
The Tip5 Hash Function for Recursive STARKs

Alan Szepieniec Alexander Lemmens
alan@neptune.cash Alexander.Lemmens@vub.be

Neptune DIMA, Vrije Universiteit Brussel

Jan Ferdinand Sauer Bobbin Threadbare
ferdinand@neptune.cash bobbinth@protonmail.com

Neptune Polygon

Abstract. This paper specifies a new arithmetization-oriented hash func-
tion called Tip5. It uses the SHARK design strategy [16] with low-degree
power maps in combination with lookup tables, and is tailored to the field
with p = 264 − 232 + 1 elements.
The context motivating this design is the recursive verification of STARKs.
This context imposes particular design constraints, and therefore the
hash function’s arithmetization is discussed at length.

1 Introduction

In the context of succinctly verifiable and zero-knowledge proof systems for ar-
bitrary computation, standard hash functions such as SHA3 and Blake3 are
disfavored due to their expensive arithmetizations. Specifically, the representa-
tion of these hash functions in terms of polynomials is sizeable, and induces a
matching cost on the proof system that uses it. In this setting, arithmetization-
oriented hash functions are preferred instead as these were designed with an
efficient arithmetization in scope.

In the space of arithmetization-oriented hash functions, three design strate-
gies stand out.

1. The Marvellous design strategy [1], best known for its member Rescue-
Prime [20], introduced the idea of alternating S-box layers where even layers
compute low-degree permutations in one direction and odd layers compute
low-degree permutations in the opposite direction. As a result, a small num-
ber of rounds guarantees that the algebraic degree of the cipher is suffi-
ciently high when attacked from any direction. Moreover, in the specific case
of Rescue-Prime, two consecutive S-box layers can be folded together into
one low-degree arithmetization. This folding technique yields essentially two
rounds of the cipher for the price of one cycle in the arithmetic virtual ma-
chine. Since the publication of the Marvellous design strategy, there has been
very little progress in cryptanalyzing Rescue and Rescue-Prime.

2. The Hades design strategy [11], best known for its member Poseidon [10],
introduces a distinction between full rounds and partial rounds. All rounds



consist of a layer of S-boxes, a linear diffusion layer, and an injection of con-
stants. What sets partial and full rounds apart is the number of S-boxes: in
partial rounds this number is one, whereas in full rounds every state element
is mapped by the S-box. The full rounds, located at the beginning and the
end of the cipher, defend against statistical attacks. The large number of
partial rounds in the middle defend against algebraic attacks by increasing
the degree of polynomials describing the function.

3. Reinforced Concrete [9] introduced the use of lookup tables in an other-
wise arithmetization-oriented cipher. The lookup table can be evaluated effi-
ciently on CPUs as well as proven efficiently in a zero-knowledge or succinctly
verifiable proof system using Plookup [8] or techniques derived from there.
Moreover, represented as polynomials over a finite field, non-trivial lookup
tables have maximal degree. Therefore, the use of lookup tables provides a
robust way to resist algebraic attacks including attacks relying on Gröbner
bases. The downside of this technique is that the lookup tables cannot be
too large; that therefore the field elements must be decomposed into chunks
which are then looked up; and that the prover must establish the correct
decomposition and recomposition of these chunks. This process leads to an
expensive arithmetization and does not generalize well to arbitrary fields.

This note proposes a new hash function. It uses the SHARK design strategy,
on which Marvellous is based, of using full S-box layers interleaved with MDS
matrices. The S-boxes come in two types. The first is built from a table lookup
that computes the cube map in F28+1 but offset by one. This function is fast to
compute. In addition, its algebraic degree over Fp is large, providing resistance
against Gröbner basis attacks. The second type is the regular forward αth power
map found in Rescue and Poseidon. As the second type of S-boxes constitutes the
majority in every S-box layer, they suffice to provide defense against statistical
attacks through the wide-trail argument [6].

1.1 The Application: Recusive STARKs

The hash function proposed here is designed not for a general purpose but specif-
ically for integration into STARK [3] engines and specifically for the purpose of
enabling the recursive proof of the correct execution of a STARK verifier. This
application informs all design choices. The hash function may be used elsewhere,
for instance in circuit-based SNARKs or MPC applications, but these alternative
uses are not motivations for particular design choices.

For example: there are SNARKs that work for either model of computation,
arithmetic circuits or state machines. Both types of SNARKs benefit from using
arithmetization-oriented functions, but even so, a given function may be more
supportive of the one or the other model. In particular, state machines work by
applying a step function iteratively to a mutable state. The collection of these
states is called the trace and it is integral if it satisfies local constraints – namely,
the step function was correctly computed between every consecutive pair. This
step function is independent of the cycle. Hash functions defined in terms of

2



different round functions are less conducive to this model of computation than
hash functions whose round function is the same across rounds.1

Another important consideration related to the chosen model of computation
is the separation of the processor and the hasher into distinct functional units.
Each functional unit has a different step function. Both units generate execution
traces. Moreover, there is an argument that proves the correct relation between
these two traces; it is not too dissimilar from a communication bus that allows
the processor to send queries to the hash coprocessor and receive responses back.
Asymptotically speaking, the prover’s running time is dominated by computing
NTTs on vectors whose length is proportional to the largest of all execution
traces. For recursively proving the correct verification of a STARK proof, the
workload in terms of hashes is on par with that of all other tasks combined. As
a result, hash functions with short execution traces are preferable and can even
be so at the expense of more registers.

The particular type of hashing that constitutes the bulk of the verifier’s
work is the verification of Merkle authentication paths. To this end, the hash
function must support two-to-one hashing in the most efficient way possible. In
the specific case of sponge-based hash functions, it is imperative that two-to-one
hashing can be achieved with one absorbing step and one squeezing step — so
that only one invocation of the permutation is needed. As a result, the sponge
state must be sufficiently wide.

