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Abstract

Grover’s algorithm is a very versatile cryptanalytical tool. Even though it doesn’t
provide an exponential speed-up, it still changed the cryptographic requirements
all over the world. Usually, Grover’s algorithm is executed with a fixed well-
defined function indicating good states. In this paper, we want to investigate
what happens if the function is changed over time to mark less and less good
states. We compute the amplitudes after 2s/2 steps of an adjusted Grover’s algo-
rithm proposed by Zheng et al. in Nested Quantum Search Model on Symmetric
Ciphers and Its Applications (2023). We use the amplitudes to reason that such
an approach always leads to a worse run-time when compared to the näıve ver-
sion. We also indicate at which point in Zheng et al. the counterintuitive nature
of quantum computation leads to false assumptions.
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1 Introduction

When discussing the power of quantum computers, Grover’s algorithm is often treated
as an obvious argument to double the key length. The premise, no matter how strong,
is simple enough that very little research is conducted in this area. This is even more
amplified by the proofs of optimality of Grover’s algorithm [2]. This, and the eso-
teric nature of quantum computation, can often lead to wrong assumptions about
its runtime. In this paper, we want to investigate why intuitive arguments fail when
discussing Grover’s speed-up.
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The inspiration for this paper was a publication by Zheng et al. [1]. They suggested
an iterated (nested) approach, where for a set of punctured ciphertexts (z1, z2, ..., zr),
one investigates the sets of keys K1,K2, ...,Kr such that Ki = {k : fi(k) = zi ∧
k ∈ Ki−1}. In this case, a punctured ciphertext is a string created by projecting the
ciphertext onto a subset of its bits. One can also consider what changes when we define
Ki as Ki = {k : fi(k) = zi}, we will shortly mention this case in section 4. The idea
is to begin with a whole key space K0 = {k ∈ {0, 1}n} and start searching for the
consecutive key sets using oracles Ozi :

K0

Oz1−−→ K1

Oz2−−→ K2

Oz3−−→ ...
Ozr−−→ Kr

Since for all i : Ki+1 ⊂ Ki, for a good encryption function the sets will usually drop
keys at a constant rate depending on the size of the punctured ciphertext. In fact,
for an s-long punctured ciphertext, each round finds |Ki| out of |Ki−1| keys with
|Ki−1|
|Ki| = 2s. The assumption then is that this search with Grover would require

√
2s

steps. For r := n/s with high probability, Kr consists of a single key that delivers a
correct punctured ciphertext for all i = 1, ..., r. This results in a runtime of

√
2s · n/s,

which if s is chosen to be 1, gives us polynomial runtime of n
√
2.

We will investigate where the above reasoning founders. The pivotal point is that
although at step i, we start the search in a state |ϕ⟩ = 1√

|Ki−1|

∑
k∈Ki−1

|k⟩, the
following Grover’s steps reintroduce all the keys from K0 \Ki−1. Therefore, we do not
search in key space of size |Ki−1| but in K0 with non-uniform amplitudes. We will also
prove that the resulting non-uniform distribution results in a need for more Grover’s
algorithm steps.

2 Notation

Let E : {0, 1}n × {0, 1}n → {0, 1}n be an encryption function with

E : (k, p) 7→ c.

Further, for a fixed plaintext-ciphertext pair (P,C), define F : {0, 1}n → {0, 1}n with

F (k) = E(k, P )

and for some index-set I:
FI(k) =

(
E(k, P )

)
|I .

In this case x|I is a projection of x on the bits in I. We are interested in finding a key
k′ such that F (k′) = C. This also implies that for any I ⊆ {1, 2, ...n} FI(k

′) = CI .

2.1 Grover’s algorithm and the iterated version

In this section, we will introduce the notation used for Grover’s algorithm and its
iterated version from [1]. The original algorithm consists of multiple identical steps,
each of them consisting of 2 phases:
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• for a function f we mark the states |x⟩ which fulfil the clause f(x) = 1 using Uf :

Uf |x⟩ |y⟩ =

{
|x⟩ |−y⟩ , if f(x) = 1

|x⟩ |y⟩ , otherwise,

and negate their amplitude.
• we apply Grover’s diffusion operator.

