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Abstract

We prove that the problem of decoding a quasi-cyclic code is NP-
hard, and the corresponding decision problem is NP-complete. Our
proof is based on a new characterization of quasi-cyclic codes closely
related to linear random codes. We also discuss the cryptographic
significance of this result.

1 Introduction
Coding Theory deals with the problem of detecting and correcting

transmission errors caused by noise on the channel. The mathemati-
cal theory of the underlying principles started in 1948, when Shannon
gave a formal description of a communication system and introduced
a theory about the concept of information, including a measure for
the amount of information in a message [27]. The relevance for cryp-
tography of the Coding Theory began when Robert J. McEliece pro-
posed a public key cryptosystem [22] that based its security on the
NP-completeness of the Decisional Syndrome Decoding Problem (D-
SDP) and Decisional Codeword Finding Problem (D-CFP) [7]. The
McEliece cryptosystem originally uses Goppa codes [16, 17], so be-
ing rigorous, the security of the scheme is based on the complexity
of the Goppa Bounded Decoding Problem (GBDP), whose associated
decision problem has been shown to be NP-complete [13].

Currently, due to the large sizes of the public key of the original
McEliece cryptosystem, other families of codes are used in order to
find more compact mathematical representations of the keys, thus al-
lowing their size to be reduced. However, these variants are built on
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families of codes, mostly linear, in which it cannot be stated that the
underlying computational problem is NP-hard. This constitutes an es-
sential element in the theoretical security evaluation of post-quantum
cryptographic schemes in general, and in particular, those based on
codes. We refer the reader to papers [11, 24, 9, 8] to see the historical
evolution and variants of the McEliece cryptosystem.

Among the code-based algorithms shortlisted for the NIST Post-
Quantum contest [2], BIKE [23] and HQC [1] are based on Quasi-Cyclic
(QC) codes, but in very different ways. The underlying computationa-
lly difficult problem is a variant of SDP called Quasi-Cyclic Syndrome
Decoding Problem (QC-SDP). In this paper our interest is focused on
the computational complexity of this problem.

It is known that for some parameters, QC codes have some proper-
ties similar to random codes in terms of minimum weight and probabil-
ity distribution of the syndrome [10, 14, 21, 15, 12]. These properties
are desirable in code-based cryptography. On the other hand, although
there is no general complexity result for QC-SDP, this problem is con-
sidered hard by the cryptographic community [26] and the best known
algorithms to solve it are the same to solve the SDP with the only
advantage that the computational cost is reduced by a constant factor
[25, 19]. There is an attempt to show that the decisional variant of
QC-SDP is NP-complete but it is only limited to a particular form of
QC codes [6].

Our contribution. In this paper we prove that the QC-SDP is NP-
hard, and the corresponding decision problem is NP-complete (Theo-
rem 3). Our result confirms the assumption so far assumed as valid
that it is a difficult problem. To demonstrate our result, we previously
demonstrated another way of looking at the structure of QC codes
(Theorems 1 and 2). This new characterization of QC codes is closely
related to random codes and is the starting point to demonstrate our
result. We also discuss the cryptographic significance of this result,
especially about the NIST post-quantum contest finalist algorithms
that are based on codes.

2 Preliminaries
Let Fq be the Galois field of order a prime power q and let Fn

q denote
the n-dimensional vector space defined over Fq.

Definition 1. A [n, k]q linear code C over Fq of length n and dimension
k (n > k) is a k-dimensional subspace of Fn

q , which can be represented
by two matrices; a k×n generator matrix G, such that C = {mG, m ∈
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Fk
q} or by a (n − k) × n parity-check matrix H, such that C = {c ∈

Fn
q , HcT = 0}, where c ∈ C.

Definition 2. Let x, y ∈ C. The Hamming distance d(x, y) from x to
y, is the number of places at which x and y differ. The Hamming weight
w(x) of x is the number of nonzero coordinates in x; i.e., w(x) =
d(x, 0), where 0 is the zero word. The minimum distance of C, denoted
by dmin, is dmin(C) = min{d(x, y) : x 6= y}.

