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Abstract

We give a candidate construction of public key quantum money, and even a strengthened
version called quantum lightning, from abelian group actions, which can in turn be constructed
from suitable isogenies over elliptic curves. We prove our scheme is secure under new but plausible
assumptions on suitable group actions.

1 Introduction
Quantum money, first envisioned by Wiesner [Wie83], is a system of money where banknotes
are quantum states. By the no-cloning theorem, such banknotes cannot be copied, leading to
un-counterfeitable currency. A critical feature of quantum money, identified by [Aar09], is public
verification, allowing anyone to verify while only the mint can create new banknotes. Such public key
quantum money is an important central object in the study of quantum protocols, but unfortunately
convincing constructions have remained elusive. See Section 1.4 for a more thorough discussion of
prior work in the area.

This Work. We construct public key quantum money from abelian group actions, which can be
instantiated by suitable isogenies over ordinary elliptic curves. Group actions, and the isogenies they
abstract, are one of the leading contenders for post-quantum secure cryptosystems. Our construction
could plausibly even be quantum lightning, a strengthening of quantum money with additional
applications. Our construction is arguably the first time group actions have been used to solve a
classically-impossible cryptographic task that could not already be solved using other standard tools
like LWE. Our construction is sketched in Section 1.1 below, and given in detail in Section 3.

While our main construction can be instantiated on a clean abelian group action — often
referred to as an “effective group action” (EGA) — many isogenie-based group actions diverge from
this convenient abstraction. We therefore provide an alternative candidate scheme which can be
instantiated on so-called “restricted effective group actions” (REGAs); see Section 4 for details.

We prove the quantum lightning security of our protocols under the group action analogs of
a “knowledge of exponent” assumption and a strengthening of the discrete log assumption. The
ordinary discrete logarithm assumption underpins all of cryptography from groups and group actions,
and our generalization is a slight strengthening which essentially allows the adversary a constant
number of CDH queries. The knowledge of exponent assumption for group actions — which we call
“knowledge of group element” — is a new assumption that needs further study.

We conclude in Section 5 with a discussion of possible generalizations and relation to approaches
for building quantum money from LWE.
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1.1 Our Construction

Abelian Group Actions. We will use additive group notation for abelian groups. An abelian
group action consists of an abelian group G and a set X , such that G “acts” on X through the
binary relation ∗ : G×X → X with the property that g ∗ (h ∗ x) = (g+ h) ∗ x for all g, h ∈ G, x ∈ X .
We will also assume a regular group action, which means that for every x ∈ X , the map g 7→ g ∗ x
is a bijection.

The main group actions used in cryptography are those arising from isogenies over elliptic curves.
For example, see [Cou06, RS06, CLM+18, BKV19, DFK+23]. Group action cryptosystems rely
at a minimum on the assumed hardness of discrete logarithms: given x, y = g ∗ x ∈ X , finding g.
For isogeny-based actions, this corresponds to the hard problem of computing isogenies between
elliptic curves. Other hard problems are possible, such as analogs of computational/decisional
Diffie-Hellman, and more.

The QFT. Our quantum money scheme will utilize the quantum Fourier transform (QFT) over
general abelian groups. This is a quantum procedure that maps

|g⟩ 7→ 1√
|G|

∑
h∈G

χ(g, h)|h⟩ .

Here, χ is some potentially complex phase term. In the case of G being the additive group ZN ,
χ(g, h) is defined as ei2πgh/N , with a slightly more complicated definition for non-cyclic groups1.
The main property we need from χ (besides making the QFT unitary) is that it is bilinear, in the
sense that χ(g, h1 + h2) = χ(g, h1) · χ(g, h2). It is also symmetric: χ(g, h) = χ(h, g).

Our Quantum Money Scheme. Our quantum money scheme is as follows; see Section 3 for
additional details.

• Gen: initialize a register in the state 1√
|G|

∑
g∈G |g⟩, which can be computed by applying the

QFT to |0⟩. Let x ∈ X be arbitrary. Then by computing the group action in superposition,
compute 1√

|G|

∑
h∈G |g⟩|g ∗ x⟩. Next, apply the QFT over G to the first register. The result is:

1
|G|

∑
g,h∈G

χ(g, h)|h⟩|g ∗ x⟩ = 1√
|G|

∑
h

|h⟩|Gh ∗ x⟩

Here, |Gh ∗ x⟩ is the state 1√
|G|

∑
g∈G χ(g, h)|g ∗ x⟩. Note that |Gh ∗ x⟩ is, up to an overall

phase, independent of x.
Now measure h, in which case the second register collapses to |Gh ∗ x⟩. Output h as the serial
number, and |Gh ∗ x⟩ as the money state.

• To verify a banknote $, choose a random u ∈ G, and initialize a new qubit with (|0⟩+ |1⟩)/
√

2.

Then apply the controlled group action |b, y⟩ 7→
{
|0, y⟩ if b = 0
|1, u ∗ y⟩ if b = 1

. If $ is the honest

1Remember that the group aoperation is +, so gh in the exponent is not the group operation, but instead
multiplication in the ring ZN .
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banknote state, then the state of the system becomes:

1√
2

(
|0⟩+ χ(u, h)−1|1⟩

)
|Gh ∗ x⟩

We can then measure the first qubit in the basis containing |0⟩ + χ(u, h)−1|1⟩, which will
accept with probability 1 for honest banknote states. We can repeat this process λ times, and
accept only if all trials accept. It is possible to show that if all λ trials accept, the result state
is 2Θ(λ)-close to the honest banknote state.

An instantiation using REGAs. For some isogeny-based group actions such as CSIDH [CLM+18],
the operation ∗ is only efficiently computable for a very small set S ⊆ G of group elements. Such
group actions are called “restricted effective group actions” (REGAs) [ADMP20]. Above, however,
we see that we need to compute the group action on all possible elements in G, both for minting and
for verification. We therefore give a variant of the construction above which only uses the ability
to compute ∗ for elements in S. We show that we are still able to sample |Gh ∗ x⟩, but now the
serial number has the form ATh+ e mod N for a known matrix A and a “small” e ∈ Zn 2. Under
plausible assumptions, the serial number actually hides h 3. We nevertheless show that we can use
such a noisy serial number for verification. For details, see Section 4. The security of our alternate
scheme is essentially equivalent to the main scheme.

1.2 The security of our scheme

We do not know how to base the security of our schemes on any standard assumptions on isogenies.
However, we prove security under non-standard but plausible assumptions, including a knowledge
assumption. Specifically, we show how to adapt the security proof of quantum money over walkable
invariants [LMZ23] to our setting, though several important things need to change. Importantly,
we note that our scheme cannot be seen as an instance of walkable invariants. Here we sketch the
proof for our main construction, which is given in full in Section 3.3. The security of our modified
construction over REGAs is essentially equivalent, as discussed in Section 4.

We first define a “knowledge of group element” assumption (KGEA), which roughly states that
any adversary which can output a set element y ∈ X must “know” a group element g such that
y = g ∗ x. Here, x is some fixed set element that is provided to all parties. The intuition is that, if
X is a sparse set, then perhaps the only way to generate new set elements is to actually use the
group action operation. Slightly more formally, we consider a quantum adversary that outputs a
set element y. We assume that the adversary performed no measurements besides measuring y to
get the final output, meaning that the adversary might have some remaining quantum state |ψy⟩.
Then the knowledge of group element assumption states that given |ψy⟩ and y, it is possible to
efficiently compute g such that y = g ∗ x. This assumption is analogous to the “knowledge of path”
assumption defined by [LMZ23] for walkable invariants.

2Here, we are interpreting h a vector in Zn
N for some n, N , which is possible since G is abelian.

3This is the Learning with Errors (LWE) problem [Reg05] which is widely believed to be hard for random A. In our
case, A is a fixed matrix that depends on the group action, and LWE may or may not be hard for this A. However, a
variant of Regev’s quantum reduction between LWE and Short Integer Solution (SIS) [Reg05], outlined by [YZ22],
shows that if LWE can be solved relative to A, then SIS can be solved for A as well. It is straightforward to adapt
this reduction to solve the Inhomogenous SIS (ISIS) problem, which then allows for computing the group action for all
of G. In this case we would have a clean group action and would not need this alternate construction.

3



We now consider a quantum lightning adversary, which produces two banknotes with the same
serial number. We will first purify the adversary, so that it makes no measurements. The state of
the adversary can then be written as

∑
h

αh|ϕh⟩|Gh ∗ x⟩|Gh ∗ x⟩ = 1
|G|

∑
h,g1,g2

αhχ(h, g1 + g2)|ϕh⟩|g1 ∗ x⟩|g2 ∗ x⟩ ,

where ∑h |αh|2 = 1, and |ϕh⟩ is any state of the adversary left over after outputting the two
banknotes. Now consider the algorithm which produces this state and then measures the final
register, to obtain g2 ∗ x, with the remaining state collapsing to

|ψg2∗x⟩ := 1√
|G|

∑
g1,h

αhχ(h, g1 + g2)|ϕh⟩|g1 ∗ x⟩

Applying KGEA to this adversary, there is an algorithm E that can compute g2 from g2 ∗ x
and |ψg2∗x⟩. We would like to use E and |ψg2∗x⟩ to solve the discrete log assumption, reaching a
contradiction. While E can solve the discrete log of g2 ∗ x, E additionally needs |ψg2 ∗ xλ⟩, which is
correlated with g2∗x. Therefore, E does not immediately represent a discrete log adversary. Inspired
by [LMZ23], we want to apply E to a fresh discrete log challenge g ∗ x to recover g. In [LMZ23],
simply swapping out the measured value for a fresh challenge works, as in their setting the measured
output is independent of the remaining state of the adversary; see Section 1.4 for a brief explanation
of their proof. The problem for us is that g2 ∗ x is correlated with |ψg2∗x⟩, and E may not work
when given g ∗ x and |ψg2∗x⟩ for g ̸= g2; perhaps E only works if given the correct g2 ∗ x for |ψg2∗x⟩.

Our solution is to, given g ∗ x, transform |ψg2∗x⟩ into |ψg∗x⟩; then we can apply E to g ∗ x and
|ψg∗x⟩ to recover g. We first note that we can, using our knowledge of g2 derived from E, apply the
map y 7→ g2 ∗ y to the last register in |ψg2∗x⟩ to obtain

1√
|G|

∑
g1,h

αhχ(h, g1 + g2)|ϕh⟩|(g1 + g2) ∗ x⟩ = 1√
|G|

∑
g′

2,h

αhχ(h, g′2)|ϕh⟩|g′2 ∗ x⟩ = |ψ0∗x⟩ = |ψx⟩

where we used the change of variables g1 + g2 7→ g′2. Next, we want to move |ψx⟩ to |ψg∗x⟩. We
could do this if we knew g as well, but this is what we are trying to compute!

Instead we rely on a strengthening of the discrete log assumption, where we give the adversary a
call to a computational Diffie-Hellman oracle in order to help it solve the discrete log. That is, we
allow the adversary to query on a set element y, and obtain (−g) ∗ y. We moreover allow this call to
happen in superposition. But we only allow a single such query, or possibly two queries, depending
on exactly how we model the query4. Then the adversary is given g ∗ x and must compute g. If we
apply this oracle to the last register in |ψx⟩, we get the state

1√
|G|

∑
g′

2,h

αhχ(h, g′2)|ϕh⟩|(g′2 − g) ∗ x⟩ = 1√
|G|

∑
g′′

2 ,h

αhχ(h, g + g′′2)|ϕh⟩|g′′2 ∗ x⟩ = |ψg∗x⟩

4The number of queries depends on whether (−g)∗y replaces the value y (the so-called “minimal” oracle [KKVB02]),
or is XORed into a supplied response response register (the “standard” oracle). The former requires only a single
query, while the latter requires two queries to simulate the former: the first to the function y 7→ (−g) ∗ y, and the
second to the function y 7→ g ∗ y.
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as desired, where we used the change of variables g′2 − g 7→ g′′2 . Now we can apply E to g ∗ x and
|ψg∗x⟩ to recover g, thus solving discrete log and reaching a contradiction.

