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Abstract. In this paper, we propose a variable-sized, one-way, and ran-
domized secure hash algorithm, VORSHA for short. We present six vari-
ants of VORSHA, which are able to generate a randomized secure hash
value. VORSHA is the first secure hash algorithm to randomize the se-
cure hash value fully. The key embodiment of our proposed algorithm is
to generate a pool of pseudo-random bits using the primary hash func-
tions and selects a few bits from the pool of bits to form the final ran-
domized secure hash value. Each hash value of the primary hash function
produces a single bit (either 0 or 1) for the pool of pseudo-random bits.
Thus, VORSHA randomized the generated bit string to produce the se-
cure hash value, and we term it as a randomized secure hash value. More-
over, the randomized secure hash value is tested using NIST-SP 800-22
statistical test suite, and the generated randomized secure hash value of
VORSHA has passed all 15 statistical tests of NIST-SP 800-22. It proves
that the VORSHA is able to generate a highly unpredictable yet consis-
tent secure hash value. Moreover, VORSHA features a memory-hardness
property to restrict a high degree of parallelism, which features a tiny
memory footprint for legal users but massive memory requirements for
adversaries. Furthermore, we demonstrate how to prevent Rainbow Table
as a Service (RTaaS) attack using VORSHA. The source code is available
at https://github.com/patgiri/VORSHA.

Keywords: Secure Hash Algorithm· Variable hash function· One-way
hash function· Password Hashing· Random number generator· Cryptog-
raphy· Security.

1 Introduction

A secure hash algorithm (SHA) is a widely used hash function in security and
cryptography. Therefore, NIST held a competition on permutation-based secure
hash algorithms to select an algorithm for SHA3, and the winner was Keccak
[7]. Keccak is a permutation-based secure hash function that implements the
sponge function based on absorb and squeeze functions [5,4,6]. Therefore, the
recent development suggests that NIST is keen on developing a permutation-
based secure hash algorithm. Keccak is a good hash algorithm that tries to
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randomize the bits; however, there is a lack of proof of the randomness of the
generated bit strings. Alternatively, Keccak is not applied to generate a random
number of variable sizes, and it is not developed for a random number generation
purpose.

1.1 Motivation

The permutation-based secure hash algorithm is predominantly used for string
hashing, where the input is mixed with some predefined constant by addition,
rotation, XOR, shift, modulus, etc., operators. Moreover, state-of-the-art secure
hash algorithms require bit padding, and the bits are public. Additionally, the
conventional secure hash algorithm has a fixed-sized hash value which becomes
easy to attack by adversaries. There are many applications where a fix-sized
hash value creates an issue due to the presence of adversaries, for instance,
password hashing or digital signature. It becomes difficult for adversaries when
the hash value size is variable, and the adversary does not have any clue about the
size. Therefore, rainbow table attacks or other similar kinds of attacks become
computationally infeasible when the hash value size is variable. Hence, a variable-
sized hash value is highly demanded to prevent diverse attacks, but it still needs
to incorporate into diverse applications, for instance, HMAC.

Security is a paramount feature for a secure hash algorithm, but it should not
be the performance. A high-performance secure hash algorithm has the disad-
vantage of being fast. The state-of-the-art secure hash algorithms should make
it infeasible to convert the secure hash value generation in parallel. For illus-
tration, we assume that a set of secure hash values can be produced in parallel
using a secure hash algorithm, say the algorithm is Z; and therefore, the Z fea-
tures extremely high performance due to high parallelism. The adversary can
also take the same advantage to evade the security of the secure hash algo-
rithm Z. Thus, the high performance becomes disadvantageous for secure hash
algorithms. Therefore, the memory-hard hash algorithms hash introduced by
C. Percival [11]. Therefore, the parallelism in a secure hash algorithm is made
infeasible in generating a set of secure hash values in parallel.

Most importantly, research communities believe that the secure hash algo-
rithm and random number generator are different algorithms, and the belief
continues. Partially, it is true that a secure hash value and a true-random num-
ber have a difference, but a secure hash algorithm can be modified to generate
a true-random number. Each bit of a random number is influenced by external
events, which is easily achieved by a secure hash algorithm. Interestingly, a true-
random number generator requires a higher speed of generation of a bit string,
whereas a secure hash algorithm does not require a higher speed of generation
of a bit string. Instead, a secure hash algorithm restricts to a certain degree of
parallelism. On the contrary, a secure hash value and a pseudo-random number
do not have any significant differences. The pseudo-random numbers are com-
pletely determined by the initial input. Alternatively, a secure hash algorithm
can be used to generate a pseudo-random number or vice-versa. The generated
hash value should be highly random and unpredictable. Also, the generated bit
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string should contain no patterns to discover by the adversaries. Therefore, a
secure hash value should be highly random yet consistent. Alternatively, the se-
cure hash value should convert a low entropy input string into high entropy hash
value. Also, the output of the hash algorithm should be tested using a statistical
test suite, namely, NIST SP 800-22 or any other similar tools. NIST SP 800-22
is used to test the randomness of the generated bit string. The secure hash al-
gorithm H or random number generator G generates output ζ = {0, 1}η where
ζ is either a secure hash value or a random number. Therefore, we argue that
there is no significant difference between a pseudo-random number generator
and a secure hash algorithm. Therefore, it motivates us to design a secure hash
algorithm from a different perspective than a conventional way.

Notably, SHAKE128 and SHAKE256 feature variable-sized hash functions
[1]; however, the hash value of a string in a lower bit size is the prefix of a higher
bit size. For instance, if the hash value size of a 128-bit is h128 for a given input
string, ω, then the hash value of 256-bit size for the ω is h256 = h128hex128

where hex128 is the remaining hash value. Alternatively, the bit size of the hash
value does not influence the hash value. Theoretically, it can be derived from
the lower bit-sized hash value for the higher bit-sized hash value. For instance,
h256 = h64h64hex128 = h32h32h32h32hex128. Therefore, it demands a bit-size
dependant hash value.

Furthermore, a rainbow table attack is an attack performed by storing a set
of precomputed hash values for corresponding keys at the server to evade the
security of the conventional secure hash algorithm. It is a serious concern for a
secure hash algorithm. It is almost impossible to prevent from rainbow attack.
For instance, the rainbow attack stores all possible hash values of SHA3-256 to
carry the attacks. Notably, it is impossible to store all hash values of SHA3-256,
but the important hash values are stored in the hashtable. The attacker queries
for a key for the corresponding hash value in the database. The database can
instantly respond to the query with a key. However, the adversary needs to store
1

2128 hash values for SHA-256 to perform the rainbow table attack. The only way
to prevent such kind of attack is by increasing the hash value size from 256 to 512
bits or beyond. Another way to make the rainbow table attack computationally
infeasible is using a variable-sized hash value. For instance, if the variable-sized
hash value ranges [256,1024), then the adversary needs to store all the hash
values from 256-bit to 1024-bit (the hash value size can range between 256-
bit and 1024-bit). It is computationally infeasible to store all such variants of
hash values on a server. Moreover, a key can have (1024 − 256) = 768 correct
hash values. However, the conventional secure hash algorithms are not designed
for variable-sized hash values. Even NIST restricts the hash value size to 224,
256, 384, and 512 bits. Therefore, the secure hash algorithm is confined within
fixed bit-sized hash values. It has significant drawbacks due to the presence of
an adversary with more advanced computational resources. It motivates us to
design a variable-sized secure hash algorithm to withstand such kinds of attacks.

Recent developments suggest that memory-hard hash functions are used to
defeat the parallelism of adversaries [11]. The memory-hard hash algorithm de-
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fines massive memory requirements for the adversaries to break the security,
but it requires a tiny memory footprint for the legal users. It is often used in
password hashing to secure the stored password [9,8]. Therefore, it motivates us
to design a general-purpose secure hash algorithm that exhibits the property of
memory hardness.

1.2 Key contributions

The key objectives of our proposed algorithm are outlined below-

– To prove that there is no significant difference between a secure hash algo-
rithm and a random number generator.

– To develop a secure hash algorithm that produces a randomized secure hash
value based on an input string.

– To develop a memory-hard secure hash algorithm.
– To compare our proposed algorithm with Keccak, and random oracle.
– To demonstrate how computationally infeasible to break our proposed algo-

rithm using the brute-force method for a large-sized hash value.

To develop a randomized secure hash algorithm, we propose a variable-sized,
one-way, and randomized secure hash algorithm to address our objectives; we
term it VORSHA for short. The key embodiment of the VORSHA algorithm is
to generate a η-bit secure hash value or a η-bit pseudo-random number using the
primary hash function (primary hash function is defined in Definition 1). The
primary hash function can be either a secure or non-secure hash function, but it
should produce at least a β ≥ 32-bit hash value. Also, the primary hash function
should support a seed value in generating a hash value. VORSHA generates a set
of pseudo-random bits based on an input string using the primary hash function
and selects η bits from the generated random bits to form a η-bit randomized
secure hash value or pseudo-random number. Therefore, we summarize our key
contributions as follows-

– Our proposed algorithm, VORSHA, is a variable-sized, one-way, and ran-
domized secure hash algorithm that generates either a secure hash value or
a random number. We term the randomized secure hash algorithm (see the
Definition 4). VORSHA is a randomized secure hash algorithm that pro-
duces a randomized secure hash value with variable bit sizes (Definition 6),
and it is truly a one-way (Definition 5). VORSHA significantly differs from
Merkle-Damgård construction mechanism. Best of our knowledge, VORSHA
is the first of its kind.

