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Abstract

We give the first construction of a fully black-box round-optimal secure multiparty com-
putation (MPC) protocol in the plain model. Our protocol makes black-box use of a sub-
exponentially secure two-message statistical sender private oblivious transfer (SSP-OT), which
in turn can be based on (sub-exponential variants of) almost all of the standard cryptographic
assumptions known to imply public-key cryptography.

1 Introduction

The exact round complexity of secure computation has been a focus of research in cryptography over
the past two decades. This has been especially well-studied in the synchronous setting in the plain
model, with up to all-but-one static malicious corruptions. It is known that general-purpose secure
multiparty computation (MPC) protocols in this setting admitting a black-box simulator require at
least 4 rounds of simultaneous exchange [GK96b, KO04, GMPP16].1 In this work we focus on MPC
with black-box simulation. On the positive side, there has been a long sequence of works [GMPP16,
BHP17, ACJ17, KS17, BGI+17, BGJ+18, CCG+20] improving the round complexity, culminating in
a round-optimal construction that relies on the minimal assumption that a 4-round malicious-secure
OT protocol exists [CCG+20].

Black-Box Use of Cryptography. Notably, all MPC protocols discussed above make non-black-
box use of cryptography, which is typically associated with significant overheads in efficiency. It
is interesting, from both a theoretical and a practical perspective, to realize fully black-box proto-
cols [RTV04] where not only does the simulator make black-box use of an adversary, but also the
construction itself can be fully specified given just oracle access to the input-output relation of the
underlying cryptographic primitives, and without being given any explicit representation of these
primitives. In the following, we refer to this standard notion of fully black-box protocols as simply
black-box protocols. The focus of this work is on the following natural question:

What is the round complexity of black-box MPC in the plain model?
∗Technion. Email: yuvali@cs.technion.ac.il
†UIUC. Email: dakshita@illinois.edu
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1By simultaneous message exchange we mean that in each round, every party can send a message over a broadcast

channel. However, we allow the adversarial parties to be rushing, meaning that they can wait until they receive all
the honest party messages in each round before sending their own messages.
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It was only recently that the concrete round complexity of black-box MPC in the plain model
was studied. Ishai et al. [IKSS21] obtained a five-round MPC protocol making only black-box use
of a public-key encryption scheme with pseudorandom public keys, along with any 2-message OT
protocol satisfying semi-malicious security. They also gave 4-round protocols for a restricted class
of functionalities that consist of parallel copies of “sender-receiver” two-party functionalities. While
significantly improving over prior works, which required more than 15 rounds, it did not generally
match the known 4-round lower bound. Indeed, round-optimal black-box protocols are not known
even for the restricted case of two-sided 2PC, where both parties receive the output at the end of
the protocol execution. Furthermore, [IKSS21] highlighted significant barriers in extending their
techniques to obtain a round-optimal construction.

Our Results. In this work, we overcome these barriers to obtain a 4-round black-box MPC,
thereby obtaining the first round-optimal fully-black-box MPC in the plain model for general func-
tions. Our construction makes black-box use of any sub-exponential secure two-message OT, that
satisfies a well-studied “statistical sender privacy” (SSP-OT) property. This essentially requires that
the sender input remain statistically hidden from an unbounded malicious receiver. Such an OT
protocol can be instantiated based on (sub-exponential variants) of standard cryptographic assump-
tions such as DDH/QR/N th Residuosity/LWE [NP01, AIR01, Kal05, HK12, BD18, DGI+19]. This
covers most of the standard cryptographic assumptions known to imply public-key cryptography,
with LPN being the most notable exception 2

On the role of subexponentially secure OT. We stress that even though we rely on sub-
exponentially secure OT, our final simulator still runs in expected polynomial time. This itself may
seem counter-intuitive, and indeed we see it as a highlight of our technique and work. Very roughly,
the reason why subexponentially secure OT is helpful to us for achieving polynomial-time simulation
is that we design a protocol that admits two separate means for extracting the adversary’s input.
One is an “optimistic” extraction that runs in expected polynomial time, and the other is a super-
polynomial extraction that achieves stronger properties. We use the super-polynomial extraction to
essentially “bootstrap” and allow the optimistic extraction to succeed for the purposes of simulation.
(See Technical Overview below for more details.) We believe this technique is of independent interest
and may inspire progress in other settings where standard polynomial simulation is desired, but there
is a need to reduce round complexity beyond a barrier that arises from the need for some component
of the protocol to achieve simulation security.

Finally, we note that the 4-round lower bound [GK96b, KO04, GMPP16] holds even when
considering protocols that rely on sub-exponential hardness assumptions as long as the simulator
runs in (expected) polynomial time.

1.1 Related Work

The black-box round-complexity of general purpose secure computation as well as for specific tasks
such as oblivious transfer, zero-knowledge, non-malleable commitments etc., has a long and rich
history.

2Recently, SSP-OT was constructed from low-noise LPN and a standard derandomization assumption [BF22]
(building on [DGH+20]). However, this construction is only secure against quasi-polynomial sized adversaries.
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General Purpose MPC. Haitner et al. [HIK+11] gave the first construction of a malicious-
secure black-box MPC protocol in the plain model based on any semi-honest secure oblivious trans-
fer. However, the round complexity of this construction grew linearly in the number of parties
(denoted by n) even if one starts with a constant round semi-honest OT protocol. A later work
of Wee [Wee10] gave a O(log∗ n) black-box protocol by relying on stronger cryptographic assump-
tions such as dense cryptosystems, or homomorphic encryption, or lossy encryption. This was later
improved by Goyal [Goy11] to give a constant round protocol under similar assumptions. Unfortu-
nately, this constant was more than 15 which is a far cry from the lower bound of 4. A recent work
of Ishai et al. [IKSS21] gave a black-box five-round protocol based on any PKE with pseudorandom
public keys and any two-message OT protocol with semi-malicious security.

Special Secure Computation Tasks. For the case of oblivious transfer, Ostrovsky et al. [ORS15]
gave a round-optimal (i.e., a four-round) construction that made black-box use of enhanced trap-
door permutations. Friolo et al. [FMV19] gave a round-optimal black-box construction of OT based
on any public key encryption with pseudorandom public keys. Other black-box constructions of
four-round OT from lower level primitives were given in [CCG+21, MOSV22].

Ishai et al. [IKSS21] extended these results to the multiparty setting and gave a round-optimal
protocol for pairwise oblivious transfer functionality. In the pairwise OT setting, each ordered pair
of parties, namely, Pi and Pj execute an OT instance with Pi acting as the sender and Pj acting
as the receiver. This can be extended to parallel instances of general two-party sender-receiver
functionalities.

Hazay and Venkitasubramanian [HV18] and Khurana et al. [KOS18] gave round-optimal black-
box constructions of zero-knowledge arguments based on injective one-way functions. Hazay et
al. [HPV20] showed that unless the polynomial hierarchy collapses, all of NP cannot have a black-
box zero-knowledge argument based on one-way functions.

Goyal et al. [GLOV12] gave the first constant-round black-box construction of non-malleable
commitments based on one-way functions. A latter work of Goyal et al. [GPR16] gave a three-
round (which is round-optimal) black-box construction that is secure against a weaker class of
synchronizing adversaries assuming the existence of injective one-way functions.

2 Technical Overview

In this section, we give an overview of the main techniques used in our construction of a round-
optimal black-box secure multiparty computation protocol.

Starting Point. The starting point of our work is the recent result of Ishai et al. [IKSS21] who gave
a construction of a five-round MPC protocol that makes black-box use of any public-key encryption
scheme with pseudorandom public keys and any two-message semi-malicious OT protocol.3 Their
protocol is obtained via a round-efficient implementation of the IPS compiler [IPS08] in the plain
model.

We note a key component that was used in their instantiation: a four-round black-box protocol
that securely implements the watchlist functionality. Informally speaking, the watchlist functionality

3Recall that semi-malicious adversaries are stronger than the standard semi-honest adversaries and are allowed
to fix the random tape of adversarial parties to arbitrary values. However, like in the semi-honest setting, they are
forced to follow the protocol specification.
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is an n-party functionality where each ordered pair of parties (Pi, Pj) where i, j ∈ [n] are involved in
a k-out-of-m OT instance with Pi acting as the sender and Pj acting as the receiver. Using this four-
round watchlist protocol, Ishai et al. [IKSS21] showed that with an additional round of interaction,
it is possible to securely compute any multiparty functionality. Furthermore, the resulting protocol
only made black-box use of cryptographic primitives.

Going Below Five Rounds. In the same work, Ishai et al. [IKSS21] also observed that to
get a four-round protocol (which is round-optimal) in the plain model by making use of the IPS
compiler, one needs a three-round watchlist protocol. However, such a protocol cannot satisfy the
standard simulation based security definition w.r.t. a simulator that only makes black-box use of
the adversary. This is because such a simulation-secure watchlist protocol almost directly implies
a three-round protocol for oblivious transfer that satisfies standard simulation security. We know
that such a protocol is impossible to construct (even with non-black-box use of cryptography) if the
simulator uses the adversary in a black-box manner [KO04]. Furthermore, to make matters more
complicated, the proof of security of the overall compiler given in [IKSS21] crucially relied on the
watchlist protocol to satisfy the standard simulation-style definition. Therefore, to go below five
rounds and obtain a round-optimal construction, we need to come up with a new set of techniques.

Our Approach in a Nutshell. In this work, we show how to instantiate the IPS compiler
using a weaker notion of watchlists, that we call watchlists with promise security. As one of our
main contributions, we give a construction of a three-round watchlist protocol that satisfies promise
security. In Section 2.1, we motivate the definition of this weaker watchlist protocol and show
how it can be used to instantiate the IPS compiler and in Section 2.2, we give the main ideas in
constructing such a watchlist protocol.

2.1 Instantiating the IPS Compiler with Three-Round Watchlist

What Security can be achieved in Three Rounds? The work of Ishai et al. [IKSS21] gave a
round-preserving compiler that transforms any two-party computation protocol that satisfies certain
additional properties (which we will ignore for the moment) to a watchlist protocol. To understand
what security properties can be achieved by a three-round watchlist protocol, let us first try to
understand what type of security can be achieved by a three-round 2PC protocol.

Recall that in the standard two-party protocol setting, there is a receiver who holds an input
x and there is a sender who holds an input y. At the end of the protocol, the receiver obtains the
output of f(x, y) for some pre-determined functionality f . If we consider three-round protocols for
the above task, then the first and the third round messages in the protocol are sent by the sender
and the second round message is sent by the receiver.4 As the sender is tasked with sending both
the first and the third round message, a simulator could potentially rewind the second and the third
round messages in the protocol and extract the effective private input from an adversarial sender. In
other words, a three-round 2PC protocol could satisfy standard simulation-based security definition
against malicious senders. However, the receiver in this protocol is only sending a single message,
namely, the second round message. In fact, it is impossible to design a black-box PPT simulator
that could extract the effective private input from an adversarial receiver.

4We note that any protocol, even one in the bidirectional communication model, can be reduced to this setting.
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The key observation is that if we allow the simulator against malicious receivers to run in
super-polynomial time, then such a simulator can extract the effective receiver input and provide
security against malicious receivers. Therefore, in the three-round setting, we can hope to construct
a two-party protocol that satisfies standard simulation based security against malicious senders
and super-polynomial time simulation security against malicious receivers. Indeed, as we explain
later, we give a construction of such a three-round protocol that makes black-box use of a sub-
exponentially hard two-message OT protocol with statistical sender security. Such an OT protocol
is known from the (sub-exponential variant) of standard cryptographic hardness assumptions such
as DDH/N th residuosity/LWE/QR [AIR01, NP01, Kal05, HK12, BD18, DGI+19].

Instantiating the IPS Compiler with the Three-Round Watchlist. Given the two-party
protocol above, we could hope to obtain a three-round watchlist satisfying “semi-SPS” security by
following ideas in prior work [IKSS21]. If this were possible, could we directly get a four-round MPC
protocol by instantiating the IPS compiler with this “semi-SPS” three-round watchlist protocol?
Unfortunately, this is not quite possible, as we now explain. To understand this better, we give
a brief overview of the IPS compiler which is simplified and tailored to constructing a four-round
protocol. The IPS compiler makes use of the following components:

• A two-round client-server MPC protocol that is secure against a malicious adversary that
corrupts an arbitrary number of clients and a constant fraction of the servers. This is called
as the outer protocol. Such an outer protocol was constructed by Ishai et al. [IKP10, Pas12]
by making black-box use of any PRG.

• A four-round inner protocol that satisfies the following robustness property. Specifically, even
if the adversary behaves maliciously and deviates arbitrarily from the protocol specification in
the first three rounds, it cannot learn any information about the inputs of the honest parties.
Furthermore, if the adversary is able to produce an input, random tape that correctly explains
that the messages sent by it in the first three rounds, then the last round message from the
honest parties only reveals the output of the functionality.5

• A three-round watchlist protocol that satisfies the standard extraction of the adversarial sender
inputs and super-polynomial time extraction of the adversarial receiver inputs.

In the compiled protocol, each party plays the role of a client in the outer protocol and computa-
tion done by the servers are emulated by the inner protocol. To ensure that that the adversary only
cheats in at most a small number of these inner protocol executions, we make use of the watchlist
protocol. Specifically, each party acting as the receiver in the watchlist protocol chooses a random
subset of k executions as part of its secret watchlist. Every other party acting as the sender uses the
input, randomness used in each of the inner protocol executions as the sender inputs. This watchlist
protocol is run in parallel with the first three rounds of the inner protocol. At the end of the third
round, each party checks if the input, randomness pair provided by every other party correspond-
ing to its watched executions are consistent. If it detects any inconsistency, then it aborts. Using
standard probabilistic arguments, it is possible to show that if the honest parties have not aborted

5For technical reasons, we actually need the inner protocol to run in three rounds instead of four rounds. However,
to keep the exposition simple, we will ignore this in the overview. In the main body, we give a black-box construction
of such a three-round inner protocol based on two-round semi-malicious OT protocol (which is implied by two-round
SSP OT). This construction builds on the protocols given in [GS18, PS21].
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at the end of their watchlist check, then the adversary only deviates in a tiny constant fraction of
the inner protocol executions. These deviations can be directly mapped to the corresponding server
corruptions in the outer protocol. Since the outer protocol is secure against a constant fraction of
the server corruptions, security of the overall protocol follows.

While the above intuition seems sound, we encounter a major issue while formalizing it. In
particular, recall that we are aiming for standard polynomial security for our 4-round protocol, but
we are relying on super-polynomial time extraction as an ingredient. Thus, we are only able to show
that this protocol satisfies security via a super-polynomial time simulator. The “super-polynomial”
part in this simulator is needed to extract the receiver inputs used by the adversarial parties in the
watchlist protocol. Recall that in the watchlist protocol, the adversarial receiver inputs correspond
to the set of watched executions of the corrupted parties. We need to extract this information in
order to invoke the security of the outer protocol.6 Further, the simulator also needs to additionally
extract the adversarial sender inputs. As mentioned earlier, we cannot hope to simultaneously
achieve efficient polynomial time extraction of both the sender and the receiver inputs.

Our Solution: “Promise-Style” Extraction. In order to get around this issue, we use a
“promise-style” extraction technique that is inspired by the notion of Promise Zero-Knowledge [BGJ+18].
Specifically, we seek to devise an alternative polynomial-time extraction system that guarantees ex-
traction of the adversarial receiver inputs only against those adversaries that send a valid third
round message in the watchlist protocol (with non-negligible probability). For all other adversaries,
we do not provide any guarantees. Let us now explain how this weaker extraction guarantee is
sufficient to instantiate the IPS compiler.