The lingering question is whether our new assumptions hold. For our strengthened discrete log
assumption, it appears hard to use one or two queries to such an oracle to actually recover g. One
possibility is to view the oracle as a CDH oracle, which computes (r− s) ∗ x from r ∗ x, s ∗ x 5, and
then use the quantum equivalence of CDH and discrete log for group actions [GPSV21, MZ22]. In
our case, we only give a very limited CDH oracle which only works if s ∗ x was set to g ∗ x. But
even if we allowed the full generality of a CDH oracle and tried to apply [GPSV21, MZ22], we will
fail to compute the discrete log, since [GPSV21, MZ22] require far more than two queries to the
oracle. We therefore conjecture our strengthened discrete log problem is hard.

We note that isogenies over elliptic curves will typically allow for sampling certain elements in X
without directly computing them via applying ∗ to other elements. Specifically, it is possible sample
elements with small discriminant using the complex multiplication method. This means KGEA
as described above is technically false on known isogenies. Nevertheless, such directly sampled
elements bare no obvious relation to each other, so it is unclear how to use them to actually break
the security of our scheme. Toward rectifying this issue, we give more refined assumptions that
avoid this issue while still allowing for proving security. See Section 3.4 for details.

1.3 Further Discussion

In Section 5, we generalize group actions to quantum group actions, which replace classical set
elements with quantum states, but otherwise behave mostly the same as standard group actions.
We give a simple quantum group action based on the Learning with Errors (LWE) problem [Reg05],
where we can actually prove that the discrete log problem is hard under LWE. Despite this promising
result, we expect that the LWE-based quantum group action will be of limited use. In particular, if
we instantiate our quantum money construction over this group, the construction is insecure. The
reason is that, in this group action, it is impossible to recognize the quantum states of the set. Our
security proof crucially relies on such recognition, since it allows us to characterize states accepted
by the verifier. Moreover, without recognition, there is an attack: it is possible to fool the verifier
with dishonest banknotes that are different from the honest ones and moreover are clonable, thereby
breaking security.

Interestingly, we explain that this failed instantiation is actually equivalent to a folklore approach
toward building quantum money from lattices, which has been more-or-less shown impossible to
make secure [LZ19, LMZ23]. The key missing piece in getting the folklore approach to work has
been how to efficiently verify honest banknotes — if such verification were possible, the scheme could
be readily proven secure. Under our equivalence, this missing piece exactly maps to the problem of
recognizing set elements in our quantum group action. For details, see Section 5. We believe this
adds to the confidence of our proposal, since in group actions based on isogenies it is possible to
recognize set elements, presumably without otherwise compromising hardness.

5CDH would usually be defined as computing (r + s) ∗ x, but it is basically equivalent to consider the case where
it computes (r − s) ∗ x. In the case where we allow Ω(|G|) CDH queries, we can use addition queries to implement
subtraction queries and vice versa.
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1.4 Related Work

Public key quantum money. In Wiesner’s original scheme, the mint is required to verify
banknotes, meaning the mint must be involved in any transaction. The involvement of the mint also
leads to potential attacks [Lut10]. Some partial solutions have been proposed, e.g. [BS20a, RZ21].
The dream solution, however, is known as public key quantum money [Aar09]. Here, anyone can
verify the banknote, while only the mint can create them.

Unlike Wiesner’s scheme which is well-understood, secure public key quantum money has
remained elusive. While there have been many proposals for public key quantum money [Aar09, AC12,
FGH+12, Kan18, Zha19, KSS21, KLS22, LMZ23], they mostly either (1) have been subsequently
broken (e.g. [Aar09, AC12, Zha19, KLS22] which were broken by [LAF+10, CPDDF+19, Rob21,
LMZ23]), or (2) rely on new cryptographic building blocks that have received little attention from
the cryptographic community (e.g. [FGH+12, Kan18, KSS21] from problems on knots or quaternion
algebras). The two exceptions are:

• Building on a suggestion of [BDS16], [Zha19] proved that quantum money can be built
from post-quantum indistinguishability obfuscation (iO). While iO has received consid-
erable attention and even has a convincing pre-quantum instaniation [JLS21], the post-
quantum study of iO has been much less thorough. While some post-quantum proposals
have been made [GGH15, BGMZ18, BDGM20, WW21], their post-quantum hardness is not
well-understood.

• [LMZ23] construct quantum money from isogenies over super-singular elliptic curves. However,
there is a crucial missing piece to their proposal, namely generating uniform superpositions
over super-singular curves, which is currently unknown how to do. This is closely related to
the major open question of obliviously sampling super-singular elliptic curves.

In light of the above, the existence of public key quantum money is largely considered open.

Cryptography from group actions and isogenies. Isogenies were first proposed for use in
post-quantum cryptography by Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06]. Isogenies
give a Diffie-Hellman-like structure, but importantly are immune to Shor’s algorithm for discrete
logarithms [Sho94] due to a more restricted structure. This restricted structure, while helping
preserve security against quantum attacks, also makes the design of cryptosystems based on them
more complex. Thus, significant effort has gone into building secure classical cryptosystems from
isogenies and understanding their post-quantum security (e.g. [CJS14, DJP14, CLM+18, BKV19,
CK20, DM20, Pei20, BS20b, ADMP20, AMR22, MZ22, MM22, CD23, BGZ23, Rob23]).

Certain isogenies such as the original proposals of [Cou06, RS06] as well as CSIDH and its
variants [CLM+18, DFK+23] can be abstracted as abelian group actions. However, many other
isogenies (such as SIDH [DJP14] and OSIDH [CK20]) cannot be abstracted as abelian group actions.
Even among abelian group actions, we must distinguish between “effective group actions” (EGAs)
and restricted EGAs (REGAs). The former satisfies the notion of a clean group action, whereas in
the latter, the group action can only be efficiently computed for a certain small set of group elements.
CSIDH could plausibly be a EGA at certain concrete security parameters, though asymptotically it
only achieves quasi-polynomial security6. Our alternate construction also works on REGAs, which

6With the state-of-the-art, evaluating CSIDH as an EGA would require time approximately 2 3√n on a quantum
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can plausibly be instantiated even asymptotically by CSIDH using a quantum computer7.
While some non-isogeny abelian group actions have been proposed (e.g. [Sti05]), currently all

such examples have been broken (e.g. [Shp08]). For this reason, group actions are largely considered
synonymous with isogenies, though this may change if more secure group actions are found.

The vast majority of the isogeny and group action literature has focused on post-quantum cryp-
tography — classical protocols that are immune to quantum attacks. To the best of our knowledge,
only two prior works have used isogenies/group actions to build quantum protocols for tasks that are
impossible classically. The first is [AMR22], who build a proof of quantumness [BCM+18]. We note
that proofs of quantumness can also be achieved under several “standard” cryptographic tools, such
as LWE [BCM+18] or certain assumptions on hash functions [YZ22]. In contrast, no prior quantum
money protocol could be based on similar standard building blocks. We also note that [AMR22]
currently has no known asymptotic instantiation with better-than-quasi-polynomial security, as
it requires a clean group action (EGA). The second quantum protocol based on isogenies is that
of [LMZ23], who build quantum money from walkable invariants, and propose an instantiation using
isogenies over super-singular elliptic curves. However, such isogenies cannot be described as abelian
group actions, and even more importantly their proposal is incomplete, as discussed above. Thus,
ours is arguably the first application of group actions or isogenies to obtain classically impossible
tasks that could not already be achieved under standard tools.

Relation to [LMZ23]. Aside from using isogenies, our work has strong conceptual similarities
to [LMZ23], though also crucial differences that allow us to specify a complete protocol. Here, we
give a brief overview of the similarities and differences.

The walkable invariant framework of [LMZ23] is very general, but here we describe a special
case of it that would apply to certain group actions, in order to illustrate the differences with our
scheme. Consider a group action that is not regular, so that the set X is partitioned into many
distinct orbits. For x, y in the same orbit there will exist a unique g such that y = g ∗ x, but for
x, y in different orbits, there will not exist any group element mapping between them. We will also
assume the ability to generate a uniform superposition over X . We finally assume an “invariant”, a
unique label for each orbit which can be efficiently computed from any element in the orbit.

The minting process generates the uniform superposition over X , and then measure the invariant,
which becomes the serial number. The state then collapses to a uniform superposition over a single
orbit, which becomes the banknote. This superposition can then be verified as follows. First check
that the banknote has support on the right orbit by re-computing the invariant. Then check that
the state is in uniform superposition by checking that the state is preserved under action by random
group elements; this is accomplished using an analog of the swap test. [LMZ23] prove the security
of their scheme under the certain assumptions which, when mapped to the group action setting
above, correspond to the discrete log assumption and a knowledge assumption very similar to ours.

Unfortunately, there are no known instantiations of suitable group actions for their scheme.
They propose using the set of ordinary elliptic curves as the set, the number of points on the curve
as the invariant, and orbits being sets of curves with the same number of points. Isogenies between

computer, while the best quantum attack is time 2
√

n. For a thorough discussion, see [Pan23]. By setting n = log3(λ),
one gets polynomial-time evaluation and the best attack taking time λ

√
log(λ).

7In order for CSIDH to be a REGA, one needs to compute the structure of the group. While this is hard classically,
it is easy with a quantum computer using Shor’s algorithm [Sho94]. Since we always assume a quantum computer in
this work, we can therefore treat CSIDH as a REGA.
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curves are then the action8, which do not change the number of points on the curve. The problem
is that in general curves, it is not possible to efficiently compute the action, since the degree will
be too high. The action can be computed on smooth-order curves, but these are rare and there is
no known way to compute a uniform superposition over such smooth-order curves. For reasons we
will not get into here, [LMZ23] propose using instead supersingular curves with non-smooth order,
but again these are rare and there is no known way to generate a uniform superposition over such
curves.

We resolve the issues with instantiating [LMZ23], without needing the ability to compute uniform
superpositions over the set. Our key insight is that, if we can compute the group action efficiently
(say because we are in an orbit of smooth-order elliptic curves), then this is enough to sample states
that are uniform over a given orbit, except for certain phase terms: namely the states |Gh ∗ x⟩ for
uniform h. Then, rather than the serial number indicating which orbit we are in (which is now
useless since we are in a single orbit), the serial number is a description of the phase terms, namely
h. Despite these changes we are able to nevertheless prove security under similar assumptions as
in [LMZ23] when specialized to group actions.

These changes, however, make adapting the security proof of [LMZ23] to our setting somewhat
non-trivial. When specializing walkable invariants to suitable group actions, [LMZ23] make two
assumptions that essentially correspond to the discrete log and knowledge of group element as-
sumptions. The reason [LMZ23] can reduce to the plain discrete log assumption is that, when they
measure a valid banknote, they get a uniform element in the corresponding orbit, independent
of any side information the adversary has. In slightly more detail, their banknotes are uniform
superpositions, so when they measure both banknotes from a quantum lightning adversary, they
obtain two independent elements in the same orbit. Since the points are uniform and independent
of the adversary’s state, the discrete log assumption applies. But this directly contradicts the
knowledge assumption, which states that any adversary that outputs two points in the same orbit
must know the discrete log between them. In our setting, because we have the serial number be the
phase instead of the orbit, the banknotes can be entangled with each other through the phase term,
and this breaks the straightforward adaptation of the proof from [LMZ23]. Fortunately, we are able
to give a proof under our strengthened discrete log assumption.
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2 Preliminaries
Here we give our notation and definitions. We assume the reader is familiar with the basics of
quantum computation.