Based on these design constraints, we select Rescue-Prime [20] as the starting
point even though Poseidon is about 4× faster on CPU in the given context [22].
Rescue-Prime’s security against both algebraic and statistical attacks seems to
grow with the state size, and so the relatively large minimum state width is
compensated for with a relatively small number of (uniform) rounds.

1.2 What About Lookup Gates?

While lookup tables were well-known and well-used in the construction of tradi-
tional ciphers, it was not until the advent of the Plookup technique [7] that the
correct lookup could be proven in addition to executed. This technique presents
an intriguing new tool in the arithmetization-oriented cipher designer’s tool-
box. Lookup tables are designed to break algebras; and so it should come as no
surprise that there does not seem to be an efficient way to algebraically attack
ciphers that use them. Moreover, lookup gates can typically be evaluated in only
a handful of cycles on a modern CPU.

Despite Rescue’s impeccable track record, algebraic attacks relying on Gröbner
basis algorithms remain poorly understood. For most parameters, a Gröbner ba-
sis attack is the cheapest and so it is used to set the number of rounds. However,
the inclusion of lookup gates promises to completely explode the complexity
of a whole range of algebraic attacks including those involving Gröbner bases.

1 We make an exception for round-dependent round constants, which can either be
stored in separate columns that could be precomputed, or arithmetized efficiently
using the periodic interpolants of § 4.5.

3



As such, lookup gates can not only defend against as-yet-undiscovered attack
strategies, but can also reduce the number of rounds needed for a target security
level.

In theory, the NTT ought to be the prover’s bottleneck because its com-
plexity is asymptotically the largest. However, in practice, the prover’s running
time is dominated by the complexity of computing Merkle trees. Lookup gates
promise to replace the computationally expensive alpha-inverse power maps used
in Rescue by cheaper operations at no discernible cost to security. As a result,
by switching to a hash function that has lookup gates rather than alpha-inverse
power maps, the performance bottleneck may shift from building Merkle trees
to NTT, where it ought to be.

The inclusion of lookup gates is not free. The lookup argument requires extra
columns and constraints and the lookup table itself must be arithmetized as well.
The key question raised by and studied in this article is therefore:

Does the performance improvement of a hash function with lookup gates
compensate for its more complex arithmetization?

Jumping ahead, the answer is a definite “yes”. In the end, both factors affect
the single metric of interest, which is the running time of the prover as it proves
the correct execution of the verifier.

To support this claim, this article proposes a hash function making use
of lookup gates in § 2; discusses implementation aspects related to fast CPU-
performance in § 3; and presents arithmetization techniques of independent in-
terest including a novel lookup argument in § 4.

The quantum of qualification relativizing the above positive answer is the
question of security. In order to make the comparison fair, both hash function
candidates must offer comparable levels of security. The best we can do on this
front is analyze the proposed hash function in the light of known lines of attack
and argue that they have an infeasible complexity. These attacks are discussed
in § 5.

Table 1: Summary of parameters.

Parameter Symbol Value

field modulus p 264 − 232 + 1
number of rounds N 5
state size m 16
sponge rate r 10
sponge capacity c 6
digest length d 5
power map exponent α 7
number of split-and-lookups per round s 4

4



2 Specification

2.1 High-Level Overview

Tip5 is a sponge construction [4] instantiated with a permutation f : Fm → Fm

and a state of m = 16 field elements. In every iteration of the absorbing phase,
r = 10 field elements are read from the input and replace the first r elements
of the state. In every iteration of the squeezing phase, the first r = 10 elements
of the state are read and appended to the output. Between every absorbing or
squeezing iteration, the function f is applied to the state. This description defines
a function whose output has infinite length; the Tip5 hash function truncates
this output to d = 5 field elements.

f f f f

r

c

r

c

r

c

r

c

r

c

Fig. 1: Sponge construction with 3 absorbing iterations and 2 squeezing iterations.
This sponge construction absorbs by overwriting the rate part of the state, whereas
absorbing is traditionally defined in terms of adding into it.

The permutation f : Fm → Fm consists of N = 5 rounds, which are each
identical except for the independently uniformly pseudorandom round constants.
Every round consists of 3 steps:

1. S-box layer. Every state element is mapped by an S-box. The first s = 4
elements are mapped by S : Fp → Fp and the other elements are mapped by
T : Fp → Fp. Both types of S-boxes are permutations on Fp.

2. Linear layer. The state vector is multiplied with a m×m MDS matrix.

3. Round constants. A designated round constant, sampled independently
for every round and state element, is added to every state element.

2.2 S-Box Layer

There are two types of S-boxes, S and T . The latter is the regular forward α-
th power map already used in Rescue-Prime: T : x 7→ xα. For the field with
264−232+1 elements, α = 7 since any smaller positive exponent does not define
a permutation.

5



S

S

S

S

T

T

T

T

T

T

T

T

T

T

T

T

M
D
S

S

S

S

S

T

T

T

T

T

T

T

T

T

T

T

T

M
D
S

S

S

S

S

T

T

T

T

T

T

T

T

T

T

T

T

M
D
S

S

S

S

S

T

T

T

T

T

T

T

T

T

T

T

T

M
D
S

S

S

S

S

T

T

T

T

T

T

T

T

T

T

T

T

M
D
S

ra
te

ca
pa
ci
ty

Fig. 2: The Tip5 permutation.

