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Abstract. Deploying cryptography on embedded systems requires security against
physical attacks. At CHES 2019, M&M was proposed as a combined countermeasure
applying masking against SCAs and information-theoretic MAC tags against FAs. In
this paper, we show that one of the protected AES implementations in the M&M paper
is vulnerable to a zero-value SIFA2-like attack. A practical attack is demonstrated
on an ASIC board. We propose two versions of the attack: the first follows the SIFA
approach to inject faults in the last round, while the second one is an extension of
SIFA and FTA but applied to the first round with chosen plaintext. The two versions
work at the byte level, but the latter version considerably improves the efficiency of
the attack. Moreover, we show that this zero-value SIFA2 attack is specific to the
AES tower-field decomposed S-box design. Hence, such attacks are applicable to any
implementation featuring this AES S-box architecture.
Then, we propose a countermeasure that prevents these attacks. We extend M&M
with a fine-grained detection-based feature capable of detecting the zero-value glitch
attacks. In this effort, we also solve the problem of a combined attack on the ciphertext
output check of M&M scheme by using Kronecker’s delta function. We deploy the
countermeasure on FPGA and verify its security against both fault and side-channel
analysis with practical experiments.
Keywords: AES · fault attacks · zero-value attacks · SIFA2 · FTA · masking ·
detection · M&M

1 Introduction
Integrated circuits, smart cards, and embedded cryptographic devices are vulnerable to
physical attacks. Physical attacks can be classified into either passive or active attacks.
Passive attacks, such as side-channel attacks (SCAs), measure the physical characteristics
of cryptographic devices and extract secret keys for encryption. Active attacks such as
fault attacks (FAs) induce faults in the device and analyze either or both correct and faulty
outputs to retrieve secret information.

Examples of SCAs are timing attacks [Koc96], which measure the time taken to
execute encryption/decryption; power analysis [KJJ99,BCO04], which measures power
consumption during the encryption/decryption; and electromagnetic analysis [QS01],
which measures electromagnetic emanations. FAs include differential fault analysis
(DFA) [BS97, Gir05, LRD+12], which compares correct and faulty ciphertexts; ineffec-
tive fault analysis (IFA) [Cla07], which exploits fault ineffectiveness; and statistical fault
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analysis (SFA) [FJLT13], which statistically analyzes the faulty value. Furthermore, fault
sensitivity analysis (FSA) [LSG+10] exploits fault sensitivity as side-channel information.
Statistical Ineffective Fault Analysis (SIFA) [DEK+18,DEG+18] which combines SFA and
IFA, was proposed in 2018 and later extended to Fault Template Attacks (FTA) [SBR+20].
To achieve protection against the latter attacks, stronger countermeasures are required
such as error correction or fine-grained error detection [?, SRM19,SJBR+20,DDE+20].

A novel countermeasure, named M&M (Masks and Macs), was proposed by De Meyer
et al. at CHES 2019 [MAN+19]. M&M combines masking and redundancy computing
over information theoretic mac tags with infection for SCA and DFA security, respectively.
The authors of M&M illustrated their approach by describing an implementation with
Consolidating Masking Scheme (CMS) [RBN+15], although any secure Boolean masking
can be used instead. M&M is considered a theoretically secure implementation for SCAs
and DFA and its security against these attacks has also been practically verified by
experiments using FPGA and simulations.

Contributions. In this study, we perform fault-injection experiments, using an ASIC
featuring a second-order secure AES implementation with the M&M countermeasure with
three shares. Based on our investigations, we report the following contributions:

i) We present a vulnerability in the “custom” M&M AES implementation from [MAN+19],
which is susceptible to SIFA2 like zero-value attacks. We extend the attack to the
1st round which makes it more efficient. We practically verify the attack by applying
clock glitching without relying on any strong assumptions and by injecting faults in
either the first or the last rounds.

ii) Then, we show that the previous attacks are due to a fundamental vulnerability in
the tower-field-decomposed AES S-box design, applicable to any implementation
featuring this S-box architecture.

iii) Next, we describe new properties of the λ-function which is part of the tower-field
inversion. Based on these properties, we propose a new fine-grained detection-based
countermeasure which extends M&M and prevents the described zero-value glitch
attack. It leverages the redundancy from the MAC tags, allowing us to place
intermediate cross-checks inside the S-box based on (what we name) the λ property.

iv) Finally, we implement the countermeasure and verify its security for both FA and
SCA by conducting similar clock glitch based fault experiments, and performing 1st-
and 2nd-order TVLA for side-channel evaluation.

Organization. The remainder of this paper is organized as follows. In Section 2, we
describe previous studies. Section 3 explains the vulnerability in a compact and masked
S-box featuring a tower-field decomposition, and present the zero-value attacks. Then, we
propose a detection-based countermeasure and evaluate the security against the attacks in
Sections 4 and 5. Finally, we conclude with Section 6.

2 Previous Works
M&M (Masks and Macs). M&M [MAN+19] combines masking and infective coun-
termeasures to protect against both SCAs and DFA. Two well-known approaches for
countermeasures against DFA are Detection and Infection. The purpose of Detection is
to detect fault occurrence by either duplication in area or in time. A problem with this
method is that when a fault is also duplicated, the fault is undetectable. The goal of
Infection is to rapidly diffuse the error caused by the faults [JMR07,GST12]. Diffusing the
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Figure 1: Overview of infective countermeasure in M&M.

