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Abstract

The lightweight block ciphers ULC and LICID are introduced by Sli-
man et al. (2021) and Omrani et al. (2019) respectively. These ciphers are
based on substitution permutation network structure. ULC is designed
using the ULM method to increase efficiency, memory usage, and security.
On the other hand, LICID is specifically designed for image data. In the
ULC paper, the authors have given a full-round differential characteristic
with a probability of 2−80. In the LICID paper, the authors have presented
an 8-round differential characteristic with a probability of 2−112.66. In this
paper, we present the 15-round ULC and the 14-round LICID differential
characteristics of probabilities 2−45 and 2−40 respectively using the MILP
model.

Keywords: Differential Cryptanalysis, Lightweight Block Ciphers, MILP,
S-box

1 Introduction

Lightweight cryptography is used on resource-constrained devices. Many
lightweight block ciphers like PRINCE [1], PRESENT [2], GIFT [3], and
WARP [4] are designed in past two decades. The security analysis of lightweight
block ciphers is necessary to measure the strength against differential attack.
In this attack [5–7], we exploit the non-uniform behavior of the input-output
differential of the ciphers. For a successful key recovery attack against a differ-
ential attack, high-probability differential characteristics are needed. Nowadays,
the problem of differential cryptanalysis is solved using the mixed-integer linear
programming (MILP) model. An MILP problem is defined as follows: finding
x = (x1, x2, . . . , xm) ∈ Rm (some of xi are integers) with linear constraints
AxT ≤ b to optimize the linear objective function f(x) =

∑m
i=1 cixi, where

A ∈ Mn×m(R), b ∈ Rn, and c ∈ Rm. Gurobi and CPLEX are well-known
solvers that are used to solve optimization problems. The problem of finding
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the differential characteristics is divided into two parts: (i) to calculate the min-
imum number of active S-boxes, and (ii) to find the high-probability differential
characteristics. Mouha et al. [8] proposed a technique based on MILP to count
the minimum number of active S-boxes of word-oriented block ciphers (SPN
structures). This method is not applicable to bit-oriented block ciphers. Then,
Sun et al. [9] extended this method to S-bP structures. After that, Sun et al. [10]
proposed a method to generate the linear inequalities from the H-representation
of the convex hull of all possible differential patterns of an S-box. Sasaki and
Todo [11] introduced the reduction algorithm based on MILP to minimize the
linear inequalities. Based on this MILP technique, Zhu et al. [12] presented a
differential attack on the lightweight block cipher GIFT. Kumar and Yadav [13]
also provided a differential attack on lightweight block cipher WARP using the
MILP technique.

Motivation The designers of the ULC cipher have given a full-round differen-
tial characteristic with a probability of 2−80. They have not provided any lower
bound on active S-boxes for full-round differential characteristics. On the other
hand, the designers of the LICID cipher have provided an 8-round differential
characteristic with a probability of 2−112.66. They have not given full-round dif-
ferential characteristics with a lower bound on active S-boxes. However, there
is no third-party differential cryptanalysis on these two ciphers.

Contribution In this paper, we provide the differential characteristics for full-
round ULC and LICID ciphers using the MILP technique. Our contributions
are as follows:

i. Compute a 15-round differential characteristic with a probability of 2−45

(minimum 15 active S-boxes)

ii. Construct a 14-round differential characteristic with a probability of 2−40

(minimum 14 active S-boxes)

In comparison to the findings presented by the authors of ULC and LICID,
these two differential characteristics have less complexity.

Organization The rest of our paper is organized as follows: we present a
detailed description of the ciphers in Section 2. In Section 3, we provide the
linear inequalities generation and reduction methods. In Section 4, we give a
MILP-based construction of differential characteristics. We calculate the lower
bounds on active S-boxes and provide full-round differential characteristics of
ULC and LICID in Section 5. We conclude our paper in Section 6.

2 Preliminaries

In this section, we discuss the ultra-lightweight cryptosystem (ULC) [14,15] and
lightweight image cryptosystem (LICID) [16] for IoT Devices.
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K A key of 80-bit (ULC) or 112-bit (LICID)
Kr The rth round key
X An input block of 64-bit
X[i,j] The ith to jth bits of X
Y An output block of 64-bit
Bi A bitstring of 8 bits
Bi[r : t] The rth to tth bits of Bi

|A| Cardinality of a set A

2.1 Notations

2.2 Description of ULC

ULC is designed based on the ultra-lightweight method (ULM) which is the
combination of bit-slice, WTS, and involutive methods. Here, we describe its
key generation and encryption algorithm.