The simulator of the compiled protocol starts generating the first-round messages of the outer
protocol using some default inputs for the honest parties. Note that these first round messages
correspond to the inputs to the inner protocol executions. The simulator uses these “dummy”
inputs to the inner protocol and starts interacting with the adversary for the first three rounds.
If the adversary aborts during this interaction, or fails to send a valid third round message in the
watchlist protocol, then the simulator simply outputs the view of this adversary. On the other hand,
if the adversary sends a valid third round message in the watchlist protocol, then the simulator uses
the “promise-style” extractor to extract the set of watched executions. This information is then used
by the simulator to simulate the messages in the main thread (using Goldreich-Kahan simulation
technique [GK96a]).

A subtle point to note here is that the third round message in the watchlist protocol is sent
by the adversary only after it receives the third round message from the honest parties (as we
are considering rushing adversaries). However, the third round message of the watchlist protocol
delivers the input, randomness used by the honest parties corresponding to the adversarial watched
executions. Recall that the simulator described above uses “dummy” inputs in the inner protocol
executions and tries to extract the adversarial watched executions. This will succeed only if the
distribution of the messages generated by the simulator is computationally indistinguishable to the
messages in the real protocol. Specifically, to prove this indistinguishability, we need to make sure
that the output of the watchlist protocol when using the real inputs is indistinguishable to the case
when the simulator uses default inputs.

6Specifically, the set of watched executions of the adversarial parties correspond to a subset of the corrupted
servers in the outer protocol. To invoke the security of the outer protocol, we need to extract this information from
the watchlist messages.
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To argue this, we rely on the security of the outer protocol. Recall that the inputs given to
the inner protocol executions correspond to the messages sent by the clients to the servers. By
corrupting the servers corresponding to the adversarial watched executions, we are guaranteed that
the first round message sent to these servers reveals no information about the inputs of the honest
clients. To give a bit more details, this is realized by first relying on the SPS security of the watchlist
protocol against adversarial receivers to extract the adversarial watched executions, and then switch
the input to a default value by relying the security of the outer protocol, and then switch back to
an honest watchlist execution using the default inputs.

Another point to note here is that we cannot guarantee perfect extraction of the adversarial
receiver inputs even if it sends a valid third round message with non-negligible probability. Due
to technical reasons, we can only guarantee “almost” perfect extraction. By this, we mean that
whenever the output received by the adversarial receiver is not⊥, the output of the promise extractor
is identical to the SPS extractor. In other cases, there are no guarantees about the extracted value.
We show that this weaker property is sufficient to instantiate the IPS compiler. Roughly, this is
because if the output of the watchlist protocol is provided to the adversary is ⊥, the adversary learns
no information about the input, randomness for any inner protocol execution. Hence, if the promise
extractor “over-extracts” the adversarial watched executions, this does not create any trouble with
the simulation.

2.2 Constructing Three-Round Watchlists with Promise Extraction

A core ingredient of our black-box MPC protocol is a three-round “watchlist” protocol with promise-
style extraction guarantees. For every i ∈ [n], j ∈ [n] \ {i}, this functionality enables Pi to choose
a (private) subset K ⊆ [m] of protocol executions of size k, and obtain the input and randomness
used by Pj in all executions in the set K, while all other input and randomness values of Pj remain
hidden from Pi.

Our first goal is to develop a three round protocol that realizes the watchlist functionality in
the plain model in the presence of malicious corruptions, with super-polynomial simulation and
(polynomial) promise-style extraction. Following [IKSS21], we observe that it would suffice to
implement “sender non-malleable” OTs with super-polynomial simulation-based “real/ideal” security
and with promise-style polynomial extraction; where in the (i, j)-th execution for i ∈ [n], j ∈ [n]\{i},
Pi is the receiver and Pj is the sender. Pj ’s input to the OT will be the input and randomness it
used in each of the m instances of the inner protocol, and Pi’s input is a random subset K of [m]
of size k. By sender non-malleability, we mean that the adversarial parties cannot maul the sender
messages in an OT execution with an honest party to obtain a “related” sender inputs in an OT
execution with an honest receiver.

The work of [IKSS21] showed how to implement such sender non-malleable OT in four rounds
from any four-round simulation-secure two-party computation protocol with certain additional prop-
erties (which we ignore for the momemt). Since we need three-round watchlists, we would need
to begin with three-round two-party computation, which is impossible to realize with black-box
polynomial-time simulation security. Nevertheless, we show that it is possible to realize such two-
party computation with super-polynomial simulation and promise-style extraction, which is one of
our key technical contributions. We describe this in the next subsection; here we discuss how such
a two-party protocol can be compiled into 3-round non-malleable OT.

Our overall approach builds on [IKSS21], but also diverges in some key technical aspects.
Like [IKSS21], our construction relies on a secure two-party protocol between a sender and a re-
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Sender Inputs: m0, L0,M0,R0,m1, L1,M1,R1, Receiver Inputs: b, c
The functionality F is defined as follows.

1. Check if L0,M0,R0 is a valid encoding of m0 and if not, output ⊥.

2. Check if L1,M1,R1 is a valid encoding of m1 and if not, output ⊥.

3. If c = 0, output (mb, L0, L1).

4. If c = 1, output (mb,M0,M1).

5. If c = 2, output (mb,R0,R1).

Figure 1: The functionality F

ceiver realizing a special functionality F (described in Figure 1). Unlike [IKSS21], we must develop
a three-round compiler instead of a four round one.

In the [IKSS21] compiler, the sender S on input (m0,m1) first encodes these messages using
an appropriate 2-split-state non-malleable code (Enc,Dec).7 For technical reasons pertaining to the
use of watchlists in our final protocol, we require our watchlists to satisfy 1-rewinding security, i.e.,
no adversary should be able to distinguish the joint distribution of a main and a rewinding thread
(with common prefix) from the real distribution, from those sampled according to the simulated
distribution. This was not needed by [IKSS21], but this requirement in our setting necessitates
deviating from the [IKSS21] template, relying on (a special type of) 3-split-state non-malleable
code – specifically one that is also a 3-out-of-3 secret sharing scheme – instead of 2-split-state
non-malleable codes.

Specifically, our sender encodes m0 into L0,M0,R0 and encodes m1 into L1,M1,R1. The receiver
obtains input a choice bit b ∈ {0, 1}, and additionally samples a uniformly random c ∈ {0, 1, 2}. S
and R invoke a two-party secure protocol Π to compute functionality F , described in Figure 1.

We note that the ideal functionality F only reveals mb to the receiver, and statistically hides
m1−b. This is because the receiver obtains only one of L1−b, M1−b and R1−b, and secrecy follows
from the security of the secret sharing scheme. Thus, given one of the states the message m1−b
is information-theoretically hidden. Further, even given two executions of the ideal functionality
on the same sender inputs, same receiver input b, and different receiver challenges c, the receiver
only obtains mb and two out of L1−b, M1−b and R1−b. Given two out of these three shares, m1−b is
again statistically hidden. Indeed, when F is realized via a secure protocol Π, m1−b continues to be
computationally hidden even given a main and rewinding thread (with same inputs m0,m1, b). This
protocol Π makes only black-box use of cryptography, and can be based on black-box access to our
three-round two-party computation protocol that additionally satisfies certain amount of rewinding
security, which we discuss in the next subsection.

7Recall that a split-state non-malleable code (Enc,Dec) encodes any message m into multiple states, such that the
distribution of the tampered message obtained by tampering the each state individually is independent of m.
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Proving Sender Non-Malleability. We must prove that running this protocol Π between every
pair of parties in parallel securely realizes the watchlist functionality. We model the adversary as a
man-in-the-middle, which acts as a receiver in “left” sessions and as sender in “right” sessions. We
require that there is a simulator-extractor Sim-Ext that given the inputs of all honest receivers (in
all right sessions), is able to extract all the implicit inputs used by the man-in-the-middle in all its
right sessions. Crucially, Sim-Ext does not have access to the inputs of honest senders. Since the
underlying protocol Π may be susceptible to arbitrary mauling attacks, achieving this property is
non-trivial, as we discuss next.

Similar to [IKSS21], we use the specific way that sender inputs are encoded to introduce an
alternate extraction mechanism. Specifically, one could imagine rewinding the second and the third
round message of Π twice, with first round message fixed, and using inputs c = 0, c = 1 and c = 2
on behalf of the honest receiver in the real and rewinding threads, respectively. Our two-party
computation protocol will be developed in such a way that fixing the first round message will fix
all other inputs m0,m1, b in all left and right sessions. Let us make the simplifying assumption
that our adversary does not abort. Therefore, we expect to obtain outputs (L̃0, L̃1), (M̃0, M̃1) and
(R̃0, R̃1) in the right session in the real and rewinding threads respectively. At this point, we can use
the decoder of the non-malleable code to obtain (m̃0, m̃1), which, by correctness of the two-party
protocol, should correspond to the implicit inputs of the MIM in the right session.

The Need for 2-Rewinding Security. Before we can rely on non-malleable codes to for-
mally argue security, we need to replace the two-party protocol Π with its simulated version. At
the same time, we need to argue that the joint distribution of values extracted from the strat-
egy above (via extracting (L̃0, L̃1), (M̃0, M̃1) and (R̃0, R̃1)) from the simulated two-party protocol,
matches the distribution in the real protocol. This requires the two-party protocol Π to satisfy
a stronger security property, that we call 2-rewind sender security. This roughly means that
any adversarial receiver/MIM that rewinds the honest sender one time in the third and fourth
rounds, with its input c̃ set to a possibly different value, does not learn more than the output
of F on (fixed) inputs (m0,m1, L0, L1,M0,M1,R0,R1, b̃, c̃ = 0), (m0,m1, L0, L1,R0,R1, b̃, c̃ = 1) and
(m0,m1, L0, L1,R0,R1, b̃, c̃ = 2). This can be formalized by demonstrating the existence of a sim-
ulator that simulates the receiver’s view in the real and rewinding threads, given only (m

b̃
, L0, L1)

in the main thread, and (m
b̃
,M0,M1), (m

b̃
,R0,R1) respectively in each of the rewinding threads

(w.l.o.g.). Now, it may seem like the sum total of this information could essentially allow the re-
ceiver to recover m

1−b̃. Yet, we show that if Π satisfies this property, it becomes possible to replace
m

1−b̃ with an arbitrary value (say 0λ). Here we make use of the fact that the different states of the
non-malleable code are available to the MIM in separate (i.e. real and rewinding) executions, which
allows us to rely on the security guarantees provided by non-malleable codes, by arguing that each
of these states are essentially tampered by independent functions.

Finally, we note that just as in [IKSS21], we require these codes to satisfy many-many non-
malleability. At a high level, these are codes that are secure against multiple tamperings of a
codeword [CGL16]. We note that [GSZ21] construction of 3-out-of-3 non-malleable secret sharing
satisfies all the required properties (if instantiated with the CGL non-malleable code). Also follow-
ing [IKSS21], to deal with adversaries who might abort, we will modify the protocol and functionality
F so that instead of encoding (m0,m1) a single time, the sender generates λ (where λ is the secu-
rity parameter) fresh encodings {(Lib,Mi

b,R
i
b)}i∈[λ],b∈{0,1} of m0 and m1. The receiver picks λ choice

bits c1, . . . , cλ instead of a single bit c. The functionality F checks if for every i ∈ [n], b ∈ {0, 1},
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{(Lib,Mi
b,R

i
b)}i∈[λ],b∈{0,1} encode mb. If the check fails, F outputs ⊥. If it passes, then for every

i ∈ [n], it outputs (Li0, L
i
1) if ci = 0, (Mi

0,M
i
1) if ci = 1, and otherwise, outputs (Ri0,R

i
1). We also

recall that our watchlists need to satisfy super-polynomial simulation with “promise-style” extrac-
tion, but we note that these properties in fact carry over from the underlying special two-party
computation protocol.

2.3 Constructing Three-Round 2PC with Special Extraction

In this subsection, we explain the key ideas behind our construction of a three-round 2PC that
satisfies the “promise-style” extraction guarantee and “2-rewinding” sender security.

3-Round OT Protocol. As a first step, we construct a three-round black-box OT protocol that
satisfies standard simulation-based security against malicious senders and super-polynomial time
simulation security against malicious receivers. For this purpose, we rely on a (sub-exponentially
hard) two-round OT protocol that has super-polynomial time simulation security against malicious
receivers. To enable polynomial time extraction of the malicious sender input, we additionally
require the sender to generate an extractable commitment to its input. To ensure the consistency
of inputs used in the extractable commitment and the ones used in the OT protocol, we rely on
the IPS compiler. Specifically, we use the 1-out-of-2 SPS OT to construct a k-out-of-m SPS OT
protocol (using Yao’s garbled circuits) and use this as the watchlist protocol. We show that this
watchlist protocol is sufficient to instantiate the IPS compiler when we only require SPS security
against malicious receivers. The formal description of the construction and the proof of security
appears in Section 4.

3-Round 2PC. As a next step, we use the above OT protocol to construct a three-round 2PC pro-
tocol that satisfies standard simulation security against malicious senders and SPS security against
malicious receivers. This step involves standard tools and closely follows the construction given
in [IKSS21]. Additionally, we also show how to add 2-rewinding sender security to this protocol.
Specifically, we show that if the underlying 3-round OT is 2-rewinding sender secure and we also
have a 2-rewinding secure extractable commitment scheme (which was constructed in [BGJ+18]),
we get a 2-rewinding sender secure 2PC protocol. Further, we note that 2-rewinding sender security
of our 3-round OT protocol just boils down to instantiating the underling extractable commitment
on the sender side (as explained earlier) with a 2-rewinding secure one, and we instantiate this with
the construction given in [BGJ+18]. The formal description of the construction and the proof of
security appears in Section 5.

3-Round 2PC with Special Extraction. We then use the above 3-round 2PC protocol to
construct a protocol that additionally satisfies the “promise-style” extraction guarantee. To achieve
this, we require the receiver to commit to its input (as well as the randomness) used in the 2PC
protocol via a three-round extractable commitment. Again, as in the case of OT protocol, we need
to make sure that the inputs committed via the extractable commitment is consistent with the
inputs used in the 2PC protocol. As before, we rely on the IPS compiler but we observe that we
do not need the “full-blown” watchlist protocol. Instead, we require the sender in the second round
to send a set of executions to be opened in the clear and the receiver in the final round opens
the extractable commitment corresponding to these executions. The sender then checks whether
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the input, randomness committed via the extractable commitment is consistent with the messages
sent in the 2PC protocol. If they are consistent for randomly opened set of executions, then by
standard statistical argument, we can show that they are consistent for a majority of the executions
with overwhelming probability. This allows us to rewind and extract the receiver’s input via the
extractable commitment. We note that we are only able to guarantee “almost” perfect extraction
due to the existence of a “small” set of inconsistent executions. Specifically, the “small” set of
inconsistent executions could force the output of the watchlist protocol to be ⊥, but even in this
case, our polynomial time extract could extract some receiver input. But as explained earlier, this is
not problematic and is sufficient to instantiate the IPS compiler. We also note that if the underlying
2PC protocol is 2-rewinding sender secure then this property is inherited by the 2PC protocol with
special extraction as well. The construction and proof of security appears in Section 6.

2.4 Organization

In Section 3, we give the formal definitions of the all the building blocks needed in our protocol
constructions. In Section 4, we give our construction of a 3-round oblivious transfer protocol. In
Section 5, we give our construction of 3-round 2PC protocol. In Section 6, we show how to add
promise-style extraction guarantees for the receiver. In Section 7, we give our construction of the
watchlist protocol that satisfies promise-style extraction. In Section 8, we give our construction
of a three-round inner protocol. Finally, in Section 9, we give our 4-round fully black-box MPC
protocol.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote the cryptographic
security parameter and k denote the statistical security parameter. We assume that all cryptographic
algorithms implictly take 1λ as input. A function µ(·) : N → R+ is said to be negligible if for any
polynomial poly(·) there exists λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use
negl(·) to denote an unspecified negligible function and poly(·) to denote an unspecified polynomial
function. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for any T ⊆ [n],
let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates indexed by T . We use supp(X) to
denote the support of a random variable X.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the
content of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite
set S, we denote x ← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time algorithm. We assume w.l.o.g. that the length of the
randomness for all cryptographic algorithms is λ.