Algorithm 1 M&M Infect for AES
Input: c, α, τ c(= αc)
Output: ĉ

1: Draw R
$←− GF (28)\{0}

2: ĉ← c⊕R(αc⊕ τ c)
3: return ĉ

error makes it difficult for an attacker to extract the secret keys using DFA, even if the
attacker obtains faulty and correct ciphertexts. An example of infective countermeasures
with area redundancy applied to AES is given in [LRT12], but the scheme was broken
because of the bias of the infected outputs [BG13].

The idea behind M&M is that it replaces the duplicated instance of the cipher with
a computation circuit for information-theoretic MAC tags for the plaintext, such that
faulting identically both parts is less likely. Then, it uses infection to react when a fault is
detected. An overview of the infective countermeasure for M&M is shown in Figure 1. The
circuits for plaintext and plaintext MAC tag encryption are implemented independently in
parallel, and Infect is then computed with the results of these encryptions. In the case of
AES, a tag τ c ∈ GF (28) for a value c ∈ GF (28) is obtained by multiplying with the tag
key α ∈ GF (28), i.e., τ c = αc.

Algorithm 1 shows the Infect procedure of M&M. The value R is uniformly drawn from
GF (28)\{0}. To diffuse a fault from one byte to more bytes, i.e., the so-called Infection, a
product over GF (2128) would be the most effective. However, this multiplication has a
huge performance overhead, so it is replaced by 16 products over GF (28) [LRT12]. Hence,
the Infect algorithm is calculated byte-by-byte over GF (28), of which the irreducible
polynomial is the same as AES.

The values c and τ c are calculated on the separate encryption circuits whose inputs
are plaintext and tag of the plaintext, respectively. With no faults, the tags are consistent,
i.e., αc⊕ τ c = 0, such that the infected ciphertext ĉ is equal to a correct ciphertext c. On
the other hand, if the tags do not match, i.e., αc⊕ τ c ̸= 0, due to faults, the output ĉ is
randomized.

Security model. Regarding the SCA security, M&M works in the glitch extended probing
model [RBN+15] (or robust probing model [FGP+18]), where a probe reveals the value
of the wire probed plus any input to the sub-circuit or logic cone from the last register.
On the FA side, M&M operates in a similar fault model as in CAPA [RMB+18] but on
wires instead of tiles. On the one hand, this model claims protection against any number
of faults carefully injected, i.e., at specific targets, in at most d out of d + 1 shares, where
d refers to the order of SCA security. Faults injected at random are not bounded to any
specific number of wires or shares. Note that the authors of M&M [MAN+19] do not claim
protection against ineffective faults, although the glitch-fault that we inject to perform the
attacks presented in this work is contemplated in the random fault model.
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Compact S-box. When implementing the AES S-box, the method to combine the calcu-
lation of the multiplicative inverse over GF (28) and affine transformation is often used
from the viewpoint of memory usage and circuit area. However, the calculation of the
multiplicative inverse generally has a large overhead for time and circuit area, hence an
efficient circuit and algorithm for the calculation are required. Many studies have been
conducted on compact inverse calculation algorithms, such as implementations using a
composite field [MS03,Can05,MBPV05], because masking countermeasures have a signifi-
cant implementation overhead. Furthermore, an efficient implementation using redundant
Galois Field representation has also been proposed [UHS+15]. Other implementations
featuring this masked AES S-box architecture are given in [MPL+11,BGN+15,CRB+16,
GMK17,UHA17,Sug19].

3 Zero-Value Attacks on Compact and Protected S-box
In this section, we discuss a vulnerability in the compact AES S-box implementation
against zero-value attacks. Our results hold not only for the Canright’s design [Can05],
but also for any tower-field decomposed S-box which propagates the inputs further in the
S-box to be multiplied in later stages.

Originally, Mischke et al. reported that a zero-value attack is applicable not only to
DPA, but also to FSA [MMG14]. While their study deals with a multiplicative masking
for AES [GT03], our manuscript focuses on Boolean masking.

3.1 Underlying Idea of Zero-Value Attacks
A circuit for the inverse calculation is designed to output zero when the input is zero as
defined in [Can05]. We describe a vulnerability of the inversion circuit based on Canright’s
design. We first consider the general case and define a map from GF ((2n)2) to GF (2n)

λn((a, b)) := ab + (a + b)2ν, (1)

where ν is a constant element in GF (2n). Hence the inversion in GF ((2n)2) can be written
as (c, d) = (b λn((a, b))−1, a λn((a, b))−1). Thus, the input of AES S-box x ∈ GF (28) is
firstly mapped to an element of tower-field x 7→ (a, b) ∈ GF ((24)2). Then, an inversion
y = x−1, (i.e., (c, d) = (a, b)−1) is calculated as follows.

c =
[
ab + (a + b)2ν

]−1
b,

d =
[
ab + (a + b)2ν

]−1
a,

where the value ν ∈ GF (24) is a constant element. The calculation inside the brackets
(multiplication and square scaling) corresponds to Stage 2 in Figure 2, and the inversion
over GF (24) corresponds to Stages 3 and 4, where the same tower-field approach is used.
The inversions are recursively reduced from 8 bit, via 4 to 2 bit to realize the compact
S-box. If the input x is zero, then both c and d are zero, and this is where the zero-value
attack works. Even if a fault is injected in the inverse computation (inside the brackets),
this is masked by the last multiplications with b and a, respectively, resulting in a correct
output.

