
DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and
Nothing More

Private and Efficient Commitments for TLS-encrypted Data

Sof́ıa Celi∗, Alex Davidson†, Hamed Haddadi∗¶, Gonçalo Pestana‡ and Joe Rowell§
∗ Brave Software, cherenkov@riseup.net, hamed@brave.com

† NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, a.davidson@fct.unl.pt
‡ Hashmatter, gpestana@hashmatter.com

§Information Security Group, Royal Holloway, University of London, joe.rowell@rhul.ac.uk
¶Imperial College London, h.haddadi@imperial.ac.uk

Abstract—We design DiStefano: an efficient framework for

generating private commitments over TLS-encrypted web

traffic for a designated, untrusted third-party. DiStefano
provides many improvements over previous TLS commitment

systems, including: a modular security model that is applicable

to TLS 1.3 traffic, and support for generating verifiable claims

using applicable zero-knowledge systems; inherent 1-out-of-n

privacy for the TLS server that the client communicates with;

and various cryptographic optimisations to ensure fast online

performance of the TLS session. We build an open-source

implementation of DiStefano integrated into the BoringSSL

cryptographic library, that is used within Chromium-based

Internet browsers. We show that DiStefano is practical for

committing to facts in arbitrary TLS traffic, with online times

that are comparable with existing TLS 1.2 solutions. We also

make improvements to certain cryptographic primitives used

inside DiStefano, leading to 3× and 2× improvements in

online computation time and bandwidth in specific situations.

1. Introduction

The Transport-Layer Security (TLS) protocol [1]
provides encrypted and authenticated channels between
clients and servers on the Internet. It is common that
such channels transmit trusted information about users
behind clients, including: proofs of age, social security
statuses, and accepted purchase information. Unfortu-
nately, this traffic cannot be trivially used as a com-
mitment to such information to provide to third par-
ties, since such information is locked in a symmetrically
encrypted and authenticated channel. Applications of
third-party verification of such claims include Intenet-
based verification of age [2], ID numbers, and other
social security-type statuses [3]. More generically, such
tools could facilitate the creation of privacy-preserving
credentials for proving arbitrary facts about a user based
on their online behaviour — for example, as intended by
the W3C Decentralized Identity specification [4].

A number of Designated-Commitment1 TLS
(DCTLS) protocols have been designed in order to allow
exporting verifiable claims to a designated third-party
(verifier) over the trusted information transmitted in
such channels. The most prominent example is the
DECO protocol [2], alongside browser-based tools such
as TLSNotary/PageSigner.2 Similar ideas have also
been used for devising multi-party TLS clients/servers,
such as Oblivious TLS [6], and N-for-1-Auth [7]. DCTLS
protocols use a modified TLS handshake (on the
client-side) that involves secret-sharing secret session
data amongst the client and an entity called the verifier,
and computing handshake and record-layer protocol
functionality in two-party computation (2PC). This
handshake procedure allows the client to eventually
commit to certain TLS session data, which they can
later prove facts about, in zero-knowledge, using their
cryptographic shares.

Unfortunately, existing TLS commitment mecha-
nisms do not provide sufficient privacy — they, for
example, expose the browsing history of the client to
the verifier. Or, they do not satisfy security in the most
obvious settings — PageSigner only targets security
against an honest-but-curious client, and DECO uses
a non-modular security framework (mandating certain
post-commitment offline proving steps) that specifically
targets the TLS 1.2 protocol.3 According to Cloudflare
Radar [8]: TLS 1.3 accounts for 63% of secure network
traffic as opposed to 8.7% for TLS 1.2. In addition,
[9] argues that more than 15% of websites supported
TLS 1.3 264 days after the IETF officially standardised
the protocol in April 2019, and support surpassed that
of TLS 1.2 around December 2020. Hence, support-
ing TLS 1.3 connections explicitly in formal protocol
specifications is a necessity for any tool hoping to see

1. Also known as three-party handshake protocols.
2. Note that, in this work, we refer exclusively to the older

implementation known as PageSigner [5]. As far as we are aware,
TLSNotary does not yet have a fixed cryptographic design.

3. That is, the presented security analysis for TLS 1.3 is rather
informal in both cases.

widespread adoption. Finally, there is no established,
publicly available implementation of any DCTLS scheme
that is compatible with TLS 1.3, and that retains secu-
rity against malicious parties.

Our work. We devise DiStefano, a DCTLS protocol that
allows for the generation of private commitments over
data communicated explicitly during TLS 1.3 sessions.
For analysing the security of DiStefano, we devise a
novel security framework that allows proving the se-
curity of the individual stages of the protocol, inde-
pendently of succeeding functionality. One immediate
benefit of this change is that this allows DiStefano to
improve client privacy guarantees by removing explicit
server authentication to the verifier during the TLS
handshake. Instead, we replace it with a ring signature
that conveys 1-out-of-n authentication, where the ver-
ifier holds a list of n accepted server public keys. The
security of the DCTLS handshake satisfies well-known
security properties for standard TLS 1.3 [10], and based
on previously-established assumptions [6]. Notably, our
security model allows providing verifiable claims using
any secure framework for doing so — e.g. zero-knowledge
proofs, anonymous credentials, or using 2PC protocols.

DiStefano uses a similar suite of cryptographic tools
as previous work [2], [6], [7], but we introduce a num-
ber of cryptographic improvements and optimisations.
This includes establishing a novel mechanism for run-
ning AES-GCM encryption and decryption functionali-
ties in 2PC, that improves pre-processing computation
and bandwidth usage by factors of 3 and 2, respec-
tively. In addition, we use primitives for Multiplicative-
to-Additive (MtA) share transformations and oblivious
transfer that confer malicious security, where previous
work used primitives with honest-but-curious guarantees
for benchmarking performance.

Overall, we provide an open-source implementation
of DiStefano that is compliant with modern Chromium-
based Internet browsers, using the BoringSSL cryptog-
raphy library [11].45 Since DiStefano is compatible with
any attestations over the commitments that are pro-
duced, verifiable claims can be then written using any
library of the implementer’s choice. We subsequently
demonstrate, via experimental analysis, that DiStefano
runs very efficiently for privately committing to TLS 1.3
data, by evaluating the performance of each of the
individual components.6 In particular, the online por-
tions of the handshake and record-layer protocols can
be executed in 500 and 190 milliseconds, and with 5KB
and around 4KB of bandwidth, respectively, for 2KB of
encrypted communications.

Formal contributions.

4. https://anonymous.4open.science/r/tls-at-6823
5. Note that Chromium-based Internet browsers make up a

dominant share of all Internet browser usage.
6. We plan to update this work with full end-to-end performance

figures in the near future.

• A private Delegated-Commitment TLS 1.3
(DCTLS) protocol, DiStefano (Section 4), with
a novel modular security framework that allows
proving security against malicious adversaries
(Section 6).

• Novel cryptographic optimisations that allow
running secure 2PC TLS 1.3 clients with higher
efficiency (Section 5).

• A permissive, open-source, Chromium-compliant
implementation of the TLS 1.3 protocol, inte-
grated into the BoringSSL library (Section 7).7

• Experimental analysis that shows that DiStefano
is practically efficient for committing to web-
based Internet traffic, without compromising the
client experience (Section 8).

Layout. Our paper is divided as follows: we present
background information of DCTLS and similar protocols
in Section 2; we present DiStefano and its core primi-
tives in Section 3; we formally describe the phases of
DiStefano in Section 4; we describe our performance
optimisations for securely running AES-GCM in 2PC
in Section 5; we provide our modular DCTLS security
framework, and a security analysis of DiStefano in Sec-
tion 6; we provide implementation and experimentation
details in Section 7 and Section 8, respectively; we
discuss related work, applications, and limitations in
Section 9; and we conclude in Section 10.

2. Background

2.1. General Notation

Vectors are denoted by lower-case bold letters i.e.
a. For any string s, len(s) denotes the length of s. The
symbol [m] indicates the set 1, 2, . . . ,m. We write a← b
to assign the value of b to a, and we write a←$ S, where
S is a set, to assign a uniformly sampled element from
S. λ denotes the security parameter.

We denote a finite field of characteristic q as Fq and
the m-dimensional vector space over Fq as Fqm . In this
work, we are primarily concerned with the smallest field,
F2. In this field, the additive operation on a, b ∈ F2 is
simply an exclusive-or operation, a ⊕ b, with multipli-
cation corresponding to the AND operation. We extend
this notation to refer to operations on m-dimensional
vectors a,b ∈ F2m , writing a ⊕ b and a · b to refer
to addition and multiplication, respectively. Note that
while addition in F2m is simply m XOR operations,
multiplication over F2m requires extra logic compared
to multiplications over F2. We write elliptic curves with
a generator G over Fq as EC(Fq).

Finally, for a security game Game used some scheme
cryptographic scheme ∆, we denote the advantage of an
algorithm A by Advgame

A,∆ (λ), where:

Advgame
A,∆ (λ) = Pr[A succeeds]− Pr[A fails]. (1)

7. Source code: https://anonymous.4open.science/r/tls-at-6823

2

https://anonymous.4open.science/r/tls-at-6823
https://anonymous.4open.science/r/tls-at-6823

C

S

Vtkcsapp

tkccapp

tkvsapp

tkvcapp

tksapp

tkcapp

H
a
n
d
s
h
a
k
e

2PC

Handshake phase

C

S

Vtkcsapp

tkccapp

tkvsapp

tkvcapp

tksapp

tkcapp

q̂ r̂

2PC

Query execution phase

C Vtkcsapp

tkccapp

tkvsapp

tkvcapp

(q̂, r̂)

(tkvcapp, tk
v
sapp)

Commitment phase

Figure 1. An overview of existing DCTLS protocols. During the
query phase, C sends the encrypted query q̂, that is constructed in
assistance with V, and receives the encrypted response r̂. In the
commitment phase, C sends the encrypted data to V, and receives
the secret TLS parameters from V. This allows C to later prove
facts about their commitment.

We say that ∆ is secure with respect to Game, iff
Advgame

A,∆ (λ) ≤ negl(λ), for some negligible function
negl(λ) and security parameter λ.

2.2. Background on DCTLS Protocols

Designated-Commitment (DCTLS) TLS protocols al-
low a client (C) to generate commitments to TLS session
data communicated with a server (S) that can be sent to
a designated third-party verifier (V). They consist of the
following phases (which are described in Appendix A): a
(verifier-assisted) handshake phase, a (verifier-assisted)
query execution phase, and a commitment phase. Pre-
vious work, such as DECO, and tools such as Page-
Signer, provide explicit functionality for generating zero-
knowledge proofs that attest to certain data that is
part of the committed TLS session. In this work, we
prefer to build a modular framework for solving the core
DCTLS functionality, and leave the implementation of
the subsequent proving stage up to the implementer, see
Section 4.5 for more discussion. Note that, without such
commitments, proving statements that use TLS data as
sources of truth must assume either a trustworthy client,
or C must allow V to read their TLS traffic in the clear.

DCTLS over TLS 1.3. Previous DCTLS protocols fo-
cused on TLS 1.2, with an informal (and, sometimes,
incomplete) extension to TLS 1.3. In this work, we
crucially focus on TLS 1.3, and argue that previous
protocols cannot be easily extended or build for both
TLS 1.2 and TLS 1.3. At a protocol level, TLS 1.2 and
1.3 differ substantially. TLS 1.3, as seen in Fig. 2 and us-
ing the information of Table 1 and Table 2, has a reduced
number of round-trips due to the need for efficiency,
parts of the handshake are encrypted, it has resilience to
cross-protocol attacks and changes the flow of messages
when compared with TLS 1.2. Furthermore, TLS 1.3
introduces non-trivial 2PC implementation issues (when
running AES-GCM particularly) that previous works
acknowledge, but do not address.

Description of DCTLS phases. In Fig. 1 we give an
overview of the stages of the DCTLS protocol, for estab-
lishing commitments to TLS-encrypted traffic between
a client and server to be sent to a designated verifier. In
the following, we describe how the different stages of the

Client Server

static (Sig): pkS , skS
ClientHello:

rc←$ {0, 1}256
xc←$ Zq

+ClientKeyShare:

Xc ← gxc

ServerHello:

rs←$ {0, 1}256
ys←$ Zq

+ServerKeyShare: Ys←$ gys

DHE← Y xc
s DHE← Xys

c

HS← HKDF .Extract(∅,DHE)

CHTS← HKDF .Expand(HS,Label1 ∥H0)

SHTS← HKDF .Expand(HS,Label2 ∥H0)

dHS← HKDF .Expand(HS,Label3 ∥H1)

tkchs ← DeriveTK(CHTS)

tkshs ← DeriveTK(SHTS)

{+EncryptedExtensions }
{+CertificateRequest }*
{+ServerCertificate:}pkS

{+ServerCertificateVerify:}
Sig← Sign(skS ,Label7 ∥H3)

fkS ← HKDF .Expand(SHTS,Label4 ∥Hϵ)

{+ServerFinished:} SF ← HMAC(fkS ,H4)

MS← HKDF .Extract(dHS,∅)

CATS← HKDF .Expand(MS,Label5 ∥H2)

SATS← HKDF .Expand(MS,Label6 ∥H2)

{+ClientCertificate:}*pkC
{+ClientCertificateVerify:}*
Sig← Sign(skC ,Label8 ∥H5)

fkC ← HKDF .Expand(CHTS,Label4 ∥Hϵ)

{+ClientFinished:} CF ← HMAC(fkC ,H6))

tkcapp ← DeriveTK(CATS)

tksapp ← DeriveTK(SATS)

abort if Verify(pkc,Label8 ∥ ∥H5,Sig) ̸= 1

abort if CF ̸= HMAC(fkC ,H6)

Figure 2. TLS 1.3 handshake with certificate-based authentication

protocol function, specifically in relation to the various
stages of the TLS 1.3 protocol [1]. TLS 1.3 emerged in
response to dissatisfaction with the outdated design of
the TLS 1.2 handshake, its two-round-trip overhead, and
the increasing number of practical attacks on it [12], [13],
[14], [15]. A description and analysis of its handshake can
be found in [10, Figure 1]. The following is an informal
description of TLS 1.3 (1-RTT with certificate-based
authentication) and how can it be extended to support
DCTLS-like protocols.

Handshake phase. In this phase, the server, S, learns
the same secret session parameters (i.e. session key in-
formation) as in standard TLS 1.3, while C and V learn
shares of the session parameters that only “regular” C
would normally learn. Then, C and V engage in the core
TLS 1.3 using a series of 2PC functionalities.

We focus on the default mode for establishing a
secure TLS 1.3 session using (EC)DH ciphersuites,
and using certificate-based authentication between C
and S. In this mode, the handshake starts with C
sending a ClientHello (CH) message to S. This mes-

3

Secret Context Input Label

CHTS H0 = H(ClientHello,. . . ,ServerHello) Label1 = “c hs traffic”
SHTS H0 = H(ClientHello,. . . ,ServerHello) Label2 = “s hs traffic”
dHS H1 = H(“′′) Label3 = “derived”
fkS Hϵ = H(“′′) Label4 = “finished”
fkC Hϵ = H(“′′) Label4 = “finished”

CATS H2 = H(ClientHello,. . . ,ServerFinished) Label5 = “c ap traffic”
SATS H2 = H(ClientHello,. . . ,ServerFinished) Label6 = “s ap traffic”

Table 1. TLS 1.3 handshake and traffic secrets.