The former type of S-box, S, is more involved and may be called the split-
and-lookup map. It is defined as follows:

S : Fp → Fp, x 7→ R−1 · ρ ◦ L8 ◦ σ(R · x)

The components are:

– R is the field element congruent to 264 modulo p, accounting for native
representation of field elements in Montgomery form.

– σ : Fp → F8
p, x 7→ (a, b, c, d, e, f, g, h) where all outputs are at most 8 bits

wide and x = a+28 · b+216 · c+224 · d+232 · e+240 · f +248 · g+256 · h. In
essence, σ decomposes a field element’s canonical representation into bytes,
and σ(R · x) decomposes the Montgomery representation of x into bytes.

– L : Fp → Fp is defined only for field elements that are at most 8 bits
wide. Identifying this subset of Fp with F28+1, the lookup table L computes
L : F28+1 → F28+1, x 7→ (x+ 1)3 − 1.

– ρ : F8
p → Fp computes the inverse of σ.

The inverse of this S-box is x 7→ R · ρ ◦ (L−1)4 ◦ σ(R−1 · x).
Note that L has three fixed points, 0, 255 and 256 ≡ −1 mod 257. Since 256

is the only point not representable in 8 bits, it follows that L is a permutation
on {0, . . . , 255} as well as on F257.

The first two fixed points ensure that ρ◦L8◦σ, seen as a map from and to 64-
bit integers, sends 0xffffffff00000000 ≡ −1 mod p to 0xffffffff00000000;
sends integers greater than p−1 to integers greater than p−1; and sends integers
less than p− 1 to integers less than p− 1. It follows that S is a permutation on
Fp.

6



2.3 Linear Layer

In the linear step, the state vector x ∈ Fm is sent to Mx where M ∈ F16×16 is a
circulant MDS matrix chosen to admit a fast matrix-vector product calculation
(see § 3.2). M is defined by the first column MT

[:,0] =

[61402, 1108, 28750, 33823, 7454, 43244, 53865, 12034,
56951, 27521, 41351, 40901, 12021, 59689, 26798, 17845] .

These numbers were derived from the SHA-256 hash of the ASCII string
“Tip5” by dividing the digest into 16-bit chunks.

2.4 Round Constants

The constants are determined by concatenating the byte i (for the i th constant,
starting from zero) to the ASCII string “Tip5”, hashing the string of 5 bytes
using Blake3, taking the first 16 bytes of the digest, interpreting them as an
integer in least-significant-byte-first order, reducing the integer modulo p, and
multiplying the resulting field element by R−1 which is the inverse of 264 modulo
p. This process is repeated mN times to get as many round constants. The
(mi+ j) th constant is used for the j th state element in the i th round.

2.5 Padding

The hash function comes in two modes of operation, depending on whether the
input is fixed-length or variable-length.

– When the input is fixed length (and in this case the length is always exactly
r = 10), all capacity elements are initialized to 1. There is no need to pad
the input. There is only one absorption.

– When the input is variable-length, it is padded by appending a 1 followed
by the minimal number of 0’s necessary to make the padded input length a
multiple of r. The capacity is initialized to all zeros and the input is absorbed
over multiple iterations.

3 Implementation Aspects

3.1 Montgomery Representation

A field element a ∈ Fp is represented as the integer ā ∈ {0, . . . , p − 1} congru-
ent to a · R modulo p, where R = 264. The benefit of this representation is a
faster multiplication algorithm: the product c = ab is calculated by first calcu-
lating the integer product ā · b̄ and following this up with Montgomery reduction,
which sends ā · b̄ to c̄. We refer to Pornin’s explanation [15] for a concise but
comprehensive overview of Montgomery representation of elements in this field.

The split-and-lookup S-box anticipates the use of Montgomery representa-
tion. Specifically, the S-box

S : Fp → Fp, x 7→ R−1 · ρ ◦ L8 ◦ σ(R · x)

7



becomes
S′ : Fp → Fp, x 7→ ρ′ ◦ L8 ◦ σ′(x)

where σ′ decomposes the integer ā into raw bytes, and ρ′ recomposes the raw
bytes accordingly.

3.2 MDS Matrix Multiplication

In the linear step, the state vector x is sent to Mx where M is the circulant MDS
matrix. All the entries in this matrix are small positive integers. The purpose of
this design choice is to delay modular reduction. Specifically, the matrix-vector
multiplication is computed over the integers twice, once for the high 32 bits of the
input vector, and once for the low 32 bits. Afterwards, the two output vectors
are added over the integers (with the appropriate shift) before being reduced
modulo p.

Another salient property of the MDS matrix is the fact that it is circulant.
Using the well-known NTT-based multiplication trick, the matrix-vector product
for a circulant matrix can be computed in only O(m logm) operations via

Mx = NTT−1(NTT(M[:,0]) ◦ NTT(x)),

where ◦ denotes the Hadamard (element-wise) product.
The reason why the NTT-based multiplication trick works is because there

is an isomorphism between circulant matrices and elements of the quotient ring
Rp = Fp[X]/⟨Xm−1⟩. The elements of this ring are uniquely determined by their
reduced representative modulo Xm−1, or by their list of reduced representative
modulo any list of polynomials whose product is Xm−1. The irreducible factors
of Xm−1 are X−ξi, where ξ is a primitive mth root of unity; and by reducing a
polynomial modulo these factors we get its evaluation in ξi. The NTT is precisely
the transformation that sends a polynomial to its list of evaluations in ξi.

