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Abstract

This paper studies the quantum computational complexity of the discrete logarithm and
related group-theoretic problems in the context of “generic algorithms”—that is, algorithms
that do not exploit any properties of the group encoding.

We establish a generic model of quantum computation for group-theoretic problems, which
we call the quantum generic group model, as a quantum analog of its classical counterpart.
Shor’s algorithm for the discrete logarithm problem and related algorithms can be described in
this model. We show the quantum complexity lower bounds and (almost) matching algorithms
of the discrete logarithm and related problems in this model. More precisely, we prove the
following results for a cyclic group G of prime order.

• Any generic quantum discrete logarithm algorithm must make Ω(log |G|) depth of group
operation queries. This shows that Shor’s algorithm that makes O(log |G|) group opera-
tions is asymptotically optimal among the generic quantum algorithms, even considering
parallel algorithms.

• We observe that some (known) variations of Shor’s algorithm can take advantage of clas-
sical computations to reduce the number and depth of quantum group operations. We
introduce a model for generic hybrid quantum-classical algorithms that captures these
variants, and show that these algorithms are almost optimal in this model. Any generic
hybrid quantum-classical algorithm for the discrete logarithm problem with a total num-
ber of (classical or quantum) group operations Q must make Ω(log |G|/ logQ) quantum
group operations of depth Ω(log log |G| − log logQ). In particular, if Q = poly log |G|,
classical group operations can only save the number of quantum queries by a factor of
O(log log |G|) and the quantum depth remains as Ω(log log |G|).

• When the quantum memory can only store t group elements and use quantum random
access memory (qRAM) of r group elements, any generic hybrid quantum-classical al-
gorithm must make either Ω(

√
|G|) group operation queries in total or Ω(log |G|/ log(tr))

quantum group operation queries. In particular, classical queries cannot reduce the num-
ber of quantum queries beyond Ω(log |G|/ log(tr)).

As a side contribution, we show a multiple discrete logarithm problem admits a better algo-
rithm than solving each instance one by one, refuting a strong form of the quantum annoying
property suggested in the context of password-authenticated key exchange protocol.

*E-mail:minkihhan@kias.re.kr
†E-mail:takashi.yamakawa.obf@gmail.com
‡E-mail:aaramyun@ewha.ac.kr

1



Contents

1 Introduction 3
1.1 This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Technical Overview 8

3 The Adversarial Model 12
3.1 The Generic Group Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Group-theoretic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Classical lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Quantum Lower Bounds in the QGGM 15
4.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Hybrid Quantum-Classical Algorithms 19
5.1 The Model of Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Lower Bounds for Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Proof of the Hybrid Simulation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Proof of Lemma 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.2 Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Memory-bounded Algorithms 28
6.1 Quantum and Classical Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Lower Bounds for Memory-Bounded Algorithms . . . . . . . . . . . . . . . . . . . . 30
6.3 Proof of the Memory-Bounded Simulation Theorem . . . . . . . . . . . . . . . . . . . 30

7 Quantum Algorithms in the QGGM 34
7.1 The Discrete Logarithm Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1.1 The quantum DL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.2 Hybrid quantum-classical algorithms . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.3 Depth-efficient algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 The Multiple Discrete Logarithm Problem . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.1 The multi-exponentiation problem . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.2 A multiple discrete logarithm algorithm . . . . . . . . . . . . . . . . . . . . . . 37

2



1 Introduction

The discrete logarithm (DL) problem and related problems have long been fundamental crypto-
graphic primitives in the pre-quantum world [DH76, Gam85]. However, the emergence of quan-
tum computing has drastically altered the landscape of cryptography in the post-quantum world.
Shor’s algorithm [Sho94] has demonstrated that the DL problem (and integer factoring) can be
solved in quantum polynomial time, rendering many cryptographic protocols that rely on the DL
problem insecure against full-fledged quantum computers.

While algorithmic optimizations for quantum algorithms solving the DL problem have shown
significant progress [ME98, GE21, PG14, Gid19, RNSL17, HJN+20], the base algorithm of these
circuit optimizations is essentially the same as Shor’s original one or its near variants [Kal17, EH17,
Eke21, Eke19]. The complexity of the quantum DL algorithms is still dominated by O(log |G|)
group operations for the underlying group G, just like in the original Shor’s algorithm. As such,
no asymptotic improvements have been made since the original algorithm.

This state of affairs raises an important question:

Can we solve the discrete logarithm asymptotically better than Shor’s algorithm?

There are several potential approaches to addressing this question. In an extreme case, a direct
quantum algorithm with better asymptotic complexity may suddenly appear. Alternatively, a
hybrid classical-quantum algorithm could take advantage of the potentially massive power of
classical computation with a favorable classical-quantum tradeoff. Another interesting avenue of
exploration is a shallow quantum circuit that exploits parallelism, making quantum depth another
important measure of complexity. Cleve and Watrous [CW00] showed a lower bound on the depth
for the quantum Fourier transform, which is a crucial step of Shor’s algorithm. However, there
might exist a completely different quantum algorithm that does not rely on the quantum Fourier
transform.1 To the best of our knowledge, there is no known lower bound, in terms of either time
complexity or depth, for the quantum complexity of the DL problem.

1.1 This Work

In this paper, we study the hardness of the discrete logarithm problem and related problems by
considering a natural class of quantum algorithms referred to as generic algorithms. A generic
quantum algorithm is an algorithm that does not take advantage of the special properties of the
encodings of group elements. Instead, these algorithms only use group operations only in a black-
box manner, potentially in superposition.

We formally establish the quantum generic group model (QGGM) by restricting that access to
group elements is provided through the group oracle. The QGGM resembles the classical generic
group model (GGM) [Sho97, Mau05] proposed for arguing the security of group-theoretic crypto-
graphic problems in classical settings. As in the classical GGM, the main complexity measure in
the QGGM is the number of group operation queries. In addition, we are also concerned with the
depth of group operation queries to study the power of near-term quantum computers.

Lower bound in fully quantum setting. Our first result states that no generic quantum algo-
rithm in the QGGM can solve the DL problem much faster than Shor’s original algorithm, even
with parallel group operations. Precisely, we show the following theorem.

1Technically, the phase estimation-based DL algorithm [Kit96] can be done without the quantum Fourier transform.
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Theorem 1.1. For a prime-order cyclic group G, any generic quantum algorithm solving the DL problem
over G must make queries of depth Ω(log |G|).

To establish this theorem, for any generic quantum DL algorithm A, we construct a generic clas-
sical DL algorithm B in the GGM that perfectly simulates the output of A. Although the classical
simulation may require unbounded time for precise simulation, its query complexity is only expo-
nentially larger than that of A. It is known that a generic DL algorithm in the classical GGM must
make Ω(|G|1/2) classical group operation queries even if the algorithm is allowed to run in un-
bounded time [Sho97, Mau05]. Combined with the above simulation with an exponential blowup,
we obtain the desired result. We also establish the similar hardness of other group-theoretic prob-
lems, such as CDH and DDH using this simulation. We note that the naïve version of Shor’s
algorithm2 has the matching group operation complexity to the lower bound in Theorem 1.1.

Hybrid quantum-classical algorithms. The above result may initially seem sufficient to refute
our main question. However, this is not the case because this lower bound only considers purely
quantum algorithms. We observe that some simple (combination of) folklore hybrid quantum-
classical algorithms can do better than the purely quantum bound, exploiting classical computa-
tion to perform most group operations.

These hybrid algorithms consist of two phases: They first compute multiple group elements
using O(polylog |G|) classical group operation queries and store them as precomputed data. Then,
they implement Shor’s algorithm using the stored group elements using O(log |G|/ log log |G|)
quantum group operations and O(log log |G|) quantum query depth (Theorems 7.2 and 7.3).

We complement these algorithms by proving the matching lower bounds. We formalize a
model for generic hybrid quantum-classical algorithms that captures the above algorithms and
more general class of algorithms. In the model, we allow an algorithm to make both classical and
quantum group operation queries with the restriction that it is forced to measure all the registers
whenever its quantum query number or depth count exceeds a certain threshold. It is supposed
to capture hybrids of classical and quantum computers with limited coherence time. Note that we
do not consider noises in our model whereas actual near-term quantum computers are likely to be
noisy. Since our main results are the lower bounds, this just makes our results stronger.

The following theorem states the limitations of the generic hybrid algorithms, showing that
the above hybrid algorithms are indeed optimal with respect to both query number and depth.

Theorem 1.2 (Informal). For a prime-order cyclic group G, any generic hybrid quantum-classical algo-
rithm solving the DL problem with O(poly log |G|) total queries (including both classical and quantum)
must make Ω(log |G|/ log log |G|) quantum queries of depth Ω(log log |G|) between some two consecutive
forced measurements.

More generally, any generic hybrid DL algorithm with Q total queries must make Ω(log |G|/ logQ)
quantum queries of depth Ω(log log |G| − log logQ) between some two consecutive forced measurements.

Quantum memory-bounded algorithms. Quantumly processable memory is an expensive re-
source, either quantum memory that can store quantum states or quantum random accessible
(classical) memory (qRAM) that stores classical data but can be accessed coherently.3 While the

2We describe Shor’s algorithm in the QGGM in Section 7 for completeness, with the other algorithms in the QGGM.
3Formally, it enables one to realize a unitary |i⟩ ⊗ |0⟩ 7→ |i⟩ ⊗ |xi⟩ for a classical data (xi)i.
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original Shor’s algorithm only uses quantum memory that stores a single group element, the hy-
brid algorithms make use of relatively large quantum memory (Theorem 7.3) or large qRAM (The-
orem 7.2). This motivates the question of whether quantumly processable memory is necessary
even for a mild speed-up of Shor’s algorithm.

We prove that it is indeed necessary. The following theorem asserts such a lower bound.

Theorem 1.3. For a prime-order cyclic G, any generic hybrid algorithm solving the DL problem with
quantum memory that can store t group elements and no qRAM must make either Ω(

√
|G|) classical or

quantum group operation queries in total or Ω(log |G|/ log t) quantum group operation queries between
some two consecutive forced measurements.4

More generally, any generic hybrid DL algorithm with quantum memory that can store t group elements
and qRAM that can store r group elements must make either Ω(

√
|G|) group operation queries in total or

Ω(log |G|/ log(tr)) quantum group operation queries between some two consecutive forced measurements.

In particular, the above theorem means that classical queries cannot reduce the number of
quantum queries beyond Ω(log |G|/ log t), or just Ω(log |G|) when t = O(1). We have algorithms
that match the above lower bounds: Baby-step giant-step algorithm makes O(

√
|G|) classical

group operations, and the hybrid algorithm in Theorem 7.2 with quantum memory that can store
t group elements and no qRAM makes Ω(log |G|/ log t) quantum queries.

The multiple DL problem. The multiple discrete logarithm problem asks to solve multiple in-
stances of the DL problem with the same underlying group simultaneously. When m DL instances
are given, this problem is written by m-MDL. This problem is particularly interesting in the context
of the standard curves in elliptic curve cryptography, where only a few curves are recommended
as standard. In the classical setting, Kuhn and Struik [KS01] suggested an O(

√
m|G|) generic al-

gorithm for the m-MDL problem, and Yun [Yun15] proved the matching lower bound.
In Theorem 7.5, we present a generic quantum MDL algorithm using the results in vectorial

addition chain [Pip80]. If logm/ log |G| = o(1) and m = Ω(log |G|), it solves the m-MDL prob-
lem using O(m log |G|/ log(m log |G|)) group operations. This gives an amortized group operation
complexity of O(log |G|/ logm) per DL instance.

Regarding Theorem 1.1, the complexity of the m-MDL problem is lower than solving each
instance individually. It is related to the quantum annoying property [Tho19, ES21] suggested in
the context of password-authenticated key exchange (PAKE), which roughly means that quantum
algorithms must solve a DLP for each password guess of PAKE. Our algorithm shows that the
strongest form of quantum annoying cannot hold, regardless of the PAKE scheme construction.

We can derive the lower bound of the m-MDL problem similarly to Theorem 1.1 and using
the classical lower bound given in [Yun15]. However, this would only give a lower bound of
Ω(logm + log |G|) group operations. So there is an apparent gap between the upper and lower
bounds. We leave more accurate generic asymptotic complexity of m-MDL as an open problem.

