Table II, the chosen benchmarks also
vary widely in terms of control FSM count and the state-
space complexity of the control FSMs, which is determined
by the size of the corresponding FSM state registers. We have
also used SpyGlass [6] from Synopsys to ensure that the RTL
benchmarks are free from pre-synthesis lint issues.

After performing logic synthesis and optimization, the
FSMx-Ultra framework proposed in [20] was used to extract
control FSMs with the associated gate-level STGs from the
synthesized gate-level netlists. The number of states (V) and
the number of edges (E) were obtained by analyzing the
gate-level STGs (GL STGs) generated by FSMx-Ultra. The
state encoding schemes employed with the corresponding state
register size of the control FSMs of the chosen 15 benchmarks
are illustrated in Table III. FSMx-Ultra can successfully re-
cover the control-flow of the FSM under assessment from the
synthesized gate-level netlist with hidden don’t-care states and
transitions, even for very large netlists [20]. However, it needs
to be noted that as the size of the FSM register (n) increases,
its state-space complexity grows exponentially (2n). Therefore,

when a particular control FSM is encoded using the One-Hot
encoding scheme, it results in a massive number of don’t-
care states. Extracting all these possible don’t-care states is
practically infeasible for very large FSMs. In such a scenario,
for a large FSM utilizing the One-Hot encoding approach,
FSMx-Ultra yields a partial gate-level STG containing the
control-flow specified in the RTL description with some other
don’t-care states and transitions instead of a complete STG.

Nonetheless, from the hardware security perspective, not
all don’t-care states of a security-critical control FSM are
dangerous [1], [18], [20]. The don’t-care states having direct
access to the designer-defined states present in control FSMs’
RTL description are potentially dangerous. The underlying
reason is that if a don’t-care state can access a protected
state directly, an attacker can inject fault to transit to that
particular don’t-care state by altering the voltage supply, clock
frequency, or temperature, and these types of attacks require
low-cost equipment. Therefore, the presence of such don’t-
care states poses the most severe security threat [1], [18]. To
conclude, the massive state-space of a large FSM using the
One-Hot encoding technique can be shrunken, and analysis
of the partial gate-level STG obtained by FSMx-Ultra will
be sufficient. Hence, the ARC-FSM-G framework does not
require extracting the complete gate-level STG with all don’t-
care states of a large One-Hot encoded control FSM.

We have developed an automated tool implementing the
ARC-FSM-G framework using Python. The overall run-time
of the tool is presented in Table III, which incorporates the
run-times of its two constituting modules. All the experiments
on the benchmark designs have been performed using an Intel
Core i7-1065G7 CPU clocked at 1.3 GHz with 16GB RAM on
a personal desktop. Finally, we have used the property-based
formal verification approach using JasperGold to validate the
results obtained by the ARC-FSM-G framework. The security
properties were written according to [22], and the same rule
violations were detected using the formal approach. The results
prove that ARC-FSM-G can effectively detect the security
bugs indicating the associated security rule violations at the
netlist abstraction within a few seconds. Last but not least, it is
apparent from Table III that our proposed framework requires
a low peak memory usage during the run-time of the tool.
Hence, ARC-FSM-G is both run-time and memory efficient.

C. Case Studies

We present case studies on 2 practical benchmarks chosen
from [23], [25], which were analyzed by our proposed ARC-
FSM-G framework. These case studies illustrate that ARC-
FSM-G can effectively detect violations of the proposed 8
security rules within a few seconds while requiring a low
peak memory usage. One benchmark is the complex Memory

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



TABLE III: Run-time and peak memory usage of ARC-FSM-G for 15 benchmarks obtained from [23]–[25] and other resources.

Benchmark Name State Register Size State Encoding Scheme Protected State Authorized State State Visit Order Violated Rules Run-time (s.) Peak Memory (MB)

I2C CORE 18 One-Hot wr a idle idle → wr a R1, R6, R7 4.894 32.870
6 One-Hot ST WRITE ST START ST START → ST WRITE R1, R3, R4, R6

XTEA CIPHER 2 Binary CTRL ROUNDS1 CTRL ROUNDS0 CTRL ROUNDS0 → CTRL ROUNDS1 R1, R2 2.147 12.183

SAYEH CPU 4 Binary memread fetch fetch → memread R1, R2, R3 2.553 12.184

SUBTERRANEAN 6 Binary Mabs ADabs ADabs → Mabs R1, R2 2.846 12.183

MEMORY CONTROLLER (V1) 7 Binary BG0 IDLE IDLE → BG0 R1, R2, R5, R6, R7 4.185 19.771

MEMORY CONTROLLER (V2) 66 One-Hot BG0 IDLE IDLE → BG0 R1, R6, R7 5.615 18.329

ROMULUS 4 Binary Mstagei Nonceonly Nonceonly → Mstagei R1, R2, R3 2.221 12.184

ASCON AED 6 Binary Finalization1 ciphertext6 ciphertext6 → Finalization1 R1, R2, R3, R4 3.085 12.183

