
Protogalaxy: Efficient Protostar-style folding of

multiple instances

Liam Eagen1,2 and Ariel Gabizon1

1Zeta Function Technologies
2Blockstream Research

January 3, 2024

Abstract

We continue the recent line of work on folding schemes. Building on ideas from
Protostar [BC23] we construct a folding scheme where the recursive verifier’s
“marginal work”, beyond linearly combining witness commitments, consists only of
a logarithmic number of field operations and a constant number of hashes. Moreover,
our folding scheme performs well when folding multiple instances at one step, in
which case the marginal number of verifier field operations per instance becomes
constant, assuming constant degree gates.

1 Introduction

In the last two years, we have seen an explosion of interest in so-called folding1 schemes
[BCMS20, BCL+21, KST21, Moh, KS22, KS23, BC23]. Roughly speaking, a folding
scheme “folds” several instances of a relation into one instance in a way that the cor-
rectness of this one instance implies the correctness of all original instances.

The original motivation for folding schemes was improving the efficiency of incre-
mentally verifiable computation[Val08] and proof carrying data [CT10].

A related motivation is improving SNARK prover time when proving correctness of
multiple instances of a relation: Given instances ϕ1, . . . , ϕm, rather than computing a
SNARK proof Πi for each one, we fold2 them into a single instance ϕ∗ for which produce
a single SNARK proof Π. If the computation required per instance ϕi to show folding was
done correctly is significantly smaller than that for producing the SNARK proof Πi, the

1The term accumulation schemes [BCMS20, BCL+21] was introduced first for the same primitive.
We alternate between the folding and accumulation terminologies.

2To apply folding correctly in this usecase requires some additional work to make sure we have indeed
folded the instances we are interested in; for example, computing a running hash of the instances during
folding, and comparing it to a running hash independently computed by the final verifier.

1

overall prover work will be smaller even after computing the proof for ϕ∗. Alternatively,
in the IVC context it is often recommended to simply use the witness for ϕ∗ as the final
proof; then, at the expense of a longer proof, no SNARK is needed at all.

1.1 Single-instance vs Multi-instance folding

Protogalaxy focuses on k-folding - folding k instances in one folding operation; which
was also addressed in [BCL+21, KS23]. The benefit of k-folding is giving a wider set
of tradeoffs between folding and final decision costs, as well as reducing their combined
cost.

Generally, the goal of folding schemes has been to simplify the verifier as much as
possible and move as much computation as possible out of the verifier and prover and into
the decider. This is a sensible assumption when a folding scheme is used to instantiate a
long running IVC protocol, but limits applicability in other cases where the decider must
be run frequently. For example, consider a decentralized computation where multiple
parties perform computations in a directed graph, as in PCD. If the parties do not
trust one another, each will need to run the decider on their input accumulators they
receive before folding new instances. Since each party will run both the prover and the
decider, moving computation from the prover to the decider does not reduce the overall
complexity of the protocol. This situation may be of particular interest for decentralized
cryptocurrencies, where a large group of mutually distrusting actors are simultaneously
manipulating a shared state.

When folding multiple instances, we can take any combination of the following three
approaches.

First, the prover can simply fold the function F (X) and the folding verifier sequen-
tially k times. This does not increase decider complexity, compared to folding once, but
increases the prover complexity by k times the cost of proving the verifier, dominated
by (in Protostar) O(1) elliptic curve scalar multiplications and hash functions per
verifier.

Second, the prover can fold the k composition of F (X), G(X) = F (F (. . . F (X) . . .)
a single time. This keeps the recursion overhead small, but increases the decider com-
plexity linearly in k times the complexity of |F |.

Finally, the prover can use a k-folding scheme like Protogalaxy. This allows
keeping the decider complexity corresponding to a single application of F . Moreover,
when a single party performs both the folding and deciding this can still result in smaller
overall work. One reason for this is that when comparing to the second approach, k-
folding requires an in circuit k-size MSM to combine instances, which due to Pippenger
can be significantly faster than k separate scalar multiplications required in the second
approach.

All three can be combined to find the optimal configuration for a particular F , i.e.
a prover can fold a instances of the b fold composition of F sequentially c times where
k = abc.

2

1.2 Previous work on folding schemes and our results

All known folding schemes rely on additively homomorphic vector commitments, and the
following template: We assume the folding verifier is given homomorphic commitments
to the witnesses. The verifier takes a random combination of the witness commitments.
The prover computes the corresponding combination of the witnesses themselves. Since
all folding schemes share this work, we can define the marginal work of the prover and
verifier as the additional work beyond this linear combination of witnesses and their
commitments.

It is hard pinning down precise prover marginal costs, especially for [BC23]. At
a high level, assuming the verifier equation is computed by a constant size arithemtic
circuit, all schemes require in total O(n) field and group operations per folding operation
for a size n witness. It is worth mentioning that this holds for HyperNova even when
the verifier circuit contains at the base layer a super-constant linear component.3

Focusing on the verifier marginal work, we can easily see the difference between the
two latest folding schemes - HyperNova [KS23] andProtostar [BC23], and Protogalaxy.
The differences in verifier work are more crucial as they must be performed in-circuit.

