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ABSTRACT
The majority of fault-tolerant distributed algorithms are designed

assuming a nominal corruption model, in which at most a fraction

𝑓𝑛 of parties can be corrupted by the adversary. However, due to

the infamous Sybil attack, nominal models are not sufficient to

express the trust assumptions in open (i.e., permissionless) settings.

Instead, permissionless systems typically operate in a weighted
model, where each participant is associated with a weight and the

adversary can corrupt a set of parties holding at most a fraction 𝑓𝑤
of total weight.

In this paper, we suggest a simple way to transform a large class

of protocols designed for the nominal model into the weighted

model. To this end, we formalize and solve three novel optimization

problems, which we collectively call the weight reduction problems,
that allow us to map large real weights into small integer weights

while preserving the properties necessary for the correctness of the

protocols. In all cases, we manage to keep the sum of the integer

weights to be at most linear in the number of parties, resulting in

extremely efficient protocols for the weighted model. Moreover, we

demonstrate that, on weight distributions that emerge in practice,

the sum of the integer weights tends to be far from the theoretical

worst-case and, often, even smaller than the number of participants.

While, for some protocols, our transformation requires an ar-

bitrarily small reduction in resilience (i.e., 𝑓𝑤 = 𝑓𝑛 − 𝜖), surpris-
ingly, for many important problems we manage to obtain weighted

solutions with the same resilience (𝑓𝑤 = 𝑓𝑛) as nominal ones. No-

table examples include asynchronous consensus, verifiable secret

sharing, erasure-coded distributed storage and broadcast protocols.

Although there are ad-hoc weighted solutions to some of these

problems, the protocols yielded by our transformations enjoy all

the benefits of nominal solutions, including simplicity, efficiency,

and a wider range of possible cryptographic assumptions.

1 INTRODUCTION
1.1 Weighted distributed problems
Traditionally, distributed problems are studied in the egalitarian

setting where 𝑛 parties communicate over a network and any 𝑡 of

them can be faulty or corrupted by a malicious adversary. Different

combinations of 𝑛 and 𝑡 are possible depending on the problem at

hand, the types of failures (crash, omission, semi-honest, or mali-

cious, also known as Byzantine), and the network model (typically,

asynchronous, semi-synchronous, or synchronous). However, for

most distributed protocols, 𝑡 has to be smaller than a certain fraction

of𝑛. For example, most practical Byzantine fault-tolerant consensus

protocols [21, 22] can operate for any 𝑡 < 𝑛
3
. We call such models
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nominal and use 𝑓𝑛 to denote their resilience, i.e., a nominal protocol

with resilience 𝑓𝑛 operates correctly as long as less than 𝑓𝑛𝑛 parties

are corrupt, where 𝑛 is the total number of participants.

However, this simple corruption model is not always sufficient

to express the actual fault structure or trust assumptions of real

systems. As a result, we see many practical blockchain protocols

adopt a more general, weighted model, where each party is asso-

ciated with a real weight that, intuitively, represents the number

of “votes” this party has in the system. The assumption on the

number of corrupt parties in this setting is replaced by the assump-

tion that the total weight of the corrupt parties is smaller than a

fraction 𝑓𝑤 of the total weight of all participants. For example, in

permissionless systems, the weight can correspond to the amount

of “stake” or computational resources a participant has invested in

the system and, in the context of managed systems, to a function

of the estimated failure probability.

There are two main reasons to adopt the weighted model in the

context of blockchain systems. First and foremost, it protects the

system from the infamous Sybil attacks, i.e., malicious users register-

ing themselves multiple times in order to obtain multiple identities,

thereby surpassing the resilience threshold 𝑓𝑛 . Secondly, it is spec-

ulated that users with a greater amount of resources (monetary,

computational, or otherwise) invested in the system, and conse-

quently a higher weight, will be more committed to the system’s

stability and less likely to engage in malicious behavior.

1.2 Weighted voting and where it needs help
Perhaps, the most prevalent tool used for the design of distributed

protocols is quorum systems [38, 48, 51]. Intuitively, to achieve fault
tolerance, each “action” is confirmed by a sufficiently large set of

participants (called a quorum). Then, if two actions are conflicting

or somehow interdependent (e.g., writing and reading a file in a

distributed storage system), then the parties in the intersection

of the quorums are supposed to ensure consistency. Thus, many

distributed protocols can be converted from the nominal to the

weighted setting simply by changing the quorum system, i.e., in-

stead of waiting for confirmations from a certain number of parties,

waiting for a set of parties with the corresponding fraction of the

total weight. We call this strategy weighted voting and it often al-

lows translating protocols from the nominal to the weighted model

while maintaining the same resilience (i.e., 𝑓𝑤 = 𝑓𝑛) and, in some

cases, with virtually no overhead.

However, weighted voting has two major downsides. First and

foremost, many protocols rely on primitives beyond simple quorum

systems and weighted voting is often not sufficient to translate

these protocols to the weighted model. Notable examples include

threshold cryptography [11, 32], secret sharing [17, 57], erasure
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and error-correcting codes [47], and numerous protocols that rely

on these primitives.

Another example relevant to blockchain systems is Single Secret

Leader Election protocols [12, 23, 24, 35]. We use these protocols

to illustrate that not all protocols that cannot be easily converted

to the weighted model by applying weighted voting belong to the

categories mentioned above.

The second drawback of weighted voting is that it requires a

careful examination of the protocol in order to determine whether

weighted voting is sufficient to convert it to the weighted model,

as well as non-trivial modifications to the protocol implementation.

It would be much nicer to have a “black-box” transformation that

would take a protocol designed and implemented for the nominal

model and output a protocol for the weighted model.

1.3 Our contribution
Our contribution to the fields of distributed computing and applied

cryptography is twofold:

(1) We present a simple and efficient black-box transformation

that can be applied to convert a wide range of protocols

designed for the nominal model into the weighted model.

Crucially, one can determine the applicability of our trans-

formation simply by examining the problem that is being

solved (e.g., Byzantine consensus) instead of the protocol
itself (e.g., PBFT [22]) and it does not require modifications

to the source code, only a slim wrapper around it. The

price to pay for this transformation is an arbitrarily small

decrease in resilience (𝑓𝑤 = 𝑓𝑛 − 𝜖 , where 𝜖 > 0) and an in-

crease in the communication and computation complexities

proportional to 𝑂 ( 𝑓𝑤𝜖 ).
(2) Furthermore, by opening the black box and examining the

internal structure of distributed protocols, we discover that

by combining our transformation with weighted voting, in

many cases, we can obtain weighted algorithms without
the reduction in resilience (𝑓𝑤 = 𝑓𝑛) and with a very minor

performance penalty.

We summarize some examples of our techniques applied to a

range of different protocols in Table 1. The last two columns of

the table give the upper bound on the overhead of the obtained

weighted protocols compared to their nominal counterparts exe-

cuted with the same number of parties. Note, however, that, in many

cases, the overhead applies only to specific parts of the protocol,

which may not be the bottlenecks. Thus, further experimental stud-

ies may reveal that the real overhead is even lower or non-existent,

even with worst-case weight distribution. Columns “𝑓𝑤” and “𝑓𝑛”

specify the resilience of the obtained weighted protocols and the

original nominal protocols, respectively. As was discussed before,

in most cases, we manage to avoid sacrificing resilience (𝑓𝑤 = 𝑓𝑛).
Furthermore, the main building block of our constructions, the

weight reduction problems, may be of separate interests and may

have important applications beyond distributed protocols. It is,

indeed, an interesting and somewhat counter-intuitive observation

that large real weights can be efficiently (in linear time) reduced to

small integer weights while preserving the key properties.

1.4 Empirical findings
The performance of the weighted protocols constructed as sug-

gested in this paper is sensitive to the distribution of weights of

the participants. While we provide upper bounds and thus analyze

our protocols for “the worst distribution possible”, it is interesting

whether such bad weight distributions emerge in practice.

In order to study real-world weight distributions, we tested our

weight reduction algorithms on the distribution of funds from mul-

tiple existing blockchain systems [7, 33, 39, 46, 49] on systems

ranging in size from a hundred parties [2, 7] up to multiple tens of

thousands [1, 49].

Roadmap
The paper is organized as follows: we formally define weight reduc-

tion problems in Section 2 and provide constructive upper bounds

for them in Section 3. We then proceed to present our approximate

algorithms in Section 4. Sections 5 to 7 explain how to apply weight

reduction to solve various kinds of weighted distributed problems.

In Section 8, we study the question of resilience against splitting
attacks, and in Section 9, we study the performance of weight reduc-

tion on the weight distributions emerging in practice. We discuss

related work in Section 10 and conclude the paper in Section 11

2 WEIGHT REDUCTION PROBLEMS
In this section, we define the key building block to our construction,

the weight reduction problems, which is a class of optimization prob-

lems that map (potentially, large) real weights𝑤1, . . . ,𝑤𝑛 ∈ R≥0 to
(ideally, small) integers weights 𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 while preserving
certain key properties. For convenience, we use the word “tickets”
to denote the units of the assigned integer weights, i.e., if 𝑡1, . . . , 𝑡𝑛
is the output of a weight reduction problem, we say that party 𝑖 is

assigned 𝑡𝑖 tickets.

Notation

To avoid repetition, throughout the rest of the paper, we use the

following notation:

(1) [𝑛] := {1, 2, . . . , 𝑛}
(2) for any 𝑆 ⊆ [𝑛]:𝑤 (𝑆) := ∑

𝑖∈𝑆 𝑤𝑖
(3) for any 𝑆 ⊆ [𝑛]: 𝑡 (𝑆) := ∑

𝑖∈𝑆 𝑡𝑖
(4) 𝑊 := 𝑤 ( [𝑛]) = ∑𝑛

𝑖=1𝑤𝑖
(5) 𝑇 := 𝑡 ( [𝑛]) = ∑𝑛

𝑖=1 𝑡𝑖

2.1 Weight Restriction
The first weight reduction problem is Weight Restriction (or sim-

ply WR). It is parameterized by two numbers 𝛼𝑤 , 𝛼𝑛 ∈ (0, 1) and
requires the mapping to preserve the property that any subset of

parties of weight less than 𝛼𝑤 obtains less than 𝛼𝑛 tickets. More

formally:
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Problem nominal
solutions

weight-reduction
algorithm 𝑓𝑤 𝑓𝑛

worst-case average
comm. overhead

worst-case average
comp. overhead

Derived Protocols

Efficient Asynchronous

State-Machine Replication

[28, 34, 44,

50, 59]

Swiper+Dora 1/3 1/3 × 1.33 for Broadcast
× 2 for RNG

× 5.33 for Broadcast
× 2 for RNG

Structured Mempool [28] Dora 1/3 1/3 × 1.33 for Broadcast × 5.33 for Broadcast
Validated Asynchronous

Byzantine Agreement

[6, 18] Swiper 1/3 1/3 × 2 for RNG × 2 for RNG

Consensus with Checkpoints [8] Swiper 1/3 1/3 × 2 for signing × 2 for signing
Useful Building Blocks

Erasure-Coded

Storage and Broadcast

[20, 40, 52,

53, 56, 61]

Dora 1/3 1/3 × 1.33 × 5.33
Swiper (BB) 1/4 1/3 – × 3

Error-Corrected Broadcast [30]

Dora 1/3 1/3 × 1.33 × 10.66
Swiper (BB) 1/4 1/3 – × 3

Blunt Secret Sharing [57]

Swiper 1/3 1/3 × 2 × 2
Distributed RNG [19, 55]

Blunt Threshold Signatures [11, 58, 60]

Blunt Threshold Encryption [32]

Blunt Threshold FHE [14, 42]

Tight Secret Sharing

Sec. 5.2

(this paper)

Swiper 1/3 1/3 × 2 × 2Tight Threshold Signatures

Tight Threshold Encryption

Tight Threshold FHE

Linear BFT Consensus [62]

Swiper (BB) 1/4 1/3 × 3 × 3
Chain-Quality SSLE [12]

Table 1: Examples of suggested weighted distributed protocols with the upper bounds on communication and computation
overhead compared to the nominal solutions with the same number of participants. See Sections 5 to 7 for details on how these
numbers were obtained. In Section 9, we study real-world weight distributions and conclude that, in practice, the overhead
should be much smaller. “Swiper” and “Dora” refer to weight-reduction algorithms defined in Section 4 and used to achieve
these results. “Swiper (BB)” refers to the black-box transformation described in Section 5.3.

