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Abstract

Protocols for distributed (threshold) key generation (DKG) in the discrete-logarithm setting
have received a tremendous amount of attention in the past few years. Several synchronous
DKG protocols have been proposed, but most such protocols are either not fully secure (in the
sense of simulatability) or are not robust in that they allow even a single malicious party to
prevent successful generation of a key.

In this paper we explore the round complexity of (robust) DKG in the honest-majority
setting where robust DKG is feasible. On the negative side, we show the impossibility of one-
round (robust) DKG protocols regardless of any prior setup the parties have. On the positive
side, we show various two-round—and hence, round-optimal—protocols for robust DKG offering
tradeoffs in terms of their efficiency, necessary setup, and required assumptions.

1 Introduction

In a (t+ 1)-out-of-n threshold cryptosystem, a secret key is shared among n parties such that any
collection of t + 1 honest parties can jointly perform some cryptographic operation, while an ad-
versary compromising up to t parties cannot. The past few years have seen a significant interest
in threshold signing, in particular, motivated by its application to the protection of cryptocur-
rency wallets as well as other applications such as threshold access control, random beacons, and
distributed-protocol design. Research on threshold signatures has developed threshold protocols for
the ECDSA, Schnorr, and BLS signature schemes, as well as protocols for distributed key genera-
tion (DKG) [40, 8, 21, 20, 31, 34, 2, 27, 7, 13, 25, 42, 3, 1, 15, 26, 37, 35] in the discrete-logarithm
setting that underlies those schemes. Threshold protocols based on this work are being used ex-
tensively by companies such as Fireblocks, Dfns, and Coinbase (among others), and there has also
been interest in standardizing such protocols [11, 6].

DKG protocols have been studied in both the synchronous [40, 8, 21, 20, 27, 7, 13, 25, 42, 3,
37, 35] and asynchronous [31, 34, 2, 1, 15, 26] settings. Although the asynchronous model may be
more appropriate for large-scale protocols with globally distributed parties, the synchronous model
is what is assumed in practice for small-scale protocols running in a local network (as is the case
for the companies mentioned above). We consider the synchronous setting in this paper.

An important property that is often overlooked in the context of (synchronous1) threshold
protocols is robustness—aka guaranteed output delivery—namely, the requirement that a protocol
should produce correct output (e.g., a valid signature) whenever it is executed, even in the presence

*Dfns Labs. jkatz@dfns.co, jkatz2@gmail.com. This work was not part of my University of Maryland duties.
1Existing asynchronous threshold protocols generally do guarantee robustness, and of course such protocols are

also secure when run in a synchronous network. However, asynchronous protocols can only tolerate t < n/3, and
generally have higher round complexity than protocols designed specifically for the synchronous setting.
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of malicious behavior. The relative lack of attention given to robustness may be due to an excessive
focus on the n-out-of-n case—or, more generally, the dishonest-majority setting—where robustness
is impossible. (Indeed, most recent work on threshold cryptography has focused on that setting.)
Or, the fact that robustness requires 2t + 1 parties to participate in an execution of the protocol
may be viewed as a waste of resources (even though having t + 1 parties run a protocol that
doesn’t produce any output is more wasteful). Alternately, there may be a belief that robustness
is easy to achieve by re-running the protocol among a different group of participants when an
execution fails. These arguments for neglecting robustness are questionable, and robustness is
often a critical property that must be explicitly ensured in many practical deployments of threshold
cryptography. For one thing, besides improved security an additional benefit of distributing a key
is increased availability, which requires robustness. And while it is often possible to add robustness
to existing, non-robust protocols by running the protocol multiple times [41], doing so is inefficient
and sometimes leads to subtle security flaws (e.g., an attacker may be able to bias the output or
learn multiple outputs). If robustness is required, it should be incorporated directly.

In this work, we focus on the round complexity of robust DKG protocols in the discrete-
logarithm setting. Roughly speaking, the goal in this context is for n parties to distributively
generate a public key y = gx (where g is a generator of a cyclic group G) such that the parties hold
(t+1)-out-of-n Shamir secret shares {σi} of the private exponent x. Robustness means that a public
key y is always generated, and honest parties always hold correct shares of the corresponding x.
In fact, we aim for more, both in terms of functionality (we also require that parties can compute
public “commitments” {gσi} to each others’ shares, as is often required by threshold protocols) and
security (which we define in terms of simulatability relative to an appropriate ideal functionality).

Few synchronous DKG protocols in the literature achieve robustness. To the best of our knowl-
edge, the most round-efficient explicit construction of a robust DKG protocol is the 6-round protocol
by Gennaro et al. [21]. One could apply known results [24, 23, 14] for generic secure multiparty
computation (MPC) with guaranteed output delivery in the honest-majority setting to obtain a
3-round DKG protocol assuming a common reference string (CRS), or a 2-round protocol assuming
a CRS and a public-key infrastructure (PKI), but the resulting protocols would not be particularly
efficient; moreover, they would require strong primitives (like fully homomorphic encryption or
indistinguishability obfuscation) and cryptographic assumptions beyond those typically assumed
in the discrete-logarithm setting. Komlo et al. [35] recently showed a 4-round protocol that is fair
but not robust; although they do not consider simulation-based definitions, it seems plausible that
their protocol realizes functionality F⊥,fair

KeyGen (cf. Appendix A).

1.1 Our Results

We work in a simulation-based framework, and define robustness for DKG protocols via a corre-
sponding ideal functionality for fully secure key generation that (in particular) ensures guaranteed
output delivery. For completeness, we also discuss in Appendix A several other ideal functionalities
for key generation one might consider. Although such simulation-based definitions seem the most
natural way to define security in this context, several recent works have instead given (different)
game-based definitions that are often quite complex and somewhat difficult to interpret. We hope
that our definitional treatment, while not new, provides useful clarity for future work.

Since robustness is impossible2 in the dishonest-majority setting, we assume an honest majority.

2This follows by a reduction from coin tossing to DKG, plus the well-known impossibility result of Cleve [10].
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In that setting, we show several constructions of round-efficient robust DKG protocols that offer
tradeoffs in terms of their computational efficiency, necessary setup, and cryptographic assumptions:

1. In Section 4, we show a framework for constructing 2-round, robust DKG protocols assuming
a PKI and a CRS. In particular, we improve upon the recent work of Komlo et al. [35] in
terms of both round complexity and security. Although the same round complexity could
be obtained using prior work on generic MPC, our framework uses weaker cryptographic
assumptions and leads to more-efficient constructions. In particular, we propose an efficient
instantiation of our framework based on the El Gamal and Paillier encryption schemes in the
random-oracle model.

2. In Section 5, we show how to construct a 2-round, robust DKG protocol based on a CRS
alone. (This implies a similar protocol with no setup in the random-oracle model.) This
is particularly interesting since, to the best of our knowledge, such a result does not follow
from existing results on generic MPC. One drawback of this construction is that, for3 n > 3,
it relies on multiparty non-interactive key exchange (NIKE), something currently known to
exist only based on strong assumptions. (We refer to Koppula et al. [36] for a survey of known
results.) It also has complexity linear in

(
n
t

)
, and thus technically only solves the problem for

a constant number of parties. As such, we view this result as primarily demonstrating the
difficulty of proving the impossibility of 2-round (robust) DKG in the CRS model.

3. Finally, we show in Section 6 a protocol in the random-oracle model with no setup that has
the following properties: After one round of preprocessing (run by the parties themselves),
the parties can generate an unbounded number of keys via repeated invocations of a 2-round
protocol. This approach relies on combinatorial techniques from pseudorandom secret shar-
ing [12]; thus, although it has complexity linear in

(
n
t

)
, it is quite efficient for small values of n

typically used in practice. We thus believe this protocol is an appropriate choice for many
real-world applications of threshold DKG.

In all cases our simulation-based proofs of security do not use rewinding; hence our protocols are
also universally composable (subject to caveats regarding the use of the random oracle in the UC
framework). Our final protocol can also be modified easily so as to be adaptively secure.

Complementing the above results, we also prove the impossibility of one-round (robust) DKG.
Such a result does not follow from prior work, as existing lower bounds on the round complexity
of MPC with guaranteed output delivery [19, 24, 39, 23, 14] take advantage of the fact that honest
parties have input, and thus those bounds do not extend to no-input functionalities like DKG.
Our negative result is obtained by observing that a DKG protocol implies coin tossing with no
additional rounds, and then proving impossibility of one-round coin-tossing protocols. While such
a result may seem intuitively obvious, our impossibility result (1) holds even for non-robust DKG
protocols, and applies even when there is only a single corrupted party; (2) rules out one-round
protocols regardless of any prior setup or idealized models (like the random-oracle model) used;
and (3) gives quantitative bounds on the inherent insecurity of any one-round DKG protocol.