� HyperNova performs a randomized sumcheck protocol to accumulate a new in-
stance - except that the final (expensive) multilinear opening is delayed to the
final decision. Thus, the verifier requires d log n field operations - to evaluate the
intermediate univariates sent during sumcheck, and log n random-oracle like hashes
- to obtain the challenges for the sumcheck.

� Protostar, rather than actually performing a sumcheck, simply reduces4 the
instance to another that is a randomized sum of the instance, and then folds this
claim about the randomized sum. Most of the folding work, in fact, is related
to combining the random coefficients for the new instance’s sum with the current
accumulator, and proving those coefficients are of an appropriate form - specifically,
consecutive powers of a challenge β. This process requires committing to the vector
of powers of β, which adds group operations to the folding verifier that needs to
perform scalar multiplications on these commitments.

� Protogalaxy instead of combining randomized sums with different challenges,
“converts” the accumulator to a claim using the new challenge. This avoids the
need to commit to the power vector, and allows remaining with a succinct (log n
length) representation of the sum’s coefficients. An interesting point is that al-
though this results in a polynomial of degree logn expressed as a sum of length n,
we are able to recursively compute its coefficients in O(n) rather than O(n log n)
operations (cf. Claim 4.4).

3It seems this feature can be encorporated into Protostar and Protogalaxy by “delaying”
linchecks to decision time in a similar way to HyperNova.

4We are describing what is presented in Section 3.5 of [BC23]: “Compressing verification checks for
high-degree verifiers”.

3

The second difference between Protostar and Protogalaxy, responsible for
more efficient folding of multiple instances, is a transition from monomial to La-
grange base: Protostar’s folding creates a polynomial whose constant coefficient
is the current accumulator’s sum, and the coefficient of Xd is the new instances’s
sum - where d is the maximal degree of the verifier’s checks. Attempting to do this
for k instances at once requires a degree growing exponentially in k to make sure
coefficients relating to different instances don’t “mix”.

However, things are smoother in Lagrange base. We associate with each instance
to be folded a different Lagrange coefficient. Essentially due to the property that
a power of Lagrange polynomial Li(X) modulo the set’s vanishing polynomial is
Li(X) itself, there is no need for exponentially growing degrees in the Lagrange
approach. Another simplification due to the Lagrange base, is avoiding the need
to homogenize the verifier’s constraint polynomials as done in Protostar. See
Section 4 for the precise construction.

Table 1: Comparing folding verifiers. CRH = collision resistant hash, RO=“random
oracle like” hash. d=degree of verifier checks.

Scheme Marginal verifier work

HyperNova O(d log n) F, d log n CRH, log n RO

Protostar 2 G, d+O(1) F, d+O(1) CRH, O(1) RO

Protogalaxy d+ log n F, d+ log n CRH, O(1) RO

Protogalaxy -k instances kd+ log n F, kd+ log n CRH, O(1) RO

Section 5 -k instances log n+ d log k F, kd+ log n CRH, log k RO

Section 5 -k accumulators log k(log n+ d) F, k(d+ log n) CRH, log k RO

2 Terminology and Conventions

We assume our field F is of prime order. We assume all algorithms described receive as
an implicit parameter the security parameter λ.

Whenever we use the term efficient, we mean an algorithm running in time poly(λ).
Furthermore, we assume an object generator O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G) where

� F is a prime field of super-polynomial size r = λω(1) .

� G is a group of size r.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G
additively.

4

We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p for “except
with probability”; i.e. e.w.p γ means with probability at least 1− γ.

3 Definitions based on Protostar

We review and adapt definitions from [BC23]. We recommend reading the referenced
sections for full understanding and context. All protocols described are between a prover
P and verifier V. We use the convention that “the protocol has input (a; b)” means that
both P and V get a, but only P gets b.

3.1 Special-sound protocols

Following [AFK22, BC23] we define special-sound protocols. We recall first the definition
from Section 2.1 of [BC23], of an aµ-out-of-N special-sound interactive protocol: Roughly
speaking, this means a public-coin protocol where verifier challenges are chosen from a
domain of size N , and a tree of accepting transcripts of arity a is sufficient for extracting
a witness. Based on that definition, we say that a (2µ + 1)-move interactive protocol
(meaning µ+1 prover messages and µ verifier messages) is special-sound, if it is aµ-out-of
N special-sound, for a = poly(λ) and N = λω(1). As explained in [BC23], the results of
[AFK22] impy the non-interactive version of the protocol in the random oracle model is
knowledge-sound with error negl(λ).

3.2 Defining accumulation/folding schemes

We define accumulation schemes in an equivalent way to [BC23] but using different
terminology, more focused on relations. In the definition below we are “accumulating”
instances of a relation R into an “accumulator” which is an instance of a relation Racc.
The reason we need the additional relation Racc - rather than folding directly into R
- is that the accumulator requires more flexibility in its structure. For example, in
Nova[KST21], Racc corresponds to relaxed committed R1CS.

Definition 3.1. Fix relations R and Racc. An (R 7→ Racc)-accumulation/folding
scheme is a public-coin interactive protocol P between a prover P and verifier V such
that

1. The protocol input is (ϕ, ϕ′;ω, ω′).

2. When the protocol ends V outputs ϕ∗, and P outputs ω∗.

3. Completeness: If (ϕ, ω) ∈ Racc, (ϕ
′, ω′) ∈ R, and P,V follow the protocol, we

have with probability one that (ϕ∗, ω∗) ∈ Racc.

