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Abstract. We present a novel stateless zero-knowledge rollup (ZK-
rollup) protocol with client-side validation called Intmax2. Our archi-
tecture distinctly diverges from existing ZK-rollup approaches since
essentially all of the data availability and computational costs are
shifted to the client-side as opposed to imposing heavy computational
requirements on the rollup aggregators. Moreover, the data storage and
computation in our approach is parallelizable for each user. Therefore,
there are no specific nodes to validate the contents of transactions. In
effect, only block producers, who periodically submit a Merkle tree
root containing all the transactions, are necessary.
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1 Introduction

As the blockchain ecosystem continually evolves, so does the urgency for scal-
able solutions that preserve security, reduce transaction costs, and improve
overall throughput. Layer 2 technologies, particularly rollups, have emerged
as pivotal tools to overcome these challenges, and have thus gathered sub-
stantial attention. Among these, Zero-Knowledge rollups (or ZK-rollups) have
shown great promise due to their unique capability to bundle numerous trans-
actions into a single proof that can be verified quickly and cheaply on-chain.
Existing ZK-rollups, while innovative in their own respect, require all neces-
sary data for updating users’ balances to be posted on the underlying Layer 1
(L1) blockchain. This data, in a worst-case scenario, includes the transaction
sender, the index of the token, the amount, and the recipient for each transac-
tion, leading to a significant load on the underlying blockchain.

1.1 Data Availability

A fundamental bottleneck for blockchains is what is known as data availabil-
ity. Data availability means that transaction data needs to be available in
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order to be able to prove the current state, such as account balances, of the
blockchain. This is a problem for both Layer 1 blockchains and rollups. Layer
1 blockchains usually achieve data availability by requiring that all trans-
action data is publicly available for a node to consider the blockchain valid.
Rollups usually achieve data availability by requiring that all transaction data
is posted to the underlying blockchain (e.g. using calldata or blob data on
Ethereum). Due to the fact that this data needs to be replicated among a
large set of nodes, there is a limit on how much data can be made available,
given the upper limit on the number of transactions per second that the blockchain
can support. While for smart contract blockchains it might be necessary to
provide the complete transaction data, it turns out that for simple payment
transactions it is only necessary to make available a commitment to the set
of transactions in a block (such as a Merkle tree root), together with a set
of senders who have signed their transaction in the block. Our rollup design,
called Intmax2, uses this fact to achieve increased throughput compared to ex-
isting alternatives. In addition, the design allows having a permissionless set of
block builders that can build blocks in parallel, without needing to coordinate
with each other. This allows for a very simple design.

1.2 Our Design

We divide our design into four parts.

First, we consider the main idea our design is based upon. Namely, the idea
that given a partial set of transactions on a blockchain and the set of senders
in each block, a user can compute a lower bound on their balance. We note
that this idea can be traced back to some existing Plasma designs.

Second, we consider the proving of individual balances. More concretely, we
show how users can prove their balance by leveraging commitments to a set of
transactions (e.g., Merkle root) and the associated inclusion proofs. For sim-
plicity, we first show an example with an explicit proof which contains a large
set of transactions, and then describe the use of recursive zero-knowledge proof
schemes [12,13,17], which results in more efficient approach. This part also de-
scribes how senders must send a zero knowledge proof of sufficient funds to the
corresponding recipient.

Third, we describe the existing block types (i.e., transfer, deposit, and regis-
tration) and introduce the use of signatures that support aggregation (e.g.,
BLS). In this part, we cover the block structure of each of these block types
and how we leverage the aggregation feature of the signature scheme.

Last, we describe the rollup contract and how different functionalities work.
Namely, how to add blocks, how to deposit funds, and how to perform the cor-
responding withdrawals. In this part, we highlight that this process is com-
pletely open and, therefore, decentralized. As a result, any system entity is
able to perform these actions.

We believe that this represents a proper breakdown of the protocol and allows
for a clean and incremental description of our design.
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1.3 Our Contributions

Intmax2 is an efficient and stateless design that:

– Only posts the index3 of the transaction senders, as well as a merkle tree
root and an aggregated signature of it for each batch on L1.

– Each transaction contains many token transfers to many recipients while
having a constant 4-6 bytes calldata consumption.

– Shifts the computational requirements from the aggregator to the client.

– Offers permissionless aggregators.

– Provides stronger privacy properties than traditional ZK-rollups.

– Is highly parallelizable to a large number of users.

2 Preliminaries

2.1 Zero-knowledge proofs

Zero-knowledge proofs, introduced in [9], allow a prover P to prove to a ver-
ifier V a relation between a statement x and a witness w. A non-interactive
zero-knowledge (NIZK) proof is a trio of algorithms:

– Setup(λ) → pp. For a certain security parameter λ, the setup algorithm
outputs pp, the public parameters of the system.

– Prove(pp, x, w)→ P . Given the system’s public parameters pp, a statement
x, and a witness w, issue a proof P .

– Verify(pp, x, P ) → Accept/Reject. Upon receiving the public parameters
pp, the public statement x and the proof P , the verifier V either accepts
or rejects the proof depending on whether or not P is well-formed. In this
case well-formed implies the successful proof of the relation between the
statement x and the witness w.

Properties. A zero-knowledge proof scheme is considered sound if an adver-
sary A attempting to prove the statement without knowing the secret witness
w cannot produce a valid proof with probability greater than 2−k for knowl-
edge error k. A zero knowledge proof scheme is considered complete if there is
a guarantee that if the prover and verifier are honest, then the verifier success-
fully accepts a proof that shows that the prover P knows the witness w. Ad-
ditionally, a proof P is considered a proof-of-knowledge if the prover P must
know the witness w to compute the proof for the pair (x,w), and such proof-
of-knowledge is considered zero knowledge if the proof P reveals nothing about
the witness w. Additionally, if the scheme produces succinct arguments, then
it is a (zk)SNARK [3,4,7,10,14]. Quantum-secure similar constructions exist, as
in [1,5].

3This can be as low as 4-6 bytes depending on the number of users in the system.
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2.2 BLS Signatures

The BLS signature scheme [2] operates in a prime order group and supports
signature aggregation. The scheme uses a bilinear pairing e : G0 × G1 →
GT . This pairing is efficiently computable, non-degenerate, and all the three
groups have prime order q. We assume g0 to be the generator of group G0 and
g1 to be the generator of group G1. Moreover, this signature scheme uses a
hash function H :M→ G0. The scheme is defined by the trio of algorithms:

– KeyGen(λ) → (sk, pk). The secret key is a random value sk
R←− Zq and the

public key is pk ← gsk1 ∈ G1

– Sign(sk,m)→ σ. The signature is a group element σ ← H0(m)sk ∈ G0.

– Verify(pk,m, σ) → Accept/Reject. If e(g1, σ) = e(pk,H(m)) output accept,
otherwise output reject.

Signature Aggregation. Given triples (pki,mi, σi) for i = 1, ..., n, where n is
the number of signers, anyone can aggregate signatures σ1, . . . , σn ∈ G0.

Rogue public-key attack. This signature aggregation method is, how-
ever, insecure due to an attack where and adversary A registers a maliciously
crafted public key that then allows for the adversary to claim that an unsus-
pecting user, Bob, also signed a specific message.

