
CipherGPT: Secure Two-Party GPT Inference

Xiaoyang Hou
Zhejiang University

xiaoyanghou@zju.edu.cn

Jian Liu∗

Zhejiang University
jian.liu@zju.edu.cn

Jingyu Li
Zhejiang University
jingyuli@zju.edu.cn

Wen-jie Lu
Ant Group

juhou.lwj@antgroup.com

Cheng Hong
Ant Group

vince.hc@antgroup.com

Kui Ren
Zhejiang University
kuiren@zju.edu.cn

Abstract—ChatGPT is recognized as a significant revolution in
the field of artificial intelligence, but it raises serious concerns
regarding user privacy, as the data submitted by users may
contain sensitive information. Existing solutions for secure
inference face significant challenges in supporting GPT-like
models due to the enormous number of model parameters and
complex activation functions.

In this paper, we develop CipherGPT, the first framework
for secure two-party GPT inference, building upon a series of
innovative protocols. First, we propose a secure matrix multi-
plication that is customized for GPT inference, achieving upto
2.5× speedup and 11.2× bandwidth reduction over SOTA. We
also propose a novel protocol for securely computing GELU,
surpassing SOTA by 4.2× in runtime, 3.4× in communication
and 10.9× in precision. Furthermore, we come up with the
first protocol for top-k sampling.

We provide a full-fledged implementation and comprehen-
sive benchmark for CipherGPT. In particular, we measure the
runtime and communication for each individual operation,
along with their corresponding proportions. We believe this
can serve as a reference for future research in this area.

1. Introduction

ChatGPT, a large language model (LLM) built upon the
groundbreaking generative pre-trained transformer (GPT)
architecture [28], is regarded as a significant revolution in
the field of artificial intelligence. With a vast knowledge
base and impressive linguistic capabilities, ChatGPT excels
in various tasks, including question answering, article pol-
ishing, suggestion offering, and engaging in conversations.
It can also serve as a virtual assistant, effectively enabling
applications like customer support, information retrieval,
and language translation.

OpenAI has made ChatGPT as an online inference ser-
vice and has even provided a remote API for developers to
utilize. Users can conveniently enjoy the services by submit-
ting prompts or messages for GPT inference. However, this
service paradigm inevitably put user privacy at risk, as the

. ∗Jian Liu is the corresponding author.

data submitted by users may contain sensitive information.
Such privacy concerns may restrict the deployment of GPT
in certain critical scenarios where data confidentiality is
crucial.

Secure inference [17], [25], [24], [26], [31], [30], [23],
[21] is a two-party cryptographic protocol running the in-
ference stage in way such that the server (S) learns nothing
about clients’ input and a client (C) learns nothing about
the model except the inference results. Roughly, it proceeds
by having S and C running the encrypted model over
the encrypted input through tailor cryptographic techniques
such as homomorphic encryption and secret sharing. A
preprocessing phase is usually introduced to prepare some
expensive and input-independent work so that the online
phase can be done efficiently.

Unfortunately, existing protocols for secure inference
are limited in their ability to support GPT. For instance,
Cheetah [23] is specifically tailored for convolutional neural
networks such as ResNet50, while Iron [21] operates solely
on a single transformer. On the other hand, LLMs such as
GPT-2, which consist of 12 transformers, entail a multitude
of high-dimensional matrix multiplications and complex
mathematical functions like GELU. Therefore, the advent
of GPT has indeed introduced new challenges to the field
of secure inference.

1.1. Our contributions

In this paper, we develop CipherGPT, the first frame-
work for secure GPT inference, building upon a series of
novel protocols.
VOLE-based matrix multiplication. GPT takes lengthy
sentences as input and autoregressively generates response
words. Specifically, after a response word is produced, that
word is added to the input sentence, and the new sentence
becomes the input to the model to produce the next response
word. Each response word generation requires a model infer-
ence, which involves a matrix multiplication (MatrixMul for
short) at each layer. During the preprocessing phase, at each
layer, we combine the MatrixMuls for individual response
words into a single unbalanced MatrixMul, and process it
using sVOLE.

Vector oblivious linear evaluation VOLE [4], [6], [38],
[5], [13] is used to generate correlations like w = ux+ v,
where a sender with input x learns a vector w of length n,
and a receiver learns (u,v), both of length n. Subfield VOLE
(sVOLE) [6] is a generalization of VOLE; ideally, sVOLE
accomplishes the same task as k instances of regular VOLE,
while maintaining a comparable cost to running a single
VOLE instance. sVOLE is more cost-effective when n ≫
k, making it particularly useful for computing unbalanced
MatrixMuls.
Spline-based GELU. GPT uses GELU as its activation
function, which can be represented as:

GELU(x) = 0.5x(1 + Tanh
[√

2/π(x+ 0.044715x3)
]
),

where Tanh(x) = 2Sigmoid(2x) − 1 and Sigmoid(x) =
1

1+e−x . To securely compute GELU, the SOTA ap-
proaches [30], [21] employ a lookup table (LUT) to ap-
proximate e−x and another lookup table to approximate the
reciprocal. This multi-step process further requires extension
or truncation of bitwidths at each step to balance precision
and efficiency.

In contrast, we aim to compute GELU as a whole in
a single step. To achieve this, we split GELU into several
intervals and use a linear function (y = ax + d) to ap-
proximate the curve within each interval. This spline-based
approximation was initially proposed by Liu et al. [25],
in which garbled circuits were used to find the interval x
belongs to and compute the corresponding linear function.
We significantly improve its performance by leveraging LUT
to find the interval and computing the corresponding linear
function in a secret-shared manner.

Compared with the SOTA approach for computing
GELU [21], we save one LUT, two truncations and three
secret-shared multiplications; and we require a much smaller
lookup table. Furthermore, our single-step approach exhibits
superior precision, as it avoids the error accumulation inher-
ent in multi-step approaches.
Shuffling-based top-K selection. A straightforward way
for selecting the top-K elements from a secret-shared vector
of length n is to securely sort the vector, which is typically
achieved by securely executing a data-independent sorting
algorithm such as Bitonic sorting network [22].

Our first insight is to implement secure sorting based on
an idea from [2]: the input elements are securely shuffled
first; and then a comparison-based sorting (e.g., quicksort)
protocol is applied to arrange the shuffled elements into a
sorted order. Notice that the comparison results obtained
during the sorting process reveal no information about the
original elements as those elements have been shuffled.

Our second insight is that, if quicksort is used, it is un-
necessary to sort the entire vector. Instead, we can leverage
a modified version of the quicksort algorithm. Typically,
quicksort randomly selects an element from the vector as
a pivot and compares it with other elements. Based on
the comparison results, the vector is partitioned into two
parts: elements smaller than the pivot and elements larger
than the pivot. The quicksort algorithm then recursively

operates on both partitions. In our case, we only need
to recursively process the partitions that contain the top-
K largest elements, which reduces the number of secure
comparisons from O(n log n) to O(n).
Secure sampling. We also tackle the problem of securely
choosing an element from a vector based on secret-shared
probabilities. Specifically, given a vector of K elements,
each of which is associate a secret-shared probability pi,
the probability for the j-the element to be chosen is pj .
Our protocol only requires (K−1) secure comparisons and
K multiplexers. To the best of our knowledge, our study
represents the first exploration of secure sampling.

We summarize our contributions as follows:

• A customized secure matrix multiplication for GPT,
achieving upto 2.5× speedup and 11.2× bandwidth
reduction over SOTA (Section 3);

• A novel protocol for securely computing GELU,
surpassing SOTA by 4.2× in runtime, 3.4× in com-
munication and 10.9× in precision. (Section 4);

• An innovative solution for top-K sampling: select-
ing the top-K probabilities and sampling one ele-
ment according to the selected probabilities (Sec-
tion 5 and 6);

• The first framework for secure GPT inference (Sec-
tion 7), and a comprehensive benchmark that can
serve as a reference for endeavors in this research
direction (Section 8).