Auth message Context Input Context String

ServerCertificateVerify H3 = H(CH,. . . ,SCRT) Label7 = “TLS 1.3, server CertificateVerify”
ServerFinished H4 = H(CH,. . . ,SCV)

ClientCertificateVerify H5 = H(CH,. . . ,CCRT) Label8 = “TLS 1.3, client CertificateVerify”
ClientFinished H6 = H(CH,. . . ,CCV)

Table 2. TLS 1.3 authentication messages and associated hashes.

sage advertises the supported (EC)DH groups and the
ephemeral (EC)DH keyshares offered and specified in
the supported_groups and key_shares extensions, re-
spectively. The CH message also advertises the signature
algorithms supported. It also contains a nonce and a list
of supported symmetric-key algorithms (ciphersuites).
Note that for DCTLS protocols, the ephemeral keyshares
Z ∈ EC(Fc) are generated as a combination of additive
shares (zX ←$ Fc, ZX = zX · G) for X ∈ {C,V}, where
Z = ZC + ZV ∈ EC(Fc).

S processes the CH message and chooses the cryp-
tographic parameters to be used in the session. If
(EC)DH key exchange is in use, S sends a ServerHello
(SH) message containing a key_share extension with
the server’s (EC)DH key, corresponding to one of the
key_shares advertised by C. The SH message also con-
tains a server-generated nonce and the ciphersuite cho-
sen. An ephemeral shared secret is then computed at
both ends, which requires C and V to engage in a 2PC
computation to derive this secret. After this action,
all subsequent handshake messages are encrypted using
keys derived from this secret. Fortunately, once this
derivation is performed, V’s keys can be revealed to
C to perform local encryption/decryption of handshake
messages, as these keys are considered independent from
the eventual session secret derived at the end of the
handshake [10].

S then sends a certificate chain (in the
ServerCertificate message -SCRT-), and a message
that contains a proof that the server possesses the
private key corresponding to the public key — as
advertised in its leaf certificate. This proof is a
signature over the handshake transcript and it is sent in
the ServerCertificateVerify (SCV) message. S also
sends the ServerFinished (SF) message that provides
integrity of the handshake up to this point. It contains
a message authentication code (MAC) over the entire
transcript, providing key confirmation and binding the
server’s identity to any computed keys.

Optionally, S can send a CertificateRequest (CR)
message, prior to sending its SCRT message, request-

ing a certificate from C. At this point, S can imme-
diately send application data to the unauthenticated
client. Upon receiving the server’s messages, C verifies
the signature of the SCV message and the MAC of the
SF message. If requested, C must respond with their
own authentication messages, ClientCertificate and
ClientCertificateVerify to achieve mutual authenti-
cation. Finally, C must confirm their view of the hand-
shake by sending a MAC over the handshake transcript
in the ClientFinished (CF) message. The MAC gener-
ation must also be computed in 2PC with V.

It is only after this process that the handshake is
completed, and C and S can derive the keying material
required by the subsequent record layer to exchange au-
thenticated and encrypted application data. This deriva-
tion is again performed in 2PC, and C and V essentially
both hold shares of all the secret parameters needed to
encrypt traffic using the specified encryption ciphersuite.
In this work, we specifically target AES-GCM, since over
90% of TLS 1.3 traffic uses this ciphersuite [16]. This
means that C and V hold shares of the necessary session
key and auxiliary data that is used for encrypting traffic
using this ciphersuite.

Query execution phase. C sends a query q (in encrypted
form q̂) to S with help from V. Specifically, since the
session keys are secret-shared, C and V jointly compute
the encryptions of these queries in 2PC. Encrypted
responses, r̂, can then be decrypted using a similar
procedure to reveal the server response r to C. This
is important for running tools in a browser, or any
multi-round protocol where subsequent queries depend
on previous responses.

Commitment phase. After querying S and receiving a
response r, C commits to the session by forwarding the
ciphertexts to V, and receives V’s session key shares in
exchange. Hence, C can verify the integrity of r, and
later prove statements about it in zero-knowledge. The
fact that C sent their commitment before they knew
the shares of V means that V can trust that such zero-
knowledge proofs are generated honestly.

4

Limitations of previous DCTLS protocols. Exist-
ing DCTLS schemes have serious security, performance,
and usability limitations. They either only work with
old/deprecated TLS versions (1.2 and under) and offer
no privacy from the oracle (PageSigner [17]); or rely
on trusted hardware (Town Crier [18]), against which
various attacks have recently emerged [19]. Another
class of oracle schemes assumes cooperation from the
server by installing TLS extensions [20], or by changing
application-layer logic [21]. These approaches suffer from
two fundamental problems: they break legacy compat-
ibility, causing a significant barrier to wide adoption;
and only provide conditional exportability as servers
have the sole discretion to determine which data can
be exported, and can censor export attempts at will.

While DECO [2] promises to solve these problems, its
non-modular security design makes it difficult to swap
individual pieces of functionality. This has repercussions
with respect to the following parameters.

Security. Some of the primitives used by DECO have
since been shown to be insecure in certain settings [22],
[23], and the security proof only targets TLS 1.2
functionality. General guidance is offered for handling
TLS 1.3 sessions, but it is not formally specified.

Privacy. It is not possible to modify the handshake
phase to remove explicit authentication of the server to
the verifier, due to the non-modular security proof.

Performance. Certain underlying cryptographic tools
(such as oblivious transfer protocols) have seen re-
markable improvements subsequent to DECO’s publi-
cation [24], [25]. However, certain parts of the trans-
formations needed to handle the AES-GCM ciphersuite
detailed by DECO are underspecified, and naively lead
to high costs during 2PC execution.

Usability. No practical implementation of any DCTLS
protocol exists (to the best of our knowledge) that can
target the TLS 1.3 protocol, in settings where perfor-
mance matters (e.g. during web browsing).

Overview of DiStefano. Due to the limitations of the
current DCTLS protocols, we aim to build a protocol
that works for the latest version of TLS, improves pri-
vacy guarantees for C (in the sense that client web
browsing history is hidden amongst a crowd of accepted
servers), does not require specific hardware or exten-
sions, and can be easily integrated into common appli-
cations. Overall, DiStefano achieves the following.

• The creation of a commitment framework that
allows for the generation of verifiable, private
and anonymous claims over data communicated
during TLS 1.3 sessions.

• The creation of proofs of provenance (ring signa-
tures) of authenticated (but private) data com-
municated in a specific session, with a specific
private TLS 1.3 server.

• The creation of a“easy-to-use” tool that comes as
part of the TLS library that browsers use. This

means that there is no need to use specialized
hardware or installing extra extensions.

Overall, we believe that DiStefano is an essential step-
forward in establishing that DCTLS protocols can be
implemented in practice.

3. Cryptographic Preliminaries

3.1. Secure Multi-Party Computation

Multi-party computation (MPC) protocols allow a
group of parties p1, . . . , pn, each holding private inputs
s1, . . . , sn, to jointly compute a function f(s1, . . . sn),
without leaking any information other than the output
of f . Security of these protocols considers an adversary
that corrupts at most t out of n parties (n are the
number of parties that hold the private inputs), and
attempts to learn the private input of honest partici-
pants. Two-party secure computation (2PC) refers to a
class of these protocols in which n = 2 and t = 1 [26].
There are two common approaches for 2PC protocols.
Garbled circuits protocols [27], [28] encode f as a boolean
circuit and evaluate an encrypted variant of the circuit
across two parties. Threshold secret-sharing protocols
(e.g. SPDZ [29], [30], or MASCOT [31]), typically oper-
ate by first producing some random multiplicative triples
(referred to as Beaver triples [32]) before additively
sharing secret inputs with some extra information.

Garbled circuit protocols are particularly well-suited
to secure evaluation of binary circuits, such as AES
or SHA-256. The cost of a garbled circuit is normally
evaluated in terms of the number of AND gates due to
the Free-XOR optimisation [33]. In contrast, threshold
secret-sharing schemes are typically well-suited for com-
puting arithmetic operations, such as modular exponen-
tiation. We calculate their cost in terms of their number
of rounds and bandwidth requirements.

MPC primitives. We use both types of 2PC protocols:
we use the maliciously secure authenticated garbling im-
plementation provided by emp [34] for binary operations;
and we base our 2PC arithmetic operations on the well-
known oblivious transfer (OT) primitive.

Definition 1 (Oblivious Transfer (OT)). An oblivious
transfer scheme, OT, is a tuple of algorithms:

• OT.Gen(1λ): outputs any key material.
• OT.Exec(m0,m1, b): accepts m0,m1 from P1 and

b from P2. P2 learns mb, and P1 learns nothing.

We realise the OT functionality by using the actively
secure IKNP [35], [36] extension and the Ferret [24]
OT scheme, both provided by emp. The security of
these constructions rely on the security of information
theoretic MACs and the hardness of the learning parity
with noise (LPN) problem, respectively, as well as ran-
domness assumptions about hash functions, see e.g. [37].

5

Using OT as a building block, we realise the remain-
ing 2PC functionality needed by using multiplicative-to-
additive (MtA) secret sharing schemes.

Definition 2 (MtA). An MtA scheme, MtA, is a tuple of
the following algorithms:

• MtA.Gen(1λ): outputs any needed key material.
• MtA.Mul(α, β): each Pi supplies ai, learning as

output bi such that
∑

bi = Πiai.

A maliciously secure MtA scheme augments
this definition with an additional algorithm,
MtA.Check(a1, . . . , b1, . . .), to check shares consistency.

Existing works in the space [2], [5] realise the MtA
functionality with an approach [38] based on Paillier en-
cryption [39]. We deviate from this approach to improve
efficiency [40, §5] and to mitigate the need for range
proofs [22], [23]. Specifically, we realise the MtA func-
tionality using the schemes introduced in [41] and [42],
[43] for rings of characteristic > 2 and for rings of charac-
teristic 2, respectively. The schemes require access to OT
functionality and are instantiated with 128 bit statistical
and computational security. We note that whilst the
security of [42], [43] reduces directly to an NP-hard
encoding problem [44], to the best of our knowledge,
there is no computational hardness proof for [41].

ECtF. During the Key Exchange phase of the handshake
of DCTLS, both V and C hold additive shares Zv and Zc

of a shared ECDH key (x, y) = DHE. Given that all
key derivation operations are carried out on the x co-
ordinate of Z, we use the elliptic curve to field (ECtF)
functionality [2] to produce additive shares tv and tc
of the x coordinate, which is an element in Fq. Using
these shares as inputs to the subsequent 2PC opera-
tions to derive the handshake secrets allows running
all computation in a binary circuit, which results in a
substantial performance improvement when compared
with attempting to combine arithmetic and binary ap-
proaches in a garbled circuit. We stress that use of
the ECtF functionality enables substantial performance
improvements: for example, we estimate that computing
just the x co-ordinate of Zv + Zc in a garbled circuit
would be more expensive than deriving all TLS session
secrets, requiring around 1.7M AND gates for an elliptic
curve over a field with a 256-bit prime. From a security
perspective, we remark that the security of the ECtF
functionality reduces the security of the underlying se-
cure multiplication protocol. Thus, we achieve malicious
security by instantiating the multiplication with a ma-
liciously secure MtA scheme.

3.2. Ring Signature Schemes

Ring signature schemes were first defined by Rivest,
Shamir, and Taurman [45], and allow an individual that
is part of a “ring” of n possible signers to generate
a signature that is indistinguishable from a signature

Anon

1 : {ski, vki}i∈[n] ←$ Π.Gen(1λ)

2 : (m,R, i0, i1)← AOS,OC({vki}i∈[n])

3 : if [(i0, i1 /∈ [n]) ∨ (vki0 , vki1 /∈ R)] : abort

4 : d←$ {0, 1}
5 : σ ← Π.Sign(skid ,m,R)

6 : d′ ← A(σ)

7 : if [d′
?
= d] : return 1

8 : return 0

Unf

1 : {ski, vki}i∈[n] ←$ Π.Gen(1λ)

2 : (m∗, R∗, σ∗)← AOS,OC(R = {vki}i∈[n])

3 : if [(R∗ ̸⊆ R)∨
4 : (∃ i′ ∈ QC s.t. vki′ ∈ R∗)∨
5 : (m∗ ∈ QS)] : abort

6 : return Π.Verify(R∗, σ∗,m∗)

Figure 3. Security games for establishing anonymity and unforge-
ability guarantees of a ring signature scheme Π.

generated by any of the other members. Notably, ring
signatures do not allow the signing to be revealed unless
the signer explicitly decides to reveal themselves. We
give a formal definition of ring signature schemes and
their security properties below.

Definition 3 (Ring signatures). A ring signature scheme,
Π, is a tuple of the following algorithms:

• Π.Gen(1λ): outputs keys (sk, vk);
• Π.Sign(sk,m,R = {vki}i∈[n]): outputs a signature

σ under key sk of a message m, with respect to
the ring R;

• Π.Verify(R = {vki}i∈[n], σ,m): outputs a bit b ∈
{0, 1}, where b = 1 indicates successful verifica-
tion, and b = 0 indicates failure.

Firstly, we say that Π is complete if, for any set of
keys {(ski, vki) ←$ Π.Gen(1λ)}i∈[n], j ∈ [n], message m,
the ring R = {vki}i∈[n], and σ ← Π.Sign(skj ,m,R), then
1← Π.Verify(R, σ,m).

Secondly, let Anon and Unf be the security games
defined in Fig. 3. We say that Π is anonymous (resp.
unforgeable) if the advantage of a PPT algorithm, A, in
either game is negligible.

In both games, the adversary has access to the fol-
lowing oracles.8

• OS: takes as input an index i, a message m′, and
a ring R′, and returns σ ← Π.Sign(ski,m

′, R′);
• OC: takes as input an index i, and returns the

randomness used to generate vki.

8. Note that both oracle definitions assume the generation of a
global set of key pairs that are used during the security game, and
a correspondingly global ring, R, of all valid verification keys.

6

Furthermore, let QS and QC be the sets of queries
sent to OS and OC, respectively.

Instantiations. It is possible to instantiate the re-
quired functionality with a specific ring signature
scheme known as ZKAttest [46]. This scheme generates
signatures under ECDSA private keys that preserve
anonymity amongst a “ring” of known ECDSA verifi-
cation keys.

3.3. Commitment Schemes

Definition 4 (Commitment scheme). A commitment
scheme Γ is a tuple consisting of the following algorithms:

• Γ.Gen(1λ): outputs some secret parameters sp;
• Γ.Commit(sp, x): outputs a commitment c;
• Γ.Challenge(c): outputs a random challenge t;
• Γ.Open(sp, c, t, x): outputs a bit b ∈ {0, 1}.