System Total
weight # parties

# tickets using Swiper

𝛼𝑤 = 1/4 𝛼𝑤 = 1/3 𝛼𝑤 = 1/3 𝛼𝑤 = 2/3

𝛼𝑛 = 1/3 𝛼𝑛 = 3/8 𝛼𝑛 = 1/2 𝛼𝑛 = 3/4

Aptos [2, 7] 8.4708 × 108 104 58 203 27 138

Tezos [4, 39] 6.7579 × 108 382 136 598 75 481

Filecoin [3, 46] 2.5242 × 1019 3700 3307 11814 1895 8454

Algorand [1, 49] 9.7223 × 109 42 920 961 17273 373 17222

Table 2: Number of allocated tickets on sample weight distributions, using the Swiper protocol described in Section 4 with
recommended parameters.

Problem statement 1 (Weight Restriction)

Given 𝛼𝑤 , 𝛼𝑛 ∈ (0, 1) and 𝑤1, . . . ,𝑤𝑛 ∈ R≥0 as input, find

𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 such that

∑𝑛
𝑖=1 𝑡𝑖 is minimum, subject to the

following restrictions:

(1) ∀𝑆 ⊆ [𝑛] such that𝑤 (𝑆) < 𝛼𝑤𝑊 : 𝑡 (𝑠) < 𝛼𝑛𝑇
(2) 𝑇 ≠ 0

In Section 5, we apply Weight Restriction in order to implement

the black-box transformation announced in Section 1.3 as well as

weighted versions of secret sharing and threshold cryptography

with different access structures.
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In Section 3, we will prove the following theorem (with a more

precise bound on 𝑇 ):

Theorem 2.1 (WR upper bound, simplified). For any 𝛼𝑤 , 𝛼𝑛 ∈
(0, 1) such that 𝛼𝑤 < 𝛼𝑛 : there exists a solution to the Weight Restric-

tion problem with 𝑇 = 𝑂

(
𝑛

𝛼𝑛−𝛼𝑤

)
.

2.2 Weight Qualification
The next weight reduction problemwe study isWeight Qualification
(or simply WQ). It requires the mapping to preserve the property

that any subset of parties of weight more than 𝛽𝑤 obtains more

than 𝛽𝑛 tickets. In some sense, WQ is the opposite of the Weight

Restriction problem discussed above. More formally:

Problem statement 2 (WeightQualification)

Given 𝛽𝑤 , 𝛽𝑛 ∈ (0, 1) and 𝑤1, . . . ,𝑤𝑛 ∈ R≥0 as input, find

𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 such that

∑𝑛
𝑖=1 𝑡𝑖 is minimum, subject to the

following restrictions:

(1) ∀𝑆 ⊆ [𝑛] such that𝑤 (𝑆) > 𝛽𝑤𝑊 : 𝑡 (𝑠) > 𝛽𝑛𝑇

(2) 𝑇 ≠ 0

In Section 6, we show how to apply Weight Qualification to

implement weighted versions of storage and broadcast protocols

that rely on erasure and error-correcting codes for minimizing

communication and storage complexity.

Interestingly, there exists a simple reduction between WR and

WQ:

Theorem 2.2. For any 𝛽𝑤 , 𝛽𝑛 ∈ (0, 1) and𝑤1, . . . ,𝑤𝑛 ∈ R≥0, the
following problems are identical:

(1) 𝑊𝑅(1 − 𝛽𝑤 , 1 − 𝛽𝑛,𝑤1, . . . ,𝑤𝑛)
(2) 𝑊𝑄 (𝛽𝑤 , 𝛽𝑛,𝑤1, . . . ,𝑤𝑛)

Proof. Let us prove that any valid solution to𝑊𝑅(1 − 𝛽𝑤 , 1 −
𝛽𝑛,𝑤1, . . . ,𝑤𝑛) is a valid solution to𝑊𝑄 (𝛽𝑤 , 𝛽𝑛,𝑤1, . . . ,𝑤𝑛). The
inverse can be proven analogously. Indeed, if ∀𝑆 ⊆ [𝑛] such that

𝑤 (𝑆) > 𝛽𝑤𝑊 : 𝑤 ( [𝑛] \ 𝑆) = 𝑊 − 𝑤 (𝑆) < (1 − 𝛽𝑤)𝑊 . Hence,

𝑡 ( [𝑛] \ 𝑆) < (1 − 𝛽𝑛)𝑇 and 𝑡 (𝑆) = 1 − 𝑡 ( [𝑛] \ 𝑆) > 𝛽𝑛𝑇 . □

From Theorems 2.1 and 2.2, we obtain the following:

Corollary 2.3 (WQupper bound, simplified). For any 𝛽𝑤 , 𝛽𝑛 ∈
(0, 1) such that 𝛽𝑛 < 𝛽𝑤 : there exists a solution to the Weight Quali-

fication problem with 𝑇 = 𝑂

(
𝑛

𝛽𝑤−𝛽𝑛

)
.

2.3 Weight Separation
Finally, Weight Separation combines WR and WQ: it has 4 param-

eters (𝛽𝑤 , 𝛽𝑛 , 𝛼𝑤 , and 𝛼𝑛) and outputs a ticket distribution that

guarantees simultaneously the properties of Weight Qualification

and Weight Restriction.

Problem statement 3 (Weight Separation)

Given 𝛽𝑤 , 𝛽𝑛, 𝛼𝑤 , 𝛼𝑛 ∈ (0, 1) and 𝑤1, . . . ,𝑤𝑛 ∈ R≥0 as input,

find 𝑡1, . . . , 𝑡𝑛 ∈ Z≥0 such that

∑𝑛
𝑖=1 𝑡𝑖 is minimum, subject to

the following restrictions:

(1) ∀𝑆 ⊆ [𝑛] such that𝑤 (𝑆) > 𝛽𝑤𝑊 : 𝑡 (𝑠) > 𝛽𝑛𝑇

(2) ∀𝑆 ⊆ [𝑛] such that𝑤 (𝑆) < 𝛼𝑤𝑊 : 𝑡 (𝑠) < 𝛼𝑛𝑇
(3) 𝑇 ≠ 0

Interestingly, in all practical problems that we have considered,

either WR or WQ were sufficient, so we have not yet identified

good use cases for the more general Weight Separation problem.

However, we believe that it is still interesting theoretically and

provide a linear upper bound on the total number of tickets for it,

as for the other two problems.

Theorem 2.4 (WS upper bound, simplified). For any 𝛽𝑤 , 𝛽𝑛,
𝛼𝑤 , 𝛼𝑛 ∈ (0, 1) such that 𝛼𝑤 < 𝛼𝑛 and 𝛽𝑛 < 𝛽𝑤 : there exists a solu-
tion to theWeight Separation problemwith𝑇 = 𝑂

(
𝑛

min{𝛼𝑛−𝛼𝑤 ,𝛽𝑤−𝛽𝑛 }

)
.

The special case ofWSwhen𝛼𝑛 = 𝛽𝑛 was recently considered for

implementation of so-called ramp weighted secret-sharing in [10].

We discuss the relationship between our work and this result in

more detail in the related work section.

2.4 Overview of suggested solutions
In Appendix B, we show how to obtain exact solutions to WR using

Mixed Integer Programming (MIP) [27], however, such an approach

is prohibitively slow for inputs larger than twenty parties as solving

a MIP is NP-hard.

Thus, in Section 3, we provide constructive upper bounds on

all three weight reduction problems (WR, WQ, and WS) yielding

efficient (linear time) algorithms to find small, albeit not necessarily

optimal, solutions.

In Section 4, we further build upon the upper bound for Weight

Restriction to obtain Swiper – an efficient polynomial-time algo-

rithm that not only produces at most a linear number of tickets

in the worst case but also produces very few tickets on practical

weight distributions, as will be studied in Section 9.

We also define an algorithm that we dub Dora to solve the WQ

problem. Due to Theorem 2.2, Dora is defined simply as Swiper

with parameters 𝛼𝑤 := 1 − 𝛽𝑤 and 𝛼𝑛 := 1 − 𝛽𝑛 .
We are currently working on an algorithm that would yield the

optimal (i.e., the smallest possible, given the restrictions) number of

tickets. However, as this algorithm’s running time is still significant,

for practical systems of considerable size (thousands of parties), the

approximate algorithms presented in this version of the paper will

likely be preferable.

3 UPPER BOUNDS
In this section, we provide constructive upper bounds for all three

weight reduction problems defined in the previous section. At their

core, our bounds are based on a simple divide-and-round technique.

