
Lattice Isomorphism as a Group Action and
Hard Problems on Quadratic Forms

Alessandro Budroni, Jesús-Javier Chi-Domı́nguez, Mukul Kulkarni

Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
{alessandro.budroni,jesus.dominguez,mukul.kulkarni}@tii.ae

Abstract. Group actions have been used as a foundation in Public-key
Cryptography to provide a framework for hard problems and assump-
tions. In this work we formalize the Lattice Isomorphism Problem (LIP)
within the context of cryptographic group actions. Our main result shows
that a quadratic number of queries to a randomized oracle outputting
LIP instances sharing the same secret is enough for inverting the group
action in polynomial time. We use this result to uncover a family of weak
isomorphisms and to derive two new hard problems on quadratic forms
equivalent to LIP for the case of lattices with trivial automorphism.

Keywords: Group Actions · Lattice-based Cryptography · Lattice Isomorphism
Problem · Post-Quantum Cryptography · Quadratic Forms

1 Introduction

Post-Quantum Cryptography is an active field of research in aiming to find valid
substitutes for public-key cryptographic primitives that are used nowadays, but
that are vulnerable to attacks by quantum computers. The National Institute
of Standards and Technology (NIST), with a process started in 2017, selected
already a few public-key cryptographic algorithms for standardization [34]. A
new process started in 2023 aims to select quantum-resistant digital signatures,
alternatives to the ones selected in the previous process [33].

Many cryptographic primitives in Post-Quantum Cryptography base their
security on hard computational problems on algebraic structures, learning prob-
lems and decoding problems. An alternative and attractive research area is
formed by those cryptographic primitives built upon isomorphisms, equivalences
and group actions problems. The most studied of these sub-fields is probably the
one of isogenies between supersingular elliptic curves [16,14,6,1,13,17,25,5,3,18].
However, lattice isomorphism [22,4], code-equivalence [11,7], isomorphism of
multivariate polynomials [35], trilinear forms [38], and tensor isomorphism [29]
revealed to be suitable for building remarkable primitives too, with a particular
focus on proof-of-knowledge and digital signatures [10,30].

Informally, the Lattice Isomorphism Problem (LIP) in its search version con-
sists of finding an isomorphism between two given isomorphic lattices. The de-
cision version of the problem consists of deciding whether two given lattices are
isomorphic or not.

Lattice isomorphisms have been studied and used initially in the cryptanaly-
sis of early lattice based schemes such as NTRU [27]. Later on, Haviv and Regev
studied the complexity of search-LIP [28]. More recently, two independent works
by Bennett et al. [4] and by Ducas and van Woerden [22] proposed to use LIP
for building cryptographic primitives. Subsequently, a digital signature scheme
HAWK based on a module version of LIP has been proposed with impressive
results in terms of efficiency and sizes [21].

Contribution. In this work, we formalize LIP from the point of view of group
actions. First, we verify that lattice isomorphisms respect some general proper-
ties of group actions. Then, we provide a new result on the sufficient number of
LIP samples sharing the same secret isomorphism U , so that one can efficiently
recover such isomorphism. More precisely, we show that an adversary able to
make O(n2) queries to an LIP randomized oracle OU can invert the group action
in polynomial time and space and retrieve U . This result differs from other mod-
els, which are assumed secure even when the adversary can make a polynomial
number of queries [1,20]. We provide a sagemath implementation of our algo-
rithm that confirms our result and successfully recovers the secret isomorphism
from a list of “independent” LIP samples. We use this result to uncover a family
of weak isomorphisms, namely any commuting family of isomorphisms. Another
consequence of our result is that, when used to build cryptographic primitives,
the secret isomorphism of an LIP instance should not be reused in combination
with different public keys.

Furthermore, we introduce two new hard problems on quadratic forms: the
Transpose Quadratic Form Problem (TQFP) and the Inverse Quadratic Form
Problem (IQFP). We use the aforementioned result to demonstrate the equiv-
alence of these problems to search-LIP through dimension-preserving polynomial-
time reductions, specifically for quadratic forms with trivial automorphism group.

TQFP

search-LIP

IQFP

Sec. 4

Sec. 4

Fig. 1: Relationships between two new problems related to lattice isomorphism
problem (LIP): TQFP and IQFP. Dashed arrows denote polynomial time reduc-
tions for quadratic forms with trivial automorphism group. Solid arrows denote
polynomial time reductions in general.

2

Organization of the paper. In Section 2 we give the preliminaries on lattices
and group actions. In Section 3 we formalize LIP as a group action and provide
the related results. In Section 4 we introduce two new hard problems together
with their reductions to LIP. Finally, in Section 5 we give our conclusions.

2 Preliminaries

2.1 Notation

Let N, Z, Q and R denote the sets of natural, integer, rational, and real numbers,
respectively. We denote vectors in boldface (e.g., x) and treat them as column
vectors by default. We denote matrices by uppercase letters (e.g., M). For a
vector x in Rn, the Euclidean norm is denoted as ∥x∥.

The set of all n × n invertible matrices with entries in Z is denoted by
GLn(Z) := {M ∈ Zn×n : det(M) = ±1}. For an invertible matrix X ∈ GLn(Z),
we denote the inverse of the transpose matrix XT as X−T. Also, by In we de-
note n × n identity matrix. The set of all orthonormal matrices with entries
in field F is denoted by On(F) := {O ∈ Fn×n : OOT = OTO = In and ∥oi∥ =
1, ∀i ∈ {1, . . . , n}}. For a matrix M = {Mi,j} ∈ Zn×n, denote with M̄ (i,j) ∈
Z(n−1)×(n−1) the minor of M with respect to Mi,j , namely, the matrix obtained
by removing the i-th row and j-th column from M . We denote M∗ the Gram-
Schmidt orthogonalization of M .

A matrix S ∈ Rn×n is called symmetric positive definite if S = ST and
xTSx > 0 for all x ∈ Rn \ {0}. The set of all n × n symmetric positive definite
matrices over R is denoted by S>0

n . For Q = {Qij} ∈ S>0
n , define unroll : S>0

n →
Rd as

unroll(Q) :=
[
Q1,1 2Q1,2 . . . 2Q1,n Q2,2 2Q2,3 . . . 2Q2,n . . . Qn,n

]
.

For simplicity, in the remainder of the paper, we assume both matrix multi-
plication and inversion take O(n3) integer operations 1.

2.2 Lattice Isomorphisms and Quadratic Forms

We refer the reader to [22] for a more detailed introduction on the Lattice Iso-
morphism Problem.

A full-rank n-dimensional lattice L = L(B) := B · Zn is generated by taking
all the possible integer combinations of the columns of a basis B ∈ Rn×n. Two
bases B and B′ generate the same lattice if and only if ∃U ∈ GLn(Z) such
that B′ = BU . Two lattices L, L′ are isomorphic if there exists an orthonormal
transformation O ∈ On(R) such that L′ = O · L.

1 There is a better algorithm for large dimensional matrix multiplications, the

Strassen’s algorithm with a running time of O
(
nlog2(7)

)
operations.

3

Definition 1 (Search Lattice Isomorphism Problem (sLIP)). Given two
isomorphic lattices L, L′ ⊂ Rn find an orthonormal transform O ∈ On(R) such
that L′ = O · L.

The above problem can be rephrased as follows. Given the bases B, B′ ∈ GLn(R)
for L and L′ respectively, find O ∈ On(R) along with U ∈ GLn(Z) such that
B′ = OBU . In practice, the real-valued entries of basis and orthonormal matrices
can be inconvenient to represent and result in inefficient computations. However,
this can be eased by considering an equivalent problem to LIP by taking the
quadratic form of B, a.k.a Gram matrix Q := BTB. Note that the quadratic
form Q is symmetric by definition. Moreover, since B is a basis (and thus full-
rank), Q is actually symmetric positive definite. For L,L′ isomorphic lattices
with respective basis B,B′, we have that B′ = OBU where O ∈ On(R) is
orthonormal and U ∈ GLn(Z) is unimodular, then we have,

Q′ := B′TB′ = UTBTOTOBU = UTBTBU = UTQU

where, Q := BTB is the quadratic form of B. We call Q,Q′ equivalent if such U ∈
GLn(Z) exists. We also denote the equivalence class by [Q] of all Q′ equivalent
to Q.

Definition 2 (sLIPQ - Quadratic Form Version). For a quadratic form
Q ∈ S>0

n , the problem sLIPQ is, given any quadratic form Q′ ∈ [Q], to find a
unimodular U ∈ GLn(Z) such that Q′ = UTQU .

The norm of vector x with respect to a quadratic formQ is defined as ∥x∥2Q :=

xTQx and the inner product as ⟨x, y⟩Q := xTQy. The i−th minimal distance
λi(Q) is defined as the smallest r > 0 such that {x ∈ Zn : ∥x∥Q ≤ r} spans a
space of dimension at least i. We denote by BQ the Cholesky decomposition of

Q, that is, an upper triangular matrix such that Q = BQ
TBQ.

Definition 3 (Automorphisms). Let Q ∈ S>0
n be a quadratic form of dimen-

sion n. The automorphism group of Q is defined as Aut (Q) = {V ∈ GLn(Z) : Q =
V TQV }.We say that Q is automorphism-free if it has trivial automorphism group
Aut (Q) = {±In}.

Remark 1. Let Q′ ∈ [Q], and let U ∈ GLn(Z) be such that Q′ = UTQU . The
set of isomorphisms between Q and Q′ can be written as {V U : V ∈ Aut(Q)}.
In other words, the automorphism group of Q determines the number of isomor-
phisms from Q to Q′. Equivalently, the automorphism group of Q′ determines
the number of isomorphisms from Q′ to Q. Therefore, when Q and Q′ are iso-
morphic, they have the same number of automorphisms. Hence, automorphism-
free quadratic forms are isomorphic only to automorphism-free quadratic forms.
More precisely, we have Aut (Q′) = {±In} for each quadratic form Q′ ∈ [Q].

Definition 4 (Integer Matrix Similarity Problem (IMSP)). Given two in-
teger matrices A,B ∈ Zn×n, determine whether there exists an invertible matrix
U ∈ GLn(Z) such that B = UAU−1, and if so, find U .

4

The Integer Matrix Similarity Problem (also known as the Integral Conju-
gacy Problem) is not computationally hard. There exists indeed a probabilistic
polynomial time algorithm that solves it [32,24,9].

2.3 Sampling Quadratic Forms and Unimodular Matrices

Definition 5 (Discrete Gaussian Distribution w.r.t. Quadratic Forms [22,
Sec. 2.3]). For a quadratic form Q ∈ S>0

n , the Gaussian function on Rn with
parameter s > 0 and center c is defined by

∀x ∈ Rn, ρQ,s,c(x) := exp (−π∥x− c∥2Q/s
2).

The discrete Gaussian distribution DQ,s,c is defined as

Pr
X∼DQ,s,c

[X = x] :=

{
ρQ,s,c(x)
ρQ,s,c(Zn) if x ∈ Zn,

0 otherwise
.

Brakerski et al. [12, Lemma 2.3] showed how to sample from a discrete Gaus-
sian distribution efficiently. Ducas and van Woerden provide a polynomial time
algorithm Extract that, on input a set of n linearly independent vectors Y and
a quadratic form Q, returns a pair (Q′, U) such that Q′ = UTQU [22, Lemma
3.1].

Definition 6 (Gaussian form distribution, [22, Def. 3.3]). Given a quadratic
form equivalence class [Q] ⊂ S>0

n , the Gaussian form distribution Ds ([Q]) over
[Q] with parameter s > 0 is defined algorithmically as follows:

1. Fix a representative Q ∈ [Q].
2. Sample n vectors (y1,y2, . . .yn) := Y from DQ,s. Repeat until linearly inde-

pendent.
3. (R,U)←− Extract(Q,Y).
4. Return R.