2.1 Quantum Fourier Transform over Abelian Groups

Let G be an abelian group, which we will denote additively. We here define our notation for the
quantum Fourier transform over G. Write G = Zn1 × Zn2 × Znk

where Znj are the additive cyclic
8It is not a proper group action since different orbits will be acted on by different groups.
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groups on nj elements, and associate elements g ∈ G with tuples g = (g1, . . . , gk) where gj ∈ Znj .
Then define χ : G2 → C by

χG(g, h) =
k∏
j=1

ei2πgjhj/nj

Observe the following:

χG(g, h) = χG(h, g) χG(g1 + g2, h) = χG(g1, h)× χG(g2, h)

χG(−g, h) = χG(g, h)−1 ∑
g∈G

χG(g, h) =
{
|G| if h = 1G

0 if h ̸= 1G

The quantum Fourier transform (QFT) over G is the unitary QFTG defined as

QFTG|g⟩ = 1√
|G|

∑
h∈G

χ(g, h)|h⟩ .

Observe that QFTG = QFTZn1
⊗ · · · ⊗ QFTZnk

. Therefore, since the standard QFT corresponds to
QFTZnj

and can be implemented efficiently, so can QFTG.
From this point on, we will only work with a single group, so we will drop the sub-script and

simply write χ(g, h),QFT, etc.

2.2 Quantum Money and Quantum Lightning

Here we define quantum money and quantum lightning. In the case of quantum money, we focus
on mini-schemes [AC12], which are essentially the setting where there is only ever a single valid
banknote produced by the mint. As shown in [AC12], such mini-schemes can be upgraded generically
to full quantum money schemes using digital signatures.

Syntax. Both quantum money mini-schemes and quantum lightning share the same syntax:

• Gen(1λ) is a quantum polynomial-time (QPT) algorithm that takes as input the security
parameter (written in unary) which samples a classical serial number σ and quantum banknote
$.

• Ver(σ, $) takes as input the serial number and a supposed banknote, and either accepts or
rejects, denoted by 1 and 0 respectively.

Correctness. Both quantum money mini-schemes and quantum lightning have the same correct-
ness requirement, namely that valid banknotes produced by Gen are accepted by Ver. Concretely,
there exists a negligible function negl(λ) such that

Pr[Ver(σ, $) = 1 : (σ, $)← Gen(1λ)] ≥ 1− negl(λ) .
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Security. We now discuss the security requirements, which differ between quantum money and
quantum lightning.

Definition 2.1. Consider a QPT adversary A, which takes as input a serial number σ and banknote
$, and outputs two potentially entangled states $1, $2, which it tries to pass off as two banknnotes.
(Gen,Ver) is a secure quantum money mini-scheme if, for all such A, there exists a negligible negl(λ)
such that the following holds:

Pr
[
Ver(σ, $1) = Ver(σ, $2) = 1 : (σ,$)←Gen(1λ)

($1,$2)←A(σ,$)

]
≤ negl(λ) .

Definition 2.2. Consider a QPT adversary B, which takes as input the security parameter λ, and
outputs a serial number σ and two potentially entangled states $1, $2, which it tries to pass off as
two banknnotes. (Gen,Ver) is a secure quantum lightning scheme if, for all such B, there exists a
negligible negl(λ) such that the following holds:

Pr
[
Ver(σ, $1) = Ver(σ, $2) = 1 : (σ, $1, $2)← B(1λ)

]
≤ negl(λ) .

Quantum lightning trivially implies quantum money: any quantum money adversary A can be
converted into a quantum lightning adversary B by having B run both Gen and A. But quantum
lightning is potentially stronger, as it means that even if the serial number is chosen adversarially, it
remains hard to devise two valid banknotes. This in particular means there is some security against
the mint, which yields a number of additional applications, as discussed by [Zha19].
Remark 2.3. One limitation of quantum lightning as defined above is that it cannot hold against
non-uniform attackers with quantum advice, as such attackers could have σ, $1, $2 hard-coded in
their advice. The situation is analogous to the case of collision resistance, where unkeyed hash
functions cannot be secure against non-uniform attackers. This limitation be remedied by either
insisting on only uniform attackers or attackers with classical advice. Alternatively, one can work in
a trusted setup model, where a trusted third party generates a common reference string that is then
inputted into Gen,Ver. A third option is to use the “human ignorance” approach [Rog06], in which
we would formalize security proofs as explicitly transforming a quantum lightning adversary into an
adversary for some other task, the latter adversary existing but is presumably unknown to human
knowledge. We will largely ignore these issues throughout this work, but occasionally make brief
remarks about what the various approaches would look like.

2.3 Group Actions

An (abelian) group action consists of a family of (abelian) groups G = (Gλ)λ (written additively),
a family of sets X = (Xλ)λ, and a binary operation ∗ : Gλ × Xλ → Xλ satisfying the following
properties:

• Identity: If 0 ∈ Gλ is the identity element, then 0 ∗ x = x for any x ∈ Xλ.

• Compatibility: For all g, h ∈ Gλ and x ∈ Xλ, (g + h) ∗ x = g ∗ (h ∗ x).

We will additionally require the following properties:

• Efficiently computable: There is a QPT procedure Construct which, on input 1λ, outputs
a description of Gλ and an element xλ ∈ Xλ. The operation ∗ is also computable by a QPT
algorithm.
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• Efficiently Recognizable: There is a QPT procedure Recog which recognizes elements in
Xλ. That is, for any λ and any string y (not necessarily in Xλ), Recog(1λ, y) accepts y with
overwhelming probability if y ∈ Xλ, and rejects with overwhelming probability if y /∈ Xλ.

• Regular: For every y ∈ Xλ, there is exactly one g ∈ Gλ such that y = g ∗ xλ.

Cryptographic group actions. At a minimum, a cryptographically useful group action will
satisfy the following discrete log assumption:

Assumption 2.4. The discrete log assumption (DLog) holds on a group action (G,X , ∗) if, for all
QPT adversaries A, there exists a negligible λ such that

Pr[A(g ∗ xλ) = g : g ← Gλ] ≤ negl(λ) .

We will always assume a group action that satisfies the DLog assumption, and this assumption
provides intuition for what may and may not be hard on a group action. However, the discrete log
assumption will not be sufficient for justifying the security of our construction.
Remark 2.5. For simplicity, we model the group actions as being deterministically computed from
the security parameter. We could alternatively imagine the group actions being probabilistic, in
which case they would be set up by some probabilistic procedure. The parameters would then be
part of a common reference string that is supplied to all parties, including the adversary.

3 Our Quantum Lightning Scheme
Here, we give our basic quantum lightning construction, which assumes a cryptographic group
action.

Construction 3.1. Let Gen,Ver be the following QPT procedures:

• Gen(1λ): Initialize quantum registers S (for serial number) and M (for money) to states |0⟩S
and |0⟩M, respectively. Then do the following:

– Apply QFTGλ
to S, yielding the joint state 1√

|Gλ|

∑
g∈Gλ

|g⟩S |0⟩M.

– Apply in superposition the map |g⟩S |y⟩M 7→ |g⟩S |y ⊕ (g ∗ xλ)⟩M. The joint state of the
system S ⊗M is then 1√

|Gλ|

∑
g∈Gλ

|g⟩S |g ∗ xλ⟩M.

– Apply QFTGλ
to S again, yielding 1

|Gλ|
∑
g,h∈Gλ

χ(g, h)|h⟩S |g ∗ xλ⟩M
– Measure S, giving the serial number σ := h. The M register then collapses to the

banknote $ = |Ghλ ∗ xλ⟩ := 1√
|Gλ|

∑
g∈Gλ

χ(g, h)|g ∗ xλ⟩M. Output (σ, $).

• Ver(σ, $) : First verify that the support of $ is contained in Xλ, by applying the assumed
algorithm for recognizing Xλ in superposition. Then repeat the following λ times:

– Initialize a new register H to (|0⟩H + |1⟩H)/
√

2.
– Choose a random group element u ∈ Gλ.
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– Apply to H⊗M in superposition the map

Apply|b⟩H|y⟩M 7→
{
|0⟩H|y⟩M if b = 0
|1⟩H|(−u) ∗ y⟩M 9 if b = 1

In the case that $ is the correct banknote state |Ghλ ∗ xλ⟩, the result of applying Apply is:

1√
2|Gλ|

|0⟩H ∑
g∈Gλ

χ(g, h)|g ∗ xλ⟩M + |1⟩H
∑
g∈Gλ

χ(g, h)|(g − u) ∗ xλ⟩M


= 1√

2|Gλ|

|0⟩H ∑
g∈Gλ

χ(g, h)|g ∗ xλ⟩M + |1⟩H
∑
g∈Gλ

χ(g + u, h)|g ∗ xλ⟩M


= 1√

2|Gλ|

|0⟩H ∑
g∈Gλ

χ(g, h)|g ∗ xλ⟩M + |1⟩H
∑
g∈Gλ

χ(g, h)χ(u, h)|g ∗ xλ⟩M


= 1√

2
(|0⟩H + χ(u, h)|1⟩H) |Ghλ ∗ xλ⟩

– Measure H in the basis Bh,u := {(|0⟩H + χ(u, h)|1⟩H)/
√

2, (|0⟩H − χ(u, h)|1⟩H)/
√

2},
giving a bit bu ∈ {0, 1}. Discard the H register. In the case that $ is the correct banknote
state |Ghλ ∗xλ⟩, bu will be 0 with probability 1, andM will be left in the original banknote
state.

If all the bu are 0 and the support of $ is contained in Xλ, then accept. If any of the bu are
1, or if the support is not contained in Xλ, reject. We see that for the correct banknote, Ver
accepts with probability 1.

Remark 3.2. If using a probabilistic setup of the group action, there are two options. The first is
to have Gen set up the group action, and have the parameters be included in the serial number.
The second is to have a trusted third party set up the group action, and publish the parameters
in a common reference string (CRS). If the goal is only quantum money security, then the former
option is always possible, since the security experiment uses an honestly generated serial number.
If the goal is quantum lightning security, the former option may not be possible, as the adversary
computes the serial number; it may be that there are bad choices of parameters for the group action
(and hence the CRS inside the serial number) which make it easy to forge banknotes. Therefore, for
quantum lightning security, we would expect using a trusted setup to generate a CRS containing
the group action parameters.

3.1 Accepting States of the Verifier

Above we showed that honest banknote states are accepted by the verifier. We now prove that,
roughly, honest banknote states are the only states accepted by the verifier, with overwhelming
probability.

9Note that we used the “minimal” oracle here for the group action computation, having (−u) ∗ y replace y, instead
of being written to a response register as in the standard quantum oracle. However, since the computation y 7→ (−u)∗y
is efficiently reversible (by y 7→ u ∗ y), we can easily implement the minimal oracle efficiently by first computing
|(−u) ∗ y⟩M′ in a new register M′, then uncomputing |y⟩M using the efficient inverse (so it now contains |0⟩M), and
finally swapping M′ with M.
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Theorem 3.3. Let |ψ⟩ be a state overM. Then Pr[Ver(h, |ψ⟩) = 1] = ∥⟨ψ|Ghλ∗xλ⟩∥2(1−2−λ)+2−λ.