An interactive commitment scheme, Γ̃, between a
committer, C, and a revealer, R, proceeds as follows:

• C runs sp ← Γ.Gen(1λ), and sends c ←
Γ.Commit(sp, x) to R;

• R sends t← Γ.Challenge(c) to C;
• C sends x to R;
• R computes b ← Γ.Open(sp, c, t, x), and outputs

b
?
= 1.

Definition 5 (Binding property). Given sp← Γ.Gen(1λ).
We say that Γ is a computationally binding commitment
scheme if, for any PPT algorithm, the following holds:

Pr

[
0← Γ.Open(sp, c∗, t∗, x′)

∣∣∣∣ (x∗,c∗)←A(1λ)
t∗←Γ.Challenge(c∗)
x′←A(1λ);x′ ̸=x∗

]
> 1−negl(λ).

We say that Γ is perfectly binding if the same holds for
unbounded algorithms, with probability 1.

Definition 6 (Hiding property). Let sp ← Γ.Gen(1λ),
{xb}b∈{0,1} ∈ {0, 1}2, and {cb ← Γ.Commit(sp, xb)}.
We say that Γ is a computationally hiding commitment
scheme if, for any PPT algorithm, the following holds:

Pr
[
d∗

?
= d

∣∣∣ d←${0,1}
d∗←A(1λ,cd,(x0,x1))

]
< 1/2 + negl(λ).

We say that Γ is perfectly hiding if the same holds for
unbounded algorithms, with probability 1/2.

We will show in Section 4.4 that the commitment
phase of DiStefano is a perfectly binding and com-
putationally hiding commitment scheme for TLS 1.3-
encrypted data. In other words, the client can commit
(to a third-party verifier) to encrypted traffic.

3.4. Authenticated Encryption

An authenticated encryption with associated data
(AEAD) scheme considers a keyspace K, a message
spaceM, a ciphertext space X , and a tag space T , and
is defined using the following algorithms.

• k ← AEAD .keygen(1λ): Outputs a key k ←$ K.
• (C, τ) ← AEAD .Enc(k,m;A): For a key k ∈ K,

message m ∈ M, and associated data A ∈
{0, 1}∗, outputs a ciphertext C ∈ X and a tag
τ ∈ T .

• m ∨ ⊥← AEAD .Dec(k,C, τ ;A): For a key k ∈ K,
ciphertext C ∈ M, tag τ ∈ T , and associated
data A ∈ {0, 1}∗, outputs a message m ∈ M or
⊥.

Any AEAD scheme must satisfy the following guarantees.

Definition 7 (Correctness). AEAD is correct if and only
if:

Pr
[
m← AEAD .Dec(k,C, τ ;A)

∣∣∣k←AEAD .keygen(1λ)
(C,τ)←AEAD .Enc(k,m;A)

]
= 1

holds true.

Definition 8 (Security). An AEAD scheme is secure if it
satisfies the IND-CCA notion of security [47].

It is widely known that the AES-GCM block cipher
mode of operation satisfies these guarantees [48], where
K = {0, 1}λ, M = {0, 1}∗, C = {0, 1}∗. In other words,
it can tolerate messages of arbitrary length and produce
ciphertexts accordingly.

4. DiStefano Protocol

In this section, we specify the complete description
of each of the phases of the DiStefano protocol.9 A
diagram for the full protocol can be found in Fig. 4.
For comparison, we also provide a diagram of TLS 1.3
in Fig. 2. The shorthands used in both diagrams are
defined in Table 1 and Table 2. The security analysis of
the protocol is handled in Section 6.

4.1. Handshake Phase: HSP

We use the similar overarching mechanism for the
handshake phase as described in the original DECO
proposal, but focused exclusively on TLS 1.3 with AES-
GCM as the AEAD scheme (Section 3.4) and using
ECDH for the shared key generation. We also assume
that certificates are signed using ECDSA. We note how-
ever that our protocol can be adapted to work with
any other TLS 1.3-compliant ciphersuites, provided that
certain operations can be carried out in 2PC.

At a high-level, we adapt the TLS 1.3 handshake
by treating C and V as a single TLS client from the
perspective of a third-party server. To achieve this, we
reverse the “traditional” flow of the TLS 1.3 handshake
by having C and V each prepare an additively shared
ephemeral key share SSK, as seen in Fig. 4. This
operation can be carried out cheaply without 2PC.
C then sends the CH and the CKS messages, adver-

tising SSK as part of the key_shares extension. S

9. A formal description of each phase as an ideal functionality
can be foind in Appendix A.

7

Verifier Client Server

static (Sig): pkS , skS
ClientHello:ClientHello:

xc←$ Zqzv←$ Zq

Xc ← gxcZv ← gzv

+ClientKeyShare: +ClientKeyShare:

SSK← Zv +Xc SSK← Zv +Xc

ServerHello:

ys←$ Zq

+ServerKeyShare: Ys←$ gys

Forward SKS to verifier

sskc ← Y xc
ssskv ← Y zv

s

tc ← ECtF(sskc)tv ← ECtF(sskv)

DHE← SSKys

HSv ⊕HSc ← HKDF .Extract(∅, tv + tc) HS← HKDF .Extract(∅,DHE)

CHTSv ⊕ CHTSc ← HKDF .Expand(HSv ⊕HSc,Label1 ∥H0) CHTS← HKDF .Expand(HS,Label1 ∥H0)

SHTSv ⊕ SHTSc ← HKDF .Expand(HSv ⊕HSc,Label2 ∥H0) SHTS← HKDF .Expand(HS,Label2 ∥H0)

dHSv ⊕ dHSc ← HKDF .Expand(HSv ⊕HSc,Label3 ∥H1) dHS← HKDF .Expand(HS,Label3 ∥H1)

tkvchs ⊕ tkcchs ← DeriveTK(CHTSv ⊕ CHTSc) tkchs ← DeriveTK(CHTS)

tkvshs ⊕ tkcshs ← DeriveTK(SHTSv ⊕ SHTSc) tkshs ← DeriveTK(SHTS)
{+EncryptedExtensions }
{+CertificateRequest }*
{+ServerCertificate:}pkS

{+ServerCertificateVerify:}
Sig← Sign(skS ,Label7 ∥H3)

fkS ← HKDF .Expand(SHTSv ⊕ SHTSc,Label4 ∥Hϵ) fkS ← HKDF .Expand(SHTS,Label4 ∥Hϵ)

{+ServerFinished:} SF ← HMAC(fkS ,H4)

Forward encrypted {EE},...,{SF} to Verifier

Reveal SHTSv to Client

Derive tkchsusing SHTSv

abort if Verify(pks,Label7 ∥H3,Sig) ̸= 1

abort if SF ̸= HMAC(fkS ,H4)
Forward SF to verifier

Reveal fkS to verifier

Forward H4, H3 and H2 to verifier

abort if SF ̸= HMAC(fkS ,H4)

MSv ⊕MSc ← HKDF .Extract(dHSv ⊕ dHSc,∅) MS← HKDF .Extract(dHS, 0)

CATSv ⊕ CATSc ← HKDF .Expand(MSv ⊕MSc,Label5 ∥H2) CATS← HKDF .Expand(MS,Label5 ∥H2)

SATSv ⊕ SATSc ← HKDF .Expand(MSv ⊕MSc,Label6 ∥H2) SATS← HKDF .Expand(MS,Label6 ∥H2)
tkvcapp ⊕ tkccapp ← DeriveTK(CATSv ⊕ CATSc) tkcapp ← DeriveTK(CATS)
tkvsapp ⊕ tkcsapp ← DeriveTK(SATSv ⊕ SATSc) tksapp ← DeriveTK(SATS)

{+ClientCertificate:}*pkC
{+ClientCertificateVerify:}*
Sig← Sign(skC ,Label8 ∥H5))

Reveal CHTSv to Client

fkC ← HKDF .Expand(CHTSv ⊕ CHTSc,Label4 ∥Hϵ)

fkC ← HKDF .Expand(CHTS,Label4 ∥Hϵ)

{+ClientFinished:} CF ← HMAC(fkC ,H6)

abort if Verify(pkc,Label8 ∥ ∥H5,Sig) ̸= 1

abort if CF ̸= HMAC(fkC ,H6)

Figure 4. The DiStefano DCTLS handshake (full 1-RTT handshake protocol). Shorthands correspond to those defined in [10]. Purple
represents messages sent or calculated by the verifier, orange represents messages sent or calculated by the client, green represents
messages sent or calculated by the server, and blue represents calculations executed by both C and V, using 2PC.

then processes these messages and, in turn, sends a SH
message back to C containing a freshly sampled ECDH
key_share Zs. At this stage, S computes the shared
ECDH key as E = xs · SSK and continues to derive

all traffic secrets (i.e. CHTS,SHTS, tkshs, tkchs). Once
C and V receive the SH message, they derive additive
shares of the shared ECDH key as E = xc · Ys + xv · Ys.
As TLS 1.3 key derivation operates on the x co-ordinate

8

of the shared key, C and V convert their additive shares
of E = (Ex, Ey) into additive shares Ex = tc + tv by
running the ECtF functionality. With Ex computed, C
and V proceed to run the TLS 1.3 handshake key deriva-
tion circuit in 2PC, with each party learning shares
HSv⊕HSc = HKDF .Extract(∅, tv + tc). In practice, this
process is carried out inside a garbled circuit that also
produces shares of CHTS,SHTS and dHS, as well as the
SF message key fkS . This key is provided to both C and
V. This circuit comprises of around 800K AND gates,
which is similar to DECO’s circuit size for TLS 1.2. We
delay the derivation of the traffic keys until the next
stage, as it provides authenticity guarantees to V.

Authentication phase. S sends the CR (if wanted for
client authentication), SCRT, SCV and SF messages. The
SF message is computed by first deriving a finished key
fkS from SHTS and then computing a MAC tag SF over
a hash of all messages of the handshake up to that point.
At this point, S is able to compute the client application
traffic secret, CATS, and the server application traffic
secret, SATS. S can also start sending encrypted appli-
cation data (encrypted under tksapp) without waiting for
the final flight of C messages.

C receives the encrypted messages from S and, in
turn, forwards them (in an encrypted form) to V along-
side a commitment to their share of SHTS. This com-
mitment is necessary to make AES-GCM act as a com-
mitting cipher from the perspective of V, which allows V
to disclose their shares of CHTS and SHTS to C without
compromising authenticity guarantees. As C now knows
the entirety of CHTS and SHTS, they are able to locally
derive the handshake keys tkchs and tkshs, allowing them
to check S’s certificate and SF messages without the
involvement of V. Moreover, as C now knows tkchs they
are also able to respond to the CR if one exists. C then
forwards an authentic copy of the hashes H4, H3 and H2

to V, allowing them to check the SF message’s authentic-
ity. For performance reasons, we delegate this particular
check to the proving stage of the protocol. Notice that
C does not forward the decrypted SCRT message to V,
as this message reveals the identity of the server with
which C is communicating. At this point, though, C can
construct a ring signature based on the server’s certifi-
cate signature, and send it to V (it can also perform
this operation later in the session). V, then, can check
the validity of the ring signature (if present). Similarly,
C can selectively reveal the blocks containing the SF
message, allowing V to validate the SF. Finally, C and V
derive the shares of the traffic secrets MS,CATS,SATS
and the traffic keys tksapp, tkcapp in 2PC. In practice,
we instantiate this derivation as a garbled circuit that
contains around 700K AND gates. Note that this circuit
cannot cheaply be combined with the handshake secret
derivation circuit, as deriving the traffic keys requires
a hash of the unencrypted handshake transcript: this
would require decrypting and hashing large messages
inside a garbled circuit, which is rather expensive.

Verifier Client Server

q̂ ← AEAD .Enc(tkvcapp ⊕ tkccapp, IVc, q)

q ← AEAD .Dec(tkcapp, IVc, q̂)

r̂ ← AEAD .Enc(tksapp, IVs, r)

r ← AEAD .Dec(tkvsapp ⊕ tkcsapp, IVs, r̂)

Figure 5. The DiStefano query execution protocol. Purple repre-
sents messages sent or calculated by the verifier, orange represents
messages sent or calculated by the client, green represents messages
sent or calculated by the server, and blue represents calculations
executed by both C and V, using 2PC.

4.2. Query Execution Phase: QP

Once HSP has completed, C and V move into the
querying phase Fig. 5. For simplicity, we describe this
portion of the protocol in terms of a single round of
queries before extending the phase to multiple rounds.

During the query phase of the protocol, C produces a
series of queries q = q1, . . . , qn and jointly encrypts these
with V, with both parties learning a vector of ciphertexts
q̂ as output. Then, C forwards q̂ to S, receiving an
encrypted response r̂ in exchange. At this stage of the
protocol, C forwards r̂ to V so that both parties may
verify the tags on r̂: both parties learn a single bit
indicating if the tag check passed or not.

In practice, we instantiate this portion of the proto-
col using the AES-GCM approach described in Section 5.
Note that as this approach is simply an instantiation of
the DCTLS.QP functionality given in Appendix A, there
is no explicit dependence on AES-GCM: any AEAD
cipher supported by TLS 1.3 will suffice. We highlight
this, and the general security formalisation of the query
phase, in Section 6.

Extending the querying phase to multiple rounds
is rather straightforward using AES-GCM. We discuss
the details of committing to ciphertexts in Section 4.4,
but the main idea is that, as each ciphertext block qi
is encrypted with a unique key AES.Enc(k, IV + i), C
and V can arbitrarily reveal their shares of kci + kvi =
AES.Enc(k, IV + i) at any stage of the querying phase
provided an appropriate commitment has been made
beforehand. As kci and kvi are ephemeral keys, revealing
them does not compromise the shares derived during the
HSP. The security of this approach directly reduces to
the difficulty of recovering an AES key from many known
plaintext/ciphertext pairs. This extension permits many
useful applications, as C and V can now nest commit-
ment rounds inside of the query phase. This may allow
for real-world applications to take better advantage of
DiStefano.

9

Verifier Client

σ ← Π.Sign(Sig,Label7 ∥H3,R (the ring of keys))

abort if Π.Verify(R, σ,Label7 ∥H3) ̸= 1

c← Γ.Commit((tkccapp, tk
c
sapp), (q̂, r̂))

Forward tkvcapp, tk
v
sapp to Client

Figure 6. The DiStefano commitment protocol, assuming a com-
mitment scheme, Γ, and a ring signature scheme, Π, for ECDSA
signatures. Purple represents messages sent or calculated by the
verifier, orange represents messages sent or calculated by the client.

4.3. Commitment Phase: CP

The objectives of the commitment phase are twofold:
i. to assure V of the authenticity of the server without
revealing which server C is communicating with, ii. to
allow C to learn secret shares held by V only after they
have been committed in a binding way to a specific
portion of the TLS data communicated with S.

For the first, V authenticates (in zero-knowledge) the
TLS server that they communicated and established a
TLS 1.3 handshake with, as one of N servers from which
V accepts attestations.10 For the second, C and the V
take part in a commitment protocol, that allows C to
learn the secret shares held by V, but only after they
have committed (in a binding way) to some specific
portion of data exchanged during the TLS session with
S. Overall, this commitment (that also hides from V
the exact data that was exchanged) would allow subse-
quent proofs to be communicated. This allows, for exam-
ple, to prove knowledge of committed data using 2PC,
zero-knowledge proofs, or selective opening procedures
(see [2] for concrete examples). A visual representation
of this phase can be found on Fig. 6.