2.2.1 Key Generation

Initially, we have an 80-bit key. Then, each 64-bit round key is generated from
it as follows:

i. An S-box is applied to the last 4 bits of an 80-bit key

ii. An updated key is rotated to the left by 61 bits

iii. The last 64 bits are extracted as a round key. It is described in Algorithm 1.

Algorithm 1: Key Generation Algorithm

Input : K= k79k78 . . . k2k1k0
Output: Kr= kr63k

r
62 . . . k

r
2k

r
1k

r
0, where 1 ≤ r ≤ 16

for r=1 to 16 do
(k79k78k77k76) = S(k79k78k77k76)
K = K ≪ 61
Kr = (k79k78 . . . k18k17k16)

end

2.2.2 Encryption Algorithm

The round function of ULC takes two inputs: a 64-bit block and a 64-bit key.
It is composed of an add round key, a bitslice S-box, and an involutory 64-bit
permutation. First, a 64-bit round key (derived from the 80-bit key) is XORed
with the intermediate ciphertext. Next, a 4-bit S-box is applied, as shown in
Table 1. Finally, a 64-bit permutation is used, as shown in Table 2. This process
is applied 15 times consecutively. In addition, the output of the last round is
XORed with a 64-bit round key, as described in Algorithm 2. The encryption
of ULC is shown in Figure 1 [14].
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Table 1: S-box of ULC (Decimal Values)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 6 5 12 10 1 14 7 9 11 0 3 13 8 15 4 2

Table 2: P-box of ULC

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(x) 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 3
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(x) 62 58 54 50 46 42 38 34 30 26 22 18 14 10 6 2
x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(x) 61 57 53 49 45 41 37 33 29 25 21 17 13 9 5 1
x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(x) 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

Algorithm 2: Encryption Algorithm

Input : X= x63x62 . . . x2x1x0

Kr= kr63k
r
62 . . . k

r
2k

r
1k

r
0, where 1 ≤ r ≤ 16

Output: Y= y63y62 . . . y2y1y0
for r=1 to 15 do

X = X ⊕Kr

for j=0 to 15 do
X[4∗j+3,4∗j] = S(X[4∗j+3,4∗j])

end
X = P (X )

end
Y = X ⊕K16

2.3 Description of LICID

LICID is based on the SPN structure. It is used for image encryption on IoT
devices. Here, we explain its key generation and encryption algorithm.

2.3.1 Key Generation

First, we have a 112-bit key. Then, each 64-bit round key is generated from it
as follows:

i. A 4× 4 S-box is used on odd nibbles of a 112-bit key

ii. A modular addition (⊞) is applied to the bytes of the updated key

iii. Extract the first 64-bit to get the round key. It is shown in Algorithm 3.
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Figure 1: Encryption Diagram of ULC

Algorithm 3: Key Generation Algorithm

Input : K = B0B1B2 . . . B12B13

Output: Kr= kr63k
r
62 . . . k

r
2k

r
1k

r
0, where 1 ≤ r ≤ 15

for r=1 to 15 do
for i=0 to 13 do

Bi[7 : 4] = S(Bi[7 : 4])
end
for i=1 to 13 do

Bi = Bi ⊞Bi−1

end
B0 = B0 ⊞B13

for j=12 to 0 do
Bj = Bj ⊞Bj+1

end
B13 = B13 ⊞B0

Kr=first 64-bit of K
end

2.3.2 Encryption Algorithm

LICID consists of two phases: (i) an outer phase, and (ii) an inner phase. The
outer phase consists of two operations: horizontal ADD-Diffusion (HAD) and
vertical ADD-Diffusion (VAD), as shown in Figure 2 [16]. The inner phase is
an iterative function that takes two inputs: a 64-bit block and a 64-bit key.
It consists of three operations: (i) an add round key, (ii) a substitution (S)-
box, and (iii) a permutation (P)-box. It is applied 14 times successively, as
described in Algorithm 4. Moreover, a round key is applied at the end of the
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last round. The S-box and the P-box of LICID are shown in Table 3 and Table
4, respectively. The encryption of LICID is given in Figure 3 [16].