In our setting the function f will be defined as:

f(k) =

{
1, if F (k) = C

0, otherwise.

Upon the last step, we can apply the Uf again and measure the second register. When
|−y⟩ is measured, we know that all the x values in the first register fulfil the clause f .

For iterated (nested) approach, the algorithm consists of multiple iterations. We
need a set of punctured ciphertexts (z1, z2, ..., zr), these are valid ciphertexts projected
to some subset of bits of the original ciphertext. These can be generated by one or
multiple ciphertexts. We will assume they are generated from a single ciphertext (and
therefore single plaintext) for the ease of notation, but this must not be the case.

In each iteration, we perform a classical Grover search for a changing function:
• choose an index i
• define Ufi as

Ufi |x⟩ |y⟩ =

{
|x⟩ |−y⟩ , if fi(x) = 1

|x⟩ |y⟩ , otherwise,

for fi defined as:

fi(k) =

{
1, if FI(k) = zi ∧ k ∈ Ki−1

0, otherwise.

In this case, the I is a changing subset of bits of the ciphertext C dependent on
i which was chosen.

• perform standard Grover search using Ufi .
After sufficiently many steps are repeated, as in classical Grover, we can apply Ufi
again and measure the second register to get a distribution of all keys fulfilling the
clause |ϕ⟩ = 1√

|Ki|

∑
k∈Ki

|k⟩. This concludes the i’th iteration and we move on to the

next punctured ciphertext.

3 Comparison of amplitudes in two cases

In this section we will compare the behaviour of the amplitudes in the scenario
described in [1] and standard Grover’s algorithm. We will prove that a single itera-
tion of the nested approach results in a worse amplitude distribution (needing more
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follow-up Grover’s steps to land at a comparable state) than if we perform the same
amount of steps immediately searching for the single correct key.

Let I ⊆ {1, . . . , n} be a set with s elements. In this case fI produces a punctured
ciphertext of length s. Assume we want to search for a specific key, which maps to a
punctured ciphertext cI . Let KI := {k ∈ K : fI(k) = cI}.

To find all the keys inKI we would need
√

2n

2n−s = 2s/2 steps of Grover’s algorithm.

In this case, Grover’s clause would have the form fI(k) = cI and after a measurement
the resulting quantum state would be:

|ψ⟩ =
√

1

2n−s

∑
i∈KI

|i⟩ .

Now assume we want to find a specific key k′ in |ψ⟩. From [3] we know that the
runtime of Grover’s algorithm for arbitrary amplitude distribution depends only on
the average amplitude of the “correct” and “incorrect” keys. In our scenario, the only
correct key is k′. Let k|τ⟩(t) be the average over amplitudes of correct keys at time t for

quantum state |τ⟩, and analogously l|τ⟩(t) be the average amplitude of the incorrect
keys.

For the state |ψ⟩ (achieved after 2s/2 steps of iterated Grover’s algorithm) we have:

k|ψ⟩(2
s/2) = 1 ·

√
1

2n−s
=

√
1

2n−s

l|ψ⟩(2
s/2) =

(
(2n−s − 1) ·

√
1

2n−s

)
+
(
(2n − 2n−s) · 0

)
2n − 1

=

2n−s
√
2n−s

− 1√
2n−s

2n − 1

=

√
2n−s

2n − 1
− 1√

2n−s(2n − 1)

≈
√
2n−s

2n

The value of l|ψ⟩(2
s/2) is computed as the average of the 2n−s − 1 incorrect keys in

KI each with amplitude
√

1
2n−s , and the keys in K0 \KI with amplitude 0.

Next, we want to compare this result with the state of the register if we would
immediately start the search for k′ instead of K1 (this would correspond to performing
standard Grover’s search over the iterated approach). Let |ϕ⟩ be the state of the
register after applying 2s/2 steps of Grover’s algorithm with function f instead of f |I .
The state at time t can be described as [4]:

|ϕt⟩ = sin θt |k′⟩+ cos θt

(√ 1

2n − 1

∑
k ̸=k′

|k⟩
)
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=: sin θt |k′⟩+ cos θt |k′⊥⟩ ,

with θ = arcsin 1√
2n

. For small values, we know

sin(x) ≈ x, (1)

so θ ≈ 1
2n/2 . Further, θt = (2t+ 1)θ, so for t = 2s/2 we have:

θ2s/2 = (2 · 2s/2 + 1) ·
√

1

2n

= 2
s−n
2 +1 +

1

2n/2

=

√
1

2n−s−2
+ 2−n/2

=

√
4

2n−s
+ 2−n/2.