4.4. Commitment to AES-GCM ciphertexts

We describe how C forms valid commitments to
AES-GCM ciphertexts. Note that although the protocol
described here is sufficient for our purposes, more so-
phisticated approaches may be needed for more general
proofs. Furthermore, our eventual construction relies on
performance optimisations that are used for running the
AES-GCM functionality in 2PC, that are described in
Section 5.

Recall that, in DiStefano, both C and V learn all AES-
GCM ciphertext blocks Ci = Mi ⊕ AES.Enc(k, IV + i)
produced by S. As k = kc + kv is secret shared, C
and V check the integrity of the Cis using the approach

10. This phase could be performed during the handshake proto-
col. However, for performance reasons, it is preferable to have this
proof be communicated in the commitment phase, when online
communication is no longer constrained by potential server time-
outs during the handshake.

described in Section 5. Assuming this check is valid, C
locally generates n masks bci and commits to each mask
individually. This early commitment is necessary to cir-
cumvent the non-committing nature of AES-GCM [49].
After these commitments have been made, C and V
then call into a garbled circuit, receiving additive shares
of bci + bvi = AES.Enc(k, IV + i). In other words, V
learns AES.Enc(k, IV +i)+bci , and C learns nothing new.
Finally, C learns each kvi . As i is variable, this process
can be straightforwardly scaled to allow C to commit to
only a subset of these blocks. Moreover, committing to
shares in this way allows C to prove simple statements
about individual blocks Ci. For example, C can reveal
any block Ci by revealing their share bci to V, allowing
V to decrypt Ci. This technique is referred to as selective
revealing in the DECO protocol: we provide more details
on the uses of this technique in Appendix E.

Authentication of S to V. With the previously described
technique, C performs 1-out-of-N authentication of the
server to V. Using the HSP, C commits to the encrypted
SCV and SF messages, and learns the entirety of SHTS.
At this stage, C, then, forwards authentic copies of H2,
H3 and H4 to V, and proves, using a ring signature
scheme (for example, ZKAttest [46], see Appendix B),
that SCV is a valid signature over H3 from a trusted
server. For their part, V checks the authenticity of SF
using the supplied value of H4 and the validity of the
proof using H3. Note that the authenticity of H4 and H3

is guaranteed by the proof of a valid signature [50, §3.1],
that in turn authenticates the handshake transcript.

We provide a detailed background on how ZKAttest
satisfies the guarantees of the ring signature scheme that
we require in Appendix B. Note that it is imperative
that a higher-level system enforces a public list of n > 1
(preferably n ≫ 1) servers (available with their asso-
ciated public keys) that have to be accepted. This is
to prevent a malicious V from suggesting a ring of size
one, which defeats the purpose of using a ring signature
scheme and would allow deanonymisation attacks.

Session Commitment Protocol. Once the authentication
protocol in Section 4.4 is carried out, C can now commit
to and reveal certain information about the applica-
tion traffic they witness. First, we define a commitment
scheme (Γ) that can be implicitly constructed using the
outputs of QP, using the following algorithms.

• (q̂i, r̂i) ← Γ.Commit(spC , (q̂, r̂, i)): For the input
i, output the ciphertexts (q̂i, r̂i) corresponding to
the ith query qi, and the response r[i] (exchanged
during the query phase).

• spV ← Γ.Challenge(c): Output the secret param-
eters of V.

• b ← Γ.Open((spC , spV), (q̂i, r̂i), (qi, ri)): Check
that (q̂i, r̂i) decrypts to (qi, ri), and output b = 1
on success, and b = 0 otherwise.

In this commitment scheme, the client simply com-
mits to encrypted TLS traffic exchanged during the

10

query phase (using 2PC to encrypt and decrypt the traf-
fic). When it comes to opening the encrypted application
traffic, the protocol requires V to send their TLS key
secret shares, so that C can decrypt and then reveal the
plaintext values (that were previously encrypted).

It is important to note that in the real DiStefano
protocol, C does not send any unencrypted values to
V. Instead, both parties should execute a protocol that
proves certain facts about the traffic without revealing
anything else. This could be done using a combination of
2PC or zero-knowledge proofs (as is used in the DECO
protocol). The formal commitment opening process that
we describe above allows for this, since C can now use
the combined secret parameters (spC , spV) to prove any
statement about the commitment (q̂i, r̂i). We prove that
Γ is a perfectly binding, and computationally hiding
commitment scheme on Appendix D.

4.5. Subsequent Phases

One of the goals of DCTLS protocols we presented
in this work is that they allow for facts to be proven
about the transmitted encrypted data, which can be
realised using zero-knowledge proofs. The DECO proto-
col provides two explicit mechanisms: i. revealing only a
substring of the response while proving its provenance,
ii. proving that the revealed substring appears in a
context expected by V. The same mechanisms can be
applied to DiStefano; but we can also use anonymous
credentials or two-party computation (2PC) to generate
proofs of the statements on the encrypted data. More
details on the techniques are found on Appendix E.

5. Computing AES-GCM in 2PC

AES-GCM is an authenticated encryption with as-
sociated data (AEAD) cipher that features prominently
inside TLS implementations, with some works report-
ing that over 90% of all TLS1.3 traffic is encrypted
using AES-GCM [16]. We use this algorithm for both
encrypting the corresponding handshake messages and
any application traffic. We briefly recall how AES-GCM
operates before discussing its adaptation for both C and
V in a 2PC setting (2PC-AES-GCM).

Encryption. Let k and IV refer to an encryption key
and initialisation vector, respectively. Given as input
a sequence of n appropriately padded plaintext blocks
M = (M1, . . . ,Mn), AES-GCM applies counter-mode
encryption to produce the ciphertext blocks Ci = Mi ⊕
AES.Enc(k, IV + i).

To ensure authenticity, AES-GCM also outputs a
tag τ = Tagk(IV, C,A) computed over both C and any
associated data A as follows:

• Given some vector x ∈ Fm
2128 , we define the

polynomial Px =
∑m

i=1 xi · hm−i+1 over F2128 .
• Assuming that C and A are properly padded, we

compute τ as: τ(A,C, k, IV) = AES.Enc(k, IV)⊕
PA||C||len(A)||len(C)(h) where h = AES.Enc(k, 0).

Performance improvements. Despite its simplicity, ex-
ecuting AES-GCM encryptions in a multi-party setting
can be challenging due to the use of binary and arith-
metic operations. For example, whilst AES operations
are well-suited for garbled circuits, a single multiplica-
tion over F2128 typically requires around 16K AND gates,
increasing the cost by nearly a factor of 3. To mitigate
this cost, both [2] and [5] recommend computing shares
of the powers of h (denoted as {hi}) during an offline
setup stage, amortising the cost across the entire session.
In certain settings, this cost can be reduced further by
restricting how many powers of h are used: for example,
N-for-1-Auth employs a clever message slicing strategy
to minimise the value of i. As this approach may not be
supported by all TLS 1.3 servers, we explicitly target
the largest possible TLS ciphertext of 16KiB, which
corresponds to i = 1024.

Assuming that a sharing ({hi
c}, {hi

v}) exists, pro-
ducing tags in 2PC is rather straightforward: tag-
ging n blocks requires two local polynomial evalu-
ations (writing τc = PA||C||len(A)||len(C)({hi

c}) and
τv = PA||C||len(A)||len(C)({hi

v}), respectively) over F2128

and n + 1 2PC evaluations of AES [2], [5]. The final
tag is achieved by simply computing τ = τc + τv ⊕
AES.Enc(kc + kv, IVc). In order to make this most ef-
ficient, it is necessary to initially construct a 2PC pro-
tocol that evaluates the ciphertext C and outputs to
both parties, and then have a subsequent protocol that
computes the tag for this ciphertext, based on the local
polynomials submitted by the client.

For simplicity’s sake, we consider the ideal function-
alities for encryption and decryption in 2PC-AES-GCM
as given in Algorithm 1 and Algorithm 2, respectively.
Notably, to include the aforementioned optimisation,
we break the ideal functionality into two step: encryp-
tion/decryption and tag creation/verification. In the
second step, τc and τv would be sent by both parties
to the ideal functionality: this does not affect the se-
curity of the scheme, as neither party has the ability
to recover any extra information. On the other hand,
our ideal functionality also covers the nonce uniqueness
requirement of AES-GCM. We note that in practice
these additional checks do not seem to affect the running
time by much: for example, our prototype garbled circuit
implementation only requires around 768 extra AND
gates, representing around a 10% increase over an AES
circuit.

5.1. Security

We now argue the security of computing encryptions
and decryptions with respect to the ideal functionalities
described in Algorithm 1 and Algorithm 2. We implicitly
assume that 2PC evaluations of the polynomial P and
the AES functionality (using garbled circuits) are secure
with respect to malicious adversaries. These security
guarantees are assumed in previous work [2], [6], [7],
but are not made explicit. We require them later, when

11

Algorithm 1 2PC-AES-GCM Encrypt

Require: k = kc + kv, IVc, IVv, {hi
c}i∈[n], {hi

v}i∈[n]
Require: C inputs a message m
Require: IVc and IVv must not have been supplied for
encryption previously.

Ensure: C learns ((C1, . . . , Cn), τ(A,C, k, IV)).
Ensure: V learns (C1, . . . , Cn).
if IVc ̸= IVv then

return Error ▷ The IVs must match.
end if
Parse m as m1∥ . . . ∥mn ▷ mi fits AES blocksize
C = (Ci ← AES.Enc(kc + kv, IVc + i)⊕mi)i∈[n]
τc ← PA||C||len(A)||len(C)({hi

c})
τv ← PA||C||len(A)||len(C)({hi

v})
τ ← τc ⊕ τv ⊕ AES.Enc(kc + kv, IVc)
return (C, τ) to C
return C to V

Algorithm 2 2PC-AES-GCM Decrypt

Require: k = kc + kv, IVc, IVv, {hi
c}, {hi

v}, A.
Require: Both C and V know A, (C1, . . . , Cn) and τ
Require: IVc and IVv must not have been supplied for

decryption previously.
Ensure: C learns the decrypted message m if

(C1, . . . , Cn) is a valid encryption wrt τ .
if IVc ̸= IVv then

return Error ▷ The IVs must match.
end if
τ ′c ← PA||C||len(A)||len(C)({hi

c})
τ ′v ← PA||C||len(A)||len(C)({hi

v})
τ ′ = τ ′c ⊕ τ ′v ⊕ AES.Enc(kc + kv, IVc)
if τ ′ ̸= τ then

return Error ▷ Invalid tag
end if
m = (Ci ⊕ AES.Enc(kc + kv, IVc + i))i∈[n]
return m to C

proving that the query phase of DiStefano is secure
(Section 6.2).

Lemma 9 (Malicious Client). 2PC-AES-GCM is secure
in the presence of a malicious adversary that controls C.

Proof. First, let S be a PPT simulator for the encryption
functionality, that simply returns samples C ′ from the
domain of AES.Enc, and τc ←$ {0, 1}t, and returns
(C, τc) to C. We ultimately argue that the real-world out-
puts of 2PC-AES-GCM is indistinguishable from this.

Let SAES be a simulator for the ideal 2PC evaluation
of AES.Enc, and let SP be a simulator for the ideal
evaluation of P . It first sends m to SAES and learns
C = (C1, . . . , Cn). Then it sends C to SP (along with
A) and learns τ . It returns (C, τ) to C. To see that this
is indistinguishable from the real-world, we can trivially
construct a hybrid argument from the real-world proto-
col that relies on two steps, replacing real garbled circuit
evaluation of each functionality with ideal-world simula-

tion, and argue security based on the maliciously-secure
2PC garbled circuit approach that we use (Section 3.1).

Finally, based on the assumption that AES is a pseu-
dorandom permutation, we can construct a final hybrid
step, that replaces AES.Enc with a random value in the
domain.11.

The case of decryption is much simpler since the
client only learns the message if they submit valid inputs
to S (by the AEAD security guarantees of AES-GCM).
This can be established using the same simulators SAES
and SP defined above.

Lemma 10 (Malicious Verifier). 2PC-AES-GCM is se-
cure in the presence of a malicious adversary that con-
trols V.

Proof. The proof for a malicious V follows the same
structure as in the case of C, but note that V is strictly
less powerful, because the V does not submit a message
to be encrypted.

We briefly note that PageSigner follows a slightly
different approach than this for computing tags: we
decided not to follow their approach, as a “back-of-an-
envelope” calculation suggests that it is strictly slower
than the aforementioned approach. We discuss this in
more detail in Appendix C.

5.2. Optimisation: Multiplicative Sharing of h

DECO gives few details on how to compute shares
of the powers of h, other than that they are computed
in a 2PC session. We remark that calculating these
shares in a garbled circuit is unlikely to be feasible:
our adapted version of N-for-1-Auth’s share derivation
circuit contained around 17M AND gates, and required
over 900MiB and 18GiB of network traffic and mem-
ory, respectively, just for the pre-processing stage. For
comparison, our circuits for TLS 1.3 secret derivation
contain around 1.3M AND gates in total, which is ap-
proximately a factor of 14 smaller. Thus, using only
garbled circuits is unlikely to be feasible.

Several other approaches exist for computing the
shares of {hi}. For instance, PageSigner reduces com-
puting additive shares of hi to simply computing shares
using MtA computations. Given an initial additive shar-
ing h = hc + hv, C and V iteratively compute additive
shares of ℓc + ℓv = hn = (hc + hv)

n−1
(hc + hv) for

1 < n ≤ 1024. This approach permits an additional
optimisation: as (x+ y)

2
= x2+y2 over F2128 , each party

can compute shares of even powers of h locally. Taking
this optimisation into account, producing shares in this
way costs a total of 1022 MtA operations. However, as
computing shares of any odd hi requires first computing
shares of hi−2, the approach seems to require around 500
rounds, which is likely too slow for a WAN setting.

11. This only holds if the IV is a nonce, see [2, §B.2].

12

We improve upon this by replacing the additive shar-
ing h = h1 + h2 with h = h1/h2 i.e we instead utilise
a multiplicative sharing. By instead using multiplicative
shares, we can run each MtA computation in parallel,
with each Pi supplying hi, hi

3, . . . , hi
1023 as input. This

optimisation asymptotically halves the number of MtA
operations and reduces the round complexity to a single
round. However, this tweak does require a slightly more
complicated scheme for computing the initial sharing of
h, as we now also must compute a multiplication over
F2128 , taking the size of the circuit for deriving the initial
shares to around 23K AND gates in size. In practice, we
reduce the size of this circuit to around 18K AND gates
by instead using a carry-less Karatsuba [51] algorithm.
Whilst this still represents an increase of around a factor
of 3 compared to the additive circuit, the reduction in
MtA operations and rounds means that we are able to
achieve an end-to-end speed-up of around a factor of 3.
We discuss these results in more detail in Section 8.