Algorithm 4: Encryption Algorithm (Inner Phase)

Input : X= x63x62 . . . x2x1x0

Kr= kr63k
r
62 . . . k

r
2k

r
1k

r
0, where 1 ≤ r ≤ 15

Output: Y= y63y62 . . . y2y1y0
for r=1 to 14 do

for i=0 to 63 do
xi = xi ⊕ kri

end
for j=0 to 15 do

X[4∗j+3,4∗j] = S(X[4∗j+3,4∗j])
end
X = P (X )

end
for i=0 to 63 do

yi = xi ⊕ k15i
end
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(b) VAD

Figure 2: Outer-phase operations

Table 3: S-box of LICID (Decimal Values)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 7 10 14 4 1 6 13 5 9 8 15 12 2 11 3

Table 4: P-box of LICID

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(x) 2 63 8 5 62 59 4 1 58 55 0 61 54 51 60 57
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(x) 18 15 24 21 14 11 20 17 10 7 16 13 6 3 12 9
x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(x) 34 31 40 37 30 27 36 33 26 23 32 29 22 19 28 25
x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(x) 50 47 56 53 46 43 52 49 42 39 48 45 38 35 44 41
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Figure 3: Encryption of LICID

7



3 Generation and Reduction of Linear Inequal-
ities for S-box

In this section, we discuss the H-representation of the convex hull to generate
linear inequalities and the reduction algorithm to minimize the linear inequali-
ties.

Definition 3.1 (Convex Hull). The convex hull of a set S of finite discrete
points is the smallest convex set C such that S ⊆ C.

Definition 3.2 (Difference Distribution Table). The difference distribution ta-
ble (DDT) of an S-box S is a 2n × 2n matrix with entry at row ∆i ∈ Fn

2 and
column ∆o ∈ Fn

2 equal to

|{t ∈ Fn
2 |S(t)⊕ S(t⊕∆i) = ∆o}|.

The non-zero and zero entries in DDT represent the possible and impossible
differential propagations of an S-box respectively. The DDT of ULC and LICID
are shown in Table 5 and Table 6, respectively. We use the possible differential
propagations to generate the linear inequalities of an S-box. We discuss the H-
representation of the convex hull to generate the linear inequalities in the next
subsection.

3.1 H-representation of Convex Hull

Consider that ∆i = (x1, x2, . . . , xn) and ∆o = (y1, y2, . . . , yn) be the in-
put and corresponding output difference of an n-bit S-box respectively. We
can represent the possible differential propagation of an S-box as a point
(x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ F2n

2 . Now, consider the set of all possible differ-
ential propagations of an S-box in F2n

2 .
Then, using SageMath, compute the convex hull of this set as a system of

linear inequalities (the H-representation of the convex hull). SageMath provides
a large set of linear inequalities, including redundant ones, with solution space
F2n
2 −R, where R is the set of all impossible propagations of an S-box. MILP

with these constraints cannot be solved efficiently. We can represent the dif-
ferential behavior of an S-box with these inequalities. Now, we need to reduce
the set of these inequalities to construct an efficient MILP model. In the next
subsection, we discuss the reduction algorithm.

3.2 Reduction Algorithm

We discuss the reduction algorithm [11] to minimize the linear inequalities (say
N inequalities) resulting from the H-representation of the convex hull. Consider
R0,R1, . . . ,R|R|−1 are the elements of R. We minimize the linear inequalities
such that the selected inequality removes at least one Ri, i ∈ {0, 1, . . . , |R|−1}.
Define Ri = {ik1

, ik2
, . . . , ikt

} such that for each ikr
∈ Ri, zikr

removes Ri from
F2n
2 . We solve this minimization problem using MILP. For this MILP, we define

binary variables z0, z1, . . . , zN−1, where zi = 1 or zi = 0 represents that linear
inequality i is included or not in the system respectively. The objective function
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to minimize the linear inequalities is defined as follows:

N−1∑
i=0

zi.

Using Gurobi, we solve this MILP to get minimized linear inequalities. The
minimized linear inequalities for ULC and LICID are shown in Table 7 and
Table 8, respectively.