4. Knowledge soundness:

The following protocol P∗ between P∗ and V∗ is knowledge-sound with error
negl(λ) for the relation Racc ×R:

5

(a) Given inputs (ϕ, ϕ′;ω, ω′), P∗ and V∗ run the protocol P as P,V with the
same inputs.

(b) Let p∗ = (ϕ∗, ω∗) be the final output of P,V in P. V∗ outputs accept if and
only if p∗ ∈ Racc.

In words, knowledge soundness means that if the accumulation protocol was followed
correctly, and either the current accumulator ϕ, or the current instance ϕ′ is invalid, then
the new accumulator ϕ∗ will also be invalid, and thus will fail a final decision stage - in
which a prover would need to show (ϕ∗, ω∗) ∈ Racc for some ω∗.

3.3 Relations based on interactive protocols

To define and motivate the relations we use in our accumulation scheme, we continue to
review interactive protocol conventions from [BC23].

Interactive protocols from [BC23]: Given a relation R0, we look at interactive protocols
for R0 of the form described in Section 3.1 of [BC23]:

� The protocol is parameterized by positive integers k, d, n ([BC23] uses ℓ rather than
n).

� The protocol input is (ϕ0;ω0) such that (ϕ0, ω0) ∈ R0.

� We have k rounds where at round i P sends a vector mi over F, and, if i < k, V
responds with random challenge ri ∈ F.

� Denote by ω the transcript of the protocol - namely the concatentation of ϕ0, the
vectors mi, and elements ri. Suppose ω is of length M . The protocol’s definition
includes a degree d mapping f : FM → Fn. At the end V accepts if and only if
f(ω) = 0n.

“Committed” protocols Let cm be an additively homomorphic commitment function,
mapping vectors over F of length at most M , into G. Given cm and an interactive
protocol like the one described above, [BC23] looks at a “committed” version of the
protocol, where

� P’s messages mi are replaced by the commitments Ci = cm(mi).

� At the end of the protocol P sends the vectors mi.

� Define ω again as the concatenation of ϕ0, the vectors mi, and elements ri. V
accepts if and only if f(ω) = 0n and for each i ∈ [k], cm(mi) = Ci.

6

Non-interactive proofs via Fiat-Shamir: [BC23] now transforms such a committed proto-
col into a non-interactive proof in the random oracle model. Specifically, assume access to
a random oracle R mapping arbitrary strings into uniform elements of F. We transform
the above protocol to a non-interactive proof by having

� P set r0 = R(ϕ0) and for each i ∈ [k− 1], ri = R(ri−1, Ci).

� Having the verifier check the ri are correct by querying R independently.

Let H be a hash function mapping arbitrary strings into F. We can replace R with H
above to get a non-interactive proof in the standard model, with a heuristic knowledge
soundness guarantee via Fiat-Shamir. We’ll assume access to H of this form as an
implicit parameter from now on.

Committed relations: Given a vector ω representing a transcript of the original non-
committed protocol, we abuse notation and denote by ϕ = cm(ω) a “committed” version
of the transcript, where every vector mi is replaced by cm(mi), but ϕ0 and the {ri} are
left as is. That is, if ω = (ϕ0,m1, . . . ,mk, r1, . . . , rk−1)

ϕ = cm(ω) = (ϕ0, cm(m1), . . . , cm(mk), r1, . . . , rk−1).

In particular, ϕ is a mixture of field and group elements. Given ϕ of this form, we say
it is H-consistent if the random challenges are computed as defined above. Namely,
ri = H(ri−1, Ci) for each i ∈ [k− 1] where we define r0 = H(ϕ0).

Given this notation, we define the relation Rf,cm “induced” by the committed pro-
tocol for R0 when “Fiat-Shamired” with H. Rf,cm is defined as pairs of a committed
transcript and the corresponding plain transcript. Formally, as all the pairs (ϕ, ω) such
that

1. ϕ is H-consistent.

2. ϕ = cm(ω).

3. f(ω) = 0n.

Knowledge soundness for committed relations

We now deal with a technicality that comes up in both Protostar and Protogalaxy’s
knowledge soundness proof. The definition of a special-sound protocol requires that we
are always able to extract a witness given a large enough tree of accepting transcripts.
However, we’ll only be able to either extract a witness or produce of collision of cm. We
show this suffices.

Lemma 3.2. Suppose cm : FM 7→ G is a binding commitment. Given a relation R,
define the relation R′ = R ∪ {ϕ, (w,w′)|cm(w) = cm(w′), |ω| ≥ λ}; in words, a collision
of cm of appropriate length is a satisfying witness for any instance.

If P is special-sound for R′ then it is knowledge-sound with error negl(λ) for R.

7

Proof. We can use the result of [AFK22] to conclude P is knowledge-sound for R′ with
error negl(λ). This means there is an extractor E, that when A convinces the verifier
of the validity of instance ϕ, produces a witness ω such that (ϕ, ω) ∈ R′ e.w.p negl(λ).
We define extractor E1 for R: E1 runs E, aborts if E’s output ω is a collision of cm;
and otherwise outputs ω. By the binding property of cm, the failure probability of E1

is larger by at most negl(λ) than that of E; and when it succeeds (ϕ, ω) ∈ R. Thus, P
is knowledge-sound with error negl(λ) for R.