Ducas and van Woerden provide a polynomial time algorithm to sample from
Ds ([Q]), for s ≥ max{λn(Q),

∥∥B∗
Q

∥∥ ·√ln(2n+ 4)/π}, which returns, together

with a quadratic form Q′, a unimodular matrix U such that Q′ = UTQU , and
show that Q′ ←− Ds ([Q]) is independent from the input class representative Q
[22, Lemma 3.2].

Sampling Unimodular Matrices The algorithm Extract includes a method to
derive a unimodular matrix from a set of independent vectors employing the
Hermite Normal Form reduction that is folklore in the literature [8,31].

Algorithm 1 is a modified version of [8, Algorithm 4] for sampling unimod-
ular matrices in polynomial time having the entries of the first n − 1 columns
uniform over the integer interval [−T, T] ⊂ Z, for T > 0. For the context of
this manuscript, it is not relevant for us whether it produces “cryptographically-
strong” random unimodular matrices or not.

5

Algorithm 1 Sample a unimodular matrix with all columns except the last one
having entries uniformly distributed in an integer interval [−T, T] ⊂ Z
Input: A positive integer parameter T > 0
Output: An n × n unimodular matrix with all columns except the last one

having entries uniformly distributed in the integer interval [−T, T] ⊂ Z
1: Set a matrix M = {Mi,j} ∈ Zn×n to zero
2: repeat
3: Sample Mi,j ← [−T, T] uniformly at random for each i ≤ n and j ≤ n−1
4: Use the Extended Euclidean Algorithm for computing

d← gcd
(
(−1)n+1

det
(
M̄ (1,n)

)
, . . . , (−1)2n det

(
M̄ (n,n)

))
,

along with the corresponding Bézout coefficients M1,j ’s such that

d←
n∑

j=1

Mj,n · (−1)n+j
det

(
M̄ (j,n)

)
= det(M)

5: until d = 1
6: Choose the sign of det(M) uniformly at random

7: Use least-squares to find the linear combination
∑n−1

j=1 cj [M1,j . . .Mn,j] clos-
est to [M1,n . . .Mn,n], and let c̃i denote the nearest integer to ci

8: Update [M1,n . . .Mn,n] as

[M1,n . . .Mn,n]−
n−1∑
j=1

c̃j [M1,j . . .Mn,j]

9: Return M

2.4 Cryptographic Group Actions

We give here a refined version of some definitions on group actions introduced
in [16] and [1].

Definition 7 (One-Way Function). Let P , X and Y be sets indexed by
the parameter λ, and let DP and DX be distributions on P and X respec-
tively. A (DP ,DX)−OWF family is a family of efficient computable functions
{fpp(·) : X → Y }pp∈P such that for all PPT adversaries A we have

Pr[fpp(A(pp, fpp(x))) = fpp(x)] ≤ negl(λ),

where pp←− DP and x←− DX . If DP and DX are uniform distributions, then we
simply speak of an OWF family.

Definition 8 (Weak Unpredictable Permutation). Let K and X be sets
indexed by λ, DK and DX be distributions on K and X respectively, and t :=

6

t(λ) ∈ N+ be a parameter. Let F $
k be a randomized oracle that when queried

samples x ←− DX and outputs (x, F (k, x)). A (DK ,DX , t)−weak UP (wUP) is
a family of efficiently computable permutations {F (k, ·) : X → X}k∈K such that
for all PPT adversaries A able to query F $

k at most t times, we have

Pr[AF $
k (x∗) = F (k, x∗)] ≤ negl(λ),

where k ←− DK and x∗ ←− DX . If DK and DX are uniform distributions, then
we simply speak of a t−wUP family.

Definition 9 (Weak Pseudorandom Permutation). Let K and X be sets
indexed by λ, DK and DX be distributions on K and X respectively, and t :=
t(λ) ∈ N+ be a parameter. Let π$ a randomized oracle that samples x ←− DX

and outputs (x, π(x)). A (DK ,DX , t)−weak PRP (wPRP) is a family of effi-
ciently computable permutations {F (k, ·) : X → X}k∈K such that for all PPT
adversaries A able to query π$ at most t times, we have∣∣∣Pr[AF $

k (1λ) = 1]− Pr[Aπ$

(1λ) = 1]
∣∣∣ ≤ negl(λ),

where k ←− DK , π ←− SX . If K and D are uniform distributions, then we simply
speak of a t−wPRP family.

Definition 8 and Definition 9 give more fine-grained notions in comparison to
their respective in [1, Section 2.1]. In particular, our definitions include a limit
on the number of queries that an adversary can make to the oracle. A similar
setting can be found in [15,37,20].

Definition 10 (Group Action). A group (G, ◦) is said to act on a set X if
there is a map ⋆ : G×X → X that satisfies the following two properties

1. Identity: if e is the identity element of G, then for any x ∈ X, we have
e ⋆ x = x.

2. Compatibility: for any g, h ∈ G and any x ∈ X, we have (g◦h)⋆x = g⋆(h⋆x).

We use the notation (G,X, ⋆) to denote a group action.

If (G,X, ⋆) is a group action, for any g ∈ G the map πg : x 7→ g ⋆ x defines a
permutation of X.

Definition 11 (Properties of Group Actions).

1. A group action (G,X, ⋆) is said to be transitive if for every x1, x2 ∈ X,
there exists a group element g ∈ G such that x2 = g⋆x1. For such a transitive
group action, the set X is called a homogeneous space for G.

2. A group action (G,X, ⋆) is said to be faithful if for each group element
g ∈ G, either g is the identity element or there exists a set element x ∈ X
such that x ̸= g ⋆ x.

3. A group action (G,X, ⋆) is said to be free if for every group element g ∈ G,
g is the identity element if and only if there exists some set element x ∈ X
such that x = g ⋆ x.

7

4. A group action (G,X, ⋆) is said to be regular if it is both free and transitive.
For such a regular group action, the set X is called a principal homogeneous
space for the group G, or a G−torsor.

Definition 12 (One-Way Group Action). A group action (G,X, ⋆), where G
is a group and X is a set indexed by a parameter λ, is (DG,DX)−one-way if the
family of efficiently computable functions {fx : G → X}x∈X is (DG,DX)−one-
way, where fx : g 7→ g ⋆ x, and DX ,DG are distributions on X,G respectively.

Definition 13 (Weak Unpredictable Group Action). A group action (G,X, ⋆)
is (DX ,DG, t)−weakly unpredictable if the family of efficiently computable per-
mutations {πg : X → X}x∈X is a (DX ,DG, t)−weak unpredictable PRP, where
πg is defined as πg : x 7→ g⋆x and DX ,DG are distributions on X,G respectively.

Definition 14 (Weak Pseudorandom Group Action). A group action
(G,X, ⋆) is (DX ,DG, t)−weakly pseudorandom if the family of efficiently com-
putable permutations {πg : X → X}x∈X is a (DX ,DG, t)−weak PRP where πg

is defined as πg : x 7→ g ⋆ x and DX ,DG are distributions on X,G respectively.

3 Lattice Isomorphism as a Group Action

In this section we introduce lattice isomorphisms, in the quadratic form ver-
sion, as a group action, and we provide some results related to it. Consider the
equivalence relation ≃± defined as

A ≃± B ⇐⇒ A = ±B,

and define the quotient set GL±
n (Z) := GLn(Z)/ ≃±. The elements of GL±

n (Z)
are classes of equivalence, each one of them contain two elements. Namely, for
A ∈ GLn(Z), one has a corresponding class [A]± ∈ GL±

n (Z), and A,−A belong
to the same class. Define the product between two classes [A]±, [B]± ∈ GL±

n (Z)
as

[A]± · [B]± := [BA]±, (1)

where BA is the result of the matrix multiplication between two representatives
B and A of the classes [B]± and [A]± respectively.

The set GL±
n (Z) together with the product defined in Equation (1) forms a

group whose identity element is [In]±, whose inverse for every element [A]± ∈
GL±

n (Z), is [A−1]± ∈ GL±
n (Z), and with the associativity property induced by

matrix multiplication associativity

([A]± ·[B]±)·[C]± = [BA]± ·[C]± = [CBA]± = [A]± ·[CB]± = [A]± ·([B]± ·[C]±).

In what follows, we drop the notation on the equivalence classes. Namely, we
write A ∈ GL±

n (Z) to indicate the class [A]± ∈ GL±
n (Z). Within the context of

LIP, when we write UTQU , we mean the quadratic form obtained by applying
any of the two representatives of [U]± ∈ GL±

n (Z) (U and −U) to Q ∈ S>0
n . The

following proposition defines the Lattice Isomorphism Problem in the quadratic
form version as a group action.

8

Proposition 1. Consider a quadratic form Q ∈ S>0
n and let [Q] be the class of

isomorphic quadratic forms to it. Then the map

⋆ : (GL±
n (Z)× [Q])→ [Q], ⋆(V,Q0) 7→ V ⋆ Q0 := V TQ0V,

defines a group action of GL±
n (Z) on [Q].

Proof. Given Q0 ∈ [Q] and V ∈ GLn(Z), then Q1 = V TQ0V is a quadratic form
equivalent to Q0, and therefore Q1 ∈ [Q]. The identity element of GL±

n (Z) fixes,
through ⋆, any element of [Q]. Finally, for U, V ∈ GL±

n (Z), we have that

(U · V) ⋆ Q0 = (V U)
T
Q0V U = UT(V TQ0V)U = U ⋆ (V TQ0V) = U ⋆ (V ⋆ Q0),

which proves the compatibility. ⊓⊔

Note that the map ⋆ is defined identically for any class of equivalent quadratic
forms [Q]. Differently form most other cryptographic group actions used in the
literature [1,30,11], in our case we have that both the base set and the group are
infinite.

Proposition 2. Let Q ∈ S>0
n be the quadratic form for a basis of a lattice L.

Then, the group action (GL±
n (Z), [Q], ⋆) is transitive and faithful.

Proof. We begin by proving the transitivity. If Q0, Q1 ∈ [Q], then Q0 and Q1 are
isomorphic to Q, that is, there exist U, V ∈ GL±

n (Z) such that Q0 = UTQU and

Q1 = V TQV . Then, one has that Q1 = (U−1V)
T
Q0U

−1V and U−1V ∈ GL±
n (Z)

maps Q0 to Q1 via the group action ⋆. This proves the transitivity property and,
hence, the equivalence class [Q] is a homogeneous space for GL±

n (Z).
We prove now the group action to be faithful by contradiction. Let U ̸= In ∈

GL±
n (Z) and assume that fixes every element of [Q]. Then for every Q0 ∈ [Q],

we have that U ⋆ Q0 = Q0. Let V ∈ GL±
n (Z) any unimodular different from the

identity and let Q1 = V ⋆ Q0. Since Q1 ∈ [Q], we have that

(V · U) ⋆ Q0 = U ⋆ Q1 = Q1 = V ⋆ Q0 = V ⋆ Q0 = V ⋆ (U ⋆ Q0) = (U · V) ⋆ Q0.

In other words, for every Q0 ∈ [Q] and every V ∈ GL±
n (Z), U and V always

commute in the group operation of GL±
n (Z). This, however happens only for

U = In. ⊓⊔

The following proposition sets a condition for the free condition to be satis-
fied.

Proposition 3. Let Q ∈ S>0
n be a quadratic form. Then, the group action

(GL±
n (Z), [Q], ⋆) is free if and only if Q is automorphism-free.