3 Local computation of balances

In this section we will describe how to compute the balance of an account
from partial transaction data. We let

Accounts

be a set of accounts, and

(Amounts,+,≤)

be a partially ordered abelian group of amounts. For simplicity, the reader can
just assume

Amounts = Z,

which gives a system that only supports one token. In practice, however, we
would like to support multiple tokens, which can be done by letting Amounts
be the set of functions

f : Tokens→ Z,

where Tokens is a set of tokens, the group operation is element-wise addition
and where for functions f, g : Tokens → Z we have f ≤ g if and only if
f(t) ≤ g(t),∀t ∈ Tokens.
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Definition 1 A transaction4 is a function

t : Recipients(t)→ Amounts+

from a subset Recipients(t) ⊂ Accounts of accounts called the recipients of the
transaction, to the set Amounts+ ⊂ Amounts of all positive amounts, i.e. the
set of all amount ∈ Amounts where amount ≥ 0.

This definition of a transaction allows a sender to send funds to an unlimited
number of recipients in a single transaction. A transaction does not include a
sender. Instead, we will aggregate transactions together in transaction maps,
which map senders to transactions.

Definition 2 A transaction map is a function

T : Senders(T )→ T

where Senders(T ) ⊂ Accounts is the set of senders in the transaction map
and T is the set of all transactions.

Notice that this definition enforces that each sender can only send one trans-
action in each transaction map, but this is not an issue, since each transaction
can have an unlimited number of recipients.
We now define some utility functions for getting the total amount sent and
received by an account in a transaction map.

Definition 3 Let T be a transaction map. For each account a ∈ Accounts we
define

sent(T, a) =

{∑
r∈Recipients(T (a)) T (a)(r), if a ∈ Senders(T )

0, otherwise

and
received(T, a) =

∑
s∈Senders(T ),

a∈Recipients(T (s))

T (s)(a).

Given a sequence of transaction maps, we can compute the balance of each
account at each index of the sequence by applying the transactions in each
transaction map. This balance will be called the global balance since it is com-
puted from a complete set of transactions, in contrast with the local balance
which we will define later which is based upon a partial set of transactions. We
will require that every transaction in the transaction map sequence is valid,
meaning that the sender of each transaction has sufficient balance for send-
ing the transaction. To be able to have positive balances, we will designate a

4In practice, transactions should also contain a nonce to prevent replay attacks.
For the sake of simplicity we will not deal with this issue here, but we note that it
can easily be added.



6 F. Author et al.

source ∈ Accounts which is always allowed to send a transaction even if it has
insufficient balance. In the final rollup design, this account will be used to rep-
resent deposits from the underlying blockchain to the rollup. We will compute
global balances as follows.

Definition 4 Let T∗ = (Ti)
N
i=1 be a sequence of transaction maps. We will say

that the sequence is valid if for all 0 ≤ i ≤ N and a ∈ Accounts\{source} we
have

i∑
j=1

received(Tj , account)−
i∑

j=1

sent(Tj , account) ≥ 0.

If T∗ is valid, we will call the above sum the global balance of account a in T∗
at index i, denoted by

Bali(T∗, a).

Now, if the sequence T∗ of transaction maps is publicly known by everyone,
every user can compute the global balance of any account using the above def-
inition. Suppose, however, that each user only knows some of the transactions
in the transaction maps, i.e. a sequence of transaction maps T ′

∗ = (T ′
i )

N
i=1,

where each T ′
i is a restriction of Ti. The user would then want to compute

a local balance of their account from the transactions in T ′
∗. The method of

computing local balances should have both safety and liveness properties.
Here, the safety property means that the local balance can never be greater
than the global balance, and the liveness property means that honest user will
be able to send transactions to each other and compute their balances from
them. It turns out that to satisfy safety, we also need to use the set of senders
Si = Senders(Ti) in each global transaction map when computing local bal-
ances. Otherwise, a malicious user could just omit transactions that they have
sent in order to compute a local balance which is greater than their global bal-
ance. The local balance will be defined similarly to the global balance, except
that we will also require that for each index i, if an account in the sender set
Si is missing from Senders(T ′

i ), they will no longer be able to have any trans-
actions in T ′

∗.

Definition 5 Let S∗ = (Si)
N
i=1 be a sequence of account sets called sender

sets, and let T∗ = (Ti)
N
i=1 be a sequence of transaction maps such that Senders(Ti) ⊂

Si for all i. We will say that the sequence T∗ is valid with respect to the sender
sets S∗ if it is itself valid, and if for all a ∈ Accounts and 0 ≤ i ≤ j ≤ N we
have

a ∈ Si\Senders(Ti)⇒ a /∈ Senders(Tj).

If T∗ is valid with respect to S∗, we will define the local balance as

Bali(S∗, T∗, a) =

{
Bali(T∗, a), if a /∈ Sj\Senders(Tj) for all j ≤ i

0, otherwise
.
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The local balance is a generalisation of the global balance, where the two of
them agree in the special case where for each index i, all accounts in the sender
set Si have a transaction in the transaction map Ti.
We will show two basic facts about local and global balances. The first is the
fact that the local balance will increase or stay the same if we include more
transactions in the computation, and that the local balance of an account is a
lower bound on the corresponding global balance, where the two balances are
equal in the case where all previous transactions sent by the account has been
included in the local balance computation.

Proposition 1 Let S∗ = (Si)
N
i=1 be a sequence of sender sets, and let T∗ =

(Ti)
N
i=1 and T ′

∗ = (T ′
i )

N
i=1 be sequences of transaction maps which are valid with

respect to S∗, where each T ′
i is a restriction of Ti. Then we have

Bali(S∗, T
′
∗, a) ≤ Bali(S∗, T∗, a) ≤ Bali(T∗, a)

for all i and a ∈ Accounts. Also, if

a /∈ Sj\Senders(Tj)

for all j ≤ i, the second inequality becomes an equality

Bali(S∗, T∗, a) = Bali(T∗, a).

Proof. The second inequality and the corresponding equality in the special
case clearly follows from the definition of the local balance. We will now show
the first inequality. We only need to verify the case where a /∈ Si\Senders(Ti)
for all j ≤ i, because otherwise we have Bali(S∗, T∗, a) = 0, which always
satisfies the inequality. If a /∈ Sj\Senders(Tj) for some j ≤ i, we also have
a /∈ Sj\Senders(T ′

j), since T ′
j is a restriction of Tj . This means that

Bali(S∗, T∗, a) = Bali(T∗, a) =

i∑
j=1

received(Tj , a)−
i∑

j=1

sent(Tj , a)

and

Bali(S∗, T
′
∗, a) = Bali(T

′
∗, a) =

i∑
j=1

received(T ′
j , a)−

i∑
j=1

sent(T ′
j , a).

Now, since each T ′
j is a restriction of Tj we have

received(T ′
j , a) ≤ received(Tj , a)

and
sent(T ′

j , a) = sent(Tj , a)

for all j ≤ i, so the inequality follows.
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The second fact is that if we have two transaction map sequences which are
valid with respect to a sequence of sender sets, and if they agree on their com-
mon intersections, we can combine them to form a combined sequence of trans-
action maps which is still valid with respect to the sender sets.

Proposition 2 Let S∗ = (Si)
N
i=1 be a sequence of account sets and let T∗ =

(Ti)
N
i=1 be a sequence of transaction maps such that

Senders(Ti) ⊂ Si

for all i. Furthermore let

T 1
∗ = (T 1

i )
N
i=1

and

T 2
∗ = (T 2

i )
N
i=1

be sequences of transaction maps that are valid with respect to S∗ and where
for all i we have that T 1

i and T 2
i are restrictions of Ti with

Senders(T 1
i ) ∪ Senders(T 2

i ) = Senders(Ti).

Then we have that the combined sequence of transaction maps T∗ is valid with
respect to S∗.

Proof. We will first verify the condition that for all a ∈ Accounts and 0 ≤ i ≤
j ≤ N we have

a ∈ Si\Senders(Ti)⇒ a /∈ Senders(Tj).