– Furthermore, we derive three variants of VORSHA based on the character-
istics, namely, one-dimensional VORSHA (VORSHA-1D), two-dimensional
VORSHA (VORSHA-2D), and three-dimensional VORSHA (VORSHA-3D).
VORSHA-1D is optimized for high performance, while VORSHA-3D is opti-
mized for strong security requirements. VORSHA-2D is medium performance
and medium security requirements. VORSHA-1D is faster than VORSHA-
2D and VORSHA-3D, whereas VORSHA-3D is more secure than VORSHA-
1D and VORSHA-2D. Similarly, we categorize VORSHA into two different
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categories based on the input string, that is, short (S) and long (L) in-
put string. Therefore, it becomes six total variants of VORSHA; namely,
VORSHA-1D for short input string is denoted as VORSHA-1D-S, VORSHA-
1D for long input string is denoted as VORSHA-1D-L. Thus, we denote other
variants as VORSHA-2D-S (medium and short), VORSHA-3D-S (strong and
short), VORSHA-2D-L (medium and long), and VORSHA-3D-L (strong and
long).

– VORSHA is strongly dependent on a primary hash function. The primary
hash function requires an input string and a seed value. The primary hash
function is used to generate a set of pseudo-random bits. From the generated
pool of random bits, VORSHA selects η-bit to form the final randomized
secure hash value.

– VORSHA can generate a secure hash value of any size. Therefore, it can
be used to conceal the size of bits from adversaries in string hashing. The
final randomized secure hash value can be either a fix-sized or variable-sized
bit string. Moreover, VORSHA has the properties of a memory-hard secure
hash algorithm.

1.3 Our results

Table 1. Comparison among the random oracle, SHA3, SHAKE, and VORSHA.

Algorithm Output Collision Preimage Second
Preimage

Random oracle η 2η/2 2η 2η

SHA3-224 224 2112 2224 2224

SHA3-256 256 2128 2256 2256

SHA3-384 384 2192 2384 2384

SHA3-512 512 2256 2512 2512

SHAKE128 η 2min(η/2,128) ≥ 2min(η,128) 2min(η,128)

SHAKE256 η 2min(η/2,256) ≥ 2min(η,256) 2min(η,256)

VORSHA-1D-S η 2η/2 2η 2η

VORSHA-2D-S η 2η/2 2η 2η

VORSHA-3D-S η 2η/2 2η 2η

VORSHA-1D-L η 2η/2 2η 2η

VORSHA-2D-L η 2η/2 2η 2η

VORSHA-3D-L η 2η/2 2η 2η

VORSHA η ∈ [µ, λ)
∑λ

η=µ 2(η+1)/2 ∑λ
η=µ 2η

∑λ
η=µ 2η

Security strength Table 1 compares the collision attacks, preimage attacks,
and second preimage attacks of the random oracle, SHA3, SHAKE, and VOR-
SHA. The security strengths of VORSHA-1D-S are 2

η
2 , 2η, and 2η for colli-

sion attacks, preimage attacks, and second preimage attacks, respectively, if and
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only if the size of the hash value is public and it is fixed to η. The security
strengths for the other variants of VORSHA are the same as the given condition
that η is public and fixed. Otherwise, the security strengths for VORSHA are∑λ

η=µ 2
(η+1)/2,

∑λ
η=µ 2

η, and
∑λ

η=µ 2
η) for collision attacks, preimage attacks,

and second preimage attacks, respectively.

Brute-force attack The probability of reproducing the correct secure hash
value using VORSHA-1D-S, VORSHA-2D-S, and VORSHA-3D-S are 1

2(τ+2η)β ,
1

2β(2τ+XY (τ+1)+2η(τ+1)) , and 1
2β(3τ+XY Z(τ+1)+3η(τ+1)) , respectively, where 8 ≤ τ ≤ 64.

Memory requirement The adversary requires (δ + 1)µ + δ(δ+1)
2 memory to

store a secure hash value because the size of the randomized secure hash value
is secret, which is η ∈ [µ, µ+ δ).

Lower-bound memory The lower-bound memory of VORSHA-2D-S, and
VORSHA-3D-S are Ω(XY + η), and Ω(XY Z + η), respectively where X, Y ,
and Z are secret and η is public and fixed.

Lower-bound memory in variability The lower-bound memory of
VORSHA-2D-S, and VORSHA-3D-S are Ω(XY + (δ + 1)µ + δ(δ+1)

2 ), and
Ω(XY Z + (δ + 1)µ + δ(δ+1)

2 ), respectively, where X, Y , Z and η are secret
and η ∈ [µ, µ+ δ).

Space Complexity The space complexity for VORSHA-3D-S and VORSHA-
2D-S is O(2(φ−16)C2XY + (δ + 1)µ + δ(δ+1)

2 ), and O(3(φ−16)C3XY Z + (δ +

1)µ+ δ(δ+1)
2 ) for the adversary in a single system in parallel, respectively, where

η ∈ [µ, µ+ δ) and secret.

Randomness testing We prove the randomness of the generated randomized
hash value using the NIST SP 800-22 statistical test suite. The generated ran-
domized secure hash value of VORSHA-1D-S, VORSHA-2D-S, and VORSHA-
3D-S pass all 15 test cases of NIST SP 800-22.

1.4 Organization

Our paper is organized as follows- Section 2 highlights the preliminaries with def-
initions and important notations used throughout the paper. Section 3 demon-
strates the proposed system. Section 4 demonstrates the variability in secure
hash functions. Section 5 exhibits the randomness of the generated bit string
using VORSHA. Section 6 analyzes the diverse attacks on VORSHA.
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2 Preliminaries

Definition 1. The primary hash function, PH() or PrimaryHash( ), is a
string hash function, either a secure or non-secure variant, which produces a
hash value, hv, of bit size β where hv = {0, 1}β. The key requirement of the
primary hash function is a seed value for hash value generation. A primary hash
function PH() converts the input string into the hash value of β bit size, i.e.,
PH : (ω,S) → hv where ω = {0, 1}∗ is input string, S = {0, 1}32 is seed value
and hv is the generated hash value by the primary hash function.

Definition 2. A secure hash algorithm H() is a function that takes an input
string (ω = {0, 1}∗) of arbitrary size and produces a secure hash value ζ =
{0, 1}η, i.e., H : ω → ζ. The secure hash value can be regenerated consistently
for a given input.

Definition 3. A random number generator G generates a random number, i.e.,
G : ω → ζ where ω = {0, 1}∗ and ζ = {0, 1}η. In a true-random number gen-
eration, the input string ω is not directly given by the users, and therefore, the
desired output cannot be regenerated. Moreover, the input string is altered in the
generation of each bit of the random number generation. For instance, the input
string can be CPU clock, mouse movement, light, or any other events in each
iteration. On the contrary, the input string is fixed in a pseudo-random number
generator. The output of pseudo-random number generation is dependent on the
initial input string, and the randomness is measured in terms of initial input.

Definition 4. A randomized secure hash value, ζ = {0, 1}η, is an output of η-
bit secure hash algorithm with the properties of a secure hash value (Definition
2) and a pseudo-random number (Definition 3).

Definition 1 defines the primary hash function. The primary hash function
can be either a secure hash function or a non-secure hash function, but it should
support a seed value. We can use Murmur2, Murmur3, XXHash, FastHash, Su-
perFastHash, MD5, SHA1, SHA2, or any other algorithm, but the primary hash
function must support a seed value as an input. The primary hash function
should not necessarily be a secure hash function. However, the secure hash algo-
rithm is a hash function that converts a low-entropy string into a high-entropy
bit string as defined in Definition 2. Similarly, a random number generator can
produce a high-entropy bit string as defined in Definition 3. The random numbers
are generated based on the unpredictable input string; for instance, noises. How-
ever, the pseudo-random numbers are generated using a single input string. The
randomness of a pseudo-random number is measured based on the initial input
string. Similar to the pseudo-random number generator, a secure hash value can
be consistently regenerated for a given input, and it is computationally infeasi-
ble to reproduce the input string from a hash value. The hash value exhibits the
properties of a random number in terms of the initial input string, and it should
be highly unpredictable and random. Moreover, the produced output should not
have any patterns to discover by the adversaries. Thus, the randomized secure
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Table 2. Important notations and symbols used throughout the paper.

Notation Description
PH() or PrimaryHash( ) Primary hash function.
hv Primary hash value generated by the primary hash func-

tion.
β The bit size of hash value hv.
ω Input string of arbitrary size.
L Length of a given string.
∧ Bit-wise AND operator.
% Modulus operator.
S Seed value of size ≥ 32 bits. Initially, it is assigned to a

constant. Later, it is altered to the primary hash value
in the subsequent steps. Therefore, there is no difference
between hv and S.