However, while the field Fp does have an mth root of unity, the ring of
integers does not. To deal with this difficulty, we use an alternative factorization
of Xm − 1. In the first step we split the polynomial product modulo Xm − 1
into two polynomial products, modulo Xm/2−1 and Xm/2+1 respectively. The
first product can be computed recursively. The second product is split again into
polynomial products modulo Xm/4+ξ4 and Xm/4−ξ4 respectively, where ξ4 is a
square root of −1. The coefficients are represented as complex numbers, i.e., with
a real part and an imaginary part. As a result of this representation, computing
the product modulo Xm/4 + ξ4 gives the matching result modulo Xm/4 − ξ4 for
free through complex conjugation. The polynomial product before reduction is
computed with Karatsuba’s method [14].

3.3 CPU Performance

These benchmarks were obtained on an Intel® Core� i7-10750H CPU@ 2.60GHz.
On this machine, Tip5 is 21.37× faster than Rescue-Prime Optimized and 8.16×
faster than Poseidon. The implementation is available at [17].

8



Table 2: CPU performance comparison

Hash Function Time [µs]

Rescue-Prime 18.186
Rescue-Prime Optimized 14.357
Poseidon 6.940
Tip5 0.851

4 Arithmetization

Arithmetization refers to the task of finding representations of computations in
terms of lists of finite field elements satisfying low-degree multivariate polynomial
constraints, as well as to the concrete representation that this task results in.
There are various representations, reflecting the various models of computation.

This section describes standalone arithmetization techniques for the AET/AIR
computational representation, which is what underlies the STARK proof system.
When composed in the right way, these techniques result in an arithmetization
for Tip5. For an in-depth exposition of the details of this representation and
the pipeline for generating and verifying a STARK proof from it, we refer to
the “Anatomy of a STARK” [18] and “BrainSTARK” [19] tutorials. We use the
terminology from these sources.

4.1 Lookup Argument

In the next sections we present a novel lookup argument in the AIR/AET model.
It is a special case of subset arguments because it establishes that the rows of one
table called the client are a subset of the rows of another, called the server. More
specifically, by selecting only those columns labeled “input” or “output” any
subset argument including the one presented here can be used to establish that
the input and output pairs appearing in the client satisfy the relation between
inputs and outputs defined by the server. The outputs can be thought of as
having been looked up in the server’s lookup table.

Bézout Argument Using random weights a, b from the verifier, the input and
output columns are compressed into one random linear combination. It then
suffices to show that the set of random linear combinations used by the client is
a subset of the random linear combinations appearing in the server.

Let {comboi}i denote the set of input-output pairs, each compressed into
a random linear combination using a and b, that are looked up at least once.
The client and server both define a product polynomial whose factors are those

9



random linear combinations offsetting X:

rpc(X) =
∏
i

(X − comboi)
mi

rps(X) =
∏
i

(X − comboi)

The difference between these two polynomials is the multiplicities mi of their
roots, which is 1 for the server and possibly greater than 1 for the client. The let-
ters “rp” suggest that the evaluation of these polynomials in α can be computed
by running product columns, once α is known. But merely comparing the values
rpc(α) and rps(α) does not suffice to establish the subset relation because the
multiplicities of the roots are different.

The following Bézout relation argument eliminates these multiplicities, en-
abling a test for subset relationship by probing a polynomial identity in the
random point α.

In addition to a running product, the client defines a formal derivative. Let
fdc(X) denote this polynomial:

fdc(X) =
∑
i

mi(X − comboi)
mi−1

∏
j ̸=i

(X − comboj)
mj =

d

dX
rpc(X)

Likewise, the server defines a formal derivative as well, except this one is weighted
by multiplicity:

mwfds(X) =
∑
i

mi

∏
j ̸=i

(X − comboj)

On the side of the client, the running product and its formal derivative satisfy
the following Bézout relation: rpc(X)·x(X)+fdc(X)·y(X) = g(X), where g(X)
is the greatest common divisor and x(X) and y(X) are Bézout coefficient poly-
nomials. Then rpc(X)/g(X) is the square-free polynomial with the same roots
as rpc(X), and thus equal to rps(X) of the server. Moreover, a similar relation-
ship holds for the formal derivatives: fdc(X)/g(X) = mwfds(X). By eliminating
g(X) we get the identity of polynomials rpc(X) · mwfds(X) = fdc(X) · rps(X).
The objective is to test this identity in the random point α.

The cheating prover who uses an input-output pair in the client that is not
present in the server must use a polynomial rpc(X) with at least one root that
rps(X) does not share. As a result, the polynomial identity is not satisfied
because this root occurs in the left hand side with multiplicity one greater than
in the right hand side. By the Schwarz-Zippel lemma, the probability that the

identity holds in the random point α is at most (1+m/2)T
|F| , where T is the height

of the table.

Optimization with Logarithmic Derivatives The above intuition gives rise
to an AET and an AIR for checking it. Indeed, the values rpc(α), fdc(α), rps(α),
and mwfds(α) can all be computed via running accumulator columns. However,

10



it turns out there is an optimization that reduces the number of columns at
the expense of one batch-inversion for the prover. This optimization is inspired
by Haböck’s lookup argument [12] but ultimately that argument is tailored to
Multilinear IOPs. The present optimization can be seen as lifting that technique
to the AET/AIR setting, albeit derived differently.

The logarithmic derivative of a polynomial f(X) is defined as f ′(X)
f(X) . It is so

named because the logarithmic derivative of the product of two polynomials is
the sum of their logarithmic derivatives:

1

f(X)g(X)
· d(f(X)g(X))

dX
=

f ′(X)g(X)

f(X)g(X)
+

f(X)g′(X)

f(X)g(X)
=

f ′(X)

f(X)
+

g′(X)

g(X)

Observe that the polynomial identity

rpc(X) · mwfds(X) = fdc(X) · rps(X)

can be re-written in terms of logarithmic derivatives:

fdc(X)

rpc(X)
=

mwfds(X)

rps(X)
=

∑
i

mi

X − comboi
.