This follows, since we have

a ∈ Si\Senders(Ti)⇒ a ∈ Si\Senders(T 1
i ) and a ∈ Si\Senders(T 1

i )

⇒ a /∈ Senders(T 1
j ) and a /∈ Senders(T 2

j )

⇒ a /∈ Senders(Tj).

It remains to show that T∗ is valid, i.e. that for all 0 ≤ i ≤ N and a ∈
Accounts\{source} we have

i∑
j=1

received(Tj , a)−
i∑

j=1

sent(Tj , a) ≥ 0.

Since T 1
j and T 2

j are restrictions of Tj for all j, we have

received(Tj , a) ≥ received(T 1
j , a)

and

received(Tj , a) ≥ received(T 2
j , a)
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for all j. Also, since T 1
∗ and T 2

∗ are both valid with respect to S∗, we have ei-
ther

i∑
j=1

sent(Tj , a) =

i∑
j=1

sent(T 1
j , a)

for all j or
i∑

j=1

sent(Tj , a) =

i∑
j=1

sent(T 2
j , a)

for all j. It follows that either

i∑
j=1

received(Tj , a)−
i∑

j=1

sent(Tj , a)

≥
i∑

j=1

received(T 1
j , a)−

i∑
j=1

sent(T 1
j , a)

≥ 0

or

i∑
j=1

received(Tj , a)−
i∑

j=1

sent(Tj , a)

≥
i∑

j=1

received(T 2
j , a)−

i∑
j=1

sent(T 2
j , a)

≥ 0.

4 Balance proofs

In order for a user to be able to prove their balance in a sequence of transac-
tion maps T∗ = (Ti)

N
i=1 from a sequence of restricted transaction maps, they

need a way to prove that the transactions in the restricted transaction maps
are actually in T∗. In order to do this, we will use commitments to the trans-
action maps in T∗.

4.1 Transaction map commitments

For committing to a transaction map, we will assume a commitment scheme
that takes a transaction map T and returns a commitment C ∈ C, where C is
a set of possible commitments, and inclusion proofs π(s) ∈ Π for every sender
s ∈ Senders(T ), where Π is the set of possible inclusion proofs. The com-
mitment scheme has a verifying function, which takes a transaction, a sender,
a commitment and an inclusion proof of the transaction by the sender in the
committed transaction map, and returns true if the inclusion proof is valid
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and false otherwise. The commitment scheme should have the binding prop-
erty that it should be computationally infeasible to construct valid inclusion
proofs of two different transactions by the same sender in a transaction map.
One way to realize such a scheme is to construct a merkle tree from a trans-
action map T where the merkle tree stores the hash of the transaction T (s) of
each sender s ∈ Senders(T ) at the leaf whose merkle path is determined by s.
The commitment of T will be the merkle root of this merkle tree.56

We will now construct a simple block sequence where each block consists of a
commitment to a transaction map together with the set of senders who have
signed the commitment.

Definition 6 A simple block is a tuple (S,C), where S ⊂ Accounts and C ∈
C. We denote by

Bsimple

the set of all simple blocks.

In practice, we also need to verify that the senders in a block has actually
signed the commitment in the block. This will be done in Section 5. For now,
we will just assume that it is always the case that all senders in a simple block
have signed the commitment in the block.
Signing the transaction map commitment serves two purposes. First, it serves
as a confirmation that the sender intended to send their transaction in the
committed transaction map. Second, it provides a way to prevent data with-
holding attacks by the actor who constructs the transaction map commit-
ments, since honest users will not sign the commitment of a transaction map
unless they know an inclusion proof of their transaction in it.

4.2 Explicit balance proofs

A simple way to prove the balance of an account in a simple block sequence
B∗ is to provide a sequence of transaction maps T∗ that is valid with respect
to the sender sets in B∗, together with inclusion proofs that these transactions
are in B∗. Then, the balances in B∗ are proven to be at least the local bal-
ances in T∗. We will call these proofs explicit balance proofs.

Definition 7 (Explicit balance proof) Let B∗ = ((Si, Ci))
N
i=1 be a simple

block sequence. An explicit balance proof for B∗ is a tuple

p = (T∗, π∗(∗))

where
T∗ = (Ti)

N
i=1

5Note that it is possible to construct an invalid merkle tree, where some of its
leaves are not valid transactions. This would not pose an issue, since the binding
property still holds in this case.

6We note that KZG commitments can also be used instead of merkle trees.
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is a sequence of transaction maps which is valid with respect to S∗, and

π∗(∗) =
(
πi(s)

)
1≤i≤N, s∈Senders(Ti)

is an indexed family of inclusion proofs where πi(s) is a valid inclusion proof
of transaction Ti(s) by sender s in the commitment Ci for all 1 ≤ i ≤ N and
s ∈ Senders(Ti). For each index i and account ∈ Accounts, we say that p is
an explicit proof of the balance Bali(S∗, T∗, account) of the account at index i
in B∗, and we say that p is an explicit validity proof of the transactions in T∗.

Explicit balance proofs can be combined as follows.

Definition 8 Let B∗ = ((Si, Ci))
N
i=1 be a simple block sequence, and let

p1 = (T 1
∗ , π

1
∗(∗))

and

p2 = (T 2
∗ , π

2
∗(∗))

be two explicit balance proofs for B∗ that we know of. Assuming the binding
property of the commitment scheme, we have that for each i, the transaction
maps T 1

i and T 2
i agree on their common intersection. Then, we will define the

combination of p1 and p2 to be the explicit balance proof

p = (T∗, π∗(∗)),

where each Ti is the unique extension of T 1
i and T 2

i to the union Senders(T 1
i )∪

Senders(T 2
i ), and the inclusion proofs π∗(∗) are formed by taking the inclusion

proofs for the transactions in T 1
∗ and T 2

∗ , where we will take the first inclu-
sion proof in the case where we have two different inclusion proofs of the same
transaction7. We have that the combined explicit balance proof p is actually an
explicit balance proof, since by Proposition 2 the merged sequence of transac-
tion maps is still valid with respect to S∗.

4.3 Completing transactions

In order for the recipients of a transaction to be able to add the received funds
to their balances, the transaction sender must complete the transaction by
sending to each recipient a validity proof of the transaction. This proof can
simply be an explicit validity proof, but in practice we will instead use an in-
clusion proof of the transaction in the simple block sequence together with a
ZK-proof that an explicit validity proof of the transaction exists. In details, we
define the completed transactions as follows.

7This might be possible, depending on the chosen commitment scheme, since we
do not require that there is at most one inclusion proof of a transaction in a commit-
ted transaction map.
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Definition 9 Let B∗ = ((Si, Ci))
N
i=1 be a simple block sequence. We define

the completed transactions in B∗ to be the sequence of transaction maps T∗ =
(Ti)

N
i=1 consisting of all transactions where both the sender and the recipients

of the transaction have a validity proof of the transaction in B∗. The binding
property of the commitment scheme implies that this sequence of transaction
maps is well defined. If the validity proofs used are explicit validity proofs, we
call T∗ the explicitly completed transactions, and if ZK-proofs are used, we
call T∗ the ZK completed transactions.