H() or H A secure hash algorithm.
f Any hash function, either a secure or non-secure hash

function.
ζ It is a secure hash value or a randomized secure hash

value that is generated by the secure hash algorithm or
VORSHA.

η Bit size of the secure hash value ζ.
µ The minimum size of the secure hash value ζ.
δ Displacement to calculate the bit size of ζ.
λ The maximum limit of the secure hash value size ζ where

λ = µ+ δ.
SV() It is short form of getSeedValue( ).
τ The number of iteration to compute seed value S.
V A vector to store pseudo-random 0s and 1s.
X, Y , Z The dimensions of V.
θ An extractor for dimension calculation from seed value

S.
V ORSHA − [dimension] −
[short/long]

VORSHA-[1D]-[Short], or VORSHA-1D-S, i.e., 1D-
S- one-dimensional and short input string. Simi-
larly, VORSHA-[1D]-[Long], i.e., VORSHA-1D-L- one-
dimensional and long input string. Thus, 2D-S-
two-dimensional and short input string, 2D-L- two-
dimensional and long input string, 3D-S- three-
dimensional and short input string, 3D-L- three-
dimensional and long input string.

hash value is consistent, unpredictable, and random. The algorithm that pro-
duces a randomized hash value is called a randomized secure hash algorithm
which is defined in Definition 4. There is no difference between a pseudo-random
number and a hash value.
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Definition 5. A hash function f is said to be strictly a one-way function if the
function f : x → y but there is no way to map x from y for any function, either
the given function f or another function f ′.

Definition 6. Let hv be the non-secure hash value of the primary hash function,
µ be the minimum bit size, and λ = µ+ δ be the maximum bit size where offset
δ = hv%δ. A variable-sized hash function produces a secure hash value of bit size
η, and the η can be within the range [µ, λ), where the η is a secret integer.

Lemma 1. The probability of generating the correct η-bit secure hash value is
1
2η without knowing the input string using a brute-force method.

Proof. Let us assume that an adversary uses the same method or other methods
to generate hash value and is able to generate the η bits secure hash value
correctly. The probability of correctly generating a bit is 1

2 without knowing the
input string. Adversaries may use brute force or other methods. It requires a
probability of 1

22 to generate two bits secure hash value correctly. Similarly, it
requires a probability of 1

23 to generate three bits secure hash value correctly.
Therefore, the total probability becomes 1

2η if the adversary does not know the
input string. This probability is common for all kinds of secure hash values for
η-bit without knowing the input string. Even it is true for random oracles too.
Moreover, it is also true for VORSHA since it produces a η-bit secure hash value.

Lemma 1 shows that the probability of computing the correct hash value
without the knowing input string is 1

2η , and it applies to all kinds of good secure
hash values. Similarly, the probability of collision in secure hash value is 1

2η/2 , and
it also applies to all, including the random oracle. Lemma 1 shows the attack on
the output bit string; however, we need to analyze the security of the algorithms
and their possibilities.

2.1 Rainbow table as a service

Rainbow table as a service (RTaaS) is an assumption and black-box that it
provides a lookup service to discover a set of corresponding keys for a particular
hash value, i.e., h → x and x = {x1, x2, x3, . . .} where x is a set of keys (one or
more than one string) corresponding to a particular hash value h. A single hash
value can have many corresponding keys due to collision. Collision is unavoidable
due to the limited size of hash bits.

RTaaS is a powerful attacking service that can easily break the security of a
secure hash algorithm. Therefore, RTaaS is a set of servers to store all hash values
and the corresponding keys. RTaaS requires a massive space to accommodate all
possible hash values and their corresponding keys. We know that it is infeasible
to store all the values of η-bit hash values in real life where η ≥ 256. Alternatively,
it is not possible to store all 2η hash values, but we assume that RTaaS stores all
possible hash values and the corresponding keys for comparison. Notably, RTaaS
can respond to a query in O(1) time complexity in addition to the network
latency. The RTaaS need to store more than 2

η
2 secure hash values to evade the
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random oracle model completely. Therefore, we need to prove the difficulties of
RTaaS in storing variable-sized hash values and the hash values of the random
oracle.

3 VORSHA- The Proposed Algorithm

We propose a new variant of the secure hash algorithm, called a variable-sized,
one-way, and randomized secure hash algorithm (VORSHA). The VORSHA al-
gorithm is based on the random number generator to produce a randomized hash
value. Alternatively, it can be used to generate a random number or vice-versa.
The algorithm generates random bits based on input string (ω). It also takes a
seed value (S) as another input. Initially, the seed value can be kept public or
private depending on the design choice, but it is converted into a private value in
the subsequent steps. Furthermore, it takes desired bit size η for the output ζ as
input to produce a randomized secure hash value where ζ = {0, 1}η is the ran-
domized secure hash value generated by VORSHA. To generate the randomized
secure hash value, our proposed algorithm relies on the primary hash functions
PrimaryHash( ) or PH(). Alternatively, we devise a new hash algorithm by
leveraging the properties of the primary hash functions. The primary hash func-
tion produces a hash value hv = {0, 1}β of β-bit, and we select one bit from the
generated hash value hv in each iteration to produce a randomized secure hash
value. Notably, we can use β ≥ 32-bit sized hash functions for the primary hash
function.

Our proposed algorithm is categorized into two key categories based on the
input string, particularly the short input string (S- short) and long input string
(L- long). Moreover, both have been categorized into three categories, namely,
1D, 2D, and 3D VORSHA. We denote 1D VORSHA as VORSHA-1D, 2D VOR-
SHA as VORSHA-2D, and 3D VORSHA as VORSHA-3D. Therefore, we have
six variants of VORSHA, namely, VORSHA-1D-S (1D and short), VORSHA-2D
(2D and short), VORSHA-3D (3D and short), VORSHA-1D-L (1D and long),
VORSHA-2D-L (2D and long), and VORSHA-3D-L (3D and long). VORSHA-
1D-S is designed to produce fast hash values for short input strings without sac-
rificing security; however, it is not a purely randomized secure hash algorithm.
In addition, VORSHA-1D-S produces the output faster than the medium and
strong. VORSHA-2D-S and VORSHA-3D-S are slower than VORSHA-1D-S, and
both can produce fully randomized secure values, but VORSHA-1D-S is not a
randomized secure hash algorithm. VORSHA-3D-S is designed for tight security
than the rest but slower. Similarly, VORSHA-1D-L is faster than VORSHA-2D-
L, and VORSHA-3D-L. For a long input string, VOSRHA-1DL, VORSHA-2D-L,
and VORSHA-3D-L use VORSHA-1D-S, VORSHA-2D-S, and VORSHA-3D-S,
respectively.
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3.1 One-dimensional VORSHA for short input string

Short input strings are instrumental in hashing for diverse security systems, for
instance, password hashing. A 16 characters long input string is considered as a
short input. More than 16 characters input string is considered as a long input.

Fig. 1. A simple architecture of VORSHA-1D-S for generating 8-bit secure hash value
as an example. Here, hv denotes a hash value of the primary hash function, which is
β bit size, PH() denotes a primary hash function, ω denotes an input string which is
fixed, SV() denotes computation of a seed value, and S denotes a seed value which
altered in each iteration.

VORSHA-1D for short input string Figure 1 demonstrates a simple archi-
tecture of the VORSHA-1D-S. We denote the input string as ω, seed value as S,
primary hash function as PH() or PrimaryHash( ), and the hash value of the
primary hash function is denoted as hv. Figure 1 demonstrates the invocation of
a primary hash function and a seed value computation using getSeedValue( )
or SV() function to generate a single bit for the randomized secure hash value.
The input string is kept fixed, and the seed value S is altered in every bit
generation. The figure demonstrates the 8-bit secure hash value generation, for
example. The length can be defined by the users as per their requirements. We
do not restrict the size of the final secure hash value; for instance, it can be 1024
bits or any size. On the contrary, conventional secure hash algorithms restrict its
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output size to a certain bit size; for instance, SHA512 produces a 512-bit secure
hash value.

Algorithm 1 Computing seed value for utilization in the hash function.
1: procedure getSeedValue(ω,L ,S)
2: for i : 1 to τ do ▷ τ is a constant and 8 ≤ τ ≤ 64.
3: S = PrimaryHash(ω,L ,S)
4: end for
5: return S
6: end procedure

In VORSHA, we use a function to generate a seed value, which is presented
in Algorithm 1. Algorithm 1 alters the publicly available seed value to private
seed value using the 8 ≤ τ ≤ 64 primary hash functions. It protects the publicly
available seed value and converts it into a private seed value with the help of
an input string. The key idea of Algorithm 1 is to protect seed value from easy
computation. However, our assumption is that the primary hash function is a
non-secure hash function; therefore, a seed value can easily be computed with a
probability of 1

2β
, but it requires many seed values, which makes it infeasible to

compute all the values.