However, we then apply the idea of pruning that is not only useful

in practice but also improves the theoretical bounds.
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3.1 Upper bounds on Weight Restriction
Floor distribution Let us distribute for each party 𝑖 , 𝑡𝑖 = ⌊𝑤𝑖/𝑋 ⌋
tickets for some 𝑋 that we will later select. Consider a set 𝑆 such

that𝑤 (𝑆) < 𝛼𝑤 . Then we can bound the number of tickets allocated

to it as follows:

𝑡 (𝑆) =
∑︁
𝑖∈𝑆

𝑡𝑖 =
∑︁
𝑖∈𝑆

⌊𝑤𝑖
𝑋

⌋
≤
∑︁
𝑖∈𝑆

𝑤𝑖

𝑋
=
𝑤 (𝑆)
𝑋

<
𝛼𝑤𝑊

𝑋

On the other hand, we can give a lower bound on the number of

tickets allocated to its complement 𝑆 :

𝑡 (𝑆) =
∑︁
𝑖∉𝑆

𝑡𝑖 =
∑︁
𝑖∉𝑆

⌊𝑤𝑖
𝑋

⌋
≥
∑︁
𝑖∉𝑆

(𝑤𝑖
𝑋
− 1

)
>
(1 − 𝛼𝑤)𝑊

𝑋
− 𝑛

Note that, to simplify the resulting bound and make it inde-

pendent of the weight distribution, we use 𝑛 as the upper bound

for |𝑆 |, which is a slight oversimplification. In order to prove that

𝑡 (𝑆) < 𝛼𝑛𝑇 , it is sufficient to show that
𝑡 (𝑆 )
𝑡 (𝑆 )

<
𝛼𝑛

1−𝛼𝑛 . Indeed:

𝑡 (𝑆) < 𝛼𝑛𝑇 ⇔ 𝑡 (𝑆) < 𝛼𝑛 (𝑡 (𝑆) + 𝑡 (𝑆)) ⇔
𝑡 (𝑆)
𝑡 (𝑆)

<
𝛼𝑛

1 − 𝛼𝑛

By substituting the bounds we have on 𝑡 (𝑆) and 𝑡 (𝑆), we obtain
a sufficient condition for the required inequality to hold:

𝑡 (𝑆)
𝑡 (𝑆)

<
𝛼𝑛

1 − 𝛼𝑛

⇐ 𝛼𝑤𝑊

(1 − 𝛼𝑤)𝑊 − 𝑛𝑋
≤ 𝛼𝑛

1 − 𝛼𝑛

⇔ 𝑋 ≤ 𝑊
𝑛

𝛼𝑛 − 𝛼𝑤
𝛼𝑛

Hence, setting 𝑋 := 𝑊
𝑛 ·

𝛼𝑛−𝛼𝑤
𝛼𝑛

is sufficient to guarantee that

𝑡 (𝑆) < 𝛼𝑛𝑇 and we can obtain our first upper bound on the optimal

number of tickets for WR:

𝑇 =

𝑛∑︁
𝑖=1

⌊𝑤𝑖
𝑋

⌋
≤ 𝑊
𝑋

=
𝛼𝑛

𝛼𝑛 − 𝛼𝑤
𝑛

We can go slightly further by pruning the solution: we keep

the tickets assigned to parties in 𝑆 and then remove unnecessary

tickets from the other parties while maintaining the 𝑡 (𝑆) < 𝛼𝑛𝑇

requirement. To this end, we need to find the set 𝑆 of weight less

than 𝛼𝑤𝑊 that obtains the most tickets by solving Knapsack [45].

Luckily for us, as detailed in Appendix A, in this case, Knapsack can

be solved efficiently in time𝑂 (𝑇𝑛) using dynamic programming on

profits [45, Lemma 2.3.2], and we know that 𝑇 ≤ 𝛼𝑤𝑛
𝛼𝑛−𝛼𝑤 . In total,

we will assign only

⌈
𝑡 (𝑆 )
𝛼𝑛

⌉
tickets. As 𝑡 (𝑆) < 𝛼𝑤𝑊

𝑋
and 𝑡 (𝑆) is an

integer, 𝑡 (𝑆) ≤ 𝛼𝑤𝑊
𝑋
− 1. This leads to a slightly improved upper

bound on 𝑇 :

𝑇 =

⌈
𝑡 (𝑆)
𝛼𝑛

⌉
≤
⌈

𝛼𝑤

𝛼𝑛 − 𝛼𝑤
𝑛 − 1

𝛼𝑛

⌉
≤ 𝛼𝑤

𝛼𝑛 − 𝛼𝑤
𝑛

Ceiling distribution Let us now do a similar study on the ticket

distribution where each party 𝑡𝑖 is assigned ⌈𝑤𝑖/𝑋 ⌉ tickets.

𝑡 (𝑆) =
∑︁
𝑖∈𝑆

𝑡𝑖 =
∑︁
𝑖∈𝑆

⌈𝑤𝑖
𝑋

⌉
≤
∑︁
𝑖∈𝑆

(𝑤𝑖
𝑋
+ 1

)
≤ 𝛼𝑤𝑊

𝑋
+ 𝑛

𝑡 (𝑆) =
∑︁
𝑖∉𝑆

𝑡𝑖 =
∑︁
𝑖∉𝑆

⌈𝑤𝑖
𝑋

⌉
≥
∑︁
𝑖∉𝑆

𝑤𝑖

𝑋
≥ (1 − 𝛼𝑤)𝑊

𝑋

Analogouslywith the floor distribution, we can obtain a sufficient

condition to guarantee that 𝑡 (𝑆) < 𝛼𝑛𝑇 :

𝑡 (𝑆) < 𝛼𝑛𝑇

⇔ 𝑡 (𝑆)
𝑡 (𝑆)

<
𝛼𝑛

1 − 𝛼𝑛

⇐ 𝛼𝑤𝑊 + 𝑛𝑋
(1 − 𝛼𝑤)𝑊

≤ 𝛼𝑛

1 − 𝛼𝑛

⇔ 𝑋 ≤ 𝑊
𝑛

𝛼𝑛 − 𝛼𝑤
1 − 𝛼𝑛

Thus, the total number of tickets distributed is at most:

𝑇 ≤
𝑛∑︁
𝑖=1

⌈𝑤𝑖
𝑋

⌉
≤ 𝑊
𝑋
+ 𝑛 =

(
1 − 𝛼𝑛
𝛼𝑛 − 𝛼𝑤

+ 1
)
𝑛 =

1 − 𝛼𝑤
𝛼𝑛 − 𝛼𝑤

𝑛

In this case, pruning does not improve the upper bound on 𝑇 .

Upper bound. Thus, we obtain a final upper bound as theminimum

between these two distributions:

Theorem 3.1 (WR upper bound). For any 𝛼𝑤 , 𝛼𝑛 ∈ (0, 1) such
that 𝛼𝑤 < 𝛼𝑛 : for any𝑤1, . . . ,𝑤𝑛 : there exists a valid solution to the
Weight Restriction problem such that:

𝑇 ≤ min{𝛼𝑤 , 1 − 𝛼𝑤}
𝛼𝑛 − 𝛼𝑤

𝑛

3.2 Upper bounds on Weight Qualification
As a result of Theorem 2.2, we can establish the following bound

for WQ:

Theorem 3.2 (WQ upper bound). For any 𝛽𝑤 , 𝛽𝑛 ∈ (0, 1) such
that 𝛽𝑛 < 𝛽𝑤 : for any𝑤1, . . . ,𝑤𝑛 : there exists a valid solution to the
Weight Qualification problem such that:

𝑇 ≤ min{𝛽𝑤 , 1 − 𝛽𝑤}
𝛽𝑤 − 𝛽𝑛

𝑛

3.3 Upper bounds on Weight Separation
Regarding WS, we can apply the same analysis as in Section 3.1

and choose a value of 𝑋 that satisfies the requirements of both WR

and WQ. For simplicity, we do not consider pruning in this case.

Hence, we obtain the following theorem:

Theorem 3.3 (WS upper bound). For any 𝛼𝑤 , 𝛼𝑛, 𝛽𝑤 , 𝛽𝑛 ∈ (0, 1)
such that 𝛼𝑤 < 𝛼𝑛 and 𝛽𝑛 < 𝛽𝑤 : for any 𝑤1, . . . ,𝑤𝑛 ∈ R≥0: there
exists a valid solution to the Weight Separation problem such that:

𝑇 ≤ min

{
𝑇𝑓 𝑙𝑜𝑜𝑟 ,𝑇𝑐𝑒𝑖𝑙

}
, where

𝑇𝑓 𝑙𝑜𝑜𝑟 = max

{
𝛼𝑛

𝛼𝑛 − 𝛼𝑤
,
1 − 𝛽𝑛
𝛽𝑤 − 𝛽𝑛

}
𝑛

𝑇𝑐𝑒𝑖𝑙 = max

{
1 − 𝛼𝑤
𝛼𝑛 − 𝛼𝑤

,
𝛽𝑤

𝛽𝑤 − 𝛽𝑛

}
𝑛
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4 SWIPER AND DORA – EFFICIENT
SOLUTIONS TOWR ANDWQ

Swiper is a deterministic approximate algorithm for the Weight

Restriction problem. It is designed to not only respect the upper

bounds provided in the previous section but also to allocate a small

number of tickets on practical weight distributions. The main in-

sight is that the choice of the value 𝑋 in Section 3.1 is very pes-

simistic: we choose it based only on the total weight𝑊 , number of

parties 𝑛, and thresholds 𝛼𝑛 and 𝛼𝑤 . In Swiper we essentially try

all possible values for 𝑋 and pick the maximum value so that the

condition imposed by the WR problem statement is satisfied. We

do so in a highly optimized manner.

The full code is available on GitHub
1
. The Python implemen-

tation available on GitHub has a parameter --speed that accepts
values between 1 and 10. We recommend the value --speed 3
for small systems (𝑛 < 1000) and --speed 5 for larger systems

(𝑛 < 100
′
000). Value --speed 7 provides a quadratic solution and

--speed 10 provides a linear solution.
In Algorithm 1, we present a simplified version that omits some

important optimizations. Nevertheless, its running time is still

𝑂 (𝑝𝑜𝑙𝑦 (𝑛)). We start by picking the value of 𝑋 as in Section 3.1.

This already reduces the total number of tickets to𝑈 = 𝑂 (𝑛).
The protocol proceeds to test all 𝑈 meaningful values of 𝑋 that

change the ticket distribution, testing validity by solving knapsack

(which we remind that for this particular instance can be efficiently

computed) and keeping the valid distribution that yields the least

amount of tickets as the solution. This search is further sped up

by analyzing the values of 𝑋 that change the number of tickets of

parties included in the optimal restriction set since taking tickets

out of participants outside this set while keeping the tickets of

included parties does not change the number of restricted tickets.

Once a solution is found, it is pruned so that the total number

of tickets is exactly ⌈𝑇𝐴/𝛼𝑛⌉ by discarding unnecessary tickets of

parties not in the restricted set given its optimal choice strategy.

We do the computations twice, distributing first ⌊𝑤𝑖/𝑋 ⌋ tickets to
each party and then ⌈𝑤𝑖/𝑋 ⌉, keeping as the final distribution the

one that yields the fewest amount of tickets.

In the Python implementation, we speed up the search for the

optimal value of 𝑋 by doing 2 types of binary search before the

linear search described above. First, using linear relaxation of Knap-

sack as the upper bound on the number of tickets in the optimal

restriction set and then using the polynomial exact algorithm for

Knapsack. We also provide options to disable any of the steps to

reduce the computation time of the algorithm at the cost of po-

tentially having more tickets. Crucially, regardless of the selected

--speed parameter, our algorithm is deterministic and, thus, can be

run independently by each party without a disagreement on the

resulting ticket distribution.