Inverse calculation for zero value. Consider the Canright’s AES S-box masked imple-
mentation in which certain operations are computed in the central part while the two side
parts (colored in red) just forward the input to Stage 5, as depicted in Figure 2. The
propagated inputs are registered between the stages, where the delay on the red paths is
much shorter than that of the circuits of the central part of each stage. Therefore, when
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Figure 2: Pipelined S-box proposed in [CRB+16]. Red color wires are the “critical” path against
zero-value attacks.

a glitch attack exploiting setup-time violations by illegal clock or power is performed in
one of the intermediate stages, i.e., between Stages 2, 3 and 4 here, it will just affect the
central part of the circuit. These differences in the path delays can be exploited to check
whether the S-box input is equal to zero similarly to SIFA2.

This can be done with a glitch attack, which results in a random intermediate value
of the central part. However, at Stage 5, it is nullified if the S-box input is zero, making
the fault ineffective; otherwise if the input is nonzero the outcome of the S-box is faulty.
Naturally, masking does not prevent such an ineffective attack, as correctness must be
fulfilled. Similarly to SIFA, the attacker just needs to know whether the fault was detected
or not, without needing the (faulty) ciphertext explicitly. As a consequence, Infection is
not effective against such type of attacks.

Although the attack is similar to IFA and SIFA, in this case no stochastic models are
needed. Moreover, one does not need to consider specific fault models such as stuck-at,
random fault, bit-flip, etc., only a zero-value input to the S-box is enough and hence it is
a very straightforward attack for a realistic attacker.

Computing data and tags in parallel does not prevent the attack. The M&M scheme
uses two S-box instances, which in the considered custom implementation work in parallel
- one computing on the data path and the other computing on the tag part, where the tag
is multiplicative, i.e. computed as α⊗ data. The tag of the inversion in M&M is computed
as follows: (i) the inverse of the tag is computed, and then (ii) the result is multiplied to
α2 to get a valid tag of the inverse value. The inverse of the tag uses the same pipelined
computations as for the inverse of the data. Since the glitches affect all circuits active at
a given moment, they will alter both the value and the tag, which are computed at the
vulnerable stages. Thus, affecting both S-box instances.

When the S-box input value is zero, the corresponding tag will be zero as well, therefore
ineffective faults will appear on both the value and the tag. Thus, the fault will pass
undetected because it is eliminated by multiplying with zero in Stage 5, and the correct
value is propagated to the subsequent computations.

Since the clock glitch hits more than a single pipeline stage, faults will occur also
on one or more consecutive S-box values which might be non-zero. Hence, those other
faults might be effective. However, since M&M does not use detection but infection with
multiplication on the byte level the outcome will be a ciphertext with one or more bytes
being random while all other bytes are correct. As we explained, the attackers do not need
the faulty ciphertext but if they have it, they can deduce which bytes were at the time of
glitching inside the pipeline.

In the following section, we experimentally verify that when the input of S-box is zero,
a correct output can be obtained even if a fault occurs during the calculation between
Stages 2 and 4.
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Table 1: Information of ASIC design and fabrication.
Foundry TSMC
Technology CMOS Process
Library TSMC Standard Cell Library
Design Tool Synopsys IC Compiler
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Figure 3: Block diagram for the lab setup used in the experiments.

3.2 Experiment Verifying Zero-value Attacks
We perform the aforementioned fault experiments on a custom ASIC, showing how this
attack can be easily implemented in practice on an actual chip.

Custom ASIC and experiment setup. We implement an AES hardware core with the
2nd-order “custom” M&M countermeasure from [MAN+19] as an ASIC with 28 nm CMOS
process technology. Details of the design and fabrication are shown in Table 1. The ASIC
takes 239 clock cycles in total for encryption. To control the timing of the glitch, we used a
signal called start_out, which outputs HIGH when the ASIC starts to encrypt so that we
can inject a glitch at an arbitrary time. For the encryption, the PC with MATLAB code
initially sends an unshared plaintext and a secret key to control FPGA (Spartan-6) on
SAKURA-G board, and then the control FPGA makes shares for the values. Subsequently,
the control SAKURA-G sends shared values to the ASIC so that the ASIC only processes
encryption operation. We include pictures of the fabricated chip and the evaluation board
in Figure 4.

The ASIC board has four SMA pins to supply power to the core and I/O for the AES
circuit and PRNG, respectively. In addition, to supply the clock signal, the ASIC has two
SMA pins for AES and PRNG. We supplied standard voltage and clock signal to the PRNG
circuit in the experiments. We used a clock glitch to inject a fault in this study because
of the ease of controlling the timing of injection and the simplicity of implementation. A
clock signal (47.25 MHz) was supplied by a waveform generator to the SAKURA-G and
we obtained a high-and low-frequency clock signal from the phase-lock loop (PLL) built in
Spartan-6. A low-frequency (3.15 MHz) clock signal divided by 15, named CLK_A, is used
for normal operations of the AES encryption, and a high-frequency signal (519.75 MHz)
multiplied by 11, named CLK_B, is used for a glitch. We created the glitch by taking two
consecutive clock cycles of CLK_B and adding them to CLK_A.

Figure 3 outlines the block diagram for the lab setup used in the experiments. Table 2
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(a) ASIC evaluation board (b) Custom ASIC layout (1 mm * 0.75 mm size)

Figure 4: Layout of the custom fabricated chip and corresponding ASIC evaluation board.