The relation Rrand: Let t := log n. For i ∈ [n], let S ⊂ {0, . . . , t− 1} be the set such
that i− 1 =

∑
j∈[S] 2

j . We define the t-variate polynomial powi as

powi(X1, . . . , Xt) =
∏
ℓ∈S

Xℓ

Note that if β = (β, β2, β4, . . . , β2t−1
), powi(β) = βi−1. For brevity, let R = Rf,cm. We

define the “randomized relaxed” version of R,Rrand - as follows.
Rrand consists of the pairs ((ϕ,β, e), ω) such that

1. ϕ = cm(ω).

2. β ∈ Ft, e ∈ F and we have ∑
i∈[n]

powi(β)fi(ω) = e.

(Here, fi denotes the i’th output coordinate of f .)

4 Main Protocol

We are ready to present our main scheme. Fix positive integers d, k < n such that k+1 is
a power of two. Denote t := log n. Assume F contains a multiplicative subgroup H of or-
der k+1 and L0(X), L1(X), . . . , Lk(X) is its Lagrange base. Let Z(X) :=

∏
a∈H(X−a)

be H’s vanishing polynomial.

Protogalaxy (Φ = (ϕ,β, e), (ϕ1, . . . , ϕk);ω, (ω1, . . . , ωk)):

1. V checks for each i ∈ [k] that ϕi is H-consistent, and outputs rej otherwise.

2. V sends a challenge δ ∈ F.

3. P and V compute δ ∈ Ft, where δ := (δ, δ2, . . . , δ2
t−1

).

4. P computes the polynomial

F (X) :=
∑
i∈[n]

powi(β +Xδ)fi(ω).

(Note that F (0) =
∑

i∈[n] powi(β)fi(ω) = e.)

8

5. P sends the non-constant coefficients F1, . . . , Ft of F (X) to V.

6. V sends a random challenge α ∈ F.

7. P and V compute F (α) = e+
∑

i∈[t] Fiα
i.

8. P and V compute β∗ ∈ Ft where β∗
i := βi + α · δi.

9. P computes the polynomial

G(X) :=
∑
i∈[n]

powi(β
∗)fi(L0(X)ω +

∑
j∈[k]

Lj(X)ωj).

10. P computes polynomial K(X) such that

G(X) = F (α)L0(X) + Z(X)K(X).

11. P sends the coefficients of K(X).

12. V sends a random challenge γ ∈ F.

13. P and V compute
e∗ := F (α)L0(γ) + Z(γ)K(γ).

At the end of the protocol

� V outputs the instance Φ∗ = (ϕ∗,β∗, e∗), where

ϕ∗ := L0(γ)ϕ+
∑
i∈[k]

Li(γ)ϕi.

� P outputs the witness ω∗ := L0(γ)ω +
∑

i∈[k] Li(γ)ωi.

Remark 4.1. Since
∑k

i=0 Li(X) = 1, V can compute ϕ∗ with k rather than k+1 scalar
multiplications as

ϕ∗ = ϕ+
∑
i∈[k]

Li(γ)(ϕi − ϕ).

We make crucial use of the following easily checkable lemma. Loosely speaking, it
says any polynomial f(X) “commutes modulo Z(X)”, with multiplication by Lagrange
polynomials.

Lemma 4.2. Fix any polynomial f(X) ∈ F[X] and a0, . . . , ak ∈ F. There exists Q(X) ∈
F[X] such that

f

(
k∑

i=0

aiLi(X)

)
=

k∑
i=0

f(ai)Li(X) + Z(X)Q(X).

9

Theorem 4.3. Let cm : FM → G be an additively homomorphic binding commitment
scheme. Let R = Rf,cm. Assume dnk = poly(λ), and |F| = λω(1). Then Protogalaxy
is an (Rk 7→ Rrand)-accumulation/folding scheme.

Proof. We prove completeness and soundness, and discuss efficiency in Claims 4.4 and
4.5.
Completeness: Assume ((ϕ1, . . . , ϕk), (ω1, . . . , ωk)) ∈ Rk and ((ϕ, β, e), ω) ∈ Rrand. We
need to show that if the protocol is followed correctly, (Φ∗, ω∗) ∈ Rrand with probability
one . It is immediate from construction that cm(ϕ∗) = ω∗. So, to obtain (Φ∗, ω∗)) ∈
Rrand it is left to check that ∑

i∈[n]

powi(β
∗)fi(ω

∗) = e∗.

Note first that when ((ϕ,β, e), ω) ∈ Rrand

F (0) =
∑
i∈[n]

powi(β)fi(ω) = e.

So in Step 7 V is computing F (α) correctly.
Therefore, using Lemma 4.2

G(X) mod Z(X) =
∑
i∈[n]

powi(β
∗)fi

L0(X)ω +
∑
j∈[k]

Lj(X)ωj

 mod Z(X)

=
∑
i∈[n]

powi(β
∗)

L0(X)fi(ω) +
∑
j∈[k]

Lj(X)fi(ωj)

=
∑
i∈[n]

powi(β
∗)L0(X)fi(ω) = F (α)L0(X).