Table 5: DDT of ULC (Decimal Values)

∆i

∆o 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 4 2 0 0 0 2 0 0 4 2
2 0 0 0 0 0 0 2 2 2 0 2 0 2 4 0 2
3 0 0 0 2 0 0 2 0 2 4 2 2 2 0 0 0
4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4
5 0 2 0 0 4 2 0 0 4 2 0 0 0 2 0 0
6 0 2 4 0 2 0 0 0 0 0 0 2 2 2 0 2
7 0 0 4 0 2 2 0 0 0 2 0 2 2 0 0 2
8 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
9 0 2 0 0 0 2 4 0 0 2 0 0 0 2 4 0
10 0 0 0 0 0 4 2 2 2 0 2 0 2 0 0 2
11 0 4 0 2 0 0 2 0 2 0 2 2 2 0 0 0
12 0 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0
13 0 2 0 0 0 2 0 0 0 2 4 0 0 2 4 0
14 0 0 4 2 2 2 0 2 0 2 0 0 2 0 0 0
15 0 2 4 2 2 0 0 2 0 0 0 0 2 2 0 0

Table 6: DDT of LICID (Decimal Values)

∆i

∆o 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 2 2 0 4 2 0 0 2 2 0 2 0
2 0 2 2 0 0 0 2 2 0 2 2 0 2 2 0 0
3 0 2 0 0 0 0 0 2 0 4 2 0 0 2 2 2
4 0 0 0 4 2 0 2 0 0 2 0 2 4 0 0 0
5 0 2 0 2 2 2 0 4 2 0 0 2 0 0 0 0
6 0 0 0 0 2 0 2 0 0 0 4 0 0 2 4 2
7 0 2 2 2 0 0 2 0 0 0 4 2 0 2 0 0
8 0 2 2 2 0 2 0 0 2 0 0 0 0 2 4 0
9 0 0 2 0 0 4 6 0 0 2 0 0 0 2 0 0
10 0 0 2 0 0 0 0 2 4 0 2 0 0 0 0 6
11 0 2 0 2 2 0 0 2 0 0 2 2 0 0 0 4
12 0 4 2 0 0 2 0 0 2 0 0 0 2 2 2 0
13 0 0 2 0 2 4 0 0 0 4 0 2 0 2 0 0
14 0 0 0 2 4 0 2 0 0 0 0 2 4 0 2 0
15 0 0 2 2 0 0 0 0 4 2 0 2 2 0 0 2
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4 MILP Modeling of Differential Characteristic
Search Problem

In this section, we discuss how to find high-probability differential character-
istics using a MILP model.

4.1 Active S-boxes Minimization

First, we construct the linear inequalities of the S-boxes using DDT in Sage-
Math [17]. Then, minimize them using the MILP-based reduction algorithm as
discussed in Section 3 by Gurobi optimization solver [18]. There are 267 and
360 linear inequalities for ULC and LICID using SageMath, respectively. Then,
there are 21 linear inequalities from the MILP problem based on impossible
differentials for both ciphers using Gurobi, as presented in Table 7 and Table 8,
respectively. These sets of minimized linear inequalities are used in a MILP
problem to minimize the number of active S-boxes.