4.4 Completing transactions with explicit validity proofs

We will first consider the case where explicit validity proofs are used to com-
plete transactions. Suppose a user wants to complete a new transaction they
have sent in the simple block sequence B∗. By definition, the user has explicit
validity proofs for all completed transactions they have received in B∗. These
proofs can then be combined to form a single explicit validity proof

p = (T∗, π∗(∗))

for the completed transactions received by the user. Now, suppose the follow-
ing two conditions are met, which we call the preconditions for completing a
transaction:

1. The user knows an inclusion proof of the transaction in B∗
2. The sequence of transaction maps T ′

∗ obtained by adding the new transac-
tion to T∗ is still valid with respect to the sender sets in B∗

Then, the user will get a new explicit validity proof

p′ = (T ′
∗, π

′
∗(∗)),

where π′
∗(∗) is obtained by adding the new inclusion proof to π∗(∗), which

proves the validity of the new transaction. This proof can then be sent to each
recipient to complete the transaction.
The first precondition will be satisfied if the user never signs a transaction
map commitment unless they have an inclusion proof of their transaction in
it. The second precondition amounts to the conditions that

i∑
j=1

received(Tj , account)−
i∑

j=1

sent(Tj , account) ≥ 0,

meaning that the user had sufficient balance for the new transaction, and

account /∈ Sj\Senders(Tj)

for all j ≤ i, meaning that all previous transactions sent by the user are al-
ready included in T∗. To satisfy this precondition, the user can verify that
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they have sufficient balance for the new transaction before signing the trans-
action map commitment.
To summarise, a transaction sender should only sign a transaction map com-
mitment if the following conditions are met, which we call the protocol rule.

1. The sender knows an inclusion proof of their new transaction
2. The sender has no pending transactions, meaning that the simple block se-

quence currently contains all transaction map commitments that the user
has signed.8

3. The sender knows that they have sufficient funds for the new transaction,
meaning that the sum of all completed transactions in B∗ they have re-
ceived minus the sum of all transactions they have sent in B∗ exceeds the
amount sent in the new transaction.

We now prove that the protocol rule guarantees that the preconditions for
completing a transaction is met.

Proposition 3 Let B∗ = ((Si, Ci))
N
i=1 be the current simple block sequence,

and suppose a user has always followed the protocol rule.9 Then the precondi-
tions for completing the user’s transactions are met.

Proof. The first precondition is met since the user will have inclusion proofs
for all of their transactions. To see that the second condition is met, observe
that there will be no transactions sent by a in B∗ in the time period from
when the commitment of the transaction map that includes the transaction
was signed by the sender, and the time when the new commitment is included
in the simple block sequence. This means that if T∗ are the completed transac-
tions in B∗ and T ′

∗ is the transaction map sequence consisting of every trans-
action the user has sent in B∗, the amount

i∑
j=1

received(Tj , a)−
i∑

j=1

sent(T ′
j , a)

can only increase while the new transaction is waiting to be included. Since
this amount was sufficient for the new transaction at the time the commit-
ment was signed, it will still be sufficient by the time the new commitment is
included in B∗.

Theorem 1. Let B∗ be a simple block sequence and let T∗ be the explicitly
completed transactions in B∗. If a user has always followed the protocol rule,
they will be able to explicitly complete all of the transactions they have sent in
B∗, as well as generating an explicit proof that the balance of their account ∈
Accounts at index i in B∗ is at least Bali(T∗, account).

8This condition can be relaxed to requiring that the account has sufficient bal-
ance for all of its pending transactions

9We must also suppose, since we have omitted transaction nonces for simplicity,
that there hasn’t been any replay attacks, meaning that all commitments in B∗ are
unique.
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Proof. The user can construct an explicit balance proof

(T ′
∗, π∗(∗))

by combining the explicit validity proofs of all transactions they have received
in T∗, which they have by the definition of T∗, as well as all transactions they
have sent in B∗. This combined explicit balance proof proves that their ac-
count has sufficient balance for all of their transactions. If the user then com-
pletes all of their transactions, the combined explicit balance proof will prove
the balance of the user’s account ∈ Account at index i in B∗ to be at least
Bali(T∗, account).

4.5 Zero knowledge balance proofs for a simple block sequence

The explicit method of proving balances has several drawbacks. First, it re-
quires each user to store a large amount of transactions and inclusion proofs.
Second, it is computationally expensive to verify an explicit balance proof,
since it requires computing the result of applying all the transactions in the
proof. Third, it is not private, since the sender of a transaction needs to give
their whole history of transactions to the recipient. All these drawbacks will
be solved by replacing the explicit proof of the balance of an account with a
ZK-proof that such an explicit proof exists.

In order to avoid having to know the complete simple block sequence when
verifying the ZK-proof, we will instead use the hash of the simple block se-
quence, which we define as follows.

Definition 10 Suppose we have a hash function

Hash : {0, 1}∗ → {0, 1}n

and an encoding of simple blocks

enc : Bsimple → {0, 1}∗.

Let B∗ = (Bi)
N
i=1 be a simple block sequence. For each index 0 ≤ i ≤ N we

define the hash of B∗ at index i, written Hi(B∗) inductively as follows. For
i = 0 we define

H0(B∗) = Hash([0]),

and for 1 ≤ i ≤ N we define

Hi(B∗) = Hash(Hi−1(B∗)||Hash(enc(Bi))).

The following circuit will be used to prove an account’s balance in a simple
block sequence.
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Circuit 1 Circuit for verifying the balance of an account in a simple block
sequence

Public input:
a hash h
account ∈ Accounts
balance ∈ Amounts

Private input:
a simple block B = (S,C)
a hash prev h
an amount prev balance ∈ Amounts
a transaction map T
inclusion proofs π(s) for every s ∈ Senders(T )
for every s ∈ Senders(T )\{source} a ZK-proof P (s) that the balance of s in the
simple block sequence with hash prev h is at least amount(T (s))
a ZK-proof Pprev balance that the balance of account at prev h is at least
prev balance

1: if h = Hash([0]) then
2: Verify balance = 0
3: else
4: Verify h = Hash(prev h||Hash(enc(B))
5: Verify Pprev balance

6: Verify the inclusion proofs π(∗)
7: Verify the ZK-proofs P (∗) of sufficient balance
8: Verify that account /∈ S\Senders(T )
9: Verify that balance ≤ prev balance− sent(T, account) + received(T, account)
10: end if

Note that the circuit only verifies that the provided balance is less than or
equal to the computed balance. This allows for greater privacy, since a user
only needs to provide a proof that they have a sufficient balance for a transac-
tion without revealing their whole balance.

Definition 11 Let B∗ = ((Si, Ci))
N
i=1 be a simple block sequence, let account ∈

Accounts, let balance ∈ Amounts and let 1 ≤ i ≤ N . A ZK-proof that account
has at least balance in B∗ at index i is a ZK-proof that Circuit 1 can be sat-
isfied with the public inputs h = Hi(B∗), account and balance. A ZK validity
proof of a transaction in B∗ consists of a valid inclusion proof of the transac-
tion in B∗ together with a ZK-proof that the sender had sufficient balance for
the transaction in B∗ at the index immediately preceding the index of the sim-
ple block containing the transaction.

Theorem 2. Let B∗ be a simple block sequence and let T∗ be the ZK com-
pleted transactions in B∗. Then, if a user have always followed the protocol
rule, they will be able to ZK complete all of their transactions in B∗, as well as
generate ZK-proofs that the balance of their account a ∈ Accounts is at least
Bali(T∗, a) for each index i.
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Proof. Let T ′
∗ be the result of adding the transactions already sent by the

user’s account in B∗ to T∗. Since the user has always followed the protocol
rule, we have that T ′

∗ is valid with respect to the sender sets in B∗. The user
will then construct, for all indices i, a ZK-proof

Pi

that their account a ∈ Accounts has the balance Bali(T
′
∗, a) at index i in B∗

inductively as follows.

Base case: i = 0 The user can trivially generate a ZK proof P0 that circuit 1
is satisfied by the public inputs h = Hash([0]), account = a, and balance =
0, no matter the values of the private inputs. Since Bal0(T

′
∗, a) = 0 by def-

inition, this ZK-proof proves that the balance of a at index 0 is at least
Bal0(T

′
∗, a).