If C has minimum distance dmin, then is an exactly t = b(dmin −
1)/2c-error-correcting code.

Definition 3. Let C be an [n, k]q linear code and let H be a parity-
check matrix for C. For any e ∈ Fn

q , the syndrome s of e is the vector
s = HeT ∈ Fn−k

q .

For any s ∈ Fn−k
q and parity-check matrix H, the set of vectors of

Fn
q with syndrome s is denoted by S−1H (s) = {e ∈ Fn

q : s = HeT }. By
definition, S−1H (0) = C for any parity-check matrix H of C. The vector
space Fn

q /C consist of all cosets a + C = {a + c : c ∈ C} with a ∈ Fn
q .

There are exactly qn−k different cosets, each coset contain qk vectors,
and form a partition of Fn

q .

Definition 4. [28] A Quasi-Cyclic (QC) code of index n0 is a linear
code with dimension k = p · k0, length n = p ·n0 and have the property
that each cyclic shift of a codeword by n0 symbols yields another valid
codeword.

Given a vector y ∈ Fn
q and its syndrome s = HyT , decoding con-

sists in find a codeword c ∈ C closest to y for the Hamming distance
(d(y, c) ≤ t) or find an error vector e ∈ y + C such that w(e) ≤ t. In
terms of algorithmic complexity, the corresponding decision problems
are as follows:

Definition 5 (Decisional Syndrome Decoding Problem (D-SDP)).
Given a random matrix H, a syndrome s and an integer t > 0, deter-
mine if exist a vector e, with w(e) ≤ t, such that s = HeT .

Definition 6 (Decisional Codeword Finding Problem (D-CFP)).
Given a random matrix H and an integer t > 0, determine if exist a
vector e, with w(e) ≤ t, such that HeT = 0.

The two decisional problems were proven to be NP-complete for
the case of binary linear codes by Berlekamp et al. [7]. Barg gen-
eralized this proof to an arbitrary finite field [5] and finally, the NP-
completeness proof has been generalized to arbitrary finite rings en-
dowed with an additive weight [29].
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The computational complexity theory states that any decision prob-
lem belonging to the NP-complete class has a search-to-decision reduc-
tion [3]. This states that the difficulty of SDP and CFP are as hard as
an NP-complete problem. Although only decisional problems belong
to the NP-complete class, in a commonly accepted abuse of language,
it is said that SDP and CFP are NP-complete.

In the case of QC codes, the definition of the Quasi-Cyclic Syn-
drome Decoding Problem (QC-SDP) is as follows.

Definition 7. [Quasi-Cyclic Syndrome Decoding Problem (QC-
SDP)] Given a parity-check matrix H of a QC code, a syndrome s and
an integer t > 0, find a vector e, with w(e) ≤ t, such that s = HeT .

3 NP-completeness of decoding QC codes
In this section it is shown that the QC-SDP is NP-complete. First,

the QC codes are characterized by a representation of their parity-
check matrix. This representation makes it possible to describe all QC
codes through a close relationship with random codes. Then, using
the parity-check matrix given by the previous representation, the NP-
completeness is proved.

Usually the parity-check matrix of a QC code with length n = p ·n0

and dimension k = p · (n0 − r0) is seen as follows
Hc

00 Hc
01 . . . H0(n0−1)

Hc
10 Hc

11 . . . Hc
1(n0−1)

...
...

. . .
...

Hc
(r0−1)0 Hc

(r0−1)1 . . . Hc
(r0−1)(n0−1)


where each matrix Hc

ij with 0 ≤ i ≤ r0 − 1 and 0 ≤ j ≤ n0 − 1, is a
p× p circulant matrix, that is, a matrix of the form

a0 a1 . . . ap−1
ap−1 a0 . . . ap−2
...

...
. . .

...
a1 a2 . . . a0


with al ∈ Fq, 0 ≤ l ≤ p − 1. A circulant matrix is associated through
an isomorphism to a polynomial in x with coefficients over Fq given
by the elements of the first row of the matrix:

a(x) =

p−1∑
i=0

aix
i
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Therefore, the standard operations of matrix addition and multipli-
cation can be performed in the ring of polynomials Fq[x]/(x

p − 1).
However, from Definition 4, we can see QC codes from another per-
spective, more related to random codes.