6. Security Analysis

We now show that the DiStefano protocol (Section 4)
is secure, using a novel modular security framework for
modelling DCTLS protocols. Our framework splits the
various guarantees depending on the phase. First, in
Section 6.1, we show that the handshake phase is secure
since a client (C) and a TLS server (S) can negotiate a
secure TLS 1.3 session, as described in a modified version
of the multi-stage key exchange model of [10]. Second, in
Section 6.2, we show that the query phase of DiStefano is
secure based on the 2PC-AES-GCM protocol described
in Section 5. Third, in Section 6.3, for any given TLS
session between C and S, C can send commitments cq̂,̂r
to V, while authenticating S to V as one of n possible
servers in a TLS 1.3 session S (while preserving the
identity of S private). An overview of how our approach
compares to previous work is given in Appendix F.

6.1. Handshake Phase Security

For establishing the security of the handshake phase,
we need to show that C (in cooperation with V) and
S establish a secure TLS 1.3 channel. To do this, we
use the multi-stage key exchange model of [10], which
follows the Bellare-Rogaway (BR) framework [52] for
establishing authenticated key exchange security based
on session key indistinguishability, and builds on the
multistage model of Fischlin and Günther [53], [54]. This
model considers an adversary that: interacts with several
concurrent TLS 1.3 sessions between different endpoints
(each of which has its own identifier); can intercept,
drop, and inject messages between entities; can corrupt
endpoints to learn their secret parameters; and can re-
quest specific leakage of established keys. The two core
security properties that an adversary is attempting to

Algorithm 3 2PC-ECtF ideal functionality

Require: sskc = Y xc
s , sskv = Y zv

s

Ensure: Output shares tc to C, and tv to V of the x-
coordinate of Z = Y xc+zv

s

Algorithm 4 2PC-DeriveTKHS ideal functionality

Require: (tc, H0, H1) from C
Require: (tv) from V
Ensure: For each w ∈ {c, v}: return

(HSw,CHTSw,SHTSw,dHSw, tkwchs, tk
w
shs) to {C,V}

break are known as Match Security12, and Multi-Stage
Security.13

To prove the above security properties, we rely on
a similar security framework to that used in Oblivious
TLS [6, Section 6], that models the TLS client as a multi-
party entity known as a TLS engine. The differences
in comparison with the original model of [10] are: (1)
the handshake traffic keys are leaked to the multi-stage
only adversary when C is corrupted; (2) the MAC keys
used in CF and SF messages are leaked to the multi-
stage adversary upon reception of the corresponding
messages; (3) the IVs are leaked to the adversary; (4)
the adversary has the ability to make the engines abort;
(5) the adversary is able to shift the computed secret by
an arbitrary scalar Qϵ.

One crucial difference in our approach from the TLS
engine model of [6] is in criterion (1): we only reveal
handshake traffic keys when the client is corrupted, and
not when the verifier is. It’s worth recalling that criterion
(5) is permitted (as it is in [6]) since V can arbitrarily
influence the session secret by scalar multiplication. This
means that the security of DiStefano is likewise based
on the Shifted PRF ODH assumption [55]. See [6, Def-
inition 2] for more details. We also require (as in [6])
the additional property that the adversary can only test
handshake keys if both C and V of a connection are
completely honest. Finally, we only allow the adversary
to corrupt a single party within any given session.

To summarise, the DiStefano security model essen-
tially provides the adversary with a subset of the capa-
bilities of the adversary in [6]. Note, a potential strength-
ening of the security model could include the adversary
learning the server identity when it corrupts C. How-
ever, such information only becomes pertinent during
the commitment phase, when we later consider the case
of a malicious V. Since we only allow corruption of a
single entity in a single session, we do not consider this
possibility during the handshake phase of the protocol.

Applying this model to DiStefano. To use the model
defined above, we analyse the 2PC interaction between
the client and the verifier, and show that a corrupted

12. That any two sessions with identical identifiers will agree on
the same key eventually.

13. That any tested key is indistinguishable from a random
string of the same length.

13

2PC-ECtF

Compute SSK

2PC-DeriveTKHS

2PC-DeriveTKApp

V
er
ifi
er

C
li
en
t

SHTSv

CHTSv

spV spC

Figure 7. Ordered execution of 2PC functionalities between C and
the V during the handshake phase of DiStefano. See Fig. 4 for a
full description of the protocol.

Algorithm 5 2PC-DeriveTKApp ideal functionality

Require: (dHSc) from C
Require: (dHSv) from V
Ensure: For w ∈ {c, v}: return (tkwcapp, tk

w
sapp) to {C,V}

client/verifier can only learn details linked to criteria
(1)–(5) above. Fig. 7 gives a summary of the 2PC in-
teractions between C and V, where Algorithm 3, Algo-
rithm 4, and Algorithm 5 give descriptions of the ideal
2PC functionalities that are used.14 Our proof is situated
in the standard model.

First, before any 2PC takes place, the client and the
verifier compute a shared value SSK = gxc+zv , where
xc and zc are the secrets of the respective participants.
In this portion of the execution, it is possible for either
participant to shift the session key by a certain scalar
value, taken from the scalar field associated with the
group that is being used. Criterion (5) captures this
capability for an adversary, by allowing them to shift
the eventual shared secret by a scalar value once they
have corrupted one of the participants.

In each executed 2PC functionality, C and V can con-
trol their inputs to each function, and produce a value
that is used in subsequent stages of the TLS protocol. By
using maliciously-secure 2PC garbled circuit protocols,
we reduce the ability for either party to cheat down
to breaking any of the individual primitives executed
within the garbled circuits. Fortunately, each of these
primitives is already proven secure individually, and in

14. See Fig. 4 for the full TLS derivation of each value.

a non-2PC TLS setting [10]. In other words, using these
primitives does not permit any additional capabilities to
an adversary that corrupts either party.

Therefore, criteria (1)-(4) are explained in the fol-
lowing. As noted in [6], V must reveal certain values
(SHTSv and CHTSv) to allow C to decrypt handshake
traffic before the application session keys are derived.
As was shown in [10], revealing this information after
committing to server-encrypted ciphertexts is safe, since
the eventual application traffic secrets are independent
of the handshake-encryption traffic keys. This protects
against a malicious client, but means that any adversary
that corrupts C learns all of the intermediate secrets that
are used for encrypting and decrypting traffic during
the handshake. On the other hand, a malicious verifier
sending incorrect values will immediately be discovered
since C will no longer be able to decrypt any traffic.

We can now finalise the security of the handshake
into the following theorem.

Theorem 11 (Security of handshake phase). The DiSte-
fano protocol is secure with respect to the ideal handshake
phase functionality (DCTLS.HSP), when assuming the
following:

• a maliciously-secure 2PC-ECtF protocol;
• a maliciously-secure 2PC-DeriveTKHS protocol;
• a maliciously-secure 2PC-DeriveTKApp protocol;
• the hardness of the Shifted PRF ODH problem [6,

Definition 2];
• the underlying security of the TLS 1.3 proto-

col [10].

The proof of this theorem, follows a standard hy-
brid argument, where at each stage the 2PC protocol
is replaced with an ideal functionality that computes
the same result. Since each 2PC protocol is executed
in sequence, this proof argument follows in the standard
model. Once the ideal functionality is used, the rest of
the security proof follows from the same properties that
guarantee security of the underlying TLS 1.3 handshake
protocol. A very similar security proof was given in [6]
in the universal composability framework.

As a consequence, the security of DiStefano is con-
firmed, based on the choices of 2PC protocols that are
used. The MPC primitives that we use and implement
satisfy malicious security, and are discussed formally in
Section 3.1 and Section 4. Our experimental results in
Section 8 detail how performance changes depending on
the choice of 2PC primitives.

6.2. Query Phase Security

The query phase of DiStefano essentially amounts to
considering a 2PC realisation of the record-layer of the
TLS 1.3 protocol. In other words, while the server is
untouched, we continue to consider the client and the
verifier, who work together to encrypt and decrypt pack-
ets to and from the server. This is a requirement, since

14

Algorithm 6 2PC-RL-Encrypt ideal functionality

Require: (tkccapp, q, AD) from C
Require: (tkvcapp, AD) from V

(q̂, τq̂)← AEAD .Enc(tkcapp, q;AD)
return Output (q̂, τq̂) to C
return Output q̂ to V

Algorithm 7 2PC-RL-Decrypt ideal functionality

Require: (tkcsapp, (̂r, τ̂r), AD) from C
Require: (tkvsapp) from V

return AEAD .Dec(tksapp, r̂, τ̂r;AD) to C

the end of the handshake phase of a DCTLS protocol
leaves the client and verifier with shares of the secret
session parameters, that need to be combined in order
to construct messages.

In effect, a DCTLS protocol must consider two
ideal functionalities: 2PC-RL-Encrypt (Algorithm 6), and
2PC-RL-Decrypt (Algorithm 7). In 2PC-RL-Encrypt, the
client and the verifier submit their secret parameters,
and the client submits a query (e.g. an HTTP request)
to submit. The ideal functionality returns an encryption
of this query, under a TLS 1.3-compliant AEAD scheme
(Section 3.4). In 2PC-RL-Decrypt, the client and the
verifier submit the same inputs, and the client submits
a ciphertext received from the server, and the ideal
functionality returns the decryption of this ciphertext
under the same AEAD scheme, or ⊥ in the event that
the ciphertext does not decrypt properly.

We can show that the query phase of DiStefano is
secure when AEAD = AES-GCM, assuming the secu-
rity of the 2PC-AES-GCM protocol (Section 5.1). The
proof that the query phase of DiStefano satisfies security
with respect to the ideal DCTLS.QP functionality follows
once we have protocols that are secure with respect to
2PC-RL-Encrypt and 2PC-RL-Decrypt. The proof that
2PC-AES-GCM satisfies both follows almost immedi-
ately from Lemma 9 and Lemma 10, due to the similar-
ity between the ideal functionality for 2PC-RL-Encrypt
(2PC-RL-Decrypt) and 2PC-AES-GCM Encrypt (2PC-
AES-GCM Decrypt). We state the full theorem below
for completeness.

Theorem 12. The DiStefano protocol is secure with re-
spect to the ideal query phase functionality (DCTLS.QP),
when assuming a maliciously-secure 2PC-AES-GCM
protocol, and the underlying security of the TLS 1.3
protocol [10].

6.3. Commitment Phase Security

For the commitment phase of DiStefano, we split
the requirement into a number of sub-properties: ses-
sion privacy (SPriv); 1-out-of-n session authentication
(SAuth1n); and session unforgeability (SUnf). In each
model, we first assume that secure handshake and query

phases have been computed, using the ideal function-
alities (DCTLS.HSP, DCTLS.QP) (Appendix A). Recall
that we only consider adversarial corruption of a sin-
gle party in any situation, and therefore for any post-
handshake security game, we consider only handshake
phase corruptions concerning the same party.

In each of the security models (Fig. 8), we consider a
(potentially dishonest) C that starts by sending a com-
mitment, cq̂,̂r, to a specific session, S. In SPriv, the honest
client C constructs and sends a proof, σS,sid,L, that cq̂,̂r is
a commitment to a TLS session established with S ∈ L
(L is the set of accepted servers). The adversarial verifier,
AV , succeeds if it identifies the identity of S (it can
point which server in the set L that C is communicating
with). In SAuth1n, we consider an adversarial client, AC ,
where the communication in the security game is the
same, except that AC succeeds if the commitment cq̂,̂r
corresponds to a session S established with a server
S ′ /∈ L. Finally, in SUnf, V reveals their secret session
data to AC , and AC succeeds if it can open cq̂,̂r to a
different session S’. Overall, we show that each of the
properties follows, assuming a sufficiently binding and
hiding commitment scheme, and a ring signature scheme
for ECDSA TLS certificates for implementing the proof
that S ∈ L (e.g. ZKAttest [46]).

Session privacy. For protecting the privacy of sessions
during the commitment phase, i.e. that the client com-
mitment does not reveal any information about the
session to a malicious V, we show that DiStefano satisfies
security in the SPriv security game (Fig. 8).

Lemma 13. Let Γ be a computationally hiding commit-
ment scheme for a DCTLS scheme, and let Π be a ring
signature scheme that satisfies anonymity for ECDSA
TLS certificates. Then, for all PPT algorithms A, we
have that:

AdvsprivA,DCTLS,Γ(λ) < negl(λ).

Proof. We construct our proof of security as a two-step
hybrid proof. In the first step, Π is modified to always
sign using the secret key of server S0, regardless of the
bit d. In the second step, the commitment scheme is
modified to always commit to traffic exchanged with S0,
regardless of the choice of bit d. We can see that steps
above can be arbitrarily changed to always commit to
traffic exchanged with S1, therefore, we will speak only
about the S0, without loss of generality.

First, note that once both hybrid steps have been
executed, the adversaryAV has no advantage in guessing
the bit d, since they always receive session commitments
and ring signatures with respect to the traffic received
from a single server. Therefore, we simply have to show
that the real execution of SPriv is indistinguishable from
this case to show that DCTLS satisfies SPriv security.

The distinguishing probability between the two views
in the first hybrid step can be bounded by the anonymity
property of Π. In other words, if there is an adversary A

15

SPriv

1 : L← AV(1λ, 1N)

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp0, sp0C , sp
0
S , sp

0
V)← DCTLS.HSP(1λ, C,S0,AV)

4 : (pp1, sp1C , sp
1
S , sp

1
V)← DCTLS.HSP(1λ, C,S1,AV)

5 : if [(S0 /∈ L) ∨ (S1 /∈ L)] : return 0

6 : d←$ {0, 1}
7 : q← AV(L)
8 : (q̂, r̂)← DCTLS.QP(ppd, spdC , sp

d
S , sp

d
V , q)

9 : σ ← Π.Sign(skΠ, pp
d, spdC , L)

10 : cd ← Γ.Commit(spdC , q̂, r̂)

11 : d′ ← AV({ppd, spdV}d∈{0,1}, vkΠ, q, c
d, σ, L)

12 : if [d′
?
= d] : return 1

13 : return 0

SAuth1n
1 : L← V(1λ, 1N)

2 : (skΠ, vkΠ)← Π.setup(1λ)

3 : (pp, spC ,⊥, spV)← DCTLS.HSP(1λ,AC ,S,V)
4 : if [S ∈ L] : return 0

5 : σ ← AC(pp, spC , skΠ, vkΠ, L)
6 : return Π.Verify(vkΠ, pp, spV , σ, L)

SUnf

1 : (pp, spC , spS , spV)← DCTLS.HSP(1λ,AC ,S,V)
2 : q← AC(1λ, pp, spC)
3 : (q̂, r̂)← DCTLS.QP(pp, spC , spS , spV , q)

4 : c← AC(spC , q̂, r̂)
5 : q′ ← AC(spC , spV , q, q̂, r̂, c)
6 : if [(Γ.Open(spV , q

′, c)) ∧ (q′ ̸= q)] : return 1

7 : return 0

Figure 8. Security games for the commitment protocol.

that distinguish between the two steps, then there is an
adversary B that can break the Anon security game of Π
(Fig. 3). This follows since, in the case when d = 1 the
only difference is the fact that σ is always computed over
the certificate of S0. Therefore, B can simply forward
the message to be signed during the TLS execution
to their challenger, and receive back the signature σ.
Then, they can send this signature back to A and output
whatever A outputs. If A has non-negligible advantage
in distinguishing between the two steps, then so will B.