Inductive clause: 1 ≤ i ≤ N) and the user has constructed Pi−1 The
induction hypothesis states that the user has constructed a ZK proof Pi−1

that the balance of a in T ′
∗ at index i − 1 is at least Bali−1(T

′
∗, a). We also

know, by the definition of T∗, inclusion proofs πi(∗) of the transactions in
T ′
i and ZK-proofs of sufficient balance Pi−1(s) for every s ∈ Senders(T ′

i )\{source}.
Then, it is a matter of verifying each line of circuit 1 that the circuit is
satisfied by the public and private inputs h = Hi(B∗), account = a,
balance = Bali−1(T

′
∗, a) + received(T ′

i , a) − sent(T ′
i , a), B = Bi, prev h =

Hi−1(B∗), prev balance = Bali−1(T
′
∗, a), T = T ′

i , π(∗) = πi(∗), P (∗) =
Pi−1(∗) and Pprev balance = Pi−1.

These ZK-proofs are proofs of sufficient balance for every transaction sent by
a in B∗, so the user can complete all of their transactions by sending inclusion
proofs and ZK-proofs of sufficient balance to the recipients of each transaction.
After the user has completed their transactions, we have that each Pi is a ZK-
proof that the balance of their account a is at least Bali(T∗, a).

Note that since each ZK balance proof is produced recursively by combining a
ZK-proof of the previous balance and ZK validity proofs of received transac-
tions, a user does not need to keep all previous ZK balance proofs. However,
if a user receives a ZK validity proof of a transaction in a previous block, they
need to regenerate all the ZK balance proofs after the received transaction.
For this reason, each user should keep the ZK validity proofs for all transac-
tions they have received, inclusion proofs of all transactions they have sent, as
well as some checkpoint ZK proofs of their own balance.

4.6 Soundness of balance proofs

We will now show that the method of constructing ZK balance proofs is sound,
meaning that it is not feasible for a user to construct a ZK-proof that the bal-
ance of their account is greater than its true balance in B∗. In order to do so,
we will first show that the explicit proving method is sound.
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Theorem 3 (Soundness of explicit balance proofs). Let B∗ = ((Si, Ci))
N
i=1

be a simple block sequence and let T∗ = (Ti)
N
i=1 be the sequence of transaction

maps constructed by combining all transaction map sequences that are both
valid with respect to S∗, and where an inclusion proof of each of their trans-
actions in B∗ is collectively known (i.e. known by someone). This combined
sequence of transaction maps is well defined, since by the binding property of
the commitment scheme, we cannot construct inclusion proofs of two different
transactions by the same sender. Then, if a user has an explicit balance proof

(T ′
∗, π∗(∗))

for B∗, we have

Bali(S∗, T
′
∗, account) ≤ Bali(T∗, account)

for every i and account ∈ Accounts.

Proof. We have that each T ′
i is a restriction of Ti, since if the inclusion proof

of a transaction is known by one user, it is also known collectively. Then, the
result follows from Proposition 1.

Theorem 4 (Soundness of ZK balance proofs). Assuming that the ZK
proving system is sound, the ZK balance proof is sound.

Proof (Idea). The idea is to first prove that the only way for a single prover to
generate a ZK-proof of the balance of an account at an index in a simple block
sequence is to know an explicit balance proof of the same statement. Then,
Theorem 3 gives us the wanted result.

5 Signatures

In this section we will add a signature mechanism for ensuring that each sender
in a block has actually signed the transaction map commitment in the block.
In doing so, we will define three kinds of rollup blocks, namely transfer blocks,
used for transacting between rollup users, registration blocks, used for register-
ing a new user on the rollup and deposit blocks, used for depositing funds to
the rollup from an underlying blockchain. Given a sequence of rollup blocks,
we will then derive a sequence of simple blocks by taking the sender set and
commitment of the rollup blocks that have valid signatures. The derived sim-
ple block sequence can then be used to prove account balances as we described
in Section 4.
We will start by fixing the set of accounts. We let

Accounts = {source} ∪ L2 accounts ∪ L1 accounts,

where L2 accounts = N. Here, source is the source account, used for deposit-
ing into the rollup, L2 accounts is the set of L2 addresses used for regular
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transacting on the rollup, and L1 accounts is the set of L1 addresses which
are used to withdraw funds from the rollup to L1.
Since the senders are signing the same commitment in each block, we will use
BLS signature aggregation for efficient representation and verification of the
signatures.

5.1 Transfer blocks

Transfer blocks are used for sending transactions on the rollup.

Definition 12 A transfer block is a tuple (senders, root, signature), where
senders ⊂ L2 accounts, root is a value in the set of possible merkle roots, and
signature is a value in the set of possible BLS signatures.

In order to be able to quickly add transfer blocks to the rollup, we will not
require that signature is a valid BLS signature, or that root is the merkle
root of a merkle tree in the definition of a transfer block. Instead, the trans-
fer blocks with invalid signatures will be filtered out when deriving the simple
block sequence from a rollup sequence. Also, it is the responsibility of each
user to never sign a merkle root if they do not have an inclusion proof of their
transaction in the merkle tree.

5.2 Registration blocks

Before a user can transact on the rollup, they need to be registered in a regis-
tration block. The purpose of the registration is two-fold. First, the registration
will assign a unique rollup account to each user which will be used in the en-
coding of the sender set in a transfer block to save space. Second, in order to
prevent the rogue key attack on BLS signatures, each user must prove that
they know the private key corresponding to their public key before they can
transact on the rollup. This is achieved by including a signature of the user’s
public key by the corresponding private key in the registration block.

Definition 13 A registration block is a tuple (pk, σ) where pk ∈ G1 and
σ ∈ G0. The registration block is valid if pk is a valid BLS signature of the
message “I am registering the BLS public key pk on Intmax2”.

In order to be able to quickly add registration blocks to the rollup, we will
not enforce every registration block to be valid. Instead, the invalid registra-
tion blocks will be filtered out when deriving the simple block sequence from a
rollup sequence.

5.3 Deposit blocks

Since transfer blocks only allows sending from L2 accounts, we will need a dif-
ferent kind of block, called deposit blocks, for making deposits into the rollup.

Definition 14 A deposit block is a tuple (recipient, amount), where recipient ∈
L2 accounts and amount ∈ Amounts.
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Protocol 1 Registration Protocol.

Registration

Before a user can transact on the rollup, user Alice must register a BLS public
key. To do so, user Alice performs the following steps:

– Alice generates a BLS secret key x
R←− Zq

– Alice obtains the corresponding public key pk ←− gx1 ∈ G1

– Alice produces a signature σ ←− H(m)x ∈ G0, where m is the message “I
am registering the BLS public key pk on Intmax2”, which is a registration
message exclusive to Alice and is cryptographically binding.

– Alice outputs the following registration block: (pk, σ)

Upon successful registration, an L2 address is assigned to Alice.

In this step, the signature proves that each user knows the private key corre-
sponding to their public key, preventing the rogue key attack on BLS signa-
tures. When a user registers a new account, the account is given an L2 address.
For simplicity, this address can be seen as an integer that increments for each
new account.

Protocol 2 Deposit Protocol.

Depositing to rollup

Upon completing the registration, and to start transacting, users must have a
token balance on the rollup. To have such a balance, the user can either receive
funds from another L2 user or deposit the funds themselves. We now describe
the setting where Alice performs her own deposit of funds. To do so, user Alice
performs the following steps:

– Alice creates a deposit block containing the destination L2 address, the
token type (i.e., the token ID), and the amount of tokens to be deposited.

– Alice submits the deposit block to the rollup smart contract.

In this step, the destination L2 address does not necessarily have to belong to
Alice, as she may be attempting to deposit funds into someone else’s account.

5.4 Rollup sequence

Definition 15 We let the set of rollup blocks B be the set of all registration
blocks, deposit blocks and transfer blocks.