1.2 Discussion

Tight complexity. Our lower bounds show asymptotically tight group operation complexity,
but the constant factor has room for improvement. In the formal theorems, the concrete quan-
tum query bounds are 0.25 log |G| + O(1) (or depth) in the fully quantum case (Theorem 4.2) and

4This gives a depth lower bound of Ω(log |G|/t log t) as an immediate corollary as an algorithm can make at most t
queries in one parallel query in this setting.
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0.5 log |G| + O(1) for the memory bounded hybrid case with t = r = 1 (Theorem 6.2). Shor’s DL
algorithm and early variants [ME98, Kit96] make quantum and classical group operations 2 log |G|
times each, having a gap in the constant factor.

The hybrid quantum-classical algorithms [Kal17, Eke19, Eke21, EH17] narrow down this gap.
These algorithms solve the DL problem by repeating a certain procedure with log |G|+O(1) group
operations about logO(1) |G| times,5 with appropriate classical pre- and post-processing. The con-
stant gap still exists besides the number of subroutine calls. Filling this gap is of practical interest.

Another interesting tradeoff point in our lower bound is the hybrid case (without memory
bound) in Theorem 5.2. We may ask if a small number of quantum group operations could reduce
the classical group operation queries. This theorem says that if a generic hybrid algorithm makes
a single quantum group operation, then it should make Ω(|G|0.25) classical group operations. In
other words, this does not rule out a hybrid DL algorithm with |G|0.25 classical group operations
and a single quantum group operation, which we do not know how to do. Theorem 6.2 rules out
this case if there is a memory constraint.

The quantum complexity of the composite-order DL problem is also unknown. We do not
know how to use the composite order either in constructing algorithms or proving lower bounds.

Generic vs. non-generic algorithms. While many group-theoretic algorithms discussed above
can be viewed as generic quantum algorithms, some variants leverage specific encoding struc-
tures [PZ03, HS05, RS14, RNSL17, HJN+20] for theoretic or practical purposes. In particular,
Høyer and Spalek [HS05] showed that the DL problem on ZN can be solved by a hybrid quantum-
classical algorithm with a constant quantum depth if we allow for unbounded fan-out gates.6 This
overcomes our quantum depth lower bound in Theorem 1.2.7 This is possible because their algo-
rithm is non-generic. For example, they use that multiplication of many elements of ZN can be
done in TC0, i.e., computed by a constant depth classical circuit with threshold gates [SBKH93].

This circumstance is reminiscent of the classical GGM, where some non-generic algorithms,
such as index calculus, show better efficiency than generic algorithms by exploiting the integer
encoding of group elements. Still, the classical GGM has been used as a meaningful model for
arguing the hardness of group-theoretic problems, especially for the general elliptic curves. Thus,
we believe that lower bounds in the QGGM are at least as meaningful as those in classical GGM.
Moreover, to the best of our knowledge, all non-generic quantum algorithms for the DL problem
are circuit optimization of (variants of) Shor’s algorithm, which is generic, while non-generic clas-
sical algorithms start from fundamentally different ideas from generic algorithms. This fact gives
us more motivation to study the limitations of generic quantum algorithms.

Maurer-style vs. Shoup-style QGGM. In the classical setting, there are two formalizations of
the GGM, one by Shoup [Sho97] and the other by Maurer [Mau05]. In Shoup’s GGM, generic algo-
rithms are given random labels of group elements and can perform group operations by sending
labels to the oracle. On the other hand, in Maurer’s GGM, all group elements are kept by the
oracle, and generic algorithms can access to them only through group operation or equality check

5Precisely, Kaliski’s algorithm [Kal17] repeats a subroutine of log |G| + 1 group operations O(log1.5 |G|) times, and
Ekerå’s algorithm repeat subroutines with (1+1/s) log |G| group operations about s times for some bounded s [Eke21].

6It does not contradict the depth lower bound of the quantum Fourier transform [CW00], which assumes that each
gate acts on a constant number of qubits.

7Using fan-out gates does not affect the query depth in the QGGM.
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queries. These two GGMs are known to be equivalent for "single-stage games," which include the
DL and related problems considered in this paper [Zha22].8

Our QGGM is defined as a quantum analog of Maurer’s GGM. It is possible to define it in
Shoup’s style. Indeed, such a model was already considered in [Zha21] under the name of "post-
quantum GGM." It is easy to show that any generic algorithm that works in our (Maurer-style)
QGGM also works in Shoup-style QGGM. On the other hand, it seems difficult to show the other
direction in the quantum setting, even if we focus on single-stage games. Thus, it would make
our results stronger if we could prove similar lower bounds in Shoup-style QGGM. We believe
that the lower bound in the fully quantum setting (Theorem 1.1) can be extended to Shoup-style
QGGM with a similar proof if the label space is much larger than the group order. On the other
hand, we do not know how to generalize the lower bounds for hybrid algorithms (Theorems 1.2
and 1.3) to Shoup-style QGGM. For this reason, we focus on Maurer-style QGGM in this paper.
We believe that lower bounds in Maurer-style QGGM are still meaningful, given that it captures
Shor’s algorithm and many variants.

Hidden subgroup problems and other potential directions. This paper suggests the number of
(quantum) group operations as a complexity measure for studying the DL and related problems.
We discuss the potential applications to the hidden subgroup problem (HSP).

In the hidden subgroup problem (HSP) literature, the primary complexity measure is the query
complexity to the oracle function hiding a subgroup. The standard approach, or Fourier sampling,
to the HSP over abelian groups makes a single oracle query. This approach is also a subroutine
to solve some HSPs over non-abelian groups, e.g., in [HRT00, EH00, Kup05]. Finally, it is shown
that O(log4 |G|) queries suffice for the HSP over an arbitrary group [EHK04]. This makes proving
lower bounds in terms of query complexity unlikely to yield meaningful results.9

Interestingly, these HSP algorithms can be considered generic algorithms by extending our
QGGM for general groups. Also, contrary to the query complexity, the group operation complex-
ity of [EHK04] is exponentially large. One may wonder if the group operation complexity can
provide an interesting lower bound of the HSP for some nonabelian groups. The full answer is
elusive with this paper’s tools. The dihedral group case, a crucial case regarding its connection to
the lattice-based [Reg04] and isogeny-based cryptography [Pei20, CJS14], has a negative answer
to this question, as the algorithm of Ettinger and Høyer [EH00] only makes a polynomial number
of group operations.

We believe exploring other potential applications of the generic model presented in this paper
is an interesting topic. For example, can we argue something about factoring by extending our
model to the ring operations?

1.3 Related Works

Post-quantum GGM. Zhandry [Zha21] introduced a model called post-quantum GGM as a
quantum analog of Shoup’s GGM. He showed that the generic group oracle in the model is quan-

8Jager and Schwenk [JS08] originally claimed a general equivalence, but Maurer, Portmann, and Zhu [MPZ20]
pointed out a counterexample. Zhandry [Zha22] resolved this issue by reproving the equivalence in the case of single-
stage games. Precisely speaking, he proved equivalence between Shoup’s GGM and what is called the type-safe model,
which is a variant of Maurer’s GGM for single-stage games, but there is no difference between the type-safe model and
Maurer’s GGM when we consider group-theoretic problems such as the DL problem.

9For a certain restricted class of algorithms, there are some known limitations [MRS08, HMR+10].
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tumly reset indifferentiable from ideal ciphers. This means that generic groups can be used to
construct symmetric key encryption secure against quantum adversaries. On the other hand, the
work does not discuss the hardness of the DL and its related problems in the post-quantum GGM.

Generic group action model. While the DL problem on cyclic groups can be solved in quan-
tum polynomial time by Shor’s algorithm, the DL problem for group actions is believed to be hard
against quantum computers. Such group actions with the quantum hardness of the DL prob-
lem have been used as bases of some proposals of post-quantum cryptography [Cou06, RS06,
CLM+18, JQSY19]. Montgomery and Zhandry [MZ23] and Duman et al. [DHK+23] introduced
generic models for group actions and studied the relations between the DL and related problems.
We stress that their results are not proving the lower bounds.10

Hybrid quantum-classical algorithms. The hybrid quantum-classical algorithms have recently
begun to attract more attention in various aspects. In [CCL23, CM20], the authors studied the rela-
tions between the hybrid algorithm with shallow quantum circuits and BQP, refuting the conjec-
ture of Josza [Joz06] and proving Aaronson’s conjecture [Aar05]. The study of hybrid algorithms
with shallow quantum circuits was continued in [ACC+22] relative to random oracles. [Ros22]
studied the hybrid algorithm in the context of Grover’s algorithm, showing that classical queries
cannot assist quantum computation. [HLS22] further developed the tools for hybrid algorithms
with random oracles and showed a similar result for collision finding. Our model of generic hy-
brid algorithms is inspired by [CCL23, ACC+22], as well as the other papers.

2 Technical Overview

Classical GGM. First, we recall the classical GGM as formalized by Maurer [Mau05]. Let G be a
cyclic group of order N with a generator g in which we consider group-theoretic problems such
as the DL problem. A generic algorithm A is formalized as an oracle-aided algorithm that has
classical access to an oracle, which keeps a table T storing elements of ZN . At the beginning,
when A takes gy1 , ..., gym as input, the table T is initialized as (y1, ..., ym, 0, ..., 0).11 The generic
algorithm A can make the following two types of queries:

• Group operation queries. When A submits (b, i, j, k) ∈ {0, 1}×N3, the oracle finds i-th element
xi and j-th element xj in the table T and overwrites the k-th element of T by xi + (−1)bxj .
Nothing is returned to A.

• Equality queries. When A submits (i, j) ∈ N2, the oracle returns 1 if i-th and j-th elements of
T are equal and otherwise returns 0.

We only count the number of group operation queries and allow equality queries for free, follow-
ing the previous models [Mau05, Zha22].12

Finally, A outputs a bit string or an index i∗ of T . In the latter case, gxi∗ is treated as A’s output
where xi∗ is the i∗-th element in T .

10Indeed, [DHK+23] argued that we could not hope for the superpolynomial lower bound of the DL problem in
group actions due to [EH00], similar to our discussion on the dihedral HSP.

11The size of T can be unbounded.
12See Section 3 for more discussion.
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Quantum GGM. We define the Quantum GGM (QGGM) as a natural quantum analog of the
classical GGM where A is allowed to make quantum queries and the table T is stored in a quantum
register T. However, since overwriting values of quantum registers is not unitary, we formalize
group operation queries in a slightly different way. Specifically, a group operation query is (a
superposition of) (b, i, j) ∈ {0, 1} × N2 and the oracle replaces i-th element of the table register T
with xi + (−1)bxj (in superposition) where xi and xj are i-th and j-th elements of T before the
query, respectively. In this way, we can ensure that it is a unitary operation. For clarity, we describe
how the oracle works for group operation and equality queries where Q is the query register:

• Group operation queries. Apply the following unitary on Q and T:

|b, i, j⟩Q ⊗ |..., xi, ..., xj , ...⟩T 7→ |b, i, j⟩Q ⊗
∣∣∣..., xi + (−1)bxj , ..., xj , ...

〉
T

if i ̸= j and otherwise it does nothing.

• Equality queries. Apply the following operation on Q and T:

|b, i, j⟩Q ⊗ |..., xi, ..., xj , ...⟩T 7→ |b⊕ t, i, j⟩Q |..., xi, ..., xj , ...⟩T

where t = 1 if xi = xj and t = 0 otherwise.

Initialization and finalization of a generic algorithm are exactly the same as in the classical GGM
except that T is measured in the computational basis at the end.

Basic idea: the fully quantum setting. Our idea is to simulate a generic algorithm A taking
m group elements as input in the QGGM by a generic algorithm B in the classical GGM with an
exponential blowup in the number of group operations (or simply, queries). Since we have a group
operation complexity lower bound of Ω(|G|1/2) for the DL problem in the classical GGM, such a
simulation gives a lower bound of Ω(log |G|) in the QGGM. In particular, the classical lower bound
holds even for unbounded algorithms as long as the condition on the query number is satisfied.