Table 7: Linear inequalities for the minimizing number of active S-boxes in ULC

Sr. No. Linear Inequalities

1 −1x3 − 2x2 − 1x1 − 1x0 − 1y3 + 2y2 + 1y1 + 1y0 ≥ −4
2 +0x3 + 1x2 − 2x1 + 0x0 + 2y3 + 1y2 + 1y1 + 2y0 ≥ −0
3 +0x3 + 1x2 + 1x1 − 2x0 + 1y3 + 2y2 + 0y1 + 2y0 ≥ −0
4 −1x3 − 2x2 + 1x1 + 2x0 − 1y3 − 1y2 + 1y1 − 1y0 ≥ −4
5 −1x3 − 3x2 + 2x1 + 3x0 + 4y3 + 4y2 + 2y1 + 1y0 ≥ −0
6 +2x3 + 1x2 + 2x1 + 1x0 + 0y3 + 0y2 + 1y1 − 2y0 ≥ −0
7 +2x3 + 0x2 + 1x1 + 2x0 + 1y3 − 1y2 + 2y1 − 1y0 ≥ −0
8 +3x3 + 4x2 − 1x1 − 1x0 + 3y3 − 1y2 + 3y1 − 1y0 ≥ −0
9 +0x3 + 1x2 − 1x1 − 1x0 − 1y3 − 1y2 − 1y1 + 0y0 ≥ −4
10 +3x3 − 1x2 + 2x1 + 4x0 − 2y3 + 2y2 + 4y1 − 1y0 ≥ −0
11 −1x3 + 1x2 + 2x1 − 1x0 + 0y3 + 0y2 + 2y1 + 2y0 ≥ −0
12 +0x3 + 3x2 + 2x1 + 3x0 − 1y3 − 1y2 − 1y1 + 3y0 ≥ −0
13 +3x3 − 3x2 + 1x1 + 0x0 − 1y3 − 1y2 − 2y1 + 3y0 ≥ −4
14 +0x3 + 1x2 − 1x1 + 1x0 + 0y3 + 1y2 + 0y1 − 1y0 ≥ −1
15 +2x3 − 2x2 − 1x1 − 1x0 + 2y3 + 1y2 − 1y1 − 2y0 ≥ −5
16 −1x3 − 1x2 + 2x1 − 1x0 + 0y3 + 0y2 − 2y1 − 2y0 ≥ −5
17 +1x3 − 3x2 − 1x1 + 0x0 + 1y3 − 3y2 − 3y1 + 2y0 ≥ −7
18 −1x3 + 1x2 − 2x1 − 2x0 + 1y3 − 2y2 + 1y1 − 1y0 ≥ −6
19 −1x3 + 1x2 − 1x1 + 0x0 − 1y3 + 0y2 + 1y1 − 1y0 ≥ −3
20 +1x3 + 1x2 − 1x1 − 2x0 − 1y3 − 2y2 + 1y1 − 2y0 ≥ −6
21 −1x3 − 1x2 − 1x1 + 0x0 − 1y3 + 0y2 − 1y1 + 0y0 ≥ −4

4.2 Optimize the Probability of Differential Characteristic

First, we consider the differential probabilities of the S-boxes to find the high-
probability differential characteristics. There are three possible differential prob-
abilities: 1, 2−2, and 2−3 for ULC’s S-box. We need two binary variables (p0, p1)
to represent these probabilities. The differential patterns, including these two
extra variables, satisfy Equation 1. Then, compute 543 linear inequalities for
ULC using SageMath. Similarly, for LICID’s S-box, there are four possible
probabilities: 1, 2−1.415, 2−2, and 2−3; and three binary variables (p0, p1, p2) to
represent these probabilities, satisfying Equation 2. Then, compute 3606 linear
inequalities for LICID using SageMath. We use the reduction algorithm to get a
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Table 8: Linear inequalities for the minimizing number of active S-boxes in
LICID