Definition 3.1. We say that two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are (T, ε)-indistinguishable
if for every non-uniform distinguisher D running in time T (λ) (abbreviated as T ), we have |Pr[D(1λ, Xλ) =
1]| − Pr[D(1λ, Yλ) = 1]| ≤ ε(λ).

Two-Message OT with Super-Polynomial Time Sender Security. We give the definition
of a 1-out-of-2 OT protocol that satisfies super-polynomial simulation security against malicious
receivers and indistinguishability-based security against senders.
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Definition 3.2. A tuple of algorithms (OT1,OT2, outOT) implementing the 1-out-of-2 oblivious
transfer functionality has super-polynomial simulation security against malicious receivers and
indistinguishability-based security against senders if:

• Correctness. For every input b ∈ {0, 1} of the receiver and any input (s0, s1) of the sender
and for any choice of random tape r of receiver, we have:

Pr[outOT(otm1, otm2, (b, r)) = sb] = 1

where otm1 := OT1(1λ, b; r) and otm2 ← OT2(otm1, (s0, s1)).

• Super-Polynomial Simulation Security against Malicious Receivers. There exits a
super-polynomial time algorithm Ext that runs in time T1(λ) (abbreviated as T1) such that for
any non-uniform PPT A and for any sender’s input (s0, s1), we have:{

OT2(otm1, (s0, s1)) : otm1 ← A(1λ)}
}
≈c{

OT2(otm1, (sb, sb)) : otm1 ← A(1λ), b← Ext(otm1)
}

• Indistinguishability against Malicious Senders. For any PPT adversary A corrupting
the sender S, we have:{

ViewA(〈R(1λ, 0),A(1λ)〉)
}
≈c
{
ViewA(〈R(1λ, 1),A(1λ)〉)

}
Two-message OT protocols satisfying the above definition8 is known from standard crypto-

graphic assumptions such as DDH/LWE/QR/N th residuosity [AIR01, NP01, BD18, DGI+19, Kal05,
HK12] and additionally from (low-noise) LPN together with a standard derandomization assump-
tion [BF22]. These protocols satisfy a stronger security property wherein the two distributions
described in the SPS security against malicious receivers are statistically close.

We also consider generalizations of the above definition where we require (T, ε)-indistinguishability
against malicious senders. Under the assumption that the above mentioned problems are (T, ε)-
secure, we get construction of a two-message OT protocol that satisfies (T, ε)-indistinguishability
against malicious senders.

Two-Round OT protocol with Equivocal Receiver Security. Below, we recall the definition
of a two-round OT protocol that has equivocal receiver security from [IKSS21].

Definition 3.3. A two-round OT protocol is said to be equivocal receiver secure if:

• Correctness: For every input b of the receiver and m0,m1 of the sender:

Pr[outOT(otm2, (b, ω)) = mb] = 1

where (otm1, ω)← OT1(1λ, b) and otm2 ← OT2(otm1,m0,m1).
8In fact, these constructions satisfy a stronger form of definition where the malicious receiver could be unbounded.
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• Equivocal Receiver Security. There exists a special algorithm Simeq
OT that on input 1λ

outputs (otm1, ω0, ω1) such that for any b ∈ {0, 1},

{(otm1, ωb) : (otm1, ω0, ω1)← Simeq
OT(1λ)} ≈c {(otm1, ω) : (otm1, ω)← OT1(1λ, b)}

• Sender Privacy: For any input m0,m1 of the sender and any bit b and a string r ∈ {0, 1}∗:

{b, r, otm1 := OT1(1λ, b; r),OT2(otm1,m0,m1)} ≈c

{b, r, otm1 := OT1(1λ, b; r),OT2(otm1,mb,mb)}

[IKSS21] gave a construction of such a protocol based on black-box access to a two-round semi-
malicious OT protocol. Then, there exists a two-round OT protocol satisfying Definition 3.3.

Theorem 3.4. Assume black-box access to a two-round OT protocol that is secure against semi-
malicious adversaries.

k-Rewinding Security for Extractable Commitments. We define the notion of k-rewinding
security for an extractable commitment where k is some constant. Consider the following experiment
between a committer C and any (possibly cheating) receiver R∗.

• Experiment E(m):

– R∗ interacts with C who obtains input m. The complete one execution of the protocol
ECom. R∗ receives values (e1, e3) in rounds 1 and 3 respectively.

– Then, following is repeated k times. R∗ rewinds C to the beginning of round 2. R∗ sends
C a new second round message e∗2 and receives a message e∗3 in the third round.

– At the end of the experiment, R∗ outputs 0/1.

Definition 3.5 (k-Rewinding Security). An extractable commitment scheme denoted by ECom =
(ECom1,ECom2,ECom3,EComOut,EComValid) achieves k-rewinding security if, for every non-uniform
PPT receiver R∗ in the above experiment E and every pair of messages m0,m1, there exists a neg-
ligible function µ(·) such that:

|Pr[R∗ = 1|E(m0)]− Pr[R∗ = 1|E(m1)]| ≤ µ(λ)

where the probability is over the random coins of C.

We can generalize the above definition to provide (T, ε)-security against malicious receivers that
run in time T (λ). Badrinarayanan et al. [BGJ+18] gave a construction of a k-rewinding secure
extractable commitment that makes black-box use of a non-interactive commitment scheme. If the
commitment scheme is (T, ε)-hiding, then their construction provides (T, ε) security.
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Garbled Circuits Below we recall the definition of garbling scheme for circuits [Yao86] (see
Applebaum et al. [AIK04, AIK05], Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a
detailed proof and further discussion).

Definition 3.6. A garbling scheme for circuits is a tuple of PPT algorithms (Garble,Eval). Garble
is the circuit garbling procedure and Eval is the corresponding evaluation procedure. More formally:

• C̃ ← Garble
(
1λ, C, {labw,b}w∈inp,b∈{0,1}

)
: Garble takes as input a security parameter 1λ, a

circuit C along with labels labw,b where w ∈ inp (inp is the set of input wires of C) and
b ∈ {0, 1} and outputs a garbled circuit C̃. Each label labw,b is assumed to be in {0, 1}λ.

• y ← Eval
(
C̃, {labw,xw}w∈inp

)
: Given a garbled circuit C̃ and a sequence of input labels

{labw,xw}w∈inp (referred to as the garbled input), Eval outputs a string y.

We require it to satisfy the following two properties.

• Correctness. For correctness, we require that for any circuit C, input x ∈ {0, 1}|inp| and for
any set of wire labels {labw,b}w∈inp,b∈{0,1} we have that:

Pr
[
C(x) = Eval

(
C̃, {labw,xw}w∈inp

)]
= 1

where C̃ ← Garble
(
1λ, C, {labw,b}w∈inp,b∈{0,1}

)
.

• Security. For security, we require that there exists a PPT simulator Sim such that for any
polynomial-time generated circuit family C = C(λ) and input x ∈ {0, 1}|inp| for C, we have
that (

C̃, {labw,xw}w∈inp
)
≈c Sim

(
1λ, 1|C|, 1|x|, C(x)

)
where C̃ ← Garble

(
1λ, C, {labw,b}w∈inp,b∈{0,1}

)
and {labw,b}w∈inp,b∈{0,1} is sampled uniformly.

MPC Definition. We recall the standard simulation-based security definition of an MPC protocol
in Appendix B.

Split-State Non-Malleable Codes We will use non-malleable codes in the split-state model
that are one-many secure and satisfy a special augmented non-malleability [AAG+16] property, as
discussed below.

Definition 3.7 (One-many augmented split-state non-malleable codes). Fix any polynomials `(·), p(·).
An `(·)-augmented non-malleable code with error ε(·) for messages m ∈ {0, 1}p(λ) consists of algo-
rithms NM.Code,NM.Decode where

• NM.Code(m)→ (L,M,R) where L ∈ L, M ∈ M and R ∈ R (we will assume that L =M =
R) are a three-out-of-three secret sharing of the message,

• For every m ∈ {0, 1}p(λ),

NM.Decode(NM.Code(m)) = m, and
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• For every set of functions f = (f1, f2, . . . f`(λ)), g = (g1, g2, . . . g`(λ)), h = (h1, h2, . . . h`(λ)) and
every set of permutations {σi}i∈[`(λ)], σ

′ on (L,M,R) there exists a random variable Df,g,h,σ,σ′
on R×{{0, 1}p(λ) ∪ same∗}`(λ) which is independent of the randomness in NM.Code such that
for all messages m ∈ {0, 1}p(λ) it holds that the statistical distance between the distributions

σ′(L), σ′(M), {NM.Decode
(
fi(σi(L)), gi(σi(M)), hi(σi(R))

)
}i∈[`(λ)]

and
(
replace(Df,g,h,σ,σ′ ,m)

)
where (L,M,R← NM.Code(m))

is at most ε(λ), where the function replace : {0, 1}∗ × {0, 1}∗ → {0, 1} replaces all occurrences
of same∗ in its first input with its second input, and outputs the result.

We note that the construction of non-malleable secret sharing in [GSZ20] can be proven to satisfy
this definition. This is already implicit in [GSZ20] for the case of single tampering but extension
of their proof to the case of multiple tamperings follows directly if we use a strong two-source
non-malleable extractors that is multi-tamperable [CGL16].Thus, we have the following:

Lemma 3.8. [GSZ20] For every polynomial `(·), there exists a polynomial q(·) such that for every
λ ∈ N, there exists an explicit `-augmented, split-state non-malleable code satisfying Definition
3.7 with efficient encoding and decoding algorithms with code length q(λ), rate q(λ)−Ω(1) and error
2−q(λ)Ω(1).

Low-Depth Proofs Any computation performed by a family of polynomial sized ciruits can
be transformed into a proof that is verifiable by a family of circuits in NC1. We refer to the
transformation as a low-depth proof, and we require such a proof to satisfy the following definition.

Definition 3.9 (Low-Depth Non-Interactive Proofs). A low-depth non-interactive proof with perfect
completeness and soundness for a relation R consists of an (efficient) prover P and a verifier V
that satisfy:

• Perfect completeness. A proof system is perfectly complete if an honest provers can always
convince an honest verifier. For all x ∈ L we have

Pr[V (π) = 1|π ← P (x)] = 1

• Perfect soundness. A proof system is perfectly sound if it is infeasible to convince an honest
verifier when the statement is false. For all x 6∈ L and all (even unbounded) adversaries A we
have

Pr[V (x, π) = 1|π ← A(x)] = 0.

• Low Depth. The verifier V can be implemented in NC1.

It is shown in [IKSS21] building on [GGH+13] how such a non-interactive proof can be con-
structed in a simple way. Looking ahead, our construction of watchlists makes use of a (malleable)
two-party computation protocol for NC1 that must verify validity of a non-malleable code. We
rely on low-depth proofs to ensure that the two-party computation protocol only performs NC1

computations.
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4 3-Round Oblivious Transfer

In this section, we give a three-round oblivious transfer protocol that satisfies standard simulation
security against malicious senders and super-polynomial simulation security against malicious re-
ceivers. We give the syntax of this protocol and the formal description of its security properties in
Section 4.1. We then describe the building blocks used in the construction in Section 4.2. We give
the construction in Section 4.3 and the proof of security in Section 4.4. Finally, in Section 4.5, we
describe how to modify the construction such that the protocol satisfies certain additional properties
needed for our applications.

4.1 Definition

Syntax. A three-round oblivious transfer protocol is given by a tuple of algorithms (OT1,OT2,
OT3, outOT). In the first round, the sender with input two strings (M0,M1) runs OT1(1λ, (M0,M1))
to obtain the first round message msg1 and sends this to the receiver. In the second round, the
receiver with input c ∈ {0, 1} and uniform random tape r ∈ {0, 1}∗ runs OT2(msg1, c; r) to obtain
msg2 and sends this to the sender. In the final round, the sender runs OT3(msg2, (M0,M1)) to
obtain msg3 and forwards this to the receiver. Finally, the receiver runs outOT(msg1,msg3, (c, r))
and obtains Mc.

In the following (and in the rest of the paper), we use ViewA(〈A(1λ, x), B(1λ, y)〉) (resp. ViewB)
to denote the view of A(1λ, x) (resp. B(1λ, y)) in its interaction with B(1λ, y) (resp. A(1λ, x)).
Similarly, we use outA (resp. outB) to denote the output computed by A(1λ, x) (resp. B(1λ, y)) at
the end of the protocol.

Definition 4.1. A three-round oblivious transfer protocol (OT1,OT2,OT3, outOT) is said to sat-
isfy standard security against malicious senders and super-polynomial simulation security against
malicious receivers if:

• Security against Malicious Senders. There exists an expected PPT machine SimS such
that for every non-uniform PPT adversary A corrupting the sender and for any choice of
receiver’s input c ∈ {0, 1}, we have:{(

ViewA(〈R(1λ, c),A(1λ)〉), outR(〈R(1λ, c),A(1λ)〉)
)}
≈c{

(ViewA,Mc) : (ViewA, (M0,M1))← (SimS)A(1λ)
}

• Super-Polynomial Simulation Security against Malicious Receivers. There exist an
expected PPT machine SimR = (Sim1

R, Sim
2
R) and a super-polynomial time machine ExtR such

that for every non-uniform PPT adversary A corrupting the receiver and for any choice of
sender inputs (M0,M1), we have:{

ViewA(〈A(1λ), S(1λ, (M0,M1))〉)
}
≈c{

ViewA : (msg1, st)← (Sim1
R)A(1λ),msg2 ← A(1λ,msg1), c← ExtR(msg2),

ViewA ← (Sim2
R)A(st,Mc)

}
The main theorem that we prove in this section is:
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Theorem 4.2. For some ε > 0, assume black-box access to a two-round oblivious transfer pro-
tocol with super-polynomial time simulation security against malicious receivers and (2λ

ε
, 2−λ

ε
)-

indistinguishability-based security against malicious senders. Then, there exists a three-round OT
protocol that satisfies Definition 4.1.

4.2 Building Blocks

We now describe the building blocks used in our construction.

2-round, k-out-of-m Oblivious Transfer. A tuple of algorithms (OT
(k,m)
1 ,OT

(k,m)
2 , outOT(k,m))

implementing the k-out-of-m oblivious transfer functionality that satisfies the following properties:

• Correctness. For every set K with elements from [m] and cardinality k, any sequence of m
strings (s1, . . . , sm) and for any choice of random tape r of receiver, we have:

Pr[outOT(k,m)(otm1, otm2, (K, r)) = {si}i∈K ] = 1

where otm1 := OT
(k,m)
1 (1λ,K; r) and otm2 ← OT

(k,m)
2 (otm1, (s1, . . . , sm)).

• Super-Polynomial Simulation Security against Malicious Receivers. There exits a
super-polynomial time algorithm Ext that runs in time T1(λ) (abbreviated as T1) such that
for any non-uniform PPT A and for any sender’s input (s1, . . . , sm), we have:{

OT
(k,m)
2 (otm1, (s1, . . . , sm)) : otm1 ← A(1λ)}

}
≈c{

OT
(k,m)
2 (otm1, (s

∗
1, . . . , s

∗
m)) : otm1 ← A(1λ),K ← Ext(otm1), {s∗i = si}i∈K , {s∗i = ⊥}i 6∈K}

}
where K output by Ext is of size at most k.