Dora. As stipulated by Theorem 2.2, we can solve the Weight Qual-

ification problem by reducing it to Weight Restriction. Thus, we de-

fine our algorithm for solving WQ, called Dora, as: Dora(𝛽𝑤 , 𝛽𝑛) :=
Swiper(1 − 𝛼𝑤 ,−1𝛼𝑛).

1
https://github.com/DCL-TelecomParis/swiper-dora

Algorithm 1 The 𝑆𝑤𝑖𝑝𝑒𝑟 protocol.

1: Input:
2: 𝑤 ∈ R𝑛≥0 𝛼𝑛 ∈ [0, 1] 𝛼𝑤 ∈ [0, 𝛼𝑛]

3: Operation 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑤,𝑋, 𝑠):
4: if 𝑠 = 𝑓 𝑙𝑜𝑜𝑟 then
5: return [ ⌊𝑤 [𝑖]/𝑋 ⌋ | 𝑖 ∈ {1, . . . , 𝑛} ]
6: if 𝑠 = 𝑐𝑒𝑖𝑙 then
7: return [ ⌈𝑤 [𝑖]/𝑋 ⌉ | 𝑖 ∈ {1, . . . , 𝑛} ]

8: Operation 𝑝𝑟𝑢𝑛𝑒 (𝑡,𝑤, 𝛼𝑤 , 𝛼𝑛):
9: 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑, 𝑡𝑟 = Knapsack(𝑤, 𝑡 ′𝑠 , 𝛼𝑤𝑊 )
10: 𝑡 ′ ← 𝑡

11: decrease 𝑡 ′ [𝑖] for 𝑖 ∉ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 until

∑𝑛
𝑖=1 𝑡

′ [𝑖] = ⌈ 𝑡𝑟𝛼𝑛 ⌉
12: Return 𝑡 ′

13: 𝑊 ← ∑𝑛
𝑖=1𝑤𝑖

14: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 ← {𝑓 𝑙𝑜𝑜𝑟, 𝑐𝑒𝑖𝑙}
15: for 𝑠 ∈ 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 do
16: if s = floor then
17: 𝑋 ← 𝑊

𝑛 ·
𝛼𝑛−𝛼𝑤
𝛼𝑛

18: if s = ceil then
19: 𝑋 ← 𝑊

𝑛 ·
𝛼𝑛−𝛼𝑤
1−𝛼𝑛

20: 𝑡𝑠 ← 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑤,𝑋, 𝑠)
21: 𝑡 ′𝑠 ← 𝑡𝑠

22: while True do
23: 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑, 𝑡𝑟𝑠 = Knapsack(𝑤, 𝑡 ′𝑠 , 𝛼𝑤𝑊 )
24: if 𝑡𝑟𝑠 < 𝛼𝑛

∑𝑛
𝑖=1 𝑡

′
𝑠 [𝑖] then

25: 𝑡𝑠 ← 𝑡 ′𝑠

26: 𝑋 ′ ← min val to allocate 𝑡 ′𝑠 [𝑖] − 1 for 𝑖 ∈ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑
27: 𝑡 ′𝑠 ← 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒 (𝑤,𝑋 ′, 𝑛∗, 𝑠)
28: if 𝑠 = 𝑓 𝑙𝑜𝑜𝑟 and

∑𝑛
𝑖=1 𝑡

′
𝑠 = 0 then

29: break
30: if 𝑠 = 𝑐𝑒𝑖𝑙 and

∑𝑛
𝑖=1 𝑡

′
𝑠 = 𝑛 then

31: break

32: return min𝑠∈𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 (𝑝𝑟𝑢𝑛𝑒 (𝑡𝑠 ,𝑤, 𝛼𝑤 , 𝛼𝑛))

5 APPLICATIONS OF WEIGHT RESTRICTION
Many distributed protocols, especially in the Byzantine corrup-

tion model and the blockchain setting, rely on distributed crypto-

graphic primitives such as secret sharing [17, 57] and threshold

signatures [11, 32, 60]. Furthermore, threshold signatures form the

basis of the most commonly used protocol [19] for the problem of

distributed random number generation (also known as threshold

coin tossing, random beacon, or common coin), which, in turn,

has numerous applications of its own. However, most threshold

cryptosystems are based on the idea of splitting a secret key into a

number of discrete pieces such that any 𝑡 out of 𝑛 pieces are suffi-

cient to reconstruct the secret key or perform operations on it (e.g.,

create a threshold signature). Therefore, simple weighted voting,

as described in Section 1.2, cannot be applied to such systems.

6
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Swiper and Dora: efficient solutions to weighted distributed problems

5.1 Blunt Secret Sharing and derivatives
In cryptography, certain actions have an associated access structure

Awhich determines all sets of parties that are able to perform these

actions once they collaborate. Traditional (𝑛, 𝑘)-threshold systems

can be seen as a particular access structure where A = {𝑃 ⊆ [𝑛] :
|𝑃 | ≥ 𝑘}. Analogously, a weighted threshold access structure can

be defined as A = {𝑃 ⊆ Π :

∑
𝑖∈𝑃 𝑤𝑖 ≥ 𝛽

∑
𝑖∈Π𝑤𝑖 }.

We can also define the adversary structure F ⊆ 2
Π
, the set of

all sets of parties that can be simultaneously corrupted at any

given execution. Often, the adversary structure is also defined via

a threshold, with a maximum corruptible weight fraction 𝛼 , e.g.

F = {𝑃 ⊂ Π :

∑
𝑖∈𝑃 𝑤𝑖 ≤ 𝛼

∑
𝑖∈Π𝑤𝑖 }.

While threshold access structures are commonly studied in cryp-

tography and are applied in numerous distributed protocols, in

practice, as we discuss in Section 7, it is often sufficient if the access

structure provides the following two properties:

• There exists at least one set entirely composed of correct

users that belongs to the access structure. This guarantees

liveness properties of the accompanying protocol.

• Any set containing only corrupt parties does not belong to

the access structure, as this would break safety properties.

Hence, we define a blunt access structure as follows:

Definition 5.1 (Blunt access structure). Given a set of parties Π
and the adversary structure F ⊆ 2

Π
, A is a blunt access structure

w.r.t. F if (∀𝐹 ∈ F : 𝐹 ∉ A) and (∃𝐴 ∈ A : 𝐴 ∩ 𝐹 = ∅).

The following theorem shows that solving WR is sufficient to

implement weighted cryptographic protocols with blunt access

structure by reduction to their nominal counterparts.

Theorem 5.2. Given a set of parties, a nominal threshold access
structure protocol P with threshold value 𝑓𝑛 < 1/2, we obtain a
blunt threshold access structure w.r.t. a weighted threshold adversarial
structure with parameter 𝑓𝑤 < 𝑓𝑛 by solving𝑊𝑅 with parameters
𝛼𝑤 = 𝑓𝑤 and 𝛼𝑛 = 𝑓𝑛 . This is accomplished by instantiating P with
�̂� = 𝑇 virtual users and allowing party 𝑖 to control 𝑡𝑖 of them.2

Proof. By definition of𝑊𝑅, once it distributes 𝑇 tickets, the

number of tickets (and, hence, virtual users) allocated to the corrupt

parties will be less than 𝑓𝑛𝑇 . Hence, no element of the adversary

structure shall appear in the resulting access structure. In addition,

honest participants will receive more than (1 − 𝑓𝑛)𝑇 > 𝑓𝑛𝑇 tickets,

ensuring that there exists a set of all correct parties in the access

structure. □

Note that it is crucial for all participants to agree on how many

virtual users are assigned to each party as nominal protocols typi-

cally assume that the membership is common knowledge. To this

end, it is sufficient for all parties to run an agreed upon deterministic
weight-restriction protocol.

Among other things, this way, one can obtain weighted versions

of secret sharing [57], distributed random number generation [19],

threshold signatures [11], threshold encryption [32], and threshold

2
Recall that 𝑡𝑖 is the number of tickets assigned to party 𝑖 and𝑇 is the total number of

tickets assigned by the solution to the weight reduction problem (in this case, to WR).

See Section 2 for details.

fully-homomorphic encryption [42], all with blunt access struc-

tures. In the next section, we discuss how to do it for other access

structures.

5.2 Tight Secret Sharing and derivatives
Although a blunt access structure is sufficient for a large spectrum

of applications, more restrictive access structures are sometimes

necessary as well. Here, we present a straightforward approach

that involves just one extra round of communication to transform a

blunt access structure into a weighted threshold access structure.
3

This means that our construction can be readily utilized in any

protocol that already uses threshold cryptography without requir-

ing significant redesign efforts. We showcase the transformation

in Algorithm 2 using the particular example of a generic secret

sharing scheme with threshold 𝛼 .

Algorithm 2 Blunt to weighted access structure for party 𝑖

33: {𝑡1, . . . , 𝑡𝑛} ← WR({𝑤1, . . . ,𝑤𝑛}, 𝑓𝑤 , 𝑓𝑛)
34: 𝑇 ← ∑𝑛

𝑖=1 𝑡𝑖

35: Operation Share(𝑚, {𝑤1, . . . ,𝑤𝑛}): // Executed by dealer.

36: {𝑠1
1
, . . . , 𝑠

𝑡1
1
, . . . , 𝑠1𝑛, . . . , 𝑠

𝑡𝑛
𝑛 } ← (⌈𝑓𝑛𝑇 ⌉,𝑇 )-share(𝑚)

37: ∀𝑗 ∈ [𝑛] : send ⟨SHARES : 𝑠1
𝑖
, . . . , 𝑠

𝑡𝑖
𝑖
⟩ to party 𝑖

38: Operation RETRIEVE: // Executed by the parties.

39: Send ⟨REQUEST⟩ to all parties

40: Upon receiving ⟨REQUEST⟩ from party 𝑗 :

41: //𝑤𝑟𝑒𝑞 is initially 0

42: 𝑤𝑟𝑒𝑞 ← 𝑤𝑟𝑒𝑞 +𝑤 𝑗
43: if 𝑤𝑟𝑒𝑞 ≥ 𝛼

∑𝑛
𝑖=1𝑤𝑖 then

44: send shares received from the dealer to all parties

45: Upon receiving ⌈𝑓𝑛𝑇 ⌉ shares:
46: Reconstruct message𝑚

In order to obtain the weighted access structure, the first step

is to compute how many shares need to be dealt to each party by

solving the Weight Restriction problem. Using the nominal secret

sharing operations, we generate shares for the input message by

treating each ticket as a “virtual user”, setting the total number of

shares to the total number of tickets, and using the parameter 𝑓𝑛
to set the reconstruction threshold. The dealer then sends to each

party the number of shares determined by the solution to WR.