We leave it as an interesting open question whether there exist two-round, robust DKG protocols
with no setup and without random oracles, or whether such protocols exist in the CRS model
based on weaker assumptions than multiparty NIKE. Positive results would be interesting even for
a constant number of parties n > 3, and even for sub-optimal corruption thresholds (e.g., t < n/3).

3For n = 3 the standard decisional Diffie-Hellman assumption suffices.
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2 Background

2.1 Preliminaries

Notation. We let G denote a cyclic group of prime order q and let g ∈ G be a fixed generator.
We let Zq = {0, . . . , q− 1} (viewed as a field), and [k] = {1, . . . , k}. We write “←” for probabilistic
assignment and “:=” for deterministic assignment. In particular, if R is a randomized algorithm
then y ← R(x) means that we run R on input x and a uniform random tape to obtain y, whereas
y := R(x;ω) means that we (deterministically) run R on input x and random tape ω to obtain y.

System and communication model. We assume n parties P1, . . . , Pn, with t < n a bound
on the number of corrupted parties. We work in the standard synchronous communication model
where parties are connected by pairwise private and authenticated channels in addition to a public
broadcast channel.4 We always consider a rushing adversary, by which we mean that in each round
the corrupted parties receive all messages sent by honest parties in that round before having to
send their own messages. In some cases we rely on a public-key infrastructure (PKI), by which we
mean that all parties hold the same vector (pk1, . . . , pkn) of public keys and each honest party Pi

holds the secret key ski associated with pki. Parties who are corrupted at the outset may generate
their public keys in an arbitrary fashion, possibly depending on public keys of the honest parties.

On defining round complexity. The round complexity of a protocol execution in the syn-
chronous model is fairly straightforward to define. However, some protocols run for a different
number of rounds in different executions. For some protocols the round complexity is a random
variable. In other work, a distinction is made between the optimistic round complexity (when all
parties are honest) and the worst-case round complexity (which holds for arbitrary adversarial be-
havior). For example, the recent protocol by Komlo et al. [35] uses only 3 rounds when all parties
are honest, but even a single corrupted party can cause the protocol to use 4 rounds. All the
protocols we describe run for a fixed number of rounds in every execution.

2.2 Cryptographic Building Blocks

Shamir secret sharing. We use the standard notion of Shamir secret sharing. To share a secret
x ∈ Zq in a (t+ 1)-out-of-n fashion, a dealer chooses uniform coefficients f1, . . . , ft ∈ Zq and forms
the polynomial f(X) := x+

∑t
i=1 fi ·Xi; it then defines shares {σi}ni=1 by setting σi := f(i), and

distributes σi to Pi via a private channel. It is useful to also define σ0 := f(0) = x (though note
that σ0 is not a share that is sent to any party), and we write {σi}ni=0 ← SSt(x) to denote the
process by which these values are generated. No information about x is revealed by the shares of
any t parties, but x = σ0 can be reconstructed from the shares of any t+1 parties. More generally,
it is possible to reconstruct the value of f at any point from its values at any t + 1 points using
Lagrange interpolation. This means that for any (t + 1)-size set S ⊂ Zq and any k ∈ Zq it is
possible to (publicly) compute coefficients {λS

i,k}i∈S such that f(k) =
∑

i∈S λS
i,k · f(i). We denote

the interpolation of the value of f(k) from the values {f(i)}i∈S by interpolate(k, S, {f(i)}i∈S). In
particular, when S ⊂ [n] we have x = interpolate(0, S, {σi}i∈S).

4We leave for future work the question of round-efficient, robust DKG without a broadcast channel. Note that
difficulties associated with achieving robustness arise even when a broadcast channel is available, and so it makes
sense to decouple the problem of agreement from the problem of robustness.
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It is a standard fact that interpolation can also be done “in the exponent,” i.e., given any (t+1)-

size set S ⊂ Zq, the values {gf(i)}i∈S , and k ∈ Zq, it is possible to compute gf(k) =
∏

i∈S
(
gf(i)

)λS
i,k .

Overloading notation slightly, we also denote this by interpolate(k, S, {gf(i)}i∈S).

Feldman verifiable secret sharing. Feldman’s variant of Shamir secret sharing [17] allows
parties to verify that they have received shares consistent with a polynomial of the correct degree.
We describe a slight variant of the usual scheme that is functionally equivalent. Here, the dealer
generates {σi}ni=0 as above, and then broadcasts the t+1 values y0 := gσ0 , . . . , yt := gσt (in addition
to sending σi to Pi via a private channel, as before). We write ({yi}ti=0, {σi}ni=1) ← FVSSt(x) to
denote the process by which the indicated values are generated. Given the broadcasted information,
Pi can check correctness of the share σi it received from the dealer by setting S := {0, . . . , t} and
then verifying that gσi

?
= interpolate(i, S, {yj}j∈S). The behavior of Pi in case verification fails

(including the case when Pi does not receive anything from the dealer) is protocol-dependent.
Feldman’s scheme leaks the value y0 = gx, but for our applications this will not be a problem.

CPA-secure encryption. We use the standard notion of CPA-security [32] for a public-key
encryption scheme defined by algorithms (Gen,Enc,Dec).

Non-interactive zero-knowledge (NIZK) proofs. We rely on a variant of (unbounded)
simulation-sound NIZK proofs [16]. We give an informal definition, and refer elsewhere [16, 33]
for formal details. Let R be an NP relation. A collection of efficient algorithms (GenCRS,P, V,
Sim1, Sim2, KE) is an ID-based simulation-sound NIZK proof system for R if the following hold:

� Completeness: For all (x,w) ∈ R and all i ∈ [n],

Pr[crs← GenCRS;π ← P(crs, i, x, w) : V(crs, i, x, π) = 1] = 1.

� Adaptive, multi-theorem zero knowledge: For every efficient adversary A, we have

Pr[crs← GenCRS : AP∗(crs,·,·,·)(crs) = 1] ≈ Pr[(crs, td)← Sim1 : ASim∗
2(td,·,·,·)(crs) = 1],

where P∗(crs, i, x, w) returns P(crs, i, x, w) if (x,w) ∈ R (and⊥ otherwise) and Sim∗
2(td, i, x, w)

returns Sim2(td, i, x) if (x,w) ∈ R (and ⊥ otherwise).

� Unbounded, identity-based simulation soundness: The standard notion of simulation
soundness requires, essentially, that even if an adversary is given multiple simulated proofs, it
cannot generate a new, valid proof for a false statement. This is formalized via a knowledge-
extraction requirement, so that whenever the adversary outputs a (new) valid proof for some
statement x, a knowledge extractor KE can extract a witness corresponding to x. We also
bind proofs to identities, and require that an adversary given multiple simulated proofs with
respect to one set of identities H cannot generate a valid proof (whether new or not) for a
false statement with respect to any identity outside of H.
More formally, the success probability of every efficient adversary A in the following experi-
ment should be small:

1. Run (crs, td)← Sim1, and choose a uniform bit b ∈ {0, 1}.
2. Run A(crs) to obtain a set H ⊂ [n]. Then give A access to two oracles:
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(a) The first oracle takes input (i, x, w) and returns ⊥ if i ̸∈ H or (x,w) ̸∈ R. Otherwise,
it returns Sim2(td, i, x).

(b) The second oracle takes input (i, x, π) and returns ⊥ if i ∈ H or V(crs, i, x, π) = 0.
Otherwise:

– If b = 0 it returns 1.

– If b = 1 it computes w ← KE(td, i, x, π) and returns 1 iff (x,w) ∈ R (and
returns ⊥ otherwise).

3. A outputs a guess b′ ∈ {0, 1}, and succeeds iff b = b′.

3 Defining Secure (Robust) Distributed Key Generation

We use a standard simulation-based notion of security that we briefly summarize below. For self-
containment, our definition is for stand-alone security, but it could easily be adapted to the universal
composability framework. For simplicity, we assume a static corruption model.

Fix some n-party DKG protocol Π. A real-world execution of the protocol in the presence of
an adversary A proceeds as follows (note that parties running Π have no initial input):

1. A specifies a set C ⊂ [n] of corrupted parties.

2. The honest parties run Π with the corrupted parties. Honest parties follow the protocol as
prescribed, while the actions of the corrupted parties are controlled by A.

3. When an honest parties terminates, it outputs a value as prescribed by the protocol.

4. The view of A in this execution consists of the randomness used by A, any messages sent
to any of the corrupted parties by an honest party, and any messages sent on the broadcast
channel by an honest party.

We let realΠ,A be the random variable consisting of (1) the identities C of the corrupted parties,
(2) the vector of outputs of the honest parties, and (3) the view of A at the end of the execution.