Algorithm 2 VORSHA-1D-S for short input string and fast processing.
1: procedure genVORSHA-1D-S(ω,S, η)
2: L = stringLength(ω)
3: S = getSeedValue(ω,L ,S)
4: S = S ⊕ η
5: for i : 1 to η do
6: hv = PrimaryHash(ω,L ,S)
7: ρ = hv%ϱ ▷ The ϱ = (β − c) is a prime number.
8: bit = (hv ∧ (1 << ρ)) >> ρ
9: hash_bits[i] = bit

10: S = hv

11: S = PrimaryHash(ω,L ,S)
12: end for
13: ζ = convertIntoHex(hash_bits, η)
14: return ζ
15: end procedure

Algorithm 2 presents the VORSHA-1D-S for high performance. Therefore, it
uses an extra space of O(1), excluding the space required to write the hash output
in ζ. Initially, the seed value is a public constant; therefore, it is converted into a
private constant by repeatedly computing the seed value 8 ≤ τ ≤ 64 times, i.e.,
S = PrimaryHash(ω,L ,S). Algorithm 2 calculates a bit position as ρ = hv%ϱ
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where ϱ = (β − c) is a prime number. For instance, if a primary hash function
produces a 32-bit hash value, then c = 1, and ϱ = β−c = 32−1 = 31, where the
number, 31, is a prime number. Thus, it becomes ρ = hv%31, giving a single-bit
location of hv. The ρth bit of hv is extracted to form the secure hash value, and
the bit is either 0 or 1. We consider 61 for 64-bit and 127 for 128-bit as a value
of ϱ = (β − c).

The key embodiment of VORSHA-1D-S is to generate a set of bits for the
final secure hash value using the existing primary hash functions, for instance,
the murmur2 hash function. Firstly, the primary hash function generates a non-
secure β-bit hash value. VORSHA-1D-S extracts a single bit from the β-bit hash
value, which is generated by the primary hash function. Alternatively, a β-bit pri-
mary hash function’s output contributes a single bit in the final secure hash value
of VORSHA-1D-S. The second primary hash function is used to produce a new
seed value too. The generated new seed value is used to compute the next hash
value hv in the next step. The procedure is repeated for η times to produce η-bit
secure hash value. Finally, the generated hash bits are converted into hexadeci-
mal code, and write the hexadecimal code in ζ. However, the VORHSA-1DS is
not a purely randomized secure hash algorithm to generate a randomized secure
hash value. Also, VORSHA-1D-S does not exhibit memory-hardness properties.

Theorem 1. VORSHA-1D-S requires (2η + τ) correct primary hash values to
generate η-bit secure hash value.

Proof. Initially, the seed value is converted into a private constant by repeatedly
computing the hash value for τ times using a primary hash function. The primary
hash value, hv, is generated by inputting a secret input string ω and a public
seed value S as hv = PrimaryHash(ω, length,S). A single bit is extracted from
the newly generated β-bit hash value hv. The seed value is updated to the newly
generated hv as S = hv. Now, the seed value is altered using newly computed hv

using a primary hash function as S = PrimaryHash(ω, length,S). The second
hv is correct, provided the seed value and the previous hv are correct. Therefore,
it requires 2η + τ primary hash values to generate η-bit final secure hash value.

Corollary 1. The time complexity to generate η-bit secure hash value is O(β(η+
τ)).

Proof. We assume that the primary hash function takes a time complexity of
O(β) to generate a primary hash value. Therefore, the total time complexity to
generate η-bit secure hash value is O((2η + τ)β) = O(β(η + τ)).

Theorem 2. The probability of reproducing the correct secure hash value using
VORSHA-1D-S is 1

2(τ+2η)β without knowing the input string using VORSHA-1D-
S algorithm other than Lemma 1.

Proof. This analysis shows the hardness -of regenerating the correct secure hash
value without knowing the input string using VORSHA-1D-S. We assume that
the adversary is willing to recompute the secure hash value using the VORSHA-
1D-S algorithm without knowing the input string. Theorem 1 shows the total
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number of hash values as (2η+τ) to produce the correct η-bit secure hash value.
The probability of correctly reproducing a primary hash value without knowing
the input string using the brute-force method is 1

2β
. Therefore, the probability of

reproducing (2η+τ) correct primary hash values is 1
2(τ+2η)β because the primary

hash values are interdependent to each other.

Theorem 2 proves that attacking using VORSHA is more difficult than Lemma
1. VORSHA-1D requires (τ +2η) primary hash values to reproduce η-bit secure
hash value correctly. The size of each primary hash value is β, and therefore,
it is extremely difficult to reproduce all primary hash values correctly without
knowing the input string. The primary hash values are strongly interdependent
with each other. Therefore, it becomes computationally infeasible to reproduce
all bits of secure hash value using VORSHA without knowing the input string.
Therefore, it is better to attack the final secure bit string than the reproduction
all the primary hash values using the VORSHA algorithms.

Fig. 2. A simple architecture of VORSHA-2D-S for short input string for generating a
randomized secure hash value using 5×13 vector for an example. Firstly, the algorithm
generates a set of bits using the primary hash function and fills the 5× 13 vector with
the generated bits. Secondly, select the generated bits from the vector using the pseudo-
random algorithm to form η-bit of a secure hash value.

Two-dimensional VORSHA for short input string Figure 2 demonstrates
VORSHA-2D-S to generate a randomized secure hash value ζ. Figure 2 is a
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Algorithm 3 Generation of dimension of VORSHA for vector V.
1: procedure genDim(S, θ)
2: d = S%θ ▷ Extracting the digits.
3: dim =

√
d

4: dimension = (dim < 16)?(dim+ 16) : dim
5: return dimension
6: end procedure

Algorithm 4 VORSHA-2D-S for short input string and medium security.
1: procedure genVORSHA-2D-S(ω,S, η)
2: L = stringLength(ω) ▷ Stage: Dimension- Starts
3: S = getSeedValue(ω,L ,S)
4: Initialize θ ▷ The θ is used to extract a number from the computed seed value

S for the calculation of a dimension.
5: r = genDim(S, θ)
6: S = getSeedValue(ω,L ,S)
7: c = genDim(S, θ)
8: X = prime[r], Y = prime[c]; ▷ X ̸= Y
9: S = S ⊕ η ▷ Stage: Dimension- Ends

10: for i : 1 to X do ▷ Stage: Filling- Starts
11: for j : 1 to Y do
12: S = getSeedValue(ω,L ,S)
13: hv = PrimaryHash(ω,L ,S)
14: ρ = hv%ϱ; ▷ The ϱ = (β − c) is a prime number.
15: bit = (hv ∧ (1 << ρ)) >> ρ
16: V[i][j] = bit
17: S = hv

18: end for
19: end for ▷ Stage: Filling- Ends
20: for k : 1 to η do ▷ Stage: Retrieving- Starts
21: S = getSeedValue(ω,L ,S)
22: hv = PrimaryHash(ω,L ,S)
23: i = (hv%X) + 1
24: S = hv

25: S = getSeedValue(ω,L ,S)
26: hv = PrimaryHash(ω,L ,S)
27: j = (hv%Y ) + 1
28: S = hv

29: hash_bits[k] = V[i][j]
30: end for ▷ Stage: Retrieving- Ends
31: ζ = convertIntoHex(hash_bits, η)
32: return ζ
33: end procedure

representation of Algorithm 4 to enhance the security of the generated hash
value. It provides medium security and medium performance. We introduce a
vector in VORSHA-2D-S to develop a fully randomized secure hash value, and
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the vector is VX×Y of two dimensions X×Y where X and Y are prime numbers.
The key embodiment of introducing a vector is to fill the vector with 0s and 1s
to form a pool of pseudo-random bits. We select η bits from the filled vector to
form a randomized secure hash value. The indexes are selected using two primary
hash functions. The VORSHA-2D-S algorithm is divided into three stages: a)
dimension, b) filling, and c) retrieving. Firstly, VORSHA-2D-S computes the
dimensions X and Y . Secondly, it fills the vector with pseudo-random bits (0s
and 1s). Finally, VORSHA-2D-S retrieves η-bit from the filled vector to form
η-bit randomized secure hash value.

Dimension The vector requires two prime numbers, X and Y , for defining the
dimension for the vector VX×Y . To make the X and Y prime number, we first
compute the hash value with a seed value by repeatedly replacing the older seed
value 8 ≤ τ ≤ 64 times. The seed value is calculated and replace τ times by
computing as S = PrimaryHash(ω,L ,S). The key embodiment of the repeat-
edly calculating seed value is to protect the public seed value, and it converts
the public seed value into a private seed value with the help of an input string.
Algorithm 3 calculates a dimension against the seed value. Therefore, the max-
imum size of the dimension is dependent on the digit extracted from the seed
value, as demonstrated in Algorithm 4 by assigning θ to a constant, for instance,
θ = 12967 (assigning a prime number to θ is better). For illustration, a digit is
calculated as d = S%θ, and the

√
d is the dimension. Notably, the performance

of the VORSHA-2D-S is strongly dependent on θ, and it is tunable. Algorithm
3 is invoked two times for a two-dimensional vector, i.e., r = genDim(S, θ) and
c = genDim(S, θ). Algorithm 3 performs square root for 2D or cube root for 3D
vectors. We calculate the dimension of the row and column as X = prime[r] and
Y = prime[c], respectively, where prime[] is an array of pre-computed prime
numbers. Therefore, the dimension of the vector VX,Y is unknown to the adver-
saries. Alternatively, the adversaries do not know about the dimensions X and
Y , which creates an extra complexity in computing the hash function by the
adversaries. VORSHA-2D-S is a variant of a secure hash algorithm; therefore,
we calculate the dimension of the vector V from the hash value produced by the
primary hash function. The dimensions X and Y are kept secret to make it a
memory-hard secure hash algorithm, but the X and Y must be prime numbers
and X ̸= Y .