In the reconstruction phase, each party keeps track of the total

weight of parties that have requested the reconstruction. Once the

established threshold is surpassed, the participants transmit the

shares of the secret that they previously received from the dealer.

Finally, the secret is reconstructed once the threshold is surpassed.

The correctness of this transformation comes from the fact that

before parties corresponding to at least a fraction 𝛼 of the total

weight request the reveal of the secret, the honest parties do not

send their shares, prohibiting the reconstruction of the secret as the

shares of corrupted parties are not sufficient, by design, to perform

this action. However, once this threshold is surpassed, all honest

parties send their shares, and the secret is eventually retrieved, as

3
In fact, this can be further generalized to arbitrary access structures.
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their shares are, once again, by design, sufficient to surpass the

threshold of the nominal secret sharing scheme.

Beyond simple secret sharing, one can obtain weighted versions

of the same set of protocols as was discussed at the end of Section 5.1,

but with arbitrary access structures.

5.3 Black-Box transformation
The same approach of allocating a number of virtual users according

to the number of tickets as described in Section 5.1 can be applied to

arbitrary distributed protocols. Intuitively, a distributed protocol P
with resilience 𝑓𝑛 (𝑓𝑤 ) in the nominal (weighted) model must solve

the stated problem iff less than 𝑓𝑛𝑛 parties (parties with weightless

than 𝑓𝑤𝑊 ) are corrupted. Hence, by applying the “virtual users”

approach, we can essentially emulate the nominal model in the

weighted one as long as 𝑓𝑤 < 𝑓𝑛 . However, as we demonstrate

later in this section on the example of the Single Secret Leader

problem, this approach has its limitations with respect to what

kinds of distributed problems can be solved with it.

We illustrate the black-box transformation with two examples,

showing first an example where it works smoothly and then an

example where we have to slightly relax the problem statement for

it to be applicable.

Linear BFT consensus. One of the major contributions of the Hot-

stuff protocol [62] was to achieve linear communication complexity

BFT consensus. This result was achieved by designing the commu-

nication of the protocol in a star pattern, where each participant

only communicates with the leader. Thus, in order for the leader to

demonstrate that its proposal was accepted by a quorum of replicas,

the protocol uses threshold signatures which guarantee that a valid

signature can only be generated by combining at least 𝑛 − 𝑓 shares.
This guarantees that incompatible values are never both validated

by a quorum since they shall intersect in at least 𝑓 + 1 replicas and
at least one of them will be correct, which cannot happen since

honest replicas do not vote for different values.

In this case, we cannot apply either of the construction Section 5.1

as we need a tight access structure for the threshold signature, nor

can we apply the construction of Section 5.2 as it would make the

communication complexity quadratic whereas the main goal of

Hotstuff is to keep it linear. However, what we can do is simply

apply the virtual users approach in a black-box manner: pick any

threshold 𝑓𝑤 < 𝑓𝑛 , run a deterministic WR protocol, and determine

how many virtual identities should each party assume.

Single Secret Leader Election. SSLE [13] is a distributed protocol

that has as an objective to select one of the participants to be a

leader with an additional constraint that only the elected party

knows the result of the election. Then, once the leader is ready to

make a proposal, it reveals itself and other participants can then

correctly verify that the claiming leader was indeed elected by the

protocol.

The original paper contains nominal solutions for the protocol

relying on ThFHE [14] and on shuffling a list of commitments under

the DDH assumption. The authors initially suggest that their proto-

cols could support weights by replicating each party to match their

weights. As already discussed, this would create a huge overhead

in the protocol for systems with large total weight.

Interestingly, in the original protocol, it is required for the elec-

tion to be fair, that is, for the probability of each party being elected

to be uniform. One could think however of an alternative formula-

tion to the protocol where chain-quaility is required instead, where

we might specify that the fraction of blocks produced by corrupt

parties should not surpass 𝑓𝑛 when the adversary might control

a fraction of the weights up to 𝑓𝑤 . In this case, we can thus sim-

ply apply WR with parameters 𝛼𝑤 = 𝑓𝑤 , 𝛼𝑛 = 𝑓𝑛 , immediately

guaranteeing such a notion.

Properties such as fairness are one of the limitations of our trans-

formations, since any property that is a function of the weight of

the parties will not be preserved after the transformation is applied.

6 APPLICATIONS OF WEIGHT
QUALIFICATION

6.1 Erasure-Coded Storage and Broadcast
Erasure-coded storage systems [20, 40, 53, 56, 61], also known un-

der the names of Information Dispersal Algorithms (IDA) [56] and

Asynchronous Verifiable Information Dispersal (AVID) [20], are cru-

cial to many systems for space-efficient, secure, and fault-tolerant

storage and load balancing. Moreover, as demonstrated in [20],

they can yield highly communication-efficient solutions to the

very important problem of asynchronous Byzantine Reliable Broad-

cast [15, 16], a fundamental building block in distributed computing

that, among other things, serves as the basis for many practical

consensus [28, 34, 44, 50, 59], distributed key generation [5, 31],

and mempool [28] protocols.

The challenge of applying these protocols in the weighted setting

is that (𝑘,𝑚) erasure coding, by definition, converts the original

data into𝑚 discrete fragments such that any 𝑘 of them are suffi-

cient to reconstruct the original information. Thus, each party will

inevitably get to store an integer number of these fragments, and

the smaller𝑚 is, the more efficient the encoding and reconstruc-

tion will be. Moreover, for the most commonly used codes–Reed

Solomon–the original message must be of size at least 𝑘 log𝑚 bits.

Hence, using a large𝑚 may lead to increased communication as the

message may have to be padded to reach this minimum size. As we

illustrate in this section, determining the smallest “safe” number of

fragments to give to each party is exactly the WQ problem, solved

by Dora.

Let us consider the example of [20] as it is the first erasure-coded

storage protocol tolerating Byzantine faults. We believe Dora can

be applied analogously to other similar works.

This protocol operates in a model where any 𝑡 out of 𝑛 parties

can be malicious or faulty, where 𝑡 < 𝑛
3
. In other words, it has the

nominal fault threshold of 𝑓𝑛 = 1

3
. The protocol encodes the data

using (𝑡 + 1, 𝑛) erasure coding, and the data is considered to be

reliably stored once at least 2𝑡 + 1 parties claim to have stored their

respective fragments. The idea is that, even if 𝑡 of them are faulty,

the remaining 𝑡 + 1 parties will be able to cooperate to recover the

data.

In order to make a weighted version of this protocol, instead of

waiting for confirmations from 2𝑡 + 1 parties, one needs to wait

for confirmations from a set of parties that together possess more

than a fraction 2𝑓𝑤 of total weight, where 𝑓𝑤 = 𝑓𝑛 = 1

3
. A subset

of weight less than 𝑓𝑤 of these parties may be faulty. Hence, for

8
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the protocol to work, it is sufficient to guarantee that any subset of

total weight more than 2𝑓𝑤 − 𝑓𝑤 = 𝑓𝑤 gets enough fragments to

reconstruct the data. To this end, we can apply theWQproblemwith

the threshold 𝛽𝑤 = 𝑓𝑤 . We can set 𝛽𝑛 to be an arbitrary number

such that 0 < 𝛽𝑛 < 𝛽𝑤 . Then, we can use (⌈𝛽𝑛𝑇 ⌉,𝑇 ) erasure coding,
where𝑇 is the total number of tickets allocated by the WQ solution.

Hence, whenever a set of weight more than 2𝑓𝑤 of parties claim to

have stored their fragments, we will be able to reconstruct the data

with the help of the correct participants in this set. As for the rest

of the protocol, it can be converted to the weighted model simply

by applying weighted voting, as was discussed in Section 1.2.

As a result, we manage to obtain a weighted protocol for erasure-

coded verifiable storage with the same resilience as in the nominal

protocol (𝑓𝑤 = 𝑓𝑛 = 1

3
). The “price” we pay is using erasure coding

with a smaller rate (𝛽𝑛 instead of 𝑓𝑤 ), i.e., storing data with a slightly

increased level of redundancy. However, note that 𝛽𝑛 can be set

arbitrarily close to 𝑓𝑤 , at the cost of more total tickets and, hence,

more computation.

Example instantiations. The communication and storage complexity

of these protocols depends linearly on the rate of the erasure code.

Using Reed-Solomon with Berlekamp-Massey decoding algorithm,

the decoding computation complexity [37] is 𝑂 (𝑚2 · 𝑀𝑟𝑚 ) = 𝑂 (
𝑚
𝑟 ·

𝑀), where𝑀 is the size of the message (which we do not affect), 𝑟

is the rate of the code (in our case, 𝑟 = 𝛽𝑛), and𝑚 is the number

of fragments (in our case, the number of tickets allocated by the

solution to the WQ problem). For the sake of illustration, let us

fix 𝛽𝑛 to be
1

4
. Then, the rate of the code used in the weighted

solution will be
4

3
times smaller than in the nominal solution. For

the number of fragments𝑚, let us substitute the upper bound from

Section 3.2 (𝑚 ≤ min{𝛽𝑤 ,1−𝛽𝑤 }
𝛽𝑤−𝛽𝑛 𝑛). For 𝛽𝑤 = 1

3
and 𝛽𝑛 = 1

4
,𝑚 ≤ 4𝑛.

Hence, the overall slow-down compared to the nominal solution is

4 · 4
3
≈ 5.33.

One can also consider using FFT-based decoding algorithms [43].

Since the complexity of the FFT-based decoding depends only poly-

logarithmically on the number of fragments𝑚, one can select the

rate of the code (𝑟 = 𝛽𝑛) to be much closer to 𝛽𝑤 and, thus, minimize

communication and storage overhead.

Some protocols [52] are designed for higher reconstruction thresh-

olds, which allows them to be more communication- and storage-

efficient compared to [20]. For these cases, we will need to set

𝛽𝑤 := 2

3
. By setting 𝛽𝑛 := 1

2
and applying the upper bound from

Section 3.2, we will obtain the same reduction of factor
4

3
in rate

and 2 times fewer tickets:𝑚 ≤ min{2/3,1−2/3}
2/3−1/2 𝑛 = 2𝑛. The computa-

tional overhead will be 2 · 4
3
≈ 2.66.

6.2 Error-Corrected Broadcast
The exciting work of [30] illustrated how one can avoid the

need for complicated cryptographic proofs in the construction of

communication-efficient broadcast protocols by employing error-

correcting codes, thus enabling a better communication complexity

when a trusted setup is not available. The protocol of [30] can be

used for the construction of communication-efficient Asynchronous

Distributed Key Generation [5, 31] protocols.

Similarly to erasure codes, error-correcting codes convert the

data into𝑚 discrete fragments, such that any𝑘 of them are sufficient

to reconstruct the original information. However, they have the

additional property that the data can be reconstructed even when

some of the fragments input to the decoding procedure are invalid

or corrupted. Reed-Solomon decoding allows correcting up to 𝑒

errors when given 𝑘 + 2𝑒 fragments as input.