Table 2: Equipment used in experiments
Equipment Product name and model number
Waveform generator Keysight 33622A
DC power supply ADCMT 6156
DC power supply AND AD-8723D
FPGA SAKURA-G (Spartan-6)

and Figure 5 outline a list of the equipment used in the experiments, and show the lab
setup.

Experiments. The experimental conditions are the following; encryption operations are
repeated ten times each for 30, 000 random plaintexts. We use a clock glitch to induce
the fault and inject it into the last round of AES. The seed value given to the PRNG is
updated with every encryption. Therefore, the secret tag key α and the shared values
differ for each operation.

De Meyer et al. contemplate two adversary models, the first when a crafted fault is
injected it must only affect d out of d + 1 shares, and the second, when a random fault is
injected, which can affect any number of shares. Faults induced by the clock glitch might
affect all d + 1 shares, but the effect is of a random fault.

Table 3: Detection ratio for pipelined S-box at each stage on ASIC.
Fault occurrences/Total Detection ratio

Stage 1 135,975/300,000 ≈ 45.33%
Stage 2 245,211/300,000 ≈ 81.74%
Stage 3 0/300,000 0%
Stage 4 56,526/300,000 ≈ 18.84%
Stage 5 164,337/300,000 ≈ 54.78%
Stage 6 65,244/300,000 ≈ 21.75%
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Figure 6: The detection ratio for each input value of S-box on ASIC. The detection ratio of
zero-value is biased in Stages 2 and 4. The ratio in Stage 3 is 0% for all inputs.
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Results of the analysis. Table 3 shows the detection ratio at each stage of the pipeline.
We define detection ratio as the number of randomized ciphertexts (i.e., M&M infection
countermeasure triggered) over the total number of encryptions. Note that the detection
rate includes as well the cases where the fault is not injected due to low glitch intensity.
We further classify the detection rates depending on the stage(s) that was (were) affected
by the glitch. The fact that the detection ratio is not 100% is due to the propagation
paths and the glitch intensity, which means that for some injections the glitch did not
affect the functionality of the circuit. Furthermore, Table 3 shows that the detection ratio
in Stage 3 is 0%, meaning that no fault occurred in Stage 3 for any input value, regardless
of how the shares were split even under a high-intensity glitch.

After this first analysis, we evaluate the detection ratio for each S-box input x ∈ GF (28)
on each stage, and illustrate the results in Figure 6. The graphs of Stages 2 and 4 in
Figure 6 indicate that the detection ratio is 0% when the input is zero, showing a clear bias
on this value. This means that any fault that occurs between Stages 2 and 4 is masked if
the S-box input is zero, and a correct output value is obtained.

3.3 Practical Attacks
We demonstrate two practical known ciphertext attacks based on the vulnerability we
discussed above. One targets the last round of AES, and the other one the first round.

Algorithm 2 Key retrieval procedure for the last round with random plaintexts
Input: Number of ciphertexts N ; Byte position j for the Stage 2
Output: Most Probable Key byte j

Initialization : D[k][l]← 0 initialize (0 ≤ k, l ≤ 255)
1: // Collection phase
2: for i = 1 to N do
3: Generate a random plaintext Pi

4: C ← Enc(Pi) // with glitch at last round
5: C ′ ← Enc(Pi) // without glitch
6: if (C = C ′) then
7: Ci ← C // collect the ciphertext, where the fault is ineffective
8: else
9: Go to line 3.

10: end if
11: end for
12: // Key retrieval phase
13: for Kg = 0 to 255 do
14: for i = 1 to N do
15: D[Kg][S−1(Cj

i ⊕Kg)]← D[Kg][S−1(Cj
i ⊕Kg)] + 1

16: end for
17: end for
18: return K ← Kg where D[Kg][0] is the maximum

Targeting the last round with random plaintexts. Algorithm 2 presents the key retrieval
procedure used to exploit the zero-value bias seen in Figure 6. Faulting Stage 2 is the most
convenient target to perform the attack, because this stage presents the most pronounced
bias. The algorithm consists of a collection phase and a key retrieval phase. First, on
the collection phase, we collect N known ciphertexts with ineffective faults. Then, on the
key retrieval phase we compute an intermediate value S−1(Ci ⊕ Kg) with a candidate
key, i.e., the input of the last round and increase the counter on the given input value. If
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Figure 7: Obtained histograms with a correct key and evolution of D[Kg][0] for all guessed key
Kg (bottom right). In the bottom right picture, the red line indicates the correct
candidate, and the gray lines depict other incorrect candidates, from Algorithm 2.

the candidate key is correct, the counted value of zero is the maximum on the histogram.
Otherwise, non-zero value is the maximum. Since we know the fault is ineffective when
the input value for S-box is zero, we obtain the true key.

Figure 7 (except for bottom right) displays the histograms obtained using the correct
key, and the bottom right one illustrates the evolution of the correct key guess D[Kg][0] for
all candidate keys with the number of ciphertexts, following Algorithm 2. From Figure 7,
we can see that 500 ineffective ciphertexts are sufficient to distinguish the true key. We
succeed in this attack with a total of 8, 000 ciphertexts to fully recover the secret keys.

Extension of the zero-value attack to the 1st round. It is standard to target the last
round of AES when applying fault analysis. Nevertheless, it has been shown recently by
Saha et al. [SBR+20] that it is also possible to target the middle rounds of the cipher.
Following this idea, we propose an improved zero-value attack targeting the 1st round.