On the side of the server, two columns are needed to probe this identity in
the random point α.

– base column mul contains the multiplicity with which the given row is
queried;

– the running product rps and multiplicity-weighted formal derivative mwfds

are merged into the single extension column sum, which contains the running
sum of mul/(α− combo).

On the side of the client only one extension column is needed. Specifically,
the running product rpc and formal derivative fdc are merged into a single
column, the logarithmic derivative ldc. To update ldc, recall that the standard
running product column rpc is defined to accumulate one factor in every row.
Moreover, ldc is defined to contain the logarithmic derivative of rpc in every row,
so we can use the eponymous property to populate it. Specifically, the would-
have-been running product update rule rpc∗ = rpc · (α − combo∗) becomes
ldc∗ = ldc + 1/(α − combo∗), where the asterisk ∗ indicates the respective
element from the next row.

The update rules sum∗ = sum+ mul∗/(α− combo∗) and ldc∗ = ldc+1/(α−
combo∗) can be converted to AIR constraints of low degree by multiplying left
and right hand sides by (α− combo∗).

4.2 Cascade Construction

The cascade construction arithmetizes a lookup gate composed of two lookups of
half the width in terms of the arithmetizations of those components. It introduces

11



a new table, called the cascade table. While the construction does complicate the
arithmetization, the tradeoff can be worth it when the narrow lookup table gives
rise to a more performant arithmetization than the wide one.

The cascade table is the server authenticating 2n-bit wide input-output pairs
to the external client. Internally, every input or output element is represented
as two limbs of n bits. To authenticate the n-bit wide input-output pairs, the
cascade table is the client of an n-bit wide lookup argument with an external
server.

A cascade table consists of 5 base columns and 3 extension column. The
extension columns are defined relative to challenges a, b, c, d, β, γ. The Latin
letters denote weights used to compress columns, and the Greek letters denote
indeterminates.

The base columns are

– lkinhi and lkinlo, the high and low limbs of the lookup input;
– lkouthi and lkoutlo, the high and low limbs of the lookup output;
– mul, the multiplicity with which the given row is being queried by the ex-

ternal client.

Table 3: A lookup argument using a cascade table. In the example, the values alo and
xhi are equal. Consequently, blo and yhi are equal as well.

client −→ ←− server & client −→ ←− server
some table cascade table lookup table

instruction register lkinhi lkinlo lkouthi lkoutlo mul in out mul

lookup x xhi xlo yhi ylo 1 xhi yhi 2
foo y ahi alo bhi blo 1 xlo ylo 1
lookup a ahi bhi 1
bar b

The extension columns are

– sum, which contains the running sum of inverses;
– ldhi and ldlo, the running logarithmic derivatives of the high and low

input-output pairs.

The AIR constraints can be inferred from section § 4.1 covering the lookup
argument. Note that when the cascade table is wearing the server hat, the ran-
dom linear combinations are given by

combo = 2w · a · lkinhi+ a · lkinlo+ 2w · b · lkouthi+ b · lkoutlo,

where w is the width (in bits) of each limb. When the cascade table is wearing
the client hat, the random linear combinations are given by

combo = c · lkinhi+ d · lkouthi

12



and
combo = c · lkinlo+ d · lkoutlo.

To see why the construction is sound, suppose a malicious prover attempts
to prove that a pair (lkin∗, lkout∗) belongs to the wide lookup relation when
it does not. Then either the cascade table contains a corresponding row(lkinhi,
lkinlo, lkouthi, lkoutlo, mul), i.e., such that lkin∗ = 2w · lkinhi+ lkinlo

and lkout∗ = 2w · lkouthi + lkoutlo and mul ̸= 0; or the cascade table does
not contain such a corresponding row. The latter case implies a failure of the
client-cascade lookup argument. The probability of this event is bounded by the
soundness error of the lookup argument. The former case implies one of two
propositions:

1. The server table contains a row (lkinhi, lkouthi, mul) with mul ̸= 0.
2. The server table contains a row (lkinlo, lkoutlo, mul) with mul ̸= 0.

The propositions cannot both be true because that would imply that (lkin∗,
lkout∗) does satisfy the wide lookup map relation. Therefore, one or both of
these propositions must be false, implying at least one violation of the cascade-
server subset argument. Once again, the probability of this event is bounded by
the soundness error of the lookup argument.

It is possible to arrange multiple cascade tables in sequence. This enables the
decomposition of very large composite lookup maps into tiny components. The
tradeoff is that the number of rows can increase by up to a factor two for every
cascade level. However, as the tables get narrower they start becoming saturated
faster. For instance, an 8-bit wide lookup table can only hold 256 rows.

4.3 Narrow Lookup Tables

Reducing the arithmetization of a large composite lookup map to that of a
small primitive lookup map only makes sense if the small lookup map admits
an efficient arithmetization. Indeed, if the lookup map is not too wide — say, a
handful of bits — then the following technique applies.

Let n be the number of bits in the input. The verifier locally evaluates a
polynomial of degree 2n − 1 to obtain a single scalar value that authenticates
the entire lookup table. This scalar is a parameter in the AIR that verifies the
correct computation of this polynomial row-by-row.

Specifically, let c, d, δ be challenges supplied by the verifier. The lookup table
consists of three columns. Base columns lkin and lkout contain all possible
input-output pairs. Extension column re contains a running evaluation.

The AIR constraints constrain re to computing a running evaluation of the
polynomial whose coefficients are given by c · lkin+ d · lkout. Specifically, let ∗

denote the corresponding element from the next row. Then there are three AIR
constraints involving re:

– Initial constraint. The running evaluation column has accumulated the up-
date determined by the first row: c · lkin+ d · lkout− re.