The protocol of [30] tolerates up to 𝑡 failures in a system of

𝑛 ≥ 3𝑡+1 parties (for simplicity, we will consider the case𝑛 = 3𝑡+1).
Its key contribution is the idea of online error correction. Put simply,

the protocol first ensures that:

• Every honest party obtains a cryptographic hash of the data

to be reconstructed;

• Every honest party obtains its chunk of the data.

Then, in order to reconstruct a message, an honest party solicits

fragments from all other parties and repeatedly tries to reconstruct

the original data using the Reed-Solomon decoding and verifies the

hash of the output of the decoder against the expected value. As

the protocol uses 𝑘 = 𝑡 + 1 and𝑚 = 𝑛, after hearing from all 2𝑡 + 1
honest and 𝑒 ≤ 𝑡 malicious parties, it will be possible to reconstruct

the original data (as 2𝑡 + 1 + 𝑒 ≥ 𝑘 + 2𝑒 , for 𝑘 = 𝑡 + 1).
To convert this protocol into theweightedmodel, it is sufficient to

make sure that all honest parties together possess enough fragments

to correct all errors introduced by the corrupted parties. To this end,

we will apply the WQ problem. We will set 𝛽𝑤 to the fraction of

weight owned by honest parties, i.e., 𝛽𝑤 := 1−𝑓𝑤 = 2

3
(where 𝑓𝑤 will

be the resilience of the resulting weighted protocol, 𝑓𝑤 = 𝑓𝑛 = 1

3
).

However, it is not immediately obvious how to set 𝛽𝑛 to allow the

above-mentioned property.

If we want to use error-correcting codes with rate 𝑟 , we need

to guarantee that the fraction of fragments received by the honest

parties (which is at least 𝛽𝑛) is at least 𝑟 +𝑒 , where 𝑒 is the fraction of
fragments received by the corrupted parties. However, since honest

parties get at least the fraction 𝛽𝑛 of all fragments, then 𝑒 ≤ 1 − 𝛽𝑛 .
Hence, we need to set 𝛽𝑛 so that 𝛽𝑛 ≥ 𝑟 + (1 − 𝛽𝑛). We can simply

set 𝛽𝑛 := 𝑟
2
+ 1

2
for arbitrary 𝑟 < 1

3
.

Example instantiation. For the sake of an example, we can set 𝛽𝑤 :=
2

3
, 𝑟 := 1

4
and 𝛽𝑛 := 5

8
. Then, using the bound from Section 3.2, the

number of tickets will be at most
1−𝛽𝑤
𝛽𝑤−𝛽𝑛 · 𝑛 = 8𝑛.

As was discussed above, for erasure codes, we can either use

the Berlekamp-Massey decoding algorithm or the FFT-based ap-

proaches. The same applies to error-correcting codes. As most

practical implementations use the former, we will focus on it. In

this case, the communication overhead will be
𝑟𝑛
𝑟𝑤

, where 𝑟𝑛 = 1

3
is

the rate used in the nominal protocol and 𝑟𝑤 is the rate used for

the weighted protocol (in the example above, 𝑟 = 1

4
). The computa-

tion overhead is
𝑟𝑛
𝑟𝑤
· 𝑇𝑛 , where 𝑇 is the number of tickets allocated

by the WQ solution (in the example above, 𝑇 ≤ 8𝑛). Hence, for

the example parameters, the worst-case computational overhead is

4

3
· 8 ≈ 10.66.

7 DERIVED APPLICATIONS
In this section, we discuss indirect applications of weight reduction

problems that are obtained by using one or multiple building blocks

discussed in Sections 5 and 6. Crucially, for all applications discussed

here, we manage to avoid losing resilience despite applying weight

reduction. In all cases, the bulk of the protocol should be converted

9
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to the weighted model by applying weighted voting, as discussed

in Section 1.2.

Asynchronous State Machine Replication. For asynchronous state
machine replication protocols [28, 34, 44, 50, 59], we simply need

to use a weighted communication-efficient broadcast protocol (dis-

cussed in Section 6) and weighted distributed random number gen-

eration (discussed in Section 5.1). Crucially, the distributed number

generation part can use a nominal protocol with threshold 𝛼𝑛 = 1

2

and set 𝛼𝑤 := 1

3
, which is the resilience of the rest of the protocol.

Thus, in some sense, we level the resilience of different parts of the

protocol, without affecting the resilience of the composition.

Validated Asynchronous Byzantine Agreement. The same approach

can be applied to generate randomness for Validated Asynchronous

Byzantine Agreement (VABA) [6, 18].

These protocols also require tight threshold signatures. However,

in practice, multi-signatures [11, 54] can be applied instead as they

have almost no overhead over threshold signatures on the system

sizes where such protocols could be applied (below 1000 partici-

pants): it suffices to append the multi-signature with an array of 𝑛

bits, indicating the set of parties that produced the signature. Then,

along with the verification of the validity of the multi-signature

itself, anyone can verify that the signers together hold sufficient

weight.

Alternatively, one could apply the approach described in Sec-

tion 5.2 to implement tight weighted threshold signatures. However,

it would lead to an increase in message complexity of the resulting

protocol, which we want to avoid.

Finally, an ad-hoc weighted threshold signature scheme can be

applied, such as the one recently proposed in [29]. Note that these

signatures cannot be used for distributed randomness generation

as they lack the necessary uniqueness property, and thus we still

need to apply Swiper to obtain a complete protocol.

Consensus with Checkpoints. We can apply the same approach for

checkpointing proof-of-stake consensus protocols [8], but this time

for blunt threshold signatures (as discussed in Section 5.1) instead

of random number generation. If, for some reason, one wants to use

a tight threshold signature, the approach described in Section 5.2

can be applied at the cost of just 1 additional message delay per

checkpoint.

Compared to ad-hoc solutions for weighted threshold signa-

tures [29], we claim that our approach is more computationally

efficient as it is basically as fast as the underlying nominal protocol.

For example, 1 pairing to verify a BLS signature [11] compared

to 13 pairings to verify a signature in [29]. Moreover, the weight

reduction approach is more general and can support other types

of threshold signatures, such as RSA [58] and Schnorr [60], the

latter being particularly important in the context of checkpointing

to Bitcoin [8].

8 SPLITTING ATTACKS
We claim that the total number of tickets distributed by our protocol

is a function of the number of parties in the system and not its total

weight. From the results we obtained so far, however, it might seem

that an adversary who controls an amount 𝛼𝑤𝑊 of weight is able to

split itself into ⌊𝛼𝑤𝑊 ⌋ parties, making the number of participants

of the system a function of the total weight and thus nullifying

our claim. We call such an attack a Splitting Attack, as defined in

definition 8.1.

Definition 8.1 (Splitting attack on a weight reduction protocol).
Given a system of 𝑛𝐻 parties with weights 𝑤 ′

1
,𝑤 ′

2
, . . . ,𝑤 ′𝑛𝐻 , the

adversary includes as many participants as it wants into the sys-

tem, with the constraint that the sum of the weight of these new

participants is at most
𝑓𝑤

1−𝑓𝑤
∑𝑛𝐻
𝑖=1

𝑤 ′
𝑖
. The parties are shuffled and

relabeled into a list with weights𝑤1,𝑤2, . . . ,𝑤𝑛 , which shall corre-

spond to the input of the weight reduction protocol.

This definition is natural, as it only reiterates the fact that the

adversary controls a fraction 𝑓𝑤 of the system weight, but that its

goal here is to increase the number of parties in the system. Notice

also that it is also equivalent to the scenario where the adversary

first corrupts a set of parties and then redistributes the weight into

several entities, but the proposed formulation will, in our opinion,

make the later analysis easier to follow. We then define splitting

resistance in definition 8.2.

Definition 8.2 (Splitting-resistant weight reduction). A weight re-

duction algorithm is splitting-resistant if the total number of tickets

and the complexity of the algorithm is 𝑝𝑜𝑙𝑦 (𝑛𝐻 ).

Let us show that any optimal solution to𝑊𝑅, as well as the

division approach, are both splitting resistant. Suppose that our

input was compromised by a splitting attack. The actual number

of honest participants, 𝑛𝐻 is unknown, but it is possible to find a

lower bound for it. WLOG, let us suppose that the parties are sorted

in decreasing weight order, then let us define 𝑛∗ as the following:

𝜎 ([) =
𝑛∑︁
𝑖=[

𝑤𝑖

𝑛∗ =𝑚𝑖𝑛({[ |𝜎 ([) ≤ 𝑓𝑤𝜎 (1)})
That is, 𝑛 − 𝑛∗ + 1 is the maximum number of participants that

can be corrupted at the same time by the adversary, obtained by

taking the corruption set as the parties with the smallest weight

possible. For this reason, if the input is the result of a splitting attack

on the system, then this number is an upper bound at the number

of parties included by the adversary. Equivalently, 𝑛∗ − 1 is a lower
bound on the number of honest parties in the system.

We can fix the number of tickets assigned to parties from 𝑝𝑛∗

to 𝑝𝑛 zero. Then, we can solve WR on the remaining parties by

adjusting the restriction threshold to a new value 𝛼 ′𝑤 . If the original
problem had parameter 𝛼𝑤 , then in terms of absolute weight, the

threshold was 𝛼𝑤𝑊 . The weight of the system becomes 𝑊 ′ =

𝑊 −∑𝑛
𝑖=𝑛∗ 𝑤𝑖 , thus in order to keep the semantics of the problem

correct, we need that 𝛼 ′𝑤𝑊
′ = 𝛼𝑤𝑊 .

Since we require 𝛼 ′𝑤 < 𝛼𝑛 for the problem to be solvable with

arbitrary inputs, we have that:

𝛼 ′𝑤 = 𝛼𝑤
𝑊

𝑊 ′
≤ 𝛼𝑤

1 − 𝑓𝑤
Therefore, as long as 𝛼𝑤 ≤ (1 − 𝑓𝑤) 𝑓𝑛 , a solution to

𝑊𝑅({𝑤𝑖 }𝑛
∗−1
𝑖=1

, 𝛼 ′𝑤 , 𝛼𝑛) is a valid splitting resistant solution to

𝑊𝑅({𝑤𝑖 }𝑛𝑖=1, 𝛼𝑤 , 𝛼𝑛).
10
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9 ANALYZINGWEIGHT RESTRICTION ON
SAMPLE SYSTEMS

Experiment description. We performed two kinds of experiments

on real blockchain data. In the first experiment, shown in Figure 1a,

we analyzed the influence of the choice of parameters 𝛼𝑤 and 𝛼𝑛 for

the original data retrieved from the blockchains; the value of 𝛼𝑛 was

varied in the range [0.1, 1], while the value of 𝛼𝑤 was tested in the

range [0.1×𝛼𝑛, 0.9×𝛼𝑛]. In the experiments showcased in Figure 1b,

we kept these parameters fixed and analyzed the influence of the

number of parties in the metrics we tracked. In order to have the

same blockchain with different numbers of parties, we have used

a bootstrapping statistical technique where we performed 1000

experiments sampling parties with replacement from the blockchain

data and taking the average of the results.