The idea for the simulation is extremely simple. At the beginning, the table register T of the
QGGM has m non-zero elements (y1, ..., ym). Suppose that A makes one (potentially parallel)
quantum group operation query. After the query, T can only contain elements of the form z1y1 +
z2y2 + ... + zmym where |zi| ≤ 1 for all i ∈ [m] in any branch with a non-zero amplitude. After A
makes the next (potentially parallel) quantum group operation query, a similar argument shows
that T can only contain elements of the form z1y1 + z2y2 + ...+ zmym where |zi| ≤ 2 for all i ∈ [m].
By repeating a similar argument recursively, one can see that after d-layer of parallel quantum
group operation queries, T can only contain elements of the form z1y1 + z2y2 + ...+ zmym where
|zi| ≤ 2d−1 for all i ∈ [m]. In particular, the number of such elements is at most (2d+1)m ≤ 2m(d+1).
Thus, if the generic algorithm B in the classical GGM creates all these elements in its table in
advance using 2m(d+1) classical queries, it can perfectly simulate T for A. Note that B can run
in unbounded time though it only makes only classical queries. In particular, it can simulate any
quantum superposition of the group elements in the table by brute force. This means that a generic
algorithm of query depth d in the QGGM can be perfectly simulated by a generic algorithm that
makes 2m(d+1) queries in the classical GGM. In particular, for the DL problem, we have m = 2
since the input is y1 = g and y2 = gx for random x. Combined with the lower bound in the
classical GGM, we obtain Theorem 1.1.
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Hybrid quantum-classical algorithms. We explain how to extend the above idea to the hybrid
quantum-classical algorithms. First, we describe our formalization of hybrid quantum-classical
algorithms in the QGGM. A hybrid quantum-classical algorithm is characterized as a consecu-
tive execution of quantum subroutines U1, ..., UT followed by a classical post-processing algorithm
AT+1. Each subroutine Ui makes arbitrarily many classical queries and a bounded number or
depth of quantum queries and measures all the registers including the table register T at the end.
AT+1 makes arbitrarily many classical queries and no quantum query.

We first consider the depth-bounded case where each subroutine can have quantum query
depth at most d. Let Q be the total number of the hybrid algorithm’s queries including both
classical and quantum ones. The idea is similar to the basic case: The simulation algorithm in the
classical GGM creates all the group elements that may appear in the table register T.

We first analyze each subroutine and then apply an inductive argument. Suppose that a sub-
routine Ui is described as a sequence (Ci,0, Oi,1, ..., Ci,d−1, Oi,d) where each Ci,j only makes clas-
sical queries and each Oi,j makes one parallel quantum query. Let Qi be the total number of
queries made by Ui and let ci,j be the number of classical queries made by Ci,j . Let mi be the
number of non-zero elements stored in the table register T when Ui starts. For j = 0, 1, ..., d−1, let
Si,j ⊆ ZN be the set of elements that appear in the table register T in some branch with a non-zero
amplitude right before the application of Oi,j+1 and let Sd ⊆ ZN be the set right after the appli-
cation of Od (before the forced measurement). It is easy to see that we have |Si,0| ≤ mi + 1 + ci,0,
|Si,j | ≤ 2|Si,j−1|2 + ci,j , and |Si,d| ≤ 2|Si,d−1|2. Thus, we have

|Si,d| ≤ 22
d
(mi + 1 + ci,0 + ci,1 + ...+ ci,d−1)

2d ≤ 22
d
(mi +Qi + 1)2

d

Then, by a similar argument to the basic case, a generic algorithm in the classical GGM can simu-
late the subroutine Ui by making at most 22

d
(mi +Qi + 1)2

d

group operation queries. Moreover,
it is easy to see that we have mi ≤ m +Q1 + ... +Qi−1 where m is the number of elements given
as input since each classical or quantum query can increase at most one new element in the table.
Then, if we let c be the number of classical queries by AT+1, the total number of classical queries
needed to simulate the whole execution is at most

22
d
(m+Q1 + 1)2

d
+ 22

d
(m+Q1 +Q2 + 1)2

d
+ ...+ c ≤ Q+ T · 22d(m+Q+ 1)2

d

where we use Q1+Q2+...+QT+c ≤ Q. That is, any generic hybrid algorithm with the total number
of queries Q and bounded quantum query depth d can be simulated by a generic algorithm in the
classical GGM that makes at most Q+ T · 22d(m+Q+ 1)2

d
classical queries. Combined with the

classical GGM lower bound, we obtain the depth-bounded part of Theorem 1.2.
Next, we consider the query-bounded case where each subroutine can make at most q quantum

queries, and the total number of the hybrid algorithm’s queries is Q, including both classical
and quantum ones. The idea is similar to the depth-bounded case, but we have to count the
number of elements that appear in the table register T more carefully by making use of the fact
that there are no parallel queries. We use similar notations to the depth-bounded case where
the difference is that each Oi,j makes only one non-parallel group operation query instead of a
parallel one and the index j ranges in [q] instead of [d]. First, we remark that we can simulate
Ci,0, ..., Ci,q−1 by making at most Qi classical queries in an obvious way. Thus, we ignore them in
the following analysis and simply add Qi to the number of classical queries needed to simulate
the subroutine at the end. Recall that mi denotes the number of non-zero elements stored in T at
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the beginning of the subroutine Ui. Before the subroutine Ui applies Oi,1, T has a classical state
that has at most mi + Qi + 1 elements including 0. After applying Oi,1, T is a superposition of
at most 2(mi + Qi + 1)2 different tables. We observe that in each possible table with a non-zero
amplitude, at most one new element is added. Thus, we can simulate Oi,1 by making at most
2(mi +Qi + 1)2 classical queries. Next, for each fixed branch of T, we can do the same analysis to
see that we can simulate Oi,2 by making at most 2(mi +Qi + 1)2 classical queries. Since there are
2(mi + Qi + 1)2 branches, the total number of classical queries needed to simulate Oi,2 is at most
2(mi +Qi +1)2 · 2(mi +Qi +1)2 = 4(mi +Qi +1)4 and we have at most 4(mi +Qi +1)4 branches
with a non-zero amplitude. By repeating a similar argument recursively, we can simulate Oi,j by
making 2j(mi + Qi + 1)2j classical queries. Thus, the total number of classical queries needed to
simulate the subroutine Ui = (Ci,0, Ui,1, ..., Ci,q−1, Ui,q) is at most

Qi + 2(mi +Qi + 1)2 + ...+ 2q(mi +Qi + 1)2q ≤ Qi + 2q+1(mi +Qi + 1)2q.

Noting that we have mi ≤ m+Q1+ ...+Qi−1, the total number of classical queries to simulate
the whole hybrid algorithm is at most(
Q1 + 2q+1(m+Q1 + 1)2q

)
+
(
Q2 + 2q+1(m+Q1 +Q2 + 1)2q

)
+ ...+c ≤ Q+T ·2q+1(m+Q+1)2q,

where we use Q1+Q2+...+QT+c ≤ Q. That is, any generic hybrid algorithm with the total number
of queries Q and bounded quantum query number q can be simulated by a generic algorithm in
the classical GGM that makes at most Q+ T · 2q+1(m+Q+ 1)2q classical queries. Combined with
the lower bound in the classical GGM, we obtain the query-bounded part of Theorem 1.2.

Quantum-memory-bounded algorithms. To formalize a quantum-memory-bounded generic al-
gorithm, we divide the table register T into the quantum part TQ and classical part TC . We restrict
TQ to store at most t elements whereas TC can store arbitrarily many elements. A generic hybrid
quantum-classical algorithm without qRAM cannot send a group operation query that involves
a superposition over indices in TC . In this setting, the number of new elements that may be
computed by one quantum query is at most 2t(t − 1). Thus, by a similar analysis to the query-
bounded case for quantum-memory-bounded generic algorithms in the previous paragraph, we
can see that the number of classical queries to simulate each subroutine Ui is at most

Qi + 2t(t− 1) + ...+ 2q(t(t− 1))q ≤ Qi + 2q+1(t(t− 1))q,

and thus the total number of classical queries to simulate the whole hybrid algorithm is at most(
Q1 + 2q+1(t(t− 1))q

)
+
(
Q2 + 2q+1(t(t− 1))q

)
+ ...+ c ≤ Q+ T · 2q+1(t(t− 1))q.

Combined with the classical lower bounds, this implies the former part of Theorem 1.3.
For capturing qRAM that can store r elements, we allow a generic hybrid algorithm to make

a query involving a superposition over indices in TC as long as the number of indices in TC

involved in the superposition is at most r. In this setting, the number of new elements that may
be computed by one quantum query is at most 2t · (t − 1 + r). Thus, by a similar analysis where
we replace 2t(t− 1) with 2t · (t− 1+ r), the total number of classical queries to simulate the whole
hybrid algorithm is at most(
Q1 + 2q+1(t · (t+ r − 1))q

)
+
(
Q2 + 2q+1(t · (t+ r − 1))q

)
+ ...+ c ≤ Q+ T · 2q+1(t · (t+ r − 1))q.

Combined with the classical lower bound, this implies the latter part of Theorem 1.3.
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3 The Adversarial Model

This section defines the model of generic adversaries for the discrete logarithm and related prob-
lems. Section 3.1 defines the generic group model for the classical and quantum adversaries and
Section 3.2 summarizes the cryptographic problems such as the discrete logarithm and their lower
bounds in the classical generic group model.

3.1 The Generic Group Models

Classical generic group model. We first review the classical generic group model (GGM) as de-
fined in [Mau05]. A generic algorithm A in the GGM interacts with an oracle that keeps a function
T : N → ZN for some positive integers N . We often regard T as a table consisting of group
elements, and we often refer to T (i) by the i-th element in the table T . At the beginning, T is
initialized as T (i) := yi for i ∈ [m] and T (i) := 0 for all i > m where (y1, ..., ym) ∈ Zm

N is the input
of A. A is allowed to make the following queries:

• Group operation queries. When A submits (b, i, j, k) ∈ {0, 1}×N3, the oracle overwrites T (k) :=
T (i) + (−1)bT (j). Nothing is returned to A.

• Equality queries. When A submits (i, j) ∈ N2, the oracle returns 1 if T (i) = T (j), and 0
otherwise.

Finally, A outputs a classical string or a special symbol group along with an integer i. In the latter
case, T (i) is treated as A’s output.

When we discuss query complexity of A, we only count the number of group operation queries
and allow it to make equality queries for free following [Mau05, Zha22]. Assuming the zero-cost
equality query makes our result stronger, and in fact describes the practice more appropriately.
We refer to a more detailed discussion in [Zha22, Remark 3.1].

Quantum generic group model. We extend the GGM to define the quantum generic group model
(QGGM). A generic algorithm A in the QGGM works over a working register W, a query register
Q, and a table register T. The registers W and Q are initialized to be |0...0⟩. The register T
stores s group elements of ZN for some positive integers s,N . At the beginning, T is initialized
as |y1, ..., ym, 0, ..., 0⟩T where (y1, ..., ym) ∈ Zm

N is the input of A. A can apply arbitrary quantum
operations on W and Q, but it can only act on T through the following types of queries:

• Group operation queries. Apply the following unitary OQ,T on Q and T:

|b, i, j⟩Q ⊗ |..., xi, ..., xj , ...⟩T 7→ |b, i, j⟩Q ⊗
∣∣∣..., xi + (−1)bxj , ..., xj , ...

〉
T

(1)

if i ̸= j and otherwise it does nothing.

• Equality queries. Apply the following operation on Q and T:

|b, i, j⟩Q ⊗ |..., xi, ..., xj , ...⟩T 7→ |b⊕ t, i, j⟩Q |..., xi, ..., xj , ...⟩T

where t = 1 if xi = xj and t = 0 otherwise.
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Finally, A outputs a classical string or a special symbol group along with an integer i ∈ [s]. In
the latter case, T is measured and the i-th element in the measurement outcome is treated as the
output of A.

As in the classical GGM, the query complexity of A is defined by the number of group operation
queries, and the equality queries are considered as free.

Remark 1. The QGGM has several differences from the classical GGM besides allowing quantum
queries. First, the group operation query takes two indices (i, j) instead of three indices (i, j, k).
This modification is made because we cannot "overwrite" the k-th element in the quantum setting
since that is a non-unitary operation. Second, we put an upper bound s for the size of the table.
This is to capture the size of quantum memory available for the adversary.

We remark that in many theorems (Theorems 4.1 and 5.1), the memory size does not appear
in the bounds, which means that these theorems give lower bounds for arbitrarily large quantum
memory size. On the other hand, in Theorem 6.1 where we consider hybrid quantum-classical
generic algorithms with memory restrictions, the bound depends on some relevant parameters.

Remark 2. As we will see later in Section 7, Shor’s algorithm can be written as a generic algorithm
in the QGGM. Interestingly, Shor’s algorithm does not make use of the equality queries.