Sr. No. Linear Inequalities

1 −1x3 + 2x2 − 1x1 − 2x0 − 2y3 + 0y2 + 2y1 + 1y0 ≥ −4
2 −1x3 + 0x2 + 0x1 + 1x0 − 1y3 + 1y2 + 1y1 − 1y0 ≥ −2
3 −2x3 + 3x2 − 3x1 + 1x0 − 1y3 − 3y2 − 1y1 + 3y0 ≥ −7
4 +1x3 + 2x2 − 1x1 + 2x0 − 1y3 + 2y2 − 3y1 − 3y0 ≥ −5
5 −1x3 − 1x2 + 1x1 + 1x0 − 2y3 + 2y2 − 2y1 + 1y0 ≥ −4
6 +0x3 − 1x2 − 2x1 − 1x0 + 2y3 − 2y2 + 1y1 − 1y0 ≥ −5
7 −1x3 + 3x2 + 1x1 + 3x0 + 2y3 − 3y2 + 2y1 + 4y0 ≥ −0
8 +1x3 + 0x2 + 1x1 − 1x0 − 1y3 + 0y2 + 1y1 − 1y0 ≥ −2
9 +3x3 + 2x2 + 3x1 + 2x0 − 1y3 − 1y2 + 0y1 − 1y0 ≥ −0
10 +3x3 + 2x2 + 1x1 − 2x0 + 2y3 + 2y2 − 1y1 + 1y0 ≥ −0
11 +2x3 + 4x2 − 2x1 − 4x0 + 4y3 + 1y2 − 1y1 + 3y0 ≥ −3
12 +2x3 − 2x2 + 1x1 + 1x0 + 1y3 + 2y2 + 0y1 + 2y0 ≥ −0
13 −2x3 + 2x2 + 2x1 − 1x0 − 1y3 + 0y2 − 2y1 − 1y0 ≥ −5
14 +2x3 − 3x2 − 2x1 + 3x0 + 4y3 − 1y2 + 1y1 − 4y0 ≥ −6
15 +2x3 − 2x2 − 2x1 + 1x0 − 1y3 + 2y2 + 3y1 + 1y0 ≥ −2
16 −1x3 − 1x2 − 2x1 + 1x0 + 3y3 + 4y2 + 3y1 + 2y0 ≥ −0
17 −1x3 + 0x2 + 1x1 − 1x0 + 1y3 + 2y2 + 2y1 + 1y0 ≥ −0
18 −2x3 − 1x2 − 2x1 + 1x0 + 0y3 − 1y2 + 1y1 − 2y0 ≥ −6
19 −1x3 − 1x2 + 0x1 − 2x0 − 1y3 − 1y2 − 2y1 + 2y0 ≥ −6
20 −2x3 − 1x2 + 1x1 + 0x0 + 1y3 − 1y2 − 2y1 − 1y0 ≥ −5
21 +1x3 − 3x2 + 1x1 − 2x0 − 2y3 − 2y2 − 1y1 + 1y0 ≥ −7

minimized set of 19 and 20 linear inequalities for ULC and LICID, respectively.
The minimized linear inequalities for optimizing the probability of ULC and
LICID are shown in Table 9 and Table 10, respectively.

(p0, p1) = (0, 0), if Pr[∆i → ∆o] = 1 = 2
−0

(p0, p1) = (0, 1), if Pr[∆i → ∆o] = 4/16 = 2
−2

(p0, p1) = (1, 0), if Pr[∆i → ∆o] = 2/16 = 2
−3

 (1)

(p0, p1, p2) = (0, 0, 0), if Pr[∆i → ∆o] = 1 = 2
−0

(p0, p1, p2) = (0, 0, 1), if Pr[∆i → ∆o] = 6/16 = 2
−1.415

(p0, p1, p2) = (0, 1, 0), if Pr[∆i → ∆o] = 4/16 = 2
−2

(p0, p1, p2) = (1, 0, 0), if Pr[∆i → ∆o] = 2/16 = 2
−3


(2)

5 Experiments

We construct the high probability full-round differential characteristics with the
minimum number of active S-boxes for both ciphers in this section. We have
given the lower bound on the number of active S-boxes from 1 to 15 (1 to 14)
of ULC (LICID) to get these full-round differential characteristics respectively.
The lower bounds and time taken by the MILP models to generate them are
mentioned in Table 13.

5.1 Differential Characteristics of 15-round ULC

In this subsection, a 15-round differential characteristic has been generated with
probability 2−45 based on the MILP method. It is presented in Table 11. There
are 15 active S-boxes in this differential characteristic.
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Table 9: Linear inequalities for optimizing the probability (ULC)