Since our attack requires the input of the S-box to be zero, one can use chosen plaintext
to make particular j-th byte input to 1-st round S-box to be zero. Then, the attacker can
inject a glitch and check whether the ciphtertext is correct or not. If the ciphertext is
correct, then the j-th byte of the initial key Kj is obtained because the fault induced by
the glitch is never propagated when P j ⊕Kj = 0. Otherwise, the attacker chooses other
value P j and repeats the procedure. This way the attacker can obtain one byte of the
secret key with 256 plaintexts in practice. This attack is described in Algorithm 3. The
experiments confirm the efficiency of this attack, where with a total of 4096 plaintexts we
are able to retrieve the full secret key.

4 Improving M&M with λ-Detection
In this section we describe a fine-grained λ-Detection mechanism which focuses on the
S-box. As already pointed out the infection mechanism in M&M fails to protect against
ineffective faults, and as known from SIFA countermeasures, fine-grained detection or error
correction methods are required instead. The main target of our countermeasure is to
detect the effect of a glitch fault as soon as possible, before its effect is masked and turned
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Algorithm 3 Key retrieval procedure for the first round with chosen plaintexts
Input: Byte position j for the Stage 2
Output: Most Probable Key byte j

1: for Kg = 0 to 255 do
2: P ← Kg||Kg||..||Kg // All byte equals to Kg

3: C ← Enc(P )
4: C ′ ← Enc(P ) with glitch at S-box Stage 2 of the first round
5: if (C = C ′) then
6: Exit the loop // Faults are propagated when P j ⊕Kj ̸= 0
7: end if
8: Kj ← Kg // P j ⊕Kj = 0
9: end for

10: return K

into ineffective fault. To do so, we include additional checks in the central path of the
S-box, in each of the vulnerable stages (i.e., Stages 2 to 4). To perform the checks we
use the intermediate values of the S-box stages for both the data and the tag, performing
cross-checks leveraging the λ property presented below.

4.1 Properties of the λ map
Recall that the λn map is defined from x ∈ GF ((2n)2) to GF (2n) as given in Equation (1).

Theorem 1. λ-map has the following properties:

a) λn(x) = 0 if and only if x = 0.

b) For any y ̸= 0 ∈ GF (2n) there are 2n+1 values x ∈ GF ((2n)2), such that λn(x) = y,
i.e., λ is uniform function if we exclude the zero input.

c) λn is a multiplicative homomorphism, i.e., λn(x)λ(y) = λn(xy) for all x, y ∈
GF ((2n)2).

Proof. a) When x = 0, it follows straight forward that λn(x) = 0. The opposite direction
follows from the fact that λ is part of the filed inversion in GF ((2n)2) extended with the
mapping 0 −→ 0. This ensures that only one input 0 is mapped to an output 0. However,
if λ(x) = 0 then the output of the inversion is 0 hence the input of the inversion (and also
the input of lambda) is 0 too.

b) We have 2(n+1)(n−1) non-zero inputs mapping to 2n−1 non-zero outputs. For each
fixed output we can construct n + 1 inputs as follows: first, using the multiplicative
homomorphism from item c) we get n− 1 such inputs. Then we get 2 more inputs using
the symmetry of the input as a tuple over GF (2n), namely the inputs (a, 0), (0, a) are
mapped in the same output.

c) We prove the last property by calculating both sides separately. Let x = (a, b) and
y = (c, d) then:

λn(x)λn(y) = (ab + (a + b)2ν)(cd + (c + d)2ν)
= ((a + b)(c + d)ν)2 + ab(c + d)2ν + cd(a + b)2ν + abcd

= ((a + b)(c + d)ν)2 + (cda2 + cdb2 + abc2 + abd2)ν + abcd.

Recall that the multiplication over GF ((2n)2) is defined as xy = ((a + b)(c + d)ν + ac, (a +
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b)(c + d)ν + bd), then

λn(xy) = ((a + b)(c + d)ν)2 + (a + b)(c + d)(ac + bd)ν + abcd + (ac + bd)2ν

= ((a + b)(c + d)ν)2 + ((a + b)(c + d)(bd + ac) + (ac + bd)2)ν + abcd

= ((a + b)(c + d)ν)2 + (ac + bd)((a + b)(c + d) + (ac + bd))ν + abcd

= ((a + b)(c + d)ν)2 + (ac + bd)(ad + bc)ν + abcd

= ((a + b)(c + d)ν)2 + (cda2 + abc2 + abd2 + dcb2)ν + abcd.

which concludes the proof.

We use λ4 multiplicative property to verify the values in Stage 2, and, similarly, λ2
multiplicative property is used to verify the values in Stage 3. It is also possible to leverage
this property for Stage 4 since the multiplicative property also holds for the inversion of
λ.By means of this new property, we perform the following cross-checks in Stages 2, 3, and
4:

λn(data)⊗ λn(α)⊕ λn(tag) = 0.

Since the λn(α) for the different stages just requires the secret key α to be calculated,
we can pre-compute them together with the generation of the shared α and provide them
as inputs.

To ensure there is no side-channel leakage in the detectors, they are fully computed in
shared form. Since the detectors feature a shared multiplication, the check for Stage i is
done at the next Stage i + 1 to ensure no glitches harm the security of the check. Similarly,
the output is registered before the next computation. The complete error flag from the
three checks is 4 + 2 + 4 = 10 bits wide, shared with d + 1 shares because we calculate and
store them in a shared form. We accumulate all error flags with a shared-OR gate. The
concrete architecture of the S-box with detectors is depicted in Figure 8.