Parallel-query generic algorithms. We define parallel-query generic algorithms in the QGGM. A
parallel-query generic algorithm A in the QGGM works similarly to that in the QGGM except that
it has K query registers Q1, ...,QK for some positive integer K (referred to as the query width) and
is allowed to make parallel queries as follows:

• Parallel group operation queries. Let OQk,T be a unitary that works as in Equation (1) where
Qk plays the role of Q. Then apply the following operation on Q1, ...,QK and T:⊗

k∈[K]

|bk, ik, jk⟩Qk
⊗ |x1, ..., xs⟩T 7→

∏
k∈[K]

OQk,T

⊗
k∈[K]

|bk, ik, jk⟩Qk
⊗ |x1, ..., xs⟩T

if ik /∈ {ik′}k′∈[K]\{k} ∪ {jk′}k′∈[K] for all k ∈ [K] and otherwise it does nothing. (Intuitively,
the above condition means that multiple queries should not write to the same register and if
one of the queries writes to some register, then that register should not be used as a control
register for another query. Note that this does not prohibit parallel queries that share the
same control register. )

• Parallel equality queries. Apply the following operation on Q and T:⊗
k∈[K]

|bk, ik, jk⟩Qk
⊗ |x1, ..., xs⟩T 7→

⊗
k∈[K]

|bk ⊕ tk, ik, jk⟩Qk
⊗ |x1, ..., xs⟩T

where tk = 1 if xik = xjk and tk = 0 otherwise.

We call the number of parallel group operation queries by the query depth of A.

Remark 3. We do not consider parallel queries that mix group operation and equality queries
because such queries can be split into a parallel group operation query and a parallel equality
query.
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Remark 4. Strictly speaking, here we are extending the QGGM to deal with parallel queries; when
K is fixed to 1, this model becomes the QGGM above. On the other hand, if we always measure
the query register whenever the algorithm makes a query, it is not hard to see that the QGGM is
equivalent to the classical GGM when we allow s to be arbitrarily large.

Convention. We often want to analyze problems defined for a multiplicative cyclic group G in the
(Q)GGM with N = |G|. In this case, we occasionally identify x ∈ ZN and gx ∈ G where g is a
generator of G. In particular, the generator 1 ∈ ZN is identified with g ∈ G and the zero element
0 ∈ ZN is identified with 1 ∈ G. We also often abuse notation to write G to mean the generic group
oracle in the (Q)GGM. For example, a (parallel-query) generic algorithm for the DL problem is
written as AG(g, gx).

3.2 Group-theoretic Problems

3.2.1 Problems

The Discrete Logarithm (DL) Problem. In the discrete logarithm problem, an element x ← ZN

is uniformly chosen at random. The first and second elements of the table T are initialized by
T (1) = 1 and T (2) = x so that the input to the algorithm is (g, gx). The adversary is asked to
output x. The advantage of the DL adversary AG is defined as follows:

AdvDL(A
G) = Pr

x

[
AG(g, gx)→ x

]
,

where the input g, gx denotes the elements stored in the table T .

The Computational/Decisional Diffie-Hellman Problem. In the computational Diffie-Hellman
problem (CDH), two elements x, y ← ZN are randomly chosen. An instance (g, gx, gy) is given to
the adversary as elements in T . The adversary is asked to compute gxy in the table. The advantage
of the CDH adversary AG is defined as follows:

AdvCDH(A
G) = Pr

x,y

[
AG(g, gx, gy)→ gxy

]
.

In the decisional Diffie-Hellman problem (DDH), three elements x, y, r ← ZN are randomly
chosen, and either (g, gx, gy, gr) or (g, gx, gy, gxy) is given to the adversary, as elements in T , and
the adversary is asked to decide which is the case by outputting a decision bit b ∈ {0, 1}.

The advantage of the DDH adversary AG is defined as follows:

AdvDDH(A
G) =

∣∣∣∣ Prx,y,r

[
AG(g, gx, gy, gxy)→ 1

]
− Pr

x,y,r

[
AG(g, gx, gy, gr)→ 1

]∣∣∣∣ .
The Multiple Discrete Logarithm Problem. In the m-multiple discrete logarithm problem (m-
MDL), m elements x1, ..., xm ← ZN are independently and uniformly chosen at random. The m-
MDL problem instance gx1 , ..., gxm is given to the adversary, stored in the 2, ..., (m+1)-th elements
of T along with the first element g of T . The adversary is asked to find all of x1, ..., xm. The
advantage of the m-MDL adversary AG is defined as follows:

Advm−MDL(A
G) = Pr

x1,...,xm

[
AG(g, gx1 , ..., gxm)→ (x1, ..., xm)

]
.
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3.2.2 Classical lower bounds

The following theorems state the lower bounds of the above problems in GGM.

Theorem 3.1 (GGM lower bound of DL/CDH/DDH [Mau05, Sho97]). Let Q be a positive integer,
and G be a prime-order cyclic group. For a generic algorithm AG in GGM with Q queries and for any
∗ ∈ {DL,CDH,DDH}, it holds that

Adv∗(A
G) = O

(
Q2

|G|

)
.

In particular, any constant-advantage algorithm in the GGM solving the DL/CDH/DDH problem makes
at least Ω(

√
|G|) queries.

Theorem 3.2 (GGM lower bound of MDL [Yun15]). Let Q be a positive integer, and G be a prime-order
cyclic group. For a generic algorithm AG in GGM with Q queries for the m-MDL problem G, it holds that

Advm-MDL(A
G) = O

((
e(Q+m+ 1)2

2m|G|

)m)
.

In particular, any constant-advantage algorithm in the GGM solving the m-MDL problem makes at least
Ω(
√
m|G|) queries.

Remark 5. We stress that the query complexity is the only complexity measure when showing the
lower bounds. In particular, the lower bounds in Theorems 3.1 and 3.2 do apply for adversaries
even with quantum or unbounded computational powers, as long as they only make T classical
queries. This observation is essential for our result.

4 Quantum Lower Bounds in the QGGM

In this section, we prove the quantum lower bounds of the DL and related problems in the QGGM.
Our main technical tool is the following simulation theorem.

Theorem 4.1. Let G be a group. Suppose that a parallel-query generic algorithm AG in the QGGM is given
m group elements as input and has the query depth at most d. Then there exists a generic algorithm B in
the classical GGM for G, given the same inputs, which makes at most 2(d+1)m queries to the oracle such
that the output distribution of BG(y) and AG(y) are identical for any input y.

The generic algorithm B may perform quantum or unbounded computation, but the group
operations are all done classically. As observed in Remark 5, the GGM lower bounds apply to the
algorithm B. With this observation in mind, the quantum lower bound of the DL problem in the
QGGM is an immediate corollary of Theorem 4.1.

Theorem 4.2. Let G be a prime-order cyclic group. Any constant-advantage generic quantum algorithm
solving the DL problem makes queries of depth at least Ω(log |G|).

More precisely, the following holds. Let d be a positive integer. For a QGGM algorithm AG making
quantum queries of depth d for the DL problem over G, it holds that

AdvDL(A
G) = O

(
24d

|G|

)
.
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Proof. A DL instance consists of two group elements (g, gx) , thus m = 2 for the DL problem. For
m = 2, any generic quantum algorithm AG with a d query depth can be simulated by a generic
classical algorithm BG with Q = 22(d+1) queries by Theorem 4.1. The advantage of BG is bounded
by O(Q2/|G|) due to Theorem 3.1, which shows the desired result.

The quantum CDH/DDH lower bound can be proven similarly.

Theorem 4.3. Let G be a prime-order cyclic group. Any constant-advantage generic quantum algorithm
solving the CDH/DDH problem makes queries of depth at least Ω(log |G|).

More precisely, the following holds. Let d be a positive integer. For a generic quantum algorithm AG

making quantum queries of depth d and for any ∗ ∈ {CDH,DDH}, it holds that

Adv∗(A
G) = O

(
28d

|G|

)
.

4.1 Proof of Theorem 4.1

We return to the proof of the main theorem. The idea of the proof is to simulate the generic algo-
rithm in the QGGM by using classical group operations in the GGM. The simulation algorithm
exhaustively computes all branches of the original algorithm. This may take an unbounded time,
but the query complexity is bounded, and only exponentially larger than that of A, which suffices
for our purpose; again, the classical GGM lower bounds only consider the query complexity.

Proof of Theorem 4.1. Let A be a parallel-query generic algorithm in the QGGM with query depth
d and query width K that takes m group elements y1, ..., ym as input. Without loss of generality,
we assume that y1, ..., ym are not 0. Let N = |G|. Then we construct a generic algorithm B in the
GGM that simulates A as follows.

Initialization. For the simulation, the algorithm B makes use of a “labeling function”

L : ZN [Y1, ..., Ym]→ [N ] ∪ {⊥},

which is gradually updated during the simulation.13 Here, ZN [Y1, ..., Ym] denotes the m-variate
polynomial ring over ZN with indeterminates Y1, ..., Ym. Intuitively, when we have L(f) = ℓ ̸= ⊥,
it should be understood that we give a “label” ℓ ∈ [N ] to f(y1, ..., ym) ∈ ZN . For this to be well-
defined, we always make sure that L(f) = L(g) if and only if f(y1, ..., ym) = g(y1, ..., ym) for any
f, g on which L is defined (i.e., takes a non-⊥ value).

The algorithm B initializes L as follows:

1. Set L(0)← [N ].

2. For i = 1, ...,m, uniformly set L(Yi) ∈ [N ] under the constraint that L(Yi) ̸= L(0) and
L(Yi) = L(Yj) if and only if yi = yj . Note that B can do this because it can check if yi = yj
by making an equality query to the classical group oracle.

3. Set L(f) := ⊥ for all f /∈ {0, Y1, ..., Ym}.14

13L will take non-⊥ values only on polynomials of degree at most 1 throughout the simulation.
14There are infinitely many elements in ZN [Y1, ..., Ym], but B does not explicitly record that L is defined to be ⊥ on

those inputs. The value of L is understood to be ⊥ unless it is explicitly defined to be a non-⊥ value.

16



B also defines a set S ⊆ ZN [Y1, ..., Ym] of polynomials on which the value of L is defined (i.e., not
⊥). That is, S := {0} ∪ {Yi}i∈{1,...,m}. The set S will be updated along with L to ensure that it is
always the set consisting of polynomials on which the value of L is defined.

B creates the following state as a simulation of the initial state for A:

|0...0⟩W,Q1,...,QK
⊗ |L(Y1), ..., L(Ym), L(0), ..., L(0)⟩T .

During the simulation, we keep the invariance that for any ℓ ∈ Zn that appears in the register T
of any branch with non-zero amplitude, there is f ∈ S such that ℓ = L(f). This is satisfied at this
point since S = {0} ∪ {Yi}i∈{1,...,m}.

Local operation. When A applies some operation on its local registers W,Q1, ...,QK , B also
applies the same operation.

Parallel group operation query. Suppose A makes a parallel group operation query. Let Spre :=
S. (We introduce Spre to record the set S at the point of making the query since we will update the
set S during the simulation below.) Then B does the following. Informally, the first step updates
L and S to include the group elements potentially appearing after the query, and the second step
defines the group operations over the labels. B simulates the parallel group operation of A in the
last step.

1. For each pair (f, g) ∈ S2
pre (in arbitrary order), do the following:

(a) Check if there is any h ∈ S such that

h(y1, ..., ym) = f(y1, ..., ym) + g(y1, ..., ym).

Note that B can check this by making one group operation query for the RHS and
many equality queries to the classical group oracle because f(y1, ..., ym), g(y1, ..., ym),
and h(y1, ..., ym) have been already generated in the table of the classical group oracle.

• If there exists such h, it sets
L(f + g) := L(h).

Note that this is well-defined since the RHS does not depend on the choice of h.15

• Otherwise, it uniformly sets L(f + g) ← [N ] under the constraint that L(f + g) ̸=
L(h) for all h ∈ S.

Then update S ← S ∪ {f + g}.
(b) Similarly define L(f − g) and update S ← S ∪ {f − g}.

2. For labels (ℓ, ℓ′) ∈ [N ]2, define ℓ± ℓ′ as follows:

• Check if there is (f, g) ∈ S2
pre such that ℓ = L(f) and ℓ′ = L(g).

15As already mentioned, we always ensure that L(h) = L(h′) if and only if h(y1, ..., ym) = h′(y1, ..., ym) for all
h, h′ ∈ S.
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– If they exist, define
ℓ± ℓ′ := L(f ± g).

Note that this is well-defined since the RHS does not depend on the choice of
(f, g).16

– Otherwise, define ℓ± ℓ′ := ⊥.

3. Then B simulates the group operation oracle by using the above defined operations for
labels. That is, it does the following: For each k ∈ [K], let ÕQk,T be the unitary that works as
follows:

|bk, ik, jk⟩Qk
⊗ |..., ℓik , ..., ℓjk , ...⟩T 7→ |bk, ik, jk⟩Qk

⊗
∣∣∣..., ℓik + (−1)bkℓjk , ..., ℓjk , ...