Sr. No. Linear Inequalities

1 +0x3 + 0x2 − 2x1 + 0x0 − 1y3 − 1y2 − 1y1 + 1y0 + 3p1 + 4p0 ≥ −0
2 +0x3 − 1x2 − 2x1 + 0x0 + 0y3 + 1y2 + 2y1 + 1y0 + 1p1 + 2p0 ≥ −0
3 +0x3 + 0x2 + 1x1 + 0x0 + 0y3 + 0y2 + 0y1 + 1y0 + 0p1 − 1p0 ≥ −0
4 −2x3 + 2x2 − 4x1 + 3x0 + 5y3 + 3y2 + 2y1 + 1y0 + 2p1 + 1p0 ≥ −0
5 +5x3 + 2x2 + 1x1 + 3x0 − 2y3 + 3y2 + 2y1 − 4y0 + 2p1 + 1p0 ≥ −0
6 +4x3 + 1x2 + 2x1 + 3x0 + 1y3 − 1y2 + 2y1 − 1y0 − 1p1 − 2p0 ≥ −0
7 +1x3 + 2x2 + 1x1 + 1x0 + 1y3 + 1y2 + 2y1 + 1y0 − 5p1 − 2p0 ≥ −0
8 +1x3 + 3x2 − 3x1 + 4x0 + 1y3 + 4y2 − 1y1 − 3y0 + 1p1 + 3p0 ≥ −0
9 +0x3 − 1x2 + 1x1 + 1x0 + 0y3 + 0y2 + 2y1 − 2y0 + 1p1 + 2p0 ≥ −0
10 +1x3 + 1x2 − 1x1 − 1x0 + 4y3 + 3y2 + 2y1 + 2y0 − 1p1 − 2p0 ≥ −0
11 +1x3 − 3x2 + 2x1 + 0x0 + 1y3 + 0y2 − 3y1 + 2y0 + 4p1 + 1p0 ≥ −0
12 −1x3 + 0x2 + 1x1 − 1x0 + 0y3 + 0y2 − 1y1 − 2y0 + 3p1 + 4p0 ≥ −0
13 +0x3 + 1x2 − 2x1 − 1x0 + 0y3 − 1y2 − 3y1 − 2y0 + 5p1 + 8p0 ≥ −0
14 +1x3 + 1x2 − 1x1 − 5x0 − 1y3 − 5y2 + 2y1 − 2y0 + 9p1 + 12p0 ≥ −0
15 −7x3 + 1x2 − 2x1 + 1x0 − 7y3 − 2y2 + 2y1 − 2y0 + 13p1 + 18p0 ≥ −0
16 −7x3 + 1x2 − 2x1 − 2x0 − 7y3 + 1y2 + 2y1 − 2y0 + 13p1 + 18p0 ≥ −0
17 −1x3 + 1x2 − 2x1 − 5x0 + 1y3 − 5y2 + 2y1 − 1y0 + 9p1 + 12p0 ≥ −0
18 −1x3 − 1x2 − 2x1 + 0x0 − 2y3 + 0y2 − 1y1 − 1y0 + 5p1 + 7p0 ≥ −0
19 +0x3 + 0x2 + 0x1 + 0x0 + 0y3 + 0y2 + 0y1 + 0y0 − 1p1 − 1p0 ≥ −1

Table 10: Linear inequalities for optimizing the probability (LICID)