The second last equality uses fi(ωj) = 0, for all j ∈ [k], i ∈ [n].
Therefore, in step 11 P is indeed able to send K(X) such that

G(X) = F (α)L0(X) + Z(X)K(X).

And so, in step 13, we have e∗ = G(γ). Thus, using the definitions of G and ω∗:

e∗ = G(γ) =
∑
i∈[n]

powi(β
∗
i)fi(L0(γ)ω +

∑
j∈[k]

Lj(γ)ωj) =
∑
i∈[n]

powi(β
∗
i)fi(ω

∗),

as required.
Knowledge soundness: Suppose we have a tree of arity N = max {n, dk} of accepting
transcripts in the sense that (Φ∗, ω∗) ∈ Rrand; where the verifier input is (ϕ, (ϕ1, . . . , ϕk)).
We show that we can either produce a collision of cm or a witness (ω, (ω1, . . . , ωk)) such

10

that ((ϕ, (ϕ1, . . . , ϕk)), (ω, (ω1, . . . , ωk))) ∈ Rrand × Rk. According to Lemma 3.2 this
suffices.

We denote for 1 ≤ a, b, c ≤ N by δa, αa,b, γa,b,c the values for the challenges α, β, γ
used in the corresponding path in the transcript tree; and by (Φ∗

a,b,c, ω
∗
a,b,c) the final

output in that path. For convenience, let us denote ϕ0 := ϕ, ω0 := ω. In our first step
described next we will either find a collision of cm or find ω, ω1, . . . , ωk such that

� For i = 0, . . . , k, ϕi = cm(ωi).

� For all 1 ≤ a, b, c ≤ N ,

ω∗
a,b,c =

k∑
i=0

Li(γa,b,c)ωi.

For this purpose, choose any k + 1 accepting transcripts using distinct values γ0, . . . , γk
for the challenge γ and let (Φ∗

0, ω
∗
0), . . . , (Φ

∗
k, ω

∗
k)) be the outputs in those transcripts.

We have for each j = 0, . . . , k

Φ∗
j =

k∑
i=0

Li(γj)ϕi.

Since the (k+1)× (k+1) matrix with Li(γj) in index (i, j) is invertible, it means there

exists for each j = 0, . . . , k coefficients {cj,ℓ} such that ϕj =
∑k

ℓ=0 cj,ℓΦ
∗
ℓ . We define for

j = 0, . . . , k,

ωj :=
k∑

ℓ=0

cj,ℓω
∗
ℓ

From linearity of cm and cm(ω∗
ℓ) = Φ∗

ℓ , we have that ϕj = cm(ωj) for each j ∈ 0, . . . , k.
We apply this process more times such that each accepting transcript has been used at
least once. If at any point, for some j we obtain a different vector ω′

j ̸= ωj such that
cm(ω′

j) = ϕj we output (ωj , ω
′
j) as a collision.

To proceed, we first define several polynomials. For i ∈ [n] define the polynomial

Pi(Y1, Y2) := powi(β + Y1 · (Y2, Y 2
2 , . . . , Y

2t−1

2)).

Note that {Pi(Y1, Y2)}i∈[n] are linearly independent polynomials - since the degree of Y2
in Pi is precisely i. For j ∈ [k], define the polynomial Qj(Y1, Y2) :=

∑
i∈[n] Pi(Y1, Y2) ·

fi(ωj). We will show Qj is the zero polynomial for each j = 1, . . . , k. As the Pi are
linearly independent this implies fi(ωj) = 0 for all i ∈ [n], j ∈ [k]; which in turn implies
((ϕ1, . . . , ϕk), (ω1, . . . , ωk)) ∈ Rk.

For given 1 ≤ a, b ≤ N we know for 1 ≤ c ≤ N that∑
i∈[n]

powi(β + αa,bδa)fi(ω
∗
a,b,c) = Fαa,b

L0(γc) + Zα,β(γ)K(γ)

Recall that ω∗
a,b,c =

∑k
j=0 Lj(γc)ωj . We thus have as polynomials that

∑
i∈[n]

powi(β + αa,bδa)fi(

k∑
j=0

Lj(X)ωj) = Fαa,b
L0(X) + Z(X)K(X)

11

On the other hand, similarly to the completeness case, we have that

∑
i∈[n]

powi(β+αa,bδa)fi(

k∑
j=0

Lj(X)ωj) mod Z(X) ≡
k∑

j=0

Lj(X)
∑
i∈[n]

powi(β+αbδa)fi(ωj)

And so, comparing coefficients, we have that
∑

i∈[n] powi(β+αa,bδa)fi(ω0) = Fa,b(αa,b),
and for j ∈ [k] that ∑

i∈[n]

powi(β + αa,bδa)fi(ωj) = 0

Now, for j ∈ [k] note that

Qj(αa,b, δa) =
∑
i∈[n]

powi(β + αa,bδa)fi(ωj) = 0

Since this holds for all 1 ≤ a, b ≤ N we have that Qj(Y1, Y2) is identically zero as we
intended to show.