Theorem 1. Let Hi, 0 ≤ i ≤ p− 1 be p any matrices, where each Hi

has size r0 × n0. The parity-check matrix

H =


H0 H1 . . . Hp−1
Hp−1 H0 . . . Hp−2
...

...
. . .

...
H1 H2 . . . H0

 (1)

define a QC code with length n = p ·n0 and dimension k = p ·(n0−r0).

Proof. The matrix H has size r × n, with r = p · r0 (p matrices
with r0 rows) and n = p · n0 (p matrices with n0 columns). Because
r = n− k, we have k = n− r = p · (n0 − r0).

Given a generic codeword c of length n, it can be seen as c =
(c0, c1, . . . , cp−1) where each ci, 0 ≤ i ≤ p−1 has size n0. By definition
1, we have HcT = 0, that is:

H0 · cT0 +H1 · cT1 + · · ·+Hp−1 · cTp−1 = 0

Hp−1 · cT0 +H0 · cT1 + · · ·+Hp−2 · cTp−1 = 0

...

H1 · cT0 +H2 · cT1 + · · ·+H0 · cTp−1 = 0

Denoting by c(x), 1 ≤ x ≤ p − 1, the right cyclic shift of c in x · n0

positions and from the definition of QC code, we have that c(x) is a
codeword too. Therefore, the equations

H ·
(
c(x)
)T

= 0, 1 ≤ x ≤ p− 1 (2)

must be satisfied. The equations H ·
(
c(1)
)T are

H0 · cTp−1 +H1 · cT0 + · · ·+Hp−1 · cTp−2
Hp−1 · cTp−1 +H0 · cT0 + · · ·+Hp−2 · cTp−2

...

H1 · cTp−1 +H2 · cT0 + · · ·+H0 · cTp−2
where the following pattern is observed:
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• Equation 1 of H ·
(
c(1)
)T is the equation p of HcT = 0.

• Equation 2 of H ·
(
c(1)
)T is the equation 1 of HcT = 0, and so

on.

That is, all the equations of H ·
(
c(1)
)T coincide with an equation of

HcT = 0, therefore, it is satisfied that H ·
(
c(1)
)T

= 0. Let us now
consider the equations H ·

(
c(2)
)T

H0 · cTp−2 +H1 · cTp−1 + · · ·+Hp−1 · cTp−3

Hp−1 · cTp−2 +H0 · cTp−1 + · · ·+Hp−2 · cTp−3
...

H1 · cTp−2 +H2 · cTp−1 + · · ·+H0 · cTp−3
Similarly, the following pattern is observed:

• Equation 1 of H ·
(
c(2)
)T is the equation p of H ·

(
c(1)
)T

= 0.

• Equation 2 of H ·
(
c(2)
)T is the equation 1 of H ·

(
c(1)
)T

= 0, and
so on.

All the equations ofH ·
(
c(2)
)T coincide with an equation ofH ·

(
c(1)
)T

=

0, therefore H ·
(
c(2)
)T

= 0. Applying the same reasoning for all
x, 1 ≤ x ≤ p− 1 in H ·

(
c(x)
)T , it can be seen that the general pattern

is as follows:

• Equation 1 of H ·
(
c(x)
)T is the equation p of H ·

(
c(x−1)

)T .
• Equation i, 2 ≤ i ≤ p, of H ·

(
c(x)
)T is the equation i − 1 of

H ·
(
c(x−1)

)T .
Therefore, the equations 2 are satisfied and the code is QC. �

The converse of the previous theorem also holds.

Theorem 2. If C is a QC code of length n = p · n0 and dimension
k = p · (n0 − r0), then the matrix

H =


H0 H1 . . . Hp−1
Hp−1 H0 . . . Hp−2
...

...
. . .