The distinguishing probability between the two views
in the second hybrid step can be bounded by the fact
that the session commitment is generated only for S0. As
such, any adversary B against the computational hiding
property of Γ forward their challenge commitment to A
in the same as before, and win with the same advantage
as A. This completes the proof.

1-out-of-n server authentication. We show that DiSte-
fano ensures that a malicious C must authenticate S to
V, out of a set L possible n accepted servers (where L is
specified by V) using the SAuth1n security game (Fig. 8).

Lemma 14. Let Π be a ring signature scheme that sat-
isfies unforgeability for ECDSA TLS certificates. Then,
for all PPT algorithms A, we have that:

Adv
sauth1n
A,DCTLS,Π(λ) < negl(λ).

Proof. Suppose that C could win the SAuth1n game with
non-negligible advantage. Then, an adversary B that is
attempting to forge ring signatures for Π can simply
output whatever signature AC outputs as their answer
to the Unf security game (Fig. 3). If AC creates a valid
forgery, then the unforgeability of Π is violated.

Session unforgeability. We show that a malicious C
cannot open commitments to sessions that were not
previously committed to, by showing that DiStefano
satisfies security in the SUnf security game (Fig. 8).

Lemma 15. Let Γ be a perfectly binding commitment
scheme for a DCTLS scheme. Then, for all PPT algo-
rithms A, we have that:

AdvsprivA,DCTLS,Γ(λ) < negl(λ).

Proof. It is clear to see that an adversary attempting to
break the perfect binding property of Γ can utilise the
adversary AV against SUnf to establish a valid opening
based on an uncommitted value.

7. Implementation

In order to enable easy integration with other crypto-
graphic libraries and browsers, we implemented a proto-
type of DiStefano in C++.15 This implementation contains
around 14K lines of code, tests and documentation.
We developed this implementation using C++ best prac-
tices, and we hope that this effort is useful for other
researchers who wish to extend our work.

Concretely, our implementation of DiStefano uses
BoringSSL for TLS functionality and emp for all MPC
functionality. BoringSSL is the only cryptographic li-
brary supported by Chromium-based Internet browsers,
that make up a dominant share of all Internet browser
usage. As far as we are aware, our implementation
contains primitives and circuits that are not available
elsewhere. Our implementation also contains a modified
version of N-for-1-Auth’s circuit generation to produce
the relevant garbled circuits. We further reduce the
online cost of N-for-1-Auth’s secret sharing scheme by

15. Code: https://anonymous.4open.science/r/tls-at-6823

16

https://anonymous.4open.science/r/tls-at-6823

using a pre-determined splitting scheme for specific se-
crets: we refer the reader to our implementation16.

Our implementation of DiStefano’s DCTLS protocol
is fully integrated inside BoringSSL’s TLS 1.3 hand-
shake. In order to achieve this integration without heav-
ily modifying BoringSSL, we augmented the library’s
internal SSL data structures with a series of function
pointers. These changes comprise of around 150 lines of
code. As these changes are small, our implementation
of DiStefano can be easily updated to more recent ver-
sions of BoringSSL. Additionally, using function point-
ers makes all functionality generic, allowing for further
modifications. In practice, the overhead of using function
pointers should be small compared to the needed MPC
functionality.

On the other hand, our changes to emp were far sim-
pler. Specifically, in order to better model constrained
devices, we removed the multi-threaded pre-processing
from emp’s authenticated garbling scheme. This deci-
sion increases the pre-processing time of our circuits
by around a factor of 10 without increasing the online
time: we discuss this in more detail in Section 8. For
completeness, we provide a full listing of the changes
made to third party libraries alongside our prototype.

8. Experimental Analysis

We evaluated the performance of DiStefano in a LAN
setting. To better reflect a real-world environment, we
use a consumer-grade device (a Macbook air M1 with
8GB of RAM) for C and a server-grade device (an Intel
Xeon Gold 6138 with 32GB of RAM) for V with all
communication between these nodes using TLS 1.3. All
evaluations were carried out using a single thread over a
1Gbps network with a round-trip time of around 16ms.
Timings and bandwidth measurements are computed as
the mean of 50 samples, and are represented in millisec-
onds and mebibytes respectively (1 MiB is 220 bytes).
Each measurement is given to 4 significant figures.

Before presenting our results, we will like to point
out that comparisons between our results and others in
the literature [2], [5] should be made carefully. In the
case of DECO, the implementation used is not publicly
available, and, as a result, we were unable to reproduce
any of their results on our hardware. Moreover, as our
implementation is single-threaded, we are unable to take
advantage of the multi-threaded pre-processing provided
by emp. Given that [34, §7] reports an order of mag-
nitude increase in bandwidth due to multi-threading,
it is perhaps not surprising that our offline times are
an order of magnitude higher than those presented in
DECO. However, our online timings are comparable
with DECO, and parallelising the pre-processing stage

16. We stress that this approach is less flexible than N-for-
1-Auth’s approach. For example, our approach only supports 2
parties, whereas N-for-1-Auth supports arbitrarily many.

would likely mitigate any discrepancies17. In any case,
as the pre-processing can be carried out before DCTLS,
we do not consider this increased time as a major issue.

On the other hand, it is also difficult to compare our
timings to PageSigner. The original implementation of it
is written entirely in Javascript, preventing the usage of
dedicated hardware resources. Given that our implemen-
tation is instead written in a natively compiled language,
we might reasonably expect DiStefano to be faster than
PageSigner. Moreover, PageSigner also follows a semi-
honest security model and solely targets TLS 1.2: both
of these are incompatible with DiStefano.

To make the results in this section easier to interpret,
we evaluate the runtimes and bandwidth costs of each
piece of DiStefano in isolation. We stress that evalu-
ating and optimising the individual primitives used in
this work is rather delicate, and better results may be
achieved via small tweaks to our implementation. We
highlight these decisions where appropriate, and discuss
circumstances in which these changes might be useful.

Table 3 gives results for each individual circuit used
in DiStefano. Each circuit is evaluated without amorti-
sations, i.e. these timings do not take advantage of the
amortised pre-processing available inside emp. Indeed,
as the most expensive operation of these circuits will
only be used once per session, we do not expect that
employing amortisation will yield a substantial speed-
up. However, employing amortisations for common op-
erations, e.g. AES-GCM tagging and verification, may
lead to faster running times than presented here (see [34,
§7] for concrete speed-ups). We also compare the offline
time using the original implementation of authenticated
garbling (LeakyDeltaOT [34]) that utilises FerretCOT.
Our results imply that FerretCOT performs better than
the original OT for large circuit sizes in both band-
width and running time. However, for smaller circuits
it appears that the original implementation is faster
at the cost of requiring more bandwidth. Given that
the pre-processing times are proportional to the size of
the circuits, we can see that our results appear to be
predominantly network bound. The results also highlight
that our Karatsuba-based circuit achieves modest gains
in both bandwidth and time over the naive circuit.

Table 4 shows the results for each arithmetic prim-
itive used in DiStefano. Given that all running times
and bandwidth counts are rather low, we do not ex-
pect this portion of DiStefano to represent a bottleneck
even on constrained networks. We can also see that the
tweak introduced in Section 5.2 reduces the running
time by a factor of around 3, whilst also halving the
required bandwidth for the multiplication (this ignores
bandwidth used by shared setup). This also represents
an improvement of around 4 orders of magnitude over
using a garbled circuit.

17. Notably, [2] does not mention if the pre-processing used
multiple threads or not.

17

Table 3. Garbled Circuit timings and bandwidth.

Circuit OT protocol Offline
(ms)

Online
(ms)

Bandwidth
(MB)

AES-GCM share (K) LeakyDeltaOT 2340 34.92 21.04
AES-GCM share (K) FerretCOT 2683 59.48 9.009
AES-GCM share (N) LeakyDeltaOT 2678 39.09 25.63
AES-GCM share (N) FerretCOT 2853 61.36 10.35
AES-GCM Tag LeakyDeltaOT 1019 22.30 7.604
AES-GCM Tag FerretCOT 2336 22.22 5.010
AES-GCM Verify LeakyDeltaOT 1032 21.16 7.746
AES-GCM Verify FerretCOT 2277 21.24 5.130
TLS 1.3 HS (P256) LeakyDeltaOT 51470 93.16 558.7
TLS 1.3 HS (P256) FerretCOT 19847 88.90 173.4
TLS 1.3 HS (P384) LeakyDeltaOT 51610 95.38 560.1
TLS 1.3 HS (P384) FerretCOT 19940 89.88 173.8
TLS 1.3 TS LeakyDeltaOT 51450 95.21 523.2
TLS 1.3 TS FerretCOT 18820 99.25 162.6
AES Commit LeakyDeltaOT 1070 15.67 7.583
AES Commit FerretCOT 2303 15.86 5.084
2PC-GCM (256B) LeakyDeltaOT 11120 39.54 117.6
2PC-GCM (256B) FerretCOT 5495 39.42 37.17
2PC-GCM (512B) LeakyDeltaOT 21790 59.02 234.9
2PC-GCM (512B) FerretCOT 8752 58.82 71.4
2PC-GCM (1KB) LeakyDeltaOT 34180 97.93 367.7
2PC-GCM (1KB) FerretCOT 12950 97.18 114.53
2PC-GCM (2KB) LeakyDeltaOT 67750 176.57 734.9
2PC-GCM (2KB) FerretCOT 25200 170 226.8

Table 4. Primitive timings and bandwidth.

Primitive Time (ms) Bandwidth (MB)

ECtF (P256) 286.3 0.384
ECtF (P384) 335.5 0.648
ECtF (P521) 421.4 1.22
MtA (P256) 33.67 0.075
MtA (P384) 40.65 0.127
MtA (P521) 55.83 0.241
AES-GCM powers (multiplicative) 1694 0.049
AES-GCM powers (additive) 5926 0.080
AES-GCM powers (GC) — 900

Preliminary timings indicate that our implementa-
tion of DiStefano is competitive with the timings re-
ported in DECO, with the DCTLS portion taking around
500ms to complete for a 256-bit secret. We intend to pro-
vide timings for a WAN setting in the next version of this
report, along with a slightly updated implementation.

9. Discussion

In this section, we cover some of the related work
in constructing DCTLS-like protocols, some applications
of using commitments based on TLS.encrypted traffic,
and limitations of both the DiStefano design and of
DCTLS protocols more generally. We finish by discussing
possible browser-based integrations of DiStefano.

9.1. Related Work

As noted in Section 2, DiStefano is an instance of a
DCTLS protocol. Other alternatives exist, but all have

limitations as noted in Section 2.2. The DECO and
PageSigner protocols, for example, only (formally) work
for TLS 1.2 and under, and provide limited privacy.
TownCrier [18] has similar problems, and requires using
trusted computing functionality. Recently, the PECO
protocol [56] was proposed, which informally extends
the DECO protocol to support TLS 1.3, but provides
no formal guarantees nor implementation of it.

The N-for-1-Auth protocol [57] allows a user to au-
thenticate to N servers independently by doing the work
of only authenticating to one. An N -for-1 authentication
system consists of many servers and users. Each user
has a number of authentication factors they can use
to authenticate. The user holds a secret s that they
wish to distribute among the N servers. The protocol
consists of two phases: i. Enrollment, when the user
wants to store s on the servers, the user provides the
servers with a number of authentication factors, which
the servers verify using authentication protocols: these
protocols use a mechanism called “TLS-in-SMPC” that
allows N servers to jointly act as a TLS client end-
point to communicate with a TLS server (which can
be, for example, a TLS email server. A single server
from the N ones cannot decrypt any TLS traffic), and,
after authenticating with these factors, the client secret-
shares s and distributes the shares across the servers; ii.
Authentication, where the user runs the N-for-1-Auth
protocols for the authentication factors and, once it is
authenticated, the N servers can perform computation
over s for the user, which is application-specific (it can
be key-recovery, for example).

The Oblivious TLS protocol [6] allows for any TLS
endpoint to obviously interact with another TLS end-
point, without the knowledge that it is interacting with
a multi-party computation instance. It consists of the
following phases: i. Multi-Party Key Exchange, which is
the key exchange phase of the TLS handshake ran in an
MPC manner by performing an exponentiation between
a known public key and a secret exponent, where the
output remains secret; ii. Threshold Signing, which is
the authentication phase of the TLS handshake done by
having the TLS transcript signed with EdDSA Schnorr-
based signatures in a threshold protocol; iii. Record
Layer which is ran by using authenticated encryption,
based on AES-GCM, inside MPC.

Recent work on developing zero-knowledge middle-
boxes for TLS 1.3 traffic [58] has many similarities
with techniques used in DCTLS protocols. However, in
their setting, they consider the third-party to be an
on-path proxy that receives encrypted traffic (similar
to the proxy model of DECO [2]). Furthermore, the
client is only required to produce commitments to their
own traffic, rather than the traffic that is received from
the server. The considered application involves exam-
ples such as those that require corporate governance of
Internet browsing to be enforced by middleboxes, which
would naturally be thwarted in a setting where all client
traffic is encrypted.

18

Table 5. Comparison of functionality provided by
DCTLS-like protocols.

Protocol TLS 1.3 Attestations 1-out-of-n
auth

DECO/TownCrier [2], [18] ✗ ✓ ✗
N-for-1 [7] ✓ ✗ ✗
Oblivious TLS [6] ✓ ✗ ✗
ZKMiddleboxes [58] ✓ C → S only ✗
DiStefano ✓ ✓ ✓

Table 6. Results for running KeyUpdate in 2PC.

Circuit OT protocol Offline
time (ms)

Online
time (ms)

Bandwidth
(MB)

KeyUpdate LeakyDeltaOT 10540 29.95 98.54
KeyUpdate FerretCOT 7960 31.96 31.61

Table 5 compares the functionality provided in DiS-
tefano with other DCTLS-like protocols.

Concurrent work. In work concurrent to ours, Xie et
al. [59] proposed a series of optimisations to the MPC
protocols used inside DECO, primarily targeting the
TLS 1.2 setting. Whilst most of these improvements
are orthogonal to our work, one particularly interesting
optimisation is a faster approach for deriving TLS traffic
secrets inside garbled circuits. Interestingly, this ap-
proach is somewhat reminiscent of the highly optimised
CBC-HMAC protocol proposed in DECO [2, §4.2.1] for
computing tags in 2PC. Whilst we have not yet incor-
porated this particular improvement into our work, we
believe that adapting our circuits to take advantage of
this change is likely to be straightforward. We intend to
incorporate these changes and benchmark the improved
timings in the next version of this work.

9.2. Applications

DiStefano can be used to commit to encrypted
TLS 1.3 data. As noted in [2], such commitments can
be used as the basis of zero-knowledge proofs (or attes-
tations) for showing that certain facts are present in such
traffic. However, note that such attestations could also
be constructed via different methods, using cooperative
decryption of certain ciphertext blocks, or more generic
2PC techniques. The DECO protocol provides examples
of applications that they can prove certain statements
for, including proof of confidential financial information,
and proof of age. We note further that TLS sessions
could be as the basis for more generic user credentials,
that prove arbitrary facts about a user. For a more
complete summary, see [2].