In other words, we can treat Ver(h, |ψ⟩) as projecting onto |Ghλ ∗ xλ⟩, incurring only a negligible
error. The remainder of this subsection is devoted to proving Theorem 3.3.

Lemma 3.4. For h′ ̸= h, ⟨Gh′
λ ∗ xλ|Ghλ ∗ xλ⟩ = 0

Proof.

⟨Gh′
λ ∗ xλ|Ghλ ∗ xλ⟩ = 1

|Gλ|
∑

g,g′∈Gλ

χ(g′, h′)−1χ(g, h)⟨g′ ∗ xλ|g ∗ xλ⟩

= 1
|Gλ|

∑
g∈Gλ

χ(g, h′)−1χ(g, h) = 1
|Gλ|

∑
g∈Gλ

χ(g, h− h′) = 0

Let |ψ⟩ be a a state with support on X . Since the |Gh′ ∗xλ⟩ are orthogonal and the number of h′
equals the size of X , the set {|Gh′

λ ∗ xλ⟩}h′ forms a basis for the set of states with support on X . We
can then write |ψ⟩ = ∑

h′ αh′ |Gh′
λ ∗xλ⟩ where ∑h′ ∥αh′∥2 = 1. We then have ∥αh∥2 = ∥⟨ψ|Ghλ ∗xλ⟩∥2.

Consider a single iteration of Ver on serial number h, which samples a random u, initializes H
to (|0⟩+ |1⟩)/

√
2, applies the map Apply, and then measures H is basis Bh,u to get outcome b. Let

|ψ′⟩ be the post-measurement state of M conditioned on b = 0.

Lemma 3.5. Conditioned on u, p := Pr[bu = 0] = 1
4
∑
h′ ∥αh′∥2∥1 + χ(u, h− h′)∥2, and

|ψ′⟩ = 1√
p

∑
h′ αh′

1+χ(u,h−h′)
2 |Gh′

λ ∗ xλ⟩M.

Proof. By adapting the correctness proof above, we see that the state after applying Apply (but
before measurement) is:

|ϕ⟩ =
∑
h′∈Gλ

αh′
1√
2
(
|0⟩H + χ(u, h′)|1⟩H

)
|Gh′
λ ∗ xλ⟩M

Then p is length squared of the projection of |ϕ⟩ onto (|0⟩H + χ(u, h)|1⟩H)/
√

2. Therefore, p =
1
4
∑
h′ ∥αh′∥2∥1 + χ(u, h′)−1χ(u, h)∥2 = 1

4
∑
h′ ∥αh′∥2∥1 + χ(u, h − h′)∥2. Before re-normalization,

the state of M conditioned on b = 0 is then ∑h′ αh
1+χ(u,h−h′)

2 |Gh′
λ ∗ xλ⟩M. Re-normalization gives

|ψ′⟩.

We now iterate, replacing αh′ with αh′
1+χ(u,h−h′)

2 /
√
p. This means that after λ trials, conditioned

on trial i using ui and giving measurement outcome bi, we have that

pfinal := Pr[b1 = b2 = · · · = bλ = 0] = 1
4λ
∑
h′

∥αh′∥2
λ∏

1=1
∥1 + χ(ui, h− h′)∥2
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We now average over u to get E[pfinal], the overall probability that Ver accepts |ψ⟩.

E[pfinal] = 1
(4|Gλ|)λ

∑
h′,u1,··· ,uλ

∥αh′∥2
λ∏
i=1
∥1 + χ(ui, h− h′)∥2

=
∑
h′

∥αh′∥2
λ∏
i=1

(
1

4|Gλ|
∑
u

∥1 + χ(u, h− h′)∥2
)

=
∑
h′

∥αh′∥2
λ∏
i=1

(
1

4|Gλ|
∑
u

2 + χ(u, h− h′) + χ(u, h− h′)−1
)

= ∥αh∥2 + 2λ
∑
h′ ̸=h
∥αh′∥2 = ∥αh∥2 + 2−λ(1− ∥αh∥2)

= ∥αh∥2(1− 2−λ) + 2−λ

This completes the proof of Theorem 3.3.

3.2 Computing the Serial Number

Here, we show that, given a valid banknote $ = |Ghλ ∗ xλ⟩ with unknown serial number h, it is
possible to efficiently compute h. This result is not needed anywhere else in the paper, but is
included in case it may be useful for future work building on our construction.

Theorem 3.6. There exists a QPT algorithm Findh and a negligible function negl(λ) such that, on
input |Ghλ ∗ xλ⟩, outputs h with probability at least 1− negl(λ).

Proof. Recall from the description of Ver that, for a given u and given |Ghλ ∗ xλ⟩, we can compute
the state |τu,h⟩|Ghλ ∗ xλ⟩ where |τu,h⟩ := 1√

2 (|0⟩H + χ(u, h)|1⟩H). Since this process still gives us
|Ghλ ∗ xλ⟩, we can repeat the process, computing |τui,h⟩ for many different ui.

A naive solution is to compute many copies of |τu,h⟩ for some u ∈ Gλ, and then do state
tomography to recover χ(u, h). If Gλ were cyclic, then χ(u, h) will uniquely determine h. The
problem is that, since Gλ is exponentially large, the distance between χ(u, h) as h varies will be
exponentially small. This means doing state tomography to a sufficiently small error to recover h
would require exponentially-many samples and therefore be inefficient. However, by choosing the ui
carefully and being a bit more thoughtful, we can recover h in polynomial time.

Our strategy will still be to compute many copies of |τu,h⟩ for some u and do state tomography
to recover an estimate χ̂(u, h) for χ(u, h). In time poly(λ, 1/ϵ, log(1/δ)), we can guarantee that
Pr[∥χ̂(u, h)− χ(u, h)∥ < ϵ] ≥ 1− δ, for any desired inverse-polynomial ϵ and exponentially-small δ.
We then do this for many different carefully chosen u, which allows us to correct the errors arising
from tomography, as we now explain.

The cyclic case. Suppose Gλ is cyclic, and is therefore isomorphic to the additive group ZN . In
this case, χ(u, h) = ei2πuh/N = ωuhN , where ωN = ei2π/N .

Now when we do state tomorgraphy and recover χ̂(u, h), we learn an estimate of uh mod N . In
more detail, given real number a and real number R, we let a mod R denote the unique value of
a − Rk for integer k that lies in (−R/2, R/2]. Since we know ∥χ(u, h)∥ = 1, we can assume, by
normalizing if necessary, that ∥χ̂(u, h)∥ is also 1. Therefore, χ̂(u, h) = eiθ for some θ ∈ (−π, π].
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Then by the tomography guarantee, we have | [θ − (2πuh/N)] mod 2π | ≤ ϵ, or equivalently
| [Nθ/2π − uh] mod N | ≤ ϵN/2π, except with negligible probability

This means we reduce the computation of h to the following classical task: we get to choose
arbitrary ui ∈ ZN for i = 1, . . . , n. In response, we learn uih+ ei mod N , where ei is some random
variable in [−ϵN/2π, ϵN/2π]. In vector notation, we can write this as choosing a vector u ∈ ZnN , and
receiving hu + e mod N , where e is a vector whose components are independent random variables
that are guaranteed to be in [−ϵN/2π, ϵN/2π]. The goal is to compute h.

This looks very similar to a 1-dimensional version of the LWE problem [Reg05] (or more
accurately, bounded distance decoding) except that in our case we get to choose the vector u in
whatever way so as to make the task easy. We can then use known techniques to find h. In particular,
we can choose u = (1, 2, 4, , 8, · · · , 2n−1) where n = ⌈log2N⌉. This is known as the gadget “matrix”10.
Importantly, u has an efficiently computable “trapdoor”. That is, write N = ∑n−1

i=0 2i ×Ni for bits
Ni, and let

A =



2 −1 0 0 0 · · · 0 0
0 2 −1 0 0 · · · 0 0
0 0 2 −1 0 · · · 0 0
...

... . . . . . . . . . . . . ...
...

0 0 0 0 0 · · · 2 −1
N0 N1 N2 N3 N4 · · · Nn−2 Nn−1


Then A is full rank over the integers, but satisfies A · u mod N = 0n. Set ϵ = π/3n. Thus, given
v := uh+ e mod N , we can compute

A−1 · (A · v mod N) = A−1 · (A · e mod N) = A−1 · (A · e) = e .

Above, we used the fact that the entries of A · e have absolute value at most n×maxi,j |Ai,j | ×
maxj |ej | = n× 2× ϵN/2π ≤ N/3 < N/2, meaning that reduction mod N has no effect.

Once we compute e, we can then compute hu = v− e, and then h is just the first component.

The general case. We cow consider the case of general groups. Let Gλ = Zn1 × Zn2 × · · · × Znk
.

Write h = (h1, · · · , hk). By choosing u = (u1, 0, · · · , 0), the task of computing h1 reduces to the
case where Gλ = Zn1 , which can be solved via the algorithm above. Likewise, we can compute
h2, · · · , hk, and hence h.

3.3 Security

Here, we prove the security of our scheme under two new but plausible assumptions on group actions.
For now, we assume that it is impossible to obliviously sample set elements. This is false on group
actions based on elliptic curves, but our proof here is simpler and provides the main intuition. In
Section 3.4, we address the case where oblivious sampling is possible.

The Knowledge of Group Element Assumption (KGEA). This assumption states, infor-
mally, that any algorithm that produces a set element y must “know” g such that y = g ∗ xλ. We
first discuss the case where it is infeasible to sample set elements in the group action. Later, we will

10In our case the matrix has width 1, whereas in general applications the matrix will have many columns.
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discuss how to model the assumption when there is a such a sampling algorithm. In the classical
setting, the KGEA assumption would be formalized as follows:
Assumption 3.7. The classical knowledge of group element assumption (C-KGEA) holds on a
group action (G,X , ∗) if the following is true. For any probabilistic polynomial time (PPT) adversary
A, there exists a PPT “extractor” E and a negligible ϵ such that:

Pr
[
y ∈ X ∧ y ̸= g ∗ xλ : y←A(1λ;r)

g←E(1λ,r)

]
≤ ϵ(λ) .

Above, r are the random coins given to A, which are also given to E , and the probability is taken
over uniform r and any additional randomness of E .

In other words, if A outputs any set element, it must “know” how to derive that set element
from xλ, since it can compute g such that y = g ∗ xλ using E and its random coins. Note that once
the random coins are fixed, A is deterministic.

As observed by [LMZ23], when moving to the quantum setting, the problem with Assumption 3.7
is that quantum algorithms do not have to flip random coins to generate randomness, and instead
their output may be a measurement applied to a quantum state, the result being inherently
randomized even if the quantum state is fixed. Thus there is no meaningful way to give the same
random coins to E .

The solution used in [LMZ23] is to, instead of giving E the same inputs as A, give E the remaining
state of A at the end of the computation. This requires some care, since an algorithm can of
course forget any bit of information by simply throwing it away. A more sophisticated way to lose
information is to perform other measurements on the state, say measuring in the Fourier basis. The
solution in [LMZ23] is to require that A makes no measurements at all, except for measuring the
final output. Note that the Principle of Delayed Measurement implies that it is always possible
without loss of generality to move all measurements to the final output. Then E is given both the
output and the remaining quantum state of A, and tries to compute g. Note that in the classical
setting, if we restrict to reversible A, this formulation of giving E the final state of A is equivalent to
given E the randomness, since the randomness can be computed by reversing A. Similar to how we
can assume a quantum A makes all its measurements at the end, in we can always assume without
loss of generality that a classical A is reversible. Thus, in the classical setting these two definitions
coincide. Adapting to our setting, this approach yields the following assumption:
Assumption 3.8. The quantum knowledge of group element assumption (Q-KGEA) holds on a
group action (G,X , ∗) if the following is true. For any quantum polynomial time (QPT) adversary
A which performs no measurements except for its final output, there exists a QPT extractor E and
negligible ϵ such that

Pr
[
y ∈ X ∧ y ̸= g ∗ xλ : (y,|ψ⟩)←A(1λ)

g←E(y,|ψ⟩)

]
≤ ϵ(λ) .