〉
T

if ik ̸= jk and otherwise it does nothing. Then apply the following operation on Q1, ...,QK

and T: ⊗
k∈[K]

|bk, ik, jk⟩Qk
⊗ |ℓ1, ..., ℓs⟩T 7→

∏
k∈[K]

ÕQk,T

⊗
k∈[K]

|bk, ik, jk⟩Qk
⊗ |ℓ1, ..., ℓs⟩T

if ik /∈ {ik′}k′∈[K]\{k} ∪ {jk′}k′∈[K] for all k ∈ [K] and otherwise it does nothing.

Parallel equality query. When A makes a parallel equality query, B applies the following uni-
tary: ⊗

k∈[K]

|bk, ik, jk⟩Qk
⊗ |ℓ1, ..., ℓs⟩T 7→

⊗
k∈[K]

|bk ⊕ tk, ik, jk⟩Qk
⊗ |ℓ1, ..., ℓs⟩T

where tk = 1 if ℓik = ℓjk and tk = 0 otherwise.

Finalization. If A outputs a classical string, B outputs the same string. If A outputs the special
symbol group and an integer i, B measures T. Let ℓ ∈ [N ] be the i-th element in the measurement
outcome. B finds f ∈ S such that L(f) = ℓ. Then B finds the index i′ such that the i′-th element
stores f(y1, ..., ym) in the table kept by its own classical group oracle. (Such f and i′ must exist by
the definition of the simulation.) Then B outputs group and i′.

The above completes the description of B. It is easy to see that B perfectly simulates A. To see
this, we consider a hybrid simulator B′ that has an additional capability to directly see y1, ..., ym
and works as follows: B′ simulates the group operation oracle for A as in the QGGM except that it
first randomly chooses a random bijection I : ZN → [N ] and records I(z) instead of z in T for any
group element z. When A makes a group operation query, B′ applies I−1 to the relevant entries,
applies the group operation, and then applies I again. It is easy to see that B′ perfectly simulates A
because the random bijection I just induces a basis change in T . Moreover, the ways of simulation
by B and B′ are perfectly indistinguishable from the view of A because we can regard B as doing
the same as B′ except that it samples the bijection I via lazy sampling through L.

We count the number of group operation queries made by B. To do so, we observe that B only
generates group elements that can be generated by depth-d applications of the group operation.

16Suppose that L(f) = L(f ′) and L(g) = L(g′). Then on input (y1, ..., ym), f, f ′ and g, g′ have the same image,
respectively, which implies that f±g and f ′±g also have the same image under that input. Thus, L(f±g) = L(f ′±g′).
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In particular, the group elements generated after the first query are of the form z1y1 + ... + zmym
for |zi| ≤ 1, because quantum group operations for i = j is ignored by definition. Inductively, we
can show that it only needs to generate group elements z of the form

z = z1y1 + ...+ zmym

where |zj | ≤ 2d−1 for all j = 1, ...,m. These group elements can be generated in the table of the
classical group oracle by making (2d + 1)m ≤ 2m(d+1) group operation queries.

Combining the above arguments, we conclude that the classical GGM algorithm B can per-
fectly simulate the algorithm A by making at most 2(d+1)m classical group operation queries.

5 Hybrid Quantum-Classical Algorithms

This section presents the lower bounds of generic hybrid quantum-classical algorithms for group-
theoretic problems. In Section 5.1, we formalize the model of generic hybrid algorithms. The
lower bounds are presented in Section 5.2 using the hybrid simulation theorem, which is proved
in Section 5.3.

5.1 The Model of Hybrid Algorithms

We establish the model of generic hybrid algorithms in this section. First, we define a classical
group operation OC

Q,T in the QGGM, which is illustrated in Figure 1, as follows.

1. Measure the query register Q.

2. If the measurement outcome is b, i, j, measure the i-th and j-th entries of the register T.

3. Apply OQ,T.

Intuitively, when we apply the classical group operations, all the relevant registers contain classi-
cal information. A non-classical group operation query is called quantum.

Remark 6. The classical group operation in the QGGM differs from the group operation in the
GGM because the group oracles in the two models have different interfaces. In this section, an
algorithm A (and its components to be described below) is always a generic algorithm in the
QGGM, making classical or quantum group operation queries in the QGGM. On the other hand,
an algorithm B is always an algorithm in the GGM, making group operation queries in the GGM.

In our generic hybrid model of computation, a hybrid algorithm is defined by a generic al-
gorithm in the QGGM that by itself performs only classical group operations, but has access to a
quantum subroutine, which is a generic quantum algorithm with a bounded number of quantum
group operations but making an arbitrary number of classical group operations.

A quantum subroutine formalizes a quantum algorithm with a limited coherence time. More
precisely, we define a q-query quantum subroutine by a generic quantum algorithm in the QGGM
with at most q quantum group operations. After the q-th quantum group operation, it is forced
to measure all registers on a computational basis. We call this measurement as the forced measure-
ment. On the other hand, the quantum subroutine can make an arbitrary number of classical group
operations. The total number of queries is the summation of classical and quantum queries. The
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OC
Q,T

W

Q

Ti

Tj

|ϕ⟩W,Q,T

OQ,T

Figure 1: The classical group operation OC
Q,T: The single-line wires stand for quantum wires,

while the double-line wires are for classical wires. Ti,Tj denote the i-th and j-th entries of T.
We assume that the measurement outcome of Q indicates the i-th and j-th entries in this diagram.
Recall that OQ,T is a group operation query.

quantum subroutine can perform an arbitrary quantum map over the registers (W,Q) in the mid-
dle of its execution. We illustrate the rough behavior of the table register in a quantum subroutine
as in Figure 2. As in the diagram, a quantum subroutine can be described by an alternating se-
quence of generic algorithms (C0, O1, ..., Cq−1, Oq), where Cj is a generic algorithm in the QGGM
that may include multiple classical group operations and Oj is a generic algorithm in the QGGM
that includes a single quantum group operation for each j. Let cj be the number of classical group
operations Cj made.

Finally, a generic hybrid algorithm A is specified by a tuple (U1, ..., UT , AT+1) of T quantum
subroutines and a follow-up generic algorithm that is connected as in Figure 3. Here, AT+1 is
a generic algorithm that only makes classical group operations, and Uj is a q-query quantum
subroutine for each j. Again, the generic hybrid algorithm can perform an arbitrary quantum map
over (Q,W) in the middle. Recall that the quantum subroutine makes the forced measurements
for all registers including T on a computational basis, and the outcome of forced measurements
will be given to the next subroutine (or AT+1) as input.

Parallel-query generic hybrid algorithms. We also define parallel-query generic hybrid algo-
rithm in the QGGM, by allowing quantum subroutines to be parallel-query generic algorithms
in the QGGM. While a parallel classical group operation can be defined naturally, we only con-
sider a classical group operation as defined above, which makes the simulation easier. Concretely,
we separately use the parallel-query group operation oracle and the classical group operation or-
acle. The total number of queries is the summation of classical group operations and the query
width K times the number of parallel-query quantum group operations.

A d-depth parallel quantum subroutine in the QGGM by a parallel-query generic quantum
algorithm in the QGGM such that the number of parallel quantum group operation queries is
bounded by d. Again, the quantum subroutines can make intermediate classical queries, and can
apply any quantum map on (Q,W). Similarly with Figure 2, the d-depth parallel quantum sub-
routine can be described by a sequence of algorithms (C0, O1, ..., Cd−1, Od), where Cj is a generic
algorithm with cj classical group operations and Oj is a generic quantum algorithm with a single
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C1 C2

· · ·

· · ·

· · ·

· · ·

· · ·

W

V V V

Q

OC
Q,T OC

Q,T O1 OC
Q,T OC

Q,T Oq

T

Figure 2: The behavior of the quantum subroutine: O1, ..., Oq denote the unitary operation that
includes a single quantum group operation, and C0, ...., Cq−1 denote quantum algorithms that
may include multiple classical group operations but no quantum group operations. V denotes an
arbitrary quantum algorithm. All registers are measured after Oq on a computational basis.

· · ·

· · ·

· · ·

· · ·

W

V V V V

Q

U1 U2 UT AT+1

T

Figure 3: The generic hybrid algorithm with T invocations of quantum subroutines: U1, ..., UT are
quantum subroutines and include the measurement at the end. AT+1 is a generic algorithm with
classical group operations. V denotes an arbitrary quantum algorithm.

parallel quantum group operation. The subroutine is forced to measure its all registers after Od.
We characterize a parallel-query generic hybrid algorithm by a sequence of generic algorithms

(U1, ..., UT , AT+1) where Uj is a parallel-query generic quantum algorithm and AT+1 is a generic
algorithm with only classical group operations.

Remark 7. We assume that the algorithm a priori fixes the sequence of oracle queries to classical
and quantum group operations. This means that the algorithm cannot decide which oracle to
call depending on its (classical) memory. As shown in [DFH22], our result holds for the adaptive
algorithm that chooses which oracle to query based on its memory with a slightly worse bound.

Remark 8. This model of hybrid algorithms embraces a large class of hybrid algorithms consid-
ered in the literature as long as the subroutines have a bounded depth or number of quantum
queries. For example, both d-CQ and d-QC schemes in [CCL23] are included in our model. Even
the algorithms in a higher hierarchy like BPPBQNCBPP

(which is advocated in [ACC+22] as a proper
model of hybrid algorithms) are described in this model, provided that the query number/depth
bounds hold. In particular, the d-depth quantum subroutine can be interpreted as a d-QC scheme.
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5.2 Lower Bounds for Hybrid Algorithms

This section presents two types of quantum query lower bounds of the DL problem against hybrid
algorithms: The generic hybrid algorithm with q-query and d-depth quantum subroutines. We
begin with the following simulation theorem for hybrid algorithms, whose proof is deferred to
the end of this section.

Theorem 5.1. Let G be a group. Suppose that a generic hybrid algorithm AG , taking m group elements as
inputs, makes at most Q group operation queries (including both classical and quantum).

• If AG invokes q-query quantum subroutines T times, then there exists a (randomized) classical GGM
algorithm BG that perfectly simulates AG with

Q+ T · 2q+1(m+Q+ 1)2q

classical queries.

• If AG invokes d-depth quantum subroutines T times, then there exists a (randomized) classical GGM
algorithm BG that perfectly simulates AG with

Q+ T · 22d(m+Q+ 1)2
d

classical queries.

As corollaries, we prove the lower bounds of the hybrid algorithm.

Theorem 5.2. Let G be a prime-order cyclic group. Any constant-advantage generic hybrid algorithm
solving the DL/CDH/DDH problems with Q = O(poly log |G|) group operations, including both classical
and quantum, must make Ω(log |G|/ log log |G|) quantum queries of depth Ω(log log |G|) between some two
consecutive forced measurements.

More precisely, the following holds. Let q ≥ 1, d ≥ 0 be a positive integer. Let ∗ ∈ {DL,CDH,DDH}.

• If a generic hybrid algorithm AG invokes q-query quantum subroutines T times for q ≥ 1, then it
holds that

Adv∗(A
G) = O

((
T · 2q+1(m+Q+ 1)2q

)2
|G|

)
.

• If a generic hybrid algorithm AG invokes d-depth quantum subroutines T times, then it holds that

Adv∗(A
G) = O


(
T · 22d(m+Q+ 1)2

d
)2

|G|

 .

5.3 Proof of the Hybrid Simulation Theorem

This section proves Theorem 5.1. We first show the following variants of Theorem 4.1 simulating
the quantum subroutines.
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Lemma 5.3 (The simulation of q-query parallel quantum subroutine). Let G be a group. Suppose
that AG is a q-query quantum subroutine in the QGGM, taking m group elements and a classical string as
inputs, makes at most Q group operation queries including both classical and quantum. Then there exists a
generic algorithm BG in the GGM with

Q+ 2q+1(m+Q+ 1)2q

classical queries such that the output distribution of BG(y) and AG(y) are identical for any input y.

Lemma 5.4 (The simulation of d-depth parallel quantum subroutine). Let G be a group. Suppose that
AG is a d-depth parallel quantum subroutine in the QGGM, taking m group elements and a classical string
as inputs, makes at most Q classical group operation queries. Then there exists a generic algorithm B in the
GGM with

22
d
(m+Q+ 1)2

d

classical queries such that the output distribution of BG(y) and AG(y) are identical for any input y.

We can prove Theorem 5.1 by invoking the above lemmas for each quantum subroutine.

Proof of Theorem 5.1. Let A be a generic hybrid algorithm in the QGGM with T invocations of quan-
tum subroutines. Suppose that A is characterized by (U1, ..., UT , AT+1) where Uj is a q-query quan-
tum subroutine (or d-depth quantum subroutine), and AT+1 is a generic algorithm in the QGGM
with classical group operations only. Let c be the number of queries AT+1 made and Qj the total
number of group operations Uj made.