GIFT-COFB 3 Binary waitCBMessage Message Message → waitCBMessage R1, R2, R3, R8 2.242 12.184

PICORV32 CPU
3 Binary

cpu state stmem cpu state ld rs1 cpu state ld rs1 → cpu state stmem
R1, R2, R3, R4

4.388 12.202
cpu state ldmem cpu state ld rs2 cpu state ld rs2 → cpu state stmem

cpu state ld rs1 → cpu state ldmem

2 Binary 1 0 0 → 1 R1, R2

2 Binary WBEND WBSTART WBSTART → WBEND No Violation

SHA-512 2 Binary CTRL DONE CTRL ROUNDS CTRL ROUNDS → CTRL DONE R5 2.245 12.184

COMET 2 Binary CTRL EXEC CTRL INIT CTRL INIT → CTRL EXEC No Violation 2.776 12.184
4 Binary ProduceT2 ProduceT ProduceT → ProduceT2 R1, R2

SAEAES 2 Binary CTRL EXEC CTRL INIT CTRL INIT → CTRL EXEC No Violation 2.751 12.184
4 Binary Tprocess waitT, waitNonce waitNonce → Tprocess R1, R2

GCM AES (V1) 4 Binary M ENCRYPT INC COUNTER INC COUNTER → M ENCRYPT R1, R2 3.189 12.184

GCM AES (V2) 10 One-Hot M ENCRYPT INC COUNTER INC COUNTER → M ENCRYPT R1, R7 4.416 14.343

Controller IP core from [25], and the other one is a 32-bit
processor based on the RISC-V architecture, PICORV32 [28].

1) Memory Controller: The Memory Controller IP core
from [25] can be used in numerous embedded system applica-
tions. The core supports SDRAM, SSRAM, FLASH memory,
ROM, and several other devices. It has 8 chip select signals
in total, and each of those is programmable. Moreover, the
controller provides default boot sequence support with other
necessary features [27]. The IP has a single control FSM,
as evident from Table II. We have created a version (V1)
of this IP core utilizing the Binary encoding scheme. The
IP core contains 66 states, so it requires a control FSM
having a state register with 7 flip-flops. The size of the state
register will remain unchanged if the Gray encoding scheme is
employed. The total count of states and edges in the gate-level
STG extracted by FSMx-Ultra are 128 and 334, respectively.
ARC-FSM-G analyzed this massive gate-level STG, and 5
security rule violations were detected (R1, R2, R5, R6, R7),
as presented in Table III. The overall run-time of the tool
implementing the framework was only 4.185 s., and the peak
memory usage during run-time was only 19.771 MB.

It needs to be noted that, as shown in Table III, the state of
the FSM, named ‘BG0’, was considered a protected state. The
reason is that an external bus master can access the memory
bus if the FSM is in this state. It is a crucial state from
the security perspective since the memory bus may contain
sensitive data. However, the external bus master must grant
access by asserting the ‘mc gnt’ signal, which is only checked
in the ‘IDLE’ state. Therefore, the ‘IDLE’ state is authorized,
and the state order ‘IDLE → BG0’ must be maintained. It
is because an attacker may inject a fault in the system and
transit to the ‘BG0’ state directly, which permits access to the
memory bus bypassing the assertion checking of the ‘mc gnt’
signal. It can eventually lead to information leakage issues.
The ARC-FSM-G tool generates an annotated gate-level STG
of the control FSM illustrating the identified security rule
violations and the textual report. Therefore, it can help the
designers to recognize security bugs quite rapidly.