Fix an n-party (randomized) functionality F . An ideal execution of F in the presence of an
adversary S proceeds as follows:

1. S specifies a set C ⊂ [n] of corrupted parties.

2. Honest parties interact with F according to the prescribed interface. S controls what a
corrupted party sends to F , and observes all values that F sends to a corrupted party. S
itself may also send messages to, and receive messages from, the functionality F . (The effect
of those messages depends on F .)

3. An honest party outputs the value sent to it by F .

4. The adversary S may output an arbitrary function of its view.

We let idealF ,S be the random variable consisting of (1) the identities C of the corrupted parties,
(2) the vector of outputs of the honest parties, and (3) the output of S.

We say that protocol Π t-securely realizes F if for any efficient adversary A corrupting at most
t parties there is an efficient adversary S such that no efficient distinguisher D can distinguish
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F t,n
KeyGen

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1. Receive {σi}i∈C from the adversary.

2. Choose x← Zq and set y := gx. Choose uniform σi ∈ Zq for i ∈ C′ \ C.

3. Let f be the polynomial of degree at most t such that f(0) = x and f(i) = σi for i ∈ C′.
Set σi := f(i) for i ∈ [n] \ C′.

4. For i ∈ [n], set yi := gσi . Let Y = (y1, . . . , yn).

5. For i ∈ [n], send (y, σi, Y ) to Pi. Also send (y, Y ) to the adversary.

Figure 1: Ideal functionality for fully secure key generation, parameterized by t, n.

realΠ,A and idealF ,S . In the concrete setting we adopt here, one could quantify security by
bounding the running times of A,S, and D as well as the acceptable distinguishing advantage
of D. In an asymptotic setting, one would instead provide parties with a security parameter κ as
input, and parameterize the random variables realΠ,A and idealF ,S by κ; security would then
require that for any probabilistic polynomial-time (PPT) A corrupting at most t parties there is a
PPT adversary S such that no PPT distinguisher D (possibly with access to non-uniform auxiliary
input) can distinguish realΠ,A(κ) and idealF ,S(κ) with advantage that is not negligible (in κ).

Given this definitional framework, we can define security for key-generation protocols by defining
an appropriate ideal functionality. In our context, the basic requirement is for the ideal functionality
to choose a uniform private key x ∈ Zq and give each party Pi the corresponding public key y = gx

along with Pi’s share σi in a (t + 1)-out-of-n sharing of x. Many threshold cryptosystems also
require the parties to each hold a vector of “commitments” Y = (gσ1 , . . . , gσn) to the shares of the
other parties (such commitments are often used by parties to prove correctness of their actions in a
subsequent protocol using the generated key), and this is incorporated into the ideal functionality
as well. We ensure robustness by defining the ideal functionality such that it always provides output
to the honest parties. These requirements are encapsulated by the ideal functionality FKeyGen shown
in Figure 1 that corresponds to “fully secure” key generation.

Notes on the definition. Functionality FKeyGen does not assume the adversary corrupts exactly t
parties. In particular, the adversary may corrupt no parties, and in that case (y, Y ) is given to the
adversary in step 5. (That part of step 5 is redundant if at least one party is corrupted.) Translated
to the security of a protocol Π realizing FKeyGen, this means that an adversary who eavesdrops on
an execution of Π (but corrupts no parties) is allowed to learn the public key y and the parties’
commitments Y . This is acceptable, as those values are generally treated as public.

A more subtle aspect of FKeyGen is that it allows the adversary to choose the shares of the
corrupted parties in step 1; we stress that the remaining shares are still uniform subject to that
constraint. One could strengthen the functionality to prevent this behavior (see Appendix A),
but we are not aware of any (natural5) application of key generation where the difference matters,
and weakening the functionality as we have done potentially allows for more-efficient protocols.

5It is not difficult to show contrived counterexamples: e.g., one could have a threshold signing protocol Π′ in which
all parties broadcast their share if any component of the commitment vector Y is the identity. Π′ is clearly insecure
if the adversary can choose its key shares.
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Alternately, one could consider an even weaker definition where the adversary is allowed to choose
its shares after learning the public key y. In general, one advantage of working in the simulation-
based framework is that it is simple to define other notions of security for key-generation protocols
(by giving different ideal functionalities), and very clear what security properties are being added
or sacrificed. We provide other examples of alternate ideal functionalities in Appendix A.

The multi-session extension of FKeyGen. When shared state is used across multiple executions
of a protocol (as is the case in some of our protocols), technically one should show that repeated
execution of the protocol securely realizes the multi-session extension of the corresponding ideal
functionality [9]. We do not formalize this notion here, but remark that it is not hard to verify
that our protocols satisfy this requirement.

4 Two-Round Protocols in the PKI+CRS Model

In this section we show robust, 2-round DKG protocols, assuming a PKI and a common reference
string. We first describe a general framework for constructing 2-round protocols realizing FKeyGen,
and then discuss a concrete instantiation of this framework based on Paillier encryption and efficient
zero-knowledge proofs used previously in the context of threshold cryptography [7]. In Section 4.3
we show how to realize a stronger DKG functionality, still using only two rounds.

4.1 A General Framework

The starting point of our protocol is the usual approach of having every party act as the dealer in
a (t+1)-out-of-n secret sharing scheme, and then having the parties homomorphically combine the
results. This approach yields a 1-round protocol, in which each party Pi does the following:

1. Choose a uniform value xi ∈ Zq and compute {σi,j}nj=0 ← SSt(xi).

2. For each j ∈ [n], broadcast yi,j := gσi,j and send σi,j to Pj over a private channel.6

Each party Pi computes its share σi :=
∑

j∈[n] σj,i and the commitment yj :=
∏

k∈[n] yk,j to the share
of any party Pj . Letting S = [t+1], parties also compute the public key as interpolate(0, S, {yj}j∈S).

The above description assumes semi-honest behavior. While all parties can verify that each
party Pi broadcasted correct information (by checking that the exponents of the {yi,j}nj=1 lie on
a degree-t polynomial), the protocol does nothing to address a malicious adversary who sends an
incorrect share to another party. This can be addressed using two additional rounds: one round
in which a party can complain about some other party who sent it incorrect shares, and a second
round that allows honest parties to respond to complaints.7 Protocols based on complaints seem
to inherently require at least three rounds (if not more).

A natural idea is to have parties use NIZK proofs to publicly prove correct behavior. However,
such proofs will be useless for proving correctness of values sent over private channels. (Parties
already have the ability to check correctness of values they receive, but now we want parties to
additionally be able to check correctness of the values sent to all other parties.) To account for

6Feldman verifiable secret sharing could be used to reduce the number of broadcast messages, but that optimization
is not important for our current high-level discussion.

7While this addresses the particular problem of incorrect shares, the resulting protocol is not fully secure as it still
suffers from the bias problem discussed below.
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this, we can modify the protocol so that instead of sending shares over (ideal) private channels,
parties instead send shares encrypted using a public-key encryption scheme. This requires parties
to distribute public encryption keys, which can be done using either an additional round or by
assuming a PKI. Using this approach we obtain the 1-round protocol in which each party Pi does:

1. Choose a uniform value xi ∈ Zq and compute {σi,j}nj=0 ← SSt(xi).

2. For each j ∈ [n], broadcast yi,j := gσi,j and an encryption of σi,j under the public key of Pj .
Additionally, give an NIZK proof of correct behavior.

Parties compute the public key, their shares, and commitments to other parties’ shares as before,
excluding the contributions from any parties whose NZIK proofs fail to verify. (We omit the details.)
This exactly corresponds to having each party act as the dealer in a publicly verifiable secret-sharing
scheme (PVSS) [44] (see [22] for a recent survey). The idea of using PVSS or something similar in
the context of distributed key generation was also proposed by Boneh and Shoup [5, Section 22.4.2]
and Groth [25]; the former achieve robustness using an approach requiring many more rounds (see
below), while the latter does not achieve robustness at all.

NIZK proofs force parties to either behave correctly or (effectively) abort. But they are not
enough to make the protocol secure! Indeed, even a single corrupted party can bias the public key
by waiting until all other parties have sent their messages, locally running the protocol (honestly)
multiple times, and then selecting which messages to send based on the public keys it computes
in those executions. (Recall we assume a rushing adversary.) A natural way to address this is
to have each party commit to gxi in the first round, and then give NIZK proofs relative to that
commitment in a second round; this would not fully address the problem, however, since it would
still allow an adversary to bias the resulting public key by deciding whether to abort (i.e., refuse to
open its commitment) in the second round. Boneh and Shoup [5, Section 22.4.2] address this by
assuming simultaneous broadcast, which can in turn be instantiated via a multi-round protocol. It
does not seem possible to obtain a 2-round protocol using that approach.