2. Preliminaries

In this section, we present the necessary preliminaries
for understanding this paper. Table 1 provides a summary
of the frequently used notations in this paper. We use ⟨x⟩l to
denote the secret-sharing of a l-bit value x. For simplicity,
we omit the l notation when it is not contextually relevant.

2.1. Secure inference and threat model

Secure inference is a two-party cryptographic protocol
that facilitates model inference between a client C and a
server S. The protocol ensures that C only obtains knowl-
edge about the model architecture and the inference result,
while keeping all other details of S’s model hidden. Simi-
larly, S remains unaware of C’s input, as well as the output
of the inference. In the context of GPT inference, C’s input
is a prompt and S’s model comprises multiple iterations of
transformer decoders together with a vec2word layer. More
information about the GPT architecture will be provided in
Section 7.

Either C or S can be considered a semi-honest adversary,
which follows the protocol specifications but attempts to
gather as much information as possible during the protocol
execution.

Notation Description

C client

S server

n input vector length (for each layer)

L # bits left-shifted for initial inputs

l input bit-length after left-shifting

⟨x⟩l (⟨x⟩lS , ⟨x⟩
l
C) s.t. x = ⟨x⟩lS + ⟨x⟩lC mod 2l

FMult ideal functionality for secret-shared multiplication:
multiply a g-bit integer with a h-bit integer and produce
an l = (g + h)-bit output, with no overflow

FCMP ideal functionality for comparison b← CMP(x, y):
b = 1 if x ≥ y; b = 0 otherwise

FMUX ideal functionality for multiplexer y ← MUX(x, b):
y = x if b = 1; y = 0 if b = 0

FTrunc ideal functionality for truncation y ← Trunc(x, s) :

y = x≫ s with x, y ∈ Z2l

FTR ideal functionality for truncate-then-reduce y ← TR(x, s) :

y = x≫ s with x ∈ Z2l and y ∈ Z2l−s

FLUT ideal functionality for lookup table T [i]← LUT(T, i)

FShuffle ideal functionality for shuffling

α the split for y := GELU(x): y := 0 when x < −α;
y := GELU(x) when −α ≤ x ≤ α; y := x when x > α

s 2s is the number of intervals within [−α, α]
(ai, di) y = aix+ di is the linear function that

approximates GELU(x) in each interval

g bit-length of ai
t # response words (# input matrices)

N polynomial modulus degree in FHE

M # attention heads

T temperature

TABLE 1: A table of frequent notations.

2.2. Cryptographic Primitives

Multiplication with non-uniform bit-widths The ideal
functionality FMult takes ⟨x⟩g and ⟨y⟩h as input and returns
⟨z⟩l, where z = x ·y and l = g+h. A simple way to realize
this functionality is to first extend both inputs to l bits and
then use a standard protocol for secret-shared multiplication
with uniform bit-widths. SIRNN [30] provides a protocol
that outperforms this naive solution by 1.5×.
Secure comparison. The ideal functionality FCMP takes ⟨x⟩l

and ⟨y⟩l as input and returns ⟨b⟩1, where b = 1 if x ≥ y,
otherwise b = 0. The SOTA solution for secure comparison
is provided by Cheetah [23].
Secure multiplexer. The ideal functionality FMUX takes ⟨x⟩l

and ⟨b⟩1 as input and returns ⟨y⟩l, where y = x if b = 1, and
y = 0 if b = 0. The SOTA solution for secure multiplexer
is provided by SIRNN [30].
Secure truncation. The ideal functionality FTrunc takes ⟨x⟩l

and s as input and returns ⟨y⟩l, where y = x ≫ s.
The SOTA solution for secure truncation is provided by
SIRNN [30].

Truncate-then-reduce. The ideal functionality FTR takes
⟨x⟩l and s as input and returns ⟨y⟩l−s, where y = x ≫ s.
The SOTA solution for this functionality is also provided
by SIRNN [30].
Lookup table. The ideal functionality FLUT takes ⟨i⟩ as
input and returns ⟨T [i]⟩ where T is a table with M entries.
This functionality can be achieved via a single call to

(
M
1

)
-

OT [14]. A more efficient solution is to first convert the
LUT description into a boolean expression and then evaluate
it using a multi-fan-in inner product [9].
Secret-shared shuffle. The ideal functionality FShuffle takes
⟨x⟩ and ⟨π⟩ as input and returns ⟨π(x)⟩, where π is a
permutation function. Chase et al. [10] propose an efficient
construction for this functionality using lightweight primi-
tives such as OTs and PRGs. Their approach involves using
puncturable PRFs to build a permute-and-share protocol,
which allows two parties to permute the input vector with
the permutation chosen by one party. This permute-and-
share protocol is run twice, with each party choosing the
permutation once.
Subfield vector oblivious linear evaluation. VOLE is a
two-party functionality that takes a scalar x ∈ Fp from a
sender and generates a VOLE correlation:

y = ux+ v, (1)

s.t. the receiver learns (u,v) ∈R Fn
p × Fn

p and the sender
learns y ∈R Fn

p . Subfield VOLE (sVOLE) is a generalization
of VOLE with u ∈R Fn

p , x ∈ Fq, y,v ∈R Fn
q , and q = pm.

Notice that sVOLE achieves the same task as running m
instances of normal VOLE, but with less cost.
Homomorphic encryption. Fully homomorphic encryption
(FHE) is an encryption scheme that allows arbitrary opera-
tions to be performed over encrypted data [16]. In practice,
it is usually used in a leveled fashion: the operations can
only be performed for a limited times, o.w., the ciphertexts
cannot be decrypted. In most FHE cryptosystems [8], [7],
[15], [11], plaintexts are encoded as polynomials from the
quotient ring Zp[x]/(x

N +1), where N is a power of 2, and
p is the plaintext modulus. The plaintext polynomials are
then encrypted into ciphertext polynomials Zq[x]/(x

N +1),
where q is the ciphertext modulus that determines the secu-
rity level, as well as how many times the operations can be
performed.

3. Secure Matrix Multiplication

The MatrixMul operation takes two input matrices X ∈
Zn×m
2l

and Y ∈ Zm×k
2l

from C and S respectively, and
outputs ⟨Z⟩ with Z = XY ∈ Zn×k

2l
. Most of existing

solutions use homomorphic multiplications and additions
to compute the above formula in a privacy-preserving way.
The SIMD technique is typically used to amortize the cost
by batching N elements into a single RLWE ciphertext,
but it requires expensive homomorphic rotations to sum-
up [24]. Cheetah [23] substitutes SIMD with coefficient
packing to eliminate the expensive rotations. Nevertheless,

it still requires transferring ≥ 2n
√
mk√
N

RLWE ciphertexts,
and performing ≥ nmk

N ciphertext-plaintext homomorphic
multiplications.

Recall that GPT needs to autoregressively generate re-
sponse words. Therefore, a single GPT inference requires
running MatrixMul for different Xs with the same Y. We
aim to reduce the amortized cost of MatrixMul by exploiting
this characteristic of GPT.

Let X = [x1,x2, · · · ,xm] (with xi ∈ Zn
2l being each

column of X) and YT = [y′
1,y

′
2, · · · ,y′

m] (with y′
i ∈ Zk

2l

being each row of Y), then Z =
m∑
i=1

(xi ⊗ y′
i). Suppose S

and C need to generate t response words, hence there are t
input matrices:

X1 = [x1,1,x1,2, · · · ,x1,m] ,
X2 = [x2,1,x2,2, · · · ,x2,m] ,

· · · · · ·
Xt = [xt,1,xt,2, · · · ,xt,m].

Let x′
i = x1,i||x2,i|| · · · ||xt,i ∀ i ∈ [1,m]. Then,

x′
i ⊗ y′

i = (x1,i ⊗ y′
i)||(x2,i ⊗ y′

i)|| · · · ||(xt,i ⊗ y′
i).

Then,
m∑
i=1

(x′
i ⊗ y′

i) = Z1||Z2|| · · · ||Zt.

Therefore, we could compute the t times of MatrixMul
altogether via m outer products.