4.2 Match Check
Our fine-grained λ-check focuses on faults inside the S-box, but faults outside the S-box
(e.g. Mix Columns operation) should also be considered. To do this, we compute a final
check to verify whether the ciphertexts for data and tag match, via the Match Check. In
the Match Check algorithm (Algorithm 4), we compare two values α · c and τ c byte per
byte, and accumulate their difference with a shared-OR gate, following the same procedure
as the detectors inside the S-box.

Algorithm 4 Match Check
Input: c, τ c, α
Output: z

1: z = 0
2: for i = 1 to 16 do
3: zi ← α · ci ⊕ τ c

i

4: z ← shared-OR(z, zi)
5: end for
6: return z

4.3 Delta Function
After the detectors and the Match Check, we still need to decide whether a fault was
detected or not. This is probably the most challenging feature of a combined SCA and
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FA countermeasure, a combined secure check. As De Meyer et al. claimed in the M&M
paper [MAN+19], unmasking of e = α · c ⊕ τ c to check if a fault is detected is not
secure against fault and side-channel combined attacks. In Equation (2), we include a
straightforward attack to show this weakness: given a fault (∆) injected in α at the time
of the check, it suffices a single probe on the unshared check to reveal the ciphertext.

e = (α⊕∆) · c⊕ τ c (2)
⇒ e = ∆c⊕ αc⊕ τ c

⇒ e = ∆c

However, it is easy to overcome this problem, by using a Kronecker’s delta function
(shown in Equation (3)) performed in shared form as done in [MRB18].

δ(x) =
{

1 if x = 0,

0 otherwise.
(3)

The main advantage of this method is that we reduce any secret data dependency that
may appear in e (see Equation (2)) to a single shared bit.

4.4 Overall Detection Architecture
The overall detection is depicted in Figure 9. When a glitch fault is injected, the circuit
detects it and flags an error, asserting a shared detection signal. Whenever a fault is
detected, the circuit zeroizes the full ciphertext preventing the release of any faulty data.
By zeroizing the output, we avoid the problem of the infection schemes and do not leak
any information about which specific byte(s) is faulty.

In the final step we unshare the δ-flag to a single bit, and use it to check whether
a fault was detected. As is the case in the probing model for SCA, the attacker is not
allowed to probe immediately after the plaintext has been shared or immediately before
the ciphertext is unshared. Knowing d shares via the probes and the value of the plaintext
or the ciphertext will allow them to reveal all shares and propagate this knowledge further
. Hence, at this last step, the attacker is not allowed to fault this single bit flag. An
attacker could still probe this check bit, but the only information he/she would learn is
whether the injected fault was detected. If detection is used the adversary always gains this
information, for example from the ciphertext. This is only useful if there exists possible
ineffective fault which goes undetected.

Our goal is to provide a solution against glitch attacks since those are easier to perform
and they correspond to the random fault model, where an attacker can impact both S-box
instances with a single glitch. Against this kind of attacks our countermeasure is secure
against SIFA, since every fault is detected and no ineffective faults appear. Note that
similar zero-value SIFA2 or safe-error attacks can still be mounted with more precise
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Table 4: Implementation costs for 2nd-order λ-Detection M&M
Random bits/cycle Latency [# cycles] Area [kGE]

S-box 564 6 18.7
Detectors 180 3 4.4

Match check 96 2 3.9
Delta function 63 5 2.3
Total
λ-Detection M&M 564 244 44.0
M&M [MAN+19] 348 239 33.2

faults (e.g., with a laser- or EM-injections) against our proposed extension of M&M with
λ-Detection. Protection against such precise faults for M&M is left as an open question
for future work.

5 Implementation Costs and Security Evaluation of the
λ-Detection M&M

In this section, we describe the performance of the new λ-Detection M&M, and present
the security evaluations against FA and SCA.

5.1 Implementation Costs
Below, we report the implementation costs of our countermeasure and compare it with
the original M&M, summarized in Table 4. We note that we decided to keep the same
masking scheme as in the original M&M in order to have a fair comparison. However, if
we change to DOM-like refreshings, we would just require a third of the fresh random
variables currently used plus additional savings in area. In that respect, M&M can be
further improved on area and randomness efficiency.

Randomness. In the following we describe the randomness added by the new modules.
The shared-OR gate accumulators need 72, 36, or 18 bits of randomness each, depending
on the size of the input (byte, 4-bits, or 2-bit nibbles) since we use a ring refreshing to
ensure that there is no data leakage when computing the checks. Both detectors and the
Match Check contain shared-OR gates. The detectors require a total of 180 random bits
per cycle, for the OR accumulators and the shared multiplications. The Match Check
requires a total of 96 random bits, for a byte OR accumulator and a shared multiplication,
and the delta calculation requires additional 63 bits. However, the randomness from the
Match Check and the delta function is only needed once, at the end of the computation.
The randomness cost for our new implementation is approximately 62% greater than that
of M&M.

We recall that the randomness costs can be drastically reduced if we were to use
DOM-like refreshing instead of the ring refreshing. As an example for the detectors we
would need 60 bits, the Match Check would require 32 bits, and the delta functions 21
bits.