Instead, we modify the protocol so that only encrypted shares—and no {yi,j} values—are sent
in the first round. Parties continue to send NIZK proofs of correct behavior as before, and are
excluded if their proofs fail to verify. Then, in the second round, each party uses the shares it
received from all non-excluded parties to compute appropriate {yi,j} values, and broadcasts those
values along with an NIZK proof that those values were computed correctly. (In fact, it suffices
for each party Pi to just broadcast the commitment yi = gσi to its final share σi.) As intuition for
security, note first that because of the NIZK proofs adversarial behavior is effectively limited to
aborting. Aborts in the first round cannot bias the key because the public key cannot be computed
until the second round. On the other hand, aborts in the second round cannot introduce bias since
the public key is defined at the end of the first round, in the sense that the same public key y
will be computed by the honest parties regardless of what the malicious parties do in the second
round. This is because the presence of t + 1 honest parties ensures that sufficiently many correct
commitments will be broadcast to allow the public key to be computed. We formalize the resulting
protocol in Figure 2. The protocol relies on zero-knowledge proofs for the following NP relations:

RL =

{(
{(pkj , cj)}j∈[n], {(σj , ωj)}j∈[n]

)
:
∃ polynomial f of degree at most t such that

∀j f(j) = σj ∧ cj := Encpkj (σj ;ωj)

}

RL′ =

{(
(pk, {cj}j∈I , y), sk

)
:

sk is a secret key corresponding to pk;

y = g
∑

i∈I Decsk(ci)

}
.
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Πt,n
1

We assume a PKI (with pki being the public key of Pi) and a common random string crs, crs′.

Round 1: Each party Pi does the following:

1. Choose uniform xi ∈ Zq and compute {σi,j}j∈[n] ← SSt(xi). Then for all j ∈ [n]
choose uniform ωi,j ∈ {0, 1}∗ and compute ci,j := Encpkj (σi,j ;ωi,j).

2. Compute πi ← P(crs, i, {(pkj , ci,j)}j∈[n], {(σi,j , ωi,j)}j∈[n]).

3. Broadcast {ci,j}j∈[n] and πi.

Round 2: Let I := {i ∈ [n] : V(crs, i, {(pkj , ci,j)}j∈[n], πi) = 1}. Each party Pi then does:

1. For j ∈ I, compute σj,i := Decski(cj,i). Set σi :=
∑

j∈I σj,i and yi := gσi .

2. Compute π′
i ← P ′(crs′, i, (pki, {cj,i}j∈I , yi), ski).

3. Broadcast yi and π′
i.

Output determination: Let I ′ := {i ∈ I : V ′(crs′, i, (pki, {cj,i}j∈I , yi), π
′
i) = 1}. Each party

Pi then does:

1. For j ∈ I ′, let yj be the value broadcast by Pj in round 2.

2. Let I ′′ be the t+ 1 smallest indices in I ′. (If |I ′| < t+ 1, abort.) For j ∈ [n] \ I ′, set
yj := interpolate(j, I ′′, {yi}i∈I′′). Set y := interpolate(0, I ′′, {yi}i∈I′′).

3. Output (y, σi, (y1, . . . , yn)).

Figure 2: A 2-round DKG protocol in the PKI+CRS model, parameterized by t, n. Languages
L,L′ associated with P,P ′ are described in the text.

Theorem 1. Assume (Gen,Enc) is a perfectly correct, CPA-secure encryption scheme and P,P ′

are identity-based simulation-sound NIZK proof systems for relations RL, RL′ defined above. Then
for t < n/2, protocol Πt,n

1 t-securely realizes F t,n
KeyGen.

Proof. We define a simulator S, given black-box access to an adversary A, as follows:

Setup: S runs A to obtain a set C of corrupted parties with |C| ≤ t. Let H := [n]\C. Then S runs
(crs, td)← Sim1 and (crs′, td′)← Sim′

1 and, for i ∈ H, runs (pki, ski)← Gen. It gives crs, crs′,
and {pki}i∈H to A. In return, A outputs {pki}i∈C .

Round 1: To simulate the first round, S does:

1. For all i ∈ H do:

(a) For j ∈ C, choose uniform σi,j ∈ Zq and compute ci,j ← Encpkj (σi,j).

(b) For j ∈ H, compute ci,j ← Encpkj (0).

(c) Compute πi ← Sim2(td, i, {(pkj , ci,j)}j∈[n]).
(d) Give {ci,j}j∈[n] and πi to A as the message broadcast by Pi.

2. In response, A sends {ci,j}j∈[n] and πi for all i ∈ C. (If some corrupted party Pi aborts,
it will be anyway be excluded from CI below.)

Let CI := {i ∈ C : V(crs, i, {(pkj , ci,j)}j∈[n], πi) = 1} and I := CI ∪H. For j ∈ CI do:

10



� For i ∈ H, compute σj,i := Decski(cj,i); then let fj be the polynomial of degree at most t
with fj(i) = σj,i for i ∈ H. (If no such polynomial exists, abort.)

For j ∈ C compute σj :=
∑

i∈H σi,j +
∑

i∈CI fi(j). Send {σj}j∈C to F t,n
KeyGen, and receive in

return y and Y = (y1, . . . , yn).

Round 2: For i ∈ H do:

1. Compute π′
i ← Sim′

2(td
′, i, (pki, {cj,i}j∈I , yi)).

2. Give yi and π′
i to A as the message broadcast by Pi.

Output whatever A outputs.

We show that realΠt,n
1 ,A is indistinguishable from idealFt,n

KeyGen,S
via a sequence of hybrid ex-

periments. We start by explicitly describing an experiment Expt0 that corresponds to realΠt,n
1 ,A.

Experiment Expt0. This experiment is defined as follows:

Setup: A outputs a set C of corrupted parties; let H = [n] \ C. Run crs ← GenCRS and crs′ ←
GenCRS′ and, for i ∈ H, run (pki, ski) ← Gen. Give crs, crs′, and {pki}i∈H to A, who
outputs {pki}i∈C .

Round 1: For i ∈ H do:

1. Choose xi ← Zq and compute {σi,j}j∈[n] ← SSt(xi). For all j ∈ [n], choose ωi,j ← {0, 1}∗
and compute ci,j := Encpkj (σi,j ;ωi,j).

2. Compute πi ← P(crs, i, {(pkj , ci,j)}j∈[n], (σi,j , ωi,j)).

Give {ci,j}i∈H,j∈[n] and {πi}i∈H to A. In response, A sends {ci,j}i∈C,j∈[n] and {πi}i∈C . (If
some corrupted party aborts, it will be excluded from CI .)

Round 2: Let CI := {i ∈ C : V(crs, i, {(pkj , ci,j)}j∈[n], πi) = 1} and I := CI ∪H. For all i ∈ H do:

1. For j ∈ I, compute σj,i := Decski(cj,i). Set σi :=
∑

j∈I σj,i and yi := gσi .

2. Compute π′
i ← P ′(crs′, i, (pki, {cj,i}j∈I , yi), ski).

Give {(yi, π′
i)}i∈H to A. In response, A sends {(yi, π′

i)}i∈CI .

Output determination: Let I ′ := {i ∈ I : V ′(crs′, i, (pki, {cj,i}j∈I , yi), π′
i) = 1}. Then:

1. For j ∈ I ′, let yj be the corresponding value sent by Pj in round 2.

2. Let I ′′ be the t+ 1 smallest indices in I ′. (Since H ⊆ I ′, such a set I ′′ must exist.) For
j ∈ [n] \ I ′, set yj := interpolate(j, I ′′, {yi}i∈I′′). Set y := interpolate(0, I ′′, {yi}i∈I′′).

The output of the experiment is8 C, (y, {σi}i∈H, (y1, . . . , yn)), and the output of A.
8Technically the output includes the values of y and (y1, . . . , yn) output by each honest party, but it is easy to see

that for this protocol those values will always be identical.
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Experiment Expt1. In this experiment we modify Expt0 as follows: during setup, we now generate
crs, crs′ (along with state td, td′) using simulators Sim1, Sim

′
1, respectively. Then, honest parties use

Sim2 in place of P in round 1, and use Sim′
2 in place of P ′ in round 2.

Indistinguishability of this experiment and Expt0 follows immediately from zero-knowledge
of P,P ′.

Experiment Expt2. We modify Expt1 as follows. Before round 2, for all j ∈ CI run the knowledge
extractor KE(td, j, {(pki, cj,i)}i∈[n], πj) to obtain {σj,i}i∈H; if those values do not lie on a polynomial
fj of degree at most t, abort. (We remark that if |H| = t+ 1 then an abort can never occur here;
however, the check is relevant if |H| > t+1.) Otherwise, in the first step of round 2 do the following
for all i ∈ H: for j ∈ CI , let σj,i be the value extracted; for j ∈ H, let σj,i be the value chosen in
round 1. Then compute σi :=

∑
j∈I σj,i and yi := gσi as before.

Indistinguishability of this experiment and Expt1 follows from simulation-soundness of P and
perfect correctness of the encryption scheme.