Above, y is considered as the output of A, and the only measurements applied to A is the
measurement of y to obtain the output.

In group actions based on elliptic curves, it is possible to directly sample set elements. While
set elements generated in this way have no obvious relation to other set elements, the ability to
generate set elements without applying the group action would technically contradict the KGEA
assumptions as defined in Assumptions 3.7 and 3.8. This same issue was present in the knowledge
of path assumption in [LMZ23]. In Section 3.4, we discuss a different approach to remedy this issue
that seems more robust. For now we proceed with the basic setting where we assume Q-KGEA as
in Assumption 3.8 is true.
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The Discrete Log Assumption, with Help. We now define a strengthening of the Discrete Log
assumption (Assumption 2.4), which allows the adversary limited query access to a computational
Diffie Hellman (CDH) oracle.

Assumption 3.9. We say that the Discrete Log with a single minimal CDH query assumption
(DLog/1-minCDH) assumption holds if the following is true. For any QPT adversary A playing the
following game, parameterized by λ, there is a negligible ϵ such that A wins with probability at
most ϵ(λ):

• The challenger, on input λ, chooses a random g ∈ Gλ. It sends λ to A

• A submits a superposition query ∑y∈X ,z∈{0,1}∗ αy,z|y, z⟩. Here, y is a set element that forms
the query, and z is the internal state of the adversary when making the query. The challenger
responds with ∑y∈X ,z∈{0,1}∗ αy,z|(−g) ∗ y, z⟩ 11.

• The challenger sends g ∗ x to A.

• A outputs a guess g′ for g. It wins if g′ = g.

Note that Assumption 3.9 uses a “minimal” oracle for the CDH oracle, meaning is replaces y
with (−g) ∗ y. This is only a possibility because y 7→ (−g) ∗ y is reversible; otherwise the query
would not be unitary. The minimal oracle, however, is somewhat non-standard. So we here define a
slightly different assumption which uses “standard” oracles:

Assumption 3.10. We say that the Discrete Log with a double standard CDH query assumption
(DLog/2-stdCDH) assumption holds if the following is true. For any QPT adversary A playing the
following game, parameterized by λ, there is a negligible ϵ such that A wins with probability at
most ϵ(λ):

• The challenger, on input λ, chooses a random g ∈ Gλ. It sends λ to A.

• A submits a superposition query ∑y∈X ,w,z∈{0,1}∗ αy,w,z|y, w, z⟩. Here, y is a set element that
forms the query, w is a string that forms the response register, and z is the internal state of the
adversary when making the query. The challenger responds with ∑y∈X ,w,z∈{0,1}∗ αy,w,z|y, w⊕
[(−g) ∗ y], z⟩.

• A submits a second superposition query ∑y∈X ,w,z∈{0,1}∗ αy,w,z|y, w, z⟩. The challenger re-
sponds with ∑y∈X ,w,z∈{0,1}∗ αy,w,z|y, w ⊕ [g ∗ y], z⟩.

• The challenger sends g ∗ x to A.

• A outputs a guess g′ for g. It wins if g′ = g.

Lemma 3.11. If DLog/2-stdCDH (Assumption 3.10) holds in a group action, then so does DLog/1-
minCDH (Assumption 3.9).

11Note that this operation is unitary and efficiently computable since y 7→ (−g) ∗ y is efficiently computable and
efficiently reversible given g.
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Proof. Consider a supposed adversary A for DLog/1-minCDH with non-negligible winning proba-
bility ϵ. We construct a new adversary B for DLog/2-stdCDH with the same non-negligible winning
probability as follows. B runs A until A makes its superposition query ∑y∈X ,z∈{0,1}∗ αy,z|y⟩Y |z⟩Z .
B then initializes a new register R with the state |0⟩. B then submits ∑y∈X ,z∈{0,1}∗ αy,z|y⟩Y |0⟩R|z⟩Z
as its first query. In response, it receives ∑y∈X ,z∈{0,1}∗ αy,z|y⟩Y |(−g) ∗ y⟩R|z⟩Z . Now it swaps the
roles of R and Y , and makes its second query on ∑y∈X ,z∈{0,1}∗ αy,z|(−g) ∗ y⟩Y |y⟩R|z⟩Z . In response
it receives ∑y∈X ,z∈{0,1}∗ αy,z|(−g) ∗ y⟩Y |0⟩R|z⟩Z . Then it discards the R register, and sends the
resulting state ∑y∈X ,z∈{0,1}∗ αy,z|(−g) ∗ y⟩Y |z⟩Z to A.

Afterward, when B receives g ∗ x, it forwards it to A, and then outputs whatever g′ that A
outputs. Thus, we see that B correctly simulates the view of A, and thus the probability B wins is
the same as A, namely ϵ.

From this point forward, we will use DLog/1-minCDH as our assumption; Lemma 3.11 then
shows that we could have instead used DLog/2-stdCDH.

The security proof. We are now ready to formally state and prove security.

Theorem 3.12. Assuming Q-KGEA (Assumption 3.8) and DLog/1-minCDH (Assumption 3.9)
both hold on a group action (G,X , ∗), then Construction 3.1 is a quantum lightning scheme.

Remark 3.13. Before proving Theorem 3.12, we briefly discuss how to handle the case of non-uniform
attackers, since in this setting quantum lightning is insecure without some modifications. Note
that even against non-uniform attackers, DLog/1-minCDH still plausibly holds. However, Q-KGEA
certainly does not, as a non-uniform attacker may have a y hard-coded for which it does not know
the discrete log with xλ. As discussed in Section 2, there are several possibilities.

• The first is to restrict to non-uniform attackers that only have classical advice. While classical
advice does not appear to be useful in breaking Construction 3.1, it still allows for breaking
Q-KGEA; thus while our scheme may be secure in this setting, the security proof would be
vacuous.

• The second is to use a probabilistically generated group action, and define Q-KGEA and
DLog/1-minCDH accordingly. For quantum money security, it would suffice to have Gen
create the parameters of the group action and then include them in the serial number, since
the serial number is generated honestly. For quantum lightning security, we would instead
need the parameters to be generated by a trusted third party and then placed in a common
random string (CRS).

• The final option is to use the human ignorance approach [Rog06], where we explicitly state our
security theorem as transforming a quantum lightning adversary into a Q-KGEA adversary;
while such Q-KGEA adversaries exist in the non-uniform setting without a CRS, they are
presumably unknown to human knowledge. As a consequence, a quantum lightning attacker,
while existing, would likewise be unknown to human knowledge.

For simplicity, state and prove Theorem 3.12 in the uniform setting; either probabilistically generating
the group action or using human ignorance would require straightforward modifications.
We now are ready to prove Theorem 3.12.
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Proof. Consider a QPT quantum lightning adversary A which breaks security with non-negligible
success probability ϵ. Since an adversary can always tell if it succeeded by running Ver, we can run
A multiple times to boost the probability of a successful break. In particular, we can run A for λϵ,
and at except with probability 1− 2−Θ(λ), at least one of the runs will succeed. This allows us to
conclude without loss of generality that A has success probability 1− 2−Θ(λ). By Theorem 3.3, we
also know that if A outputs a serial number h, the states outputted are exponentially close to two
copies of |Ghλ ∗ xλ⟩.

For simplicity in the following proof, we will assume the probability of passing verification is
actually 1; it is straightforward to adapt the proof to the case of negligible error.

Next, we purify A, and assume that before measurement, A outputs a pure state |ψ⟩. By our
assumption that the success probability is 1, |ψ⟩ will have the form

|ψ⟩ =
∑
h

αh|ϕh⟩|Ghλ ∗ xλ⟩|Ghλ ∗ xλ⟩ = 1
|Gλ|

∑
h

αh|ϕh⟩χ(h, g1 + g2)|g1 ∗ x⟩M1 |g2 ∗ x⟩M2 .

Above, |ϕh⟩ are arbitrary normalized states representing whatever state the adversary contains after
outputting its banknotes, and ∑h ∥αh∥2 = 1.

Now consider the adversary B which first constructs |ψ⟩, and then measures the register M2 to
obtain y2 = g2 ∗ x.

Claim 3.14. g2 is uniform in G.

Proof. Consider additionally measuring M1 in the basis {|Ghλ ∗ xλ⟩}. This this measurement is
on a different register than the measurement on M2, measuring M1 does not affect the output
distribution ofM2 (though the results may be correlated). But the measurement onM1 determines
h, and conditioned on h, M2 collapses to |Ghλ ∗ xλ⟩. Regardless of what h is, measuring |Ghλ ∗ xλ⟩
gives a uniformly random element in X . Thus, even without measuring M1, the measurement of
M2 gives a uniform element in X .

Therefore, after measuring M2, the state |ψ⟩ then collapses to

|ψg2∗xλ
⟩ := 1√

|Gλ|
∑
h

αh|ϕh⟩χ(h, g1 + g2)|g1 ∗ x⟩M1 .

Claim 3.15. There is a QPT procedure Map such that Map(g, |ψy⟩) = |ψg∗y⟩.

Proof. Map simply applies the map y 7→ (−g) ∗ y to M1 in superposition. Then we have that:

Map(g, |ψg2∗xλ
⟩) = 1√

|Gλ|
∑
h

αh|ϕh⟩χ(h, g1 + g2)|(g1 − g) ∗ x⟩M1

= 1√
|Gλ|

∑
h

αh|ϕh⟩χ(h, g′1 + g + g2)|g′1 ∗ x⟩M1 = |ψ(g+g2)∗y⟩ = |ψg∗(g2∗y)⟩

Above we used the change of variables g′1 = g1 − g.

Now we invoke Q-KGEA (Assumption 3.8) on the adversary B. Since B always outputs a valid
set element, this means there is another QPT algorithm E such that

Pr[E(g2 ∗ xλ, |ψg2∗xλ
⟩) = g2] ≥ 1− negl(λ)
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Above, the probability is over g2 ∗ xλ, as well as any randomness incurred when executing
E . We note by a simple random self-reduction that we can insist the above probability holds for
all g2 ∗ xλ, where the randomness is only over E . Indeed, given |ψg2∗xλ

⟩, g2 ∗ xλ, we can choose
a random g and compute g′2 ∗ xλ as g ∗ (g2 ∗ xλ) where g′2 = g + g2. Likewise, we can compute
|ψg′

2∗xλ
⟩ as Map(g, |ψg2∗xλ

⟩). This gives a random instance on which to apply E , giving g′2 with
probability 1− negl(λ), regardless of g2. Then we can compute g2 = g′2 − g. We thus compute g2
with overwhelming probability, even in the worst case. We will therefore assume without loss of
generality that this is the case for E .

For simplicity, we will actually assume that the probability is 1; it is straightforward to handle
the case the probability is negligibly close to 1. By the Gentle Measurement Lemma [Win99], E can
compute g2 without altering the state |ψg2∗x⟩. Thus, by combining B and E , we can compute both
|ψg2∗x⟩ and g2 with probability 1. We can then compute Map(−g2, |ψg2∗xλ

⟩) = |ψxλ
⟩.