Latency. The detectors inside S-box require no additional cycles, since the multiplications
are done during the process of the inversion. The Match Check requires two clock cycles,
and the delta function needs five clock cycles per byte; thus we need 22 clock cycles for 16
AES state bytes. In total, our countermeasure takes 244 clock cycles while the original
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Table 5: Area comparison for combined second-order (SCA) secure AES implementations
Countermeasure Synthesis Cipher SCA-only Combined Overhead

Library [kGE] [kGE] factor
[CRB+16] Nangate 45nm AES 12.61 - -
[GMK17] UMC 90nm Low-K AES 10.0 - -
CAPA [RMB+18] Nangate 45nm AES - 215 -
M&M [MAN+19] Nangate 45nm AES 12.6 33.2 2.63
[FRBSG22] Nangate 45nm S-box (AES) - 59.4 -
λ-Detection M&M Nangate 45nm AES 12.6 44.0 3.49

M&M implementation (V2 in the paper [MAN+19]) requires 239 clock cycles including
infection. Hence our countermeasure takes just five additional clock cycles compared to
the original M&M AES.

Area. We report our area result for the λ-Detection M&M. Table 4 shows the area
of the elements added into our new design, namely, the detectors, the Match Check
which substitutes the infection in the original implementation, and the Kronecker’s delta
calculations. This adds about 13 kGE to the original design, resulting in an area overhead
of 1.32 times the “custom” implementation of [MAN+19]. Note that we have removed the
infection part.

Additionally, we report the overhead factor with respect to the corresponding SCA-only
implementation, which in our case (similarly to the original “custom” M&M) corresponds to
the one from De Cnudde et al. [CRB+16]. Table 5 extends Table 4 from [MAN+19] including
our new implementation, comparing this overhead with previous works implementations.
In our case, the overhead compared to the SCA-only implementation is 3.49.

In summary, we can clearly see the trade-off of enhancing security, which always comes
with a cost in performance. In our case, the main parameters affected are the amount of
randomness and the area.

Related work. Since the proposal of SIFA multiple solutions have been proposed to
thwart this attack. The majority of them use error correcting codes to prevent the output
of correct and incorrect ciphertext or the use of detection based mechanisms. Examples of
these works are [SRM19,BKHL20,SJBR+20]. More recent works have proposed combined
countermeasures adding SIFA to the attacker model. Ramezanpour et al. [RAD20] propose
random space masking (RS-Mask) as a countermeasure against both power analysis and
statistical fault analysis, where they map every intermediate of the computations to a
random mapping. The leverage masking for this mapping, further adding redundancy and
infection methods to thwart fault attacks. Gruber et al. [GPK+21] combine DOM-masking
with error correcting codes (repetition codes) to realize a countermeasure against high-order
side-channel attacks and fault attacks that can be scaled independently. Feldtkeller et
al. [FRBSG22] propose a combined provable secure countermeasure leveraging core ideas
behind composability of SCA gadgets [CGLS21]. They propose new notions to provide
security in the presence of faults (FINI), and in the presence of combined adversaries (CINI).
Similarly to CAPA, they propose a provable secure scheme, which translates into higher
security warranties compared to other works. However, this entails a performance penalty,
at the cost of higher area and randomness requirements. The work by Richter-Brockmann
et al. [RBFSG22] implements a tool to verify netlists against combined attacks including
statistical ineffective fault analysis and checking whether the gadgets are composable secure
using the notions by Dhooghe and Nikova [DN20]. The downside of all these approaches is
that they are limited to the number of faults they can correct. With the clock glitch, the
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Table 6: Detection ratio for pipelined S-box at each stage on SAKURA-G.
Fault occurrences/Total Detection ratio

Stage 1 297,761/300,000 ≈ 99.25%
Stage 2 294,996/300,000 ≈ 98.33%
Stage 3 82,753/300,000 ≈ 27.58%
Stage 4 26,405/300,000 ≈ 8.80%
Stage 5 297,793/300,000 ≈ 99.26%
Stage 6 297,786/300,000 ≈ 99.26%

attacker typically introduce many faults at once. We provide a comparison with previous
works in Table 5.

5.2 Security Evaluations
We evaluate the security of the new implementation against both FAs and SCAs separately
using a SAKURA-G board. It features two Spartan-6 FPGAs and is designed for side-
channel evaluation. The main FPGA is used just for the encryption, and the control
FPGA is used for communicating with a host computer and generating the shares. In the
following, we first present the performance of the countermeasure against fault analysis.
Then, we conduct a non-specific t-test with power consumption traces as a side-channel
analysis.

5.2.1 FA Evaluation

In this section, we verify the behavior of our implementation when the faults are injected
during the S-box computation. Additionally, we repeat the ASIC experiments described in
Section 3.2 in FPGA for the original M&M, to have a fair comparison with the proposed
implementation. We confirm the correct functionality of our countermeasure, and show
that the detectors prevent the zero-value bias, properly catch the faults, and the output is
correctly zeroized when they occur.

Detection ratio and behavior analysis. In the first part of our fault analysis, we again
evaluate the fault detection ratio of each input value on the last round tests with the new
implementation, analogous to Figure 6. We recall that the detection ratio is defined in
Section 3.2 as the number of randomized ciphertexts over the total number of encryptions.
For the second implementation, we count zeroized ciphertexts instead.

For the sake of comparison, we replicate first the ASIC experiments on SAKURA-G
for the original M&M. The experimental conditions remains consistent, with the exception
of the intensity of the clock glitch. We reduce the glitch intensity to accommodate to
the FPGA implementation timing. We analyze the detection ratio at each stage and
subsequently evaluates them for each S-box input. Table 6 presents detection ratios for
each stage. Unlike the ASIC, the detection ratio for Stage 3 is non-zero. Additionally, the
ratios for Stages 1 and 6 are as high as Stage 2. These differences are due to the difference
in nature between ASIC and FPGA. While the FPGA maps the gates to look-up tables,
the gates on the ASIC are directly built with transistors. The result of this experiment is
depicted in Figure 10, where we can see that the zero-value bias is still visible in FPGA.