13



– Transition constraint. The running evaluation column accumulates the up-
date determined by the next row: δ · re+ c · lkin∗ + d · lkout∗ − re∗.

– Terminal constraint. The value of the running evaluation column in the last
row matches with the value of f(X) at δ: f(δ)− re.

The polynomial f(X) is evaluated by the verifier locally. The coefficient of
X(2n−1−i) in f(X) is c ·lkini+d ·lkouti, where (lkini, lkouti) is the ith input
output pair. Since the degree of f(X) is 2n − 1, this evaluation is fast if n is
small.

This lookup table crucially relies on the fact that all rows are present, even
those rows that are not being looked up. In contrast, rows in cascade tables only
need to be present if they are being looked up at some point.

4.4 Periodic Constraints

A periodic constraint is one that applies in every row congruent to x modulo y.
Its implementation requires a periodic zerofier. We describe here a technique for
building this primitive.

Let H = ⟨ω⟩ be the subgroup and (ωi)i the sequence of order and length
N over which the trace is interpolated, and suppose y|N . The zerofier for a
subgroup of order k is Xk − 1, since it evaluates to zero in every element of the
subgroup and is the smallest-degree monic polynomial that does so. Therefore,
Z(X) = XN/y − 1 is a zerofier for the order N/y subgroup of H. It evaluates to
zero on every point ωi of the sequence where i is congruent to 0 modulo y. The
coset zerofier (X ·ω−x)N/y − 1 evaluates to 0 in points ωi of the sequence where
i ≡ x mod y. The product of such coset zerofiers is a zerofier for an arbitrary
set of congruence classes modulo y.

A periodic constraint is simply a constraint whose corresponding zerofier is
not zero on the whole interpolation group H but on a subgroup of it or coset
thereof. The constraint is active in those points where the zerofier evaluates to
zero, and inactive elsewhere.

4.5 Periodic Interpolants

A periodic interpolant is a polynomial that repeats a sequence of values (v0, . . . ,
vk−1) of length k when evaluated on the powers of a generator ω. An AIR
constraint that integrates such an interpolant is individualized to the row, or
more specifically, to the row’s index’s congruence class modulo k. It can be used
to prove that the correct round constants were added into the state in each
row. To the best of our knowledge this technique was first described in Buterin’s
STARK tutorial [5].

Let N be the padded trace length, suppose k|N , and let ω generate the
subgroup over which the trace is interpolated. Then the polynomial g(X) =
XN/k sends ωi to ζi where ζ is a kth root of unity. Let f(X) be the interpolant
through (v0, . . . , vk−1) on the powers of ζ. Then f ◦ g is the periodic interpolant
through (v0, . . . , vk−1) on the powers of ω.

14



4.6 Correct Decomposition of Elements Modulo p

The lookup argument can establish that (a, b, c, d) all have at most 16 bits.
However, it does not suffice to establish that a+216 · b+232 · c+248 · d < p. To
prove this, an additional constraint is needed, namely (1− (c+216 ·d− 232+1) ·
e) · (a+216 ·b). In this expression, e is the inverse-or-zero of (c+216 ·d−232+1),
which is to say, either e = (c+216 ·d−232+1) = 0 or e · (c+216 ·d−232+1) = 1.

4.7 Arithmetization of Tip5

We present here only a high-level overview of the arithmetization of Tip5. In
particular, we omit discussion of constraints in favor of the columns of the various
tables and their effect on prover complexity. The effect on prover complexity
due to constraints scales linearly with the number of columns and is concretely
negligible. Moreover, the constraints can be inferred from the above descriptions.
For a complete specification, we refer to the document “Triton Improvement
Proposal 0005” [21].

There are three tables: the Hash Table which evaluates the Tip5 permutation
every 8 rows, the Cascade Table which translates 16-bit wide lookups into 8-bit
wide lookups, and the Lookup Table which contains all possible 8-bit lookup
pairs. There is a lookup argument between the Hash Table and the Cascade
Table, and another between the Cascade Table and the Lookup Table. The
Lookup Table uses the narrow lookup arithmetization technique described above.
All tables have one column indicating whether rows are padding rows.

The Hash Table has 49 base columns and 16 extension columns, subdivided
as follows:

– one padding indicator pad;
– 12 regular sponge state elements st[4] through st[15];
– the remaining 4 sponge state elements are represented as 16-bit wide chunks

for easy lookup and in input-output pairs: lkin[0] through lkin[15] and
lkout[0] through lkout[15];

– one extension column for every input-output pair that is to be looked up:
ldc[0] through ldc[15].

– 4 inverse-or-zero columns ioz[0] through ioz[3] to establish that the four
16-bit limbs that are being looked up, represent a correct decomposition of
some field element modulo p.

The round count N = 5 requires periodic zerofiers and periodic interpolants.
Certain consistency or transition constraints are activated only on rows congru-
ent to j modulo 8, for various j.

The Cascade Table has exactly those columns described in § 4.2 in addition
to one padding indicator pad. The total number of columns is therefore 6 base
columns and 3 extension columns.

The Lookup Table has 4 base columns and 2 extension columns:

– pad is the padding indicator;

15



– lkin and lkout contain the input and the output of the input-output pairs,
respectively;

– mul contains the multiplicity with which they are queried;

– sum contains the running sum of inverses for the lookup argument;

– re contains the running evaluation to establish the correct list of input-
output pairs.

In total, the entire arithmetization of the Tip5 hash function requires 59 base
columns and 21 extension columns. This number omits the columns needed for
cross-table relations between the Hash Table and other tables, but these columns
are also necessary if a different hash function not requiring lookup arguments is
used instead, such as Rescue-Prime.