Proof. In this proof, in order to avoid confusion, we bring back the equivalence
class notation for the elements of GL±

n (Z). Assume Q to be automorphism-
free. Then, for Q0 ∈ [Q], if V TQ0V = Q0, we have that V ∈ GLn(Z) is an

9

automorphism for Q and therefore V = ±In, that is, V ∈ [In]± ∈ GL±
n (Z). On

the contrary, if for every given quadratic form Q0 ∈ [Q], [In]± is the only element
of GL±

n (Z) that fixes Q0, then Q0 has only trivial automorphisms (In and −In)
as well as every element of the class [Q]. Therefore, Q is automorphism-free. ⊓⊔

Theorem 1 introduces a new result for LIP that gives a sufficient number of
oracle queries for an adversary to invert the group action in polynomial time
and space. Given the generality of the result, we do not limit on any specific
distribution on the group GL±

n (Z) for the secret unimodular matrix. On the
contrary, concerning the distribution on the base set [Q], we need the distribution
to satisfy the following property.

Definition 15. Let D[Q] be a distribution over [Q], for Q ∈ S>0
n , and let d =

n(n+1)
2 and p ≥ d be positive integers. We say that D[Q] is p−linearly strong if,

given Q1, . . . , Qp ←− D[Q], the p × d matrix MQ whose rows are unroll(Qi) (see
definition in Section 2) is such that

Pr[rank(MQ) < d] ≤ negl(n).

Theorem 1. Let Q ∈ S>0
n and DGL±

n (Z) be a distribution over GL±
n (Z). For

d = n(n+1)
2 , let D[Q] be a d−linearly strong distribution over [Q]. Then, the group

action (GL±
n (Z), [Q], ⋆) is not a (D[Q],DGL±

n (Z), t)−weak unpredictable group ac-
tion, for any t ≥ d.

Proof. We show that the (GL±
n (Z), [Q], ⋆) is not a (D[Q],DGL±

n (Z), d)−weak un-
predictable group action by providing a polynomial-time algorithm Recover to

invert the group action. Let A be an adversary able to make d = n(n+1)
2 queries

to a randomized oracle F $
V that, when queried, samples a Q←− D[Q] and outputs

(Q,V TQV) ∈ S>0
n × S>0

n . Then, the adversary A is able to collect a list of d
pairs Q := {(Qi, V

TQiV)}i=1,...,d such that the d×d matrix MQ whose rows are
composed by unroll(Qi) is full rank with probability 1− negl(n).

We describe first a procedure Linearize, sub-routine of the main algorithm
Recover to compute the secret unimodular V . The underlying idea takes inspi-
ration from the work of Rasslan and Youssef [36].

Procedure Linearize. Consider one pair (Q,Q′ = V TQV) from the set Q. Denote
with Qi,j (resp. Q′

i,j) the (i, j)−th entry of Q (resp. Q′). Given that Q is sym-
metric, we have that Qi,j = Qj,i (resp. Q′

i,j = Q′
j,i). Then, we can write the

equation

Q′
i,j =

n∑
k=1

n∑
l=1

Qk,l ·X(i,k),(j,l) (2)

where X(i,k),(j,l) = Vi,k ·Vj,l for each i, j, k, l ∈ {1, . . . , n}, and Vi,j is the (i, j)−th
entry of V . Let us consider as baseline Equation (2) with i = j:

10

Q′
i,i =

n∑
k=1

n∑
l=k+1

2Qk,l ·X(i,k),(i,l) +

n∑
k=1

Qk,k ·X(i,k),(i,k).

Writing the above equation as a d−dimensional vector-matrix multiplication, we
get Q′

i,i = Q · xi where

Q =
[
Q1,1 2Q1,2 . . . 2Q1,n Q2,2 2Q2,3 . . . 2Q2,n . . . Qn,n

]
, and

xi =
[
X(i,1),(i,1) . . . X(i,1),(i,n) X(i,2),(i,2) . . . X(i,2),(i,n) . . . X(i,n),(i,n)

]T
.

For i ̸= j, we rewrite Equation (2) as follows:

Q′
ij =

n∑
k=1

n∑
l=k+1

2Qk,l ·
(
X(i,k),(j,l) +X(i,l),(j,k)

2

)
︸ ︷︷ ︸

Y(i,k),(j,l)

+

n∑
k=1

Qk,k ·X(i,k),(j,k). (3)

Let yi,j be the d-dimensional vector with coefficients Y(i,k),(j,l) and X(i,k),(j,k)

given by

yi,j =
[
X(i,1),(j,1) Y(i,1),(j,2) . . . Y(i,1),(j,n) X(i,2),(j,2) Y(i,1),(j,3) . . . X(i,n),(i,n)

]T
.

Then we have that Q′
i,j = Q · yi,j and

Q′

←

d-dimensional vectors

= Q

←

·

d-by-d matrix︷ ︸︸ ︷[
x1 y1,2 . . .y1,n x2 y2,3 . . . y2,n . . . xn

]
(4)

where

Q′ =
[
Q′

1,1 Q′
1,2 . . . Q′

1,n Q′
2,2 Q′

2,3 . . . Q′
2,n . . . Q′

n,n

]
.

Algorithm Recover. The procedure Linearize generates a linear system with d2

variables and d equations. Given that we have d pairs (Qi, Q
′
i) in Q, we repeat

the above technique to derive d2 linearly independent equations and, therefore,
proceed by finding the unique solution to the associated system. We describe
the algorithm to recover V below and we will refer to it as Recover:

1. For each pair (Qi, Q
′
i) in Q, apply Linearize(Qi,Q

′
i) and get the following

equation

Q′
i = Qi ·

[
x1 y1,2 . . .y1,n x2 y2,3 . . . y2,n . . . xn

]
.

2. Solve the linear systemQ
′
1
...

Q′
d

 =

Q1

...
Qd

 · [x1 y1,2 . . .y1,n x2 y2,3 . . . y2,n . . . xn

]
.

11

to retrieve x1, . . .xn as follows

z =
[
x1 y1,2 . . .y1,n x2 y2,3 . . . y2,n . . . xn

]
=

Q1

...
Qd

−1 Q

′
1
...

Q′
d

 .

By construction, solution z has rational values concerning the entries Y(i,k),(j,l)

from yi,j . In other entries different from Y(i,k),(j,l), the values are the integers
determined by X(i,k),(j,l).

3. Derive the entries of the solution matrix U determined by z by computing
first U1,1 =

√
z1,1, then Uj,1 =

zj,1

U1,1
for j ≤ n, and so on for each single entry

in z. More precisely, we have Ui,1 =
zi,1

U1,1
for each i ≤ n, and Ui,j =

zk,j

Ui,1
,

where k =
∑i−1

l=1(n− l+ 1) for each j = 1, . . . , n. We have the following two
scenarios:
(a) If Ui,1 ̸= 0 for i = 1, . . . , n then U = ±V and the algorithm terminates.
(b) If Ui,1 = 0 for some 1 ≤ i ≤ n, then the algorithm cannot recover the full

matrix U as there would be a division by zero. In this case, one samples
a unimodular matrix R using Algorithm 1 for a parameter T = O(n).
So, on computes the set Q′ := {(Q,RTQ′R) : (Q,Q′) ∈ Q} and repeats
Recover with Q′ as input. Note that MQ′ = MQ, and so rank(MQ′) = d.
If one succeeds at recovering the matrix W = UR (i.e., W has only non-
zero entries in its first column). Then one recovers ±V as U = WR−1

and the algorithm terminates. Otherwise, one tries again with a different
unimodular matrix R until it succeeds.

Memory and time complexities. Recover requires one d-dimensional matrix in-
version and one d-dimensional matrix multiplication. The last step of deriving

the entries of V takes O(n2) integer operations. Recall that d = n(n+1)
2 . Then

the time complexity of deriving V becomes O
(

n3(n+1)3

4 + n2
)
operations. Since

we need to store four d-dimensional matrices, we have a memory complexity
equal to O(4d2) = O(n2(n+ 1)2).

We are left to show that the number of tries in Step 3b in Recover is negligible
and does not grow with n. LetR1,1, . . . , Rn,1 denote the entries of the first column
of R which are uniformly distributed in [−T, T] ⊂ Z (because of Algorithm 1).
Then we have that V R has one or more zeros in its firs column if and only if
(R1,1, . . . , Rn,1) is a solution to the Diophantine equation

Vj,1x1 + Vj,2x2 + · · ·+ Vj,nxn = 0, for some 1 ≤ j ≤ n. (5)

Since V is non-singular, at least one entry per row is non-zero. Without lost of
generality, assume Vj,n ̸= 0. Then,

xn = −Vj,1

Vj,n
x1 −

Vj,2

Vj,n
x2 − · · · −

Vj,n−1

Vj,n
xn−1,

that is, xn is uniquely determined by x1, . . . , xn−1 and, weather or not (x1, . . . , xn−1)
leads or not to a solution is determined by a congruence condition modulo Vj,n.

12

Thus, for every j, there exists a rational constant 0 ≥ γj ≥ 1 such that the
number of solutions is asymptotic to γj(2T + 1)n−1. Therefore, the proportion
of solutions on all the possible vectors is asymptotic to γj/(2T + 1). Hence, the
probability that [R1,1 . . . Rn,1] is not a solution of any of Equation (5) is at least

(
1− 1

2T + 1

)n

=

(
1− 1

O(n)

)n

=

(
1− 1

cn

)n
n→∞−−−−→ e−1/c, for some c ≥ 1.

⊓⊔

Pseudorandomness of a permutation is a stronger property than unpredictabil-
ity, therefore we obtain the following corollary.

Corollary 1. Let Q ∈ S>0
n and DGL±

n (Z) be a distribution over GL±
n (Z). For

d = n(n+1)
2 , let D[Q] be a d−linearly strong distribution over [Q]. Then, the

group action (GL±
n (Z), [Q], ⋆) is not a (D[Q],DGL±

n (Z), t)−weak pseudorandom
group action, for any t ≥ d.

Theorem 1 and Corollary 1 can be easily generalized to the case of a D[Q]

being p−linearly strong, for p > d, when the adversary is able to make p or more
queries to the random oracle.

On d-Linearly Strong Distributions and Experimental Verification. We
believe that the hypothesis on the distribution D[Q] to be d−linearly strong is
realistic. Essentially, we require D[Q] to output quadratic forms that are linearly
independent from each other via the function unroll(). On the other hand, a
distribution that outputs samples that are somewhat linearly dependant would
likely come with serious security implications when used to build cryptographic
primitives. We could not prove that Ds ([Q]) (described in Definition 6, intro-
duced and used in [22]) is d-linearly strong theoretically. However, we heuristi-
cally verified that Ds ([Q]) behaves as a d-linearly strong distribution. On the
basis of this, we consider the following assumption for what comes in Section 4.

Assumption 1 For a quadratic form Q ∈ S>0
n , the Gaussian Form Distribution

Ds([Q]), for s ≥ max{λn(Q),
∥∥B∗

Q

∥∥ ·√ln(2n+ 4)/π}, is n(n+1)
2 −linearly strong.

Using Ds ([Q]) as distribution for the base set [Q] and several different distri-
butions on GL±

n (Z), we verified the correctness of Recover presented in the proof
of Theorem 1 via a sagemath implementation available as an attachment to this
manuscript.

3.1 Weak subgroups of GL(Z)

Theorem 1 shows that it is enough to have n(n+1)
2 “independent” LIP instances

sharing the same secret unimodular V to allow an efficient recovery of it. In
this section, we use this fact to uncover a new family of weak LIP instances.
Namely, if the secret unimodular matrix belongs to a commutative subgroup of

13

GL(Z) (eg. circulant matrices, powers of a matrix, ...), then it can be recovered
in polynomial time.