...
H1 H2 . . . H0


is a parity-check matrix for C, where each matrix Hi, 0 ≤ i ≤ p − 1
has size r0 × n0.
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Proof. Let H ′ be a parity-check matrix of a QC code of length
n = p · n0 and dimension k = p · (n0 − r0). Then H ′ can be written as
follows

H ′ =


H00 H01 . . . H0(p−1)
H10 H11 . . . H1(p−1)
...

...
. . .

...
H(p−1)0 H(p−1)1 . . . H(p−1)(p−1)


where each matrix Hij , 0 ≤ i, j ≤ p− 1 has size r0 × n0. Since C is a
QC code, for any codeword c = (c0, c1, . . . , cp−1), the equalities

H ′ ·
(
c(x)
)T

= 0, 1 ≤ x ≤ p− 1

are satisfied. Note that the equation 1 in H ′ · cT = 0 is the same as
equation 2 in H ′ ·

(
c(1)
)T

= 0. Then is satisfied:

H00 = H11

H01 = H12

H02 = H13

...

H0(p−1) = H10

Similarly, we can consider the equation 3 in H ′ ·
(
c(2)
)T

= 0 and
equation 4 in H ′ ·

(
c(3)
)T

= 0. This reasoning is extended to consider
the equation p in H ′ ·

(
c(p−1)

)T
= 0 and it is obtained that

H00 = H11 = H22 = · · · = H(p−1)(p−1)

H01 = H12 = H23 = · · · = H(p−1)0

H02 = H13 = H24 = · · · = H(p−1)1

...

H0(p−1) = H10 = H21 = · · · = H(p−1)(p−2)

The previous equalities then mean that H ′ has the form (1), that is,
H ′ = H. �

Remark 1. From theorems 1 and 2, it can be seen that if n0 = 1,
then the QC code matches a random code. More generally, any random
code can be seen embedded in a QC code of greater index, length and
dimension. However, it is clear that a QC code that has index n0 > 1,
does not match a random code of equal parameters due to the non-
random structure of its parity-check matrix.
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From the previous theorems and from Remark 1, it is not difficult
to deduce the proof of the following result.

Theorem 3. The QC-SDP is NP-complete.

Proof. The general idea of the proof is the following. Starting from
an instance of the SDP, an instance of the QC-SDP is constructed in
polynomial time and it is shown that if the latter is solved efficiently,
then the instance of the former is necessarily solved efficiently.

Let (H, t, s) be an instance of the SDP and consider a QC code
with length n = p · n0 and dimension k = p · (n0 − r0). The QC-SDP
instance (H ′, t′, s′) is defined as follows. The matrix H ′ is

H ′ =


H H1 . . . Hp−1

Hp−1 H . . . Hp−2
...

...
. . .

...
H1 H2 . . . H


where the matrices Hi, 1 ≤ i ≤ p− 1 are any matrices of size r0 × n0

randomly selected. Let x ∈ Fn
q be any vector. Because n = p · n0, x

can be seen as x = (x0, x1, . . . , xp−1) where each xi, 0 ≤ i ≤ p− 1 has
length n0. The value of t′ is taken as t+ l, with l =

∑p−1
i=1 w(xi). The

syndrome s′ is defined as s′ = (s+ s0, s1, . . . , sp−1) where

H1 · xT1 + · · ·+Hp−1 · xTp−1 = s0

Hp−1 · xT0 +H · xT1 + · · ·+Hp−2 · xTp−1 = s1

...

H1 · xT0 +H2 · xT1 + · · ·+H · xTp−1 = sp−1

and each si, 0 ≤ i ≤ p− 1 has length r0.
Let A be an algorithm capable of solving the instance (H ′, t′, s′)

of the QC-SDP. This means that through A, we can find a vector
e′ = (e1, e2, . . . , en) ∈ Fn

q with w(e′) ≤ t′ such that

H ′ · e′T = s′

The vector e′ can be seen as e′ = (e0, e1, . . . , ep−1) where each ei, 0 ≤
i ≤ p − 1 has length n0 and

∑p−1
i=1 w(ei) = l. Thus, we have that

H ′ · e′T = s′ is

H · eT0 +H1 · eT1 + · · ·+Hp−1 · eTp−1 = s+ s0

Hp−1 · eT0 +H · eT1 + · · ·+Hp−2 · eTp−1 = s1
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...