To show we have a valid witness forRrand×Rk it is left to show that
∑

i∈[n] powi(β)fi(ω0) =
e. Fix some value 1 ≤ a ≤ N , and the challenge δ = δa sent in the transcripts in the
a’th branch of the tree. Denote by F the polynomial F (X) = e+

∑
i∈[t] FiX

i, when we
let {Fi} be the values sent in step 5 in those transcripts. We know for N different values
αa,b that ∑

i∈[n]

powi(β + αa,bδa)fi(ω0) = F (αa,b)

So we have a polynomial identity

H(X) :=
∑
i∈[n]

powi(β +Xδa)fi(ω0) = F (X),

which means the constant coefficient of H(X) is e on one hand, but on the other hand∑
i∈[n] powi(β)fi(ω0). In other words,

e =
∑
i∈[n]

powi(β)fi(ω0),

as required.

Claim 4.4. Given ω,β, δ, the polynomial F (X) in step 4 can be computed O(n) F-
operations

Proof. We can expand F (X) as a sum over n terms of degree t. These terms are all
products of t + 1 linear factors, and computing each individually would take O(nt) =
O(n log n) time in general. However, we can exploit the structure of powi(β + Xδ) to
compute the sum in O(n) time.

Consider the full binary tree of n leaves, with each leaf i from left to right labelled
by fi(ω). Define the level of a node to be its distance from the leaves. At each internal,

12

non-leaf node of the tree at level ℓ > 0, label the left edge from the node with 1 and
the right edge with βℓ +Xδℓ. Given the path from the root to leaf i, if we multiply the
labels of each edge along the path and the label at the leaf, we have exactly the i’th term
from F (X), powi(β + Xδ)fi(ω). Now, we can recursively construct the labels of each
internal node. For each internal node at level k, let nl and nr be the labels of the left and
right children and let el and er be the labels of the edges connecting the left and right
children. Define the label of each internal node to be n := nlel + nrer. Since deg(el) = 0
and deg(er) = 1, it must be the case that deg(n) = max(deg(nl), 1 + deg(nr)) ≤ k. This
yields F (X) as the label for the root node.

We want to show that we can compute all the labels in O(n) time. Note that
computing each n at level ℓ takes O(ℓ) field operations, since multiplying by er takes
O(ℓ) operations. There are 2t−ℓ nodes at level ℓ, so the total number of field operations at
level ℓ is ℓ2t−ℓ. Summing over ℓ from 1 to t, we find the total number of field operations
is 2n− t− 1 = O(n)

t∑
i=1

i2t−i = 2t−1
t−1∑
i=0

(i+ 1)2−i = 2t−1 d

dx

xt+1 − 1

x− 1

∣∣∣∣
x=1/2

= 2n− t− 2 = O(n).

Since we can compute all the labels in O(n) time, we can compute the root label in
O(n) time. Note that this technique can be generalized to trees of arbitrary arity.

In the following claim we denote by C the maximum over i ∈ [n] of the number of
operations needed to compute fi(ω) for a given input ω ∈ FM .

Claim 4.5. The polynomial G(X) in step 9 can be computed in O(dk log(dk)M+dknC)
F-operations

Proof. The degree of G(X) is dk, so given dk + 1 evaluations of G(X) we can compute
its coefficients. However, in the honest prover case we already know k of the evaluations,
so we only need (d−1)k+1 additional evaluations. We first evaluate the following inner
expression at (d− 1)k + 1 points

L0(X)ω +
∑
j∈[k]

Lj(X)ωj .

This requires O(k(d − 1) log(k(d − 1))M) operations. Given these evaluations, we
need to evaluate each fi on these values and sum the results, which takes O((d−1)knC)
time. Finally, we need to subtract off L0(X)e, divide by Z(X), and then perform an
FFT to compute Q(X). This takes O(d(k−1) log d(k−1)), which gives total complexity

O(dk log(dk)M + dknC).

Claim 4.6. The polynomial G(X) in step 9 can be computed in

FFT(k(d− 1) log(k(d− 1)))(M + 1) + (d− 1)nC + n+ dFFT(k)

F-operations

13

Proof. The degree of G(X) is dk, so given dk + 1 evaluations of G(X) we can compute
its coefficients. However, in the honest prover case we already know k of the evaluations,
so we only need (d−1)k+1 additional evaluations. We first evaluate the following inner
expression at (d− 1)k + 1 points

L0(X)ω +
∑
j∈[k]

Lj(X)ωj .

This requires FFT(k(d− 1) log(k(d− 1)))M operations, where FFT(s) is the number
of operations necessary to evaluate an 2k FFT of size at least s. Given these evaluations,
we need to evaluate each fi on these values and sum the results, which takes (d−1)knC
time. Finally, we need to subtract off L0(X)e, divide by Z(X), and then perform an
FFT to compute Q(X). None of these operations depend on M or C, and take a total
of n+ dFFT(k) + FFT(k(d− 1) log(k(d− 1))).

FFT(k(d− 1) log(k(d− 1)))(M + 1) + (d− 1)nC + n+ dFFT(k).

Remark 4.7. The nC factor in Claim 4.5 can be replaced by a factor N equal to the
number of operations required to compute f on input ω ∈ FM . N can be significantly
smaller than nC in cases where the {fi} vary significantly in their complexity.