5 Security Analysis

5.1 Differential Attack

The MDS matrix guarantees that in every consecutive pair of rounds, at least
m+ 1 S-boxes are differentially active. But in every consecutive pair of rounds,
there are only 2s split-and-lookup maps, so at least m + 1 − 2s forward α-
th power map must be differentially active. The probability that a differential

characteristic is satisfied across two rounds is therefore at most
(

α−1
p

)m+1−2s

.

For the given parameters this probability is smaller than 2−552.

5.2 Gröbner Basis Attacks

There are m(N + 1) wires of which c are set to zero initially and d are given by
the digest, so m(N + 1) − c − d in total. There are as many equations. Their
degrees are

1. p− 1 (or close to p− 1) if it describes a split-and-lookup map;

2. α if it describes a forward α-th power map.

The Macaulay bound exceeds p. Therefore it pays to add the field equation
xp − x for every variable x. This addition has the effect of restricting the degree
to p− 1 in every variable.

The Macaulay matrix at this degree has
(

p−1
m(N+1)−c−d

)
columns and as many

rows. Assuming that the matrix is dense, finding a kernel vector using sparse
linear algebra methods takes this number squared operations. For one round
and setting the other parameters as above, this square is approximately equal
to 22557.

16



5.3 Linear Approximation

The complexity of a Gröbner basis attack drops dramatically if the split-and-
lookup maps are replaced with their best linear approximations. The resulting
solution represents a successful attack (i.e., a (second) preimage or a collision)
if it happens to coincide with the variety of the exact system of polynomials,
i.e., without approximations. By modeling the solution found via polynomial
system solving as a random element from the approximate variety, it is possible
to estimate the probability that it lives also in the exact variety. Specifically:
we count the number of approximate maps and the number of points they agree
with their targets in.

One linear approximation to the split-and-lookup map agrees in 240 points,
corresponding to the 2 fixed points of L, repeated 8 times, except for 16 values
that can’t be reached because they correspond to 64-bit integers greater than p.
Inside 1 round there are s split-and-lookup maps and the probability that they

all send one of these agreeable points to their correct destination is
(

240
p

)s

. For

the given parameters this probability is less than 2−224 in one round. In other
words, if we were to attack a single round with this technique, the produced
solution would be correct (i.e., a valid (second) preimage or collision) with this
probability.

Barring cancellations of approximation errors, and assuming that the state
vectors are independent and uniform before they enter into a round, the proba-
bility of correct approximation drops exponentially in the number of rounds. Ex-

cluding the first and last round the estimated probability is
(

240
p

)(N−2)s

≈ 2−673.

5.4 Fixing

Another technique to leverage Gröbner basis techniques consists of fixing the
values on the wires into and out of the split-and-lookup S-boxes at random. The
standard polynomial model of the cipher, i.e., without fixing wires, consists of
a polynomial system with high degree polynomials but r − d = 5 degrees of
freedom (assuming preimage search); after fixing wires it consists of low degree
polynomials but r − d − Ns = −15 degrees of “freedom”. A random system of
equations with this degree of over-determinedness can be expected to have a
solution with probability on the order of p−15 ≈ 2−960.

6 Conclusion

We set out to investigate whether switching from Rescue-Prime to Tip5 would
yield a net performance improvement. We close with an answer to this question.

For programs of reasonable size we find that 80% of proof generation time
is spent hashing. Most of the remaining time is spent computing NTTs. Of the
hashing steps, 90% of the time is spent hashing single rows of the low-degree
extended trace table into leafs; the rest is spent building Merkle trees out of
these leafs.

17



The arithmetization does not change the number of rows, so the 12.19×
speedup of Table 2 applies directly to the Merkle tree steps. The other two steps,
hashing rows and computing NTTs depends on the new number of columns.

For Rescue-Prime and Rescue-Prime Optimized there are 16 columns for
storing the sponge state. While there are more round constants per round in
Rescue-Prime and Rescue-Prime Optimized than in Tip5, in the particular case
of Rescue-Prime Optimized these round constants do not increase the number of
columns because their correct addition can be enforced via periodic interpolants.
So the total number of columns for Rescue-Prime Optimized is 16. This number
compares to Tip5’s 59 base columns and 21 extension columns. In the context
of Triton VM [13], the extension columns take values from Fp3 , so this total is
equivalent to 59 + 3 · 21 = 122 base columns.

The VM has 168 base-column equivalents not related to hashing. So swapping
out Rescue-Prime for Tip5 makes the column count go from 168 + 16 = 184 to
168 + 122 = 290 In other words, there are 1.58× more columns.

In terms of the NTT step: there are 1.58× more NTTs to compute, but they
all have the same length. So this step will take 1.58× as much time.

In terms of hashing the rows, the rows are 1.58× longer, but the hash function
is 21.37 times faster. So this task will take 1.58/21.37 = 0.074× as much time.

Putting the three steps together we find a new running time of 0.2 · 1.58 +
0.8 · (0.9 · 0.074 + 0.1/21.37) = 0.373 times the old running time. Equivalently,
switching to Tip5 yields a 2.68× speedup.

While this comparison already favors Tip5, it relies on several assumptions
that are biased in favor of Rescue-Prime. Specifically:

– Of the time not spent hashing, only about 18% is spent on NTTs, not 20%,
and only some of the difference scales with the number of columns.

– Due to compiler optimizations, running an NTT on a vector of Fp3 elements
is slightly more than 2× slower than an NTT on a vector of Fp elements,
rather than 3×.

– The degree of the AIR is 7 in both cases. However, there is a natural tradeoff
to reduce the prover time by shrinking the AIR degree at the expense of extra
columns. Rescue-Prime has 16 columns that would need to be expanded into
multiple columns each in order to reduce the AIR degree, whereas Tip5 only
has 12 such columns.