Experiment Expt3. Here we modify Expt2 by changing the first step of round 1 so that for i, j ∈ H
we compute ci,j as ci,j ← Encpkj (0;ωi,j). Indistinguishability of this and the previous experiment
follows from CPA-security of the encryption scheme.

Experiment Expt4. Here we revert the change made in Expt2 by computing {σj,i}j∈CI ,i∈H as
σj,i := Decski(cj,i). (We continue to abort if for some j ∈ CI the {σj,i}i∈H do not lie on a polynomial
of degree at most t.) As before, indistinguishability of this and the previous experiment follow from
simulation-soundness of P and perfect correctness of the encryption scheme.

Experiment Expt5. We modify Expt4 in the following way. Let C′ be an arbitrary set of size t
with C ⊆ C′ ⊂ [n]. In the first step of round 1, for each i ∈ H and j ∈ C choose uniform σi,j ∈ Zq.
Then before round 2, for each i ∈ H do:

1. Choose uniform xi ∈ Zq and, for j ∈ C′ \ C, choose uniform σi,j ∈ Zq.

2. Let fi be the polynomial of degree at most t with fi(0) = xi and fi(j) = σi,j for j ∈ C′.

3. For j ∈ [n] \ C′ set σi,j := fi(j).

The {σj,i}i,j∈H values thus defined are then used in the first step of round 2.
Since all that has changed was to defer from round 1 to round 2 the choice of the {xi}i∈H (and

shares {σi,j}i∈H,j∈C′\C that are not used in round 1), information-theoretic security of Shamir secret
sharing implies that Expt5 is perfectly indistinguishable from Expt4.

Experiment Expt6. Note that in Expt5, if the experiment is not aborted by the beginning of
round 2 then for all i ∈ I we have defined a polynomial fi of degree at most t; moreover, for all
i ∈ H the value σi computed in the first step of round 2 satisfies σi =

∑
j∈I fj(i). In Expt6 we

introduce the following additional step after round 2: for all i ∈ C, compute σi :=
∑

j∈I fj(i); then
abort if gσi ̸= yi for some i ∈ C ∩ I ′. The output determination step is also modified so that, when
the experiment has not aborted, we set y := g

∑
j∈I fj(0) and yi := g

∑
j∈I fj(i) for i ∈ [n].

Simulation-soundness of P ′ and perfect correctness of the encryption scheme imply that Expt6
is indistinguishable from Expt5.

Experiment Expt7. Observe that in Expt6 the values {σi}i∈C can be computed after round 1: this
is so even though the polynomials {fi}i∈H are not yet defined at that point, because the values
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{fi(j)}i∈H,j∈C are defined at that point. With the {σi}i∈C thus defined, we now modify Expt6 in
the following way: in the first step of round 2, choose uniform x ∈ Zq and for i ∈ C′ \ C choose
uniform σi ∈ Zq; let f be the polynomial of degree at most t with f(0) = x and f(i) = σi for i ∈ C′.
Then set σi := f(i) for i ∈ H \ C′.

It is easy to see that Expt7 is perfectly indistinguishable from Expt6, and moreover that Expt7
is statistically indistinguishable from idealFt,n

KeyGen,S
.

4.2 An Instantiation using Paillier Encryption

We briefly sketch a protocol that can be viewed as an instantiation of Π1 based on the Paillier
(additively homomorphic) encryption scheme. (Note that several prior works [38, 18, 29] also
show how to construct PVSS protocols from Paillier encryption.) Each party publishes a Paillier
public key; correctness of public keys can be demonstrated existing NIZK proofs if desired [7].
Additionally, the common random string now includes a uniform h ∈ G that will be used as a
public key for the El Gamal encryption scheme. We let Encpki(·) denote Paillier encryption using
the public key pki of Pi, and let Ench(·) denote El Gamal encryption using h. Let S = {0} ∪ [t].
The protocol then proceeds as follows:

Round 1: Each Pi chooses uniform xi ∈ Zq and computes ({yi,j}j∈S , {σi,j}j∈[n])← FVSSt(xi). It
then computes Ci,j ← Ench(yi,j) for j ∈ S, and ci,j ← Encpkj (σj) for j ∈ [n]. It broadcasts
{Ci,j}j∈S and {ci,j}j∈[n]. Additionally, for each j ∈ [n], it broadcasts an NIZK proof (cf. [7])
that the value encrypted in ci,j is equal to the discrete logarithm of the value encrypted
in interpolate(j, S, {Ci,k}k∈S) (where we again overload notation to let interpolate refer to
homomorphic interpolation of El Gamal ciphertexts).

Round 2: Each party Pi computes I, σi, and yi analogously to the way those values are computed
in Π1. It then broadcasts yi along with an NIZK proof (cf. [7]) that the discrete logarithm

of yi is equal to the value encrypted by c∗i
def
=

∏
j∈I cj,i.

Output determination: Parties compute output as in Π1.

We leave optimization and implementation of this approach to future work.

4.3 Realizing a Stronger Ideal Functionality

We can adapt our framework to realize the stronger functionality F̂KeyGen (cf. Appendix A), still
using only two rounds. Since we view this as primarily of theoretical interest, we only provide a
sketch of the details. The main idea is that instead of having the parties each generate shares of
a public key (which are then added together), we now have the parties generate shares of shares
of a public key. By doing so, corrupted parties do not learn their shares of the public key until
the second round, by which time they are already committed to the shares they generated and
distributed in the first round. Thus, the protocol proceeds as follows:

Round 1: Each party Pi does the following: Choose uniform xi ∈ Zq and compute the first-
level sharing {σi,j}j∈[n] ← SSt(xi). Then for j ∈ [n], compute {σi,j,k}k∈[n] ← SSt(σi,j). For
k ∈ [n], encrypt the shares {σi,j,k}j∈[n] using the public key pkk and broadcast all the resulting
ciphertexts. Also give an NIZK proof of correct behavior.
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Round 2: Let I be the set of parties whose round-1 proofs verify. Each party Pk then does:

1. For j ∈ [n] do:

(a) For i ∈ I, recover σi,j,k by decrypting the corresponding ciphertext. Then compute
σ′
j,k :=

∑
i∈I σi,j,k.

(b) Encrypt σ′
j,k using the public key pkj , and broadcast the resulting ciphertext. Also

broadcast yj,k := gσ
′
j,k .

(c) Give an NIZK proof of correct behavior.

Output determination: Let I ′ ⊆ I be the set of parties whose round-2 proofs verify, and let I ′′
be the t+ 1 smallest indices in I ′. Each Pj then does:

1. For k ∈ I ′′, recover σ′
j,k by decrypting the corresponding ciphertext. Then set σj :=

interpolate(0, I ′′, {σ′
j,k}k∈I′′).

2. For i ∈ [n], set yi := interpolate(0, I ′′, {yi,k}k∈I′′). Set y := interpolate(0, I ′′, {yi}i∈I′′).

3. Output (y, σi, (y1, . . . , yn)).

A proof of the following is similar to the proof of Theorem 1.

Theorem 2. Assume (Gen,Enc) is a perfectly correct, CPA-secure encryption scheme and identity-
based simulation-sound NIZK proof systems are used. Then for t < n/2, the protocol above t-
securely realizes F̂ t,n

KeyGen.

5 A Two-Round Protocol in the CRS Model

We show here how (t + 1)-party NIKE can be used to construct a 2-round, robust DKG protocol
tolerating t corrupted parties. (However, the protocol has complexity linear in

(
n
t

)
.) We build

up to this result by first discussing the case n = 3, t = 1, where 2-party NIKE corresponds to
Diffie-Hellman key exchange. In that setting, we begin by describing a robust 3-party protocol
for generating a uniform group element y (“coin tossing”), and then show how to extend it to a
full-fledged DKG protocol.

For the coin-tossing protocol, the idea is that in the first round each pair of parties runs an
instance of Diffie-Hellman key exchange; in the second round, each party broadcasts the key it
shares with each other party (with NIZK proofs used to ensure correctness). The product of all
the shared keys is the common output. Of course, a corrupted party may abort in the second
round; the crucial observation that ensures robustness, however, is that such an abort by a single
party Pi does not prevent computation of the key, since the remaining honest parties on their own
can collectively compute any shared keys that Pi was supposed to broadcast. In more detail, the
protocol works as follows:

Round 1: Each party Pi does the following: for j ̸= i, choose xi,j ← Zq, set hi,j := gxi,j , and
broadcast hi,j .

If a party fails to broadcast some value, that value is treated as the identity element.

Round 2: Each party Pi does the following: for j ̸= i, compute ki,j := h
xi,j

j,i ; broadcast ki,j along
with an (identity-based simulation-sound) NIZK proof πi,j that ki,j was computed correctly.
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Output determination: For each unordered pair {i, j}, let k{i,j} ∈ {ki,j , kj,i} be the value for
which the associated round-2 proof is valid. Output y := k{1,2} · k{1,3} · k{2,3}.