We now describe a new algorithm C which breaks DLog/1-minCDH (Assumption 3.9). C works
as follows:

• It constructs |ψxλ
⟩ as above.

• It makes its query to the DLog/1-minCDH challenger, setting M1 as the query register. This
query simulates the operation Map(g, ·), where g is the group element chosen by the challenger.
Thus, at the end of the query, C has |ψg∗xλ

⟩.

• Now upon receiving g ∗ xλ from the challenger, run E(g ∗ xλ, |ψg∗xλ
⟩). By the guarantees of E ,

the output will be g.

Thus we see that C breaks the DLog/1-minCDH assumption. This completes the security proof.

3.4 Security under existence of obliviously sampled elements

As previously mentioned, the ability to obliviously sample set elements in group actions based on
elliptic curves means the KGEA assumption as stated is false. One possible remedy, used in [LMZ23],
explicitly assumes a probabilistic classical procedure S() for obliviously sampling set elements, and
modifies the KGEA assumption so that the extractor either outputs (1) an explanation relative to
xλ or (2) an explanation relative to some input y together with the random coins r that are fed into
S so that y = S(r). The problem with this approach is that the assumption depends on explicitly
modeling the oblivious sampling procedure, and if another oblivious sampling procedure is found, it
would contradict the assumption.

In order to give a more robust proof, we here devise an alternate solution. Our key idea is to
observe that, while obliviously sampling elements strictly speaking violates the KGEA assumption, it
does not seem to yield any assistance in actually breaking a quantum money scheme based on group
actions, since the elements obliviously sampled will be unrelated to anything else. More generally,
we can consider a general cryptographic game that an adversary may play with a challenger. For
“nice” games (which we will define shortly), in particular games that only use the group action
interface and do not themselves obliviously sample elements, it seems that giving the adversary the
ability to obliviously sample elements is no help. We therefore postulate that, for any adversary A
that wins such a nice game, there is a different adversary A′ for which the KGEA assumption can
be appled, yielding an extractor for that A′. Thus, even if the original A can obliciously sample
elements, we essentially assume that A′ cannot, and therefore E is possible. We now make this
intuition precise.
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Generic Group Action Games. We first introduce the notion of generic group action games.
Note that we will only be interested in games that are given by generic algorithms; we will always
treat the adversary as non-generic.

Briefly, a generic group action game is given by an interactive algorithm (“challenger”) Ch. Ch
is limited to only performing group action computations that are “generic” and only interacts with
the group action through oracles implementing the group action interface. Specifically, a generic
algorithm is an oracle-aided algorithm B that has access to oracles GA = (Start,Act,Mem). Here,
Start is the oracle that takes as input the empty query, and outputs a string x̃ representing xλ.
Act is the oracle that takes as input a group element g ∈ Gλ and a string ỹ representing a set
element y, and outputs a string z̃ representing z = g ∗ x. Finally, Mem is a membership testing
oracle, that tests is a given string x̃ represents an actual set element. From a generic game, we
obtain a standard model game by implementing the oracles Start,Act,Mem with the algorithms
for an actual group action: Start outputs the actual set element xλ, Act is the group action ∗, and
Mem is the membership tester for the set Xλ. For a concrete group action (G,X , ∗), we denote this
standard-model game by Ch(G,X ,∗).

Notice that a generic group action game cannot obliviously sample elements, since it is not given
any interface to the group action other than the group action itself.

For any algorithm A, we say the algorithm δ(λ)-breaks Ch(G,X ,∗) if Ch(G,X ,∗)(1λ) outputs 1 with
probability at least δ(λ) when interacting with A.

We say that Ch is one-round if it sends a single classical string to A, and then receives a single
quantum message from A, before deciding if A wins.

Our modified KGEA assumption. We now give our modified KGEA assumption.

Assumption 3.16. The quantum modified knowledge of group element assumption (Q-mKGEA)
holds on a group action (G,X , ∗) if the following is true. Consider a one-round generic group
action game Ch and any quantum polynomial time (QPT) adversary A that 1− δ-breaks Ch(G,X ,∗)

for a negligible δ. Write the message from A to Ch(G,X ,∗) as ρ1,2, as a joint system over two
registers 1, 2. Consider measuring the first register, to obtain a set element y. Denote this as
(y, |ψ⟩) ← A′(1λ) ⇔ Ch(G,X ,∗)(1λ). Then for all such δ,A,Ch, there exists another negligible δ′,
a QPT A′ that also 1− δ′-breaks Ch(G,X , ∗), and moreover there exists a QPT extractor E and
negligible ϵ such that

Pr
[
y ∈ X ∧ y ̸= g ∗ xλ : (y,|ψ⟩)←A′(1λ)⇔Ch(G,X ,∗)(1λ)

g←E(y,|ψ⟩)

]
≤ ϵ(λ) .

Intuitively, this assumption says that if A wins some game, we might not be able to apply the
KGEA extractor to it. However, there is some other A′ that also wins the game, and that we can
apply the KGEA extractor to.

Theorem 3.17. Assuming Q-mKGEA (Assumption 3.16) and DLog/1-minCDH (Assumption 3.9)
both hold on a group action (G,X , ∗), then Construction 3.1 is a quantum lightning scheme.

Proof. The proof is the same as the proof of Theorem 3.12, except that we observe that the quantum
lightning experiment is a generic group action game. As such, after obtaining an adversary A that
wins the quantum lightning game with probability 1− negl, we immediately switch to the adversary
A′ that is assumed to exist by Assumption 3.16, and apply the extractor E to the output of A′.
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4 A Construction for REGAs
In this section, we give a construction for the case where the group action can only be computed
efficiently for a small “base” set of group elements. Such group actions are known as “restricted
effective group actions” (REGAs).

4.1 Some additional background

Before giving the construction, we here provide some additional background that will be necessary
for understanding the construction.

Groups. Let G be a group (written additively), and N an integer such that N × g = 0 for all
g ∈ G. N = |G| will do. Then G is a subgroup of ZnN for some positive integer n. Let W be the set
of vectors in ZnN such that w · g = 0 mod N for all g ∈ G. W is then a group, and we can therefore
consider the group (ZnN )/W defined using the equivalence relation ∼, where u1 ∼ u2 if u1−u2 ∈W .
(ZnN )/W is isomorphic to G; let ϕ : G → (ZnN )/W be an isomorphism. Note that for g ∈ G ⊆ ZnN
and h ∈ G, g · ϕ(h) mod N is well-defined by taking any representative h′ ∈ ϕ(h) and computing
g · h′ mod N .

Under this notation, we can re-define χ(g, h) as ei2πg·ϕ(h)/N , which is equivalent to the definition
in Section 2.

We associate ZN with the interval [−⌊(N − 1)/2⌋, ⌈(N − 1)/2⌉] in the obvious way, and likewise
associate ZnN with the hypercube [−⌊(N − 1)/2⌋, ⌈(N − 1)/2⌉]n. This gives rise to a notion of norm
on ZnN by taking the norm in Zn.

Lemma 4.1. Let G be a subgroup of ZN . Then the number of elements g ∈ G such that |g| ≥ N/4
is exactly |G|+ 1− 2⌈|G|/4⌉. In particular, if G ̸= {0}, then there is at least one element g ∈ G has
|g| ≥ N/4.

Proof. First, it suffices to consider |G| = N , in other words G = ZN : we can then lift to N = t|G|,
where G is embedded into ZN by multiplying each element in G by t (where multiplication is over
the integers). Since N is also multiplied by t, this preserves the number of elements with |g| ≥ N/4.

When G = ZN , we are then simply asking for the number of elements in [−⌊(|G| − 1)/2⌋, ⌈(|G| −
1)/2⌉] with absolute value at least |G|/4. In other words, it is the combined size of the intervals
[⌈|G|/4⌉, ⌈(|G|−1)/2⌉] and [−⌊(|G|−1)/2⌋,−⌈|G|/4⌉], giving a total of (⌈(|G| − 1)/2⌉ − ⌈|G|/4⌉+ 1)+
(⌊(|G| − 1)/2⌊−⌈|G|/4⌉+ 1) = |G|+ 1− 2⌈|G|/4⌉.

Lemma 4.2. Let A ∈ Zn×mN be a matrix. Let G be the subgroup of ZnN generated by the columns
of A. Let B,C be positive integers such that 8BCm < N . Suppose there is a distribution D
on [−B,B]m such that A · x for x ← D is negligibly close to uniform in G. Then the function
f : G× [−C,C]→ ZmN given by f(g, e) = AT · ϕ(g) + e is injective.

Proof. Note that AT · ϕ(g) is well defined since it is independent of the representative of ϕ(g).
Consider a potential collision in f : AT · ϕ(g1) + e1 = AT · ϕ(g2) + e2. By subtracting, this gives
a non-zero pair (g = g1 − g2, e = e1 − e2) where e ∈ [−2C, 2C] such that AT · ϕ(g) + e = 0 or
equivalently AT · ϕ(g) = −e. Now consider sampling x← D, meaning u = A · x is negligibly close
to uniform in G. Then uT · ϕ(g) = xT ·AT · ϕ(g) = −xT · e. On one hand, uT · ϕ(g) is statistically
close to uniform in a subgroup G′ of ZN , and G′ is different from {0} since g ̸= 0. By Lemma 4.1,
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the probability |uT · ϕ(g)| ≥ N/4 is |G′| + 1 − 2⌈|G′|/4⌉ > 0 since |G′| ≥ 2. On the other hand,
| − xT · e| < 2mBC ≤ N/4 always. This means the distributions of uT · ϕ(g) and −xT · e must be
non-negligibly far, a contradiction.

Discrete Gaussians. The discrete Gaussian distribution is the distribution over Z defined as:

Pr[x] = Dσ(x) := Cσe
2πx2/σ2

,

where Cσ is the normalization constant Cσ = ∑
x∈Z e

2πx2/σ2 , so that Dσ defined a probability
distribution. We will also define a truncated variant, denoted

Dσ,B(x) :=
{
Cσ,Be

2πx2/σ2 if |x| ≤ B
0 otherwise

,

where again Cσ,B is an appropriately defined normalization constant. For large B, we can treat the
truncated and un-truncated Gaussians as essentially the same distribution:

Fact 4.3. For σ ≥ ω(
√

log λ) and B ≥ σ × ω(
√

log λ), the distributions Dσ and Dσ,B are negligibly
close

For a vector r ∈ Zm, we write Dσ,B(r) = ∏m
i=1Dσ,B(ri).

The discrete Gaussian superposition is the quantum state

|Dσ⟩ :=
∑
x∈Z

√
Dσ(x)|x⟩

As we will generally need to restrict to finite-precision, we also consider the truncated variant

|Dσ,B⟩ :=
∑

x∈[−B,B]

√
Dσ,B(x)|x⟩

Again, for large enough B, we can treat the truncated and un-truncated Gaussian superpositions as
essentially the same state:

Fact 4.4. For σ ≥ ω(
√

log λ) and B ≥ σ × ω(
√

log λ), the ∥|Dσ⟩ − |Dσ,B⟩∥ is negligible.

By adapting classicsal lattice sampling algorithms, the states |Dσ,B⟩ can be efficiently constructed.

Fourier transform pairs. Fix an integer N . We will associate the set ZN with the integers
[−⌊(N − 1)/2⌋, ⌈(N − 1)/2⌉]. Denote by QFTN the Quantum Fourier Transform QFTZN

. We now
recall some basic facts about quantum Fourier transforms.