• Indistinguishability against Malicious Senders. For any PPT adversary A corrupting
the sender S and every sets K0,K1 with elements from [m] and cardinality k, we have:{

ViewA(〈R(1λ,K0),A(1λ)〉)
}
≈c
{
ViewA(〈R(1λ,K1),A(1λ)〉)

}
As a special case, we use OT(1,2) to denote an 1-out-of-2 OT protocol. OT(k,m) can be constructed

based on any 1-out-of-2 OT protocol that satisfies super-polynomial time simulation security against
malicious receivers [AIR01, NP01, Kal05, HK12, BD18] via garbled circuits [Yao86].

Extractable Commitment. A three round extractable commitment scheme (ECom1,ECom2,ECom3)
that is (T2, ε)-hiding against malicious receivers and satisfies over extraction (see Definition 3.5).

Pairwise Verifiable Secret Sharing. A pairwise verifiable, k-out-of-m secret sharing scheme
(Share,Rec) that has the following properties:

• Correctness. For any secret s,

Pr[Rec(Sh1, . . . ,Shm) = s : (Sh1, . . . ,Shm)← Share(s)] = 1
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• Perfect Secrecy. For any two secrets s0, s1 and for any subset K ⊂ [m] of size k, we have:{
ShK : (Sh1, . . . ,Shm)← Share(s0)

}
≡
{
ShK : (Sh1, . . . ,Shm)← Share(s1)

}
• Pairwise Verifiability. If there exists a set K ⊆ [m] of size at least S(m, k) such that for

every i, j ∈ K, (Shi, Shj) are pairwise consistent, then for any value of Sh[m]\K , the output of
Rec(Sh1, . . . ,Shm) is the same.

Such pairwise verifiable secret sharing can be constructed from Bivariate Shamir secret sharing
scheme.

Setting the Parameters. To instantiate the pairwise verifiable secret sharing, we set m = 8λ,
k = m/4, and S(m, k) = m − k. To instantiate the extractable commitment, we set T2 ≥ T1 ·
poly(

(
m
k

)
· λ) and ε is such that ε ·

(
m
k

)
≤ negl(λ).

4.3 Construction

We give the formal description of the construction in Figure 2 and show in the next subsection that
it satisfies Definition 4.1.

4.4 Proof of Security

In section 4.4.1, we show that the protocol given in Figure 2 satisfies security against malicious
senders and in section 4.4.2, we show that this protocol satisfies super-polynomial simulation security
against malicious receivers.

4.4.1 Security against Malicious Senders

We start with the description of the simulator SimS .

Description of SimS. Let A be the adversary that corrupts the sender. SimS does the following:

1. It initializes A with a uniform random tape.

2. It executes the protocol honestly using the receiver input set to some c′ ∈ {0, 1} and rewinds
the second and third rounds to extract {(Shi0, Shi1, si)}i∈[m] from the extractable commitment
scheme.

3. It initializes an empty set I.

4. For each i ∈ [m]:

(a) It checks if otmi
2 := OT

(1,2)
2 (otm1, (Sh

i
0,Sh

i
1); si).

(b) If the check fails, it adds i to the set I.

5. If |I| > λ, it outputs ViewA and sets (M0,M1) to (⊥,⊥).

6. Else, it constructs an inconsistency graph G = ([m], E) where (i, j) ∈ E iff:
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The input of the receiver is a bit c ∈ {0, 1} and the input of the sender are two λ-bit strings (M0,M1).

• Round-1: S does the following:

1. For each b ∈ {0, 1}, it samples a uniform string Xb ← {0, 1}λ and computes (Sh1
b , . . . , Sh

m
b ) ←

Share(Xb).

2. For each i ∈ [m],

(a) It chooses ri ← {0, 1}∗ as the randomness for the extractable commitment scheme.
(b) It chooses si ← {0, 1}∗ as the sender randomness for OT(1,2).
(c) It computes Comi

1 := ECom1(1λ, (Shi0, Sh
i
1, si); ri).

3. It sends {Comi
1}i∈[m] to R.

• Round-2: R does the following:

1. It chooses a random set K which is a subset of [m] of size k.

2. It computes otm1 ← OT
(1,2)
1 (1λ, c).

3. It computes otm1 ← OT
(k,m)
1 (1λ,K).

4. For each i ∈ [m], it computes Comi
2 ← ECom2(Comi

1).

5. It sends
(
otm1, otm1, {Comi

2}i∈[m]

)
to S.

• Round-3: S does the following:

1. For each i ∈ [m],

(a) It computes otmi
2 := OT

(1,2)
2 (otm1, (Sh

i
0, Sh

i
1); si).

(b) It computes Comi
3 := ECom3(Comi

2, (Sh
i
0, Sh

i
1, si); ri).

2. It computes otm2 ← OT
(k,m)
2 (otm1, (r1, . . . , rm)).

3. It sets ct0 := X0 ⊕M0 and ct1 := X1 ⊕M1.

4. It sends
(
otm2, (ct0, ct1), {otmi

2,Com
i
3}i∈[m]

)
to R.

• Output Phase. R does the following:

1. For each i ∈ [m], it runs Verify(Comi
1,Com

i
2,Com

i
3) and if any of the checks fail, it aborts.

2. It recovers {ri}i∈K from otm2.

3. For each i ∈ K,

(a) It recovers (Shi0, Sh
i
1, si) from (Comi

1,Com
i
3) using the randomness ri.

(b) It checks if otmi
2 = OT

(1,2)
2 (otm1, (Sh

i
0, Sh

i
1); si). If this check fails, it aborts.

4. For every (i, j) ∈ K ×K, it checks if:

(a) (Shib, Sh
j
b) are pairwise consistent for each b ∈ {0, 1}.

(b) If any of the checks fail, it aborts.

5. For each i ∈ [m], it recovers Shic from otmi
2.

6. It computes Xc := Rec(Sh1
c , . . . , Sh

m
c ) and outputs ctc ⊕Xc.

Figure 2: Construction of Three-Round Oblivious Transfer

(a) If there exists b ∈ {0, 1} such that (Shib, Sh
j
b) are pairwise inconsistent.

7. It computes a 2-approximation for the minimum vertex cover on the graph G and let I ′ denote
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such a vertex cover.

8. If |I ′| > λ, then it outputs ViewA and sets (M0,M1) to (⊥,⊥).

9. It then performs the same checks that are run by the honest receiver and if any of the checks
fail, it sets (M0,M1) to (⊥,⊥).

10. Else, for each b ∈ {0, 1}, it computes Xb := Rec(Sh1
b , . . . ,Sh

m
b ). It then outputs the ViewA

and sets (M0,M1) to (ct0 ⊕X0, ct1 ⊕X1).

Proof of Indistinguishability.

• Hyb0 : This hybrid corresponds to
(
ViewA(〈R(1λ, b),A(1λ)〉), outR(〈R(1λ, b),A(1λ)〉)

)
.

• Hyb1 : In this hybrid, we run the extractor for the extractable commitment scheme and extract
{(Shi0, Shi1, si)}i∈[m]. Since there is no change in either the distribution of the messages in view
of A or in the computation of the output by the honest receiver, it follows that Hyb0 ≡ Hyb1.

• Hyb2 : In this hybrid, we compute the set I as described in the simulation and if |I| >
λ, we output ⊥ instead of Mb. We show that Hyb1 ≈c Hyb2 in Lemma 4.3 based on the
indistinguishability against malicious senders property of OT(k,m).

• Hyb3 : In this hybrid,

1. We compute the inconsistency graph G as described in the simulator.

2. We compute a 2-approximation of the minimum vertex cover and obtain I ′.

3. If |I ′| > λ, then we output ⊥.

In Lemma 4.7, we show that Hyb2 ≈c Hyb3.

• Hyb4 : In this hybrid, we compute Xc as Rec(Sh1
c , . . . ,Sh

m
c ) where (Sh1

c , . . . ,Sh
m
c ) are the

shares extracted from the extractable commitment scheme. In Lemma 4.9, we show that Hyb3

and Hyb4 are identically distributed.

• Hyb5 : In this hybrid, we change otm1 to be computed as OT
(1,2)
1 (1λ, c′). It follows from

the indistinguishability against malicious senders property of oblivious transfer that Hyb4 is
computationally indistinguishable from Hyb5. Note that Hyb5 is identically distributed to the
(ViewA,Mc) where (ViewA, (M0,M1)) are output by SimS .

Lemma 4.3. Assuming the indistinguishability against malicious sender property of OT(k,m), we
have Hyb1 ≈c Hyb2.

Proof. Assume for the sake of contradiction that Hyb1 and Hyb2 can be distinguished with non-
negligible advantage. Note that the only difference between Hyb1 and Hyb2 is that in Hyb1, if |I| > λ
and if all the checks performed by the honest receiver pass, then we output Mc whereas in Hyb2,
we output ⊥. Hence, if Hyb1 and Hyb2 are distinguishable then with non-negligible advantage, the
following event happens with non-negligible probability:

1. |I| > λ.
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2. All the checks performed by honest receiver passes. This in particular implies that the set K
chosen by the receiver is such that |K ∩ I| = 0.

We now argue that this will contradict the indistinguishability against malicious sender property
of OT(k,m). Consider the following reduction.

1. We interact with the challenger for the indistinguishability against malicious receiver property
and give 2 randomly chosen sets K0,K1 of [m] of size k as the challenge inputs to the receiver.

2. We receive otm1 from the challenger and use it to complete the execution with A and extract
{(Shi0, Shi1, si)}i∈[m] as in Hyb1.

3. We compute the set I as described in Hyb2.

4. If |I| > λ and there exists a b′ ∈ {0, 1} such that |I ∩Kb′ | = 0 and |I ∩K1−b′ | 6= 0 then we
output b′. Otherwise, we output a random bit b′.

To complete the proof, we argue that Pr[b′ = b] (where b is the challenge bit in the above game)
is at least 1/2 + non− negl. We show this through a sequence of claims.

Claim 4.4. If |I| > λ, then Pr[|K1−b ∩ I| = 0] ≤ 2−O(λ).

Proof. Note that with respect to the view of the adversary, the set K1−b is a random subset of [m]
and cardinality k. Hence,

Pr[|K1−b ∩ I| = 0] =

(m−|I|
k

)(
m
k

)
<

(
m−λ
k

)(
m
k

) (since |I| > λ)

=
(m− λ)!

m!

(m− k)!

(m− λ− k)!

< (1− λ/m)k

< 2−O(λ)

Let E be the event that |I| > λ and |I ∩ Kb| = 0. We note that by assumption, Pr[E] is
non-negligible.

Claim 4.5. |Pr[b = b′|E]− 1/2| ≤ 2−O(λ).

Proof. If E happens then either,

1. |I| ≤ λ.

2. |I| > λ and |I ∩Kb| 6= 0.

In the first case, Pr[b′ = b] = 1/2. In the second case, if |I ∩K1−b| = 0, then Pr[b′ = b] = 0. But
from Claim 4.4, the probability that this happens is 2−O(λ). On the other hand, if |I ∩K1−b| 6= 0,
then Pr[b′ = b] = 1/2. Thus, |Pr[b′ = b|E]− 1/2| ≤ 2−O(λ).
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Claim 4.6. Pr[b = b′|E] ≥ 1− 2−O(λ).

Proof. Note that if |I ∩ K1−b| 6= 0, then b = b′. From Claim 4.4, the probability that this event
happens is 1− 2−O(λ).

We are now ready to lower bound Pr[b = b′].

Pr[b = b′] = Pr[E]Pr[b′ = b|E] + Pr[E]Pr[b′ = b|E]

= Pr[b′ = b|E] + Pr[E](Pr[b′ = b|E]− Pr[b′ = b|E])

≥ (1/2− 2−O(λ)) + Pr[E](Pr[b′ = b|E]− (1/2 + 2−O(λ)))

≥ (1/2− 2−O(λ)) + Pr[E](1/2− 2−O(λ)))

≥ 1/2 + non-negl

where the first inequality follows from Claim 4.5 and the second inequality follows from Claim 4.6.

Lemma 4.7. Assuming the indistinguishability against malicious sender property of OT(k,m), we
have Hyb2 ≈c Hyb3.

Proof. The proof of this lemma is very similar to the proof of Lemma 4.3. To complete the proof,
it is sufficient to show the following claim.

Claim 4.8. If |I ′| > λ, then Pr[∀(i, j) ∈ K1−b×K1−b and b ∈ {0, 1}, (Shib, Sh
j
b) are pairwise consistent] ≤

2−O(λ).

Proof. Let F be the event that ∀(i, j) ∈ K1−b×K1−b and b ∈ {0, 1}, (Shib,Sh
j
b) are pairwise consistent.

If |I ′| > λ, then the size of the minimum vertex cover V is of size > λ/2. From a well-known con-
nection between maximum matching and minimum vertex cover, it now follows that there exists a
maximum matching in G with λ/4 edges. Thus, if there exists at least edge in the matching where
both end points are in K1−b, then the event F does not happen. Via an identical argument given in
[IKOS07, Theorem 4.1], we can upper bound the probability that event F happens as 2−O(λ).

Lemma 4.9. Hyb3 ≡ Hyb4.

Proof. Note that |I∪I ′| < 2λ = k. Hence, by the pairwise verifiability property of the secret sharing
scheme, the output of the reconstruction procedure in Hyb3 and Hyb4 are exactly the same.

4.4.2 Super-Polynomial Simulation Security against Malicious Receivers

We now give the descriptions of Sim1
R,Sim

2
R, and ExtR.

Description of Sim1
R. Let A be the adversary corrupting the receiver. Sim1

R does the following:

1. It initializes A with a uniformly chosen random tape.

2. It runs the first round of the protocol honestly using randomly sampled (X0, X1).

3. It sets st to be its random tape.

4. It outputs the first round message and st.
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Description of ExtR: ExtR parses the message from A as (otm1, otm1, {Comi
2}i∈[m]) and runs

ExtOT(1,2)(otm1) to obtain c and outputs it.

Description of Sim2
R. Sim2

R does the following:

1. It uses the random tape in st to obtain the transcript of the first two rounds of the protocol.

2. To generate the final round protocol message, it computes (otm2, {otmi
2,Com

i
3}i∈[m]) as per

the protocol description.

3. It computes C0 = X0 ⊕Mc and C1 = X1 ⊕Mc and sends the last round message to A.

4. It finally outputs the view of A.

Proof of Indistinguishability. We show the real world view of the adversary and the one that
is generated by SimR are computationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to ViewA(〈A(1λ), S(M0,M1)〉).

• Hyb1 : In this hybrid, we change otm2 to be computed as OT
(k,m)
2 (otm, (r∗1, . . . , r

∗
m)) where

r∗i = ri if i ∈ K where K := ExtOT(k,m)(otm1) and is otherwise, set to ⊥.
We show that Hyb1 ≈c Hyb0 in Lemma 4.10.

• Hyb2 : In this hybrid, we make the following changes.

1. We repeat the following for λ ·
(
m
k

)
iterations:

(a) We randomly chooseK ′ ⊂ [m] of cardinality k before sending the first round message.
(b) If the extracted K at the end of the second round is not equal to the guessed values

K ′, then we go to the next iteration.
2. If we fail in each of the iterations then we output a special symbol fail and abort.

In Lemma 4.11, we show that Hyb2 ≈s Hyb1.

• Hyb3 : In this hybrid, in each of the λ ·
(
m
k

)
iterations and for each i 6∈ K ′, we change

{Comi
1,Com

i
3} to be computed as extractable commitment to some dummy message instead

of commitment to (Shi0, Sh
i
1, si). In Lemma 4.12, we show that Hyb2 ≈ελ·(mk )·m Hyb3.

• Hyb4 : In this hybrid, we change otmi
2 for each i 6∈ K, to be computed as OT(1,2)

2 (otm1,Sh
i
0,Sh

i
1)

where c := ExtOT(1,2)(otm1), Sh
i
c = Shic, and Sh

i
1−c = ⊥. We show in Lemma 4.13 that

Hyb4 ≈c Hyb3.