9.3. Limitations

We conclude this section by addressing both the
implementation and real-world limitations of our work.
In the first case, our implementation of DiStefano does

not support key rotation via KeyUpdate messages or
full 0-RTT mode. In practice, these limitations are not
major: in both cases these issues can be circumvented
by simply re-running the HSP 18. We also provide no
concrete instantiation of the zero-knowlege primitives
that can be used to create attestations, but they should
follow the guidelines stated in Section 4.5. Note that
said proofs should only attest of the relevant information
needed and should not harm user’s privacy.

DCTLS protocols must assume a particular char-
acteristic of its users for proofs to be meaningful : it
requires that they are honest in the data that they
transmit. Suppose that Alice wishes to provide proof
of their age to a particular website. Alice logs in a
Government agency website and then runs DiStefano to
produce a proof of age. However, this process assumes
that the account Alice logs into is theirs, which may not
be the case e.g. Alice may have used a stolen account for
attestation or somehow created a fake account. In this
setting, there are no guarantees given to the third-party
website unless it assumes that Alice is honest.

There could also be the possibility that DCTLS could
be used in coercive situations by becoming actively
harmful to vulnerable or at risk people due to the lack
of human involvement. Thus, we would like to empha-
sise that deployment of tools such as DiStefano must
be considered carefully. Furthermore, DCTLS can also
be subject of different legal and compliance issues in
regards to being considered as a form of webscraping.
The DECO paper goes on detail about cases as such.

9.4. Browser Integration

DiStefano can be integrated into a browser that uses
BoringSSL, e.g. Google Chrome/Brave, easily. As our
changes to BoringSSL itself are rather minimal, it would
be possible to simply describe our changes as a series of
deltas in a version control system. These deltas can then
be applied during the process of building the browser
based on build flags.19 We leave the completion and
deployment of such library as future work.

10. Conclusion

We build DiStefano, a DCTLS protocol that allows
for generation of private commitments to encrypted
TLS 1.3 data. We use a modular security framework that
preserves TLS 1.3 security properties, and guarantees 1-
out-of-n privacy for client browsing patterns. We provide
an open-source integration into the BoringSSL library,
that demonstrates the efficiency of DiStefano.20 The flex-
ibility, security, and usability of DiStefano makes it an
immediate candidate for many real-world applications.

18. For completeness, we benchmarked the cost of running the
KeyUpdate operation in a garbled circuit, see Table 6.

19. Indeed, such a system is already used for the Brave Browser.
20. https://anonymous.4open.science/r/tls-at-6823

19

https://anonymous.4open.science/r/tls-at-6823

Acknowledgements

We would like to thank Xiao Wang for his help
with the various aspects of EMP and for sharing an
initial integration of Ferret; Yashvanth Kondi and Peter
Scholl for useful conversations; Benjamin Livshits for
discussing interesting applications for this work. Large
parts of this work were completed while all of the authors
were affiliated with Brave Software. Joe Rowell was
supported by EPSRC grant EP/P009301/1.

References

[1] E. Rescorla, “The transport layer security (tls) protocol ver-
sion 1.3,” Internet Requests for Comments, RFC Editor, RFC
8446, August 2018.

[2] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels,
“DECO: Liberating web data using decentralized oracles for
TLS,” in ACM CCS 2020, J. Ligatti, X. Ou, J. Katz, and
G. Vigna, Eds. ACM Press, Nov. 2020, pp. 1919–1938.

[3] M. Rosenberg, J. White, C. Garman, and I. Miers, “zk-creds:
Flexible anonymous credentials from zkSNARKs and existing
identity infrastructure,” Cryptology ePrint Archive, Report
2022/878, 2022, https://eprint.iacr.org/2022/878.

[4] A. Guy, M. Sporny, D. Reed, and M. Sabadello, “Decen-
tralized identifiers (DIDs) v1.0,” W3C, W3C Recommen-
dation, Jul. 2022, https://www.w3.org/TR/2022/REC-did-
core-20220719/.

[5] P. team, “Pagesigner: One-click website auditing,”
Website, accessed 04/04/2023. [Online]. Available:
https://old.tlsnotary.org/pagesigner

[6] D. Abram, I. Damg̊ard, P. Scholl, and S. Trieflinger, “Oblivi-
ous TLS via multi-party computation,” in CT-RSA 2021, ser.
LNCS, K. G. Paterson, Ed., vol. 12704. Springer, Heidelberg,
May 2021, pp. 51–74.

[7] W. Chen, R. Deng, and R. A. Popa, “N-for-1 auth: N-wise
decentralized authentication via one authentication,” Cryp-
tology ePrint Archive, Report 2021/342, 2021, https://eprint.
iacr.org/2021/342.

[8] Cloudflare, “Tls 1.2 vs. tls 1.3 vs. quic: Distribu-
tion of secure traffic by protocol,” 2023, accessed
11/04/2023. [Online]. Available: https://radar.cloudflare.
com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic

[9] H. Lee, D. Kim, and Y. Kwon, “Tls 1.3 in practice:how
tls 1.3 contributes to the internet,” in Proceedings of
the Web Conference 2021, ser. WWW ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p.
70–79. [Online]. Available: https://doi.org/10.1145/3442381.
3450057

[10] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A
cryptographic analysis of the TLS 1.3 handshake protocol,”
Journal of Cryptology, vol. 34, no. 4, p. 37, Oct. 2021.

[11] I. Google, “Boringssl,” https://boringssl.googlesource.
com/boringssl/. [Online]. Available: https://boringssl.
googlesource.com/boringssl/

[12] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann,“Imperfect Forward
Secrecy: How Diffie-Hellman Fails in Practice,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. New York, NY,
USA: Association for Computing Machinery, 2015, pp. 5–17.

[13] K. Arai and S. Matsuo, “Formal verification of
TLS 1.3 full handshake protocol using proverif
(Draft-11),” IETF TLS mailing list, 2016. [On-
line]. Available: https://mailarchive.ietf.org/arch/msg/tls/
NXGYUUXCD2b9WwBRWbvrccjjdyI

[14] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,
M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A. Halderman,
V. Dukhovni, E. Käsper, S. Cohney, S. Engels, C. Paar,
and Y. Shavitt, “DROWN: Breaking TLS using SSLv2,”
in 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, August 2016, pp. 689–
706. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/aviram

[15] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Four-
net, M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzin-
dohoue, “A messy state of the union: Taming the composite
state machines of tls,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 535–552.

[16] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost,
N. Vallina-Rodriguez, and O. Hohlfeld, “Tracking the
deployment of tls 1.3 on the web: A story of experimentation
and centralization,” SIGCOMM Comput. Commun. Rev.,
vol. 50, no. 3, p. 3–15, jul 2020. [Online]. Available:
https://doi.org/10.1145/3411740.3411742

[17] T. team, “Tlsnotary: Proof of data authenticity,” Website,
accessed 04/04/2023. [Online]. Available: https://tlsnotary.
github.io/landing-page/

[18] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and
E. Shi, “Town crier: An authenticated data feed for
smart contracts,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser.
CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 270–282. [Online]. Available:
https://doi.org/10.1145/2976749.2978326

[19] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom,
and R. Strackx, “Foreshadow: Extracting the keys to
the intel SGX kingdom with transient Out-of-Order
execution,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug.
2018, p. 991–1008. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity18/presentation/bulck

[20] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Capkun,
“TLS-N: Non-repudiation over TLS enablign ubiquitous con-
tent signing,” in NDSS 2018. The Internet Society, Feb.
2018.

[21] A. Backman, J. Richer, and M. Sporny,
“Signing http messages,” IETF draft, accessed
14/11/2022. [Online]. Available: https://www.ietf.org/
archive/id/draft-ietf-httpbis-message-signatures-04.html

[22] D. Tymokhanov and O. Shlomovits, “Alpha-rays: Key
extraction attacks on threshold ecdsa implementations,”
Cryptology ePrint Archive, Paper 2021/1621, 2021, https:
//eprint.iacr.org/2021/1621. [Online]. Available: https://
eprint.iacr.org/2021/1621

[23] N. Makriyannis and U. Peled, “A note on the security
of gg18,” 2021, https://info.fireblocks.com/hubfs/A Note
on the Security of GG.pdf. [Online]. Available: https://info.
fireblocks.com/hubfs/A Note on the Security of GG.pdf

[24] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang, “Ferret:
Fast extension for correlated OT with small communication,”
in ACM CCS 2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna,
Eds. ACM Press, Nov. 2020, pp. 1607–1626.

[25] M. Rosulek and L. Roy, “Three halves make a whole?
Beating the half-gates lower bound for garbled circuits,” in
CRYPTO 2021, Part I, ser. LNCS, T. Malkin and C. Peikert,
Eds., vol. 12825. Virtual Event: Springer, Heidelberg, Aug.
2021, pp. 94–124.

20

https://eprint.iacr.org/2022/878
https://old.tlsnotary.org/pagesigner
https://eprint.iacr.org/2021/342
https://eprint.iacr.org/2021/342
https://radar.cloudflare.com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic
https://radar.cloudflare.com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic
https://doi.org/10.1145/3442381.3450057
https://doi.org/10.1145/3442381.3450057
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://doi.org/10.1145/3411740.3411742
https://tlsnotary.github.io/landing-page/
https://tlsnotary.github.io/landing-page/
https://doi.org/10.1145/2976749.2978326
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.ietf.org/archive/id/draft-ietf-httpbis-message-signatures-04.html
https://www.ietf.org/archive/id/draft-ietf-httpbis-message-signatures-04.html
https://eprint.iacr.org/2021/1621
https://eprint.iacr.org/2021/1621
https://eprint.iacr.org/2021/1621
https://eprint.iacr.org/2021/1621
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf

[26] Y. Lindell and B. Pinkas, “Secure multiparty computation for
privacy-preserving data mining,” Cryptology ePrint Archive,
Report 2008/197, 2008, https://eprint.iacr.org/2008/197.

[27] A. C. Yao, “Protocols for secure computations,” in 23rd An-
nual Symposium on Foundations of Computer Science (sfcs
1982), 1982, pp. 160–164.

[28] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield
nothing but their validity and a methodology of cryptographic
protocol design (extended abstract),” in 27th FOCS. IEEE
Computer Society Press, Oct. 1986, pp. 174–187.

[29] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias, “Mul-
tiparty computation from somewhat homomorphic encryp-
tion,” in CRYPTO 2012, ser. LNCS, R. Safavi-Naini and
R. Canetti, Eds., vol. 7417. Springer, Heidelberg, Aug. 2012,
pp. 643–662.

[30] M. Keller, “MP-SPDZ: A versatile framework for multi-party
computation,” in ACM CCS 2020, J. Ligatti, X. Ou, J. Katz,
and G. Vigna, Eds. ACM Press, Nov. 2020, pp. 1575–1590.

[31] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster ma-
licious arithmetic secure computation with oblivious trans-
fer,” in ACM CCS 2016, E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, Eds. ACM Press,
Oct. 2016, pp. 830–842.

[32] D. Beaver, “Efficient multiparty protocols using circuit ran-
domization,” in CRYPTO’91, ser. LNCS, J. Feigenbaum, Ed.,
vol. 576. Springer, Heidelberg, Aug. 1992, pp. 420–432.

[33] V. Kolesnikov and T. Schneider, “Improved garbled circuit:
Free XOR gates and applications,” in ICALP 2008, Part II,
ser. LNCS, L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Eds., vol.
5126. Springer, Heidelberg, Jul. 2008, pp. 486–498.

[34] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling
and efficient maliciously secure two-party computation,” in
ACM CCS 2017, B. M. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, Eds. ACM Press, Oct. / Nov. 2017, pp. 21–37.

[35] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending
oblivious transfers efficiently,” in CRYPTO 2003, ser. LNCS,
D. Boneh, Ed., vol. 2729. Springer, Heidelberg, Aug. 2003,
pp. 145–161.

[36] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT
extension with optimal overhead,” in CRYPTO 2015, Part I,
ser. LNCS, R. Gennaro and M. J. B. Robshaw, Eds., vol. 9215.
Springer, Heidelberg, Aug. 2015, pp. 724–741.

[37] C. Guo, J. Katz, X. Wang, and Y. Yu, “Efficient and se-
cure multiparty computation from fixed-key block ciphers,”
in 2020 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2020, pp. 825–841.

[38] R. Gennaro and S. Goldfeder, “Fast multiparty threshold
ECDSA with fast trustless setup,” in ACM CCS 2018, D. Lie,
M. Mannan, M. Backes, and X. Wang, Eds. ACM Press, Oct.
2018, pp. 1179–1194.

[39] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in EUROCRYPT’99, ser. LNCS,
J. Stern, Ed., vol. 1592. Springer, Heidelberg, May 1999, pp.
223–238.

[40] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui, “Efficient
online-friendly two-party ECDSA signature,” in ACM CCS
2021, G. Vigna and E. Shi, Eds. ACM Press, Nov. 2021, pp.
558–573.

[41] I. Haitner, N. Makriyannis, S. Ranellucci, and E. Tsfadia,
“Highly efficient OT-based multiplication protocols,” in EU-
ROCRYPT 2022, Part I, ser. LNCS, O. Dunkelman and
S. Dziembowski, Eds., vol. 13275. Springer, Heidelberg,
May / Jun. 2022, pp. 180–209.

[42] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Secure two-
party threshold ECDSA from ECDSA assumptions,” in 2018
IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2018, pp. 980–997.

[43] ——, “Threshold ECDSA from ECDSA assumptions: The
multiparty case,” in 2019 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2019, pp. 1051–
1066.

[44] R. Impagliazzo and M. Naor,“Efficient cryptographic schemes
provably as secure as subset sum,” Journal of Cryptology,
vol. 9, no. 4, pp. 199–216, Sep. 1996.

[45] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a
secret,” in ASIACRYPT 2001, ser. LNCS, C. Boyd, Ed., vol.
2248. Springer, Heidelberg, Dec. 2001, pp. 552–565.

[46] A. Faz-Hernández, W. Ladd, and D. Maram,“ZKAttest: Ring
and group signatures for existing ECDSA keys,” in SAC 2021,
ser. LNCS, R. AlTawy and A. Hülsing, Eds., vol. 13203.
Springer, Heidelberg, Sep. / Oct. 2022, pp. 68–83.

[47] M. Naor and M. Yung, “Public-key cryptosystems provably
secure against chosen ciphertext attacks,” in 22nd ACM
STOC. ACM Press, May 1990, pp. 427–437.

[48] T. Iwata, K. Ohashi, and K. Minematsu, “Breaking and re-
pairing GCM security proofs,” in CRYPTO 2012, ser. LNCS,
R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer,
Heidelberg, Aug. 2012, pp. 31–49.

[49] P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via
committing authenticated encryption,” in CRYPTO 2017,
Part III, ser. LNCS, J. Katz and H. Shacham, Eds., vol.
10403. Springer, Heidelberg, Aug. 2017, pp. 66–97.