Filling VORSHA-2D-S requires filling X × Y pseudo-random bits (0s and 1s)
in the vector VX×Y . It invokes getSeedValue( ) to fill a single bit in the
vector by producing a hash value hv using a primary hash function. A single
bit is extracted from hv to fill a single cell in the vector. Therefore, it computes
X × Y × τ seed values to fill the vector.

Retrieving After filling the 0s and 1s in the vector, VORSHA-2D-S selects a
set of bits from the vector to form a randomized secure hash value. To select a
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cell in the vector, we need two indexes and let i and j be the two indexes for
a particular cell of the vector V. VORSHA-2D-S computes the value of i and
j to retrieve a value as V[i][j]. It requires a seed value. Therefore, it invokes
getSeedValue( ) functions and computes i = PrimaryHash(ω,L ,S)%X.
Moreover, it renews the seed value by invoking getSeedValue( ) and computes
j = PrimaryHash(ω,L ,S)%Y . The slots are evenly and fairly distributed if
X and Y are prime numbers [10]. This process is repeated η times to produce
a randomized secure hash value. Therefore, VORSHA-2D-S computes the seed
values 2ητ times to retrieve η-bit from the vector.

Theorem 3. VORSHA-2D-S requires τ(2 + XY + 2η) + (XY + 2η) primary
secure hash values to generate η bits secure hash value.

Proof. The VORSHA-2D-S algorithm has three stages, namely, dimension, fill-
ing, and retrieval. The dimension stage computes the dimensions of the vec-
tor by invoking two getSeedValue( ) functions which invoke 2τ primary
hash functions. The filling stage invokes τ primary hash functions for seed
values and a primary hash function for hv to fill a single cell of the vector.
Therefore, the total hash function invocations are XY (τ + 1). The retrieval
stage invokes 2η times getSeedValue( ) function and computes two pri-
mary hash values hv. therefore, the total primary hash function invocations
are 2ητ +2η = (2η(τ +1)). The overall primary hash function invocations of all
stages are 2τ +XY (τ + 1) + 2η(τ + 1) = τ(2 +XY + 2η) + (XY + 2η).

Corollary 2. The time complexity to generate η-bit randomized secure hash
value is O(τ(XY + η)) for legitimate users.

Proof. Theorem 2 shows the total number of hash function calls as 2τ+XY (τ+
1) + 2η(τ + 1). Rewriting Theorem 2 in Big-Oh notation, we get

= O(2τ +XY (τ + 1) + 2η(τ + 1))

= O(τ +XY τ + ητ)

= O(τ(1 +XY + η)

= O(τ(XY + η))

(1)

Theorem 4. The probability of reproducing the randomized secure hash value
of η-bit using VORSHA-2D-S is 1

2β(2τ+XY (τ+1)+2η(τ+1)) without knowing the input
string other than Lemma 1.

Proof. Theorem 3 exhibits the total number of primary hash function calls as
2τ+XY (τ+1)+2η(τ+1). Alternatively, it shows the total number hash primary
hash values to reproduce a η-bit randomized secure hash value. The probability
of reproducing a correct primary hash value without knowing the input string
is 1

2β
. Therefore, the probability of reproducing 2τ + XY (τ + 1) + 2η(τ + 1)

primary hash values are 1
2β(2τ+XY (τ+1)+2η(τ+1)) without knowing input string using

the brute-force method.

17



VORSHA-2D-S requires τ(2+XY +2η)+(XY +2η) primary hash values to
correctly compute a η-bit randomized secure hash value, as shown in Theorem
3. Thus, it is harder to reproduce the τ(2+XY +2η)+(XY +2η) primary hash
values than VORSHA-1D-S. Theorem 4 proves that Lemma 1 is much easier to
attack than attacking via VORSHA-2D-S without knowing the input string. It
is computationally infeasible to reproduce all the primary hash values without
knowing the input string. Thus, it proves that VORSHA-2D-S is stronger than
the state-of-the-art secure hash algorithms. Lemma 1 shows that the brute-force
attack probability of η-bit secure hash value is 1

2η irrespective of the architecture
of the secure hash algorithms.

Moreover, VORSHA-2D-S features memory hardness properties because the
dimensions of the vector are unknown to the adversaries. The dimension of the
vector depends on the seed value. Initially, the seed value can be a public con-
stant; however, it is converted into a private constant in the subsequent steps.
Therefore, a correct input string can produce the correct dimension of the vec-
tor. Otherwise, it becomes computationally hard to find the correct dimensions
of the vector.

Theorem 5. The lower-bound memory of VORSHA-2D-S is Ω(XY + η) where
X and Y are secret, and η is public and fixed.

Proof. VORSHA-2D-S computes the dimension of the vector in the dimension
stage, and the dimensions are X and Y . Therefore, the size of the vector is
X × Y . The dimensions X and Y are not known to adversaries. Therefore, the
adversary requires at least XY + η memory if and only if the adversary suc-
ceeded on the very first attempt, but it is highly unlikely because it is hard to
reproduce all primary hash values at the first attempt. Moreover, it requires the
same amount of memory in a sequential computation of an instance of VORSHA-
2D-S. Therefore, the minimum memory requirement is XY + η. However, the
memory requirement for parallel execution is higher than the sequential exe-
cution. Therefore, the adversary computes the VORSHA-2D-S in parallel. All
parallel instances need separate memory allocation in a single system. Each in-
stance needs a memory of XY + η. Therefore, the n parallel instances requires
n(XY + η) where n <≤ 2η. The memory of the adversary can be flooded if
n ≫ η.

Theorem 6. The lower-bound time complexity of VORSHA-2D-S is Ω(τ(XY +
η)) for the adversaries.

Proof. Corollary 2 shows the upper-bound time complexity of VORSHA-2D-
S for legitimate users. The lower-bound time complexity of VORSHA-2D-S is
Ω(τ(XY + η)) since the adversary needs to perform many trials to evade the
security of VORSHA-2D-S. The adversary requires at least O(τ(XY + η)) time
complexity for each trial. Thus, it becomes humongous for a single system. If the
adversary computes VORSHA-2D-S in parallel, then time complexity remains
O(τ(XY + η)) for many instances, provided the system has huge main memory.
However, it is unable to execute VORSHA-2D-S in parallel completely due to
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memory-hard properties (as shown in Theorem 5). Therefore, the adversary is
unable to gain the complete advantage of parallelism. Notably, the adversary
can execute a few instances of VORSHA-2D-S in parallel in a single system.
Therefore, the lower-bound time complexity of VORSHA-2D-S is Ω(τ(XY +η))
for the adversaries.

Three-dimensional VORSHA for short input string Similar to the
VORSHA-2D-S algorithm, the VORSHA-3D-S algorithm is divided into three
stages: a) dimensions, b) filling, and c) retrieving. Algorithm 5 computes three
dimensions X, Y and Z such that X ̸= Y ̸= Z in the dimension stage.

Dimension Algorithm 5 presents the VORSHA-3D-S algorithm. VORSHA-3D-
S enhances security, but it slows down the performance of the algorithm. Here,
we increase the dimension of the vector from 2D to 3D, i.e., VX×Y×Z . It invokes
getSeedValue( ) to before computing a single dimension. Then, it computes
the dimension. Therefore, it invokes getSeedValue( ) three times to produce
the dimension of the vector, X, Y , and Z; i.e., the seed value is altered 3τ times.
Therefore, VORSHA-3D-S features memory-hardness properties because X, Y ,
and Z are unknown to the adversaries. Similar to VORSHA-2D-S, the dimension
of the vector is dependent on the extracted number from the computed seed value
S using θ. Therefore, the maximum and minimum dimensions of the vector can
be determined, and the dimension is strongly dependent on S and θ.

Filling It requires an invocation of getSeedValue( ) functions to place a
single bit in the vector, as shown in Algorithm 5. Therefore, it requires a total
X × Y ×Z × τ seed value computations using the primary hash functions to fill
the vector V.

Retrieving VORSHA-3D-S requires an invocation of getSeedValue( ) func-
tions three times to retrieve a single bit from the filled vector. Therefore,
VORSHA-3D-S invokes η times to retrieve η bits from the filled vector. There-
fore, there are 3ητ seed value computations to construct a randomized secure
hash value.