• Hyb5 : In this hybrid, we change ct1−c as X1−c ⊕Mc where c := ExtOT(1,2)(otm1). We note
that Hyb5 is identically distributed to Hyb4 from the perfect secrecy of the pairwise verifiable
secret sharing scheme.

• Hyb6 − Hyb9 : In these hybrids, we reverse the changes made in Hyb4 to Hyb1. Via identical
arguments given above, these changes are indistinguishable except with advantage ελ ·

(
m
λ

)
·

m + negl(λ). Note that Hyb9 is distributed identically to the output generated in the ideal
world with (Sim1

R,ExtR,Sim
2
R).
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Lemma 4.10. Assuming the super-polynomial simulation security against malicious receivers of
OT(k,m), we have Hyb1 ≈c Hyb0.

Proof. Assume for the sake of contradiction that Hyb1 and Hyb0 are computationally distinguishable.
We now give a reduction that breaks the super-polynomial simulation security against malicious
receivers.

1. We start the interaction with the external challenger and provide (r1, . . . , rm) as the challenge
sender inputs.

2. We generate the first round message of the protocol as in Hyb2 and receive (otm1, otm1, {Comi
2}i∈[m])

from A in the second round.

3. We forward otm1 to the external challenger and obtain otm2 in return.

4. We generate the rest of the round-3 protocol messages as in Hyb3 and complete the execution
with A.

Note that if the obtained otm contains the sender messages (r1, . . . , rm), then the view of the
adversary generated by the reduction is identical to Hyb0. Otherwise, the view of A is identical
to Hyb1. Thus, if these two hybrids are distinguishable, we obtain a reduction that breaks the
super-polynomial simulation security against malicious receivers for the oblivious transfer.

Lemma 4.11. Hyb2 ≈s Hyb1.

Proof. Note that the only difference between Hyb1 and Hyb2 is that sometimes, Hyb2 may output
the special symbol fail. To show that Hyb1 ≈s Hyb2, it is sufficient to show that the probability
that in Hyb2, the symbol fail is output is negligible.

We first note that in each iteration, the probability that the guessed value is incorrect is 1 −
1

(mk )
. Thus, the probability we fail to guess correctly in each of the λ

(
m
k

)
iterations is given by

(1− 1

(mk )
)λ(

m
k ) ≤ 2−O(λ).

Lemma 4.12. Assuming the (T2, ε)-hiding property of the extractable commitment scheme, we have
Hyb2 ≈ε·λ·(mk )·m Hyb3.

Proof. We consider each iteration described in Hyb2 and show that in each of these iterations, the
changes described in Hyb3 cannot be distinguished from Hyb2 except with m ·ε advantage. We show
this for the first iteration and the case for any general iteration is identical.

By a standard averaging argument, there exists two intermediate hybrids Hyb2,j ,Hyb2,j−1 (de-
scribed below) such that they are computationally distinguishable with advantage ε. We now give
the description of the two hybrids. Let K ′ be the guessed value in this iteration. In both hybrids,
for every j′ < j and if j′ 6∈ K ′, we generate {Comj′

1 ,Com
j′

3 } as a commitment to some dummy
message. In both hybrids, for every j′ > j or if j′ < j and j′ ∈ K ′, we generate {Comj′

1 ,Com
j′

3 } as
a commitment to (Shj

′

0 ,Sh
j′

1 , sj′). The only difference between these two hybrids in the generation
of the j-th commitment. Specifically, if j 6∈ K ′, we generate {Comj

1,Com
j
3} as a commitment to

some dummy message in Hyb2,j and in Hyb2,j−1, we generate it as a commitment to (Shj0,Sh
j
1, sj).

We now use a distinguisher against Hyb2,j and Hyb2,j−1 to contradict the computational hiding
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property of the extractable commitment scheme. Note that if j ∈ K ′, then Hyb2,j and Hyb2,j−1 are
identically distributed. Hence, in the rest of the proof, we assume w.l.o.g. that j 6∈ K ′.

We interact with the challenger for the hiding game of the extractable commitment scheme
and give two messages (Shj0, Sh

j
1, sj) and a dummy message. We obtain the first round extractable

commitment message Comj
1 and generate the rest of the protocol messages as in Hyb2,j−1 and send

it to A. On obtaining the second round message from A, we forward Comj
2 to the challenger and

obtain the third round message Comj
3 (if the extracted value of K is same as the guessed value).

We use this to generate the final round message in the protocol as in Hyb2,j−1.
Note that if {Comj

1,Com
j
3} are commitments to (Shj0, Sh

j
1, sj), then the view of the adversary is

identically distributed to Hyb3,j−1. Otherwise, it is distributed identically to Hyb3,j . Furthermore,
the running time of the above reduction is upper bounded by T1 · poly(λ,

(
m
k

)
). Thus, the reduction

breaks (T2, ε)-hiding property of the extractable commitment scheme.

Lemma 4.13. Assuming the super-polynomial simulation security against malicious receivers of
OT(1,2), we have Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are computationally distinguishable.
We now give a reduction that breaks the super-polynomial simulation security against malicious
receivers.

1. We non-uniformly interact with the A as in Hyb3 for the first two rounds until we reach an
iteration where the guessed value K ′ is same as the extracted value.

2. We start the interaction with the external challenger and provide {(Shi0, Shi1)}i 6∈K as the
challenge sender inputs.

3. We forward otm1 to the external challenger and obtain {otmi
2}i 6∈K in return.

4. We generate the rest of the round-3 protocol messages as in Hyb3 and complete the execution
with A.

Note that if the obtained {otmi
2}i 6∈K contain the sender inputs (Shi0, Sh

i
1), then the view of the

adversary generated by the reduction is identical to Hyb3. Otherwise, the view of A is identical to
Hyb4. Thus, we obtain a reduction that breaks the super-polynomial simulation security against
malicious receivers for the oblivious transfer.

4.5 Additional Properties

For our application to constructing round-optimal MPC protocols, we need this 3-round OT to
satisfy certain additional properties. We mention these properties below and explain how to achieve
these properties by suitably modifying the protocol.

k-Rewinding Sender Security. For our applications, we need security against malicious re-
ceivers that may rewind the second and third rounds of the honest sender k times for some constant
k. We call an oblivious transfer protocol that is secure against such a stronger receiver as satisfying
k-rewinding sender security. We now describe how to modify the construction given in Figure 2 to
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satisfy this stronger property in the simultaneous message exchange setting.9 In the first round,
in addition to sender S sending {Comi

1}i∈[m], the receiver R in parallel computes (otm1, otm1) as
described in the protocol and sends them to the sender. In the second round, the receiver only
computes {Comi

2}i∈[m] and sends it to S. The third round and the output computation steps re-
main the same. It is now easy to see that if the extractable commitment ECom used by the sender
additionally satisfies k-rewinding, (T2, ε)-hiding against malicious receivers then the modified pro-
tocol satisfies k-rewinding sender security against malicious receivers with super-polynomial time
simulation. Note that with the above modification, the second round message from the receiver is
public coin.

Public-Coin Second Round Message from Receiver. Note that with the above described
changes the second round message from the receiver is just public coins.

Two Properties of SimS.

1. We note that the view of the adversary generated by SimS is identically distributed to its
view when interacting with an honest receiver with choice bit c′. Specifically, we can augment
SimS to additionally take a bit c′ as input and produce the view of adversary using the
receiver’s choice bit as c′. It directly follows from the hiding property OT(1,2) that the output
of SimS(1λ, 0) is computationally indistinguishable to SimS(1λ, 1).

2. We note that to extract the sender input (M0,M1), SimS rewinds and extracts from the ex-
tractable commitment. Thus, for a given first round message from the malicious sender and
valid third round responses to two random second round challenges, SimS can use the above
information to extract (M0,M1) except with negligible probability. If the extractable commit-
ment on the other hand, requires t accepting transcripts (with valid third round messages),
then SimS also needs t accepting transcripts with valid third round messages.

Existence of Straight-Line SPS extractor against Malicious Senders. We note that SimS

described earlier rewinds the extractable commitment to extract the sender inputs in the OT pro-
tocol. If the extractable commitment is straight-line extractable in super-polynomial time (such a
construction of extractable commitment is given in Appendix A), we get a super-polynomial time,
straight-line simulator against malicious senders.

5 3-Round Secure Two-Party Computation

In this section, we give a construction of a three-round two-party computation protocol that satisfies
standard simulation security against malicious senders and super-polynomial simulation security
against malicious receivers for computing NC1 circuits. In comparison to the previous section, we
now construct a protocol that computes general two-party functionalities rather than just oblivious
transfer. In Section 5.1, we give the syntax and formally specify security properties that the protocol
needs to satisfy. In Section 5.3, we give the construction of this protocol and in Section 5.4, we

9In the simultaneous message exchange setting, both parties can send a message in each round. By default, we
consider rushing adversaries and hence, in each round, the adversary sends its message only after it receives the
particular round message from all the honest parties.
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give the proof of security. In Section 5.5, we show how to add certain additional properties such as
k-rewinding sender security.

5.1 Syntax and Definition

Syntax. A three-round protocol Π for computing a function f is given by a tuple of algorithms
(Π1,Π2,Π3, outΠ). In the first round, the sender with input y runs Π1(1λ, y) to obtain the first
round message msg1 and sends this to the receiver. In the second round, the receiver with input
x and uniform random tape r ∈ {0, 1}∗ runs Π2(msg1, x; r) to obtain msg2 and sends this to the
sender. In the final round, the sender runs Π3(msg2, y) to obtain msg3 and forwards this to the
receiver. Finally, the receiver runs outΠ(msg1,msg3, (x, r)) and obtains f(x, y).

Definition 5.1. A two-party protocol Π = (Π1,Π2,Π3, outΠ) for computing a function f ∈ NC1 is
said to satisfy standard simulation security against malicious senders and super-polynomial simula-
tion security against malicious receivers if the following three properties hold:

• Delayed Function Selection. We require that Π1 and Π2 to only depend on the size of the
function f that is to be securely computed and is otherwise, independent of its description. Π3

takes the description of the function f explicitly and generates the final round message in the
protocol.

• Security against Malicious Senders: For every PPT adversary A corrupting the sender
there exists an expected PPT machine SimS such that for every receiver input x ∈ {0, 1}n, we
have: {(

ViewA(〈R(1λ, x),A(1λ)〉), outR(〈R(1λ, x),A(1λ)〉)
)}
≈c{

(ViewA, f(x, y)) : (ViewA, y)← (SimS)A(1λ)
}

• Super-Polynomial Simulation Security against Malicious Receivers: For every PPT
adversary A corrupting the receiver, there exists a super-polynomial time machine Ext and an
expected PPT machine SimR = (Sim1

R,Sim
2
R) such that for every sender’s input y ∈ {0, 1}n,

we have: {
ViewA(〈A(1λ), S(1λ, y)〉)

}
≈c{

ViewA : (msg1, st)← (Sim1
R)A(1λ),msg2 ← A(1λ, π1), (x, st′)← Ext(π2, st),

ViewA ← (Sim2
R)A(st, st′, f(x, y))

}
5.2 Building Blocks

The construction makes use of the following building blocks:

• Outer MPC Protocol. A two-round two clients, m-server MPC protocol (Φ1,Φ2, outΦ) for
computing NC1 functionalities that satisfies µ-statistical security with selective abort against
adversary corrupting upto t servers and one of the clients. We set t = λ and m = 3t+ 1. We
require this protocol to satisfy perfect first round message indistinguishability, meaning that for
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any input of the honest client, the distribution of the first round message sent to the corrupted
servers from the honest client is identically distributed to the first round message generated by
the simulator SimΦ on behalf of this client. The construction given in [IKP10, Pas12] satisfies
this property. We also need this protocol to satisfy the property that Φ1 only depends on
the size of the functionality f to be securely computed and is otherwise, independent of its
description. This property can be generically added by considering a dummy client that holds
the description of the function and the messages sent by this client are generated using some
default randomness.

• 2-round, k-out-of-m Oblivious Transfer. (OT
(k,m)
1 ,OT

(k,m)
2 , outOT(k,m)) implementing the

k-out-of-m oblivious transfer functionality from Section 4.2. Let T1(λ) be an upper bound on
the running time of ExtOT(k,m) .

• Extractable Commitment. A three round extractable commitment scheme (ECom1,ECom2,ECom3)
that is (T2, ε)-hiding against malicious receivers and satisfies over extraction (see Defini-
tion 3.5).

• Garbled Circuits. A circuit garbling scheme (Garble,Eval).

• Three-round OT protocol. (OT1,OT2,OT3, outOT) satisfying Definition 4.1 that is δ(λ)-
secure against malicious receivers running in time T2(λ). Let T1(λ) be the upper bound on
the running time of ExtOT.

Setting the Parameters. We set T2 ≥ T1 ·poly(λ ·
(
m
λ

)
) and ε = µ = δ such that ε ·

(
m
k

)
≤ negl(λ).

5.3 Construction

We give the description of the construction in Figure 3.

5.4 Proof of Security

In this subsection, we show that the above construction satisfies Definition 5.1.

5.4.1 Security against Malicious Senders

Description of SimS.

1. SimS defines an adversary A that does the following:

(a) It interacts with A and obtains the first round message {Comi
1}i∈[m], {otm

i,j
1 }i∈[m],j∈[k].

It forwards {otmi,j
1 }i∈[m],j∈[k] externally.

(b) It obtains {otmi,j
2 }i∈[m],j∈[k] externally and computes otm1, {Comi

2}i∈[m] as described in
the protocol. It runs A on {otmi,j

2 }i∈[m],j∈[k], {Comi
2}i∈[m], otm1.

(c) It obtains {Comi
3, Φ̃2,i}i∈[m], {otm

i,j
3 , lab

i,j
yi,j}i∈[m],j∈[k], otm2 fromA and forwards {otmi,j

3 }i∈[m],j∈[k]

externally.

2. SimS runs SimOT
S to generate the view of the adversary A′ in the first three rounds along with

the inputs {labi,j0 , labi,j1 }i∈[m],j∈[k]. We extract the view of A from ViewA′ .
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• Round-1: In the first round, S does the following:

1. It computes (y1, . . . , ym)← Φ1(y) where each yi ∈ {0, 1}k.
2. For each i ∈ [m],

(a) It samples {labi,j0 , labi,j1 } and {lab
i,j
0 , lab

i,j
1 } for each j ∈ [k] uniformly from {0, 1}λ × {0, 1}λ.

(b) For each j ∈ [k], it samples si,j ← {0, 1}∗ as the randomness for an OT execution. It sets
si := (si,1, . . . , si,k).

(c) It samples ri ← {0, 1}∗ as the randomness for an extractable commitment scheme.
(d) It samples ti ← {0, 1}∗ as the randomness for generating a garbled circuit.

(e) It computes Comi
1 := ECom1(1λ, (yi, si, ti, {labi,jb , lab

i,j
b }j∈[k],b∈{0,1}); ri).

3. For each i ∈ [m] and j ∈ [k],

(a) It computes otmi,j
1 ← OT1(1λ, (labi,j0 , labi,j1 ); si,j)

4. It sends {Comi
1}i∈[m], {otmi,j

1 }i∈[m],j∈[k] to R.

• Round-2: In the second round, R does the following:

1. It computes (x1, . . . , xm)← Φ1(x) where each xi ∈ {0, 1}k.

2. It samples a random subset K ⊂ [m] of size λ and computes otm1 ← OT
(λ,m)
1 (1λ,K).

3. For each i ∈ [m] and j ∈ [k],

(a) It computes otmi,j
2 ← OT2(otmi,j

1 , xi,j).

4. For each i ∈ [m],

(a) It computes Comi
2 ← ECom2(Comi

1).

5. It sends {otmi,j
2 }i∈[m],j∈[k], {Comi

2}i∈[m], otm1 to S.

• Round-3: In the final round, S does the following:

1. For each i ∈ [m],

(a) It computes Comi
3 ← ECom3(Comi

2, (yi, si, ti, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1}); ri).