5 Alternative construction for large k

In this section we assume familiarity with the sumcheck protocol; for an introduction, see
Section 4.1 of Thaler[Tha]. In the protocol of the previous section the folding prover’s
costs scale quasilinearly with the number of instances k - O(k log k); and the verifier’s
cost scales linearly with k. Here, we improve those dependencies to linear and logarithmic
respectively, at the cost of a more complex protocol with potentially worse constants.
Roughly, we replace the vanishing check mod Z(X) with a sumcheck over a domain of
size k. For simplicity, we assume this sumcheck works over the boolean hypercube, but
it naturally generalizes to larger bases. Given a collection of k = 2s−1 instances, folding
begins in the same way as before by refreshing the randomness β with δ. More precisely,
P and V will run the protocol of the previous section up to step 8. Now, using the
notation there, denote δn := (δn, δn·2, . . . , δn·2

s−1
) ∈ Fs, and ω0 := ω; and e0 := F (α) as

computed by V in step 7. Note that when P is honest, we have∑
i∈[n]

powi(β
∗)fi(ω0) = e0.

Below we denote by eq the 2s-variate multilinear polynomial with eq(a, b) = 1 for
a = b ∈ {0, 1}s and eq(a, b) = 0 for a ̸= b ∈ {0, 1}s; and overload notation and denote

14

by j ∈ {0, . . . , k} the s-length binary decomposition of j. P will show the following
expression holds:

k∑
j=0

eq(j, δn)
∑
i∈[n]

powi(β
∗)fi

(
k∑

ℓ=0

eq(j, ℓ)ωℓ

)
= eq(0, δn) · e0.

We can think of the lhs of the above identity, as summing the following s-variate poly-
nomial G(J) over j ∈ {0, . . . , k} :

G(J) := eq(J, δn)
∑
i∈[n]

powi(β
∗)fi

(
k∑

ℓ=0

eq(J, ℓ)ωℓ

)
.

We now run a sumcheck protocol for G over {0, 1}s ∼ {0, . . . , k} to check it sums to
eq(0, δn) ·e0. For a ∈ [s], in the a’th round P sends a univariate polynomial Pa of degree
d, and replaces the a’th variable with a verifier challenge γa. Following these rounds,
the correctness of the sumcheck is reduced to checking G(γ) = Ps(γs); which is in turn
equivalent to showing5 ((ϕ∗,β∗, e∗), ω∗) ∈ Rrand with

� ϕ∗ :=
∑k

ℓ=0 eq(γ, ℓ)ϕℓ, where ∀ℓ ∈ {0, . . . , k}, ϕℓ := cm(ωℓ)

� ω∗ :=
∑k

ℓ=0 eq(γ, ℓ)ωℓ,

� e∗ := Ps(γs)/eq(γ, δ
n).

And so in this variant of the Protogalaxy, V outputs (ϕ∗,β∗, e∗) and P outputs
ω∗. In total V needs to evaluate s = ⌈log k⌉ hashes and perform O(log n + d log k)
field operations - the log n operations coming from running the original protocol up to
step 8. The prover only sends ds scalars to communicate the Pa(X) polynomials as
compared to dk for the univariate Protogalaxy protocol. In total the prover requires
only O(kdM + nkdC) field operations. The main thing to show is that the univariates
sent during sumcheck can be computed efficiently.

Claim 5.1. The polynomials Pa(X) can all be computed in a total of O(kdM + nkdC)
field operations.

Proof. We show for i ∈ [s], that computing Pa(X) takes O(2−a(kdM + nkdC)) field
operations. If this is the case, then it follows that the total computation is O(kdM +
nkdC).

We illustrate the claim on P1. Below we denote by δ′n the last s− 1 coordinates of
δn. We have

P1(X) = (1+δnX)
∑

j∈[k/2]

eq(j, δ′n)
∑
i∈[n]

powi(β
∗)fi

 ∑
ℓ∈[k/2]

eq(j, ℓ)(X · ω2ℓ + (1−X)ω2ℓ+1)

5A formal knowledge soundness proof for this protocol would proceed similarly to that of Theorem

4.3 extracting the {ωℓ} from the {ϕℓ} and address the case of finding a collision of cm. Since the details
are almost identical, we omit them.

15

First, for each j ∈ [k/2], we precompute for the length M vector of polynomials vi(X) :=
X ·ω2i+(1−X)ω2i+1, d evaluations for each vi,ℓ(X). This takes O(kdM) field operations.

To compute P1(X), we must compute it at d values. For each evaluation, we need
to evaluate the outer sum at k/2 values j ∈ [k/2]. For each such evaluation, we need to
evaluate a sum of length n whose i’th term is

powi(β
∗)fi(vi(X)).

As we have already computed d + 1 values of vi’s argument, we can evaluate fi(vi(X))
at d inputs in O(dC) operations. So in total we get O(nkdC). Since the other Pa’s have
the same form as P1 on domains of size going down by two, the claim follows.