Given that Y is known beforehand, we could introduce
a preprocessing phase to have S and C generate m sVOLE
correlations:

Wi = ui ⊗ y′
i +Vi, ∀ i ∈ [1,m] .

where C holds ui ∈ Z(t·n)
2l

(which is a vector of length
t · n) and Vi ∈ Z(t·n)×k

2l
, and S holds y′

i ∈ Zk
2l and Wi ∈

Z(t·n)×k

2l
.

In the online phase, for an input matrix Xj =
[xj,1,xj,2, · · · ,xj,m] , C sends

⟨xj,i⟩S := xj,i − ui [(j − 1)n+ 1, · · · , j · n] ∀ i ∈ [1,m]

to S, which then computes:

⟨xj,i⟩S ⊗ y′
i = (xj,i − ui [(j − 1)n+ 1, · · · , j · n])⊗ y′

i

= xj,i ⊗ y′
i − ui [(j − 1)n+ 1, · · · , j · n]⊗ y′

i.

Then, we have:

xj,i ⊗ y′
i = ⟨xj,i⟩S ⊗ y′

i + ui [(j − 1)n+ 1, · · · , j · n]⊗ y′
i

= ⟨xj,i⟩S ⊗ y′
i +Wi [(j − 1)kn+ 1, · · · , j · k · n]

−Vi [(j − 1)kn+ 1, · · · , j · k · n] .

Notice that S holds:

⟨xj,i⟩S ⊗ y′
i +Wi [(j − 1)kn+ 1, · · · , j · k · n],

and C holds:

Vi [(j − 1)kn+ 1, · · · , j · k · n];

that means S and C secret-share xj,i ⊗ y′
i, and conse-

quently they can locally compute the secret-shares of Zj =
m∑
i=1

(xj,i ⊗ y′
i). They can compute all Zs in this way.

MatrixMul Overhead
Cheetah

[23]
transferring ≥ 2n

√
mk√
N

RLWE ciphertexts
≥ nmk

N ciphertext-plaintext multiplications
Iron
[21]

transferring ≥ 2
√
nmk√
N

RLWE ciphertexts
≥ nmk

N ciphertext-plaintext multiplications

Ours

transferring 2·e·m·k
tN RLWE ciphertexts

transferring e·m·k
t + n ·m masked plaintext

e·m·k
tN ciphertext-plaintext multiplications

c·e·m·log(n·t/e)
t OTs and (c ·m · n · k) AESs

TABLE 2: Amortized cost for t times of MatrixMul. N is #
elements batched in a RLWE ciphertext; e is the dual-LPN
noise weight; c is a small constant (N = 4 096, e = 144,
c = 2 in our benchmarks).

Table 2 compares the MatrixMul overhead among Chee-
tah [23], Iron [21] and CipherGPT. In terms of computation,
we save tn

e × ciphertext-plaintext multiplications. Suppose
n = 256, m = 768, k = 64, t = 256 and e = 144
(which are the real parameters for GPT-2), we save 3 065
ciphertext-plaintext multiplications, which takes more than
4s1. Although we need to do extra (c ·m · n · k) AESs to
expand the seeds, with the help of AES-NI this can be done
in around 100ms. In terms of communication, we transfer at
least 94 fewer RLWE ciphertexts, which is around 10MB;
whereas the communication overhead introduced by OTs
and plaintexts in CipherGPT is only around 1.5MB.

4. Secure GELU

In this section, we begin by providing a high-level
overview of our GELU protocol, and then delve into its
technical details.

4.1. Intuition

Figure 1 (left) depicts the original curve of y =
GELU(x). It begins at zero for small values of x, and
starts deviating from zero when x is around −α. As x
increases further, GELU(x) progressively approximates the
linear function y = x. Based on this observation, we divide
the curve into three large intervals:

• y = 0 when x < −α;
• y = GELU(x) when −α ≤ x ≤ α;
• y = x when x > α.

The computation of the first and third intervals is
straightforward. For the second interval, we use polynomial
splines to approximate the curve. As depicted in Figure 1

1. This includes the time usage for noise flooding.

Figure 1: GELU transformation.

(middle), we divide the second interval into several small
intervals and use a linear function (y = ax + d) to ap-
proximate the curve within each small interval. We refer to
Section 5.3.2 in [25] for a detailed procedure of finding the
linear functions. It is important to note that this approxima-
tion does not necessitate any modifications to the training
phase of the model.

We could use LUT to find the small interval in which
x resides and compute the corresponding linear function in
a secret-shared manner. However, for [−α, α], we have to
determine the sign of x first, and then lookup in the intervals
[−α, 0] and [0, α] separately. To avoid this, we right-shift the
entire curve by α as shown in Figure 1 (right), after which
the second interval becomes [0, 2α] allowing us to perform
a single lookup.

4.2. Details

Algorithm 1 describes in detail how we securely com-
pute y := GELU(x).

Algorithm 1: Secure GELU: ΠGELU

Input: S & C hold ⟨x⟩l
Output: S & C get ⟨y⟩l for y = GELU(x)

1 Let α′ := 2Lα

2 S & C (locally) compute ⟨x′⟩l := ⟨x⟩l + α′

3 Let β := 2α′

4 Let h := log β

5 S & C (locally) extract the lower h bits of ⟨x′⟩l and get
⟨x′⟩h

6 S & C invoke ⟨i⟩s ← FTR(⟨x′⟩h , h− s)

7 S & C invoke (⟨ai⟩g , ⟨di⟩l)← FLUT(⟨T ⟩ , ⟨i⟩s)
8 S & C invoke ⟨ax⟩l ← FMult(⟨ai⟩g , ⟨x′⟩h)
9 S & C (locally) compute ⟨z⟩l := ⟨ax⟩l + ⟨di⟩l

10 S & C invoke ⟨b⟩1 ← FCMP(⟨x′⟩l , β) ▷ b = 1 if
x′ ≥ β; b = 0 otherwise

11 S & C invoke ⟨b′⟩1 ← FCMP(⟨x′⟩l , 0) ▷ b′ = 1 if
x′ ≥ 0; b′ = 0 otherwise

12 S & C invoke ⟨u⟩l ← FMUX(⟨z⟩l , ⟨b⟩1 ⊕ ⟨b′⟩1)
13 S & C invoke ⟨v⟩l ← FMUX(⟨x⟩l , ⟨b⟩1)
14 S & C (locally) compute ⟨y⟩l := ⟨u⟩l + ⟨v⟩l

Notice that the initial input to the model has undergone
a left-shift by L bits, which in turn affects the value of x,
resulting in a left-shift of x by L bits as well. To maintain

the desired alignment, we scale α up by a factor of 2L

(Line 1). Then, the split value becomes α′ := 2Lα.
The right-shift of the curve needs to consider the scaling

factor as well. Namely, instead of directly right-shifting
the curve by α, we should right-shift it by α′. Similarly,
to ensure proper alignment, the input to GELU should be
adjusted as x′ := x+ α′, which can be achieved by adding
α′ to any share of x (Line 2).
Handling small intervals. Let β := 2α′, the second large
interval now becomes [0, β]. We make the initial assumption
that x′ falls within this large interval; we will address the
case where this assumption does not hold later on. As x′ ∈
[0, β], we only need to consider the lower h := log β bits
of x′. To this end, we have S and C extract the lower h bits
of ⟨x′⟩l and get ⟨x′⟩h (line 5), which can be done locally
without any communication.

Suppose [0, β] has been divided into 2s small intervals.
Then, we could find the interval for ⟨x′⟩h by examining its
upper s bits. To this end, we have S and C run the truncate-
then-reduce protocol on ⟨x′⟩h (Line 6), resulting in ⟨i⟩s,
where i ∈ Z2s represents the index of the small interval
that x′ belongs to.