We construct an algorithm B in the GGM that perfectly simulates A. We use the fact that the
table register of the output of a quantum subroutine with m group elements as input and Q total
queries has at most m+Q nonzero group elements as each group operation makes at most a single
new group element.

As the first step, B simulates U1 using a sub-algorithm B1. Lemmas 5.3 and 5.4 assert that B1

can simulate the q-query and d-depth quantum subroutine with

Q1 + 2q+1(m+Q1 + 1)2q, and 22
d
(m+Q1 + 1)2

d

queries, respectively.
After the simulation, B discards all but the output of the simulation, which is safely done

as all registers are measured on a computational basis at the end of execution of U1. Below, we
only consider the non-discarded parts when we say the group elements or table register, etc. The
discarded parts do not affect the remaining simulation.

The table register has at most m +Q1 nonzero group elements after U1 since Q1 queries of U1

add at most Q1 new group elements to the table. B then simulates U2 using the non-discarded
parts as input17 with a new sub-algorithm B2. The complexity of the simulation is similar, and the
result of measurement gives at most m+Q1 +Q2 nonzero group elements in the table.

Continuing this procedure until UT . Finally, B simulates AT+1. Each classical group operation
query of AT+1 can be simulated by a single group operation of B, because the table register is

17Technically, we need slight variants of the above lemmas for the simulation, as the simulation input is described in
the GGM, while the subroutines in the lemmas expect the group elements stored in the QGGM. Still, the procedures
are identical, and we choose the modular analysis and omit the subtle details.
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measured after the execution of each quantum subroutine, and it is always classical during the
execution of AT+1. In other words, the simulation of AT+1 requires c classical group operations.

We conclude that the algorithm B in the GGM simulates the algorithm A in the QGGM. The
number of group operations is, if A invokes q-query quantum subroutines,(
Q1 + 2q+1(m+Q1 + 1)2q

)
+
(
Q2 + 2q+1(m+Q1 +Q2 + 1)2q

)
+ ...+c ≤ Q+T ·2q+1(m+Q+1)2q,

and

22
d
(m+Q1 + 1)2

d
+ 22

d
(m+Q1 +Q2 + 1)2

d
+ ...+ c ≤ Q+ T · 22d(m+Q+ 1)2

d

if A invokes d-depth quantum subroutines, where we use Q1 +Q2 + ...+QT + c ≤ Q.

It remains to prove Lemmas 5.3 and 5.4. We first prove the d-depth parallel quantum sub-
routine case, which can be proven similarly to Theorem 4.1 with some modifications. The query
number case needs a new idea considering the branches and the modifications used in the depth
case.

5.3.1 Proof of Lemma 5.4

The basic idea of the proof is that, when A makes a classical group operation, B can update the la-
bel function L and the set S with a single group operation. This is because the algorithms measure
the relevant registers. As many parts of the proofs resemble one of Theorem 4.1, we highlighted
the differences in the simulation in red.

Proof of Lemma 5.4. Let A be a generic quantum subroutine in the QGGM with at most d quantum
query depth that takes m group elements y1, ..., ym and classical string z as input. We assume that
y1, ..., ym are not 0, and let N = |G|. Suppose that A is characterized by a sequence of algorithms
C0, O1, ..., Cd−1, Od with generic algorithm Cj with cj classical queries and generic algorithm Oj

with a single parallel quantum group operation.
We construct a generic algorithm B in the GGM that simulates A by following the construction

in Theorem 4.1, except for some specifications of group operation queries. In particular, the local
operation, the equality query, and the finalization step are identical. The initialization is only
slightly different as the algorithm A takes a classical string as a part of the input. We also apply
the parallel group operation query procedure for the parallel quantum group operation queries,
but we need a slightly different procedure for classical group operations. The correctness of the
simulation procedure can be proven in the same way as the original proof.

Initialization. The algorithm B parses the input into the classical string z and group elements
y1, ..., ym stored in the table register, and prepares a label function L : ZN [Y1, ..., Ym] → [N ] ∪ {⊥}
and S ⊆ ZN [Y1, ..., Ym]. Set S := {0} ∪ {Yi}i∈{1,...,m} and initialize L as in the previous proof. B
creates the following state as a simulation of the initial state for A:

|z⟩W,Q ⊗ |L(Y1), ..., L(Ym), L(0), ..., L(0)⟩T

Recall that S ⊂ ZN [Y1, ..., Ym] is the set of polynomials on which the value of L is defined.
Before describing the classical group operation simulation, we make the following observation for
the parallel quantum group operation query.
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Claim 1. Suppose that Spre be a set S right before a parallel quantum group operation and Spost be
a set S right after the same parallel quantum group operation. Then it holds that |Spost| ≤ 2|Spre|2.

Proof. In the parallel group operation query simulation, the set of new elements added in Spost is
included in the set

S′ := {h = f ± g : f, g ∈ Spre},

which has at most 2|Spre|2 different elements. As Spre includes 0 by definition, Spre ⊂ S′ holds.
This implies the claim.

Classical group operation query. When A makes a classical group operation query, B does the
following. Let Spre := S.

1. Measure B’s query register Q to obtain (b, i, j), and do nothing if i = j. Otherwise, measure
the i-th and j-th entries of B’s table register to obtain the labels ℓi, ℓj .

2. Find a pair (f, g) ∈ S2
pre such that ℓi = L(f) and ℓj = L(g). Check if there is any h ∈ S such

that
h(y1, ..., ym) = f(y1, ..., ym) + (−1)bg(y1, ..., ym).

• If there is such h, it sets L(f + (−1)bg) := L(h).

• Otherwise, it uniformly sets L(f + (−1)bg) ← [N ] under the constraint that L(f +
(−1)bg) ̸= L(h) for all h ∈ S.

Then update S ← S ∪ {f + (−1)bg}.

3. For all pairs (f ′, g′) ∈ S2
pre such that L(f ′) = ℓi and L(g′) = ℓj , set L(f ′ + (−1)bg′) :=

L(f + (−1)bg) and update S ← S ∪ {f ′ + (−1)bg′}.

4. Define ℓi + (−1)bℓj := L(f + (−1)bg).

5. Then, B simulates the classical group operation oracle as follows:

|b, i, j⟩Q ⊗ |..., ℓi, ..., ℓj , ...⟩T 7→ |b, i, j⟩Q ⊗
∣∣∣..., ℓi + (−1)bℓj , ..., ℓj , ...

〉
T

for i ̸= j, and otherwise it does nothing.

Since the register Q and the i-th and j-th entries of T are measured, this step only needs a single
group operation for computing f(y1, ..., ym) + (−1)bg(y1, ..., ym).

Query complexity. We count the number of classical group operations made by B. Let Sj−1 be
the set S right before the parallel quantum group operation in Oj and let Sd be the final set S.
Recall C0 makes c0 classical group operations and the simulation of each classical group operation
takes a single group operation by B. We have |S0| ≤ m+1+ c0, where m+1 is the initial elements
included in S. Also, using Claim 1 and the fact that Cj makes cj classical group operations, we
have

|Sj | ≤ 2|Sj−1|2 + cj ,
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and |Sd| ≤ 2|Sd−1|2. Since |Sd| is an upper bound of the number of queries, we conclude that B
can perfectly simulate A with

22
d
(m+ 1 + c0 + c1 + ...+ cd−1)

2d ≤ 22
d
(m+Q+ 1)2

d

group operations. This concludes the result for the d-depth parallel quantum subroutine.

5.3.2 Proof of Lemma 5.3

The main idea of this case is to consider the branches. In the beginning, there is only a single
branch with nonzero amplitude in the table register. Two observations for proving Lemma 5.3 are
1) for simulating a group operation over a fixed (classical) table in a single branch, we only need a
tiny number of new group elements, and 2) for each group operation, the number of branches is
multiplied by a bounded number; looking ahead, it is 2(m+Q+1)2. As the simulation procedure
in Theorem 4.1 does not consider the branch, we need some more work in this case.

Proof of Lemma 5.3. Let A be a q-query quantum subroutine characterized by (C0, O1, ..., Cq−1, Oq).
Here, Cj is a generic algorithm with cj classical group operations and Oj is a generic algorithm
with a single quantum group operation. We assume that A takes m group elements y1, ..., ym and
classical string z as input and suppose that each yj is not 0, and let N = |G|. As in the above proof,
we construct a generic algorithm B in the GGM that simulates A.

Initialization. The algorithm B parses the input into the classical string z and group elements
y1, ..., ym stored in the table register. B prepares a label function L : ZN [Y1, ..., Ym] → [N ] ∪ {⊥}
and S ⊆ ZN [Y1, ..., Ym]. Set S := {0} ∪ {Yi}i∈{1,...,m} and initialize L as in the previous proof. B
creates the following state as a simulation of the initial state for A:

|z⟩W,Q ⊗ |L(Y1), ..., L(Ym), L(0), ..., L(0)⟩T

Additionally, B initializes a rooted tree structure T with a root v0 = {L(0)} ∪ {L(Yi)}i∈{1,...,m},
without any further vertex. During the simulation, the tree T will be updated along with S and
L, so that a leaf node represents the table register of a branch with a nonzero amplitude. For
example, the unique leaf node v0 of the initial tree T includes all information of the table register
of the unique initial branch.

Quantum group operation query. Suppose A makes a quantum group operation query. Let
Spre := S and Tpre := T for recording the set S and T at the point of making the query. Then B
does the following:

1. For each leaf node vl of Tpre (in arbitrary order), and for each (ℓ, ℓ′) ∈ v2l , do the following:

(a) Find a pair (f, g) ∈ S2
pre such that L(f) = ℓ and L(g) = ℓ′. Check if there is any h ∈ S

such that
h(y1, ..., ym) = f(y1, ..., ym) + g(y1, ..., ym).

• If there exists such h, it sets
L(f + g) := L(h).
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• Otherwise, it uniformly sets L(f + g) ← [N ] under the constraint that L(f + g) ̸=
L(h) for all h ∈ S.

(b) Update S ← S ∪ {f + g}. Add vl+1 := vl ∪ {L(f + g)} as a child node of vl.

(c) For all pairs (f ′, g′) ∈ S2
pre such that L(f ′) = ℓ and L(g′) = ℓ′, set L(f ′ + g′) := L(f + g)

and update S ← S ∪ {f ′ + g′}.

2. Similarly add vl+1 := vl ∪ {L(f − g)} as a child node of vl and update S and L properly.

3. Define ℓ± ℓ′ for labels (ℓ, ℓ′) ∈ [N ]2 as follows:

• Check if there is (f, g) ∈ S2
pre such that ℓ = L(f) and ℓ′ = L(g).

– If they exist, define
ℓ± ℓ′ := L(f ± g).

– Otherwise, define ℓ± ℓ′ := ⊥.

4. Apply the unitary ÕQ,T that is defined by:

|b, i, j⟩Q ⊗ |..., ℓi, ..., ℓj , ...⟩T 7→ |b, i, j⟩Q ⊗
∣∣∣..., ℓi + (−1)bℓj , ..., ℓj , ...

〉
T

if i ̸= j and otherwise it does nothing.

Classical group operation query. When A makes a classical group operation query, B does the
following. This is identical to the classical group operation in the d-depth subroutine case, except
for the update of T . Precisely, in the second step, B updates vl ← vl ∪ {L(f + (−1)bg)} for each
leaf node vl.

Finalization. Finalization is identical to the previous simulations.

Analysis. The main difference of this simulation from the previous simulations is using T . In
particular, B computes the labels for f ±g only when f, g comes from a single leaf node. We argue
that it suffices for simulating the group operation queries. For an intermediate quantum state∑

w,b,i,j,X

αw,b,i,j,X |w⟩W |b, i, j⟩Q |X⟩T ,

we say that X is a nontrivial table if αw,b,i,j,X is nonzero for some w, b, i, j.

Claim 2. Right before the group operation query, for a nontrivial table X , there is a leaf node vl of
T such that the following holds: For any group element included in X , there is f ∈ vl such that
f(y1, ..., ym) = x. We say that vl corresponds to X.

Proof. We use induction. Before the first group operation query, the unique nontrivial table X =
(y1, y2, ..., ym, 0, ...) corresponds to the initial leaf node v0 = {L(0)} ∪ {L(Yi)}i∈{1,...,m}. Consider
a group operation query, in which the statement holds right before the query. We prove that the
statement still holds after the query.
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Suppose that the group operation is quantum. Let X = (x1, x2, ...) be a nontrivial table, and
let vl be the corresponding leaf before the query at this point. Consider a fixed branch

|w⟩W |b, i, j⟩Q |X⟩T .