We provide a brief sketch that this protocol 1-securely realizes a robust coin-tossing functionality.
Specifically, we describe an ideal-world adversary S corresponding to any real-world adversary A.
Assume for simplicity that A corrupts P1. Adversary S receives y ∈ G from the ideal functionality.
It then simulates an execution of the protocol with A by running the first round of the protocol
honestly, and computing k{1,2}, k{1,3} at the end of the first round. Then S sets

k{2,3} := y · k−1
{1,2} · k

−1
{1,3}

and broadcasts k2,3 := k3,2 := k{2,3} along with simulated proofs of correctness in the second round.
(It also broadcasts k2,1, k3,1 with honestly generated proofs of correctness.)

We can extend this idea to obtain a full-fledged DKG protocol by having the parties use the
(shared) random values k{1,2}, k{1,3}, k{2,3} as randomness for an instance of secret sharing that they
run in the second round. That is, the value k{1,2} will be used by both P1 and P2 to derive a secret
x{1,2} and shares {σ{1,2},i}; both parties will broadcast commitments {gσ{1,2},i} to the shares (along
with NIZK proofs of correctness) and send the shares themselves to the corresponding parties. A
corrupted party can abort in the second round, but as before this does not matter since at least
one party in each pair of parties is guaranteed to be honest.

Generalizing to arbitrary n. The protocol can be generalized to arbitrary n and t < n/2
assuming the existence of (t+ 1)-party NIKE. This consists of algorithms (NIKE1,NIKE2) where:

� NIKE1 is a randomized algorithm that outputs a pair of values (st,msg).

� NIKE2 is a deterministic algorithm that takes as input st and values msg1, . . . ,msgt and
outputs a value k.

For correctness, we require that if we have t+ 1 independent invocations of NIKE1 to obtain

(st1,msg1), . . . , (stt+1,msgt+1)← NIKE1,

then it holds that

NIKE2(st1, {msgi}i∈[t+1]\{1}) = · · · = NIKE2(stt+1, {msgi}i∈[t+1]\{t+1}).

Security requires that NIKE2(st1, {msgi}i∈[t+1]\{1}) be indistinguishable from a uniform element
chosen from the appropriate domain, even given {msgi}i∈[t+1]. For our purposes, we view the key k
output by NIKE2 as a pair k = (x, ω) ∈ Zq × Zt

q.
The DKG protocol is described in Figure 3. In the figure, we let St+1,n denote the collection

of all subsets of [n] of size t + 1. For notational simplicity we assume here that FVSSt(x) outputs
commitments to x and all n shares, instead of only outputting commitments to x and the first t
shares; note that one can derive the former from the latter, anyway.

Theorem 3. Assume a secure (t + 1)-party NIKE and an identity-based simulation-sound NIZK
proof system are used. Then for t < n/2, protocol Πt,n

CRS t-securely realizes F t,n
KeyGen.
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Πt,n
CRS

We assume a common random string used for the required NIZK proofs.

Round 1: Each party Pi does the following: for all S ∈ St+1,n such that i ∈ S: run
(sti,S ,msgi,S)← NIKE1 and broadcast msgi,S .

If a party fails to broadcast some message, it is treated as some canonical (valid) message.

Round 2: Each party Pi does the following for all S ∈ St+1,n such that i ∈ S:

1. Compute (xS , ωS) := NIKE2(sti,S , {msgj,S}j∈S\{i}).

2. Compute
(
{yi,S,j}nj=0, {σi,S,j}j∈[n]

)
:= FVSSt(xS ;ωS), along with an NIZK proof πi,S

that the values {yi,S,j}nj=0 were computed correctly based on {msgi,S}i∈S .

3. Broadcast {yi,S,j}nj=0 and πi,S . For j ∈ [n], send σi,S,j to Pj via private channel.

Output determination: Each party Pi does:

1. For each S ∈ St+1,n do:

(a) Let j ∈ S be such that Pj broadcasted {yj,S,k}nk=0 and a valid proof πj,S , and
gσj,S,i = yj,S,i. Set σS,i := σj,S,i, and for k = 0, . . . , n set yS,k := yj,S,k.

2. Set σi :=
∑

S∈St+1,n
σS,i, and for k = 0, . . . , n set yk :=

∏
S∈St+1,n

yS,k.

3. Output (y0, σi, (y1, . . . , yn)).

Figure 3: A 2-round DKG protocol in the CRS model, parameterized by t, n.

6 A Two-Round Protocol Using Preprocessing

Here we show a robust DKG protocol that does not require any setup (but does assume a ran-
dom oracle). It requires one round of preprocessing, following which it is possible to generate an
unbounded number of keys via a 2-round protocol. (Alternately, one may view our result as a
2-round DKG protocol assuming trusted setup.) A drawback of the protocol in theory is that is
has complexity linear in

(
n
t

)
; for small values of n, t encountered in practice, however, the protocol

is extremely efficient.
Our protocol is based on pseudorandom secret sharing (PRSS) [12] (see also [43, Section 19.4]).

A non-interactive PRSS-based protocol for sharing a random key is well known, but to the best of
our knowledge it has not been previously observed that (1) it is possible to (easily) add robustness to
that protocol, or that (2) robustness is possible even in the absence of a trusted dealer to distribute
the initial PRSS shares.

We begin by recalling the non-interactive PRSS-based protocol for sharing a random key. Let
Sn−t,n denote the collection of all subsets of [n] of size n − t. For every subset S ∈ Sn−t,n, let
ZS ∈ Zq[X] be the polynomial of degree at most t satisfying ZS(0) = 1 and ZS(i) = 0 for i ∈ [n]\S.
(Note that ZS is publicly known.) In an initialization phase a trusted dealer does the following:
for every subset S ∈ Sn−t,n a uniform key kS ∈ {0, 1}κ is chosen, and each party i ∈ S is given kS .

Let F : {0, 1}κ ×{0, 1}n → Zq be a pseudorandom function. The sharing of a key indexed by a
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nonce9 N ∈ {0, 1}n is done by having each party Pi compute its share

σi :=
∑

S∈Sn−t,n : i∈S
FkS (N) · ZS(i). (1)

To see that this is a correct (t+ 1)-out-of-n Shamir secret sharing, let fN be the polynomial

fN (X)
def
=

∑
S∈Sn−t,n

FkS (N) · ZS(X) (2)

of degree at most t. Then note that for all i ∈ [n] we have

fN (i) =
∑

S∈Sn−t,n

FkS (N) · ZS(i) =
∑

S∈Sn−t,n : i∈S
FkS (N) · ZS(i) = σi.

The value xN being shared is

xN
def
= fN (0) =

∑
S∈Sn−t,n

FkS (N) · ZS(0) =
∑

S∈Sn−t,n

FkS (N); (3)

since any set C ⊂ [n] of t corrupted parties has no information about k[n]\C , this means that xN is
computationally indistinguishable from a uniform element of Zq given the view of the parties in C.

The above protocol is robust because it is non-interactive. But it is not a key-generation
protocol since, although it allows the parties to compute a sharing of a value x, it does not allow

them to compute y
def
= gx without further interaction. Moreover, the protocol as described assumes

a trusted dealer who sets up the initial keys. We show how to address both these issues.
At a high level, the idea is as follows. During a preprocessing phase, a designated party in each

S ∈ Sn−t,n chooses a uniform key kS and sends it over a private channel to each party in S. Let
ki,S be the key that Pi receives from the designated party PS for set S. If PS is corrupted, that
party may choose kS improperly; this will not affect security since then PS would learn kS anyway
(regardless of how it was chosen). A more serious problem is that PS might send different keys to
different (honest) parties in S; we will see below how the protocol deals with this. A crucial point,
however, is that at least one set SH ∈ Sn−t,n contains only honest parties; the key kSH for that set
will be uniform, unknown to the adversary, and shared correctly among all parties in SH.

The key-generation protocol itself has a simple structure. In the first round, each party Pi com-

putes ŷi,S := g
Fki,S

(N)
for each set S of which they are a member, and broadcasts a “commitment”

hi,S := H(ŷi,S) to that value, where H is a cryptographic hash function. For each set S ∈ Sn−t,n

there are now two possibilities: either all parties in S broadcasted the same value, which we may
simply call hS , or parties in S broadcast different values. In the latter case all parties simply
exclude the set S from further consideration. Let I ⊆ Sn−t,t be the collection of non-excluded sets.