(b) It computes Φ̃2,i := Garble(Φ2,i, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1}; ti).

2. For each i ∈ [m] and j ∈ [k],

(a) It computes otmi,j
3 := OT3(otmi,j

2 , (labi,j0 , labi,j1 ); si,j).

3. It computes otm2 ← OT
(λ,m)
2 (otm1, (r1, . . . , rm)).

4. It sends {Comi
3, Φ̃2,i}i∈[m], {otmi,j

3 , lab
i,j
yi,j}i∈[m],j∈[k], otm2 to R.

• Output Computation: To compute the output, R does the following:

1. It recovers {ri}i∈K from otm2.

2. For each i ∈ K,

(a) It recovers (yi, si, ti, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1}) from {Comi

1,Com
i
3} using randomness ri.

(b) For each j ∈ [k], it checks if otmi,j
1 := OT1(1λ, (labi,j0 , labi,j1 ); si,j) and otmi,j

3 :=
OT2(otmi,j

2 , (labi,j0 , labi,j1 ); si,j).

(c) It checks if Φ̃2,i := Garble(Φ2,i, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1}; ti).

(d) It checks if the received label is consistent with the extracted value lab
i,j
yi,j from {Com

i
1,Com

i
3}.

(e) If any of the checks fail, it outputs ⊥.
3. Else, for each i ∈ [m] and j ∈ [k], it recovers labi,jxi,j from {otmi,j

1 , otmi,j
3 }.

4. For each i ∈ [m], it computes φi ← Eval(Φ̃2,i, {labi,jxi,j , lab
i,j
yi,j}i∈[m],j∈[k]).

5. It outputs outΦ(φ1, . . . , φm).

Figure 3: Construction of the 3-Round Two-Party Computation Protocol
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3. While running SimOT
S on A′, SimS additionally runs in parallel the extractor for the extractable

commitment to obtain {(yi, si, ti, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1})}i∈[m].

4. SimS initializes an empty set C.

5. For each i ∈ [m],

(a) For each j ∈ [k], it checks if otmi,j
1 := OT1(1λ, (labi,j0 , labi,j1 ); si,j) and otmi,j

3 := OT2(otmi,j
2 ,

(labi,j0 , labi,j1 ); si,j).

(b) It checks if Φ̃2,i := Garble(Φ2,i, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1}; ti).

(c) It checks if the received label is consistent with the value labi,jyi,j extracted from {Comi
1,Com

i
3}.

(d) If any of the checks fail, it adds {i} to C.

6. If |C| > λ, it aborts and instructs the ideal functionality to output ⊥ to the receiver.

7. It then initializes the simulator SimΦ for the protocol Φ by corrupting the sender client and
the set of servers indexed by the set C. For each i ∈ C, it obtains {xi}i∈C as the first round
message from the honest receiver client to the corrupted servers.

8. It sends {yi}i 6∈C to SimΦ as the first round message from the corrupted sender client to the
honest servers. SimΦ queries the ideal functionality on input y and it forwards this to its own
ideal functionality.

9. It performs the same checks that are run by the honest receiver. If any of the checks fail, we out-
put⊥. If all the checks pass, for each i ∈ C, it obtains φi by running Eval(Φ̃2,i, {labi,jxi,j , lab

i,j
yi,j}i∈[m],j∈[k]).

10. It sends {φi}i∈C to SimΦ as the final round message from the corrupt servers to the honest
receiver client. If SimΦ instructs the honest receiver to output ⊥, it forwards this instruction
to its trusted functionality. Otherwise, it instructs the trusted functionality to deliver output
to the honest receiver.

Proof of Indistinguishability.

• Hyb0 : This corresponds to
(
ViewA(〈R(1λ, x),A(1λ)〉), outR(〈R(1λ, x),A(1λ)〉)

)
.

• Hyb1 : In this hybrid, we define an adversary A′ that corrupts the sender for the OT executions
and works as follows:

1. It interacts with A and obtains the first round message {Comi
1}i∈[m], {otm

i,j
1 }i∈[m],j∈[k].

It forwards {otmi,j
1 }i∈[m],j∈[k] externally.

2. It obtains {otmi,j
2 }i∈[m],j∈[k] externally and computes otm1, {Comi

2}i∈[m] as described in
the protocol. It runs A on {otmi,j

2 }i∈[m],j∈[k], {Comi
2}i∈[m], otm1.

3. It obtains {Comi
3, Φ̃2,i}i∈[m], {otm

i,j
3 , lab

i,j
yi,j}i∈[m],j∈[k], otm2 fromA and forwards {otmi,j

3 }i∈[m],j∈[k]

externally.
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We run SimOT
S on A′ to obtain the ViewA′ and {labi,j0 , labi,j1 }i∈[m],j∈[k]. We extract the ViewA

from ViewA′ and compute the output of R using the internal randomness of A′ and the ex-
tracted {labi,j0 , labi,j1 }i∈[m],j∈[k].We show in Lemma 5.2 that Hyb0 and Hyb1 are computationally
indistinguishable.

• Hyb2 : In this hybrid, we run the extractor for the extractable commitment scheme to obtain

{(yi, si, ti, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1})}i∈[m]. Since neither the view of the adversary nor the

output of the honest receiver changes between Hyb1 and Hyb2, it follows that Hyb1 and Hyb2

are identically distributed.

• Hyb3. In this hybrid, we do the following changes:

1. We initialize an empty set C.
2. For each i ∈ [m],

(a) For each j ∈ [k], we check if otmi,j
1 := OT1(1λ, (labi,j0 , labi,j1 ); si,j) and otmi,j

3 :=

OT2(otmi,j
2 , (labi,j0 , labi,j1 ); si,j).

(b) We check if Φ̃2,i := Garble(Φ2,i, {labi,jb , lab
i,j
b }j∈[k],b∈{0,1}; ti).

(c) We check if the received label labi,jyi,j is consistent with the values extracted from
{Comi

1,Com
i
3}.

(d) If any of the checks fail, we add {i} to C.
3. If |C| > λ, we abort and output ⊥ and otherwise, we continue as before.

Via an identical argument as given in Lemma 4.3, we can show that Hyb2 and Hyb3 are
computationally indistinguishable.

• Hyb4 : In this hybrid, we make the following changes:

1. We initialize the simulator SimΦ for the protocol Φ by corrupting the sender client and
the set of servers indexed by the set C. For each i ∈ C, we obtain {xi}i∈C as the first
round message from the honest receiver client to the corrupted servers.

2. We send {yi}i 6∈C to SimΦ as the first round message from the corrupted sender client to
the honest servers. SimΦ queries the ideal functionality on input y and we record this
value.

3. We complete the execution with A and to compute the output, we first perform the
same checks that are run by the honest receiver in the previous hybrid. If any of the
checks fail, we output ⊥. If all the checks pass, for each i ∈ C, we obtain φi by running
Eval(Φ̃2,i, {labi,jxi,j , lab

i,j
yi,j}i∈[m],j∈[k]).

4. We send {φi}i∈C to SimΦ as the final round message from the corrupt servers to the
honest receiver client. If SimΦ instructs the honest receiver to output ⊥, we output ⊥
and otherwise, we instruct the honest receiver to output f(x, y).

In Lemma 5.3, we show that Hyb3 and Hyb4 are statistically indistinguishable. Note that Hyb4

is identically distributed to output of ideal execution generated by SimS .

Lemma 5.2. Assuming the security against malicious senders for the 3-round OT protocol, we have
that Hyb1 ≈c Hyb0.
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Proof. Assume for the sake of contradiction that Hyb1 and Hyb0 are computationally distinguishable.
We now give a reduction to the security against malicious senders for the 3-round OT protocol.

We interact with the external challenger and give {xi,j}i∈[m],j∈[k] as the receiver choice bits.
We construct the adversary A′ as described in Hyb1. We start the interaction with the exter-
nal challenger by forwarding the messages from the external challenger to A′ and forwarding the
messages from A′ to the challenger. At the end of the interaction, we obtain ViewA′ along with
{labi,jxi,j}i∈[m],j∈[k]. We compute the ViewA and the output of the honest receiver as described in
Hyb1. We output these two values.

Note that if ViewA′ and {labi,jxi,j}i∈[m],j∈[k] are generated using the real protocol execution, then
the output of the reduction is identically distributed to Hyb0. Otherwise, it is identically distributed
to Hyb1. Thus, if Hyb0 and Hyb1 are computationally distinguishable, then the above reduction
breaks the security against malicious senders for the parallel version of the OT protocol and this is
a contradiction.

Lemma 5.3. Assuming the statistical security of the protocol Φ, we have Hyb3 ≈s Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are statistically distinguishable.
We give a reduction to the security of the protocol Φ.

We interact with the external challenger by giving x as the honest receiver input. We corrupt
the sender client and the set of servers corresponding to the set C. We obtain {xi}i∈C as the first
round message from the receiver to the corrupt servers. We provide {yi}i 6∈C as the first round
message from the corrupt sender to the honest servers. For each i ∈ C, we compute the second
round message φi from the corrupt servers as described in Hyb4. We send {φi}i∈C to the external
challenger. The external challenger replies with either f(x, y) or abort and we instruct the honest
receiver to output the same. The reduction finally outputs the view of the adversary A along with
the output of the honest receiver.

Note that if the messages of the protocol Φ generated by the external challenger correspond to
the real protocol messages, then the output of the reduction is identical to Hyb3. Else, it is identically
distributed to Hyb4. It now follows that since Hyb3 and Hyb4 are statistically distinguishable, the
above reduction breaks the security of the protocol Φ and this is a contradiction.

5.4.2 Super-Polynomial Simulation Security against Malicious Receivers.

Description of Sim1
R. Sim1

R does the following:

1. It generates (y1, . . . , ym)← Φ1(0) (where 0 is some default input).

2. For each i ∈ [m],

(a) It samples {labi,j0 , labi,j1 } and {labi,j0 , lab
i,j
1 } for each j ∈ [k] uniformly from {0, 1}λ ×

{0, 1}λ.
(b) For each j ∈ [k], it samples si,j ← {0, 1}∗ as the randomness for an OT execution. It

sets si := (si,1, . . . , si,k).

(c) It samples ri ← {0, 1}∗ as the randomness for an extractable commitment scheme.

(d) It samples ti ← {0, 1}∗ as the randomness for generating a garbled circuit.

(e) It computes Comi
1 := ECom1(1λ, (yi, si, ti, {labi,jb , lab

i,j
b }j∈[k],b∈{0,1}); ri).
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3. For each i ∈ [m] and j ∈ [k],

(a) It computes otmi,j
1 ← OT1(1λ, (labi,j0 , labi,j1 ); si,j)

4. It sets msg1 to be {Comi
1}i∈[m], {otm

i,j
1 }i∈[m],j∈[k] and sets st to be its random tape.

Description of Ext. Ext does the following:

1. Ext runs ExtOT on otmi,j
2 for each i ∈ [m] and j ∈ [k] to compute xi,j . It also runs ExtOT(k,m)

on otm to compute K.

2. It starts running SimΦ by corrupting the receiver client and the set of servers indexed by K.
It provides to SimΦ with {yi}i∈K as the first round dummy messages generated on behalf of
the honest client. It provides {xi}i 6∈K as the first round message sent by the corrupt receiver
client to the honest servers.

3. SimΦ queries the ideal functionality on input x.

4. Ext outputs x and sets st′ to be its random tape along with K.

Description of Sim2
R. Sim2

R does the following:

1. For each i ∈ [m], it generates Comi
3 honestly as described in the protocol.

2. For each i ∈ K, it generates Φ̃2,i honestly as described in the protocol.

3. It starts running SimΦ using the random tape output in st′′ and receives the second round
message {φi}i 6∈K output by the honest servers.

4. For each i 6∈ K, it generates Φ̃2,i as SimGC(1λ, 1|Φ2,i|, {labi,jxi,j , lab
i,j}j∈[k], φi) where lab

i,j is
uniformly chosen.

5. It generates otm2 ← OT
(λ,m)
2 (otm1, (r

∗
1, . . . , r

∗
m)) where r∗i = ri for each i ∈ K and is ⊥

otherwise.

6. It sets msg3 to be {Comi
3, Φ̃2,i}i∈[m], {otm

i,j
3 , lab

i,j}i∈[m],j∈[k], otm2 where lab
i,j

= lab
i,j
yi,j for

each i ∈ K and j ∈ [k].

Proof of Indistinguishability.

• Hyb0 : This hybrid corresponds to ViewA(〈A(1λ), S(1λ, y)〉).

• Hyb1 : In this hybrid, for each i ∈ [m] and j ∈ [k], we run ExtOT(otmi,j
2 ) to obtain xi,j and

ExtOT(λ,m)(otm1) to obtain K. We generate otm2 ← OT
(λ,m)
2 (otm1, (r

∗
1, . . . , r

∗
m)) where r∗i = ri

for each i ∈ K and is ⊥ otherwise. Via an identical argument given in Lemma 4.10, we can
show that Hyb0 and Hyb1 are computationally indistinguishable.

• Hyb2 : In this hybrid, we make the following changes:

1. We repeat the following for λ ·
(
m
λ

)
iterations:
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(a) In each iteration, we randomly choose a set K ′ ⊆ [m] of size λ.
(b) When we obtain the second round message from A, we run ExtOT(λ,m)(otm1) to

obtain K.
(c) If K 6= K ′, we move to the next iteration and if K = K ′, we proceed as before.

2. If we are unable to proceed in each of the λ ·
(
m
λ

)
iterations, we output a special symbol

fail.

Via an identical argument to Lemma 4.11, we can show that Hyb1 and Hyb2 are statistically
close.

• Hyb3 : In this hybrid, we make the following changes:

1. We repeat the following for λ ·
(
m
λ

)
iterations:

(a) We randomly choose a set K ′ ⊆ [m] of size λ.
(b) For each i 6∈ K ′, we generate Comi

1 as the first round message of an extractable
commitment to a dummy message. For each i ∈ K ′, we generate Comi

1 as in the
previous hybrid.

(c) When we obtain the second round message from A, we run ExtOT(λ,m)(otm1) to
obtain K.

(d) If K 6= K ′, we move to the next iteration. If K = K ′, then for each i 6∈ K ′,
we generate Comi

3 as the third round message for an extractable commitment to a
dummy message and for each i ∈ K ′, we generate Comi

3 as in the previous hybrid.

Via an identical argument to Lemma 4.12, we can show that Hyb2 ≈ε·λ·(mλ)·m Hyb3.

• Hyb4 : In this hybrid, we make the following changes:

1. We repeat the following for λ ·
(
m
λ

)
iterations:

(a) We randomly choose a set K ′ ⊆ [m] of size λ.
(b) For each i 6∈ K ′ and for every j ∈ [k], we generate (otmi,j

1 , sti,j)← Sim1
R,OT(1λ). For

every i ∈ K ′ and for every j ∈ [k], we generate otmi,j
1 as in the previous hybrid.

(c) When we obtain the second round message from A, we run ExtOT(λ,m)(otm1) to
obtain K and for each i ∈ [m] and j ∈ [k], ExtOT(otmi,j

1 ) to obtain xi,j .
(d) If K 6= K ′, we move to the next iteration. If K = K ′, then for each i 6∈ K ′ and

j ∈ [k], we generate otmi,j
3 ← Sim2

R,OT(sti,j , labi,jxi,j ) and for each i ∈ K ′ and j ∈ [k],
we generate otmi,j

3 as in the previous hybrid.

In Lemma 5.4, we show that Hyb3 ≈δ·λ·(mλ)·m Hyb4.

• Hyb5 : In this hybrid, we make the following changes:

1. In the iteration whereK = K ′, for each i 6∈ K ′, we generate Φ̃2,i as SimGC(1λ, 1|Φ2,i|, {labi,jxi,j ,
lab

i,j
yi,j}j∈[k], φi) where φi := Φ2,i(xi, yi).