Theorem 7. VORSHA-3D-S requires (3τ +XY Z(τ + 1) + 3η(τ + 1)) primary
hash function invocations to generate η bits secure hash value.

Proof. VORSHA-3D-S is similar to VORSHA-2D-S except for the dimensions.
The dimension stage computes the X, Y , and Z dimensions by invoking
getSeedValue( ) function which requires 3τ primary hash values. The filling
stage invokes getSeedValue( ) for seed value, and a primary hash function calls
for hv. Thus, it requires XY Z(τ+1) primary hash values. The retrieval stage in-
vokes getSeedValue( ) function three times and three primary hash functions.
Therefore, it requires 3τη+3η = 3η(τ+1) primary hash values. Hence, the overall
hash value requirements or hash function calls is (3τ +XY Z(τ +1)+3η(τ +1)).
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Algorithm 5 Three-dimensional VORSHA for a short input string.
1: procedure genVORSHA-3D-S(ω,S, η)
2: L = stringLength(ω) ▷ Stage: Dimension- Starts
3: S = getSeedValue(ω,L ,S)
4: Initialize θ ▷ The θ is used to extract a number from the computed seed value

S for the calculation of a dimension.
5: r = genDim(S, θ) ▷ The 3 is dimension, i.e., 3D.
6: S = getSeedValue(ω,L ,S)
7: c = genDim(S, θ)
8: S = getSeedValue(ω,L ,S)
9: w = genDim(S, θ)

10: X = prime[r], Y = prime[c], Z = prime[w]; ▷ X ̸= Y ̸= Z
11: S = S ⊕ η ▷ Stage: Dimensions- Ends
12: for i : 1 to X do ▷ Stage: Filling- Starts
13: for j : 1 to Y do
14: for k : 1 to Z do
15: S = getSeedValue(ω,L ,S)
16: hv = PrimaryHash(ω,L ,S)
17: ρ = hv%ϱ; ▷ The ϱ = (β − c) is a prime number, for instance, 31 or

61.
18: bit = (hv&(1 << ρ)) >> ρ
19: V[i][j][k] = bit
20: S = hv

21: end for
22: end for
23: end for ▷ Stage: Filling- Ends
24: for k : 1 to η do ▷ Stage: Retrieving- Starts
25: S = getSeedValue(ω,L ,S)
26: hv = PrimaryHash(ω,L ,S)
27: i = (hv%X) + 1, S = hv

28: S = getSeedValue(ω,L ,S)
29: hv = PrimaryHash(ω,L ,S)
30: j = (hv%Y ) + 1, S = hv

31: S = getSeedValue(ω,L ,S)
32: hv = PrimaryHash(ω,L ,S)
33: k = (hv%Z) + 1, S = hv

34: hash_bits[k] = V[i][j][k]
35: end for ▷ Stage: Retrieving- Ends
36: ζ = convertIntoHex(hash_bits, η)
37: return ζ
38: end procedure

Corollary 3. The total time complexity of VORSHA-3D-S to generate η bits
secure hash value is O(τ(XY Z + η).
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Proof. Theorem 4 demonstrate the total number of hash function calls as (3τ +
XY Z(τ + 1) + 3η(τ + 1)). Rewriting Theorem 4 in Big-Oh notation, we get

= O(3τ +XY Z(τ + 1) + 3η(τ + 1))

= O(τ +XY Zτ + ητ)

= O(XY Zτ + ητ)

= O(τ(XY Z + η))

(2)

Theorem 8. The probability of generating the secure hash value by an adversary
without knowing the input string using VORSHA-3D-S is 1

2β(3τ+XY Z(τ+1)+3η(τ+1))

for β-bit primary hash function where η is the number of bits of the secure hash
value other than Lemma 1.

Proof. Theorem 7 shows the total number of primary hash function invocations
as (3τ + XY Z(τ + 1) + 3η(τ + 1)). Therefore, the probability of reproducing
(3τ +XY Z(τ + 1) + 3η(τ + 1)) primary hash value for η-bit randomized secure
hash value is 1

2β(3τ+XY Z(τ+1)+3η(τ+1)) without knowing the input string using the
brute-force method.

Theorem 7 shows the total number of primary hash function requirements
as (3τ + XY Z(τ + 1) + 3η(τ + 1)). Theorem 5 proves that it is computation-
ally infeasible to reproduce (3τ + XY Z(τ + 1) + 3η(τ + 1)) primary hash val-
ues without knowing input string, and it is massive for the brute-force attack-
ers. Also, VORSHA-3D-S is stronger than the state-of-the-art secure hash algo-
rithms. Also, it is better to attack Lemma 1 than VORSHA-3D-S. However, the
collision probability of η-bit secure hash value is 1

2
η
2

irrespective of algorithms.

Theorem 9. The lower-bound memory of VORSHA-3D-S is Ω(XY Z+η) where
X, Y and Z are secret, and η is public and fixed.

Proof. Three-dimensional VORSHA for short input string or VORSHA-3D-S is
similar to VORSHA-2D-S. The algorithm is divided into three stages, namely,
dimension, filling, and retrieval stages. The dimension stage computes three di-
mensions for the vector, namely, X, Y , and Z. Therefore, the vector size is
X × Y × Z. Also, it requires space of η to output the secure hash value. There-
fore, the total space complexity of a legal user is O(XY Z + η). However, the
dimensions are secret and are unknown to the adversary. Thus, the lower-bound
memory is Ω(XY Z + η) for the adversary.

Theorem 10. The lower-bound time complexity of VORSHA-3D-S is
Ω(τ(XY Z + η)) for the adversaries.

Proof. Corollary 3 demonstrates the total time complexity for legitimate users
as O(τ(XY Z + η). However, the adversary needs to perform many trials to
evade the security of VORSHA-3D-S. If the trial is performed n times in a
serial computing system, then it becomes hard to perform the trial because it
takes O(n(τ(XY Z+η))) time complexity. The adversary can evade the security
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of VORSHA-3D-S in parallel, but a few parallel instances can be executed in
parallel due to memory-hard properties of VORSHA-3D-S (see Theorem 9).
Thus, it is also infeasible to compute the hash value in parallel in a single system.

Trade-off 1 There is a trade-off between the performance and security of the
hash value. Alternatively, there is a trade-off that a high-bit-sized primary hash
function is better in security than a low-bit-sized primary hash function but
slower than a low-bit-sized hash function.

To understand the Trade-off 1, we first ask a simple question- can we use
any hash function as a primary hash function? We can use a 32-bit version of
the hash function as a primary hash function, namely, murmur2, XXHash, and
FastHash as a primary hash function. We can also use a 64-bit version of the
primary hash functions. Intuitively, its security is better in a 64-bit version of
the primary hash functions than in 32-bit versions. The probability of correctly
producing a 32-bit and 64-bit hash value without knowing the input string is 1

232

and 1
264 , respectively, where 1

264 is lower than 1
232 . Thus, a high bit-sized primary

hash value is more secure than a low bit-sized primary hash value. Moreover, we
justify that the modulus operation in generated hash value as ρ = hv%ϱ. As we
know, that prime number is a good candidate for modulus operation; therefore,
we can use 31 instead of 32, 61 instead of 64, and 127 instead of 128. The bit value
of ρth position in the hv is considered as a single hash bit for our randomized
secure hash value ζ. Therefore, selecting a single bit among 61 bits is always
better than selecting a bit among 31 bits. Thus, security is better in 64-bit than
in 32-bit or lower-bit versions. If so, why do not we use MD5, SHA1, or SHA2 as
a primary hash function? We can use it, and if we use it, the security becomes
superior, but it requires a seed value to qualify as a primary hash function.
However, the performance becomes slower than the rest. Particularly, the 32-bit
primary hash function is faster than the 64-bit hash function. Furthermore, it is
obvious that more number of primary hash function invocations is always slower
than the less number of primary hash function invocations. Therefore, there is
a trade-off between the performance and security in generating a randomized
secure hash value by VORSHA.

Trade-off 2 The larger the dimensions of the bit vector, better the security but
slower the performance.

Trade-off 2 is similar to Trade-off 1. The bit vector is a pool of pseudo-random
bits to be selected to form a randomized secure hash value. For high security,
the bit vector should be large, which forms a large-sized pool of bits. However, it
associates with more primary hash function invocations in forming a large pool
of bit-vector. Therefore, the time complexity rises significantly, and it impacts
the performance of the algorithms.

3.2 VORSHA for long input string hashing

Long-input string hashing is useful in diverse applications, for instance, image
hashing. The VORSHA for long string hashing utilizes the functions of VOR-
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SHA for short input string hashing. The VORSHA for long input string creates
the chunks of 16 ≤ σ ≤ 64 characters arrays and hashes all the chunks using
VORSHA for short. The hash values of all chunks are XORed to form a new hash
value. VORSHA for long input string invokes corresponding VORSHA for the
short hash function. For instance, VORSHA-1D-L invokes the VORSHA-1D-S at
least once. The input string is split into σ characters chunks, and let the chunks
be b1, b2, b3, . . .. We input each chunk into VORSHA-1D-L, VORSHA-2D-L, or
VORSHA-3D-L. The first randomized secure hash value of the first block can
be computed as ζ1 = H(b1). Therefore, the final randomized secure hash value
is computed as ζ = ζ1 ⊕ ζ2 ⊕ ζ3 ⊕ . . ..