S holds a table T , where each entry stores the coeffi-
cients of the linear function corresponding to the respective
small interval. After obtaining i ∈ Z2s , S and C execute
LUT to get the i-th entry of T in a secret-shared from
(⟨ai⟩g , ⟨di⟩l) (Line 7). Then, they run “multiplication with
non-uniform bitwidths” on ⟨ai⟩g and ⟨x′⟩h (Line 8), result-
ing in ⟨ax⟩l with l = g + h. After adding ⟨di⟩l to ⟨ax⟩l,
they obtain ⟨z⟩l, which is potentially the result of GELU(x).
Handling large intervals. Notice that the above process
for handling small intervals is valid only when x′ ∈ [0, β].
Indeed, the truncation in Line 5 will result in the loss of
information for x′ when x′ /∈ [0, β]. To this end, we use
multiplexer to ensure that ⟨z⟩l will not be returned when
x′ /∈ [0, β].

S and C first securely compare x′ with β and get b
(Line 10), with b = 1 if x′ ≥ β and b = 0 otherwise. Then,
they securely compare x′ with 0 and get b′ (Line 11), with
b′ = 1 if x′ ≥ 0 and b′ = 0 otherwise. Notice that there are
only following three possibilities for the combination of b
and b′ (instead of four):

• b = 1 and b′ = 1,
• b = 0 and b′ = 1,
• b = 0 and b′ = 0.

The second case with b ⊕ b′ = 1 indicates that x′ ∈ [0, β],
whereas the other two cases with b ⊕ b′ = 0 indicate that
x′ /∈ [0, β]. Therefore, we could use b ⊕ b′ as the control
signal to implement the multiplexer for z. Specifically, S
and C run the multiplexer with input ⟨z⟩l and ⟨b⟩1 ⊕ ⟨b′⟩1

resulting in ⟨u⟩l (Line 12), with u = z if b ⊕ b′ = 1, and
u = 0 otherwise.

Next, S and C run another multiplexer with input ⟨x⟩l

and ⟨b⟩1 resulting in ⟨v⟩l (Line 13), with v = x if b = 1,
and v = 0 otherwise. This multiplexer determines if x′ > β;
if so, returns v = x′. The final result of GELU(x) is ⟨y⟩l :=
⟨u⟩l + ⟨v⟩l. Notice that there is no need for an additional
multiplexer to handle the case of x′ < 0, because y = 0
when x′ < 0.

Table 3 compares the number of cryptographic opera-
tions among SIRNN [30], Iron [21] and our solution for se-
cure GELU. Clearly, our solution is much more lightweight.
Furthermore, our solution is also better in precision: the
multi-step process in SIRNN and Iron involves approximat-
ing exponentiation and reciprocation separately, introduc-
ing precision errors at each step; these errors accumulate
throughout the process, resulting in a large overall error,
which is not the case in our our single-step approach. Our
experimental results (cf. Table 4) validate this conjecture.

GELU Overhead

SIRNN [30] 1LUT (218 entries), 5LUT (28 entries),
7Mult, 6Trunc, 5CMP, 2MUX

Iron [21] 1LUT (218 entries), 5LUT (28 entries),
6Mult, 5Trunc, 5CMP, 2MUX

Ours 1LUT (28 entries),
1Mult, 1TR, 3CMP, 2MUX

TABLE 3: Comparison for GELU.

5. Secure Top-K Selection

In the vec2word layer, the GPT model generates a vector
containing probabilities for all possible words. From this
vector, the top-K largest probabilities need to be selected
and the final response word needs to be sampled based
on the selected probabilities. This section focuses on the
process of selecting the top-K values from a vector of length
n. In the subsequent section, we will discuss how we sample
a value from the K selected probabilities.

Algorithm 2 provides a detailed description of our TopK
protocol. At a high level, the input elements are securely
shuffled first (Line 1); and then a comparison-based selec-
tion is employed to identify the top-K elements from the
shuffled list (Line 2).

The selection function in Algorithm 2 operates in a
recursive manner. Within each recursion, the last element
of the vector is selected as the pivot (Line 5); and the
vector is partitioned into two parts: elements smaller than
the pivot, denoted as SL, and elements larger than or equal
to the pivot, denoted as SR (Line 6-15). To split the vector,

Algorithm 2: Secure Top-K: ΠTopK

Input: S & C hold ⟨x⟩ with x ∈ Zn
2l

Output: S & C get ⟨y⟩ with y ∈ ZK
2l being the K

largest values of x

1 S & C invoke ⟨x′⟩ ← FShuffle(⟨x⟩)
2 y← select(⟨x′⟩ ,K)

3 Function select(⟨x′⟩ ,K):
4 n := | ⟨x′⟩ |
5 ⟨pivot⟩ := ⟨x′

n⟩
6 ⟨SL⟩ := {}, ⟨SR⟩ := {⟨pivot⟩}
7 for i := 1 to n− 1 do
8 S & C invoke ⟨b⟩1 ← FCMP(⟨x′

i⟩ , ⟨pivot⟩) ▷
b = 1 if x′

i ≥ pivot; b = 0 otherwise
9 S & C reveal ⟨b⟩1 and get b

10 if b = 0 then
11 ⟨SL⟩ := ⟨SL⟩ ∪ {⟨x′

i⟩} ▷ x′
i < pivot

12 else
13 ⟨SR⟩ ← ⟨SR⟩ ∪ {⟨x′

i⟩} ▷ x′
i ≥ pivot

14 end
15 end
16 K′ ← | ⟨SR⟩ |
17 switch (K′ ? K) do
18 case (K′ = K)
19 return ⟨SR⟩
20 case (K′ > K)
21 return select(⟨SR⟩ ,K)
22 case (K′ < K)
23 return select(⟨SL⟩ ,K −K′) ∪ ⟨SR⟩
24 end
25 end
26 End Function

all its elements are compared with the pivot (Line 8).
The comparison results can be revealed (Line 9) without
compromising the privacy of the original elements. This is
because the original elements have been shuffled, ensuring
that the comparison results are independent of the actual
values.

If the size of SR (denoted by K ′) is exactly K, it means
that all the elements in SR are the top-K largest elements
that we want to select (Line 19). If K ′ > K, the next
recursion is executed on SR to further narrow down the
selection (Line 21). On the other hand, if K ′ < K, the next
recursion is performed to select the top (K −K ′) elements
from SL, which are then combined with SR to obtain the
final set of top-K elements (Line 21).

It is worth mentioning that only CMP (line 8) requires
interaction between S and C; the remaining steps of the
algorithm can be executed locally by each party without the
need for interaction. The selection function requires O(n)
CMPs.

6. Secure Sampling

In this section, we provide a detailed explanation of our
secure sampling protocol. It takes as input K secret-shared
probabilities (p1, . . . , pK), where each probability has been
scaled to an integer xi by multiplying it by 2L and dropping

Algorithm 3: Secure Sampling: ΠSample

Input: S & C hold ⟨x⟩, with x ∈ ZK
2l being a vector of

probabilities scaled by 2L

Output: S & C get ⟨j⟩, with j ∈ [1,K] and

Pr (j = i) = xi/
K∑

j=1

xj

1 C samples v
$←
[
0, 2L − 1

]
with v ∈ Z2l

2 S & C init ⟨s0⟩ := 0
3 for i := 1 to K − 1 do
4 S & C (locally) compute ⟨si⟩ := ⟨xi⟩+ ⟨si−1⟩
5 S & C invoke ⟨bi⟩1 ← FCMP(⟨v⟩ , ⟨si⟩) ▷ b = 1 if

v ≥ si; b = 0 otherwise
6 end
7 S & C init ⟨b0⟩1 := 1 and ⟨bK⟩1 := 0
8 for i := 1 to K do
9 S & C (locally) compute ⟨b′i⟩

1
:= ⟨bi−1⟩1 ⊕ ⟨bi⟩1 ▷

b′i = 1 only when si−1 ≤ v < si
10 end

11 S & C compute ⟨j⟩ :=
K∑
i=1

FMUX(i, ⟨b′i⟩
1
)

the fractional part. The output of the protocol is a secret-
shared index j:

Pr (j = i) = xi/

K∑
k=1

xk.

We will explain how we map this index to a response word
in Section 7.5.