In the second round, each party Pi broadcasts {ŷi,S} for each S ∈ I of which they are a member.
Each party then sets ŷS (for S ∈ I) equal to any valid preimage of hS that was broadcast. (We
discuss below why such a value will always exist.) Parties compute their output as in the non-
interactive PRSS scheme described earlier, but now summing only over sets in I. Specifically, Pi

computes its share as

σi :=
∑

S∈I : i∈S
Fki,S (N) · ZS(i)

9The nonce does not need to be random, only non-repeating. It could be a counter, or a session id, or derived in
some other agreed-upon fashion by the parties.
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(compare to (1)), and all parties compute the public key y :=
∏

S∈I ŷS and the commitments

yj :=
∏

S∈I : j∈S ŷ
ZS(j)
S for all j ∈ [n].

Before discussing security, we briefly sketch why correctness holds. Let {ŷS}S∈I be the values

used by parties to compute the public key and the commitments, and let xS
def
= logg ŷS . Then

logg yj =
∑

S∈I : j∈S
xS · ZS(j)

(compare to (1), and so the exponents of the {yj}j∈[n] do indeed lie on the degree-t polynomial
f(X) =

∑
S∈I xS · ZS(X) (compare to (2)). Moreover, the exponent of the public key y is

logg y =
∑
S∈I

xS = f(0) (4)

(compare to (3)), as required. As for the shares computed by the (honest) parties, note that for each
S ∈ I all honest parties in S must have broadcast the same value hS in round 1; collision-resistance
of H thus implies that every honest party Pi in S holds the same value of Fki,S (N) = logg ŷS = xS .
Thus, honest parties’ shares are consistent with the publicly computed information.

As for security, one crucial property of the protocol is that—as in the protocols from the previous
sections—the public key y is fully determined at the end of the first round (regardless of the actions
of the corrupted parties in the second round), even though it cannot yet be computed. Roughly,
this holds because for each set S ∈ Sn−t,n containing a corrupted party there are two possibilities:
either there is agreement in the {hi,S}i∈S or not. In the latter case, the effect is simply to exclude
S from I. In the former case, collision-resistance of H ensures that the common value hS cannot
be “opened” to conflicting values ŷi,S ̸= ŷj,S ; moreover, the attacker cannot choose to prevent a
preimage of hS from being revealed since S contains at least one honest party. This shows that the
attacker cannot bias the key or prevent it from being computed. Secrecy of the private key holds
since SH is always in I, and hence the pseudorandom contribution of the key kSH used by the set
of honest parties is always included in the computation of the private key (cf. (4)).

Theorem 4. Let F be a pseudorandom function, and model H as a random oracle. Then for
t < n/2, protocol Πt,n

2 t-securely realizes F t,n
KeyGen.

Proof. We define a simulator S, given black box access to an adversary A, as follows. (Queries
to H, whether by honest parties or by A, are handled in the natural way unless otherwise specified.)

Preprocessing: S runs A to obtain a set C of corrupted parties with |C| ≤ t. Let H := [n] \ C be
the set of honest parties. Then:

� For each S ∈ Sn−t,n with S ⊆ H, do nothing.

� For each S ∈ Sn−t,n with S ̸⊆ H in which the lowest-indexed party Pi is honest, choose
uniform kS ∈ Zq and send kS to all parties in S ∩ C on behalf of Pi. Also set ki,S := kS
for all i ∈ S ∩H.

� For each S ∈ Sn−t,n with S ̸⊆ H in which the lowest-indexed party is corrupted, receive
{ki,S}i∈S∩H from A. Then set kS := ki,S for arbitrary i ∈ S ∩H.

Key generation: Let N be the nonce. Then:
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Πt,n
2

Let H : G→ {0, 1}κ be a cryptographic hash function.

Preprocessing: For each S ∈ Sn−t,n, the lowest-index party in S chooses a uniform key kS ∈ Zq

and sends it (over a private channel) to each party i ∈ S. Each party Pi sets ki,S to the
value thus received.

If Pi does not receive kS for some set S ∈ Sn−t,n with i ∈ S, it sets ki,S := 0.

Key generation: To generate a key corresponding to nonce N , each party Pi does:

Round 1: For all S ∈ Sn−t,n with i ∈ S, compute ŷi,S := gFki,S
(N) and hi,S := H(ŷi,S).

Then broadcast {hi,S}S∈Sn−t,n : i∈S .

If for some S ∈ Sn−t,n and j ∈ S, party Pj fails to broadcast hj,S , set hj,S :=⊥.
Round 2: Initialize I := ∅. Then for each S ∈ Sn−t,n, do:

If there is a value hS with hj,S = hS for all j ∈ S, then add S to I.
Broadcast {ŷi,S}S∈I : i∈S .

Output determination: Each party Pi does:

1. For each S ∈ I, if some party Pj with j ∈ S broadcasted ŷj,S with H(ŷj,S) = hS

then set ŷS := ŷj,S .

2. Set σi :=
∑

S∈I : i∈S Fki,S
(N) · ZS(i), and for j ∈ [n] set yj :=

∏
S∈I : j∈S ŷ

ZS(j)
S .

3. Set y :=
∏

S∈I ŷS .

4. Output (y, σi, (y1, . . . , yn)).

Figure 4: A DKG protocol in the plain model, parameterized by t, n.

Round 1: To simulate the first round, S does:

� For each S ∈ Sn−t,n with S ⊆ H: choose uniform hS ∈ {0, 1}κ, and for all i ∈ S
broadcast hi,S = hS .

� For each S ∈ Sn−t,n with S ̸⊆ H, and each i ∈ S ∩ H, run the protocol honestly.

(I.e., compute ŷi,S := g
Fki,S

(N)
followed by hi,S := H(ŷi,S); then broadcast hi,S .)

In response, for each S ∈ Sn−t,n with S ̸⊆ H, and each i ∈ S ∩ C, the adversary A
broadcasts hi,S . (If A fails to send some such hi,S , then set hi,S :=⊥.)

Initialize I := ∅. Then for each S ∈ Sn−t,n do:

If there is a value hS such that hi,S = hS for all i ∈ S, then add S to I.
(Note that I contains all S ∈ Sn−t,n with S ⊆ H.)

For all i ∈ C, compute σi :=
∑

S∈I : i∈S FkS (N) · ZS(i). Send {σi}i∈C to FKeyGen and receive
in return y and Y = (y1, . . . , yn).

For all S ∈ I with S ̸⊆ H, set ŷS := gFkS
(N). Then choose uniform {ŷS}S∈I, S⊆H subject to

the constraint that
∏

S∈I ŷS = y. Program H so that H(ŷS) = hS for each S ⊆ H.
Round 2: For each i ∈ H, broadcast {ŷS}S∈Sn−t,n : i∈S . Output whatever A outputs.

We show that realΠt,n
2 ,A is indistinguishable from idealFt,n

KeyGen,S
via a sequence of hybrid ex-

periments. Key observations we rely on, which follow from the fact that |C| ≤ t < n/2, are that
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(1) every S ∈ Sn−t,n contains at least one honest party, and (2) there is at least one S ∈ Sn−t,n

containing only honest parties. Let Expt0 refer to the experiment realΠt,n
2 ,A which involves A

interacting with a real-world execution of Π2.

Experiment Expt1. In this experiment, modify Expt0 in the following way. For each S ∈ Sn−t,n

with S ⊆ H, do the following:

� During initialization, do nothing. (In particular, do not choose any key kS .)

� In round 1 of key generation, choose uniform ŷS ∈ G and then for each i ∈ S set ŷi,S := ŷS .
Run the rest of the protocol honestly.

It follows immediately from the fact that F is a pseudorandom function that Expt0 and Expt1 are
indistinguishable.

Experiment Expt2. We now introduce the following modification to Expt1. For each S ∈ Sn−t,n

with S ⊆ H, do the following during key generation: in round 1, choose uniform hS ∈ {0, 1}κ and
set hi,S := hS for all i ∈ S. Each i ∈ S broadcasts ŷi,S in round 2 as before, where ŷS is defined as
in Expt1. Now, however, H must then be programmed so that H(ŷS) = hS .

If H is modeled as a random oracle, the only difference between Expt2 and Expt1 occurs if A
ever queries H(ŷS) for some S ⊆ H before ŷS is broadcast in round 2. Since each such ŷS is uniform
in G, the probability of that event is negligible and so Expt2 and Expt1 are indistinguishable.

Experiment Expt3. Now modify the output-determination step of Expt2 as follows: for each S ∈ I
with S ̸⊆ H, set ŷS = g

Fki,S
(N)

for arbitrary i ∈ S ∩H. Note that an observable difference between
Expt3 and Expt2 can only possibly occur if for some S ∈ Sn−t,n, i ∈ S ∩ H, and j ∈ S ∩ C, parties
Pi, Pj broadcast hi,S = hj,S in round 1 and ŷi,S ̸= ŷj,S in round 2 but H(ŷi,S) = H(ŷj,S). Collision-
resistance of H—which follows when H is modeled as a random oracle—thus implies that Expt3
and Expt2 are indistinguishable.