Using (1) we get:

k|ϕ⟩(2
s/2) = sin θ2s/2 = sin

(√ 4

2n−s
+ 2−n/2

)
≈

√
4

2n−s
+ 2−n/2.

This means that k|ϕ⟩(2
s/2) > k|ψ⟩(2

s/2) resulting in the higher probability to measure
k′ in |ϕ⟩ than in |ψ⟩ and less following iterations of Grover’s algorithm to arrive at
the desired state. Further, using Pythagorean trigonometric identity, we know:

cos θ2s/2 =

√
1− sin2 θ2s/2 =

√
1−

(√ 1

2n−s−2
+ 2−n/2

)2

≈
√

2s · 2n−s
2n

and the average amplitude of an incorrect state is:

l|ϕ⟩(2
s/2) =

√
1

2n
· cos θ2s/2

≈
√

1

2n
·
√

2s · 2n−s
2n

=

√
2n−s

2n
·
√
2s.
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This means l|ϕ⟩(2
s/2) ≈

√
2s · l|ψ⟩(2s/2). Counterintuitively this results in state |ϕ⟩

needing fewer Grover steps to arrive at the desired distribution. This is caused by the
fact that the amplitudes follow the corresponding recurrence:

k(t+ 1) = C(t) + k(t)

l(t+ 1) = C(t)− l(t)

where C(t) is the doubled mean of all the states. Bigger value of l|ϕ⟩(2
s/2) means the

updates of k increase the amplitudes of the correct states (decrease the amplitudes of
the incorrect states) quicker.

4 Discussion

As seen in the previous section, directly searching for the single correct state brings
a better result than the iterated approach. An equally distributed amplitude among
the incorrect states gives us a higher amplitude amplification for the correct state.
Equally important, the amplitude of the correct state after 2s/2 steps is higher in the
case of standard Grover’s approach.

First, we want to highlight the faulty intuition when considering the search in a
partially collapsed quantum state |ϕ⟩ = 1√

|Ki−1|

∑
k∈Ki−1

|k⟩. Both of Grover’s iter-

ation steps, the negation of the correct amplitudes and computation of the mean
of all amplitudes, are implemented over the whole register. This means that states
|k⟩ ̸∈ Ki−1 with 0 amplitude will be reintroduced into the superposition. To overcome
this, we would have to define Grover’s operators over Ki−1, meaning we need to know
which exact keys are in Ki−1 defeating the purpose of the previous i− 1 searches.

Another argument could be the previously mentioned optimality of Grover’s search
[2]. It states that any algorithm, which accesses the oracle negating the amplitude of
the correct states, requires at least as many oracle queries as standard Grover. One
could question whether the special structure of the nested approach plays any role.
After all, we are dropping keys at a constant rate after each measurement, which is
only the case for good cryptographic functions, not for any arbitrary search problem.
However, we draw attention to the so-called Deferred Measurement Principle. It states
that delaying measurements until the very end of a quantum computation does not
affect the probability distribution of the final outcome. In other words, the rate at
which we drop the keys has no impact on the required amount of Grover’s iterations,
only the rate of the final correct keys to the whole space.

Finally, we wanted to mention the different behaviour if we define the sets Ki as
Ki = {k : fi(k) = zi}. The difference is that now the correct states might also have a
0 amplitude. In fact, for a good cipher, we would on average expect only a few of the
states from Ki−1 to also be in Ki (besides the one correct key). This means that the
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average over the correct keys would be

k|ψ⟩(2
s/2) ≈

√
1

2n−s
· 1

2s−ϵ

which is significantly smaller than in any other previously mentioned case. This, how-
ever, should not be a surprise, since the set of correct keys diverges in each iteration,
and the one correct key which is present in each of them has very little influence on
the average amplitude of the correct keys.
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