Let Gc ⊂ GL(Z) be a commutative group, and let V ∈ Gc. Given an LIP
instance (Q,Q′ = V TQV), one is able to construct more LIP instances sharing
the same secret unimodular matrix V (and simulate the calls to the oracle in
Theorem 1) as follows. Sample a unimodular matrix U ∈ Gc and compute

(Q̄ := UTQU, Q̄′ := UTQ′U = UTV TQV U = V TUTQUV = V TQ̄V).

Hence, from one single call to the oracle, one can efficiently generate a long
enough list of LIP instances sharing the same secret unimodular V and use
Recover described in the proof of Theorem 1 to retrieve it.

4 New Hard Problems on Quadratic Forms

Another implication of Theorem 1 is the fact that it implicitly introduces two new
LIP-equivalent computational hard problems on quadratic forms. This section
introduces those hinted two new problems and provides their polynomial-time
reductions to sLIPQ, when Q is automorphism-free.

Definition 16 (Transpose Quadratic Form Problem (TQFP)). Let L(B)
be a full-rank n-dimensional lattice and Q ∈ S>0

n be the quadratic form Q =
BTB. Given Q′ ∈ [Q], the Transpose Quadratic Form Problem is to compute

Q̂ ∈ [Q] such that Q̂ = UQUT, where U ∈ GLn(Z) satisfies Q′ = UTQU .

Definition 17 (Inverse Quadratic Form Problem (IQFP)). Let L(B) be
a full-rank n-dimensional lattice and Q ∈ S>0

n be the quadratic form Q = BTB.

Given Q′ ∈ [Q], the Inverse Quadratic Form Problem is to compute Q̂ ∈ [Q]

such that Q̂ = U−TQU−1, where U ∈ GLn(Z) satisfies Q′ = UTQU .

TQFP and IQFP accept as many solutions as the number of isomorphisms
between Q and Q′, up to the sign. For example, for the case of TQFP, the solution
set is defined as SQ′ := {Q̃V = (V U)Q(V U)

T
: V ∈ Aut (Q)}. For the specific

case of automorphism-free quadratic forms, the solution is unique (|SQ′ | = 1).
Taking Assumption 1 for true, we give in Lemma 1 and Lemma 2 polynomial-
time reductions from sLIPQ to TQFP and IQFP respectively. We implemented
and successfully tested these reductions in a sagemath script available as an
attachment to this manuscript.

Lemma 1 (From sLIPQ to TQFP). Let Q ∈ S>0
n be an automorphism-free

quadratic form. Given an oracle OTQFP that solves TQFP in time T0, there is
an algorithm that solves sLIPQ in expected time O

(
n2(T0 + T1) + n6

)
, where

T1 is the time complexity of one call to Ds ([Q]), for s ≥ max{λn(Q),
∥∥B∗

Q

∥∥ ·√
ln(2n+ 4)/π}.

14

Proof. Let us fix the same setup as Definition 16, then we have Q and Q′ =
V TQV , where Q′ ∈ [Q]. For simplicity, we assume that OTQFP always solves
TQFP for isomorphic input Q,Q′. We give an algorithm which solves sLIPQ with

a polynomial number of calls to OTQFP as follows. Let us set d = n(n+1)
2 .

1. Forward (Q′, Q) to OTQFP and receive the response Q̂ = V QV T.
2. (a) Sample a quadratic form Q̄ = WTQW along with W ∈ GLn(Z) from

Ds ([Q]).

(b) Compute Q′′ = WQ̂WT = WVQV TWT and send (Q′′, Q) to OTQFP.
Record its response as Q̄ = V TWTQWV = V TQ̄V .

(c) Compute Q′′′ = WQ′WT = WV TQVWT and send (Q′′′, Q) to OTQFP.

Record its response as Q̂ = VWTQWV T = V Q̄V T.
3. Repeat Step 2 a necessary number of times, for different unimodular W , to

derive a set Q =
{(

Q
(i)
0 , Q

(i)
1

)
, i = 1, . . . , d

}
such that the d×d matrix MQ

whose rows are unroll
(
Q

(i)
0

)
is full rank.

4. Retrieve V ←− Recover(Q) as described in Theorem 1.

Running time. Let us assume both matrix multiplication and inversion take
O(n3) integer operations. Step 1 costs one call to the oracle OTQFP. Step 2
samples one random unimodular matrix, makes four matrix multiplications, and

two queries to OTQFP. Now, Step 2 must be repeated O
(

n(n+1)
2

)
times to derive

enough linear equations (Step 3). Then Steps 1 to 3 has a complexity equals to

O

(
T0 +

n(n+ 1)

2

(
2T0 + T1 + 4n3

))
= O

(
n2(T0 + T1) + n5

)
.

Step 4 requires O
(
n6

)
operations to retrieve V , which gives a total asymp-

totic time complexity of O
(
n2(T0 + T1) + n6

)
.

⊓⊔

Remark 2. Regarding Lemma 1, in practice one can reduce the number of calls
to OTQFP by a factor of n by exploiting the following. Let Q,Q′, Q̂ ∈ S>0

n be

equivalent quadratic forms with Q′ = V TQV and Q̂ = V QV T, for some unimod-
ular matrix V ∈ GLn(Z). Then, one can compute the quadratic forms

Q1 := Q′QQ′ = V TQV QV TQV, Q0 := QQ̂Q,

and have that (Q0, Q1) is such that Q1 = V TQ0V . Iteratively, one can define

Q
(i)
1 := Q′(QQ′)i, Q

(i)
0 := Q(Q̂Q)i,

with Q
(i)
1 = V TQ

(i)
0 V , for i ≥ 0. The Cayley-Hamilton theorem ensures that, for

any square matrix M with n rows over a commutative ring, we have that
Mn ∈ Span{In,M,M2, . . . ,Mn−1} [2, §7.11]. Therefore, with the above ap-
proach, we can get a set Q =

{
(Qi, Q

′
i = V TQiV)

}p

i=1
of size p ≤ n from the

15

knowledge of Q′ = V TQV and Q̂ = V QV T. Using this trick in Step 2 of the
proof of Lemma 1, and assuming that p reaches n with high probability, one can
reduce the number of calls to OTQFP by a factor of n. In this case, taking also
into consideration the number of matrix multiplications, the total cost of the
reduction in Lemma 1 would be Õ(n(T0 + T1) + n6).2 In our sagemath imple-
mentation, we implemented and tested the variant of the reduction in Lemma 1
that uses such optimization in Step 2.

Lemma 2 (From sLIPQ to IQFP). Let Q ∈ S>0
n be an automorphism-free

quadratic form. Given an oracle OIQFP that solves IQFP in time T0, there exists
an algorithm that solves sLIPQ in expected time O

(
n2(T0 + T1) + n6

)
, where

T1 is the time complexity of one all to Ds ([Q]), for s ≥ max{λn(Q),
∥∥B∗

Q

∥∥ ·√
ln(2n+ 4)/π}.

Proof. Let us fix the same setup as Definition 17, then we have Q and Q′ =
V TQV , where Q′ ∈ [Q]. For simplicity, we assume that OIQFP always solves
IQFP, for a isomorphic input Q,Q′. We give an algorithm which solves sLIPQ

with a polynomial number of calls to OIQFP as follows. Let us set d = n(n+1)
2 .

1. Forward (Q′, Q) to OIQFP and receive the response Q̂ = V−TQV −1.
2. (a) Sample a quadratic form Q̄ = WTQW along with W ∈ GLn(Z) from

Ds ([Q]).
(b) Calculate Z = W−1.

(c) Compute Q′′ = ZTQ̂Z = ZTV QV TZ and send (Q′′, Q) to OIQFP. Record

its response as Q̃ = V TWTQWV = V TQ̄V .
3. Repeat Step 2 a necessary number of times, for different unimodular W , to

derive a set Q =
{(

Q
(i)
0 , Q

(i)
1

)
, i = 1, . . . , d

}
such that the d×d matrix MQ

whose rows are unroll
(
Q

(i)
0

)
is full rank.

4. Retrieve V ←− Recover(Q) as described in Theorem 1.

Running time. The cost analysis is analogous to Lemma 1, with the addition of
a matrix inversion in Step 2. However, this is negligible on the total cost of the
reduction, that is O

(
n2(T0 + T1) + n6

)
.

⊓⊔

To illustrate the above reductions from Lemma 1 and Lemma 2, we simulate
the algorithms concerning TQFP and IQFP using a sagemath library [39]; we
provide our code as supplementary material.

Remark 3. An adversary having access to both OTQFP and OIQFP can solve sLIPQ

with only one query to each of the two oracles in polynomial time. Indeed, let
Q′ = UTQU . Query OTQFP and OIQFP to obtain

Q1 = UQUT and Q2 = U−TQU−1.

2 We have Õ(·) instead of O(·) because of the increase of the integer coefficients size
when applying this optimization trick.

16

The product of these gives

Q1Q2 = UQ2U−1.

Now, the key observation here is that U can be retrieved by solving an IMSP
instance (see Definition 4) with A = Q2 and B = Q1Q2 as input for which
there exists a probabilistic polynomial time [9,26]. Since we assume Q has trivial
automorphism, the algorithm is expected to output ±U .

Remark 4. Lemma 1 and Lemma 2 can be generalized to the case of lattices
with a non-trivial automorphism group. However, in this case, the solutions to
TQFP and IQFP are not unique, but there are as many solutions as the number
of automorphisms divided by 2. Consider the case of a TQFP oracle OTQFP that
returns one of the possible solutions uniformly at random. Then, the algorithm
in Lemma 1 would allow retrieving the correct solution only when, for every
query to the algorithm, it returns exactly the solution that we are looking for.
Therefore, given that we require n correct solutions from OTQFP, one must repeat
on average the whole algorithm (|Aut (Q)|/2)n times.

5 Conclusions and Future Directions

In this work we formalized lattice isomorphism as a group action and proved
some properties of it. We introduced a result that gives the sufficient number of
instances sharing the same secret for the problem to be solvable in polynomial
time. The consequences of our work include a new family of weak isomorphisms
and the fact that secret-keys in this context must not be reused in combinations
with other public keys.

As a future work, it would be interesting to investigate whether an analogous
result can be obtained also for other group actions and equivalence problems (e.g.
code equivalence). More in general, it would be interesting to investigate whether
other group actions also come with a similar limitation on the number of queries
allowed to an adversary. We introduced two new hard problems and applied our
result to prove them to be equivalent to sLIP for the case of quadratic forms
with trivial automorphism group. We also leave as a future work to investigate
the possible applications of these in building new cryptographic primitives.