[50] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A
cryptographic analysis of the TLS 1.3 handshake protocol
candidates,” in ACM CCS 2015, I. Ray, N. Li, and C. Kruegel,
Eds. ACM Press, Oct. 2015, pp. 1197–1210.

[51] S. Gueron and M. E. Konavis, “Intel® carry-less
multiplication instruction and its usage for computing the
gcm mode,” 2014, accessed 14/03/2023. [Online]. Available:
https://www.intel.com/content/dam/develop/external/us/
en/documents/clmul-wp-rev-2-02-2014-04-20.pdf

[52] M. Bellare and P. Rogaway, “Entity authentication and key
distribution,” in CRYPTO’93, ser. LNCS, D. R. Stinson, Ed.,
vol. 773. Springer, Heidelberg, Aug. 1994, pp. 232–249.

[53] M. Fischlin and F. Günther, “Multi-stage key exchange and
the case of Google’s QUIC protocol,” in ACM CCS 2014, G.-
J. Ahn, M. Yung, and N. Li, Eds. ACM Press, Nov. 2014,
pp. 1193–1204.

[54] F. Günther, “Modeling advanced security aspects of key ex-
change and secure channel protocols,” it - Information Tech-
nology, vol. 62, no. 5-6, pp. 287–293, 2020.

[55] J. Brendel, M. Fischlin, F. Günther, and C. Janson, “PRF-
ODH: Relations, instantiations, and impossibility results,” in
CRYPTO 2017, Part III, ser. LNCS, J. Katz and H. Shacham,
Eds., vol. 10403. Springer, Heidelberg, Aug. 2017, pp. 651–
681.

[56] M. B. Santos, “Peco: methods to enhance the privacy of
deco protocol,”Cryptology ePrint Archive, Paper 2022/1774,
2022, https://eprint.iacr.org/2022/1774. [Online]. Available:
https://eprint.iacr.org/2022/1774

[57] W. Chen, R. Deng, and R. A. Popa, “N-for-1 auth: N-
wise decentralized authentication via one authentication,”
Cryptology ePrint Archive, Paper 2021/342, 2021, https://
eprint.iacr.org/2021/342. [Online]. Available: https://eprint.
iacr.org/2021/342

[58] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish,
“Zero-knowledge middleboxes,” in USENIX Security 2022,
K. R. B. Butler and K. Thomas, Eds. USENIX Association,
Aug. 2022, pp. 4255–4272.

21

https://eprint.iacr.org/2008/197
https://www.intel.com/content/dam/develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf
https://eprint.iacr.org/2022/1774
https://eprint.iacr.org/2022/1774
https://eprint.iacr.org/2021/342
https://eprint.iacr.org/2021/342
https://eprint.iacr.org/2021/342
https://eprint.iacr.org/2021/342

[59] X. Xie, K. Yang, X. Wang, and Y. Yu,
“Lightweight authentication of web data via garble-
then-prove,” Cryptology ePrint Archive, Paper 2023/964,
2023, https://eprint.iacr.org/2023/964. [Online]. Available:
https://eprint.iacr.org/2023/964

[60] J. Groth and M. Kohlweiss, “One-out-of-many proofs: Or how
to leak a secret and spend a coin,”Cryptology ePrint Archive,
Report 2014/764, 2014, https://eprint.iacr.org/2014/764.

Appendix A.
Formal description of DCTLS protocols

The three phases (HSP, QP, CP) of a generic three-
party TLS (DCTLS) protocol can be modified as formal
algorithmic processes (or ideal functionalities) executed
between C, S, and V. These processes are described
below.
(pp, spC , spS , spV) ← DCTLS.HSP(1λ): The handshake
phase takes as input a security parameter, and computes
a TLS handshake between S, and an effective client that
consists of both C and V. The public/secret parameters
(pp, spS) learnt by S are the same as in a standard TLS
handshake. The secret parameters learned by C (spC)
and V (spV) are shares of the secret parameters learnt
by a standard TLS client [10], so that neither party can
compute encrypted traffic alone.
(r, q̂, r̂) ← DCTLS.QP(pp, spC , spS , spV , q): The query
phase takes the public and secret parameters of each
party as input, along with a query, q, that is to be sent
to S. This phase requires S to construct a response, r,
to q and return it to C. The phase outputs both q and
r, and also vectors of TLS ciphertexts (q̂ and r̂) that
encrypt the client queries and the server responses. q̂
and r̂ are vectors containing blocks of the TLS ciphertext
encrypting q and r, respectively.
b ← DCTLS.CP(pp, spC , spV , q, r, q̂, r̂, (i, j)): The com-
mitment phase outputs a bit b, where b = 1 if C con-
structs a valid opening of q̂[i] and r̂[j] with respect to
the unencrypted q and r. Broadly speaking, C sends to
V the TLS-encrypted ciphertexts, before V sends spV
to C, and then C opens the commitments. Note that a
valid opening could be proving in zero-knowledge that
r̂[j] encrypts a value in a given range, or using 2PC to
decrypt the block directly.

Appendix B.
Background on ZKAttest

With ZKAttest, S can create a proof of knowledge
of a ECDSA Signature. We explain this by first recalling
how ECDSA works. Let sk ∈ Fq be a ECDSA signing
key,m the message to sign, and let Pk = sk ·G be the cor-
responding public verification key. In order to sign a mes-
sage m, the signer first samples a scalar value k ∈ Fq and
uses this to produce a random point (x1, y1) = kG, with
the restriction that r = x1 mod n ̸= 0. The signer then
truncates a hash ofm to n bits (i.e. z = H(m) [0 : n− 1])
and computes s = z+r·G

k mod n, outputting (r, s) as the

signature on m. To verify this signature, the receiving
party checks that all inputs are valid, before computing
(u1 = zs−1 mod n) and (u2 = rs−1 mod n), and
finally R = (Rx, Ry) = (u1 ·G)+(u2 ·Pk), with validation
passing if Rx = r mod n and failing otherwise.

The authors of ZKAttest noticed that the ECDSA
verification functionality is unsuited to create zero-
knowledge proofs, since it is unclear how to prove that
Rx = r mod n without revealing Rx to V [46]. Re-
vealing Rx can actually lead to a fairly straightforward
de-anonymisation attack, as knowledge of Rx alongside
knowledge of zs−1 allows recovery of Pk. Notice that
there are only finitely many choices of Ry for a given Rx:
in this case, knowledge of Rx alongside knowledge of z
and s allows V to compute (R−zs−1 mod n)·G = (rs−1

mod n) · Pk, which allows recovery of Pk via modular
inversion.

To circumvent this attack, the authors instead mod-
ify the verification equation, revealing R directly to the
verifier and only revealing a commitment to b = s/r
instead of r and s directly. In this case, verifying an
ECDSA signature is the same as proving that bR−zr−1 ·
G = Pk. As z and r can be revealed without revealing
s, and as R appears as a uniformly random value, this
proof works in zero-knowledge.

Given a list of public keys that S holds
(Pk1, Pk2, . . . , Pkn) as a ring, S takes the private
key corresponding to their key Pki, commits to it, signs
the TLS 1.3 transcript (Label7 ∥H3), creates a proof of
signature under committed key (by using the ZKAttest
scalar multiplication proof and the point addition proof
to prove bR − (zr)−1 · G = Pki), and then proves that
the commitment is to one of the keys in the list via
Groth-Kohlweiss proofs [60]. V gets the revealed H3

and the proof (which states that there is a signature
that verifies under a public key that is on the list of
public keys that a S maintains), and it is able to verify
such proof.

Appendix C.
PageSigner and AES-GCM

In this section, we compare our approach to com-
puting AES-GCM tags to the approach employed by
PageSigner [5]. For a background on AES-GCM tags,
see Section 5. In a 2PC setting, we assume that both k
and the powers of h = hc + hv are additively shared by
both parties, with C, IV and A acting as public inputs.

Assuming that C is a single block without any asso-
ciated data (i.e. C = C1), we have τ = (hm−2

c + hm−2
v) ·

(h1
c+h1

v)·C1 = (hm−1
c +hm−1

v +hm−2
c ·h1

v+hm−2
v ·hm−2

c)·
C1. As the first of these terms can be computed locally,
the cost of computing τ can be reduced to computing
(hm−2

v · hc + hm−2
c · hv) · C1 in 2PC. This approach can

actually be written as a variant of our approach, as
the left hand-side is fixed for a particular sharing of h.
However, PageSigner instead repeats this process each

22

https://eprint.iacr.org/2023/964
https://eprint.iacr.org/2023/964
https://eprint.iacr.org/2014/764

time a tag is computed. Interestingly, it turns out that
simply computing a sharing of h2

vhc and h2
chv is sufficient

to tag blocks of arbitrary length, lowering the cost of
tagging to just two OT-based multiplications.

From a performance perspective, a “back-of-an-
envelope”calculation shows that this approach is strictly
less performant than the approach used by us. Intu-
itively, this is because our approach allows all polyno-
mial evaluation to be done locally, which is not the case
for PageSigner: whilst both approaches require comput-
ing an initial sharing of h and its powers, PageSigner’s
approach also requires computing two OT-based mul-
tiplications per tagging. Concretely, instantiating these
multiplications using the maliciously secure scheme pre-
sented in [42] with 128-bits of statistical security would
require 2048 oblivious transfers of 128-bits for the mul-
tiplication alone, requiring around 32KiB of bandwidth
per tag. In contrast, our scheme only requires transfer-
ring around 64 bytes per tagging operation. In other
words, our scheme requires around 500× less bandwidth
per tagging operation than the approach employed by
PageSigner.

Appendix D.
Commitment scheme security

We prove that Γ is a perfectly binding and compu-
tationally hiding commitment scheme.

Lemma 16 (Perfectly binding). The commitment scheme
Γ is perfectly binding.

Proof. Recall that the decryption key r = rki + rci for
each block Ci is secret-shared across both C and V. The
authenticity of Ci is assured to both parties by checking
the tag of Ci in 2PC. Then, as C commits to both Ci and
rci before learning rvi , AES-GCM acts as a committing
AEAD scheme from the perspective of V. (Ci, k

c
i) acts

as a perfectly binding commitment to Mi.

Lemma 17 (Computationally hiding). The commitment
scheme Γ is computationally hiding.

Proof. The client commitment is series of AES-GCM
encrypted ciphertexts, for which V only holds the key
shares (tkvcapp, tk

v
sapp). Note that the full keys are defined

as (tkcapp, tksapp) = (tkccapp ⊕ tkvcapp, tk
c
sapp ⊕ tkvsapp). By

the semantic security of the encryption scheme, we know
that if the client generates two separate commitments
using the same secret parameters, the encryptions of
both will be indistinguishable with anything other than
negligible probability. Therefore, the condition required
in Definition 6 follows for all bounded adversaries.

Appendix E.
Proofs over encrypted data

DiStefano can be used to provide statments in zero
knowledge about encrypted data transmitted during a

TLS 1.3 session. Specically, it can provide proofs that
an specific substring appears on said data which, in turn
means, that the confidentiality of the data remains and
only what is needed is revealed.

E.1. Revealing a substring

We briefly discuss how DiStefano can be used to im-
plement two specific optimisations presented by DECO:
“Selective Opening”, which allows C to reveal that a cer-
tain substring is present in a plaintext M , and“Selective
Redacting”, which allows C to reveal the entirety of M
other than some selection of omitted substrings.

Using our AES-GCM protocol, both approaches are
easily achievable. Suppose that C is committing to some
set of ciphertexts C1, . . . , Cn for the purpose of proving
a statement. Since C is required to commit to their
additive shares of the decryption keys kci before learning
V ’s key shares, selectively opening Ci simply requires
revealing kci to V. Similarly, C can selectively reveal any
combination of ciphertexts by simply revealing those in-
dividual keys. In practice, revealing each block is rather
cheap, requiring only 128-bits of bandwidth. In addition,
this scheme can be adapted to deal with substrings
inside a single block C: rather than revealing kci directly,
C and V instead decrypt C in a garbled circuit with
the output masked by a mask ρ that is chosen by C.
We remark that this approach is somewhat fragile: for
any soundness to hold, we would also require that C is
only allowed to modify certain portions of the output
plaintext. We view this difficulty as orthogonal to this
work: this would require more extensive zero-knowledge
proofs.

Appendix F.
Comparison with prior security models

DECO protocol [2]. In [2], the authors consider an all-
encompassing simulation-based (i.e. real-/ideal-world)
security model, that includes the client proving knowl-
edge of facts associated with the commitment cq̂,̂r. This
approach has a number of downsides. As stated previ-
ously, it does not apply when handshakes are performed
using TLS 1.3, and formal guidance is not given on how
to adapt their security proof to this case. Moreover, their
ideal-world functionality does not establish a number
of security properties that have later been shown to be
guaranteed by the TLS 1.3 protocol [10]. Furthermore,
the identity of the TLS server is known to V, which
contradicts one of the security properties that we aim
to achieve. In summary, their proof is not modular, and
so making changes to their model to incorporate these
changes would be a significant task.

Oblivious TLS [6] and N-for-1-Auth [7]. In
both [6] and [7], C and/or S are built as a series of
entities, combining to execute the given role in the TLS
handshake as an MPC functionality or TLS engine.

23

In [6], the authors show that the security of the TLS
exchange in the multi-stage key exchange security model
of [10] can be maintained, with some tweaks that allow
the TLS engines to reveal all secret material, when a
single party is corrupted. In [7], a security model that is
similar to the approach of [2] is achieved, by modelling
the handshake and record-layer protocols as an ideal
functionality, and using the real-/ideal-world paradigm
to prove security.

Note that both protocols assume that all parties
learn the same information (except for a single party
that relays the eventual TLS messages between the en-
gine and the other entity). Moreover, their model does
not take into account security guarantees that are only
made explicit when the client attempts to attest to data
that was exchanged in the TLS connection. However,
the security model of Oblivious TLS is useful to us, as
it allows for proving that a multi-party client can achieve
a TLS 1.3 handshake with the security guarantees estab-
lished in [10]. We adapt this to work in our scenario, so
that we can provide similar guarantees.

24

	Introduction
	Background
	General Notation
	Background on DCTLS Protocols

	Cryptographic Preliminaries
	Secure Multi-Party Computation
	Ring Signature Schemes
	Commitment Schemes
	Authenticated Encryption

	DiStefano Protocol
	Handshake Phase: HSP
	Query Execution Phase: QP
	Commitment Phase: CP
	Commitment to AES-GCM ciphertexts
	Subsequent Phases

	Computing AES-GCM in 2PC
	Security
	Optimisation: Multiplicative Sharing of h

	Security Analysis
	Handshake Phase Security
	Query Phase Security
	Commitment Phase Security

	Implementation
	Experimental Analysis
	Discussion
	Related Work
	Applications
	Limitations
	Browser Integration

	Conclusion
	References
	Appendix A: Formal description of DCTLS protocols
	Appendix B: Background on ZKAttest
	Appendix C: PageSigner and AES-GCM
	Appendix D: Commitment scheme security
	Appendix E: Proofs over encrypted data
	Revealing a substring

	Appendix F: Comparison with prior security models