In each experiment, we tracked the total number of tickets dis-

tributed, the maximum number of tickets held by a single party, and

the number of parties that get at least one ticket (in the experiments

we label them as the number of holders). In Figure 1, we show the

results for the Tezos blockchain, but the results for Algorand, Aptos,

and Filecoin are also available in Appendix C. The analysis of the

results reveals the following information: the upper bound given

is very pessimistic, with the total number of tickets very rarely

surpassing the number of parties for different values of 𝛼𝑛, 𝛼𝑤 . The

total number of tickets varies extremely close to a linear function

on the number of parties, as well as the number of holders. The

maximum number of tickets, on the other hand, seems to saturate

when the number of parties in absolute terms surpasses the order

of magnitude of 1000, remaining almost constant after that point.

10 RELATEDWORK
The simplest solution for creating a weighted threshold crypto-

graphic system is to simply have a user of weight 𝑤 to become

𝑤 virtual users and to give one key to each of them. Shamir’s pa-

per describing his secret sharing scheme [57] puts forward this

solution. However, in practice, the total weight tends to be prohibi-

tively large, and quantizing it requires solving weight reduction

problems, which is the main subject of this paper.

There is a large body of work studying ad-hoc weighted crypto-

graphic protocols [9, 10, 25, 29, 36, 41]. Compared to these works,

the weight reduction approach studied in this paper has a number

of benefits, such as simplicity, efficiency, wider applicability, and

a wider range of possible cryptographic assumptions. Moreover,

in many cases, ad-hoc solutions can be combined with and benefit

from weight reduction.

A recent work [10] mentioned a similar idea of reducing real

weights to integers to construct ramp secret sharing. This project

has been started and the first versions of Swiper have been drafted

before the online publication of [10]. As the main focus of [10] is

different, we believe that we do a much more in-depth exploration

of this direction by studying different kinds of weight reduction

problems and their applications beyond secret sharing and suggest-

ing protocols that are not only linear in the worst case, but also

allocate very few tickets in empirical evaluations on real-world

weight distributions.

11 CONCLUDING REMARKS
In this paper, we have presented a family of optimization problems

called weight reduction that, to the best of our knowledge, has

not been studied before. We provided practical protocols to find

good, albeit not optimal, solutions to these problems. As we have

shown, it allows us to efficiently solve many weighted distributed

problems.

We are currently working on polynomial exact solutions to the

weight reduction problems, i.e., algorithms that would always yield

the minimum possible number of tickets for any given weight

distribution. Nevertheless, fast approximate algorithms will remain

relevant for large systems.

The discussion we present is extensive but not yet complete.

Many interesting questions remain to be answered. Among them

is the full formal characterization of problems that can be solved

by our transformations. We have also only considered threshold

adversaries. Other forms of corruption remain to be considered.

One important aspect of proof-of-stake blockchains is the dis-

tribution of incentives, which should depend on the weight of

each party, hence meriting further discussion in future work. This

combines with a discussion of other adversarial models where all

participants are rational, and there is no honest majority.

The behavior of adversaries against a protocol is also interesting.

We have discussed the splitting attack and have shown that, under

some conditions, the number of tickets produced is upper bound

by a function of the number of honest parties. However, as seen in

the empirical performance of the protocol, the weight distribution

affects the resulting number of tickets. Hence, it is interesting to

study how much the performance of the resulting protocols can be

affected by the adversary redistributing its stake in the worst possi-

ble way, not to gain more tickets, but to increase the total number

of tickets in the system, and thus compromise the performance.
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A SOLVING KNAPSACK
The Knapsack problem is a very well-known and studied opti-

mization problem. Methods used to solve it include mixed inte-

ger programming, branch and bound, and dynamic programming.

In this paper, we will be required to solve Knapsack, which is

generally an NP-complete problem. However, as we shall shortly

prove in Section 3, the number of keys distributed in an optimal

𝑊𝑒𝑖𝑔ℎ𝑡𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑏𝑙𝑒𝑚 solution is 𝑂 (𝑛), which will allow us to

solve our Knapsack instances in 𝑂 (𝑛2) time by running dynamic
programming by profits. For completeness, and because one of our

solutions toweight reduction solutions heavily rely on it, we present

this Knapsack solution in Algorithm 3. More detailed explanations

and correctness analysis can be found in [45].

The basic idea of the algorithm is to build an array 𝑑𝑝 , for which

in each position 𝑑𝑝 [𝑞] is stored the minimum weight necessary to

reach profit 𝑞. By definition, the minimum weight to achieve profit

0 is zero, while the other positions are solved using the following

recursion:

13

https://dogechain.dog/DogechainWP.pdf
https://dogechain.dog/DogechainWP.pdf
https://tezos.com/whitepaper.pdf
https://filecoin.io/filecoin.pdf
https://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341


Luciano Freitas and Andrei Tonkikh

Algorithm 3 Knapsack using DP by profits

47: Input:
48: 𝐶 ∈ R≥0 – capacity

49: 𝑤 ∈ R𝑛≥0 – weights

50: 𝑘 ∈ Z𝑛≥0 – profits (keys in our use case)

51: 𝑈 ∈ Z≥0 – upper bound on solution

52: 𝑑𝑝 [0] ← 0

53: for 𝑞 ← 1 to𝑈 do
54: 𝑑𝑝 [𝑞] ← ∞

55: for 𝑗 ← 1 to 𝑛 do
56: for 𝑞 ← 𝑈 down to 𝑘 [ 𝑗] do
57: if 𝑑𝑝 [𝑞 − 𝑘 [ 𝑗]] +𝑤 [ 𝑗] < 𝑑𝑝 [𝑞] then
58: 𝑑𝑝 [𝑞] ← 𝑑𝑝 [𝑞 − 𝑘 [ 𝑗]] +𝑤 [ 𝑗]

59: Return max{𝑞 |𝑑𝑝 [𝑞] ≤ 𝐶}

𝑑𝑝 𝑗 [𝑞] =
{
𝑑𝑝 𝑗−1 [𝑞] if 𝑞 < 𝑘 [ 𝑗]
min(𝑑𝑝 𝑗−1 [𝑞], 𝑑𝑝 𝑗−1 [𝑞 − 𝑘 [ 𝑗]] +𝑤 [ 𝑗] otherwise

That is, considering only the first 𝑗 items the minimum weight

necessary to achieve profit 𝑞′ + 𝑘 [ 𝑗] is the minimum between the

minimum weight necessary to achieve profit 𝑞′ + 𝑘 [ 𝑗] fixing the

first 𝑗 − 1 parties and the weight necessary to achieve 𝑞′ plus the
weight of party 𝑗 . Algorithm 3 finds the value of the array 𝑑𝑝 for

the first 𝑛 elements, i.e. the whole system. Thus, the solution is the

last position of the array that does not exceed capacity.

To reduce the memory footprint while still being able to recon-

struct not only the optimal profit but also the items, one can apply

the divide-and-conquer method [45, Section 3.3].

B EXACT SOLUTION TOWR
The way we formulate𝑊𝑅 in section 2.3 can be directly trans-

lated into an instance of bi-level optimization problem [26]. In such

problems, we define an upper level optimization problem which con-

tains another (lower-level) optimization problem in its constraints,

namely:

minimize

𝑛∑︁
𝑖=1

𝑡𝑖

subject to

𝑛∑︁
𝑖=1

𝑥𝑖𝑡𝑖 ≤ 𝛼𝑛
𝑛∑︁
𝑖=1

𝑡𝑖

maximize

𝑛∑︁
𝑖=1

𝑥𝑖𝑡𝑖

subject to

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝛼𝑤
𝑛∑︁
𝑖=1

𝑤𝑖

𝑛∑︁
𝑖=1

𝑡𝑖 ≥ 1

𝑥𝑖 ∈ {0, 1}, 𝑡𝑖 ∈ {0, 1, 2, . . . }

The following theorem will be useful for simplifying this formu-

lation and others we shall build.

Theorem B.1. Minimizing the total number of tickets that the
adversary can corrupt in𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is equivalent to mini-
mizing the total number of keys.

Proof. Let 𝑇𝐴 be the maximum number of tickets that the ad-

versary can corrupt in a solution of𝑊𝑅 that distributes 𝑇 tickets

in total, then:

𝑇 =

⌈
𝑇𝐴

𝛼𝑛

⌉
This stems from the fact that the problem requires 𝑇𝐴 ≤ 𝛼𝑛𝑇 =⇒
𝑇 ≥ 𝑇𝐴/𝛼𝑛 . The minimum integer that satisfies this constraint

is given by the expression above. Because this is an increasing

function, the theorem holds. □

Theorem B.1 allows us to reformulate𝑊𝑅 as a minimax problem:

min

𝑡
max

𝑥

𝑛∑︁
𝑖=1

𝑥𝑖𝑡𝑖

subject to

𝑛∑︁
𝑗=1

𝑥𝑖𝑡𝑖 ≤ 𝛼𝑛
𝑛∑︁
𝑖=1

𝑡𝑖

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝛼𝑤
𝑛∑︁
𝑖=1

𝑤𝑖

𝑛∑︁
𝑖=1

𝑡𝑖 ≥ 1

𝑥𝑖 ∈ {0, 1}, 𝑘𝑖 ∈ {0, 1, 2, . . . }

A common method for solving minimax problems in MIP is to

minimize a new variable that is greater or equal to all the feasible

options, which eliminates in our case the variable 𝑥 , but introduces

𝑂 (2𝑛) constraints to the problem, as the following:

minimize 𝐾𝐴

subject to 𝐾𝐴 ≤ 𝑇𝐾
𝑛∑︁
𝑖=1

𝑘𝑖

∀𝐼 ⊆ [𝑛] s.t.
∑︁
𝑖∈𝐼

𝑤𝑖 ≤ 𝑇𝑤𝑊 :

∑︁
𝑖∈𝐼

𝑘 [𝑖] ≤ 𝐾𝐴

𝑛∑︁
𝑖=1

𝑘𝑖 ≥ 1

𝑥𝑖 ∈ {0, 1}, 𝐾𝐴, 𝑘𝑖 ∈ {0, 1, 2, . . . }

We can replace the exponential constraints on every subset of

weight less than 𝑓𝑤𝑊 by a constraint on the Knapsack solution, as

it will bound all feasible solutions. In order to do so, we hardcode

algorithm 3 into the constraints of 𝑊𝑒𝑖𝑔ℎ𝑡𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑏𝑙𝑒𝑚 as

follows:
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minimize 𝐾𝐴

subject to 𝐾𝐴 = max(^ | 𝑑𝑝 [𝑛] [^] ≤ 𝑓𝑤𝑊 ) (1)