Acknowledgments The authors thank Keita Xagawa and Victor Mateu for fruit-
ful discussions on the topic. We also thank Elena Kirshanova and anonymous
reviewers for the useful comments on a earlier version of this manuscript.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II.
LNCS, vol. 12492, pp. 411–439. Springer, Heidelberg (Dec 2020). https://doi.org/
10.1007/978-3-030-64834-3 14

17

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14

2. Apostol, T.M.: Calculus, Vol. II, Multi-Variable Calculus and Linear Algebra.
Blaisdell, Waltham, MA (1969)

3. Banegas, G., Bernstein, D.J., Campos, F., Chou, T., Lange, T., Meyer, M.,
Smith, B., Sotáková, J.: CTIDH: faster constant-time CSIDH. IACR TCHES
2021(4), 351–387 (2021). https://doi.org/10.46586/tches.v2021.i4.351-387, https:
//tches.iacr.org/index.php/TCHES/article/view/9069

4. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how
hard are rotations of zn? algorithms and cryptography with the simplest lattice.
In: Advances in Cryptology – EUROCRYPT 2023: 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part V. p. 252–281. Springer-Verlag, Berlin,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4 9, https://doi.org/
10.1007/978-3-031-30589-4 9

5. Beullens, W., Disson, L., Pedersen, R., Vercauteren, F.: CSI-RAShi: Distributed
key generation for CSIDH. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryp-
tography - 12th International Workshop, PQCrypto 2021. pp. 257–276. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-030-81293-5 14

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34578-5 9

7. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: Code-based
signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT
20. LNCS, vol. 12174, pp. 45–65. Springer, Heidelberg (Jul 2020). https://doi.org/
10.1007/978-3-030-51938-4 3

8. Blanks, T.L., Miller, S.D.: Generating cryptographically-strong random lattice
bases and recognizing rotations of Zn. In: Cheon, J.H., Tillich, J.P. (eds.) Post-
Quantum Cryptography. pp. 319–338. Springer International Publishing, Cham
(2021)

9. Bley, W., Hofmann, T., Johnston, H.: Computation of lattice isomorphisms and
the integral matrix similarity problem. Forum of Mathematics, Sigma 10, e87 1–36
(2022). https://doi.org/10.1017/fms.2022.74, https://doi.org/10.1017/fms.2022.74

10. Bläser, M., Chen, Z., Duong, D.H., Joux, A., Nguyen, N.T., Plantard, T., Qiao,
Y., Susilo, W., Tang, G.: On digital signatures based on isomorphism problems:
Qrom security, ring signatures, and applications. Cryptology ePrint Archive, Pa-
per 2022/1184 (2022), https://eprint.iacr.org/2022/1184, https://eprint.iacr.org/
2022/1184

11. Borin, G., Persichetti, E., Santini, P.: Zero-knowledge proofs from the action sub-
graph. Cryptology ePrint Archive, Paper 2023/718 (2023), https://eprint.iacr.org/
2023/718, https://eprint.iacr.org/2023/718

12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
45th ACM STOC. pp. 575–584. ACM Press (Jun 2013). https://doi.org/10.1145/
2488608.2488680

13. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding and Tillich [19], pp.
111–129. https://doi.org/10.1007/978-3-030-44223-1 7

14. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(Dec 2018). https://doi.org/10.1007/978-3-030-03332-3 15

18

https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-031-30589-4_9
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1017/fms.2022.74
https://doi.org/10.1017/fms.2022.74
https://doi.org/10.1017/fms.2022.74
https://eprint.iacr.org/2022/1184
https://eprint.iacr.org/2022/1184
https://eprint.iacr.org/2022/1184
https://eprint.iacr.org/2023/718
https://eprint.iacr.org/2023/718
https://eprint.iacr.org/2023/718
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15

15. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218
26

16. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper
2006/291 (2006), https://eprint.iacr.org/2006/291, https://eprint.iacr.org/2006/
291

17. Cozzo, D., Smart, N.P.: Sashimi: Cutting up CSI-FiSh secret keys to produce an
actively secure distributed signing protocol. In: Ding and Tillich [19], pp. 169–186.
https://doi.org/10.1007/978-3-030-44223-1 10

18. De Feo, L., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: SCALLOP: Scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023, Part I. LNCS, vol. 13940, pp. 345–375. Springer, Heidelberg (May
2023). https://doi.org/10.1007/978-3-031-31368-4 13

19. Ding, J., Tillich, J.P. (eds.): Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020. Springer, Heidelberg (2020)

20. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(May 2007). https://doi.org/10.1007/978-3-540-72540-4 31

21. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.P.J.: Hawk: Module
LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D.
(eds.) ASIACRYPT 2022, Part IV. LNCS, vol. 13794, pp. 65–94. Springer, Heidel-
berg (Dec 2022). https://doi.org/10.1007/978-3-031-22972-5 3

22. Ducas, L., van Woerden, W.P.J.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman and Dziembowski
[23], pp. 643–673. https://doi.org/10.1007/978-3-031-07082-2 23

23. Dunkelman, O., Dziembowski, S. (eds.): EUROCRYPT 2022, Part III, LNCS, vol.
13277. Springer, Heidelberg (May / Jun 2022)

24. Eick, B., Hofmann, T., O’Brien, E.A.: The conjugacy problem in GL(n,Z). J. Lond.
Math. Soc. 100(3), 731–756 (2019). https://doi.org/10.1112/jlms.12246, https://
doi.org/10.1112/jlms.12246

25. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: Efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 157–186.
Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388-6 6

26. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: Computer Alge-
bra and Number Theory Packages for the Julia Programming Language. In: Pro-
ceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic
Computation. pp. 157–164. ISSAC ’17, ACM, New York, NY, USA (2017). https://
doi.org/10.1145/3087604.3087611, https://doi.acm.org/10.1145/3087604.3087611

27. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7 20

28. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Chekuri, C. (ed.)
25th SODA. pp. 391–404. ACM-SIAM (Jan 2014). https://doi.org/10.1137/1.
9781611973402.29

29. Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: A
candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A. (eds.)
TCC 2019, Part I. LNCS, vol. 11891, pp. 251–281. Springer, Heidelberg (Dec 2019).
https://doi.org/10.1007/978-3-030-36030-6 11

19

https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/11535218_26
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1112/jlms.12246
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.org/10.1145/3087604.3087611
https://doi.acm.org/10.1145/3087604.3087611
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1137/1.9781611973402.29
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11

30. Joux, A.: Mpc in the head for isomorphisms and group actions. Cryptology ePrint
Archive, Paper 2023/664 (2023), https://eprint.iacr.org/2023/664, https://eprint.
iacr.org/2023/664

31. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective, vol. 671 (01 2002). https://doi.org/10.1007/978-1-4615-0897-7

32. Myasnikov, A.D., Ushakov, A.: Cryptanalysis of matrix conjugation schemes.
J. Math. Cryptol. 8(2), 95–114 (2014). https://doi.org/10.1515/jmc-2012-0033,
https://doi.org/10.1515/jmc-2012-0033

33. NIST: Post-quantum cryptography: Digital signature schemes. https://csrc.nist.
gov/projects/pqc-dig-sig

34. NIST: Post-quantum cryptography standardization. https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022

35. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EU-
ROCRYPT’96. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (May 1996).
https://doi.org/10.1007/3-540-68339-9 4

36. Rasslan, M.M.N., Youssef, A.M.: Cryptanalysis of a Public Key Encryption
Scheme Using Ergodic Matrices. IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. 94-A(2), 853–854 (2011). https://doi.org/10.1587/transfun.E94.A.853,
https://doi.org/10.1587/transfun.E94.A.853

37. Sjödin, J.: Weak Pseudorandomness and Unpredictability. Ph.D. thesis, ETH
Zurich (2007), eTH Series in Information Security and Cryptography, vol. 8,
Hartung-Gorre Verlag, ISBN 3-86628-088-2

38. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical
post-quantum signature schemes from isomorphism problems of trilinear forms.
In: Dunkelman and Dziembowski [23], pp. 582–612. https://doi.org/10.1007/978-
3-031-07082-2 21

39. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.7) (2022), https://www.sagemath.org

20

https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1515/jmc-2012-0033
https://doi.org/10.1515/jmc-2012-0033
https://doi.org/10.1515/jmc-2012-0033
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1587/transfun.E94.A.853
https://doi.org/10.1587/transfun.E94.A.853
https://doi.org/10.1587/transfun.E94.A.853
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21

	Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms

README.md

Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms

Proof-of-concept implementation using **sagemath**.

Requirements:

1. Ensure you have the following files:

 1. `algorithms.py`;
 2. `TestTheorem1.py`;
 3. `TestLemma1.py`;
 3. `TestRemark2.py`; and
 4. `TestLemma2.py`.

2. **Sagemath** installed

Description

The script requires as argument inputs:

- the matrix dimension `n`,
- a verbose flag (optional). A single example is excutated in verbose mode.

Example of run concerning Theorem 1

This example makes one oracle call.

```bash
% sage -python TestTheorem1.py -h
usage: TestTheorem1.py [-h] -n DIMENSION [-v]

Parses command.

options:
  -h, --help            show this help message and exit
  -n DIMENSION, --dimension DIMENSION
                        Matrix dimension: n-by-n matrices
  -v, --verbose         verbose help



% sage -python TestTheorem1.py -n 4 --verbose

# n:      4
# Oracle: Randomized oracle as in Theorem 1
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[41 22 33 40]
[22 58 34 59]
[33 34 46 36]
[40 59 36 77]

q_ :
[  7041   7882  -7794  -2799]
[  7882  26941 -22501  -5397]
[ -7794 -22501  19255   4746]
[ -2799  -5397   4746   1431]

########################### Secret unimodular matrix

u :
[  9  -2  -3  -1]
[ -8   5  -5   3]
[  5  14 -12  -3]
[  4   7  -2  -4]

########################### Recovered unimodular matrix

recovered_u :
[  9  -2  -3  -1]
[ -8   5  -5   3]
[  5  14 -12  -3]
[  4   7  -2  -4]

########################### Complexity

# 0 group action calls
# 9 oracle calls concerning U (9 calls to Dₛ([Q]))
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.393379654000455 seconds
```

Example of run concerning Lemma 1

This example makes **O(n²)** oracle calls.

```bash
% sage -python TestLemma1.py -n 4 --verbose 

# n:      4
# Oracle: TQFP oracle as in Lemma 1
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[50 45 45 25]
[45 75 61 61]
[45 61 65 57]
[25 61 57 67]

q_ :
[ 10317  -1693 -13723  -2602]
[ -1693    565   2051    208]
[-13723   2051  18492   3601]
[ -2602    208   3601    825]

########################### Secret unimodular matrix

u :
[ -8   2  -1   3]
[  7  -6   1   1]
[  7   1   1  -5]
[  3   2 -18  -1]

########################### Recovered unimodular matrix

recovered_u :
[ 8 -2  1 -3]
[-7  6 -1 -1]
[-7 -1 -1  5]
[-3 -2 18  1]

########################### Complexity

# 10 group action calls (10 of them concern with input Vᵀ
# 10 oracle calls concerning U
# 10 calls to Dₛ([Q])
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.9337206179989153 seconds
```

Example of run concerning Remark 2

This example makes **O(n)** oracle calls.

```bash
% sage -python TestRemark2.py -h           
usage: TestRemark2.py [-h] -n DIMENSION [-v]

Parses command.

options:
  -h, --help            show this help message and exit
  -n DIMENSION, --dimension DIMENSION
                        Matrix dimension: n-by-n matrices
  -v, --verbose         verbose help
chi-dominguez@JesusJaviersMBP LIP-GA % sage -python TestRemark2.py -n 4 --verbose

# n:      4
# Oracle: TQFP oracle as in Lemma 1 (optimized according to Remark 2)
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[50 37 45 40]
[37 42 44 41]
[45 44 61 46]
[40 41 46 50]

q_ :
[ 8183  1072 -3994  -289]
[ 1072   371 -1161    -1]
[-3994 -1161  4425   -94]
[ -289    -1   -94    41]

########################### Secret unimodular matrix

u :
[ 10  -1   3  -1]
[ -4  -4   4   1]
[  1   1   3  -1]
[-17   1   0   1]

########################### Recovered unimodular matrix

recovered_u :
[ 10  -1   3  -1]
[ -4  -4   4   1]
[  1   1   3  -1]
[-17   1   0   1]

########################### Complexity

# 3 group action calls (3 of them concern with input Vᵀ)
# 3 oracle calls concerning U
# 3 oracle calls concerning Uᵀ
# 3 calls to Dₛ([Q])
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.1489530990002095 seconds
```

Example of run concerning Lemma 2

This example makes **O(n²)** oracle calls.

```bash
% sage -python TestLemma2.py -h             
usage: TestLemma2.py [-h] -n DIMENSION [-v]

Parses command.

options:
  -h, --help            show this help message and exit
  -n DIMENSION, --dimension DIMENSION
                        Matrix dimension: n-by-n matrices
  -v, --verbose         verbose help
chi-dominguez@JesusJaviersMBP LIP-GA % sage -python TestLemma2.py -n 4 --verbose

# n:      4
# Oracle: TQFP oracle as in Lemma 1
# Verbose:  True

# Random lattices constructed with non-trivial automorphism:  0

########################### Public parameters

q :
[27 18 33 27]
[18 23 40 29]
[33 40 77 37]
[27 29 37 66]

q_ :
[ 5556  1581 -5078 -4709]
[ 1581  1809 -2462 -2393]
[-5078 -2462  5404  5092]
[-4709 -2393  5092  4807]

########################### Secret unimodular matrix

u :
[ 9  3 -9 -8]
[-6  1  3  3]
[ 3 -5  2  2]
[ 5  5 -7 -7]

########################### Recovered unimodular matrix

recovered_u :
[ 9  3 -9 -8]
[-6  1  3  3]
[ 3 -5  2  2]
[ 5  5 -7 -7]

########################### Complexity

# 10 group action calls (10 of them concern with input Vᵀ
# 10 oracle calls concerning U
# 10 calls to Dₛ([Q])
# 1 calls to Recover()
# 0 calls to SampleUₜ()

########################### It took 1.1566796070001146 seconds
```

Testing 25 random instances

Just run (for example):

```bash
% sage -python TestTheorem1.py -n 4
% sage -python TestLemma1.py -n 4
% sage -python TestRemark2.py -n 4
% sage -python TestLemma2.py -n 4
```

Large instances can take considerable time

Running for a large lattice could take a while.
For example, see below for random 16-dimensional.