H1 · eT0 +H2 · eT1 + · · ·+H · eTp−1 = sp−1

By definition, s0 =
∑p−1

i=1 Hi · eTi . Substituting s0 in the first of the
above equations we get

H · eT0 = s

Since w(e) ≤ t′, we have that w(e0) ≤ t′ − l = t. Therefore, e0 is
a solution of the instance of the SDP. In this way, a solution of the
QC-SDP allows to find in polynomial time, a solution of an instance
of the SDP.

3.1 Cryptographic significance.
The proof that the QC-SDP is NP-complete means that it is difficult

in the worst case. Although this says nothing of the average case
complexity, maybe it does not fall into an easy instance (see discussion
of [20, 18] and section 3.2 of [4]).

The NIST submission BIKE combines QC codes of index 2 with
MDPC codes. In this case, we are in the presence of a particular case
of the QC-SDP problem, that is, when n0 = 2. However, since QC-
MDPC codes constitute a subfamily of QC codes, our result does not
affirm that BIKE bases its security on an NP-complete problem, but it
reinforces that idea due to the possible closeness of the MDPC codes
to the random ones.

On the other hand, HQC is based on the quasi-cyclic concatenation
of the Reed-Muller and Reed-Solomon codes. Since these families of
codes are not random, our result finds no applicability in HQC.

4 Conclusion
In this paper we have proved that the QC-SDP is NP-hard and

its corresponding decision variant is NP-complete. This problem was
considered difficult but until now no proof of such a statement was
known. Our result is directly related to theoretical security analyzes of
code-based post-quantum cryptographic schemes, in particular, BIKE
and HQC, which are finalists in the NIST Post-Quantum Asymmetric
Standards Contest.

In the case of BIKE, our result reinforces the hypothesis that its
security is based on an NP-complete problem. In the case of HQC, the
same cannot be stated due to the families of codes that it concatenates
in a quasi-cyclic structure.

9



References
[1] Aguilar-Melchor, C., Blazy, O., Deneuville, J.-C., Ga-

borit, P., and Zémor, G. Efficient encryption from random
quasi-cyclic codes. IEEE Transactions on Information Theory 64,
5 (2018), 3927–3943.

[2] Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T.,
Kelsey, J., Lichtinger, J., Miller, C., Moody, D., Per-
alta, R., and et. al. Status report on the third round of the
nist post-quantum cryptography standardization process. US De-
partment of Commerce, NIST (2022).

[3] Arora, S., and Barak, B. Computational complexity: a mod-
ern approach. Cambridge University Press, Cambridge, 2009.

[4] Augot, D., Finiasz, M., and Sendrier, N. A family of fast
syndrome based cryptographic hash functions. InMycrypt (2005),
vol. 3715, Springer, pp. 64–83.

[5] Barg, S. Some new np-complete coding problems. Problemy
Peredachi Informatsii 30, 3 (1994), 23–28.

[6] Berger, T. P., Cayrel, P.-L., Gaborit, P., and Otmani,
A. Reducing key length of the mceliece cryptosystem. In Progress
in Cryptology–AFRICACRYPT 2009: Second International Con-
ference on Cryptology in Africa, Gammarth, Tunisia, June 21-25,
2009. Proceedings 2 (2009), Springer, pp. 77–97.

[7] Berlekamp, E., McEliece, R., and Van Tilborg, H. On
the inherent intractability of certain coding problems (corresp.).
IEEE Transactions on Information Theory 24, 3 (1978), 384–386.

[8] Bolkema, J., Gluesing-Luerssen, H., Kelley, C. A.,
Lauter, K. E., Malmskog, B., and Rosenthal, J. Vari-
ations of the mceliece cryptosystem. In Algebraic Geometry
for Coding Theory and Cryptography: IPAM, Los Angeles, CA,
February 2016 (2017), Springer, pp. 129–150.