Since vl corresponds to X , there exist f, g ∈ S such that f(y1, ..., ym) = xi, g(y1, ..., ym) = xj and
L(f), L(g) ∈ vl hold. The simulation appends vl+1 = vl ∪ {L(f + (−1)bg)} as a child node of vl.
Since the quantum group operation query only changes the i-th entry by xi to xi + (−1)bxj , we
can easily check the vl+1 corresponds to the table after query.

For a classical group operation query, a similar argument works with the same path vl since
the simulation adds L(f + (−1)bg) to the set vl.

This claim ensures that each nontrivial table corresponds to some leaf node in the simulation
so that the simulation works well as in the previous proofs.

In the remainder of the proof, we count the number of group operations made by B. To do
so, we need some calculations for leaf nodes. Let vl be a leaf node. B appends the child nodes
having one more group element that vl for each quantum group operation. Similarly, B adds a
single group element to the leaf nodes for each classical group operation. This implies that all
nodes have at most m+ 1 +Q elements during the simulation.

After the initialization, there is only a single leaf node. For each quantum group operation, B
appends at most 2|vl|2 child nodes to the leaf node vl. Using |vl| ≤ m+Q+1, the final tree T , after
q quantum group operations, has at most

2q(m+Q+ 1)2q

leaf nodes. Since each non-root node and each classical group operation requires a single group
operation to update, the total number of queries made by B is bounded by

Q+ 2q(m+Q+ 1)2q + 2q−1(m+Q+ 1)2(q−1) + ... ≤ Q+ 2q+1(m+Q+ 1)2q.

This concludes the proof.

6 Memory-bounded Algorithms

In this section, we consider the generic algorithms with bounded memory. More precisely, we con-
sider algorithms that have two memories, classical and quantum, and that store a limited number
of group elements in their quantum register. Furthermore, we assume that the algorithms can co-
herently access a few group elements stored in the classical memory in a single group operation.
In other words, we assume that the algorithms only have a small amount of quantum random
access classical memory (qRAM).

6.1 Quantum and Classical Memory Models

Recall that algorithms in (Q)GGM interact with a black-box table register T that stores group
elements in ZN . In this section, we assume that T holds two components TC and TQ = H⊗t

ZN
.

The second component, TQ, is a quantum memory with a bounded size. Generic algorithms can
coherently access or store group elements in TQ in superposition.
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The first component TC , corresponding to the classical memory, always stores group elements
in a computational basis, i.e., classical group elements. We additionally assume that the quantum
algorithm has a restriction on coherently accessing TC . In other words, TC is not a quantum ran-
dom access (classical) memory (qRAM). We may assume that there is a qRAM holding a small
number of group elements, which will be formally discussed below.

Recall that the register T is of the form T = H⊗s
ZN

. We decompose it into TQ⊗TC for TQ = H⊗t
ZN

where s ≥ t. We additionally assume that each i-th component of T for i > t always holds a
classical group element. The quantum group operation query

|b, i, j⟩Q ⊗ |..., xi, ..., xj , ...⟩T 7→ |b, i, j⟩Q ⊗
∣∣∣..., xi + (−1)bxj , ..., xj , ...

〉
T

has the following restrictions: In each query, the indices should be one of the following choices
and obey the corresponding conditions.

1. (Group operations for quantum registers) The second and third registers of Q hold indices
(that may be in superpositions) indicating the group elements in the quantum register TQ;
that is, i, j ≤ t (in any branch) always holds.

2. (Group operations for quantum-classical registers) The second register of Q holds indices
(that may be in a superposition) indicating the group elements in TQ, and the third register
of Q is classical (i.e., measured before query) and indicates a group element in TC ; that is,
i ≤ t (in any branch) and j > t holds.

3. (Group operations for classical registers) The second and third registers of Q are both clas-
sical (i.e., measured in the computational basis before query), and the stored indices i, j
indicate group elements in TC ; that is, i, j > t holds.

The first and second options are basically quantum (if the algorithm does not measure Q), and
the last option should be classical. Therefore, combining the first and second group operations as
quantum group operations is convenient.

In general, we consider the case that a (small) qRAM is available. We model a qRAM as a
storage containing r group elements. The qRAM is only involved in quantum-classical group
operations. When querying a quantum group operation, the algorithm must specify r indices
j1, ..., jr > t for the classical register. The qRAM loads those elements, and the group operation
is made between qRAM and quantum register TQ or just in TQ, after which the data in qRAM
is discarded. Note that the second register must hold indices (in a superposition) indicating the
group elements in TQ since the result of the quantum group operation is written in that register.
Therefore, the quantum group operation can be described as follows, by omitting the qRAM’s
data loading and deletion.

• (Group operations for quantum registers and qRAM) The algorithm specifies (not in super-
position) a set J = {j1, ..., jr} of indices such that jk > t for all k = 1, ..., r. The second
register must indicate the group elements in TQ, possibly in a superposition. The third reg-
ister holds indices j1, ..., jr or indicates the group elements in TQ. Then it applies OQ,T.

In summary, this section deals with the generic hybrid quantum-classical algorithm in the
QGGM with q-query quantum subroutines as described in Section 5, with the additional memory
constraints described above. The group operations for classical registers (Item 3) are always con-
sidered as classical group operations. The quantum group operations are always the above group
operations for quantum registers and qRAM.
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6.2 Lower Bounds for Memory-Bounded Algorithms

We present the simulation theorem for memory-bounded algorithms first.

Theorem 6.1. Let G be a group. Suppose that a generic hybrid algorithm AG makes C classical queries
and invokes q-query quantum subroutines T times. If the quantum memory of AG only can store t group
elements and AG can access qRAM of r group elements, then there exists a (randomized) classical GGM
algorithm BG that perfectly simulates AG with

C + T · 2q+1(t · (t− 1 + r))q

classical group operations.

Similarly to the other cases, this theorem directly implies the following lower bounds.

Theorem 6.2. Let G be a prime-order cyclic group. Any constant-advantage generic hybrid algorithm
solving the DL/CDH/DDH problems with quantum memory holding t = O(1) group elements and qRAM
of r = O(1) group elements must make either C = Ω(

√
|G|) classical group operations or Ω(log |G|)

quantum group operations.
More precisely, the following holds. If a generic hybrid algorithm AG in the QGGM invokes q-query

quantum subroutines T times, it holds that for any ∗ ∈ {DL,CDH,DDH}

Adv∗(A
G) = O

((
C + T · 2q+1(t · (t− 1 + r))q

)2
|G|

)
.

6.3 Proof of the Memory-Bounded Simulation Theorem

We prove the following memory-bounded simulation theorem for the quantum subroutines. The
proof of Theorem 6.1 is almost identical to the hybrid case, except that it uses Lemma 6.3 that has
a nice property that the number of classical queries C is not involved in the exponential term.

In the proof of Lemma 6.3, the main difference is the contents of T where each node only
includes t elements, and identifies a potential branch in TQ.

Lemma 6.3. Let G be a group. Suppose that AG is a q-query quantum subroutine in the QGGM, taking
group elements and a classical string as inputs, makes at most C classical group operation. If the quantum
memory of AG only can store t group elements and AG can access qRAM of r group elements, then there
exists a generic algorithm BG in the GGM with

C + 2q+1(t(t− 1 + r))q

classical queries such that the output distribution of BG(y) and AG(y) are identical for any input y.

Proof. The proof is almost identical to that of Lemma 5.3, except that we change the contents of
the rooted tree structure to only include group elements in quantum memory.

Let A be a q-query quantum subroutine that is characterized by (C0, O1, ..., Cq−1, Oq). Here,
Cj and Oj are generic algorithms with cj classical group operations and a single quantum group
operation, respectively. We assume that A takes m group elements y1, ..., ym classical string z as
input. Suppose that the input group elements are not 0, and let N = |G|. We will construct a
generic algorithm B in the GGM that simulates A.
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Initialization. The algorithm B prepares a label function L : ZN [Y1, ..., Ym] → [N ] ∪ {⊥} and
S ⊆ ZN [Y1, ..., Ym]. Set S := {0} ∪ {Yi}i∈{1,...,m} and initialize L as in the previous proof. B creates
the following state as a simulation of the initial state for A:

|z⟩W,Q ⊗ |L(Y1), ..., L(Ym), L(0), ..., L(0)⟩T

Additionally, B initializes a rooted tree structure T with a root v0 = {L(Yi)}i∈{1,...,t} as a mul-
tiset, without any further vertex. The nodes of T indicate potential branches of quantum memory
TQ. If a branch includes a group element multiple times, the corresponding multiset will include
the same element with the same multiplicity. During the simulation, the tree T will be updated
along with S and L.

Local operation. When A applies some operation on its local registers W,Q, B also applies the
same operation.

Quantum group operation query. Suppose A makes a quantum group operation query. Note
that A specifies the qRAM index set J = {j1, j2, ..., jr}, which can be obtained by B as well. Let
Spre := S and Tpre := T for recording the set S and T at the point. Then B does the following:

1. For each leaf node vl of Tpre (in arbitrary order), do the following:

(a) For each (ℓ, ℓ′) ∈ v2l , do the following:

i. Find a pair (f, g) ∈ S2
pre such that L(f) = ℓ and L(g) = ℓ′. Check if there is any

h ∈ S such that
h(y1, ..., ym) = f(y1, ..., ym) + g(y1, ..., ym).

• If there exists such h, it sets

L(f + g) := L(h).

• Otherwise, it uniformly sets L(f+g)← [N ] under the constraint that L(f+g) ̸=
L(h) for all h ∈ S.

ii. Update S ← S ∪ {f + g}. Define vl+1 := vl \ {L(f)} ∪ {L(f + g)}.18 Add vl+1 as a
child node of vl.

iii. For all pairs (f ′, g′) ∈ S2
pre such that L(f ′) = ℓ and L(g′) = ℓ′, set L(f ′ + g′) :=

L(f + g) and update S ← S ∪ {f ′ + g′}.
iv. Similarly add vl+1 := vl \ {L(f)} ∪ {L(f − g)} as a child node of vl and update S

and L properly.

(b) For each ℓ ∈ vl and k ∈ [r], do the following:

i. Obtain the label ℓ′ from the jk-th entry of B’s table register, and find a pair (f, g) ∈
S2
pre such that ℓ = L(f) and ℓ′ = L(g). Note that the jk-th entry of B is classical and

B needs not to measure it.
ii. Check if there is any h ∈ S such that

h(y1, ..., ym) = f(y1, ..., ym) + g(y1, ..., ym).

18If there is multiple L(f) in vl, it reduces the multiplicity of f by 1.
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• If there exists such h, it sets

L(f + g) := L(h).

• Otherwise, it uniformly sets L(f+g)← [N ] under the constraint that L(f+g) ̸=
L(h) for all h ∈ S.

iii. Update S ← S ∪ {f + g}. Define vl+1 := vl \ {L(f)} ∪ {L(f + g)}. Add vl+1 as a
child node of vl.

iv. For all pairs (f ′, g′) ∈ S2
pre such that L(f ′) = ℓ and L(g′) = ℓ′, set L(f ′ + g′) :=

L(f + g) and update S ← S ∪ {f ′ + g′}.
v. Similarly add vl+1 := vl \ {L(f)} ∪ {L(f − g)} as a child node of vl and update S

and L properly.

2. Define ℓ± ℓ′ for labels (ℓ, ℓ′) ∈ [N ]2 as follows:

• Check if there is (f, g) ∈ S2
pre such that ℓ = L(f) and ℓ′ = L(g).

– If they exist, define
ℓ± ℓ′ := L(f ± g).

– Otherwise, define ℓ± ℓ′ := ⊥.

3. Apply the unitary ÕQ,T that is defined by:

|b, i, j⟩Q ⊗ |..., ℓi, ..., ℓj , ...⟩T 7→ |b, i, j⟩Q ⊗
∣∣∣..., ℓi + (−1)bℓj , ..., ℓj , ...

〉
T

if i ̸= j and otherwise it does nothing.

Classical group operation query. When A makes a classical group operation query, B does the
following. Let Spre := S and Tpre := T for recording the set S and T at the point.

1. Measure B’s query register Q to obtain (b, i, j), and do nothing if i = j. Otherwise, measure
the i-th and j-th entries of B’s table register to obtain the labels ℓi, ℓj .

2. Find a pair (f, g) ∈ S2
pre such that ℓi = L(f) and ℓj = L(g). Check if there is any h ∈ S such

that
h(y1, ..., ym) = f(y1, ..., ym) + (−1)bg(y1, ..., ym).