QFTmN
∑

r∈Zm
N :A·r=s

|r⟩ = Nm/2−n ∑
t∈Zn

N

ei2πt·s/N |AT · t⟩ for A ∈ Zn×mN

QFTmN
∑

r
αrβr|r⟩ = 1

Nm/2

∑
t,u

α̂tβ̂u|u + t⟩ for
∑

t α̂t|t⟩=QFTm
N

∑
r αr|r⟩∑

u β̂u|u⟩=QFTm
N

∑
r βr|r⟩

QFTN |Dσ,⌊(N−1)/2⌋⟩ ≈ |DN/σ,⌊(N−1)/2⌋⟩ for N≥σ×ω(
√

log λ)
σ≥ω(
√

log λ)

Above, ≈ means the two states are negligibly close.
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4.2 The Construction

Let Gλ,Xλ, ∗ be a REGA, and T = (g1, . . . , gm) a set such that ∗ can be efficiently computed for
gi and g−1

i . We can associate Gλ with a subgroup of ZnN for some integers N,n. We can likewise
associate the list T with the matrix A = (g1, · · · , gm) ∈ Zn×mN .

We will make the following assumption about the structure of T , which is typical in the isogeny
literature.

Assumption 4.5. There is a polynomial B and a distribution D∗ on [−B,B]m such that for x← D,∑m
i=1 xigi = A · x is statistically close to a uniform element in G

Numerous examples of such D∗ have been proposed, such as discrete Gaussians [DG19], or
uniform vectors in small balls relative to different norms [CLM+18, NOTT20].

Let C = N/8Bm, which then satisfies the conditions of Lemma 4.2. Thus, for e with entries in
[−C,C]m, the map (g, e) 7→ AT · ϕ(g) + e is injective.

Let σ ≥ 16Bm/ϵ×ω(
√

log λ) and B′ ≥ σ×ω(
√

log λ) be polynomials. We will assume N ≥ 2B′,
which is always possible since we can take N to be arbitrarily large. We will also for simplicity
assume N is even. This assumption is not necessary but will simplify some of the analysis, and is
moreover without loss of generality since we can always make N larger by multiplying it by arbitrary
factors.

Construction 4.6. Gen(1λ): Initialize quantum registers S (for serial number) andM (for money)
to states |Dσ,B′⟩⊗mS and |0⟩M, respectively. Then do the following:

• Apply in superposition the map |r⟩S |y⟩M 7→ |r⟩S |y ⊕ [(∑m
i=1 rigi) ∗ xλ])⟩M. The joint state of

the system S ⊗M is then

∑
r∈Zm

N

√
Dσ′,B(r)|r⟩S |(

m∑
i=1

rigi) ∗ xλ⟩M =
∑
g∈Gλ

 ∑
r∈Zm

N :A·r=g

√
Dσ,B′(r)|r⟩S

 |g ∗ xλ⟩M
• Apply QFTZm

N
to S. Using the QFT rules given above, this yields the state negligibly close to:

1
Nn

∑
g∈Gλ

 ∑
s,e∈Zn

N

√
DN/σ,N/2−1(e)ei2π(g·s)|AT · s + e⟩S

 |g ∗ xλ⟩M
= 1
|Gλ|

∑
g∈Gλ

 ∑
h∈Gλ,e∈Zn

N

√
DN/σ,N/2−1(e)ei2π(g·ϕ(h))|AT · ϕ(h) + e⟩S

 |g ∗ xλ⟩M
= 1√

|Gλ|
∑
g∈Gλ

 1√
|Gλ|

∑
h∈Gλ,e∈Zn

N

√
DN/σ,N/2−1(e)χ(g, h)|AT · ϕ(h) + e⟩S

 |g ∗ xλ⟩M
• Measure S, giving the serial number t := AT · ϕ(h) + e. e is distributed negligibly close

to DN/σ, meaning with overwhelming probability each entry is in [−N/16Bm,N/16Bm] =
[−C/2, C/2] ⊆ [−C,C]. This means, to within negligible error, t uniquely determines ϕ(h)
and hence h. Therefore, the M register then collapses to a state negligibly close to

1√
|Gλ|

∑
g∈Gλ

χ(g, h)|g ∗ xλ⟩M =: |Ghλ ∗ xλ⟩
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Note that h is unknown. Output (t, |Ghλ ∗ xλ⟩)

Ver(t, $) : First verify that the support of $ is contained in Xλ, by applying the assumed algorithm
for recognizing Xλ in superposition. Then repeat the following λ times:

• Initialize a new register H to (|0⟩H + |1⟩H)/
√

2.

• Choose a random element x← D∗.

• Apply to H⊗M in superposition the map

Apply|b⟩H|y⟩M 7→
{
|0⟩H|y⟩M if b = 0
|1⟩H|(−

∑
i xigi) ∗ y⟩M if b = 1

Since the entries of x are bounded by B which is polynomial, this step is efficient.

• Measure H in the basis Bt,x := {(|0⟩H + ei2πxT ·t/N |1⟩H)/
√

2, (|0⟩H − ei2πxT ·t/N |1⟩H)/
√

2},
giving a bit bu ∈ {0, 1}. Discard the H register.

• Accept if at least a fraction 7/8 of the bu = 0 and the support of $ is contained in Xλ; otherwise
reject.

4.3 Accepting States of the Verifier

We now analyze the correctness of the construction.

Theorem 4.7. Let |ψ⟩ be a state over M. Then Pr[Ver(h, |ψ⟩) = 1] = ∥⟨ψ|Ghλ ∗xλ⟩∥2(1− 2−Ω(
√
λ) +

2−Ω(
√
λ).

Proof. For simplicity, we analyze the case of |ψ⟩ = |Gh′
λ ∗ xλ, which form a basis for superpositions

over Xλ. In this case, Theorem 4.7 states that |Ghλ ∗xλ⟩ is accepted with probability 1−2Ω(
√
λ), while

|Gh′
λ ∗ xλ⟩ for h′ ̸= h is accepted with probability 2Ω(

√
λ). By a similar approach as in Theorem 3.3,

we can extend the analysis to all states.
If we let u = A · x = ∑

i xigi, then by the same analysis as in Construction 3.1, we have that
applying Apply to the state |Gh′

λ ∗ xλ⟩ results in the state

1√
2
(
|0⟩H + χ(u, h′)|1⟩H

)
|Gh′
λ ∗ xλ⟩

= 1√
2

(
|0⟩H + ei2πu·ϕ(h′)/N |1⟩H

)
|Gh′
λ ∗ xλ⟩

= 1√
2

(
|0⟩H + ei2πxT ·AT ·ϕ(h′)/N |1⟩H

)
|Gh′
λ ∗ xλ⟩
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Conditioned on sampling u, Pr[bu = 0] is the inner product squared of
(
|0⟩H + ei2πxT ·AT ·ϕ(h′)/N |1⟩H

)
/
√

2
with the basis state

(
|0⟩H + ei2πx·t/N |1⟩H

)
/
√

2. This is:

Pr[bu = 0] = 1
4
∥∥∥1 + ei2π(xT ·AT ·ϕ(h′)−xT ·t)/N

∥∥∥2

= 1
2
(
1 + cos

[
2π(xT ·AT · ϕ(h′)− xT · (AT · ϕ(h) + e))/N

])
= 1

2
(
1 + cos

[
2π(xT ·AT · ϕ(h′ − h) + xT · e)/N

])
In the case h = h′, Pr[bu = 0] = 1

2

(
1 + cos

[
2πxT · e/N

])
. We have that |2πxT · e/N | ≤ π/8.

Using the fact that cos(x) ≥ 1−x2/2, we therefore have that Pr[bu = 0] ≥ 1−π2/256 = 0.9614 . . . =
7/8 + Ω(1). Then via standard concentration inequalities, after λ trials, except with probability
2−Ω(

√
λ), at least 7/8 of the bu will be 0. Therefore, Ver accepts with probability 1− 2−Ω(

√
λ).

On the other hand, if g ̸= g′, then xTAT is statistically close to uniform in Gλ, and so
xT ·AT ·ϕ(h′−h) is statistically close to uniform in a non-trivial subgroup G′ of ZN . By Lemma 4.1 and
our assumption thatN is even, at least half of the elements of ZN are at leastN/4 in absolute value. In
particular, this means Pr[|xT ·AT ·ϕ(h′−h)| ≥ N/4] ≥ 1/2−negl. On the other hand, |xT ·e| ≤ N/16
always. This means ∥xT ·AT ·ϕ(h′−h) + xT · e∥ ≥ N/4−N/16 with probability at least 1/2− negl.
In this case, we can use that cos(π/2+x) ≤ |x| to bound cos

[
2π(xT ·AT · ϕ(h′ − h) + xT · e)/N

]
≤

2π/16 = π/8, meaning Pr[bu = 0] ≤ 1/2 + π/16. Averaging over all u, we therefore have that:
Pr[bu = 0] ≤ 3

4 +π/32+negl = 0.8481 . . . = 7/8−Ω(1). Then via standard concentration inequalities,
after λ trials, except with probability 2−Ω(

√
λ), fewer than 7/8 of the bu will be 0. therefore, Ver

accepts with probability 2−Ω(
√
λ).

4.4 Security

Here, we state the security of Construction 4.6.

Assumptions. We first need to define slight variants of our assumptions, in order to be consistent
with the more limited structure of a REGA. For example, in the ordinary Discrete Log assumption
(Assumption 2.4), the challenger computes y = g ∗ x for a random g, and adversary produces g. But
the adversary cannot even tell if it succeeded since it cannot compute the action of g in general.
Instead, the adversary is required not to compute g, but instead to compute any short x such that
g = ∑

i xigi. The adversary can then check that it has a solution by computing the action of g using
its knowledge of x. We analogously update each of our assumptions to work with the limited ability
to compute the group action on REGAs.

As above, let Gλ,Xλ, ∗ be a REGA, and T = (g1, . . . , gm) a set such that ∗ can be efficiently
computed for gi and g−1

i . Let D∗, B be as in Assumption 4.5.
Assumption 4.8. The REGA quantum knowledge of group element assumption (REGA-Q-KGEA)
holds on a group action (G,X , ∗) if the following is true. For any quantum polynomial time (QPT)
adversary A which performs no measurements except for its final output, there exists a polynomial
C, a QPT extractor E with outputs in [−C,C]m, and negligible ϵ such that

Pr
[
y ∈ X ∧ y ̸= g ∗ xλ : (y,|ψ⟩)←A(1λ)

x←E(y,|ψ⟩) g ←
∑
i

xigi

]
≤ ϵ(λ) .
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We can likewise define a modified REGA KGEA assumption (REGA-Q-mKGEA), in the same
spirit as Assumption 3.16.

Assumption 4.9. We say that the REGA Discrete Log with a single minimal CDH query assumption
(REGA-DLog/1-minCDH) assumption holds if the following is true. For any QPT adversary A
playing the following game, parameterized by λ, there is a negligible ϵ such that A wins with
probability at most ϵ(λ):

• The challenger, on input λ, chooses a random g ∈ Gλ. It sends λ to A

• A submits a superposition query ∑y∈X ,z∈{0,1}∗ αy,z|y, z⟩. Here, y is a set element that forms
the query, and z is the internal state of the adversary when making the query. The challenger
responds with ∑y∈X ,z∈{0,1}∗ αy,z|(−g) ∗ y, z⟩.

• The challenger sends g ∗ x to A.

• A outputs a x ∈ Zm, encoded in unary. It wins if g = ∑
i xigi.