4 Variability in hash value

The computation of bit size η requires a secret ω, a public seed value S, minimum
bit size µ, and offset δ. The µ and δ are public, and it invokes getSeedValue( )
functions to compute the bit size. Finally, the η is computed as η = S%δ + µ.
However, the bit size η can be input by the user or computed by other methods.
Here, the bit size is controlled by the input string. Therefore, an input string
can have a single value of η, which ranges [µ, λ) and λ = δ + µ.

Algorithm 6 Invoking VORSHA-3D to generate a secure hash value.
1: procedure VORSHA(ω)
2: Initialize seed value S with a constant.
3: Initialize µ, and δ ▷ For instance, µ = 512 and δ = 997
4: L = Length(ω)
5: S = getSeedValue(ω,L ,S)
6: η = S%δ + µ
7: L = Length(ω)
8: if L ≤ 16 then
9: S = getSeedValue(ω,L ,S)

10: ζ = genVORSHA-3D-S(ω,S, η)
11: else
12: S = getSeedValue(ω,L ,S)
13: ζ = genVORSHA-3D-L(ω,S, η)
14: end if
15: end procedure

Algorithm 6 is an example of producing a secure hash value without the de-
sired bit size as an input. Algorithm 6 demonstrates the VORSHA-v hash func-
tion call with VORSHA-3D-S as an example. The variable-sized hash function
produces unpredictable and variable-sized secure hash values. We take µ = 512,
and δ = 997 for demonstration purposes; however, these parameters are tunable
by the users as per their requirements. For instance, a user can set µ = 256, and
δ = 1237. Our recommendation is that the size δ should be a prime number and
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large enough to produce more variability in the final secure hash value. We have
achieved variability using a hash value. However, the η can be input by the user
and keep it as a secret.

Theorem 11. For a range [µ, λ), 2µ+2µ+1+2µ+2+ . . .+2λ = 2µ(2δ+1−1)−2
where λ = µ+ δ and λ > µ.

Proof. For every natural number λ, 20+21+22+ . . .+2λ = 2λ+1−1. Therefore,
20 + 21 + 23 + . . .+ 2µ−1 = 2µ − 1. Thus, for the range [µ, λ),

= 2µ + 2µ+1 + 2µ+2 + . . .+ 2λ

= (2λ+1 − 1)− (2µ − 1)
(3)

The λ can be expressed as λ = µ + δ where λ > µ. Thus, we Equation (3) can
be rewritten as

2µ + 2µ+1 + 2µ+2 + . . .+ 2λ = 2µ(2δ+1 − 1)− 2 (4)

Theorem 11 defines the total number of required hash values to be stored by
the RTaaS. It increases the size of the hashtable of the RTaaS dramatically. A
correct input string has a total of (λ− µ) possible randomized secure hash val-
ues because the randomized secure hash algorithm can correctly compute many
correct hash values with different sizes for a single input string. Hence, the ad-
versary is unable to find the correct hash value for the key from RTaaS in a
given scenario. Therefore, it creates another complexity for RTaaS. A few input
strings can flood the hashtable of the RTaaS. Therefore, it becomes computa-
tionally infeasible for the RTaaS. However, RTaaS is a black box and is assumed
to be capable of storing all the possible hash values. But, the variability in hash
value creates another complexity for RTaaS to maintain all the possible hash
values of the VORSHA.

Theorem 12. The memory requirement to store all sizes of secure hash values,
excluding the 2D or 3D vector, ranging from µ to λ for a single input string is
((δ + 1)µ+ δ(δ+1)

2 ) for the adversaries.

Proof. The size of the randomized secure hash value is unable to be determined,
and it ranges [µ, λ). Therefore, the adversary needs to compute a secure hash
value using all the sizes ranging from µ to λ because η is a secret variable.
Therefore, the total memory requirement of a single hash value for the adversary
is the summation of all memory from µ to λ. The λ = µ + δ. If we sum up all,
we get

= µ+ (µ+ 1) + (µ+ 2) + (µ+ 3) + . . .+ λ

= µ+ (µ+ 1) + (µ+ 2) + (µ+ 3) + . . .+ (µ+ δ)

= (δ + 1)µ+ (1 + 2 + 3 + . . .+ δ)

= (δ + 1)µ+
δ(δ + 1)

2

(5)
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Theorem 13. The space complexity for a single hash value of VORSHA-2D-S
is O(2(φ−16)C2XY + (δ + 1)µ + δ(δ+1)

2 ) for the adversary in a single system in
parallel.

Proof. Theorem 5 and 9 show the memory requirement for an instance
of VORSHA-2D-S and VORSHA-3DS in a sequential manner, respectively.
VORSHA-2D-S uses a two-dimensional vector for filling pseudo-random bits, and
the dimensions are X and Y . The dimensions are computed as X = prime[r] and
Y = prime[c] where the prime[] is precomputed prime number array. The r and
c are computed as

√
S%θ. The maximum value of r and c can be φ =

√
θ − 1.

Therefore, r, c ∈ [16, φ). Therefore, the total combination of r and c by choosing
two values is

(
2(φ−16)

2

)
. Moreover, each combination uses X × Y memory. Fur-

thermore, Theorem 12 shows the total memory requirement to reproduce a single
randomized secure hash value using a brute-force method. Therefore, the total
memory requirement for an adversary is O(2(φ−16)C2XY +(δ+1)µ+ δ(δ+1)

2 ) in
a single system in parallel.

Corollary 4. The space complexity for a single hash value of VORSHA-3D-S
is O(3(φ−16)C3XY Z + (δ+1)µ+ δ(δ+1)

2 ) for the adversary in a single system in
parallel.

Corollary 5. The lower-bound memory of VORSHA-2D-S, and VORSHA-3D-
S are Ω(XY +(δ+1)µ+ δ(δ+1)

2 ), and Ω(XY Z +(δ+1)µ+ δ(δ+1)
2 ), respectively

where X, Y , Z and η are secret and η ∈ [µ, µ+ δ).

Corollary 5 replaces the η in Theorem 5 and 9 using Theorem 12. The lower-
bound becomes enormous because the size of the secure hash value is unknown
to the adversary.

5 Randomness analysis

True-random numbers are highly unpredictable because each bit of a random
number is influenced by some other external events. However, each bit of the
pseudo-random number is dependent on the initial input. Similarly, the secure
hash algorithm is also dependent on the initial input string. Therefore, there
is no difference between a pseudo-random number generator and a secure hash
algorithm.

Table 3 and 4 show the randomness of the generated bit string of VORSHA-
1D-S, VORSHA-2D-S, and VORSHA-3D-S for 64 and 128-bit streams, respec-
tively, in NIST SP 800-22 statistical test suite. We generated 10M bits using
VORSHA-1D-S, VORSHA-2D-S, and VORSHA-3D-S by setting the input string
“VORSHA”, S = 198899, τ = 32 and 32-bit version of the murmur2 [3] hash func-
tion. We defined the θ = 9973 and θ = 9769 for VORSHA-2D-S and VORSHA-
3D-S, respectively. Algorithm 3 calculates the dimensions of VORSHA-2D-S as
X = 419 and Y = 449. Similarly, the dimensions of VORSHA-3D-S are X = 443,
Y = 191, and Z = 313. Our experiment proves that our proposed algorithm
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Table 3. Comparison of VORSHA-1D-S, VORSHA-2D-S, and VORSHA-3D-S algo-
rithms for 64-bit streams in NIST SP 800-22.

Test name 64 bits & VORSHA-1D-S 64 bits & VORSHA-2D-S 128 bits & VORSHA-3D-S
P-value Pass

rate
P-value Pass

rate
P-value Pass

rate
Frequency 0.437274 64/64 0.350485 62/64 0.671779 61/64
Block Fre-
quency

0.213309 64/64 0.739918 64/64 0.500934 62/64

Cumulative
sums

0.888137,
0.195163

64/64,
64/64

0.534146,
0.637119

63/64,
62/64

0.299251,
0.834308

63/64,
61/64

Runs 0.122325 61/64 0.602458 64/64 0.253551 64/64
Longest runs 0.671779 64/64 0.568055 64/64 0.066882 64/64
Rank 0.772760 63/64 0.437274 63/64 0.739918 61/64
FFT 0.862344 63/64 0.134686 63/64 0.134686 63/64
Non-
overlapping
Template

– Pass – Pass – Pass

Overlapping
Template

0.534146 62/64 0.148094 64/64 0.862344 64/64

Universal 0.568055 64/64 0.232760 63/64 0.213309 64/64
Approximate
Entropy

0.350485 62/64 0.804337 63/64 0.134686 64/64

Random Ex-
cursions

– Pass – Pass – Pass

Random Ex-
cursions Vari-
ant

– Pass – Pass – Pass

Serial 0.134686,
0.090936

62/64,
64/64

0.213309,
0.437274

64/64,
63/64

0.299251,
0.706149

64/64,
63/64

Linear com-
plexity

0.122325 62/64 0.637119 63/64 0.468595 63/64

passes all 15 tests of the NIST SP 800-22 statistical test suite. It demonstrates
the generated bit strings contain highly unpredictable bit strings, which is vital
for a randomized secure hash value.