Finally, the V2 version of the Memory Controller core
implementing the original design from [25] was analyzed by
ARC-FSM-G. In this version, the control FSM is encoded

using the One-Hot scheme, and hence the 66 states of the FSM
require a state register having 66 flip-flops. This huge FSM
comes with a massive state space, i.e., 266 states, where only
66 states are described in the RTL description. Therefore, the
number of don’t-care states is enormous. Nevertheless, only
the don’t-care states connected with the control-flow specified
in the RTL abstraction are crucial from the security perspective
as those pose the most severe threat. Hence, the gate-level STG
extracted by the FSMx-Ultra framework [20] yields 133 states
and 155 state transitions in total instead of 266 states (which
is practically infeasible to obtain), as evident from Table II.
The number of don’t-care states present in the extracted gate-
level STG is 67. The ARC-FSM-G framework analyzed this
enormous control FSM STG, and violations of 3 security rules
(R1, R6, and R7) were reported (see Table III). The tool
required only 5.615 s. and peak memory usage of 18.329 MB
to generate the report with the huge annotated STG.

2) PICORV32: The PICORV32 is a RISC-V-based proces-
sor (CPU) core that implements the RISC-V RV32IMC Instruc-
tion Set [28]. This CPU core can be configured in 5 different
modes of operation: RV32E, RV32I, RV32IC, RV32IM, or
RV32IMC. It optionally contains a built-in interrupt controller.
The core has a high fmax of around 250-450 MHz on a
7-Series Xilinx FPGA. The CPU core can be an auxiliary
processor in ASIC and FPGA designs. Moreover, it can be
integrated into most existing designs without crossing clock
domains because of having a high fmax [28]. As presented
in Table II and Table III, the processor has 3 control FSMs,
and all the FSMs were encoded using the Binary encoding
scheme. The sizes of the FSM state registers are 3, 2, and 2,
respectively. As shown in Table III, multiple protected states,
authorized states, and state visit orders can be specified.

The first 2 control FSMs of this CPU include memory
read and write states, which should be only accessed by the
memory instructions. We assume that the privilege control is
implemented in the software. The control mechanism analyzes
the memory instructions from the user kernel. A flag is raised
if the mechanism does not access memory locations dedicated
to the system kernel. An attacker’s objective might be to inject
a fault in the system during non-memory instruction execution
and bump to the states that control memory read and/or write

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.



operations. As a result, the implemented privilege control can
be bypassed, and the memory locations of the system can be
accessed illegally. Therefore, the memory read and/or write
controlling states of these 2 control FSMs are protected states.
For the last control FSM, the ‘WBEND’ state indicates that the
data transfer operation to the system data bus is completed.
An attacker can access this state illegally by performing a
fault-injection attack to provide security-sensitive data from
the memory to the system data bus. Hence, ‘WBEND’ is
treated as the protected state. Similar intuition was used for
identifying the security-critical states and thus selecting the
protected states of other benchmarks presented in Table III.

Fig. 12: Annotated gate-level STGs of PICORV32’s FSMs.
The ARC-FSM-G tool analyzed the RTL design of the

processor core and the gate-level STGs yielded by FSMx-
Ultra [20]. Security rules violations were detected in the first
2 control FSMs. 4 security rules (R1, R2, R3, and R4) were
violated in the first FSM design, whereas only 2 rule violations
(R1 and R2) were found in the second one. However, no
security rule violations occurred in the third control FSM.
As mentioned in Table III, the overall run-time of the ARC-
FSM-G tool was only 4.388 s. to detect all such violations,
and the peak memory usage during run-time was only 12.202
MB. The annotated gate-level STGs of the 3 control FSMs
generated by the tool are illustrated in Fig. 12. The annotated
gate-level STGs of the 3 control FSMs, as shown in Fig.
12, correspond to the FSMs driven by the state variables
‘cpu state’, ‘mem state’ and ‘state’, respectively, which are
also reported by the ARC-FSM-G tool. It helps to pinpoint
the FSM with potential security issues at the netlist abstraction
specified in the RTL code. The tool also provides the flexibility
to omit an FSM from the security rules-checking process. The
designer must provide at least a protected state, an authorized
state, and a state visit order of an FSM for assessment by
ARC-FSM-G. Otherwise, the FSM will not be assessed since
all FSMs might not be security-critical. In Fig. 12, the states
colored in sky blue are the reset states of the FSMs. The ones
with lime green and golden colors are normal and protected,
respectively. Different color coding is used for visualizing the
states violating the rules R5 to R8. The transitions marked in
red violate the rules R1 or R2 to indicate potentially vulnerable
state transitions. We used PyGraphviz library for visualizing
the annotated gate-level STGs of the control FSMs.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a set of security rules for secure control
FSM design to be validated after the logic synthesis stage.