Algorithm 3 provides a detailed description of the secure
sampling protocol. It is based on the observation is that, for
a random p′ ∈ [0, 1], the selected index j satisfies:

j−1∑
k=1

pk ≤ p′ <
j∑

k=1

pk.

As (p1, · · · , pK) have been scaled by 2L, p′ should should
also be scaled accordingly. To this end, we have C sample an
integer v from

[
0, 2L − 1

]
(Line 1). S and C securely com-

pare v with each
i∑

k=1

xk, ∀i ∈ [1,K] (Line 2-6), resulting

in a secret-shared bit vector ⟨b⟩ that satisfies:

bi = 1 ∀ 1 ≤ i < j and bi = 0 ∀ j ≤ i ≤ K.

Our next step is to build another secret-shared bit vector
⟨b′⟩ that satisfies:

b′i = 0 ∀ i ̸= j and b′j = 1.

This can be achieved by performing an XOR operation on
every pair of adjacent bits in ⟨b⟩ (Line 7-10). Then, the

desired index is: ⟨j⟩ :=
K∑
i=1

FMUX(i, ⟨b′i⟩
1
) (Line 11).

We remark that it is acceptable for v to be soley sampled
by C, because the final output index j remains unknown to
C.

7. The CipherGPT Framework

Figure 2 shows the architecture and workflow of GPT.
Roughly, it takes a sequence of words, encodes them into
word embeddings, and passes them through multiple iter-
ations2 of a transformer decoder. Each iteration involves a
self-attention layer and a feed-forward neural network. The
output from the transformer decoder is fed into a vec2word
layer, which generates the predicted response word.

Word Embedding

Inputs

Position Embedding

LayerNorm

LayerNorm

MatrixMul

MatrixMul

Softmax

MatrixMul

GELU

MatrixMul

MatrixMul

LayerNorm

Top-K

Temperature

Sample

SoftMax

Output Word

M
asked

 Self-A
tten

tio
n

Feed
 Fo

rw
ard

Tran
sfo

rm
er D

eco
d

er

V
ec2w

o
rd

MatrixMul

MatrixMul

Figure 2: The architecture and workflow of GPT.

Next, we explain in detail how we securely compute this
process.

7.1. Embedding

It first maps each input word to a numeric vector of
length m, known as a word embedding, which is achieved
by locating the corresponding row in an embedding matrix.
Next, each word embedding is augmented by a position
embedding that is determined by the position of the word
within the input sequence. The position embeddings are
predefined and added element-wise to the word embeddings.

2. Our benchmarked model involves 12 iterations.

We accomplish word embedding and position embedding
altogether using additively homomorphic encryption (AHE):

1) S employs AHE to encrypt each row of the embed-
ding matrix and transmits all the resulting cipher-
texts to C. In practice, we encrypt the entire row by
representing it as the polynomial coefficients of an
RLWE ciphertext. Notice that the word embeddings
are floating-point numbers; S scales them up to in-
tegers by left-shifting them by L bits and dropping
the fractional parts.

2) C locates the corresponding ciphertexts based on
its input words, adds a random number to each ci-
phertext: E(w1+r1), · · · , E(wn+rn); and returns
them to S.

3) S decrypts the ciphertexts to obtain w1 +
r1, · · · , wn + rn; adds the position embeddings:
w1 + r1 + p1, · · · , wn + rn + pn.

4) Now, each embedding is secret-shared, with
⟨xi⟩C = −ri and ⟨xi⟩S = wi + ri + pi.

We remark that step 1 only needs to be performed once and
can be utilized indefinitely, unless there are changes to the
embedding matrix.

7.2. Layer normalization

After input encoding, the n input words become a secret-
shared matrix ⟨X⟩ with X ∈ Zn×m

2l
. Then, layer normaliza-

tion (LayerNorm) needs to be performed for each of its row
x ∈ Zm

2l . Specifically, each element xi in x is normalized
as follows:

xi :=
xi−E[x]√
V ar[x]+ϵ

· γ + β,

where γ and β are learnable parameters and ϵ is a small
value used to avoid division by zero.

To securely compute LayerNorm, S and C use LUT to
approximate 1√

V ar[x]+ϵ
. We refer to SIRNN [30] for more

details. After the computation of LayerNorm, S and C need
to run FTrunc to ensure that the scaling remains at L bits.
For the sake of simplicity, we omit mentioning truncations
in the remaining part of this section.

7.3. Masked Self-Attention

Self-attention is a mechanism that enables the computa-
tion of a sequence’s representation by relating different po-
sitions within the sequence [35]. The first step in calculating
self-attention is to create three matrices: a query matrix Q,
a key matrix K and a value matrix V. This is accomplished
by multiplying the normalized embeddings X ∈ Zn×m

2l

by three matrices (WQ ∈ Zm×m
2l

, WK ∈ Zm×m
2l

, and
WV ∈ Zm×m

2l
) that were trained during the training process:

⟨Q⟩ := ⟨X⟩ ⟨WQ⟩;
⟨K⟩ := ⟨X⟩ ⟨WK⟩;
⟨V⟩ := ⟨X⟩ ⟨WV ⟩.

As WQ, WK and WV are known beforehand, such
MatrixMuls can be computed by our sVOLE-based solution
described in Section 3.
Multi-headed attention. Each of ⟨Q⟩, ⟨K⟩, ⟨V⟩ is then
partitioned into M segments, known as multi-head attention,
where M represents the number of attention heads3. Let
m′ = m

M , we have:

⟨q1⟩ || · · · || ⟨qM ⟩ = ⟨Q⟩, with each qi ∈ Zn×m′

2l
;

⟨k1⟩ || · · · || ⟨kM ⟩ = ⟨K⟩, with each ki ∈ Zn×m′

2l
;

⟨v1⟩ || · · · || ⟨vM ⟩ = ⟨V⟩, with each vi ∈ Zn×m′

2l
.

A score matrix is calculated by taking the product of a
query matrix and a key matrix:

⟨si⟩ := ⟨qi⟩
〈
kT
i

〉
∀ i ∈ [M].

Each score in si ∈ Zn×n
2l

determines how much focus to
place on other words when encoding the current word. In
this case, where neither qi nor ki is known beforehand,
our sVOLE-based MatrixMul cannot be applied. Instead, we
employ the AHE-based MatrixMul proposed in [21].
Self-attention masking. After the multi-headed attention,
self-attention masking is applied to zero-out the upper-
triangle of each si. As a result, every word to the left has a
much higher attention score than words to the right, so the
model in practice only focuses on previous words. This step
can be done locally by S and C without any interaction.
Softmax. A softmax operation is applied to each row of
each ⟨si⟩, ensuring that the scores are normalized within
each row, with all values being positive and summing up
to 1. To securely compute softmax, we employ a multi-step
LUT approach used in [21].
Output. In the final step of self-attention, the softmaxed
scores are used to weight the values in the value matrix:

⟨zi⟩ := ⟨si⟩ ⟨vi⟩ ∀ i ∈ [M],

which is again accomplished by the AHE-based
MatrixMul [21]. Then, all zs are reassembled together:

⟨Z⟩ := ⟨z1⟩ || · · · || ⟨zn⟩.
The output of self-attention is:

⟨X⟩ := ⟨X⟩+ ⟨Z⟩.

7.4. Feed forward

The output of self-attention is subjected to a LayerNorm
operation. The resulting normalized values are then fed into
a feed-forward neural network, which consists of two fully-
connected (FC) layers and one activation layer.

The first FC layer is computed as:

⟨X1⟩ := ⟨X⟩ ⟨W1⟩,

where X ∈ Zn×m
2l

, W1 ∈ Zm×k
2l

and X1 ∈ Zn×k
2l

. Then,
ΠGELU (cf. Section 4) is applied to each element of X1,
resulting in X′

1. The second FC layer is computed as:

3. In GPT-2, M = 12 by default.

⟨X2⟩ := ⟨X′
1⟩ ⟨W2⟩,

where X′
1 ∈ Zn×k

2l
, W2 ∈ Zk×m

2l
and X1 ∈ Zn×m

2l
.