Sr. No. Linear Inequalities

1 −3x3 + 0x2 + 2x1 − 4x0 − 2y3 − 1y2 − 1y1 + 2y0 + 9p2 + 7p1 + 8p0 ≥ −0
2 −6x3 + 3x2 − 6x1 + 1x0 − 3y3 − 2y2 + 3y1 − 2y0 + 16p2 + 15p1 + 13p0 ≥ −0
3 +1x3 − 3x2 − 4x1 + 1x0 − 2y3 + 3y2 + 2y1 + 3y0 − 3p2 + 7p1 + 4p0 ≥ −0
4 +2x3 − 1x2 + 1x1 − 5x0 − 3y3 + 2y2 + 3y1 − 3y0 − 2p2 + 10p1 + 9p0 ≥ −0
5 −4x3 − 4x2 − 3x1 + 3x0 + 5y3 + 4y2 + 7y1 + 1y0 − 10p2 + 7p1 + 3p0 ≥ −0
6 +1x3 − 3x2 − 8x1 + 2x0 + 4y3 − 2y2 + 1y1 − 10y0 + 14p2 + 12p1 + 19p0 ≥ −0
7 +4x3 + 2x2 − 4x1 − 1x0 + 2y3 − 4y2 + 2y1 + 1y0 − 1p2 + 2p1 + 6p0 ≥ −0
8 −1x3 + 0x2 + 2x1 + 3x0 − 3y3 + 1y2 + 1y1 − 1y0 + 1p2 + 2p1 + 4p0 ≥ −0
9 −3x3 + 2x2 + 2x1 − 3x0 + 3y3 − 1y2 + 1y1 − 1y0 + 6p2 + 8p1 + 5p0 ≥ −0
10 −4x3 + 6x2 + 1x1 + 2x0 − 1y3 − 5y2 − 2y1 + 4y0 + 9p2 + 12p1 + 6p0 ≥ −0
11 +2x3 + 2x2 − 2x1 + 1x0 + 0y3 + 3y2 − 3y1 − 3y0 + 3p2 + 4p1 + 5p0 ≥ −0
12 +5x3 + 1x2 + 5x1 + 3x0 − 2y3 − 5y2 − 1y1 − 3y0 + 1p2 + 6p1 + 5p0 ≥ −0
13 +2x3 + 1x2 + 2x1 + 1x0 + 1y3 + 1y2 + 0y1 + 0y0 − 4p2 − 1p1 − 2p0 ≥ −0
14 −1x3 + 4x2 − 3x1 − 4x0 + 4y3 − 2y2 − 5y1 + 7y0 + 12p2 + 4p1 + 10p0 ≥ −0
15 −2x3 + 2x2 + 6x1 + 2x0 − 5y3 + 10y2 − 5y1 + 1y0 − 5p2 + 2p1 + 7p0 ≥ −0
16 −2x3 + 0x2 + 2x1 + 1x0 + 3y3 − 2y2 − 1y1 + 1y0 + 4p2 + 2p1 + 3p0 ≥ −0
17 +2x3 + 1x2 + 1x1 − 2x0 + 4y3 + 4y2 + 2y1 + 3y0 − 6p2 − 6p1 − 2p0 ≥ −0
18 +3x3 − 6x2 + 2x1 − 3x0 − 4y3 − 5y2 − 3y1 + 1y0 + 8p2 + 16p1 + 15p0 ≥ −0
19 −7x3 − 3x2 + 2x1 + 1x0 + 2y3 − 3y2 − 7y1 − 3y0 + 16p2 + 15p1 + 18p0 ≥ −0
20 +0x3 + 0x2 + 0x1 + 0x0 + 0y3 + 0y2 + 0y1 + 0y0 − 1p2 − 1p1 − 1p0 ≥ −1

5.2 Differential Characteristics of 14-round LICID

In this subsection, a 14-round differential characteristic has been constructed
with probability 2−40 using the MILP method. It is given in Table 12. There
are 14 active S-boxes in this differential characteristic.

6 Conclusion

In this paper, we have presented full-round differential characteristics for
lightweight block ciphers ULC and LICID. We have introduced a 15-round ULC
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Table 11: Differential Characteristic (15-rounds) of ULC with Probability 2−45.0

Round Input difference Probability
1 0x0000000000005000 2−0

2 0x0000000000008000 2−3

3 0x0000000000008000 2−3

4 0x0000000000008000 2−3

5 0x0000000000008000 2−3

6 0x0000000000008000 2−3

7 0x0000000000008000 2−3

8 0x0000000000008000 2−3

9 0x0000000000008000 2−3

10 0x0000000000008000 2−3

11 0x0000000000008000 2−3

12 0x0000000000008000 2−3

13 0x0000000000008000 2−3

14 0x0000000000008000 2−3

15 0x0000000000008000 2−3

16 0x0000000000008880 2−3

Table 12: Differential Characteristic (14-rounds) of LICID with Probability
2−40.0

Round Input difference Probability
1 0x000000000000000e 2−0

2 0x0000000010000000 2−2

3 0x0000000100000000 2−3

4 0x1000000000000000 2−3

5 0x0000000000000001 2−3

6 0x0000000002000000 2−3

7 0x0000000008000000 2−3

8 0x0000000008000000 2−3

9 0x0000000008000000 2−3

10 0x0000000008000000 2−3

11 0x0000000008000000 2−3

12 0x0000000008000000 2−3

13 0x0000000008000000 2−3

14 0x0000000040000000 2−3

15 0x0000000120000000 2−2

Table 13: Lower Bounds on # Active S-boxes and Time

Cipher Lower Bounds on # Active S-boxes Time
ULC 15 29s
LICID 14 1s

differential characteristic with a minimum of 15 active S-boxes and a probability
of 2−45. We have also introduced a 14-round LICID differential characteristic
with a minimum of 14 active S-boxes and a probability of 2−40. Furthermore,
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a full-round key recovery attack can be mounted on ULC and LICID using the
high probability differential characteristics provided in this paper.
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