[9] Bucerzan, D., Dragoi, V., and Kalachi, H. T. Evolution
of the mceliece public key encryption scheme. In Innovative Secu-
rity Solutions for Information Technology and Communications:
10th International Conference, SecITC 2017, Bucharest, Roma-
nia, June 8–9, 2017, Revised Selected Papers 10 (2017), Springer,
pp. 129–149.

[10] Chen, C., Peterson, W. W., and Weldon Jr, E. Some re-
sults on quasi-cyclic codes. Information and Control 15, 5 (1969),
407–423.

10



[11] Engelbert, D., Overbeck, R., and Schmidt, A. A sum-
mary of mceliece-type cryptosystems and their security. Journal
of Mathematical Cryptology 1, 2 (2007), 151–199.

[12] Fiallo, E. D. A digital signature scheme mcfsˆqc-ldpc based
on qc-ldpc codes. Mathematical Aspects of Cryptography 12, 4
(2021), 99–113.

[13] Finiasz, M. Nouvelles constructions utilisant des codes cor-
recteurs d’erreurs en cryptographie à clef publique. These de
doctorat, École Polytechnique (2004).

[14] Finiasz, M., Gaborit, P., and Sendrier, N. Improved fast
syndrome based cryptographic hash functions. In Proceedings of
ECRYPT Hash Workshop (2007), vol. 2007, Citeseer, p. 155.

[15] Gaborit, P., and Zemor, G. Asymptotic improvement of the
gilbert–varshamov bound for linear codes. IEEE Transactions on
Information Theory 54, 9 (2008), 3865–3872.

[16] Goppa, V. D. A new class of linear correcting codes. Problemy
Peredachi Informatsii 6, 3 (1970), 24–30.

[17] Goppa, V. D. A rational representation of codes and (l, g)-codes.
Problemy Peredachi Informatsii 7, 3 (1971), 41–49.

[18] Gurevich, Y. Average case completeness. Journal of Computer
and System Sciences 42, 3 (1991), 346–398.

[19] Hauteville, A., and Tillich, J.-P. New algorithms for decod-
ing in the rank metric and an attack on the lrpc cryptosystem.
In 2015 IEEE International Symposium on Information Theory
(ISIT) (2015), IEEE, pp. 2747–2751.

[20] Levin, L. A. Average case complete problems. SIAM Journal
on Computing 15, 1 (1986), 285–286.

[21] MacWilliams, F. J., and Sloane, N. J. A. The theory of
error-correcting codes. Elsevier, North Holland, 1977.

[22] McEliece, R. J. A public-key cryptosystem based on algebraic.
Coding Thv 4244 (1978), 114–116.

[23] Misoczki, R., Tillich, J.-P., Sendrier, N., and Barreto,
P. S. Mdpc-mceliece: New mceliece variants from moderate den-
sity parity-check codes. In 2013 IEEE international symposium
on information theory (2013), IEEE, pp. 2069–2073.

[24] Repka, M., and Zajac, P. Overview of the mceliece cryptosys-
tem and its security. Tatra Mountains Mathematical Publications
60, 1 (2014), 57–83.

11



[25] Sendrier, N. Decoding one out of many. In Post-Quantum Cryp-
tography: 4th International Workshop, PQCrypto 2011, Taipei,
Taiwan, November 29–December 2, 2011. Proceedings 4 (2011),
Springer, pp. 51–67.

[26] Sendrier, N. Code-based cryptography: State of the art and
perspectives. IEEE Security & Privacy 15, 4 (2017), 44–50.

[27] Shannon, C. E. A mathematical theory of communication. The
Bell system technical journal 27, 3 (1948), 379–423.

[28] Townsend, R., and Weldon, E. Self-orthogonal quasi-cyclic
codes. IEEE Transactions on Information Theory 13, 2 (1967),
183–195.

[29] Weger, V., Khathuria, K., Horlemann, A.-L.,
Battaglioni, M., Santini, P., and Persichetti, E.
On the hardness of the lee syndrome decoding problem. arXiv
preprint arXiv:2002.12785 (2020).

12


	Introduction
	Preliminaries
	NP-completeness of decoding QC codes
	Cryptographic significance.

	Conclusion