Definition 16 A rollup sequence is a finite sequence of rollup blocks.



20 F. Author et al.

5.5 Signature validation

In order to verify the signatures in each transfer block in a rollup sequence, we
need to keep track of the public keys assigned to each L2 account. We do this
as follows.

Definition 17 Let B = (Bi)
N
i=1 be a rollup sequence. For each 0 ≤ i ≤ N

we define the sequence pk(i)∗ = (pk(i)j)
K(i)
j=1 of BLS public keys inductively as

follows.
We define pk(0)∗ to be the empty sequence. For 1 ≤ i ≤ N we define

pk(i)∗ = (pk(i− 1)1, . . . , pk(i− 1)K(i− 1), key)

if Bi = (pk, σ) is a valid registration block, and

pk(i)∗ = pk(i− 1)∗

otherwise.

Given a rollup sequence, we can derive a simple block sequence by taking all
deposit blocks and all transfer blocks where the BLS signature is valid. Recall
that a simple block is a tuple (S,C), where S is a set of accounts and C is an
element of the set C of possible commitments. In order to support committing
to both the transactions in a transfer block and the transaction in a deposit
block, we will let

C = Bdeposit
⊔
{0, 1}n,

i.e. a transaction map commitment is either a merkle root or a deposit block.
An inclusion proof of a transaction in a commitment would then be either a
merkle proof in the case where the commitment is a merkle root, or a trivial
proof in the case where the commitment is a deposit block.10

Definition 18 Let B∗ = (Bi)
N
i=1 be a rollup sequence. We define the simple

block sequence derived from B∗ to be the simple block sequence B′
∗ = ((Sj , Cj))

M
j=1

constructed as follows. We start with the rollup sequence B∗ and consider only
the deposit blocks and the transfer blocks Bi = (senders, root, signature)
where signature is a valid BLS signature of root under the BLS public keys
(pk(i)s)s∈senders. We then convert these deposit and transfer blocks into sim-
ple blocks by converting each deposit block Bi = (recipient, amount) to the
simple block ({source}, (recipient, amount)) and each transfer block Bi =
(senders, root, signature) to the simple block (senders, root). Finally we rein-
dex the resulting sequence of simple blocks to get B′

∗.

10Since the deposit transactions are public knowledge by the fact that they are
included in deposit blocks in the rollup sequence, and since their inclusion proofs are
trivial, all deposits are completed by default. This means that the recipient of the
deposit will always be able to add the deposited amount to their balance proofs.
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It it evident that the way we derive a simple block sequence from a rollup se-
quence is correct, meaning that an account will be in the sender set of a block
in the simple block sequence derived from a rollup sequence if and only if ei-
ther the sender is the source account or the sender has signed the commitment
in the simple block with their BLS public key, and this signature is part of an
aggregated signature of the commitment in one of the transfer blocks in the
rollup sequence.

5.6 Zero knowledge balance proofs for a rollup sequence

We will now describe how to prove the balance of an account in a rollup se-
quence. This involves first proving what the simple block sequence derived
from the rollup sequence is, and then using a ZK-proof of the balance in the
simple block sequence.

We will start by defining the hash of a rollup sequence.

Definition 19 Suppose we have an encoding of rollup blocks

encrollup : B → {0, 1}∗.

Let B∗ = (Bi)
N
i=1 be a rollup sequence. For each index 0 ≤ i ≤ N we define

the hash of B∗ at index i, written Hi(B∗) inductively as follows. For i = 0 we
define

H0(B∗) = Hash([0]),

and for 1 ≤ i ≤ N we define

Hi(B∗) = Hash(Hi−1(B∗)||Hash(encrollup(Bi))).

The following pseudocode describes the circuit for verifying that a simple block
sequence is derived from a rollup sequence. It takes a hash h of the rollup se-
quence, the hash h′ of the simple block sequence, and the sequence of public
keys pk∗ in the rollup sequence, and proves that the sequence of public keys
are correct, and that the simple block sequence with hash h′ is derived from
the rollup sequence with hash h.
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Circuit 2 Circuit for verifying that a simple block sequence is derived from a
rollup sequence

Public input:
a hash h ∈ {0, 1}n
a hash h′ ∈ {0, 1}n
a sequence pk∗ = (pki)

M
i=1 of public keys

Private input:
a hash prev h ∈ {0, 1}n
a hash prev h′ ∈ {0, 1}n
a sequence prev pk∗ = (prev pki)

prev M
i=1 of public keys

a rollup block B
a simple block B′

a ZK-proof P that the rollup sequence with hash prev h generates a validated
block sequence with hash prev h′ and the sequence of public keys prev pk∗

1: Verify h = Hash(prev h||Hash(encrollup(B)))
2: Verify h′ = Hash(prev h′||Hash(enc(B′)))
3: Verify that pk∗ is the sequence of public keys obtained by adding any new regis-

tration in B to prev pk∗.
4: Verify the ZK-proof P
5: if B is a transfer block B = (senders, root, signature) where signature is a valid

BLS signature of root by the BLS public keys (pks)s∈senders then
6: Verify B′ = (senders, root)
7: else if B is a deposit block B = (recipient, amount) then
8: Verify B′ = ({source}, (recipient, amount))
9: else
10: Verify h′ = prev h′

11: end if

We can combine Circuit 2 with Circuit 1 to get the following circuit for verify-
ing the balance of an account in a rollup sequence.

Circuit 3 Circuit for verifying the balance of an account in a rollup sequence

Public input:
a hash h ∈ {0, 1}n
account ∈ Accounts
balance ∈ Amounts

Private input:
a sequence pk∗ = (pki)

M
i=1 of public keys

a hash h′ ∈ {0, 1}n
a ZK-proof P1 of Circuit 2 proving that the rollup sequence with hash h gener-
ates the public keys pk∗ and the derived simple block sequence with hash h′

a ZK-proof P2 of Circuit 1 proving that account owns balance in the simple
block sequence with hash h′

1: Verify P1 and P2
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Our decision of splitting the balance proofs for a rollup sequence into a bal-
ance proof for a simple block sequence and a proof that the simple block se-
quence was derived correctly from the rollup sequence, has been made for per-
formance reasons. Indeed, the ZK proof that the simple block sequence was
derived correctly only needs to be generated once and distributed to all users.
Then, users only need to prove their own balances, and not that the signatures
are valid.

6 Rollup contract

We implement our design as a rollup on an underlying blockchain by deploy-
ing a rollup smart contract on the underlying blockchain. The rollup con-
tract will keep track of a rollup sequence, and it has functions for adding new
blocks to the sequence, for depositing funds from the underlying blockchain
to the rollup, and for withdrawing funds from the rollup to the underlying
blockchain.
The rollup contract fixes a rollup sequence, which we will refer to as the rollup,
by storing the hashes of the rollup sequence in its storage. Each time a new
block is added to the rollup, the new hash is computed by the rollup contract
and added to its storage. In order to have high liveness guarantees, we will
allow anyone to add new blocks to the rollup via the rollup contract. When
withdrawing from the rollup to an L1 address, the rollup contract will verify a
ZK-proof of the balance of the L1 address on the rollup and subtract from this
balance the amount of funds that has previously been withdrawn to the L1 ad-
dress (which is also stored in the contract). One implementation detail is that
since this ZK-proof needs to refer to a specific hash, and the current hash of
the rollup can change at any time (because blocks are added concurrently), we
need to allow using a previous rollup hash. For this reason, the rollup contract
will store a set of of recent rollup hashes, and not just the latest one.
In details, the rollup contract state is defined as follows.