6 Attack analysis of VORSHA

Attacks are inevitable in security, and we need an analysis of the proposed sys-
tem. Diverse attacks on SHA are already reported, such as collision attacks,
chosen-prefix attacks, preimage attacks, and second preimage attacks.

6.1 Collision attacks

Theorem 14. The probability of collision attack of VORSHA is 1∑(µ+δ)
η=µ 2(η+1)/2

where the bit size η is secret.
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Table 4. Comparison of VORSHA-1D-S, VORSHA-2D-S, and VORSHA-3D-S algo-
rithms for 128-bit stream in NIST SP 800-22.

Test name 64 bits & VORSHA-1D-S 64 bits & VORSHA-2D-S 128 bits & VORSHA-3D-S
P-value Pass

rate
P-value Pass

rate
P-value Pass

rate
Frequency 0.253551 127/128 0.500934 126/128 0.862344 126/128
Block Fre-
quency

0.654467 124/128 0.534146 126/128 0.095617 128/128

Cumulative
sums

0.026648,
0.337162

128/128,
128/128

0.242986,
0.422034

126/128,
126/128

0.819544,
0.772760

127/128,
126/128

Runs 0.452799 125/128 0.134686 126/128 0.568055 127/128
Longest runs 0.178278 127/128 0.875539 127/128 0.756476 127/128
Rank 0.015963 126/128 0.484646 127/128 0.287306 127/128
FFT 0.275709 127/127 0.637119 127/128 0.015963 127/128
Non-
overlapping
Template

– Pass – Pass – Pass

Overlapping
Template

0.350485 126/128 0.178278 128/128 0.242986 127/128

Universal 0.324180 124/128 0.311542 125/128 0.551026 126/128
Approximate
Entropy

0.213309 126/128 0.054199 128/128 0.011250 125/128

Random Ex-
cursions

– Pass – Pass – Pass

Random Ex-
cursions Vari-
ant

– Pass – Pass – Pass

Serial 0.186566,
0.551026

123/128,
127/128

0.941144,
0.324180

127/128,
125/128

0.299251,
0.364146

128/128,
127/128

Linear com-
plexity

0.213309 127/128 0.756476 128/128 0.517442 128/128

Proof. Let a hash function f maps input x to output y, i.e., f : x → y, and it
is termed as f(x). For given y, we need to find two input strings x and x′ such
that f(x) = f(x′) where x ̸= x′ [2]. Let us analyze the collision probability of
the secure hash value by fixing the bit size to η where η is public. The exact
probability of getting a collision in η bits hash value and k strings hashed is

1− 2η!

(2kη(2η − k)!)
(6)

Our objective is to find the value of k to get a collision. From the birthday
paradox, Equation (6), we get an approximation as

p = 1− e−k2/2η+1

(7)
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However, Equation (7) is larger than as expected, and by rewriting Equation (7)
to represent the desired probability, we get

p = 1− e−k2/2
η+1
2

1− p = e−k2/2
η+1
2

−ln(1− p) = k2/2
η+1
2

k2 = −2
η+1
2 ln(1− p)

k = 2(η+1)/4
√
−ln(1− p)

(8)

Let us approximate (1− p) = −p in Equation (8), then

k = 2(η+1)/4√p (9)

The secure hash value size is assumed as η and known to all. We get the number
of strings to hash to get a collision as shown in Equation (8). Algorithm 6 uses
variable-sized hash value, and the size of secure hash value η is unpredictable.
The size of η depends on the primary hash value. Therefore, the minimum size
of the hash value is µ, and the maximum size of the hash value is λ = µ + δ.
The correct length of a secure hash value lies between µ and λ in Algorithm
6. The correct input string translates into the correct length of the secure hash
value. Therefore, the number of strings hashing required to get a collision of in
the hash value is

k =

(
λ∑

η=µ

2(η+1)/4

)
√
p

=

(µ+δ)∑
η=µ

2(η+1)/4

√
p

(10)

Equation (10) shows the approximate number of string hashing required to get a
collision using variable-sized hash value, ranges [µ, λ). It shows that a high range
becomes highly secure in hashing a string. Alternatively, it is always better in a
large difference between λ and µ, i.e., it should be at least δ = (λ−µ) > 256, but
µ should also be sufficiently large to withstand diverse attacks. Equation (10)
shows the number string to hash to get a guaranteed collision with probability
p. Now, we calculate the probability of collision as

k =

(µ+δ)∑
η=µ

2(η+1)/4

√
p

√
p =

k∑(µ+δ)
η=µ 2(η+1)/4

p =
k2∑(µ+δ)

η=µ 2(η+1)/2

(11)

28



The collision probability of a single item (k = 1) can be derived from Equation
(11), we get

p =
1∑(µ+δ)

η=µ 2(η+1)/2
(12)

Recalling RTaaS, it is assumed to have the capability to store a massive
amount of secure hash values. Still, VORSHA creates difficulty for RTaaS to
conduct a collision attack because different input string translates into a wrong
length of the secure hash value. Therefore, a collision attack is harder to conduct
in VORSHA as compared to the state-of-the-art secure hash algorithms, but we
cannot deny the possibilities. Another similar attack is chosen prefix attack. It is
carried out by concatenating the message with a prefix to get collision attacks.
Alternatively, f(p1 || x) = f(p2 || x′) = y where || is a concatenation operator
and p1 and p2 are the chosen prefix. The probability of a chosen-prefix attack is
similar to the collision attack probability, as shown in Equation (12).

6.2 Preimage attacks and second preimage attacks

Preimage attack defines that for a given hash value y, find x such that f : x → y.
For a large-sized hash value, it becomes infeasible to find the input item x for a
certain hash function. Adversaries may correctly find input item x for the hash
value y, or the adversary can find another input that maps to y due to collision.

We know that the preimage attack can be carried out in 2η for a conventional
secure hash algorithm. Here, the η is fixed and public. Therefore, the preimage
attack can also be carried out in 2η for VORSHA-1D-S, VORSHA-2D-S, and
VORSHA-3D-S if and only if η is public and fixed. The η is secret and depen-
dent on the input string in VORSHA. Therefore, the input string to perform a
preimage attack may not lead to correct η or vice-versa. It requires a correct
input string to perform a preimage attack. Therefore, the security strength of
VORSHA is calculated as

µ+δ∑
η=µ

2η (13)

For VORSHA, it is possible to find other input items that map to the same hash
value. An adversary can find a x′ which also maps to the hash value y, which
is known as a second preimage attack, i.e., f(x) = f(x′) = y and x ̸= x′ for
given x and y. The second preimage attack defines that for given input item x,
an adversary finds x′ such that x ̸= x′ and f : x → y and f : x′ → y; i.e., an
adversary can find another input item that maps to the same output for a given
input item. The security strength of VORSHA is the same as Equation (13).

7 Parallelism of generating hash value using VORSHA

Parallel processing is a way of solving problems concurrently to improve execu-
tion time. It enhances the running time significantly, but it becomes a drawback
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for secure hash algorithms. If an algorithm can solve a problem in O(n) time
complexity, it can be reduced to even O(1) time complexity in parallel execu-
tion. Particularly, if an adversary can solve the problem in O(n) time complex-
ity in a sequential computer, then the adversary can solve the problem in O(1)
time complexity in parallel, which is disadvantageous for secure hash algorithms.
Therefore, we strongly discourage the generation of a single hash value in paral-
lel. VORSHA hash function generates hash bits in a sequential manner, which
is inefficient in generating in parallel. The key reason is that the output of the
primary hash function is input for the next primary hash function for generating
a bit. Thus, parallel processing becomes disadvantageous in such a problem if
the input and output are strongly interdependent or it depends on the previ-
ously computed values. Thus, we are able to restrict the parallel processing of
generating a single hash value using VORSHA. Noteworthy that multiple hash
values can be generated in parallel using distributed computing. For instance,
MapReduce can generate many hash values by spawning multiple map tasks,
and one reduce task. In this case, each map task generates many hash values,
and reduce task collects the generated hash values as output. But it becomes
inefficient for a MapReduce job to generate multiple hash values due to the
memory hardness properties because MapReduce is unable to avail the complete
advantage of parallelism.

8 Conclusion

In this paper, we have demonstrated the variable-sized, one-way, and random-
ized secure hash algorithm. To the best of our knowledge, VORSHA is the first
algorithm to feature randomization in producing a secure hash value. Also, we
have presented 1D, 2D, and 3D VORSHA for diverse applications’ requirements.
We have also demonstrated the memory-hardness features of VORSHA to defeat
the parallel processing of the adversaries. Moreover, we have illustrated the vari-
ous advantages of variability in a secure hash value. Furthermore, the variability
can defeat diverse attacks; for instance, the rainbow table attack.
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