• If there is such h, it sets L(f + (−1)bg) := L(h).

• Otherwise, it uniformly sets L(f + (−1)bg) ← [N ] under the constraint that L(f +
(−1)bg) ̸= L(h) for all h ∈ S.

Then update S ← S ∪ {f + (−1)bg}. If i ≤ t, for each leaf node vl of Tpre (in arbitrary order)
such that L(f) ∈ vl, update vl ← vl \ {L(f)} ∪ {L(f + (−1)bg)}.

3. For all pairs (f ′, g′) ∈ S2
pre such that L(f ′) = ℓi and L(g′) = ℓj , set L(f ′ + (−1)bg′) :=

L(f + (−1)bg) and update S ← S ∪ {f ′ + (−1)bg′}.

4. Define ℓi + (−1)bℓj := L(f + (−1)bg).

32



5. Then, B simulates the classical group operation oracle as follows:

|b, i, j⟩Q ⊗ |..., ℓi, ..., ℓj , ...⟩T 7→ |b, i, j⟩Q ⊗
∣∣∣..., ℓi + (−1)bℓj , ..., ℓj , ...

〉
T

for i ̸= j, and otherwise it does nothing.

Finalization. Finalization is identical to the previous simulations.

Analysis. The contents in each node is the main difference from the proof of Lemma 5.3. Recall
that for an intermediate quantum state∑

w,b,i,j,X

αw,b,i,j,X |w⟩W |b, i, j⟩Q |X⟩T ,

we say that X is a nontrivial table if αw,b,i,j,X is nonzero. We prove the following variant of Claim 2,
which ensures that the algorithm B correctly simulates A.

Claim 3. Right before the group operation query, for a nontrivial table X , there is a leaf node vl
of T such that the following holds: Let x1, ..., xt be the first t elements of X . There is a leaf node
vl = {ℓ1, ..., ℓt} in T such that there exist (fi)i∈[t] where fi(y1, ..., ym) = xi and L(fi) = ℓi for all
i ∈ [t]. We say that vl corresponds to X.

Proof. We use induction. Initially, the unique nontrivial table X = (y1, y2, ..., ym, 0, ...) corresponds
to the initial leaf node v0 = {L(Y1), ..., L(Yt)}. Consider a group operation query, in which the
statement holds right before the query. We prove that the statement still holds after the query.

For the quantum group operation, let X = (x1, x2, ...) be a nontrivial table and vl = {ℓ1, ..., ℓt}
be the corresponding leaf node. Let (fi)i∈[t] be functions such that fi(y1, ..., ym) = xi and L(fi) = ℓi
for all i ∈ [t]. Consider a fixed branch

|w⟩W |b, i, j⟩Q |X⟩T .

It holds that fi(Y1, ..., Ym) = xi for all i ∈ [t]. If j > t, let fj ∈ S be such that fj(Y1, ..., Ym) =
xj . After the query, it is easy to see that vl+1 = vl \ {L(fi)} ∪ {L(fi + (−1)bfj)} defined above
corresponds to the new table register. This argument also holds for the classical group operation
with i ≤ t. For the group operations over classical registers, vl still corresponds to X .

We count the number of group operations made by B. For each quantum group operation, B
appends one child node when it makes one group operation for simulating A. On the other hand,
each classical group operation of A requires a single group operation of B, and it may alter some
contents of nodes but do not create any new node. Thus it suffices to count the number of nodes
in T for computing the query complexity of B.

Recall that there are two options for quantum group operations. The following arguments
show that each quantum query appends at most 2t(t− 1 + r) child nodes for each leaf node.

• For the operations for quantum registers, at most 2t(t − 1) different branches can appear,
where factor 2 represents the choice of ± and t(t − 1) is for the choice of indices in the
quantum register.
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• For the quantum-classical group operations with qRAM, the first index can be one of t ele-
ments in TQ and the second index is one among |J | = r group elements. Therefore, each
query introduces at most 2tr new branches.

This implies that after q quantum queries, there are at most

1 + 2t(t− 1 + r) + (2t(t− 1 + r))2 + ...+ (2t(t− 1 + r))q ≤ 2q+1 (t(t− 1 + r))q

different branches in T at the end, where we used t, r ≥ 1. As a single classical group operation
can be simulated by a single group operation of B, the total number of group operations in the
GGM made by B is bounded by C + 2q+1 (t(t− 1 + r))q, which concludes the proof.

7 Quantum Algorithms in the QGGM

This section presents generic quantum algorithms for the DL and MDL problems. We first review
Shor’s algorithm for the DL problem with a closer look at the query complexity and its modifica-
tion with classical preprocessing. The new MDL algorithm is presented at the end of this section.

Let N be a positive integer and define wN := exp(2πi/N). The quantum Fourier transform
QFT and its inverse QFT† are defined as follows:

QFT : |x⟩ 7→ 1√
N

N−1∑
k=0

wxk
N |k⟩ , and QFT† : |k⟩ 7→ 1√

N

N−1∑
x=0

w−xk
N |x⟩ .

7.1 The Discrete Logarithm Problem

The quantum algorithm for solving the DL problem follows the standard approach to the hid-
den subgroup problems (HSP). For completeness, we rephrase the quantum algorithm due to
Shor [Sho94] in detail and describe its variations in the hybrid setting and the depth-efficient ver-
sion. All of these algorithms are generic.

Let G be a cyclic group of order N . Suppose that a generator g and a handle gx representing the
problem instance are given to the adversary for random x. The QGGM algorithm below finds x,
where the below description roughly includes the square-and-multiply method to compute ga+bx,
which are omitted in the usual descriptions.

7.1.1 The quantum DL algorithm

Let |G| = N , n = ⌈log2N⌉. We set s = 2n+ 1. The algorithm A proceeds as follows.

1. Given a problem instance (g, gx), the algorithm prepares the group elements of the form g2
i

and g2
j ·x, or the set

Dx = {g, g2, g22 , ..., g2n−1} ∪ {gx, g2x, g22x, ..., g2n−1x}

in the table using classical group operations. It prepares a quantum state |0, 0⟩A ⊗ |1, Dx⟩T .

2. Applying QFT⊗ QFT on the working register of A to obtain

N−1∑
a,b=0

|a, b⟩A
N

⊗ |1, Dx⟩ .
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3. Using the binary expression of a, b and Dx, the algorithm computes

N−1∑
a,b=0

|a, b⟩A
∣∣ga+bx, Dx

〉
T

N
,

applies QFT†⊗QFT†, and measures the register A. For the measurement outcome is (u, v) ̸=
(0, 0), return v/u as an answer. Otherwise return ⊥.

The number of oracle queries is O(n); the construction of Dx requires O(n) queries, and com-
puting ga+bx requires 2n queries, each of which is the controlled group operation multiplying g2

i

or g2
jx on the first entry of the table.

Note that the quantum registers of this algorithm are essentially the working register A and
the first register of the table holding ga+bx. Furthermore, the quantum group operation accesses
only one register of the remaining parts. The following folklore theorem summarizes the result of
this algorithm, regarding this observation.

Theorem 7.1. Let G be a cyclic group. There exists a O(log |G|)-query QGGM algorithm that solves the
discrete logarithm problem with an overwhelming probability.

This algorithm requires a quantum register holding 2n-qubit19 and a single group element, and classical
storage holding 2n group elements. This algorithm does not require quantum access to classical storage.20

7.1.2 Hybrid quantum-classical algorithms

In the above algorithm, the construction of Dx is entirely classical, and only the computation of
ga+bx uses quantum power. Since classical computation is much cheaper than quantum comput-
ing, it is tempting to reduce the later query complexity at the cost of the former classical prepro-
cessing.

We can modify the above algorithm taking this consideration into account, by exploiting the
base-p numeral system for p ≥ 2. This modified p-base algorithm uses the following set

D(p)
x =

⋃
1≤k<p,0≤i<np

{
gk·p

i
}
∪

⋃
1≤ℓ<p,0≤j<np

{
gℓ·p

jx
}

instead of Dx above. The only differences are the step for preparing D
(p)
x and the way to compute

ga+bx. The preparation requires O(p log |G|/ log p) group operations, and the p-base exponent takes
O(log |G|/ log p) quantum group operations. It is worth noting that this algorithm requires the
QRAM access to D

(p)
x , with the size p. The result of this hybrid algorithm is summarized as follows.

Theorem 7.2. Let G be a cyclic group and let p > 1 be an integer. There exists a generic hybrid algorithm
with O(log |G|/ log p) quantum queries and O(p log |G|/ log p) classical queries that solves the DL problem
with an overwhelming probability.

This algorithm requires a quantum register holding 2n-qubit and a single group element, and classical
storage holding O(p log |G|/ log p) group elements. This algorithm requires QRAM access to the classical
O(p) group elements simultaneously.

19This can be reduced using the tricks in, e.g., [Kit96, ME98].
20Precisely speaking, it requires a qRAM storing a single group element, which is unavoidable when accessing group

elements in classical memory.
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7.1.3 Depth-efficient algorithms

As suggested in [CW00], we can exploit the binary tree with 2 log |G| leaves and log 2 log |G| depth
to reduce the depth of the DL algorithm. Precisely, we prepare the elements in Dx as leaves of
the binary tree and compute ga+bx using this tree with 2 log |G| − 1 internal nodes. Note that this
computation is coherently done over internal nodes.

Furthermore, we can combine the binary tree idea with the base-p numeric system with D
(p)
x . In

this case, we prepare g(a2i+a2i+1·p)p2i and g(b2i+b2i+1·p)p2i for indices a, b as leaf nodes by coherently
multiplying the elements in D

(p)
x . The tree has O(log |G|/ log p) nodes and log log |G| − log log p +

O(1) depth. This gives the following depth-efficient DL algorithm.

Theorem 7.3. Let G be a cyclic group and let p be an integer. There exists a generic quantum algorithm with
O(log |G|/ log p) queries and log log |G| − log log p + O(1) query depth that solves the discrete logarithm
problem with an overwhelming probability. This algorithm requires a quantum register storing 2n-qubit
and O(log |G|/ log p) group elements, and classical storage holding O(p log |G|/ log p) group elements. This
algorithm requires QRAM access to the classical O(p) group elements simultaneously.

7.2 The Multiple Discrete Logarithm Problem

This section describes our new quantum MDL algorithm, where the adversary is given m group
elements y1 = gx1 , ..., ym = gxm as inputs. The adversary’s goal is to find x1, ..., xm using group
operation queries.

The proposed algorithm follows the standard approach to hidden subgroup problems for the
target function f : Zm+1

N → G given by

f(k0, ..., km) = gk0yk11 · · · y
km
m , (2)

which hides a rank-m subgroup H ≤ Zm+1
N generated by {xie0 − ei}1≤i≤m; that is, it holds that

f(g1) = f(g2) for g1H = g2H . The improvement comes from the multi-exponentiation algorithm,
which we recall below.

7.2.1 The multi-exponentiation problem

In the multi-exponentiation problem, we are given the elements 1, h1, ..., hm and the nonnegative
exponents e1, ..., em, and asked to find he11 ·...·hemm only using the multiplication. Pippenger [Pip80]
showed the following result, which is known to be almost optimal.

Proposition 7.4 ([Pip80]). Let B be an integer, and lgm/ lgB = o(1). Suppose ei ≤ B for all i. Given
inputs 1, h1, ..., hm and e1, ..., em, there is an efficient deterministic algorithm to compute he11 · ... ·hemm with

lgB +
(1 + o(1))m lgB

lg(m lgB)

multiplications.

36



7.2.2 A multiple discrete logarithm algorithm

Let G be a cyclic group with order N . Suppose that we are given g, y1 = gx1 , ..., ym = gxm as
inputs. As in the standard algorithm for HSP, the algorithm prepares a superposition

m⊗
i=0

 ∑
0≤ki<N

|ki⟩√
M

 =
∑

0≤k0,...,km<N

|k0, ..., km⟩√
MN

using QFT and then compute the target function f in Equation (2) coherently using Proposition 7.4.
To execute Proposition 7.4, the condition lgm/ lg |G| = o(1) must hold. We also note that this

algorithm requires large quantum memory. The result in this section is as follows.

Theorem 7.5. Let G be an cyclic group and m be a positive integer such that lgm/ lg |G| = o(1). There
exists a QGGM algorithm that solves the m-MDL problem using

2 log |G|+ (2 + o(1))m lg |G|
lg(m lg |G|)

quantum group operation with an overwhelming success probability. If m = Ω(log |G|), the amortized
query complexity is O(log |G|/ logm) per DL instance.
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