1. `% sage -python TestTheorem1.py -n 16 --verbose` takes about **13** seconds;
2. `% sage -python TestLemma1.py -n 16 --verbose` takes about **15** seconds;
3. `% sage -python TestRemark2.py -n 16 --verbose` takes about **163** seconds; and
4. `% sage -python TestLemma2.py -n 16 --verboseP` takes about **55** seconds.

README.pdf

Contents
Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms 1

Requirements: . 1
Description . 1

Example of run concerning Theorem 1 . 1
Example of run concerning Lemma 1 . 2
Example of run concerning Remark 2 . 3
Example of run concerning Lemma 2 . 4
Testing 25 random instances . 5
Large instances can take considerable time . 5

Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms
Proof-of-concept implementation using sagemath.

Requirements:
1. Ensure you have the following files:

1. algorithms.py;
2. TestTheorem1.py;
3. TestLemma1.py;
4. TestRemark2.py; and
5. TestLemma2.py.

2. Sagemath installed

Description
The script requires as argument inputs:

• the matrix dimension n,
• a verbose flag (optional). A single example is excutated in verbose mode.

Example of run concerning Theorem 1

This example makes one oracle call.

1 % sage -python TestTheorem1.py -h
2 usage: TestTheorem1.py [-h] -n DIMENSION [-v]
3
4 Parses command.
5
6 options:
7 -h, --help show this help message and exit
8 -n DIMENSION , --dimension DIMENSION
9 Matrix dimension: n-by-n matrices

10 -v, --verbose verbose help
11
12
13
14 % sage -python TestTheorem1.py -n 4 --verbose
15
16 # n: 4
17 # Oracle: Randomized oracle as in Theorem 1
18 # Verbose: True
19
20 # Random lattices constructed with non-trivial automorphism: 0
21
22 ########################### Public parameters

1

23
24 q :
25 [41 22 33 40]
26 [22 58 34 59]
27 [33 34 46 36]
28 [40 59 36 77]
29
30 q_ :
31 [7041 7882 -7794 -2799]
32 [7882 26941 -22501 -5397]
33 [-7794 -22501 19255 4746]
34 [-2799 -5397 4746 1431]
35
36 ########################### Secret unimodular matrix
37
38 u :
39 [9 -2 -3 -1]
40 [-8 5 -5 3]
41 [5 14 -12 -3]
42 [4 7 -2 -4]
43
44 ########################### Recovered unimodular matrix
45
46 recovered_u :
47 [9 -2 -3 -1]
48 [-8 5 -5 3]
49 [5 14 -12 -3]
50 [4 7 -2 -4]
51
52 ########################### Complexity
53
54 # 0 group action calls
55 # 9 oracle calls concerning U (9 calls tosD([Q]))
56 # 1 calls to Recover()
57 # 0 calls totSampleU()
58
59 ########################### It took 1.393379654000455 seconds

Example of run concerning Lemma 1

This example makes O(n²) oracle calls.

1 % sage -python TestLemma1.py -n 4 --verbose
2
3 # n: 4
4 # Oracle: TQFP oracle as in Lemma 1
5 # Verbose: True
6
7 # Random lattices constructed with non-trivial automorphism: 0
8
9 ########################### Public parameters

10
11 q :
12 [50 45 45 25]
13 [45 75 61 61]
14 [45 61 65 57]
15 [25 61 57 67]
16
17 q_ :

2

18 [10317 -1693 -13723 -2602]
19 [-1693 565 2051 208]
20 [-13723 2051 18492 3601]
21 [-2602 208 3601 825]
22
23 ########################### Secret unimodular matrix
24
25 u :
26 [-8 2 -1 3]
27 [7 -6 1 1]
28 [7 1 1 -5]
29 [3 2 -18 -1]
30
31 ########################### Recovered unimodular matrix
32
33 recovered_u :
34 [8 -2 1 -3]
35 [-7 6 -1 -1]
36 [-7 -1 -1 5]
37 [-3 -2 18 1]
38
39 ########################### Complexity
40
41 # 10 group action calls (10 of them concern with inputTV
42 # 10 oracle calls concerning U
43 # 10 calls tosD([Q])
44 # 1 calls to Recover()
45 # 0 calls totSampleU()
46
47 ########################### It took 1.9337206179989153 seconds

Example of run concerning Remark 2

This example makes O(n) oracle calls.

1 % sage -python TestRemark2.py -h
2 usage: TestRemark2.py [-h] -n DIMENSION [-v]
3
4 Parses command.
5
6 options:
7 -h, --help show this help message and exit
8 -n DIMENSION , --dimension DIMENSION
9 Matrix dimension: n-by-n matrices

10 -v, --verbose verbose help
11 chi-dominguez@JesusJaviersMBP LIP-GA % sage -python TestRemark2.py -n 4 --verbose
12
13 # n: 4
14 # Oracle: TQFP oracle as in Lemma 1 (optimized according to Remark 2)
15 # Verbose: True
16
17 # Random lattices constructed with non-trivial automorphism: 0
18
19 ########################### Public parameters
20
21 q :
22 [50 37 45 40]
23 [37 42 44 41]
24 [45 44 61 46]

3

25 [40 41 46 50]
26
27 q_ :
28 [8183 1072 -3994 -289]
29 [1072 371 -1161 -1]
30 [-3994 -1161 4425 -94]
31 [-289 -1 -94 41]
32
33 ########################### Secret unimodular matrix
34
35 u :
36 [10 -1 3 -1]
37 [-4 -4 4 1]
38 [1 1 3 -1]
39 [-17 1 0 1]
40
41 ########################### Recovered unimodular matrix
42
43 recovered_u :
44 [10 -1 3 -1]
45 [-4 -4 4 1]
46 [1 1 3 -1]
47 [-17 1 0 1]
48
49 ########################### Complexity
50
51 # 3 group action calls (3 of them concern with inputTV)
52 # 3 oracle calls concerning U
53 # 3 oracle calls concerningTU
54 # 3 calls tosD([Q])
55 # 1 calls to Recover()
56 # 0 calls totSampleU()
57
58 ########################### It took 1.1489530990002095 seconds

Example of run concerning Lemma 2

This example makes O(n²) oracle calls.

1 % sage -python TestLemma2.py -h
2 usage: TestLemma2.py [-h] -n DIMENSION [-v]
3
4 Parses command.
5
6 options:
7 -h, --help show this help message and exit
8 -n DIMENSION , --dimension DIMENSION
9 Matrix dimension: n-by-n matrices

10 -v, --verbose verbose help
11 chi-dominguez@JesusJaviersMBP LIP-GA % sage -python TestLemma2.py -n 4 --verbose
12
13 # n: 4
14 # Oracle: TQFP oracle as in Lemma 1
15 # Verbose: True
16
17 # Random lattices constructed with non-trivial automorphism: 0
18
19 ########################### Public parameters
20

4

21 q :
22 [27 18 33 27]
23 [18 23 40 29]
24 [33 40 77 37]
25 [27 29 37 66]
26
27 q_ :
28 [5556 1581 -5078 -4709]
29 [1581 1809 -2462 -2393]
30 [-5078 -2462 5404 5092]
31 [-4709 -2393 5092 4807]
32
33 ########################### Secret unimodular matrix
34
35 u :
36 [9 3 -9 -8]
37 [-6 1 3 3]
38 [3 -5 2 2]
39 [5 5 -7 -7]
40
41 ########################### Recovered unimodular matrix
42
43 recovered_u :
44 [9 3 -9 -8]
45 [-6 1 3 3]
46 [3 -5 2 2]
47 [5 5 -7 -7]
48
49 ########################### Complexity
50
51 # 10 group action calls (10 of them concern with inputTV
52 # 10 oracle calls concerning U
53 # 10 calls tosD([Q])
54 # 1 calls to Recover()
55 # 0 calls totSampleU()
56
57 ########################### It took 1.1566796070001146 seconds

Testing 25 random instances

Just run (for example):

1 % sage -python TestTheorem1.py -n 4
2 % sage -python TestLemma1.py -n 4
3 % sage -python TestRemark2.py -n 4
4 % sage -python TestLemma2.py -n 4

Large instances can take considerable time

Running for a large lattice could take a while. For example, see below for random 16-dimensional.

1. % sage -python TestTheorem1.py -n 16 --verbose takes about 13 seconds;
2. % sage -python TestLemma1.py -n 16 --verbose takes about 15 seconds;
3. % sage -python TestRemark2.py -n 16 --verbose takes about 163 seconds; and
4. % sage -python TestLemma2.py -n 16 --verboseP takes about 55 seconds.