Notice that W1 and W2 are known beforehand, hence
our sVOLE-based MatrixMul (cf. Section 3) can be applied
to the two FC layers.

The output will once again undergo multiple iterations of
self-attention and feed-forward, with each iteration employ-
ing different weights while preserving the same structure.

7.5. Vec2word

After multiple iterations of self-attention and feed-
forward, the resulting output is then passed through a
vec2word layer to generate the predicted response word.
The initial operation in vec2word involves a MatrixMul to
produce a one-hot encoding for all possible words:

⟨y0⟩ := ⟨x⟩ ⟨W⟩,

where W ∈ Zm×k
2l

, y0 ∈ Zk
2l , and x ∈ Zm

2l is the last
row of X ∈ Zn×m

2l
(due to an inference-time optimization

employed by GPT). This time, k represents the number of
all possible words, which is quite large. Our sVOLE-based
MatrixMul is not suitable here, hence we employ the AHE-
based MatrixMul [21].
Top-K. To maintain a balance between diversity and high-
probability words, the K largest values are selected from
y0:

⟨y1⟩ ← ΠTopK(⟨y0⟩), with y1 ∈ ZK
2l .

This is accomplished by our proposed protocol described in
Section 5.
Temperature. The temperature T determines the creativity
and diversity of the text generated by GPT: a higher tem-
perature (e.g., T = 1.5) produces more diverse and creative
text, whereas a lower temperature (e.g., T = 0.5) produces
more focused and deterministic text. It is a hyperparameter
held by S and to be multiplied with each value in y1. This
can be easily achieved by AHE:

1) C sends S its AHE-encrypted shares
E(⟨y1,1⟩C), · · · , E(⟨y1,K⟩C). In practice, we
encrypt them altogether by representing them as
the polynomial coefficients of an RLWE ciphertext.

2) S adds its shares to the ciphertexts: E(⟨y1,1⟩C +
⟨y1,1⟩S), · · · , E(⟨y1,K⟩C + ⟨y1,K⟩S).

3) S multiplies all ciphertexts by T : E(T · y1,1), · · · ,
E(T · y1,K).

4) S adds a random number r1 to each ciphertext:
E(T · y1,1 + r1), · · · , E(T · y1,K + rK).

5) S returns the resulting ciphertexts to C.
6) S decrypts the ciphertexts, and now the tempera-

tured values, represented by y2, are secret-shared:

⟨y2,i⟩C := T · y1,i + ri and ⟨y2,i⟩S := −ri,
∀i ∈ [K].

Random sampling. A softmax operation is applied to y2 to
obtain a probability vector denoted by y3, and the response

word is then randomly sampled based on this probability
vector. Such random sampling ensures that the generated
output is both diverse and contextually relevant.

We employ the secure sampling protocol described in
Section 6 to get an index:

⟨j⟩ ← ΠSample(y3).

Recall that, in Algorithm 3, the value v is sampled by C
(Line 1 in Algorithm 3). Therefore, if C learns j, it could
potentially gain some information about the input x. On
the other hand, revealing j to S does not disclose any
information about x because v is unknown to S. To this
end, we reveal j to S.

As Algorithm 2 does not hide which K elements (in
the shuffled vector) were selected, S is able to map j to the
corresponding index j′ in the shuffled vector. Recall that the
shuffling process roughly works as follows:

1) C generates a random permutation πC; S and C
jointly apply πC to the input vector, obtaining the
corresponding secret-shares.

2) S generates a random permutation πS; S and C
jointly apply πS to the output of πC, obtaining the
corresponding secret-shares.

To this end, we have S compute i′ := π−1
S (j′) and return i′

to C. Notice that i′ does not reveal any information since πS

is unknown to C. Then, we have C compute i := π−1
C (i′),

which corresponds to the index in the word vector. Given
that the word vector is publicly known, C can retrieve the
final response word based on the index i.

8. Evaluation

In this section, we provide a full-fledged implementation
of CipherGPT and systematically evaluate its performance.

8.1. Implementation

We fully implemented CipherGPT in C++ and set the
security parameter as 128. We use the Microsoft SEAL
homomorphic encryption library (version 4.0)4 for AHE and
use hexl5 to accelerate HE operation with AXV-512 instruc-
tion. Specifically, we use the Brakerski-Fan-Vercauteren
(BFV) [7], [15] scheme, with N = 4 096 and the default
parameters in SEAL for 128-bit security.

• For secure GELU, we implemented LUT, Mult,
Trunc, CMP and MUX by leveraging the corre-
sponding open-sourced code in SIRNN6.

• For sVOLE-based MatrixMul, we used the open-
source code of Silver7 for sVOLE. We re-
implemented its reverse-VOLE part with AHE and
incorporated the Half-tree [20] optimization to its
implementation.

4. https://github.com/Microsoft/SEAL
5. https://github.com/intel/hexl
6. https://github.com/mpc-msri/EzPC/tree/master/SIRNN
7. https://github.com/osu-crypto/libOTe

• For TopK, since the secret-shared shuffle in [10] is
not open-sourced, we implemented it by ourselves.

• For LayerNorm, we used the corresponding open-
sourced code of SIRNN.

• For Softmax and AHE-based MatrixMul, since
Iron [30] is not open-sourced, we reproduced them
by leveraging the open-sourced code of SIRNN and
Cheetah8 respectively.

8.2. Experimental Setup

Following SIRNN [30] and Iron [21], we used a LAN
network setting, where the bandwidth is 377 MBps and
RTT is 0.8ms. All experiments were performed on AWS
c5.9xlarge instances with Intel Xeon 8000 series CPUs at
3.6GHz, and they were conducted using a single thread. All
results are the average values of 5 runs and the variances
are very small.

We benchmark the GPT-2 model proposed by Rad-
ford [29], which consists of 117 million parameters, 12
transformer decoders, with an embedding size of 768. Fol-
lowing Cheetah [23] and CrypTFlow2 [31], we left-shift
the floating point numbers for L = 12 bits and drop the
fractional part. During the inference, we use FTrunc to make
sure the largest value is smaller than 2l − 1 with l = 37.

8.3. Evaluation results

Evaluation of GELU. When evaluating our GELU pro-
tocol (i.e., Algorithm 1), we set α = 4 and s = 8.
Given that L = 12, the actual interval to be approxi-
mated is

[
−4× 212, 4× 212

]
. Specifically, we partition the

interval
[
−4× 212, 4× 212

]
into 28 small intervals and

use a 256-piece spline to approximate the curve within[
−4× 212, 4× 212

]
.

Table 4 shows the comparison between Iron and our
solution for GELU. To compute GELU for each 37-bit el-
ement in a 3072-length vector, our protocol takes 694ms
and 13.1MB of bandwidth. Compared with Iron [21], it
achieves a 4.1× speedup in runtime and a 3.3× reduction
in communication.

GELU(Z3072
237

)
Runtime

(ms)
Comm.
(MB)

Maximal
ULP Err.

Average
ULP Err.

Iron 694 44.3 9 2.4

Ours 166
4.2× ↓

13.1
3.4× ↓

1
9× ↓

0.22
10.9× ↓

TABLE 4: Evaluation of GELU (we use a 256-piece spline
to approximate the curve within

[
−4× 212, 4× 212

]
).

We evaluate the precision of our approximation by
testing its ULP error, which is defined as the number of
representable numbers between the exact real result y and
the approximated result ỹ [18]. Since we have scaled the

8. https://github.com/Alibaba-Gemini-Lab/OpenCheetah

floating-point numbers into integers, the ULP error is exactly
|y − ỹ|. Following SIRNN [30], we use exhaustive testing
to evaluate the ULP errors:

1) run the secure GELU protocols on all possible
integers within

[
−16× 212, 16× 212

]
,

2) compare the ULP error between each output and
the corresponding infinite precision real result, and

3) report both the maximal ULP error and the average
ULP error.

The results (in Table 4) show that our solution introduces
much smaller ULP errors compared with Iron. The multi-
step process in Iron (flowing SIRNN) involves approximat-
ing exponentiation and reciprocation separately, introducing
ULP errors at each step. These errors accumulate throughout
the process, resulting in a larger overall error compared to
our single-step approach.