In Lemma 5.5, we show that Hyb4 ≈c Hyb5.
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• Hyb6 : In this hybrid, we make the following changes:

1. We repeat the following for λ ·
(
m
λ

)
iterations:

(a) We randomly choose a set K ′ ⊆ [m] of size λ.
(b) We run the simulator SimΦ for the protocol Φ by corrupting the receiver client and

the set of servers indexed by K ′. We obtain {yi}i∈K′ as the first round message from
the honest sender client to the corrupted servers. We use this to generate the first
round message of the protocol as in the previous hybrid.

(c) When we obtain the second round message from A, we run ExtOT(λ,m)(otm1) to
obtain K and for each i ∈ [m] and j ∈ [k], ExtOT(otmi,j

1 ) to obtain xi,j .
(d) If K 6= K ′, we go to the next iteration. Else, if K = K ′, we send {xi}i 6∈K′ as the

first round message from the corrupted receiver to the honest servers. When SimΦ

makes a query to the ideal functionality with input x, we reply with f(x, y).
(e) SimΦ sends {φi}i 6∈K′ as the second round message from the honest servers to the

corrupt client. We use this to generate {Φ̃2,i}i 6∈C .

In Lemma 5.6, we show that Hyb5 ≈µ·λ·(mλ) Hyb6.

• Hyb7 : In this hybrid, we reverse the changes made in Hyb4. Specifically, in each of the
iterations, instead of generating {otmi,j

1 , otmi,j
3 }i 6∈K′,j∈[k] using the simulator Sim1

R,OT, Sim
2
R,OT

respectively, we generate them using the actual algorithms OT1 and OT3 respectively on input
{labi,j0 , labi,j1 }. It now follows that Hyb6 ≈δ·λ·(mλ)·m Hyb7 via an identical argument to the proof
of indistinguishability between Hyb3 and Hyb4.

• Hyb8 : In this hybrid, we make the following changes:

1. We repeat the following for λ ·
(
m
λ

)
iterations:

(a) We randomly choose a set K ′ ⊆ [m] of size λ.
(b) Instead of generating {yi}i∈K′ as the output of SimOT, we compute it as follows:

we generate (y1, . . . , ym) ← Φ1(0) (where 0 is the default input) and then output
{yi}i∈K′ .

It follows from the perfect first message indistinguishability of the protocol Φ, we have Hyb7 ≡
Hyb8.

• Hyb9 : In this hybrid, we reverse the changes made in Hyb3. Specifically, in each iteration,
instead of generating {Comi

1,Com
i
3}i 6∈K′ as commitments to some dummy message, we gener-

ate them as commitment to (yi, si, ti, {labi,j,b, labi,j,b}j∈[k],b∈{0,1}) where yi is the message to
the i-th server when the input of the sender is 0, si := (si,1, . . . , si,k) is such that si,j is the
randomness used in generating {otmi,j

1 , otmi,j
1 } for each j ∈ [k] and ti is an uniformly chosen

random string from {0, 1}∗. Via an identical argument proving indistinguishability between
Hyb2 and Hyb3, we can show that Hyb8 ≈ε·λ·(mλ)·m Hyb9.

• Hyb10 : In this hybrid, we reverse the changes made in Hyb2. It now follows via a similar
argument in proving statistical indistinguishability between Hyb1 and Hyb2, we can show that
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Hyb9 ≈s Hyb10. Note that Hyb10 is identically distributed to the ideal world output generated
by SimR.

Lemma 5.4. Assuming the (T2, δ)-security of the oblivious transfer protocol against malicious re-
ceivers, we have Hyb3 ≈δ·λ·(mλ)·m.

Proof. We consider each rewinding and show that in each of these rewindings, the changes described
in Hyb4 cannot be distinguished from Hyb3 except with m · δ advantage. We show this for the first
rewinding thread and the case for any general rewinding thread is identical.

Assume for the sake of contradiction that the above change made to the first rewinding thread
can be distinguished with advantage at least m · δ. By a standard averaging argument, there exists
two intermediate hybrids Hyb3,i,Hyb3,i−1 (described below) such that they are computationally
distinguishable with advantage δ. We now give the description of the two hybrids. In both hybrids,
for every i′ < i and if i′ 6∈ K ′, we generate {otmi′,j

1 , otmi′,j
3 }j∈[k] as the output of the simulator

SimR,OT. In both hybrids, for every j′ > j or if j′ < j and j′ ∈ K ′, we generate {otmi′,j
1 , otmi′,j

3 }
for each j ∈ [k] as the output of OT1,OT3 respectively on input {labi

′,j
0 , labi

′,j
1 }. The only difference

between these two hybrids in the generation of {otmi,j
1 , otmi,j

3 }j∈[k]. Specifically, if i 6∈ K ′, we
generate it as the output of the simulator in Hyb3,i and in Hyb3,i−1, we generate it using OT1,OT3

on input {labi,j0 , labi,j1 }. We now use a distinguisher against Hyb3,i and Hyb3,i−1 to contradict the
(T2, δ)-security against malicious receivers. Note that if i ∈ K ′, then Hyb3,i and Hyb3,i−1 are
identically distributed. Hence, in the rest of the proof, we assume w.l.o.g. that i 6∈ K ′.

We interact with the external challenger and provide {labi,j0 , labi,j1 }j∈[k] as the set of sender
inputs. We define an adversary A′ that receives {otmi,j

1 }j∈[k] externally, and generates the rest of
the first round protocol messages as in Hyb3,i−1. It runs A internally on the first round message
and receives the second round message. When it receives the second round message from A, it
forwards {otmi,j

2 }j∈[k] externally. It receives {otmi,j
3 }j∈[k] externally and computes the rest of the

third round messages as in Hyb3,i−1. We interact with the external challenger using the adversary
A′. We finally obtain the view of A′ from the challenger and use it to extract the view of A and
output it.

Note that if the messages generated by the challenger are using the algorithms OT1,OT3 then
the output of the reduction is identically distributed to Hyb3,i−1 Else, it is identically distributed
to Hyb3,i. Furthermore, the running time of the reduction is T1 · poly(λ ·

(
m
λ

)
) ≤ T2. Hence, if

Hyb3,i−1 and Hyb3,i can be distinguished with advantage δ, then the above reduction breaks the
(T2, δ)-security of OT against malicious receivers and this is a contradiction.

Lemma 5.5. Assuming the security of garbled circuits, we have Hyb4 ≈c Hyb5.

Proof. Assume for the sake of contradiction that Hyb4 and Hyb5 are computationally distinguishable.
We now give a reduction to the security of garbled circuits.

We interact with the garbled circuits challenger and give for each i ∈ K ′, Φ2,i as the challenge
circuit, (xi, yi) as the challenge inputs and {labi,jxi,j , lab

i,j
yi,j}j∈[k] as the challenge input labels. We

obtain {Φ̃2,i}i 6∈K′ from the external challenger and use it to generate the third round message as in
Hyb4. We finally output the view of A.

Note that if the garbled circuits {Φ̃2,i}i 6∈K′ were generated by the external challenger as the
output of the simulator SimGC then the output of the reduction is identically distributed to Hyb5.
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Otherwise, it is identically distributed to Hyb4. Thus, if Hyb4 and Hyb5 are computationally distin-
guishable then the above reduction breaks the security of garbled circuits and this is a contradic-
tion.

Lemma 5.6. Assuming µ-statistical security of the protocol Φ, we have that Hyb5 ≈µ·λ·(mλ) Hyb6.

Proof. We consider each rewinding and show that in each of these rewindings, the changes described
in Hyb5 cannot be distinguished from Hyb6 except with µ advantage. We show this for the first
rewinding thread and the case for any general rewinding thread is identical.

Assume for the sake of contradiction that the above change made to the first rewinding thread
can be distinguished with advantage at least µ. We give a reduction to the security of the protocol
Φ.

We interact with the external challenger by giving y as the input of the sender. We corrupt the
set of servers indexed by set K ′ and obtain {yi}i∈K′ . We use it to generate the first round message
of the protocol and send it to A. When we receive the second round message from A, for each
i ∈ [m] and j ∈ [k], we run ExtOT(otmi,j

2 ) and obtain xi,j and ExtOT(λ,m)(otm1) to obtain K. If
K 6= K ′, we move to the next iterations and proceed as before. Otherwise, we send {xi}i 6∈K′ as the
first round message from the corrupt receiver to the honest servers. We obtain {φi}i 6∈K′ from the
external challenger. We use it to generate the last round message of the protocol and finally output
the view of A.

Note that if the messages of the protocol Φ are generated by the external challenger by running
SimΦ then the output of the above reduction is identically distributed to Hyb6. Otherwise, it is dis-
tributed identically to Hyb5. Thus, if Hyb5 and Hyb6 are statistically distinguishable with advantage
µ, then the above reduction breaks the µ-security of the protocol Φ and this is a contradiction.

5.5 Additional Properties

We now describe how to add certain additional properties that are needed for our applications.

k-rewinding Sender Security. For our application, we need a protocol that is secure against
a malicious receiver that rewinds the honest sender k times (for an a priori bounded constant k)
by giving potentially different second round messages and requiring to compute possibly different
functionalities f1, . . . , fk. For the construction described in Figure 3 to have this property, we need
the building blocks to have the following properties:

• k-rewinding secure Extractable Commitment: This can be instantiated using the con-
struction given in [BGJ+18].

• k-rewinding secure three-round OT protocol: This can be instantiated using the mod-
ifications described in Section 4.5.

• Special Outer Protocol: We need an outer protocol where the first round message sent by
the clients could be reused k times to compute possibly k different functionalities. [IKSS21]
showed how to modify the protocol given in [IKP10, Pas12] to be reused 2 times. We now
show to modify this for arbitrary constant k number of reuses. Note that the first round
message from the client in the IKP protocol [IKP10, Pas12] comprises of three parts, a secret
sharing of its input, a random secret sharing of 0 and a multiparty conditional disclosure of
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secrets (MCDS) message. We note that the secret sharing of its input can be reused whereas
the random secret sharing of 0 and the MCDS message cannot be reused. For the protocol
to be reused k times, we make use of perfect hash functions [FK84]. Recall that a perfect
hash function family {hi}i∈[`] is a set of ` functions each mapping {0, 1}n → [k] such that for
any subset S ⊆ {0, 1}n of size k, there exists at least one i ∈ [`] such that hi is injective on
S. It is possible to show that if we fix ` = O(n + λ), then with overwhelming probability `
k-wise independent hash functions form a perfect hash family (see [BS19, Lemma 4.5]). In our
protocol, we let the sender choose ` k-wise independent functions and send this to the receiver
in the first round (with overwhelming probability, this will be a perfect hash function family).
For the first round message in the IKP protocol to be reused k times, we generate k × ` of
the MCDS messages and random secret sharings of 0 in the first round. The servers arrange
these messages in a matrix of k rows and ` columns. In the second round, the servers compute
hi(f) for each i ∈ [`] and they use MCDS message and the secret sharing of 0 corresponding to
hi(f)-th row for each column i ∈ [`]. Specifically, the server adds all the chosen secret sharings
of 0 to obtain a single share and it adds all the chosen MCDS secrets to obtain a single secret.
It then generates the second round MCDS message for each of the chosen indices. This ensures
that for distinct f1, . . . , fk, there exists at least one index i ∈ [`] such that the MCDS message
and the random secret sharing of 0 is only used once in the k executions. We note that this
modification still preserves the perfect first message indistinguishability and delayed functions
selection.

Apart from these, we also change the protocol such that otm1 is sent in the first round (as we
described for the OT case in Section 4.5).

Public-Coin Second Round message. Note that with the above mentioned changes, the second
round message sent by the receiver consists of public coins.

Two Properties of SimS.

1. We note that the view of the adversary generated by SimS is identically distributed to its
view when interacting with an honest receiver with default input x′. This property is directly
inherited from SimOT

S .

2. We note that to extract the sender input y, SimS rewinds and extracts from the extractable
commitment. Thus, for a given first round message from the malicious sender and valid third
round responses to two random second round challenges, SimS can use the above information
to extract (M0,M1) except with negligible probability. If the extractable commitment on the
other hand, requires t accepting transcripts (with valid third round messages), then SimS also
needs t accepting transcripts with valid third round messages. Additionally, if SimOT

S requires
only two accepting transcripts to extract {labi,j0 , labi,j1 }i∈[m],j∈[k] then so does SimS .

Existence of Straight-Line SPS extractor against Malicious Senders. We note that SimS

described earlier rewinds the extractable commitment as well as the OT protocol to extract the
sender inputs in the 2PC protocol and to generate the output of the honest receiver. If the ex-
tractable commitment is straight-line extractable in super-polynomial time (such a construction of
extractable commitment is given in Appendix A) and if the OT protocol also admits a straight-line
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SPS extractor (we describe how to add this property to our OT protocol in Section 4.5), we get a
super-polynomial time, straight-line simulator against malicious senders.

6 3-Round Two-Party Computation with Special Extraction

In this section, we give a construction of a three-round, two-party protocol for computing NC1

functionalities that satisfies certain special properties. We then use this special two-party protocol
as the key building block in constructing a protocol that implements the watchlist functionality.
In Section 6.1, we give the syntax this two party protocol and formally define the properties that
it needs to satisfy. In Section 6.2, we give the description of the building blocks needed in the
construction. In Section 6.3, we give the construction of the protocol and in Section 6.4, we give
the proof of security. In Section 6.6, we describe how to add certain additional properties to this
protocol (which are needed to construct a watchlist protocol).

6.1 Definition

We start with the syntax of the protocol.

Syntax. A three-round protocol Π = (Π1,Π2,Π3, outΠ) between a sender and a receiver proceeds
as follows. In each round r ∈ [3], the sender runs Πr on its identity, the transcript, its input
and randomness to generate msgSr . Similarly, in round r, the receiver runs Πr on its identity, the
transcript, its input and randomness to generate msgRr . The sender sends msgSr to the receiver and
the receiver sends msgRr to the sender and these messages are then added to the transcript. At the
end of the protocol, the receiver run outΠ on its identity, transcript, its input and randomness to
compute the output which is a string z or ⊥. The sender runs outΠ on its identity and the first round
message from the receiver, the second round message from the sender and third round message from
the receiver and outputs either accept/reject. We note that while the output computation of the
receiver requires access to its private random tape, the output of the sender is publicly computable.

Definition 6.1. A three-round two-party protocol Π = (Π1,Π2,Π3, outΠ) for computing a function
f is said to satisfy k-special extraction if:

• Public Coin Second Round Messages. The second round messages from the sender and
the receiver are both public coin.

• Security against Malicious Senders. There exists an expected PPT machine SimS such
that for every non-uniform A the corrupts the sender and for every receiver’s input x ∈ {0, 1}n,
we have: {(

ViewA(〈R(1λ, x),A(1λ)〉), outR(〈R(1λ, x),A(1λ)〉)
)}
≈c{

(ViewA, f(x, y)) : (ViewA, y)← (SimS)A(1λ)
}

In the above definition, we note that if y output by SimS is the special symbol ⊥, then the
output of f is also ⊥.
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• Run SPSim1
R(1λ) to obtain (msgS1 , st) and send msgS1 to A. Receive msgR1 from A.

• Run SPExtR(msgR1 ) to obtain x, st′.

• Sample (msgS2 , st
′′) from SPSim2

R(st, st′) and send msgS2 to A.
• Receive msgR2 from A.
• Run SPSim3

R(st′′, f(x, y),msgR1 ,msgR2 ,msgS2 ) to obtain msgS3 and send this to A.
• Receive msgR3 from A.
• Output view of A.

Figure 4: Description of IdealR.