– Rescue-Prime (not Optimized) has 8 rounds; since the first and last states
must be represented, this means that the trace for one invocation of Rescue-
Prime does not fit in 8 rows. Using 9 rows requires introducing an extra
column (not to mention high-degree AIR constraints) for keeping track of
the round number. The alternative is to use periodic constraints or periodic
interpolants, but this bumps the number of rows per hash invocation to the
next power of 2, which 16 in this case.

Acknowledgements. Some of the ideas that this article expands on, were
first raised in the course of the Rescue-Prime Optimization project [2]. We also

18



thank Robin Salen for feedback and corrections, and Al-Kindi for the fast MDS
matrix vector multiplication trick.

References

1. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020(3), 1–45 (2020), https://doi.org/10.13154/tosc.v2020.
i3.1-45

2. Ashur, T., Kindi, A., Meier, W., Szepieniec, A., Threadbare, B.: Rescue-prime
optimized. IACR Cryptol. ePrint Arch. p. 1577 (2022), https://eprint.iacr.
org/2022/1577

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge
with no trusted setup. In: CRYPTO 2019Part III. Lecture Notes in Computer
Science, vol. 11694, pp. 701–732. Springer (2019), https://doi.org/10.1007/

978-3-030-26954-8_23

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions (2012), https://keccak.team/files/CSF-0.1.pdf

5. Buterin, V.: Part 3, https://vitalik.ca/general/2018/07/21/starks_part_3.
html

6. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020), https://doi.org/10.1007/978-3-662-60769-5

7. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for
lookup tables. IACR Cryptol. ePrint Arch. p. 315 (2020), https://eprint.iacr.
org/2020/315

8. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptol. ePrint Arch. p. 953 (2019), https://eprint.iacr.org/2019/953

9. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Reinforced concrete: A fast hash function for verifiable computation.
In: ACM CCS. pp. 1323–1335. ACM (2022), https://doi.org/10.1145/3548606.
3560686

10. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for zero-knowledge proof systems. In: USENIX Security 2021.
pp. 519–535. USENIX Association (2021), https://www.usenix.org/conference/
usenixsecurity21/presentation/grassi

11. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: The HADES design strategy.
In: EUROCRYPT 2020, Part II. Lecture Notes in Computer Science, vol. 12106,
pp. 674–704. Springer (2020), https://doi.org/10.1007/978-3-030-45724-2_23

12. Haböck, U.: Multivariate lookups based on logarithmic derivatives. IACR Cryptol.
ePrint Arch. p. 1530 (2022), https://eprint.iacr.org/2022/1530

13. jan-ferdinand, sshine, Sword-Smith, aszepieniec, einar-triton, AlexanderLemmens,
Ulrik-dk, contrun: Triton VM, https://triton-vm.org/

14. Karatsuba, A.A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers (1962)

15. Pornin, T.: Ecgfp5: a specialized elliptic curve. IACR Cryptol. ePrint Arch. p. 274
(2022), https://eprint.iacr.org/2022/274

19

https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2022/1577
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://keccak.team/files/CSF-0.1.pdf
https://vitalik.ca/general/2018/07/21/starks_part_3.html
https://vitalik.ca/general/2018/07/21/starks_part_3.html
https://doi.org/10.1007/978-3-662-60769-5
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/3548606.3560686
https://doi.org/10.1145/3548606.3560686
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://doi.org/10.1007/978-3-030-45724-2_23
https://eprint.iacr.org/2022/1530
https://triton-vm.org/
https://eprint.iacr.org/2022/274


16. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The cipher
SHARK. In: Fast Software Encryption, Third International Workshop, 1996, Pro-
ceedings. LNCS, vol. 1039, pp. 99–111. Springer (1996), https://doi.org/10.

1007/3-540-60865-6_47

17. Sword-Smith, sshine, jan-ferdinand, einar-triton, aszepieniec, munksgaard,
Ulrik-dk, int-e, einar-io: twenty-first, https://github.com/Neptune-Crypto/

twenty-first

18. Szepieniec, A.: Anatomy of a stark, https://aszepieniec.github.io/

stark-anatomy/

19. Szepieniec, A.: Brainstark, https://aszepieniec.github.io/stark-brainfuck/
20. Szepieniec, A., Ashur, T., Dhooghe, S.: Rescue-prime: a standard specification

(sok). IACR Cryptol. ePrint Arch. p. 1143 (2020), https://eprint.iacr.org/
2020/1143

21. Szepieniec, A., Lemmens, A., Sauer, F.: Tip-0005 (2023), https://github.com/
TritonVM/triton-vm/blob/asz/tip5/tips/tip-0005/tip-0005.md

22. Threadbare, B.: Miden vm hash functions, https://github.com/0xPolygonMiden/
crypto/tree/main/benches#comparison

20

https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/3-540-60865-6_47
https://github.com/Neptune-Crypto/twenty-first
https://github.com/Neptune-Crypto/twenty-first
https://aszepieniec.github.io/stark-anatomy/
https://aszepieniec.github.io/stark-anatomy/
https://aszepieniec.github.io/stark-brainfuck/
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143
https://github.com/TritonVM/triton-vm/blob/asz/tip5/tips/tip-0005/tip-0005.md
https://github.com/TritonVM/triton-vm/blob/asz/tip5/tips/tip-0005/tip-0005.md
https://github.com/0xPolygonMiden/crypto/tree/main/benches#comparison
https://github.com/0xPolygonMiden/crypto/tree/main/benches#comparison

	The Tip5 Hash Function for Recursive STARKs