(a) Amortized Runtime vs. Iterations.

(b) Amortized Communication vs. Iterations.

Figure 3: Evaluation of MatrixMul (we compute Z256×768
237 ×

Z768×768
237 for multiple iterations and measure the amortized

cost).

Evaluation of MatrixMul. Recall that our sVOLE-based
MatrixMul is suitable for the case where the sizes of the
two matrices are unbalanced. Therefore, we measure the
amortized cost of performing Z256×768

237 ×Z768×768
237 for t it-

erations, where the Z768×768
237 matrix remains constant across

all iterations. While the size of t may not have an impact
on other protocols, it is significant for our approach as we

Layer Operation Output←Input Method Times Runtime (ms) Runtime % Comm. (MB) Comm. %

Embedding Embedding Z256×768
237 ← Z256

216 , L = 12 §7.1 1 285 0.02% 8.38 0.01%

LayerNorm LayerNorm Z256×768
237 ← Z256×768

237 , L = 12 [30] 12 12682× 12 10.47% 1009.98× 12 12.74%

Self-attention

MatrixMul (Z256×768
237 ← Z256×768

237 × Z768×768
237)× 3, L = 24 §3 12 4358× 12 3.60% 21.79× 12 0.27%

Trunc (Z256×768
237 ← Z256×768

237)× 3, L = 12 [30] 12 4676× 12 3.86% 361.76× 12 4.56%

Multi-head (Z256×64
237 × 12← Z256×768

237)× 3, L = 12 plain 12 (< 1)× 12 ≈ 0% 0 0%

MatrixMul (Z256×256
237 ← Z256×64

237 × Z64×256
237)× 12, L = 24 [21] 12 2854× 12 2.36% 58.22× 12 0.73%

Trunc (Z256×256
237 ← Z256×256

237)× 12, L = 12 [30] 12 2868× 12 2.37% 54.28× 12 0.68%

Masking (Z256×256
237 ← Z256×256

237)× 12, L = 12 plain 12 (< 1)× 12 ≈ 0% 0 0%

Softmax (Z256×256
237 ← Z256×256

237)× 12, L = 12, (by row) [21] 12 19954× 12 16.47% 1175.84× 12 14.83%

MatrixMul (Z256×64
237 ← Z256×256

237 × Z256×64
237)× 12, L = 24 [21] 12 2817× 12 2.33% 54.28× 12 0.68%

Trunc (Z256×64
237 ← Z256×64

237)× 12, L = 12 [30] 12 1573× 12 1.30% 120.58× 12 1.52%

Reassemble Z256×768
237 ← (Z256×64

237 × 12), L = 12 plain 12 (< 1)× 12 ≈ 0% 0 0%

MatrixMul Z256×768
237 ← Z256×768

237 × Z768×768
237 , L = 24 §3 12 1463× 12 1.21% 8.20× 12 0.10%

Trunc Z256×768
237 ← Z256×768

237 , L = 12 [30] 12 1573× 12 1.30% 120.58× 12 1.52%

Matrix Add Z256×768
237 ← Z256×768

237 + Z256×768
237 , L = 12 plain 12 (< 1)× 12 ≈ 0% 0 0%

LayerNorm LayerNorm Z256×768
237 ← Z256×768

237 , L = 12 [30] 12 12682× 12 10.47% 1009.98× 12 12.74%

Feed-forward

MatrixMul Z256×3072
237 ← Z256×768

237 × Z768×3072
237 , L = 24 §3 12 5997× 12 4.95% 28.5× 12 0.36%

Trunc Z256×3072
237 ← Z256×3072

237 , L = 12 [30] 12 6224× 12 5.14% 482.34× 12 6.08%

GELU Z256×3072
237 ← Z256×3072

237 , L = 12 §4 12 32314× 12 26.68% 3169.97× 12 39.98%

MatrixMul Z256×768
237 ← Z256×3072

237 × Z3072×768
237 , L = 24 §3 12 5841 ×12 4.82% 32.42× 12 0.41%

Trunc Z256×768
237 ← Z256×768

237 , L = 12 [30] 12 1520× 12 1.25% 120.58× 12 1.52%

Matrix Add Z256×768
237 ← Z256×768

237 + Z256×768
237 , L = 12 plain 12 (< 1)× 12 ≈ 0% 0 0%

LayerNorm LayerNorm Z256×768
237 ← Z256×768

237 , L = 12 [30] 1 12682 0.87% 1009.98 1.06%

Vec2Word

MatrixMul Z50257
237 ← Z768

237 × Z768×50257
237 , L = 24 [21] 1 1942 0.13% 11.09 0.01%

Trunc Z50257
237 ← Z50257

237 , L = 12 [30] 1 367 0.03% 33.22 0.03%

Shuffle Z50257
237 ← Z50257

237 , L = 12 [10] 1 4004 0.28% 51.3 0.05%

TopK Z100
237 ← Z50257

237 , L = 12 §5 1 1277 0.09% 84.8 0.09%

Temperature Z100
237 ← Z100

237 , L = 24 §7.4 1 18 < 0.01% 0.14 < 0.01%

Trunc Z100
237 ← Z100

237 , L = 12 [30] 1 18 < 0.01% 0.14 < 0.01%

Softmax Z100
237 ← Z100

237 , L = 12 [21] 1 257 0.02% 1.22 < 0.01%

Sampling Z237 ← Z100
237 , L = 12 §6 1 7.843 < 0.01% 0.11 < 0.01%

Total 1 453 610 95 151.98

TABLE 5: A comprehensive benchmark for CipherGPT in generating a single response word (amortized for the generation
of 256 response words).

can preprocess all t iterations together. We acknowledge that
this comparison may be considered unfair, but it accurately
reflects the setting for GPT inference.

Figure 3 shows the comparison between Iron and our
protocol (we did not differentiate between the preprocessing
time and online time in this figure). Considering that Chat-
GPT often generates several hundred words in a single re-
sponse, t = 256 would be a reasonable number of iterations.
The amortized runtime for our protocol is 1 606ms, 2.1×
speedup over Iron; the amortized communication for our
protocol is 8.2MB, 3.8× reduction over Iron. In scenarios
where the number of response words increases to 1024,
which is also quite common, our protocol demonstrates even
greater performance advantages. Specifically, our protocol
outperforms Iron by 2.5× in runtime and 11.2× in commu-
nication.
Evaluation of TopK. We benchmark our TopK protocol

(cf. Algorithm 2) for selecting 100 elements from a vector
of Z50304

237 . It takes 3 281ms and 136.1MB bandwidth. Com-
pared with the commonly used Bitonic sorting network [22],
we achieve 8.8× speedup in runtime and 14.8× reduction
in communication.
Evaluation of CipherGPT. We run CipherGPT to generate
a sentence that consists of 256 response words. Table 5 lists
the amortized runtime and communication for each individ-
ual operation, along with their corresponding proportions.

9. Related Works

Secure inference can be achieved via generic secure
two-party (2PC) computation [39], [19] or fully homo-
morphic encryption (FHE) [16]. However, such solutions
would exhibit high communication and computational cost.
Therefore, it is necessary to develop customized protocols

for secure inference. Efforts in this field can be traced back
to the early 2010s, with many of the early works primarily
focusing on simpler machine learning algorithms such as
SVMs and linear regression.

CryptoNets [17] is recognized as the initial endeavor
in secure neural network inference. It relies solely on FHE,
which limits its applicability to neural networks with a small
number of layers. Additionally, it can only support linear op-
erations and low-degree polynomials. MiniONN [25] is the
first work that customizes 2PC protocols for secure neural
network inference. It proposes a spline-based approximation
for non-linear operations, which inspires our solution for
secure GELU.