Definition 20 The rollup contract state is a tuple

(h∗, total withdrawn amount)

where
h∗ = (hi)

N
i=0

are the hashes of the rollup sequence at each index, and

total withdrawn amount : L1 address→ Amounts

is a map which stores the total amount that has previously been withdrawn to
each L1 address.

We note that in order to save storage costs on the underlying blockchain, the
rollup contract can have a feature where instead of adding each new rollup
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hash to a new slot in the contract storage, the new hash can instead overwrite
the oldest hash in the storage. We can also have a feature where all hashes
that are added in the same L1 block are written to the same storage slot. If we
implement these two features together, we get a guarantee that each hash will
be stored in the contract storage for the duration of at least t ·n, where t is the
time between each block of the underlying blockchain, and n is the number of
hashes that are stored in the contract.

6.1 Adding blocks to the rollup

New blocks are added to the rollup by calling the following contract function
which can be called by anyone.

Rollup contract function 1 Adding a new block to the rollup.

Require:
A rollup block B.
An amount deposited amount ∈ Amounts that is included with the L1 transac-
tion. This would be non-zero only when adding a deposit block.
The current state (h∗ = (hi)

N
i=0, total amount withdrawn) of the rollup contract.

Ensure: (h∗, total amount withdrawn) is the new state of the rollup contract.
1: if B = (recipient, amount) is a deposit block and amount = deposited amount

or if B is a non-deposit block then
2: h∗ ← (h0, h1, . . . , hN , Hash(hN ||encrollup(B)))
3: end if

6.2 Withdrawing from the rollup

To withdraw funds from the rollup to an L1 address, the following contract
function must be called.11 We refer the reader to Protocol 3, where we de-
scribe an overview of the withdrawal protocol.

11We mention that to increase performance, it is possible to implement batched
withdrawals, where many ZK balance proofs are aggregated together by an aggrega-
tor into one proof that can be used to withdraw to many L1 addresses.
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Protocol 3 Withdrawal Protocol.

Withdrawing funds

To withdraw funds, user Alice performs the following steps:

– Alice produces a zero knowledge proof P that proves that the rollup ac-
count representing her L1 account has a certain balance at a previous index
of the canonical rollup: Prove(pp, x, w) → P . Moreover, those funds have
not been spent since and the current block state builds on such a previous
state.

– Alice submits the balance proof P to the withdrawal function in the rollup
contract.

Upon receiving the proof, the withdrawal function performs the following steps:

– Withdrawal function verifies that the zero-knowledge proof verification
outputs true: Verify(pp, x, P )→ Accept

– Checks the provided rollup hash is in the list of previous rollup hashes.

– Transfers the amount to the L1 address and updates the total amount
withdrawn to the L1 address accordingly in the contract storage.

We highlight that anyone can add a new block to the rollup by creating a trans-
action to the rollup contract with the content of the new block. Furthermore,
it is important to note that if a specific use case allows for the constant use of
the funds in the rollup, then a user does not necessarily have to withdraw funds
from the rollup and can constantly use the existing funds and subsequently
deposit (or receive) funds on an ongoing basis.

Rollup contract function 2 Withdrawing from the rollup.

Require:
A hash h ∈ {0, 1}n.
An index 0 ≤ i ≤ N
An address address ∈ L1 addresses which we will withdraw to.
An amount balance ∈ Amounts.
A ZK-proof P of Circuit 3 proving that address owns balance in the rollup se-
quence with hash h.
The current state (h∗ = (hi)

N
i=0), total amount withdrawn) of the rollup con-

tract.
Ensure:

(h∗, total amount withdrawn) is the new state of the rollup contract.
withdrawn amount ∈ Amounts is the amount to be withdrawn.

1: if h = hi and if P is a valid ZK-proof then
2: withdrawn amount← balance− total amount withdrawn[address]
3: else
4: withdrawn amount = 0
5: end if
6: total amount withdrawn[address] ← total amount withdrawn[address] +

withdrawn amount
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7 Conclusion

We presented Intmax2, a novel zk-rollup approach that completely shifts away
from traditional zk-rollup approaches. By leveraging the fact that aggregators
do not need to perform computationally intensive zero-knowledge proofs, and
instead moving the computation is on the side of the users in the system, our
design provides a novel, practical, and resilient solution to L2 scaling.
In contrast with previous approaches, our solution does not require the post-
ing of all transaction data on the underlying L1, and provides better liveness
guarantees. On a final note, we highlight that unlike the majority of the de-
ployed ZK-rollups platforms, our design allows for a much simpler path to the
decentralization of the aggregator role, thus addressing one of the main exist-
ing problems in the rollup space.
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A Discussion

A.1 Tracing the Path to Intmax2

Plasma Prime [16] is the starting point for the path that lead to Intmax2.
Plasma Prime incorporates RSA accumulators and is based on the UTXO
model, where each unspent output represents ownership of a specific segment.
The concept of range chunking is also introduced, and is used to compress
transaction history to simplify block verification. This design also features the
use of a SumMerkleTree for efficient overlap verification between transaction
segments and inclusion proof generation.

Springrollup [6] is a Layer 2 solution that introduces a new type of zk-rollup,
that aims to use less on-chain data and enhance privacy. The rollup state is
divided into on-chain and off-chain available states, with the design ensuring
users’ funds remain safe even if the off-chain state is withheld by the opera-
tor. The operator can modify the rollup state by posting a rollup block to the
L1 contract, which includes the new merkle state root, a diff between the old
and new on-chain states, and a zk-proof of valid operations. The system also
includes a frozen mode for situations where the operator doesn’t post a new
rollup block within 3 days.

Intmax [11] introduces a design where the aggregator maintains a global state
that is used when the aggregator makes new rollup blocks. This state is not
necessarily known by anyone other than the aggregator, and can be with-
held by the aggregator. This means that to allow multiple aggregators for the
rollup, each aggregator must be trusted to provide the updated rollup state
off-chain to the next aggregator in order to keep the rollup alive. This results
in two things: First, since each aggregator needs to build upon the previous
block, this method requires the complexity of a leader selection method to de-
termine which aggregator can create the next block. Second, and more impor-
tantly, the rollup will halt if one of the aggregators fails to provide the data to
the next aggregator, and all users would need to exit the rollup. This means
that all aggregators need to be trusted in order to guarantee liveliness.

Intmax2 (this work), solves these problems by modifying the protocol so that
block production becomes stateless, meaning that new blocks can be added to
the rollup without having to know the previous blocks at all, allowing aggre-
gating to become decentralized.

A.2 Liveness

We highlight that if a user receives a transaction and then remains offline for
an extended period of time, the user is still able to perform withdrawals at
a future point in time when they are online again. While it is recommended
that a user continuously performs the update of the recursive zero-knowledge
balance proof that allows for the withdrawal of funds, the user can remain of-
fline for a certain time period and then, when back online, can perform a syn-
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chronization process and calculate the corresponding recursive zero knowledge
proof (e.g., [15]).

A.3 Privacy of Intmax2

Our proposed solution does not post any transaction data on the underlying
layer 1. Also, since aggregators do not need to verify transactions, the transac-
tion data can also be hidden from the aggregators. As a result, the details of
user transactions are only revealed to the recipients. As the importance of pri-
vacy on blockchains continues to grow, our proposed solution offers a promis-
ing path towards a privacy-focused future.