Experiment Expt4. Now, instead of choosing uniform and independent {ŷS}S∈Sn−t,n,S⊆H, we
instead choose uniform y ∈ G and then choose the {ŷS}S∈Sn−t,n,S⊆H uniformly subject to the
constraint that

∏
S∈I ŷS = y. This is perfectly indistinguishable from Expt3, and it can be verified

that this experiment is identical to idealFt,n
KeyGen,S

.

Achieving adaptive security. It is easy to achieve adaptive security for the above protocol by
making a simple change in round 2: Before broadcasting its round-2 message, each party Pi simply
updates its collection of keys by setting ki,S := H(ki,S) for each S for which i ∈ S.

7 Impossibility of One-Round DKG Protocols

Here we rule out the existence of one-round DKG protocols. We prove our result by showing the
impossibility of one-round coin tossing for any number of parties, even when only a single party is
corrupted. (It is immediate that any DKG protocol realizing FKeyGen can be used for coin tossing,
with no additional rounds.) In our impossibility result we show that for any one-round coin-tossing
protocol it is always possible for a corrupted party to bias the outcome of the coin. Since the attack
we demonstrate does not require the corrupted party to abort, it rules out even weaker notions
of DKG that do not require robustness. Our result also holds regardless of any prior setup the
parties may have, i.e., even in the random-oracle model. However, it applies only to schemes where

20



the public key computed by the parties in an honest execution has some entropy conditioned on
the setup; thus, in particular, it does not apply to schemes like the one considered in the previous
section where the key (in an honest execution) is a deterministic function of the setup. We call
such schemes natural, and show:

Theorem 5. There is no natural 1-round protocol that 1-securely realizes F⊥
KeyGen (cf. Appendix A).

We remark that existing impossibility results for collective coin tossing [4], relying on analyzing
the influence of boolean functions [30], can also be used to rule out natural 1-round coin-tossing
protocols. However, a direct application of those results would only show that an all-powerful
adversary can bias the outcome; our result holds even for computationally bounded adversaries.
Moreover, we obtain quantitatively stronger bounds on the bias a corrupted party can achieve than
what follows from those results.

Consider the following natural strategy by a corrupted party Pi to bias the outcome of a coin-
tossing protocol toward a particular bit b: based on the messages of the other parties and local
randomness ri, compute the output that would result from running the protocol honestly using ri.
If the result is b, then run the protocol honestly using ri; otherwise, sample fresh randomness r′i
and run the protocol honestly using r′i. (Note that we are here using the fact that the adversary is
rushing.) If we let f(r1, . . . , rn) denote

10 the output when parties run the protocol honestly using
the randomness indicated, then the probability that this strategy results in output b is exactly

Pr [f(r1, . . . , rn) = b] + Pr
[
f(r1, . . . , rn) = b̄

∧
f(r1, . . . , ri−1, r

′
i, ri+1, . . . , rn) = b

]
.

Since Pr[f(r1, . . . , rn) = b] = 1
2 for a natural protocol (it is easy to see that this can be relaxed),

this means Pi can bias the outcome toward some bit if

Pr
r1,...,rn,r′i

[
f(r1, . . . , ri−1, ri, ri+1, . . . , rn) ̸= f(r1, . . . , ri−1, r

′
i, ri+1, . . . , rn)

]
(5)

is large. We show this must be the case for some i.
If Pr[f(r1, . . . , rn) = b] = 1

2 , then Pr [f(r1, . . . , rn) ̸= f(r′1, . . . , r
′
n)] = 1

2 as well. Note that
f(r1, . . . , rn) ̸= f(r′1, . . . , r

′
n) implies that f(r′1, . . . , r

′
i−1, ri, . . . , rn) ̸= f(r′1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn)

for some i ∈ [n]. Therefore,

1

2
= Pr

[
f(r1, . . . , rn) ̸= f(r′1, . . . , r

′
n)
]

≤ Pr


f(r1, . . . , rn) ̸= f(r′1, r2, . . . , rn)∨

f(r′1, r2, . . . , rn) ̸= f(r′1, r
′
2, r3, . . . , rn)

...∨
f(r′1, . . . , r

′
n−1, rn) ̸= f(r′1, . . . , r

′
n)


≤ Pr[f(r1, . . . , rn) ̸= f(r′1, r2, . . . , rn)]

+ Pr[f(r′1, r2, . . . , rn) ̸= f(r′1, r
′
2, r3, . . . , rn)]

...

+ Pr[f(r′1, . . . , r
′
n−1, rn) ̸= f(r′1, . . . , r

′
n)],

10Formally, f depends on any prior setup the parties may have, including any oracles to which they have access.
For simplicity, we assume the protocol has perfect correctness so all parties always agree on the output. Our proof
can be easily modified to handle protocols with small probability of disagreement among the parties.
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which implies that, for some i ∈ [n],

Pr
[
f(r′1, . . . , r

′
i−1, ri, ri+1, . . . , rn) ̸= f(r′1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn)

]
≥ 1

2n
.

But this exactly gives a lower bound on (5).
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A Alternate Ideal Functionalities for Key Generation

F̂ t,n
KeyGen

1. Choose x← Zq and compute y := gx.

2. Compute {σi}ni=0 ← SSt(x). For i ∈ [n], set yi := gσi ; let Y = (y1, . . . , yn).

3. For i ∈ [n], send (y, σi, Y ) to Pi. Also send (y, Y ) to the adversary.

Figure 5: Alternate ideal functionality for fully secure key generation, parameterized by t, n.

As discussed in Section 3, one can define different notions of security for distributed key gener-
ation by specifying different ideal functionalities. We explore several such possibilities here.

For completeness, we show in Figure 5 an alternate ideal functionality F̂KeyGen for fully secure
key generation. This functionality is stronger than FKeyGen in that it does not give the adversary
the ability to choose its own shares.

Although our main interest in this paper is robust key generation, it is useful to consider non-
robust notions of security for DKG protocols. For one thing, it is impossible to achieve robustness
when t ≥ n/2; even when t < n/2, it may be possible to achieve weaker notions of security via
more-efficient protocols. Moreover, some of the weaker definitions we discuss below correspond to
what is achieved by protocols in prior work. For simplicity, we only define functionalities in which
the adversary is allowed to choose its own shares; of course, each of the functionalities we consider
could also be defined in a way that prevents the attacker from doing so.

The first variant we consider, denoted F⊥
KeyGen, corresponds to a “secure-with-abort” version of

FKeyGen where an adversary can abort the protocol and prevent the honest parties from receiving
output. This functionality allows the adversary to make its decision about whether to abort based
on the public key returned by the functionality, and hence allows the attacker to bias the public
key. (That is, the attacker has the ability to bias the distribution of the public key conditioned on

a public key being computed by the honest parties.) We also define F⊥,fair
KeyGen, a version of the key-

generation functionality that does not have guaranteed output delivery, but forces the adversary
to determine whether to abort independent of the value of the key. See Figure 6 for details.

Either of the above definitions could be strengthened to also incorporate the notion of identifiable
abort [28]. It is also possible to define variants of the key-generation functionality that ensure
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F⊥
KeyGen

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1. Receive {σi}i∈C from the adversary.

2. Choose x← Zq and set y := gx. Choose uniform σi ∈ Zq for i ∈ C′ \ C.

3. Let f be the polynomial of degree at most t such that f(0) = x and f(i) = σi for i ∈ C′. Set
σi := f(i) for i ∈ [n] \ C′.

4. For i ∈ [n] set yi := gσi . Let Y = (y1, . . . , yn).

5. Send (y, Y ) to the adversary. The adversary responds with either abort or continue. If the
adversary sent with abort and |C| ≥ 1 then send ⊥ to all honest parties and stop. Otherwise,
for i ∈ [n] send (y, σi, Y ) to Pi.

F⊥,fair
KeyGen

Let C′ be an arbitrary set of size t with C ⊆ C′ ⊂ [n].

1. The adversary sends either abort or {σi}i∈C . If the adversary sent abort and |C| ≥ 1 then send
⊥ to all honest parties and stop. Otherwise, continue below.

2. Choose x← Zq and set y := gx. Choose uniform σi ∈ Zq for i ∈ C′ \ C.

3. Let f be the polynomial of degree at most t such that f(0) = x and f(i) = σi for i ∈ C′. Set
σi := f(i) for i ∈ [n] \ C′.

4. For i ∈ [n], set yi := gσi . Let Y = (y1, . . . , yn).

5. For i ∈ [n], send (y, σi, Y ) to Pi. Send (y, Y ) to the adversary.

Figure 6: Non-robust key-generation functionalities, parameterized by t, n.

robustness, but are weaker than FKeyGen in that they allow the attacker to bias the public key. We
leave a full consideration of such variants to future work.

26