These rules will assist in making the control FSM design
resilient against certain fault-injection and denial-of-service
attacks. Moreover, the proposed security rules will help to
ensure that FSM is free from potential information leakage
and access control issues. Additionally, this paper presents
an automated verification framework named ARC-FSM-G to
detect violations of the proposed rules. We have also provided
guidelines on how to satisfy the rules in case of violations.
The ARC-FSM-G framework makes the designers aware of
potentially dangerous security bugs present in the gate-level
implementation of a control FSM. Then, the designers can
take appropriate countermeasures upon reviewing the security
rule-checking report. Results on several benchmarks varying
in size and complexity have proved the efficacy of ARC-
FSM-G. However, an exhaustive analysis of the effects of
satisfying the security rules presented in this paper is one of
our future research directions. Finally, we envision extending
the proposed security rules set and developing such rules for
the datapath logic of an SoC at the netlist abstraction.

REFERENCES

[1] A. Nahiyan et al.,“AVFSM: A framework for identifying and mitigating
vulnerabilities in FSMs,” Design Automation Conference, pp. 1-6, 2016.

[2] M. Tehranipoor and F. Kaushanfar, “A survey of hardware Trojan taxon-
omy and detection,” IEEE Design and Test of Computers, 2010.

[3] G. K. Contreras et al.,“Security vulnerability analysis of design-for-test
exploits for asset protection in SoCs,” ASP-DAC, pp. 617-622, IEEE, 2017.

[4] P. Mishra et al,“Hardware IP security and trust,” Springer, 2017.
[5] D. M. Anderson,“Design for manufacturability: how to use concurrent

engineering to rapidly develop low-cost, high-quality products for lean
production,” CRC press, 2020.

[6] https://www.synopsys.com/verification/static-and-formal-
verification/spyglass.html

[7] J. He et al.,“SoC interconnection protection through formal verification,”
Integration 64, pp. 143-151, 2019.

[8] J. Sepulveda et al.,“Towards the formal verification of security properties
of a Network-on-Chip router,” 2018 IEEE 23rd ETS, pp. 1-6, 2018.

[9] N. Farzana et al.,“SoC Security Verification using Property Checking,”
2019 IEEE International Test Conference (ITC), pp. 1-10, 2019.

[10] A. Ardeshiricham et al.,“Register transfer level information flow tracking
for provably secure hardware design,” Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1691–1696, 2017.

[11] C. Brant et al.,“Challenges and Opportunities for Practical and Effective
Dynamic Information Flow Tracking,” Comput. Surveys 55, 1, 2021.

[12] S. K. Muduli et al.,“Hyperfuzzing for SoC security validation,” 39th
International Conference on Computer-Aided Design (ICCAD), 2020.

[13] A. Tyagi et al.,“TheHuzz: Instruction Fuzzing of Processors Using
Golden-Reference Models for Finding Software-Exploitable Vulnerabili-
ties,” arXiv:2201.09941 [cs], 2022.

[14] M. Mushtaq et al.,“WHISPER: A Tool for Run-Time Detection of Side-
Channel Attacks,” IEEE Access 8, 2020.

[15] S. Johnson,“Lint, a C Program Checker,” Computer Science Technical
Report, 1978.

[16] https://cwe.mitre.org/data/definitions/1245.html, “CWE-1245”.
[17] L. Zussa et al.,“Investigation of timing constraints violation as a fault

injection means,” Design of Circuits and Integrated Systems, 2012.
[18] A. Nahiyan et al., “Security-Aware FSM Design Flow for Identifying

and Mitigating Vulnerabilities to Fault Attacks,” IEEE TCAD, 2019.
[19] R. Kibria et al.,“RTL-FSMx: Fast and Accurate Finite State Machine

Extraction at the RTL for Security Applications,” 2022 IEEE International
Test Conference (ITC).

[20] R. Kibria et al.,“FSMx-Ultra: Finite State Machine Extraction from
Gate-Level Netlist for Security Assessment,” IEEE TCAD, 2023.

[21] Donald B. Johnson,“Finding All the Elementary Circuits of a Directed
Graph,” SIAM Journal on Computing, 1975.

[22] https://trust-hub.org/#/data/Security-Properties-Rules, “Trust-Hub”.
[23] https://github.com/freecores, “FreeCores”.
[24] https://github.com/secworks, “SecWorks”.
[25] https://opencores.org/, “OpenCores”.
[26] “Design Compiler® Optimization Reference Manual – Version F-

2011.09-SP2,” Synopsys®, December 2011.
[27] https://github.com/freecores/mem ctrl, “Memory Controller IP”.
[28] https://github.com/YosysHQ/picorv32/blob/master/picorv32.v.

Accepted at the 2023 IEEE International Test Conference (ITC). Category: Regular Paper.