Folding Many Accumulators

This technique transposes into accumulator folding as well. Denote now k = 2s, and let
K := {0, . . . , k − 1}. We fold k accumulators by replacing β with a linear combination
of the βj values from each instance. Assume we have k instances

{
(ϕj ,βj , ej)

}
j∈K

with corresponding witnesses {ωj}j∈K . V chooses a random δ ∈ F, and we set δ :=

(δ, δ2, . . . , δ2
s−1

) ∈ Fs. We look at the polynomial

G(J) := eq(J, δ)
∑
i∈[n]

powi

(∑
ℓ∈K

eq(J, ℓ)βℓ

)
fi

(∑
ℓ∈K

eq(J, ℓ)ωℓ

)
.

When P is honest, we have

∑
j∈K

G(j) =
∑
j∈K

eq(j, δ)
∑
i∈[n]

powi

(∑
ℓ∈K

eq(j, ℓ)βℓ

)
fi

(∑
ℓ∈K

eq(j, ℓ)ωℓ

)

=
∑
j∈K

eq(j, δ)
∑
i∈[n]

powi

(
βj

)
fi(ωj) =

∑
j∈K

eq(j, δ)ej .

We again run a sumcheck protocol for G over j ∈ [k], up to and not including the final
step of evaluating G(γ). Denote again by Pa(X), for a ∈ [s], the univariate polynomials
sent in the rounds of the sumcheck. Note that now each Pa has degree at most d + t.
Following s rounds, the sumcheck verifier needs to check

G(γ) = eq(γ, δ)
∑
i∈[n]

powi

(∑
ℓ∈K

eq(γ, ℓ)βℓ

)
fi

(∑
ℓ∈K

eq(γ, ℓ)ωℓ

)
.

16

This corresponds to showing ((ϕ∗,β∗, e∗), ω∗) ∈ Rrand where

ϕ∗ :=
∑
ℓ∈K

eq(γ, ℓ)ϕℓ,

β∗ =
∑
ℓ∈K

eq(γ, ℓ)βℓ,

e∗ = eq(γ, δ)−1 · Ps(γs),

ω∗ =
∑
ℓ∈K

eq(γ, ℓ)ωℓ.

Thus, we have reduced the k instances of Rrand to the instance Φ∗ = (ϕ∗,β∗, e∗), where
ϕ∗ := cm(ω∗). The folding verifier can compute ϕ∗ =

∑
ℓ∈K eq(γ, ℓ)ϕℓ using k scalar

multiplications; as well as β∗ and e∗ using O((k + d)t) field operations.
The main thing to address is the efficiency of computing {Pa(X)}a∈[s]. Using a

combination of the techniques used in Claims 4.4 and 5.1, one can show

Claim 5.2. The polynomials Pa(X) can all be computed in a total of O(kdM + nkdC)
field operations.

It follows from Claim 5.2 that P requires in total O(kdM + nkdC) F-operations.

Acknowledgements

We thank Benedikt Bünz and Binyi Chen for discussions on Protostar. We thank the
Ethereum Foundation and 0xPARC for supporting this work. We thank Cody Gunton,
Sergei Iakovenko, Thor Kampefner, Ivan Mikushin, Pratyush Mishra, Srinath Setty, Zac
Williamson and David Wong for corrections and comments.

References

[AFK22] T. Attema, S. Fehr, and M. Klooß. Fiat-shamir transformation of multi-round
interactive proofs. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory
of Cryptography - 20th International Conference, TCC 2022, Chicago, IL,
USA, November 7-10, 2022, Proceedings, Part I, volume 13747 of Lecture
Notes in Computer Science, pages 113–142. Springer, 2022.

[BC23] B. Bünz and B. Chen. Protostar: Generic efficient accumulation/folding for
special sound protocols. IACR Cryptol. ePrint Arch., page 620, 2023.

[BCL+21] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. Proof-carrying
data without succinct arguments. In Tal Malkin and Chris Peikert, edi-
tors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,

17

Proceedings, Part I, volume 12825 of Lecture Notes in Computer Science,
pages 681–710. Springer, 2021.

[BCMS20] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. Recursive proof composition
from accumulation schemes. In Theory of Cryptography - 18th International
Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Pro-
ceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages
1–18. Springer, 2020.

[CT10] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from
signature cards. In Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, January 5-7, 2010. Proceedings, pages 310–331.
Tsinghua University Press, 2010.

[KS22] A. Kothapalli and S. T. V. Setty. Supernova: Proving universal machine
executions without universal circuits. IACR Cryptol. ePrint Arch., page
1758, 2022.

[KS23] A. Kothapalli and S. Setty. Hypernova: Recursive arguments for customiz-
able constraint systems. IACR Cryptol. ePrint Arch., page 573, 2023.

[KST21] A. Kothapalli, S. T. V. Setty, and I. Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. IACR Cryptol. ePrint Arch., page 370,
2021.

[Moh] N. Mohnblatt. Sangria: a folding scheme for plonk.

[Tha] Justin Thaler. Proofs, arguments, and zero-knowledge.

[Val08] P. Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography, Fifth Theory of Cryptog-
raphy Conference, TCC 2008, New York, USA, March 19-21, 2008, volume
4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

18

	Introduction
	Single-instance vs Multi-instance folding
	Previous work on folding schemes and our results

	Terminology and Conventions
	Definitions based on Protostar
	Special-sound protocols
	Defining accumulation/folding schemes
	Relations based on interactive protocols

	Main Protocol
	Alternative construction for large k
	References