A.4 Delegating Zero-Knowledge Proof Generation

The emergence of new research on delegating the generation of zero-knowledge
proofs [8], brings exciting prospects for the wider adoption of these technolo-
gies, particularly among light clients like mobile phones. This development
holds great promise in overcoming the computational limitations of resource-
constrained devices and enabling them to actively engage in zero-knowledge
proof protocols. By delegating the generation of zero-knowledge proofs to more
powerful devices or servers, the burden of computationally intensive tasks can
be alleviated, paving the way for enhanced participation and utilization of
zero-knowledge proofs.
As the research continues to evolve and mature, we anticipate a future where
zero-knowledge proofs become more accessible and seamlessly integrated into
various domains, empowering users with enhanced security and privacy guar-
antees. This development holds immense potential for bringing zero-knowledge
proofs to the masses and unlocking their benefits for various applications.
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B Informal Security Notes

In this section, we briefly discuss the security aspects of the proposed con-
struction, focusing on liveness, safety, and user assumptions.

B.1 Liveness

One of the key features of the proposed construction is its liveness, which al-
lows any participant to become an aggregator. This decentralized approach
ensures that transaction processing and updates can continue even in the ab-
sence or unavailability of a specific aggregator. The ability for users to readily
assume the role of the aggregator promotes a distributed and collaborative en-
vironment, enhancing the system’s resilience and adaptability.

B.2 Safety

Our construction also emphasizes strong safety properties, particularly in pre-
venting unauthorized fund access. The system ensures that funds cannot be
stolen by unauthorized parties, as users must provide valid proofs of balance
to authorize transactions. Moreover, the completeness property guarantees
that users can always withdraw their funds to the underlying blockchain.

B.3 Malicious Users

Users can choose to not sign the Merkle root of the tree of transactions. Fail-
ure to do so results in a situation where the user’s transaction is effectively
voided, preventing them from proving its existence in the corresponding zero-
knowledge proofs used for withdrawals. Similarly, if the aggregator fails to
send the Merkle proof to a specific user, the user’s transaction will not be
counted as included in that set. As a consequence, the user will not be able
to prove the transaction’s validity in zero-knowledge, preventing them from
claiming any funds associated with that (voided) transaction.
Alternatively, a user may attempt to spam the network with a very high num-
ber of dummy (invalid) transactions to attempt to increase the size of the
Merkle proofs that are sent to each user in an attempt to bloat the local stor-
age of individual users. This attack, however, requires exponential effort from
the attacker as the Merkle proof size is logarithmic in the number of leaves.
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C Security Proof

We assume an adversary attempting to subvert the security of our construc-
tion. Therefore, A may attempt to explore different attack vectors. For exam-
ple, A may attempt to forge a proof of inclusion for the used Merkle tree, pro-
duce a zero knowledge proof forgery, randomly go offline in an attempt to dis-
rupt the liveness of the system, or even even censor specific transactions from
users. These represent different attack vectors that we model in this section.

C.1 Safety

To break the safety of the rollup system, A may target the soundness of the
used zero-knowledge scheme to prove ownership of funds. This assumptions
stems from the fact that the soundness of the zero-knowledge scheme guar-
antees with very high probability that any attempt to forge or modify a valid
state will be detected, thus preserving the security of the system.

Zero-Knowledge Proof Forgery

Theorem 5. Given a zero-knowledge proof π, a statement x, and a set of
public parameters pp generated to provide a security parameter λ, the adver-
sary A has a negligible probability of producing a zero-knowledge proof forgery,
assuming the soundness property of the zero-knowledge scheme.

Proof. (Sketch.) We consider the soundness of the zero-knowledge scheme a
critical property for ensuring the security of the proof. The soundness property
guarantees that an adversary A cannot produce a valid zero-knowledge proof
unless they possess the correct witness. To break the soundness property, A
must find a witness w′ that makes the verifier accept an invalid proof π′ gen-
erated from Prove(pp, x, w′). However, the soundness property ensures that
the probability of A successfully executing this attack is negligible, typically
bounded by 2−k where k represents the knowledge error.
Therefore, as long as the zero-knowledge scheme is instantiated with appro-
priate parameters and exhibits the soundness property, the probability of an
adversary producing a zero-knowledge proof forgery is negligible.
Thus, based on the assumption of soundness and the negligible probability
of forging a zero-knowledge proof, we can conclude that the zero-knowledge
scheme provides the desired security against proof forgery attempts.

Commitment Scheme

To break the safety of the rollup system, A may target the security properties
of the used commitment scheme, which ensures the integrity of each new state.

Theorem 6. Given a commitment C and a transaction tx such that
Commit(tx) → C, A has negligible probability of producing a tx′ ̸= tx such that
Commit(tx′) = Commit(tx), if the used commitment scheme is binding.
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Proof. (Sketch.) We aim to prove that, assuming a binding property of the
used commitment scheme, the probability of an adversary A producing a dif-
ferent value that matches the commitment value is negligible.
The binding property ensures that it is not computationally feasible to manip-
ulate the opening phase and use a different value as it results in the commit-
ment opening to a different message.
Consider the scenario where A attempts to produce a malicious value for a
given commitment C to a transaction tx. To succeed, A must find a rogue
transaction tx′ ̸= tx such that Commit(tx′) = Commit(tx). The binding prop-
erty guarantees that the probability of finding such a transaction is negligible.

C.2 Liveness

To break the liveness property of the system, the adversary may attempt to go
offline over extended periods of time or by censoring transactions from specific
users. We now show that these attacks do not compromise the liveness prop-
erty of the system.

Theorem 7. In a rollup system with a designated aggregator responsible for
submitting batch updates to the underlying layer 1, if a malicious aggregator
attempts to disrupt liveness by going offline, the system can maintain liveness
as long as there exists at least one honest participant in the system who can
assume the role of the aggregator.

Proof. (Sketch.) We aim to prove that in the given rollup system, liveness can
be sustained even if a malicious aggregator goes offline, as long as there exists
at least one honest participant in the system who can seamlessly transition to
the role of the aggregator.
Let us consider a scenario where a malicious aggregator intentionally goes of-
fline, disrupting the regular batch update process. Due to the decentralized
nature of the rollup system, any honest participant can readily assume the role
of the aggregator.
Since the rollup system does not depend on any specific entity as the aggrega-
tor, the ability to transition the role to an honest participant ensures the con-
tinuity of transaction processing and updates. The honest participant, upon
assuming the aggregator role, can effectively submit batch updates to the un-
derlying layer 1, thereby maintaining the liveness property of the system.
Thus, we can conclude that in the given rollup system, liveness can be main-
tained despite the malicious aggregator going offline, as long as there exists at
least one honest participant who can assume the role of the aggregator.

Theorem 8. In a rollup system with a designated aggregator responsible for
submitting batch updates to the underlying layer 1, if a malicious aggregator
attempts to censor transactions from users, the system can overcome censor-
ship and maintain liveness if one or more honest party assumes the role of the
aggregator.
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Proof. (Sketch.) We aim to prove that in a rollup system where an aggregator
is responsible for submitting batch updates to the underlying layer 1, if a ma-
licious aggregator attempts to censor transactions from users, the system can
overcome censorship as long as each of these censored users can assume the
role of the aggregator.
Consider a scenario where a malicious aggregator attempts to censor transac-
tions from certain users by intentionally excluding their transactions from the
batch updates. However, the decentralized design of the rollup system empow-
ers users to become aggregators themselves.
In this case, if a user perceives censorship or exclusion of their transactions
by the aggregator, they can opt to become an aggregator and directly submit
batch updates to the underlying layer 1. By taking over the aggregator role,
the user-turned-aggregator ensures that their transactions are included in the
batch updates.
The ability of users to bypass the malicious aggregator and become aggrega-
tors themselves provides a mechanism to overcome censorship within the sys-
tem, which ensures that transactions from users are not unduly suppressed or
excluded, maintaining the desired liveness property.
Therefore, we can conclude that in such a rollup system, even if a malicious
aggregator attempts to censor transactions from users, the system can over-
come censorship and maintain liveness as long as there exists at least one hon-
est participant who can assume the role of the aggregator.
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