Note that the challenger in Assumption 4.9 is inefficient on a REGA. However, under As-
sumption 4.5, the challenger can be made efficient by first sampling y← D∗ and then computing
g = ∑

i yigi.

Theorem 4.10. Assuming REGA-DLog/1-minCDH (Assumption 4.9) and REGA-Q-KGEA (As-
sumption 4.8) (or more generally, REGA-Q-mKGEA) both hold on a group action (G,X , ∗), then
Construction 4.6 is a quantum lightning scheme.

We only sketch the proof. Like in the proof of Theorems 3.12 and 3.17, we can assume the
adversary wins the quantum lightning experiment with probability 1 − negl(λ). In order for a
supposed note $ to be accepted relative to serial number t with overwhelming probability, t must
have the form t = AT ·ϕ(h) + e for “short” e, and $ must be negligibly close to |Ghλ ∗xλ⟩. Therefore,
a quantum lightning adversary outputs two copies of |Ghλ ∗ xλ⟩ for some h. The security reduction of
Theorem 3.12 did not rely on knowing h, just that the adversary outputted two copies of |Ghλ ∗ xλ⟩.
Hence, a near-identical proof holds for Construction 4.6. The only difference is that when the
extractor E outputs a group element, it instead outputs a small linear combination of the gi giving
that group element, and then the DLog/1-minCDH adversary uses this small representation to
compute the action by that group element.

5 Further Discussion

5.1 Quantum Group Actions

Here, we consider a generalization of group actions where set elements are replaced with quantum
states.

An quantum (abelian) group action consists of a family of (abelian) groups G = (Gλ)λ (written
additively), a family X = (Xλ)λ of sets Xλ of quantum states over a system Mλ, and an operation
∗. We will require that the states in Xλ are orthogonal. ∗ is a quantum algorithm that takes as
input a group element g ∈ Gλ and a quantum state |ψ⟩ over Mλ, and outputs another state over
Mλ. ∗ satisfies the following properties:
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• Identity: If 0 ∈ Gλ is the identity element, then |0⟩ ∗ |ψ⟩ = |ψ⟩ for any |ψ⟩ ∈ Xλ.

• Compatibility: For all g, h ∈ Gλ and |ψ⟩ ∈ Xλ, (g + h) ∗ |ψ⟩ = g ∗ (h ∗ |ψ⟩).

We can also relax the above properties to only hold to within negligible error, and/or relax the
orthogonality requirement to being near-orthogonal. We will additionally require the following
properties:

• Efficiently computable: There is a pseudodeterministic QPT procedure Construct which,
on input 1λ, outputs a description of Gλ and an specific element |ψλ⟩ ∈ Xλ. The operation ∗
is also computable by a QPT algorithm.

• Efficiently Recognizable: There is a QPT procedure Recog which recognizes elements in
Xλ. That is, Recog(1λ, ·) projects onto the span of the states in X⟩.

• Regular: For every |ϕ⟩ ∈ Xλ, there is exactly one g ∈ Gλ such that |ϕ⟩ = g ∗ |ψλ⟩.

Again, we can also relax the above properties to only hold to within negligible error.

Cryptographic group actions. At a minimum, a cryptographically useful quantum group action
will satisfy the following discrete log assumption:

Assumption 5.1. The discrete log assumption (DLog) holds on a quantum group action (G,X , ∗)
if, for all QPT adversaries A, there exists a negligible λ such that

Pr[A(g ∗ |ψλ⟩) = g : g ← Gλ] ≤ negl(λ) .

Note that if we do not insist on orthogonality of the states in Xλ, then it is trivial to construct a
quantum group action in which DLog holds: simply have all |ψ⟩ ∈ Xλ be identical, or negligibly
close. Then it will be information-theoretically impossible to determine g. Orthogonality essentially
says that the group action is classical, except that the basis for the set elements is potentially
different than the computational basis.

5.2 Quantum Group Actions From Lattices

Here, we describe a simple quantum group action from lattices.
The group GLWE,N,n,m,σ will be set to ZnN for some integers N,n. We will fix a short wide matrix

A ∈ Zn×mN ; we can think of A as being sampled randomly and included in a common reference
string. Note that G is independent of σ, but we include it for notational consistency.

The set XLWE,N,n,m,σ will be the set of states |ψs⟩ = ∑
e∈Zn

N

√
Dσ,N/2(e)|AT · s + e⟩. In other

words, we take the discrete Gaussian vector superposition of some width, and add the vector AT · s.
GLWE,N,n,m,σ acts on XLWE,N,n,m,σ in the following obvious way: r ∗ |ψs⟩ = |ψr+s⟩, which can be

computed by simply adding AT · r in superposition.
We have the following theorem:

Theorem 5.2. Let σ, σ0 be non-negative real numbers such that σ/σ0 is super-logarithmic. Assuming
the Learning with Errors problem is hard for noise distribution Dσ0 , discrete logarithms are hard in
the group action (GLWE,N,n,m,σ,XLWE,N,n,m,σ, ∗).
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Proof. The learning with errors assumption states that it is hard to compute s given AT · s + e
with e sampled from Dσ0 . We need to show that it is hard to compute s given the analogous
superposition over AT · s + e, where here e comes from the Gaussian superposition |Dσ⟩. The
idea is a simple application of noise flooding: given u = AT · s + e, compute the state |ψ′s⟩ :=∑

e′∈Zn
N

√
Dσ,N/2(e′)|AT · s + e + e′⟩. Since σ/σ0 is super-polynomial, e + e′ where e′ ← Dσ,N/2 is

negligibly close to a Gaussian centered at 0. Therefore, |ψ′s⟩ is negligibly close to |ψs⟩. Plugging
into a supposed DLog adversary then gives s, breaking LWE.

Unfortunately, this LWE-based group action is missing a crucial feature: it is not possible
to recognize states in X . In particular, the states in X are indistinguishable from states of the
form ∑

e∈Zn
N

√
Dσ,N/2(e)|v + e⟩, where v is an arbitrary vector in ZmN . As we will see in the next

sub-section, the inability to recognize X will prevent us from using this group action to instantiate
our quantum money scheme.

5.3 Relation to Quantum Money Approaches based on Lattices

Here, we see that our quantum money scheme is conceptually related to a folklore approach to
building quantum money from lattices. This approach has not been able to work; in our language,
the reason is exactly due to the inability to recognize XLWE,N,n,m,σ.

The approach is the following. Let A ∈ Zn×mN be a random short wide matrix over Zn. To mint
a banknote, construct the discrete Gaussian superposition |Dσ⟩⊗m in register M. Then compute
and measure A ·x applied toM. The result is a vector h ∈ ZnN , which will be the serial number, and
M collapses to a superposition |$h⟩ ∝

∑
x:A·x=h

√
Dσ(x)|x⟩ of short vectors x such that A · x = h.

This is the banknote. A simple argument shows that it is impossible to construct two copies of |$h⟩
for the same h: given such a pair, measure each to get x,x′ such that A · x = A · x′ = h. Then
subtract to get a short vector x−x′ such that A · (x−x′) = 0n. We can conclude x−x′ is non-zero
with overwhelming probability, since the measurement of |$h⟩ has high entropy. Such a non-zero
short kernel vector would solve the Short Integer Solution (SIS) problem, which is widely believed
to be hard and is the foundation of lattice-based cryptography.

Unfortunately, the above approach is broken. The problem is that there is no way to actually
verify banknotes. One can verify that a banknote has support on short vectors with A · x = h, but
it is impossible to verify that the banknote is in superposition. If one could solve the Learning with
Errors (LWE) problem, it would be possible to verify banknotes as follows: first perform the QFT
to the banknote state. If an honest banknote, the QFT will give a state negligibly close to

|$′h⟩ := 1
Nn/2

∑
s,e∈Zn

N

√
DN/σ(e)ei2πh·s/N |AT · s + e⟩ . (5.1)

The second step is to simply apply the supposed LWE solver to this state in superposition, ensuring
that the state has support on vectors of the form AT · s + e for small e.

Unfortunately, LWE is likely hard. In fact, it is quantumly equivalent to SIS [Reg05], meaning if
one could verify banknotes using an LWE solver, then SIS is easy. Not only does this mean we are
reducing from an easy problem, but it would be possible to turn such a SIS algorithm into an attack.

Without the ability to verify that banknotes are in supeprosition, the attacker can simply
measure a banknote to get x, and then pass off |x⟩ as a fake banknote that will pass verification.
Since x is trivially copied, this would break security. Interestingly, [LZ19] prove that, no matter
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what efficient verification procedure is used, even if the verification diverged from the LWE-based
approach above, this attack works. [LMZ23] extend this to a variety of potential schemes based on
similar ideas, including a recent proposed instantiation of this approach by [KLS22].

We now see how the above approach is essentially equivalent to our construction of quantum
money from group actions, instantiated over our LWE-based quantum group action. The inability
to recognize X is the reason this instantiation is insecure, despite natural hardness assumptions
presumably holding on the group action.

We consider the quantum group action (GLWE,N,n,m,N/σ,XLWE,N,n,m,N/σ, ∗), where σ is from the
folklore construction above. When applied to (GLWE,N,n,m,N/σ,XLWE,N,n,m,N/σ, ∗), a banknote in our
scheme, up to negligibly error from truncating discrete Gaussians, is the state |$′h⟩ from Equation 5.1
above, where the serial number is h. Thus, we see that our quantum money scheme is simply the
folklore construction but moved to the Fourier domain. The attack on the folklore construction can
therefore easily be mapped to an attack on our scheme: if the adversary is given |$′h⟩, it measures in
the Fourier domain (which is the primal domain for the folklore construction) to get a short vector
x such that A · s = h. Then it switched back to the primal domain, giving the state

1
Nm/2

∑
u
ei2πe·x|x⟩

This is a state that lies outside the span of X . However, no efficient verification procedure can
distinguish it from an honest banknote state.

Two features that distinguish isogeny-based group actions from the LWE-based action above.
The first is the ability to recognize elements in X . Suppose it were possible to recognize elements of
X in the LWE-based action, and we had the verifier check to see if the banknote belonged to the
span of the elements in X . In the language of quantum group actions, this check would prevent the
attacker from sending 1

Nm/2
∑

u e
i2πe·x|x⟩, which lies outside the span of X . In the language of the

folklore construction, this check would correctly distinguish between an honest banknote and the
easily clonable state |x⟩ in the attack. If such a check were possible, the proof sketched above would
work to base the security of the scheme on SIS. Unfortunately, such a check is computationally
intractable under the decision LWE problem, which is equivalent to SIS and most likely hard.

The issue of recognizing set elements is also crucial in our security arguments. Indeed, the first
step in our proof was to characterize the states accepted by the verifier, showing that only honest
banknote states are accepted. This step in the proof fails in the LWE-based scheme, which would
prevent the proof from going through. Thus, even though the scheme based on LWE is broken, it
does not contradict our DLog/1-minCDH and Q-KGEA assumptions holding on the LWE-based
group action.

The second difference, is that, with the LWE-based group action, taking the QFT of money
states gives elements with meaningful structure: short vectors x such that A · x = h. This structure
and it’s relation to the original money state are what enables the attack. In contrast, taking the
QFT of money states over X coming from isognies will give terms with no discernible structure.

We believe the above perspective adds to the confidence in our proposal. Indeed, in the LWE-
based scheme, the key missing piece is recognizing set elements; if not for this missing piece the
scheme could be proven secure. By switching to group actions based on isogenies, we add the
missing piece. The hope is that even though the source of hardness is now from hard problems on
isogenies over elliptic curves instead of lattices, by adding the missing piece we can finally obtain a
secure scheme.
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