Similarly, Figure 11 shows the detection ratios for the analysis of the new λ-Detection
M&M. As in the FPGA experiment of the original M&M, we reduced the glitch intensity
to accommodate to the FPGA implementation timing of the new λ-Detection M&M. More
precisely, the glitch intensity was reduced up to a point where we avoided 100% detection
ratios, for the sake of clarity of the experiments, and to be as consistent as possible with
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Figure 10: The detection ratio for each input value of S-box (repeated on FPGA). The ratios of
zero-value is 0% at Stages 2, 3 and 4 as expected.
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Figure 11: The detection ratio for each input value of S-box (λ-Detection M&M implemented
on SAKURA-G).

the ASIC ones. As we can see, it shows constant detection ratios for every stage. This
means that the zero-value bias which we observed on the original M&M implementation
has been removed. Moreover, note that the detection ratio across all stages is the same.
This is because for the new λ-Detection M&M the entire ciphertext is zeroized when a
fault is detected, so the attacker cannot distinguish which stage was faulted. In the case of
M&M, the infection worked byte-wise, which allowed the attacker to distinguish which
stage was affected.

In the second part of the fault analysis, we look at the detection performance of the
new countermeasure for additional scenarios. We perform multiple fault injections, for
which experimental conditions are shown in Table 7: first, we inject faults in the first and
the last round; then, we target different byte positions, and finally, we target the three
different stages susceptible to zero-value bias. Hence, we conduct a total of 2× 9× 3 = 54
tests with clock glitch to induce faults in the same way as in Section 3.2. For each test, we
use 1, 000 random plaintext with a fixed secret key. For the first round test, we use two
types of key: one is fixed, similarly as the last round tests, and in the other one the key is
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Table 7: Conditions for the fault evaluation.
Glitch timing First, last round
Byte Position (1, 2, 3), (8, 9, 10), (14, 15, 16)
Stage No. 2nd, 3rd, 4th

equal to the plaintext, so that S-box inputs in the first round are zero. In each test, we
count the number of times that the flag is not zero. Each of the 54 tests showed 1, 000
faults detected, for which all the outputs were correctly zeroized. This means a 100% fault
coverage against glitch-injected faults.

5.2.2 SCA Evaluation

Our experiment setup for SCA evaluation is similar to that used in the original M&M
paper [MAN+19]. We measure the power consumption for the full AES algorithm including
the match check at 3.125 GS/s sampling rate using an oscilloscope with 12 bit analog to
digital converter. Moreover, we supply a slow 3 MHz clock signal to get clear traces.
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(b) λ-Detection M&M.

Figure 12: Evolution of the absolute maximum t-value with number of traces. Left is PRNG-off
(100 K traces); Right is with countermeasure active (10 M traces).

TVLA. We perform a non-specific test vector leakage assessment (TVLA) following
[BCD+13,SM15]. In the TVLA testing, we detect correlations between power consumption
and the processed values by comparing traces of two groups using the t-test statistic.
When a t-statistic lower than the threshold 4.5 in absolute value, it can be concluded that
the circuit does not leak with very high confidence. However, in the opposite case, if the
t-statistic is over the threshold at some sample points, this does not mean that the leakage
is exploitable and that a key recovery attack is possible.

Figure 12 shows the results of the first- and second-order t-test. The x-axis corresponds
to the number of traces, and the y-axis to the maximum t-statistic in absolute value.
We first perform the test on an “unprotected” AES circuit, i.e., with PRNG off, to
confirm our experimental setup detects leakage correctly. As shown in Figure 12(a), the
maximum t-statistic is monotonically increasing as the number of traces increases; hence
our experimental setup can detect leakage.

The result for our λ-Detection M&M is presented in Figure 12(b), where no leakage
is detected. Note that there are some points at the beginning of the experiment that go
over the threshold. We attribute this to the statistical instability of the test of the early
stages, which gains confidence as more traces are acquired. Moreover, the t-statistic does
not grow with the number of traces.
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6 Conclusion
In this paper, we have presented a thorough fault analysis of the M&M AES implementation
from De Meyer et al. [MAN+19], deployed in a custom ASIC. Three contributions are
reported from this study. First, we identified an algorithmic level vulnerability in the
compact tower-filed decomposed AES S-box architecture against zero-value attacks, which
holds even if the circuit is masked. Second, we describe two SIFA-like zero-value attacks:
the first on the last round, and the second, a novel attack on the first round. The attacks
do not need any complex stochastic models and are very straightforward to perform. To
demonstrate the practicality of the attacks, we opted for a clock glitch to inject faults
on De Meyer et al.’s implementation. However, the results are applicable to any secure
implementation featuring a tower-field decomposed S-box implementation independently
of the masking method utilized.

We also propose a new detection-based countermeasure extending the M&M scheme,
by utilizing a property of the AES S-box inversion. Namely, we describe new properties
of the λ-function which is part of the tower-field inversion. Our λ-Detection M&M
prevents the glitch attack against the vulnerability presented in the first part of the
manuscript.Furthermore, we have implemented the countermeasure on FPGA and verified
its security against both fault and side-channel analysis with practical experiments. Our
implementation provides enhanced security compared to the previous M&M, at the expense
of reasonable additional performance costs.
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