GAZELLE [24] reduces the cost the linear layers by
mapping them to SIMD-based matrix-vector multiplication
and convolution routines. Cheetah [23] substitutes SIMD
with coefficient packing to eliminate the expensive rotations.
Iron [21] further reduces the communication complexity
of Cheetah. In terms of activations, CrypTFlow2 [31] pro-
poses efficient protocols for secure comparison and divi-
sion. SIRNN [30] provides crypto-friendly approximations
to math functions such as exponential, sigmoid, tanh and
reciprocal square root; as well as the corresponding 2PC
implementations.

Another research direction for improving the perfor-
mance of secure inference is to change the model structure to
more crypto-friendly ones. For example, DeepSecure [34],
XONN [32] and Quotient [1] are specifically designed for
binarized neural networks [12]. DeepSecure additionally
prunes the model to reduce the number of activations. Del-
phi [26] provides a planner that leverages neural architecture
search to automatically generate neural network architec-
ture configurations that navigate the performance-accuracy
trade-offs. However, all such solutions require retraining
the model, which is less desirable to machine learning
practitioners.

Some solutions [27], [37] leverage GPU parallelism to
accelerate the online phase, but they cannot do anything
about preprocessing as cryptographic operations dominate
the preprocessing phase in such protocols. The most efficient
GPU-based solution, i.e. GForce [27], requires 14-15 min-
utes in total to perform one inference for VGG-16 (trained
on CIFAR-10 and CIFAR-100).

The discussion so far focuses on two-party protocols,
as we believe secure inference naturally aligns with this
setting. However, several other works [33], [36], [3] have
instead targeted the three-party setting, where the model
is secret-shared between two non-colluding servers and the
client interacts with these servers to obtain the prediction.
The three-party protocols are generally more efficient than
two-party ones, but the assumption of non-colluding servers
is often considered to be unrealistic in practice.

10. Conclusion

In response to the privacy concerns raised by ChatGPT,
we develop CipherGPT, the first framework for secure GPT
inference. It encompasses a series of innovative protocols,

including a secure matrix multiplication that is customized
for GPT inference, a novel protocol for securely comput-
ing GELU, and the first protocol for top-K sampling. We
provide a comprehensive benchmark for CipherGPT, which
can serve as a reference for future research in this area.

References

[1] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià
Gascón. Quotient: Two-party secure neural network training and
prediction. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19, page 1231–1247,
New York, NY, USA, 2019. Association for Computing Machinery.

[2] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan
Rosemarin, and Hikaru Tsuchida. Secure graph analysis at scale. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 610–629, New York, NY,
USA, 2021. Association for Computing Machinery.

[3] Assi Barak, Daniel Escudero, Anders P. K. Dalskov, and Marcel
Keller. Secure evaluation of quantized neural networks. IACR Cryptol.
ePrint Arch., page 131, 2019.

[4] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Com-
pressing vector ole. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’18, page
896–912, New York, NY, USA, 2018. Association for Computing
Machinery.

[5] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
Peter Rindal, and Peter Scholl. Efficient two-round OT extension
and silent non-interactive secure computation. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15,
2019, pages 291–308. ACM, 2019.

[6] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl. Efficient pseudorandom correlation generators:
Silent OT extension and more. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2019, Proceedings, Part III, volume 11694 of
Lecture Notes in Computer Science, pages 489–518. Springer, 2019.

[7] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical gapsvp. IACR Cryptol. ePrint Arch., page 78,
2012.

[8] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic
encryption from ring-lwe and security for key dependent messages.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 505–524. Springer, 2011.

[9] A. Brüggemann, R. Hundt, T. Schneider, A. Suresh, and H. Yalame.
Flute: Fast and secure lookup table evaluations. In 2023 2023 IEEE
Symposium on Security and Privacy (SP) (SP), pages 515–533, Los
Alamitos, CA, USA, may 2023. IEEE Computer Society.

[10] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared
shuffle. In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology – ASIACRYPT 2020, pages 342–372, Cham, 2020.
Springer International Publishing.

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.
Homomorphic encryption for arithmetic of approximate numbers. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I, volume 10624 of
Lecture Notes in Computer Science, pages 409–437. Springer, 2017.

[12] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 3123–3131, 2015.

[13] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Sil-
ver: Silent VOLE and oblivious transfer from hardness of decoding
structured LDPC codes. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-
20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in
Computer Science, pages 502–534. Springer, 2021.

[14] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas
Schneider, Shaza Zeitouni, and Michael Zohner. Pushing the commu-
nication barrier in secure computation using lookup tables. In 24th
Annual Network and Distributed System Security Symposium, NDSS
2017, San Diego, California, USA, February 26 - March 1, 2017. The
Internet Society, 2017.

[15] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. IACR Cryptol. ePrint Arch., page 144,
2012.

[16] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford, CA, USA, 2009. AAI3382729.

[17] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 201–210. JMLR.org,
2016.

[18] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, mar 1991.

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play Any
Mental Game, or a Completeness Theorem for Protocols with Honest
Majority, page 307–328. Association for Computing Machinery, New
York, NY, USA, 2019.

[20] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie,
Jiang Zhang, and Zheli Liu. Half-tree: Halving the cost of tree
expansion in cot and dpf. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology – EUROCRYPT 2023, pages 330–362, Cham,
2023. Springer Nature Switzerland.

[21] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu,
and Tianwei Zhang. Iron: Private inference on transformers. In
NeurIPS, 2022.

[22] Yan Huang, David Evans, and Jonathan Katz. Private set intersection:
Are garbled circuits better than custom protocols? In 19th Annual
Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012. The Internet Soci-
ety, 2012.

[23] Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Chee-
tah: Lean and fast secure Two-Party deep neural network inference.
In 31st USENIX Security Symposium (USENIX Security 22), pages
809–826, Boston, MA, August 2022. USENIX Association.

[24] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A low latency framework for secure neural network
inference. In 27th USENIX Security Symposium (USENIX Security
18), pages 1651–1669, Baltimore, MD, August 2018. USENIX As-
sociation.

[25] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural
network predictions via minionn transformations. In Bhavani Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, pages 619–631. ACM, 2017.

[26] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. Delphi: A cryptographic inference
service for neural networks. In Srdjan Capkun and Franziska Roesner,
editors, 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, pages 2505–2522. USENIX Association, 2020.

[27] Lucien K. L. Ng and Sherman S. M. Chow. GForce: GPU-Friendly
oblivious and rapid neural network inference. In 30th USENIX Secu-
rity Symposium (USENIX Security 21), pages 2147–2164. USENIX
Association, August 2021.

[28] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever,
et al. Improving language understanding by generative pre-training.
2018.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[30] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya
Gupta, Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. Sirnn:
A math library for secure RNN inference. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021, pages 1003–1020. IEEE, 2021.

[31] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chan-
dran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2:
Practical 2-party secure inference. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’20, page 325–342, New York, NY, USA, 2020. Association
for Computing Machinery.

[32] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine,
Kristin Lauter, and Farinaz Koushanfar. Xonn: Xnor-based oblivious
deep neural network inference. In Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’19, page 1501–1518, USA,
2019. USENIX Association.

[33] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M. Songhori, Thomas Schneider, and Farinaz Koushanfar.
Chameleon: A hybrid secure computation framework for machine
learning applications. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors, Proceedings
of the 2018 on Asia Conference on Computer and Communications
Security, AsiaCCS 2018, Incheon, Republic of Korea, June 04-08,
2018, pages 707–721. ACM, 2018.

[34] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar.
Deepsecure: Scalable provably-secure deep learning. In Proceedings
of the 55th Annual Design Automation Conference, DAC ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. At-
tention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[36] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-
party secure computation for neural network training. Proc. Priv.
Enhancing Technol., 2019(3):26–49, 2019.

[37] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A
GPU platform for secure computation. In Kevin R. B. Butler and
Kurt Thomas, editors, 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022, pages 827–
844. USENIX Association, 2022.

[38] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang.
Ferret: Fast extension for correlated OT with small communication.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020,
pages 1607–1626. ACM, 2020.

[39] Andrew Chi-Chih Yao. How to generate and exchange secrets. In
27th Annual Symposium on Foundations of Computer Science (sfcs
1986), pages 162–167, 1986.