5

			Lattice Isomorphism as a Group Action and Hard Problems on Quadratic Forms

			Requirements:

			Description

			Example of run concerning Theorem 1

			Example of run concerning Lemma 1

			Example of run concerning Remark 2

			Example of run concerning Lemma 2

			Testing 25 random instances

			Large instances can take considerable time

__MACOSX/._README.pdf

TestLemma1.py

#!/usr/bin/sage -python
-*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
 algorithm,
 arguments,
 counter,
 group_action,
 print_matrix,
 matrix,
 recover,
 reduce,
 sampling_quadratic_form,
 sampling_from_dsq,
 sampling_unimodular_matrix
)

from sage.all import (
 ZZ,
 e,
 log,
 pi,
 sqrt,
 identity_matrix
)

@counter
def main():
 # Setup
 n = arguments(sys.argv[1:]).dimension
 verbose = arguments(sys.argv[1:]).verbose

 if main.count == 1:
 print(f'\n# n: \t{n}')
 print(f'# Oracle:\tTQFP oracle as in Lemma 1')
 print(f'# Verbose:\t{verbose}')

 # Instance
 q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
 b, _ = q.cholesky().gram_schmidt()
 s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
 assert (q.is_symmetric())
 assert (q == q.transpose())

 u, q_ = sampling_from_dsq(q, n, s)
 assert q_ == group_action(u, q)

 # Set to zero counters
 group_action.count = 0
 sampling_from_dsq.count = 0
 recover.count = 0
 sampling_unimodular_matrix.count = 0

 if verbose:
 print(f'{"#" * 27} Public parameters')
 print_matrix(q, 'q')
 print_matrix(q_, 'q_')
 print(f'\n{"#" * 27} Secret unimodular matrix')
 print_matrix(u, 'u')

 # Main calculations
 @counter
 def function(v: matrix, p: matrix): # It computes: V×Q×Vᵀ
 return group_action(v.transpose(), p)

 # Decorate oracle_call() with the counter() decorator
 @counter
 def oracle_call(v: matrix):
 # It simulates: given (Vᵀ×U)×Q×(Uᵀ×V), returns Uᵀ×(V×Q×Vᵀ)×U
 w = random_automorphism().transpose()
 assert w.transpose() * q * w == q
 # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
 _q = v * q * v.transpose()
 return (w * u).transpose() * _q * (w * u)

 recovered_u = algorithm(q, n, s, function, (oracle_call,))

 # Validate solution
 assert recovered_u.det() ** 2 == 1
 assert recovered_u == u or recovered_u == -u
 assert recovered_u.transpose() * q * recovered_u == q_

 # Print info
 if not verbose:
 print(f'\n{"#" * 27} iteration {main.count}')
 else:
 print(f'\n{"#" * 27} Recovered unimodular matrix')
 print_matrix(recovered_u, "recovered_u")
 print(f'\n{"#" * 27} Complexity\n')

 print(f'# {group_action.count} group action calls ({function.count} of them concern with input Vᵀ')
 print(f'# {oracle_call.count} oracle calls concerning U')
 print(f'# {sampling_from_dsq.count} calls to Dₛ([Q])')
 print(f'# {recover.count} calls to Recover()')
 print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')

if __name__ == '__main__':
 # main()
 tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
 print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')

TestLemma2.py

#!/usr/bin/sage -python
-*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
 algorithm,
 arguments,
 counter,
 group_action,
 print_matrix,
 matrix,
 recover,
 reduce,
 sampling_quadratic_form,
 sampling_from_dsq,
 sampling_unimodular_matrix
)

from sage.all import (
 ZZ,
 e,
 log,
 pi,
 sqrt,
 identity_matrix
)

@counter
def main():
 # Setup
 n = arguments(sys.argv[1:]).dimension
 verbose = arguments(sys.argv[1:]).verbose

 if main.count == 1:
 print(f'\n# n: \t{n}')
 print(f'# Oracle:\tTQFP oracle as in Lemma 1')
 print(f'# Verbose:\t{verbose}')

 # Instance
 q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
 b, _ = q.cholesky().gram_schmidt()
 s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
 assert (q.is_symmetric())
 assert (q == q.transpose())

 u, q_ = sampling_from_dsq(q, n, s)
 assert q_ == group_action(u, q)

 # Set to zero counters
 group_action.count = 0
 sampling_from_dsq.count = 0
 recover.count = 0
 sampling_unimodular_matrix.count = 0

 if verbose:
 print(f'{"#" * 27} Public parameters')
 print_matrix(q, 'q')
 print_matrix(q_, 'q_')
 print(f'\n{"#" * 27} Secret unimodular matrix')
 print_matrix(u, 'u')

 # Main calculations
 # Decorate function() with the counter() decorator
 @counter
 def function(v, p): # It computes: (V⁻¹)ᵀ×Q×(V⁻¹)
 return group_action(v.inverse(), p)

 # Decorate oracle_call() with the counter() decorator
 @counter
 def oracle_call(v: matrix):
 # It simulates: given [Vᵀ×(U⁻¹)ᵀ]×Q×[(U⁻¹)×V], returns Uᵀ×((V⁻¹)ᵀ×Q×(V⁻¹))×U
 w = random_automorphism().transpose()
 assert w.transpose() * q * w == q
 # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
 v_ = v.inverse()
 q = v.transpose() * q * v_
 return (w * u).transpose() * _q * (w * u)

 recovered_u = algorithm(q, n, s, function, (oracle_call,))

 # Validate solution
 assert recovered_u.det() ** 2 == 1
 assert recovered_u == u or recovered_u == -u
 assert recovered_u.transpose() * q * recovered_u == q_

 # Print info
 if not verbose:
 print(f'\n{"#" * 27} iteration {main.count}')
 else:
 print(f'\n{"#" * 27} Recovered unimodular matrix')
 print_matrix(recovered_u, "recovered_u")
 print(f'\n{"#" * 27} Complexity\n')

 print(f'# {group_action.count} group action calls ({function.count} of them concern with input Vᵀ')
 print(f'# {oracle_call.count} oracle calls concerning U')
 print(f'# {sampling_from_dsq.count} calls to Dₛ([Q])')
 print(f'# {recover.count} calls to Recover()')
 print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')

if __name__ == '__main__':
 # main()
 tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
 print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')

TestRemark2.py

#!/usr/bin/sage -python
-*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
 algorithm,
 arguments,
 counter,
 group_action,
 print_matrix,
 matrix,
 recover,
 reduce,
 sampling_quadratic_form,
 sampling_from_dsq,
 sampling_unimodular_matrix
)

from sage.all import (
 ZZ,
 e,
 log,
 pi,
 sqrt,
 identity_matrix
)

@counter
def main():
 # Setup
 n = arguments(sys.argv[1:]).dimension
 verbose = arguments(sys.argv[1:]).verbose

 if main.count == 1:
 print(f'\n# n: \t{n}')
 print(f'# Oracle:\tTQFP oracle as in Lemma 1 (optimized according to Remark 2)')
 print(f'# Verbose:\t{verbose}')

 # Instance
 q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
 b, _ = q.cholesky().gram_schmidt()
 s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
 assert (q.is_symmetric())
 assert (q == q.transpose())

 u, q_ = sampling_from_dsq(q, n, s)
 assert q_ == group_action(u, q)

 # Set to zero counters
 group_action.count = 0
 sampling_from_dsq.count = 0
 recover.count = 0
 sampling_unimodular_matrix.count = 0

 if verbose:
 print(f'{"#" * 27} Public parameters')
 print_matrix(q, 'q')
 print_matrix(q_, 'q_')
 print(f'\n{"#" * 27} Secret unimodular matrix')
 print_matrix(u, 'u')

 # Main calculations
 @counter
 def function(v: matrix, p: matrix): # It computes: V×Q×Vᵀ
 return group_action(v.transpose(), p)

 # Decorate oracle_call() with the counter() decorator
 @counter
 def oracle_call(v: matrix):
 # It simulates: given (Vᵀ×U)×Q×(Uᵀ×V), returns Uᵀ×(V×Q×Vᵀ)×U
 w = random_automorphism().transpose()
 assert w.transpose() * q * w == q
 # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
 _q = v * q * v.transpose()
 return (w * u).transpose() * _q * (w * u)

 # Decorate second_oracle_call() with the counter() decorator
 @counter
 def second_oracle_call(v):
 # It simulates: given (Vᵀ×Uᵀ)×Q×(U×V), returns U×(V×Q×Vᵀ)×Uᵀ
 w = random_automorphism().transpose()
 assert w.transpose() * q * w == q
 # We did not use group_action(w * u.transpose(), function(v, q)) to isolate the oracle cost
 _q = v * q * v.transpose()
 return (w * u.transpose()).transpose() * _q * (w * u.transpose())

 recovered_u = algorithm(q, n, s, function, (oracle_call, second_oracle_call), optimized=True)

 # Validate solution
 assert recovered_u.det() ** 2 == 1
 assert recovered_u == u or recovered_u == -u
 assert recovered_u.transpose() * q * recovered_u == q_

 # Print info
 if not verbose:
 print(f'\n{"#" * 27} iteration {main.count}')
 else:
 print(f'\n{"#" * 27} Recovered unimodular matrix')
 print_matrix(recovered_u, "recovered_u")
 print(f'\n{"#" * 27} Complexity\n')

 print(f'# {group_action.count} group action calls ({function.count} of them concern with input Vᵀ)')
 print(f'# {oracle_call.count} oracle calls concerning U')
 print(f'# {second_oracle_call.count} oracle calls concerning Uᵀ')
 print(f'# {sampling_from_dsq.count} calls to Dₛ([Q])')
 print(f'# {recover.count} calls to Recover()')
 print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')

if __name__ == '__main__':
 # main()
 tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
 print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')

TestTheorem1.py

#!/usr/bin/sage -python
-*- coding: utf8 -*-

import sys
from timeit import timeit

from algorithms import (
	arguments,
	counter,
 group_action,
 print_matrix,
 recover,
 reduce,
	sampling_quadratic_form,
	sampling_from_dsq,
 sampling_unimodular_matrix
)

from sage.all import (
 ZZ,
	e,
	log,
	pi,
	sqrt,
 identity_matrix
)

@counter
def main():
 # Setup
 n = arguments(sys.argv[1:]).dimension
 verbose = arguments(sys.argv[1:]).verbose

 if main.count == 1:
 print(f'\n# n: \t{n}')
 print(f'# Oracle:\tRandomized oracle as in Theorem 1')
 print(f'# Verbose:\t{verbose}')

 # Instance
 q, random_automorphism = sampling_quadratic_form(n, verbose=verbose)
 b, _ = q.cholesky().gram_schmidt()
 s = b.norm() * sqrt(log(2 * n + 4, e) / pi)
 assert (q.is_symmetric())
 assert (q == q.transpose())

 u, q_ = sampling_from_dsq(q, n, s)
 assert q_ == group_action(u, q)

 # Set to zero counters
 group_action.count = 0
 sampling_from_dsq.count = 0
 recover.count = 0
 sampling_unimodular_matrix.count = 0

 if verbose:
 print(f'{"#" * 27} Public parameters')
 print_matrix(q, 'q')
 print_matrix(q_, 'q_')
 print(f'\n{"#" * 27} Secret unimodular matrix')
 print_matrix(u, 'u')

 # Main calculations
 @counter
 def randomized_oracle():
 # We did not use group_action(w * u, function(v, q)) to isolate the oracle cost
 _, _q = sampling_from_dsq(q, n, s)
 return _q, u.transpose() * _q * u

 m = n * (n + 1) // 2
 v = identity_matrix(ZZ, n)
 recovered_u = None
 full_rank = False
 while not full_rank:
 q0 = []
 q0.append(q)
 q1 = []
 q1.append(q_)
 for i in range(0, m - 1, 1):
 q0_i, q1_i = randomized_oracle()
 q0.append(q0_i)
 q1.append(q1_i)
 full_rank, recovered_u = recover(q0, q1, n)

 assert full_rank

 # To recover UR
 r = identity_matrix(ZZ, n)
 while recovered_u is None:
 r = sampling_unimodular_matrix(n)
 assert(r.det() ** 2 == 1)
 q1_ = [group_action(r, q1_k) for q1_k in q1]
 full_rank, recovered_u = recover(q0, q1_, n)
 assert full_rank

 recovered_u = recovered_u * r.inverse()

 # Validate solution
 assert recovered_u.det() ** 2 == 1
 assert recovered_u == u or recovered_u == -u
 assert recovered_u.transpose() * q * recovered_u == q_