𝐾𝐴 ≤ 𝑇𝐾
𝑛∑︁
𝑖=1

𝑘𝑖

𝑛∑︁
𝑖=1

𝑘𝑖 ≥ 1

𝑛∑︁
𝑖=1

𝑘𝑖 ≤ 𝑈

∀𝑖 ∈ {0, . . . , 𝑛} : 𝑑𝑝 [𝑖] [0] = 0

∀^ ∈ {1, . . . ,𝑈 } : 𝑑𝑝 [0] [^] =𝑊
∀𝑖 ∈ {1, . . . , 𝑛}, ^ ∈ {1, . . . ,𝑈 } : 𝑑𝑝 [𝑖] [^] ={
min(𝑑𝑝 [𝑖 − 1] [^], 𝑑𝑝 [𝑖 − 1] [^ − 𝑘𝑖 ] +𝑤𝑖 ) if ^ ≥ 𝑘𝑖
𝑑𝑝 [𝑖 − 1] [^] if ^ < 𝑘𝑖

(2)

𝑥𝑖 ∈ {0, 1}, 𝐾𝐴, 𝑘𝑖 ∈ {0, 1, 2, . . . ,𝑈 }

Since the objective function minimizes 𝐾𝐴 and constraint 1 stip-

ulates that this same variable is the maximum of other variables, it

is enough to require 𝐾𝐴 to be greater than each of the maximum

argument, as follows:

∀^ ∈ {0, . . . ,𝑈 + 1} : 𝛼 [^] = True =⇒ 𝐾𝐴 ≥ ^ (3)

∀^ ∈ {0, . . . ,𝑈 + 1} : 𝛼 [^] = True =⇒ 𝑑𝑝 [𝑛] [^] ≤ 𝑓𝑤𝑊 (4)

∀^ ∈ {0, . . . ,𝑈 + 1} : 𝑑𝑝 [𝑛] [^] ≤ 𝑓𝑤𝑊 =⇒ 𝛼 [^] = True (5)

Constraints 3 and 4 are linearized as follows:

∀^ ∈ {0, . . . ,𝑈 } : 𝐾𝐴 ≥ ^ × 𝛼 [^]
𝑑𝑝 [𝑛] [^] ≤ 𝑓𝑤𝑊 + (1 − 𝛼 [^]) × (1 − 𝑓𝑤)𝑊

While constraint 5 is linearized by the following transformations:

𝑑𝑝 [𝑛] [^] ≤ 𝑓𝑤𝑊 =⇒ 𝛼 [^] = True⇔
𝛼 [^] = False =⇒ 𝑑𝑝 [𝑛] [^] > 𝑓𝑤𝑊 ⇔

𝑑𝑝 [𝑛] [^] + 𝛼 [^] 𝑓𝑤𝑊 ≥ 𝑓𝑤𝑊 + 𝜖

Here, 𝜖 is a very small number.

The reason why constraint 2 is not linear is because it indexes

an array with a variable. This can be avoided by expanding the

indexing to a case-by-case assignment:

𝑑𝑝 [𝑖] [^] =



min(𝑑𝑝 [𝑖 − 1] [^], 𝑑𝑝 [𝑖 − 1] [0] +𝑤𝑖 ) if ^ − 𝑘𝑖 = 0

min(𝑑𝑝 [𝑖 − 1] [^], 𝑑𝑝 [𝑖 − 1] [1] +𝑤𝑖 ) if ^ − 𝑘𝑖 = 1

· · ·
min(𝑑𝑝 [𝑖 − 1] [^], 𝑑𝑝 [𝑖 − 1] [^] +𝑤𝑖 ) if ^ − 𝑘𝑖 = ^
min(𝑑𝑝 [𝑖 − 1] [^],𝑤𝑖 ) if ^ − 𝑘𝑖 < 0

(6)

We then introduce 𝑛 × (𝑈 + 1) × (𝑈 + 2) variables 𝛽 [1..𝑛] [0..𝑈 +
1] [0..𝑈 +2] to check which of the cases should be applied as follows:

^ − 𝑘𝑖 = 0 =⇒ 𝛽 [𝑖] [^] [0] = True

^ − 𝑘𝑖 = 1 =⇒ 𝛽 [𝑖] [^] [1] = True
· · ·

^ − 𝑘𝑖 = 𝑘 =⇒ 𝛽 [𝑖] [^] [𝑘] = True

^ − 𝑘𝑖 < 0 =⇒ 𝛽 [𝑖] [^] [𝑘 + 1] = True

The last of these constraints can be written as:

^ − 𝑘𝑖 < 0 =⇒ 𝛽 [𝑖] [^] [^ + 1] = True⇔
𝛽 [𝑖] [^] [^ + 1] = False =⇒ ^ − 𝑘𝑖 ≥ 0⇔

^ − 𝑘𝑖 + 𝛽 [𝑖] [^] [^ + 1] ×𝑈 ≥ 0

The other constraints all follow the same pattern, which can be

rewritten as:

^ − 𝑘𝑖 = ℓ =⇒ 𝛽 [𝑖] [^] [ℓ] = True⇔
𝛽 [𝑖] [^] [ℓ] = False =⇒ ^ − 𝑘𝑖 < ℓ ∨ ^ − 𝑘𝑖 > ℓ ⇔

𝛽 [𝑖] [^] [ℓ] = False =⇒ ^ − 𝑘𝑖 ≤ ℓ − 1 ∨ ^ − 𝑘𝑖 ≥ ℓ + 1

In order to represent a constraint with an OR logical operation,

it is necessary to introduce auxiliary variables to enforce it.

𝛽 [𝑖] [^] [ℓ] = False =⇒ 𝛾 [𝑖] [^] [ℓ] [0] + 𝛾 [𝑖] [^] [ℓ] [1] ≥ 1

𝛾 [𝑖] [^] [ℓ] [0] = True =⇒ ^ − 𝑘𝑖 ≤ ℓ − 1⇔
^ − 𝑘𝑖 ≤ (1 − 𝛾 [𝑖] [^] [ℓ] [0]) ×𝑈 + ℓ − 1

𝛾 [𝑖] [^] [ℓ] [1] = True =⇒ ^ − 𝑘𝑖 ≥ ℓ + 1⇔
^ − 𝑘𝑖 + (1 − 𝛾 [𝑖] [^] [ℓ] [1]) ×𝑈 ≥ ℓ + 1

By introducing variables ∀𝑖 ∈ {1, . . . , 𝑛}, ^, ℓ ∈ {1, . . . ,𝑈 + 1} :
𝑚[𝑖] [^] [ℓ] = min(𝑑𝑝 [𝑖 − 1] [^], 𝑑𝑝 [𝑖 − 1] [ℓ] +𝑤𝑖 ), and the above

conditions, Constraint 6 becomes:∑︁
ℓ∈{0..𝑈 +2}

𝛽 [𝑖] [^] [ℓ] = 1

𝑑𝑝 [𝑖] [^] ≥



𝑚[𝑖 − 1] [^] [0] − (1 − 𝛽 [𝑖] [^] [0]) ×𝑊
𝑚[𝑖 − 1] [^] [1] − (1 − 𝛽 [𝑖] [^] [1]) ×𝑊
· · ·
𝑚[𝑖 − 1] [^] [𝑈 ] − (1 − 𝛽 [𝑖] [^] [𝑈 ]) ×𝑊
𝑑𝑝 [𝑖 − 1] [^] − (1 − 𝛽 [𝑖] [^] [𝑈 + 1]) ×𝑊

𝑑𝑝 [𝑖] [^] ≤



𝑚[𝑖 − 1] [^] [0] + (1 − 𝛽 [𝑖] [^] [0]) ×𝑊
𝑚[𝑖 − 1] [^] [1] + (1 − 𝛽 [𝑖] [^] [1]) ×𝑊
· · ·
𝑚[𝑖 − 1] [^] [𝑈 ] + (1 − 𝛽 [𝑖] [^] [𝑈 ]) ×𝑊
𝑑𝑝 [𝑖 − 1] [^] + (1 − 𝛽 [𝑖] [^] [𝑈 + 1]) ×𝑊

All that is left is linearizing the minimum function, computing

the variables𝑚. Note that the minimum of two values 𝑎 and 𝑏 is

less or equal to both values. Moreover, it is also greater or equal 𝑎

if 𝑎 ≤ 𝑏 or greater or equal 𝑏, otherwise. This remark allows us to
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define the minimum function in the following manner:

𝑚[𝑖] [^] [ℓ] ≤ 𝑑𝑝 [𝑖 − 1] [^]
𝑚[𝑖] [^] [ℓ] ≤ 𝑑𝑝 [𝑖 − 1] [ℓ] +𝑤𝑖

𝑑𝑝 [𝑖 − 1] [^] > 𝑑𝑝 [𝑖 − 1] [ℓ] +𝑤𝑖 =⇒ 𝛿 [𝑖] [^] [ℓ] = True⇔
𝛿 [𝑖] [^] [ℓ] = False =⇒ 𝑑𝑝 [𝑖 − 1] [^] ≤ 𝑑𝑝 [𝑖 − 1] [ℓ] +𝑤𝑖 ⇔

𝑑𝑝 [𝑖 − 1] [^] ≤ 𝛿 [𝑖] [^] [ℓ] ×𝑊 + 𝑑𝑝 [𝑖 − 1] [ℓ] +𝑤𝑖

𝑚[𝑖] [^] [ℓ] + 𝛿 [𝑖] [^] [ℓ] ×𝑊 ≥ 𝑑𝑝 [𝑖 − 1] [^]
𝑚[𝑖] [^] [ℓ] + (1 − 𝛿 [𝑖] [^] [ℓ]) ×𝑊 ≥ 𝑑𝑝 [𝑖 − 1] [ℓ] +𝑤𝑖

C EXPERIMENT RESULTS IN THE OTHER
BLOCKCHAINS

16



Swiper and Dora: efficient solutions to weighted distributed problems

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

50

100

150

200

250
Total tickets

( w, n) = (1/4,1/3)
( w, n) = (1/3,3/8)

( w, n) = (1/3,1/2)
( w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

2

4

6

8
Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

# Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

10

20

30

40

50
# Holders

50

100

150

200

250

2

4

6

8

10

20

30

40

50

(a) Influence of threshold parameters

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

50

100

150

200

250
Total tickets

( w, n) = (1/4,1/3)
( w, n) = (1/3,3/8)

( w, n) = (1/3,1/2)
( w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

2

4

6

8
Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

# Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

10

20

30

40

50
# Holders

50

100

150

200

250

2

4

6

8

10

20

30

40

50

(b) Influence of the number of parties

Figure 2: Experiment results using Aptos
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Figure 3: Experiment results using Filecoin
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Figure 4: Experiment results using Algorand
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