 # Print info
 if not verbose:
 print(f'\n{"#" * 27} iteration {main.count}')
 else:
 print(f'\n{"#" * 27} Recovered unimodular matrix')
 print_matrix(recovered_u, "recovered_u")
 print(f'\n{"#" * 27} Complexity\n')

 print(f'# {group_action.count} group action calls')
 print(f'# {randomized_oracle.count} oracle calls concerning U ({sampling_from_dsq.count} calls to Dₛ([Q]))')
 print(f'# {recover.count} calls to Recover()')
 print(f'# {sampling_unimodular_matrix.count} calls to SampleUₜ()')

if __name__ == '__main__':
 # main()
 tries = {True: 1, False: 25}[arguments(sys.argv[1:]).verbose]
 print(f'\n{"#" * 27} It took {timeit(lambda: main(), number=tries)} seconds\n')

algorithms.py

#!/usr/bin/sage -python
-*- coding: utf8 -*-

import sys
import argparse

SageMath imports
from sage.all import (
 deepcopy,
 e,
 floor,
 log,
 pi,
 sqrt,
 ceil,
 randrange,
 choice,
 xgcd,
 reduce,
 ZZ,
 QQ,
 is_square,
 vector,
 matrix,
 identity_matrix,
 random_matrix,
 zero_matrix,
 IntegralLattice,
)

from sage.stats.distributions.discrete_gaussian_lattice import DiscreteGaussianDistributionLatticeSampler
from sage.matrix.matrix_integer_dense_hnf import hnf_with_transformation

f = 7 # Matrix challenges are randomly sampled with coefficients in [0, f-1].
c = 1 - ((1 + e ** (-pi)) ** (-1))

def counter(func):
 def wrapper(*args, **kwargs):
 wrapper.count += 1
 # Call the function being decorated and return the result
 return func(*args, **kwargs)
 wrapper.count = 0
 # Return the new decorated function
 return wrapper

def arguments(args=sys.argv[1:]):
 parser = argparse.ArgumentParser(description="Parses command.")
 parser.add_argument("-n", "--dimension", type=int, help="Matrix dimension: n-by-n matrices", required=True)
 parser.add_argument('-v', '--verbose', action='store_true', help='verbose help')

 if len(sys.argv) == 1:
 parser.print_help(sys.stderr)
 sys.exit(1)

 options = parser.parse_args(args)
 return options

def print_matrix(m: matrix, label: str):
 """

 :param m: matrix with integer coefficients
 :param label: name of the matrix variable
 """
 print(f'\n{label} :\n{m}')

--
Decorate group_action() with the counter() decorator
@counter
def group_action(u: matrix, q: matrix):
 """
 Inner product concerning the matrix Q
 :param u: unimodular matrix U over ZZ
 :param q: Gram matrix, which gives a quadratic form
 :return: Uᵀ×Q×U
 """
 return u.transpose() * q * u

def sampling_quadratic_form(n: int, verbose=True):
 """
 Sampling a random positive definite matrix Q with integer coefficients in [-5n, 5n]
 :param n: matrix dimension
 :param verbose:
 :return: Positive definite matrix Q
 """

 bad = 0
 print('')
 while True:
 b = random_matrix(ZZ, n, n, x=0, y=f)
 while b.det() == 0:
 b = random_matrix(ZZ, n, n, x=0, y=f)
 q = b.transpose() * b
 if verbose:
 print(f'\r# Random lattices constructed with non-trivial automorphism:\t{bad}', end='')
 sys.stdout.flush()
 bad += 1
 aut = IntegralLattice(q)
 aut = aut.automorphisms()
 if len(aut.list()) == 2:
 break
 else:
 # Computing the automorphism group of a lattice is expensive (exponential concerning n).
 # We assume random lattices has trivial automorphism with high probability (when benchmarking)
 break

 assert (q.is_positive_definite())
 assert q.is_symmetric()
 assert (q.det() != 0)
 if verbose:
 print('\n')
 assert len(aut.list()) == 2
 return q, lambda: matrix(ZZ, aut.random_element())
 else:
 # Computing the automorphism group of a lattice is expensive.
 # We assume random lattices has trivial automorphism with high probability (when benchmarking)
 return q, lambda: choice([identity_matrix(ZZ, n), -identity_matrix(ZZ, n)])

Decorate sampling_from_dsq() with the counter() decorator
@counter
def sampling_from_dsq(q: matrix, n: int, s: float):
 """
 Sampling from Dₛ([Q])
 :param q: a quadratic form Q
 :param n: matrix dimension
 :param s: parameter required on the Discrete Gaussian Distribution
 :return: unimodular matrix U, and the quadratic form Uᵀ×Q×U
 """
 m = int(ceil(2 * n / c))
 d = DiscreteGaussianDistributionLatticeSampler(IntegralLattice(q), sigma=s)
 while True:
 y = matrix(ZZ, [d() for _ in range(0, m, 1)]).transpose()
 if y.rank() >= n:
 break

 assert (y.rank() == n)
 t, u = hnf_with_transformation(y)
 assert t == (u * y)
 u = u.inverse()
 det_u = u.det()
 assert det_u == 1 or det_u == -1
 r = u.transpose() * q * u
 return u, r

--
Decorate sampling_unimodular_matrix() with the counter() decorator
@counter
def sampling_unimodular_matrix(n: int, t=None):
 """

 :param n: matrix dimension
 :param t: integer bound, each entry will be sample from [-t,t]. By default (t is None) we set t=n
 :return: an unimodular matrix with entries uniformly sampled from [-t,t]
 """
 if t is None:
 t = n
 assert(type(t) == int)

 def minors_determinant(v):
 minors_det = []
 for k in range(0, n, 1):
 rows = list(range(0, k, 1)) + list(range(k + 1, n, 1))
 vk = v[rows,:n - 1]
 minors_det.append(vk.det() * (-1)**(n + 1 + k))
 return minors_det

 def euclidean_algorithm(v):
 if 0 in v:
 return 0, []

 (div, u, w) = xgcd(v[0], v[1])
 x = [u, w]
 for k in range(2, n, 1):
 (div, u, w) = xgcd(v[k], div)
 x = [xj * w for xj in x]
 x += [u]

 assert(sum([x[k] * v[k] for k in range(0, n, 1)]) == div)
 assert(reduce(lambda z,z_: z and z_, [vk % div == 0 for vk in v]))
 return div, x

 def least_squares(data: list):
 x = matrix([vector([point[0], 1]) for point in data])
 y = matrix([point[1] for point in data]).transpose()
 return (x.transpose() * x).solve_right(x.transpose()*y)

 m = zero_matrix(ZZ, n, n)
 d = 0
 while d != 1:
 for i in range(0, n, 1):
 for j in range(0, n - 1, 1):
 m[i,j] = randrange(-t, t + 1)
 d, x = euclidean_algorithm(minors_determinant(m))

 assert(d == 1)
 m[:, n - 1] += (matrix(x).transpose() * (-1) ** randrange(0, 2))

 # Least-square step
 c_tilde = []
 for k in range(0, n - 1, 1):
 tmp = m[:, k]
 (dk, ck) = least_squares([(tmp[j, 0], x[j]) for j in range(0, n, 1)]).transpose().list()
 c_tilde.append(floor(ck / (n - 1.0) + 0.5))

 for k in range(0, n - 1, 1):
 m[:, n - 1] -= (c_tilde[k] * m[:, k])

 assert(m.det()**2 == 1)
 return m

Decorate recover() with the counter() decorator
@counter
def recover(q0: list, q1: list, n: int):
 """
 Recovery of the unimodular matrix
 :param q0: list of quadratic forms Q
 :param q1: list of quadratic forms Q' = Vᵀ×Q×V
 :param n: matrix dimension
 :return: the secret unimodular matrix V
 """
 m = n * (n + 1) // 2
 assert len(q0) >= m
 assert len(q1) >= m
 q0_copy = deepcopy(q0)
 q = []
 q_ = []
 ii = 0
 for i in range(0, m, 1):
 for j in range(0, n - 1, 1):
 q0_copy[i].rescale_row(j, 2, j + 1)
 q_tmp = deepcopy(q)
 for j in range(n):
 q_tmp += q0_copy[i][j][j:].list()
 if matrix(ZZ, ii + 1, m, q_tmp).rank() == (ii + 1): # only linearly independent rows are added
 ii += 1
 for j in range(0, n, 1):
 q += q0_copy[i][j][j:].list()
 q_ += q1[i][j][j:].list()

 if len(q) != (m ** 2) or len(q_) != (m ** 2):
 # Handle case when we did not reach m linear independent equations (it only occurs for n = 2... to small case)
 return False, None

 assert len(q) == m ** 2
 assert len(q_) == m ** 2
 q = matrix(QQ, m, m, q)
 q_ = matrix(QQ, m, m, q_)
 solution = q.inverse() * q_
 temporal = solution[:n, :n]

 if 0 in temporal[:n, 0]:
 # Handle if there is a zero in the first column.
 return True, None

 assert not (0 in temporal[:n, 0])
 assert is_square(solution[0, 0])
 v_pivot = ZZ(sqrt(solution[0, 0]))
 temporal = temporal / v_pivot
 candidate_v = [[0] * n] * n
 z = 0
 for i in range(0, n, 1):
 tmp = solution[z, :n] / temporal[i, 0]
 candidate_v[i] = tmp.list()
 z += n - i

 candidate_v = matrix(ZZ, n, n, candidate_v)

 return True, candidate_v

--
def get_n_quadratic_forms(q0: matrix, p1: matrix, p2: matrix, n: int):
 """
 Get quadratic forms of the form: P1×(Q×P1)^k = Vᵀ×(Q×[P2×Q]^k)×V
 :param q0: a quadratic form Q
 :param p1: the quadratic form Vᵀ×Q×V
 :param p2: the quadratic form V×Q×Vᵀ
 :param n: matrix dimension
 :return: the set of n linearly independent quadratic forms
 """
 q_p1 = q0 * p1
 p2_q = p2 * q0
 output = [p1]
 inside = [q0]
 for k in range(0, n - 1, 1):
 output.append(output[k] * q_p1)
 inside.append(inside[k] * p2_q)

 return output, inside

--
def algorithm(q: matrix, n: int, s: float, function, oracle_calls, optimized=False):
 """
 Algorithm simulation
 :param q: a quadratic form Q
 :param n: matrix dimension
 :param s: parameter required on the Discrete Gaussian Distribution
 :param function: determines the function concerning TQFP or IQFP computation
 :param oracle_calls: simulation of the oracle call concerning TQFP or IQFP
 :param optimized: optimization flag
 :return: the secret unimodular matrix V
 """

 if not optimized:
 (oracle_call,) = oracle_calls
 else:
 (oracle_call, second_oracle_call) = oracle_calls
 steps = (n + 1)
 steps += (steps % 2)

 m = n * (n + 1) // 2
 v = identity_matrix(ZZ, n) # First equation comes from the public key Q' = Uᵀ×Q×U (i.e., V = Identity)
 candidate_v = None
 full_rank = False
 while not full_rank:
 q0 = []
 q1 = []
 if not optimized:
 for i in range(0, m, 1):
 q0.append(function(v, q))
 q1.append(oracle_call(v))
 v, _ = sampling_from_dsq(q, n, s)
 else:
 # Trick as in Remark 2
 for i in range(0, steps // 2, 1):
 p0 = function(v, q)
 p1 = oracle_call(v)
 p2 = second_oracle_call(v)
 q1_list, q0_list = get_n_quadratic_forms(p0, p1, p2, n)
 for j in range(0, n, 1):
 q0.append(q0_list[j])
 q1.append(q1_list[j])
 v, _ = sampling_from_dsq(q, n, s)

 full_rank, candidate_v = recover(q0, q1, n)

 assert full_rank

 # To recover UR
 r = identity_matrix(ZZ, n)
 while candidate_v is None:
 r = sampling_unimodular_matrix(n)
 assert(r.det() ** 2 == 1)
 q1_ = [group_action(r, q1_k) for q1_k in q1]
 full_rank, candidate_v = recover(q0, q1_, n)
 assert full_rank

 candidate_v = candidate_v * r.inverse()

 assert candidate_v.det() ** 2 == 1
 return candidate_v