• Super-Polynomial Time Simulation Security against Malicious Receivers. There
exists a super-polynomial time machine SPSimR = (SPSim1

R, SPExtR, SPSim
2
R, SPSim

3
R) such

that for every adversary A corrupting the receiver and for every sender’s input y ∈ {0, 1}n,
we have: {

ViewA(〈A(1λ), S(1λ, y)〉)
}
≈c IdealR(1λ, y,A, SPSimR)

where the experiment IdealR is described in Figure 4.

• Special Extraction of the Malicious Receiver Input. There exists a super-polynomial
time extractor SPSpecExtR such that for any adversary A corrupting the receiver and for any
sender input y ∈ {0, 1}n, the probability the following experiment outputs 1 is negligible:

1. Sample a transcript T from IdealR(1λ, y,A, SPSimR).

2. If the output of the sender S in the transcript T is reject, then output of the experiment
is 0.

3. Run SPExtR(msg1
R) (where msg1

R ∈ T) to obtain x. If x = ⊥, output of the experiment
is 0.

4. Else, run SPSpecExt(T) to obtain x′.

5. The output of the experiment is 1 if and only if x 6= x′.

• Existence of k accepting Transcript Extractor. There exists a polynomial time machine
ExtR that on input any k transcripts T1, . . . ,Tk such that in each of the transcript the output
of the sender is accept outputs x such that x = SPSpecExt(T1) with overwhelming probability.

6.2 Building Blocks

We now describe the building blocks used in the construction.

• Outer MPC Protocol. A two-round two clients, m-server MPC protocol (Φ1,Φ2, outΦ) for
computing NC1 functionalities that satisfies µ-statistical security with selective abort against
adversary corrupting upto t servers and one of the clients. We set t = λ and m = 4t+ 1. We
additionally need this protocol to satisfy a couple of properties:
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1. Perfect first round message indistinguishability, meaning that for any input of the honest
client, the distribution of the first round message sent to the corrupted servers from
the honest client is identically distributed to the first round message generated by the
simulator SimΦ on behalf of this client.

2. The parties can choose a set of 3t+ 1 servers among the m servers to receive the second
round message from and compute the output of the functionality from these messages.

3. Let A be an adversary that corrupts one of the clients and at most t of the m servers. Let
{xi}i∈H be the first round message sent by A to the honest servers H where |H| ≥ 3t+1.
There is a polynomial time algorithm Rec such that for any C ⊂ H of size at most t,
Rec(C, {xi}i 6∈C) is the same as the query x made by SimΦ to its ideal functionality as
long as x 6= ⊥

We call this protocol as the outer protocol. We note that the protocol given in [IKP10,
Pas12] satisfies all these properties. The first two properties are direct consequence of their
construction and the third property follows from the error correction property of pairwise
verifiable secret sharing used in their construction.

• Inner Protocol. For each i ∈ [m], we use a three-round inner protocol (Πi,1,Πi,2,Πi,3, outΠ)
for computing the functionality Φ2(i, ·) (i.e., the computation done by the i-th server) that
satisfies (T2, ε)-security against malicious senders and super-polynomial simulation security
against malicious receivers with the two additional properties of SimS described in Section 5.5
and the public-coin second round message from the receiver. Let t be the number of accepting
transcripts (for a constant t) required by SimS needed to extract y.

• A t-rewinding (T2, ε) secure, straight-line SPS extractable commitment scheme ECom =
(ECom1,ECom2,ECom3) constructed in Appendix A.

Setting the Parameters. We set T2 ≥ poly(
(
m
k

)
· λ) and ε = µ such that ε ·

(
m
k

)
≤ negl(λ).

6.3 Construction

We describe the protocol in Figure 5.

6.4 Proof of Security

In this subsection, we show that the construction given in Figure 5 satisfies Definition 6.1. The
public coin second round message property follows from the observation thatK, {Comi,2}i∈[m] chosen
by the sender and {πi,2}i∈[m] chosen by the receiver are both public coin.

6.4.1 Security against Malicious Senders

Description of SimS. SimS does the following:

• It computes (x1, . . . , xm)← φ1(0) (where 0) is the default input.
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• Round-1:

– S → R : S does the following:

1. It computes (y1, . . . , ym)← Φ1(y).
2. For each i ∈ [m],

(a) It computes πSi,1 ← Πi,1(1λ, S, yi).
3. It sends {πSi,1}i∈[m] to R.

– R→ S : R does the following:

1. It computes (x1, . . . , xm)← Φ1(x).
2. For each i ∈ [m],

(a) It chooses ri ← {0, 1}∗ as the receiver randomness used in the protocol Πi.
(b) It computes πRi,1 := Πi,1(1λ, R, xi; ri).
(c) It chooses si ← {0, 1}∗ as the randomness for an extractable commitment scheme.
(d) It computes Comi,1 := ECom1(1λ, (xi, ri); si)

3. It sends {πRi,1,Comi,1}i∈[m] to S.

• Round-2:

– S → R : S does the following:

1. For each i ∈ [m]:
(a) It chooses Comi,2 ← ECom2(Comi,1).

2. It chooses a random subset K ⊂ [m] of size λ.
3. It sends K, {Comi,2}i∈[m].

– R→ S : R does the following:

1. For each i ∈ [m],
(a) It computes πi,2 := Πi,2(πSi,1).

2. It sends {πi,2}i∈[m] to S.

• Round-3:

– S → R : S does the following:

1. For each i ∈ [m] \K:
(a) It computes πi,3 ← Πi,3({πRi,1, πi,2}, yi).

2. It sends {πi,3}i∈[m]\K .

– R→ S : R does the following:

1. For each i ∈ [m],
(a) It computes Comi,3 ← ECom3(Comi,2, (xi, ri); si).

2. It sends {Comi,3}i∈[m], {si}i∈K to S.

• Output Computation:

– S: To compute the output, S does the following:

1. For each i ∈ [m], it runs Verify(Comi
1,Com

i
2,Com

i
3).

2. For each i ∈ K:
(a) It recovers (xi, ri) from Comi,1 using randomness si.
(b) It checks if πRi,1 is consistent with (xi, ri).

3. If any of the checks fail, it rejects. Otherwise, it accepts.

– R : To compute the output, R does the following:

1. For each i ∈ [m] \K, it computes φi := outΠi(π
S
i,1, πi,3, (xi, ri)).

2. It outputs outΦ({φi}i∈[m]\K).

Figure 5: Descriptions of the protocol.
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• It generates the messages in the inner protocol using Simi
S(1λ, xi) using random tape ui for

each i ∈ [m].10 It generates the messages of the i-th extractable commitment with input
(xi, ui). It completes the execution with A.

• For each i ∈ [m] \K, it obtains yi from Simi
S .

• It runs SimΦ by corrupting only the sender and the specifies the set of honest servers to be
[m]\K. It provides the first round message {yi}i∈[m]\K from the corrupt sender to the honest
servers.

• SimΦ queries the ideal functionality on y and provides the instruction to either deliver the
output to the receiver or output ⊥. If the instruction is to output ⊥, then SimS sets y = ⊥.

Proof of Indistinguishability.

• Hyb0 : This corresponds to
(
ViewA(〈R(1λ, x),A(1λ)〉), outR(〈R(1λ, x),A(1λ)〉)

)
.

• Hyb1 : In this hybrid, we make the following changes:

1. We repeat the following for λ ·
(
m
λ

)
iterations:

(a) In each iteration, before sending the first round message on behalf of R, we choose
a random subset K ′ ⊂ [m] of size λ.

(b) On receiving the second round message from A, we check if K ′ = K.
(c) If K ′ = K then we proceed to the complete the execution as in the previous hybrid.

Else, if K ′ 6= K, then we move to the next iteration.

2. If we fail to complete the execution even after λ ·
(
m
λ

)
trials, we output a special symbol

fail and abort.

Via an identical argument to the proof of Lemma 4.11, we can show that Hyb1 and Hyb0 are
statistically close.

• Hyb2 : In this hybrid, we make the following changes in each of the λ ·
(
m
λ

)
iterations:

1. In each iteration, before sending the first round message on behalf of R, we choose a
random subset K ′ ⊂ [m] of size λ.

2. For each i 6∈ K ′, we generate {Comi,1,Comi,3} as extractable commitments to a dummy
message.

Assuming the (T2, ε)-hiding property of the extractable commitment scheme ECom, using an
identical argument to Lemma 4.12, we can show that Hyb1 ≈ε·m·λ·(mλ) Hyb2.

• Hyb3 : In this hybrid, we make the following changes in each of the λ ·
(
m
λ

)
iterations:

1. Before sending the first round message on behalf of R, we choose a random subset
K ′ ⊂ [m] of size λ.

10Note that from the first property satisfied by Simi
S in Section 5.5, it takes some default input used by the receiver.

In this case, the default input corresponds to xi generated as above.
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2. For each i 6∈ K ′, instead of generating the messages (πRi,1, πi,2) and computing the out-
put of Πi using input xi and randomness ri, we run Simi

S(1λ, 0k) (where k = |xi|) to
obtain these messages along with yi. We compute the output of R using the extracted
{yi}i∈[m]\K′ .

In Lemma 6.2, we show that Hyb3 ≈ε·m·λ·(mλ) Hyb2.

• Hyb4 : In this hybrid, in each of the λ ·
(
m
λ

)
iterations:

1. Before sending the first round message on behalf of R, we choose a random subset
K ′ ⊂ [m] of size λ.

2. We initialize the simulator SimΦ for the protocol Φ by corrupting the sender client and
corrupt the set of servers indexed by K ′. We obtain {xi}i∈K′ from Sim and use this to
generate the first round message.

3. In the iteration where K = K ′, we send {yi}i 6∈K to SimΦ as the first round message from
the corrupted sender client to the honest servers. SimΦ queries the ideal functionality on
input y and we record this value.

4. If SimΦ instructs the honest receiver to output ⊥, we output ⊥ and otherwise, we instruct
the honest receiver to output f(x, y).

In Lemma 6.3, we show that Hyb4 ≈µ·λ·(mλ) Hyb3.

• Hyb5 : In this hybrid, we make the following changes to each of the λ ·
(
m
λ

)
iterations:

1. Instead of generating {xi}i∈K′ using SimΦ, we generate it as follows. We compute
(x1, . . . , xm)← Φ1(0) (where 0 is the default input) and output {xi}i∈K′ .

It follows from perfect indistinguishability of the first round message of the protocol Φ that
Hyb4 and Hyb5 are identically distributed.

• Hyb6 : In this hybrid, we make the following changes in each of the λ ·
(
m
λ

)
iterations:

1. We compute (x1, . . . , xm) ← Φ1(0) and for each i 6∈ K ′, we run Simi
S(1λ, xi) instead of

Simi
S(1λ, 0k) to compute πRi,1, πi,2 and yi.

Since Simi
S(1λ, x) ≈ε Simi

S(1λ, x′) for any x, x′, it now follows that Hyb6 ≈ε·m·λ·(mλ) Hyb5.

• Hyb7 : In this hybrid, we reverse the changes made in Hyb2. Specifically, in each of the λ ·
(
m
λ

)
iterations, we compute (x1, . . . , xm) ← Φ1(0) and generate {Comi

1,Com
i
3} for each i 6∈ K ′ as

extractable commitments to (xi, ui).

In Lemma 6.4, we show that Hyb7 ≈ε·m·λ·(mλ) Hyb6.

• Hyb8 : In this hybrid, we reverse the changes made in Hyb1. Again, via an identical argument
given above, we can show that Hyb8 ≈s Hyb7. The output of Hyb8 is identically distributed
to the output of the ideal world execution using SimS .

Lemma 6.2. Assuming that Πi (for each i ∈ [m]) is ε-simulation secure against malicious senders
running in time T2, we have that Hyb3 ≈ε·λ·(mλ) Hyb2.
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Proof. We consider each iteration and show that in each of these iterations, the changes described
in Hyb3 cannot be distinguished from Hyb2 except with ε ·m advantage. We show this for the first
iteration and the case for any general iteration is identical. Assume for the sake of contradiction
that the changes made in the first iteration are distinguishable with advantage greater than εm. We
now give a reduction that breaks the ε ·m-simulation security of m instances of the inner protocol
against malicious senders that run in time T2. This directly contradicts the ε simulation security of
a single instance (by a standard averaging argument).

The reduction chooses a random subset K ′ ⊂ [m] of size λ and computes (x1, . . . , xm)← Φ1(x).
It provides {xi}i 6∈K′ as the challenge receiver inputs. The reduction defines an adversary A′ that
internally runs A and interacts with the external challenger as follows. A′ obtains {πRi,1}i 6∈K′ from
the challenger and uses it to compute the first round message in the protocol. It receives the first
round message from A and forwards {πSi,1}i 6∈K′ to the challenger. It obtains {πi,2}i 6∈K′ from the
challenger and uses this to generate the second round message of the protocol. It obtains the second
round message from A and checks if K ′ = K. If it is not the case, A′ completes the rest of the
iterations as before. On the other hand, if K ′ = K, it obtains the last round message from A and
forwards {πi,3}i 6∈K′ to the challenger.

The reduction obtains ViewA′ and {φi}i 6∈K′ from the external challenger. If A′ hadn’t completed
the execution with the external challenger because K ′ 6= K, then reduction computes the ViewA
and the output of the honest party from ViewA′ . Otherwise, it uses {φi}i 6∈K′ to compute the output
of the honest receiver and outputs the view of A (extracted from ViewA′) along with the output of
the honest receiver.

We note that if the view of A′ and the output {φi}i 6∈K′ are computed by the external challenger
using the real receiver algorithms on input {xi}i 6∈K′ , then the output of the reduction is identically
distributed to Hyb2. Else, it is identically distributed to Hyb3. Furthermore, the running time
of A′ is upper bounded by poly(λ) ·

(
m
λ

)
≤ T2. Since the changes made to the first iteration are

distinguishable with advantage ε, it now follows that the reduction breaks the ε-simulation security
of the inner protocol against malicious senders running in time T2 and this is a contradiction.

Lemma 6.3. Assuming µ-statistical simulation security of the protocol Φ, we have Hyb3 ≈µ·λ·(mλ)
Hyb4.

Proof. We give the proof that for the first of the λ ·
(
m
λ

)
iterations that the changes made in Hyb7

are µ-statistically indistinguishable to Hyb6. The general case of an arbitrary iteration is identical.
Assume for the sake of contradiction that these changes made to the first iteration is distinguishable
with advantage at least µ. We give a reduction to the security of the protocol Φ.

We interact with the external challenger by giving x as the honest receiver input. We corrupt
the sender client and the set of servers indexed by K ′. We obtain {xi}i∈K′ as the first round message
from the receiver client. We use this to generate the first round message of the protocol. If in this
iteration K ′ = K, we extract {yi}i 6∈K as before. We send {yi}i 6∈K as the first round message from
the corrupt sender to the honest servers. The external challenger replies with either f(x, y) or abort,
and we instruct the honest receiver to output the same. The reduction finally outputs the view of
the adversary A along with the output of the honest receiver.

Note that if the messages of the protocol Φ generated by the external challenger correspond to
the real protocol messages, then the output of the reduction is identical to Hyb3. Else, it is identically
distributed to the changes made to the first iteration as described in Hyb4. It now follows that since
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these two hybrids are µ-distinguishable, the above reduction breaks the µ-simulation security of the
protocol Φ and this is a contradiction.

Lemma 6.4. Assuming the t-rewinding, ε-security of the extractable commitment scheme ECom
against receivers running in time T2, we have that Hyb7 ≈ε·m·λ·(mλ) Hyb6.

Proof. We consider each rewinding and show that in each of these rewindings, the changes described
in Hyb7 cannot be distinguished from Hyb6 except with m · ε advantage. We show this for the first
rewinding thread and the case for any general rewinding thread is identical.

By a standard averaging argument, we infer that there exists two intermediate hybrids Hyb6,i,Hyb6,i−1

(described below) which are computationally distinguishable with advantage ε. In both hybrids,
for every i′ < i or if i′ > i and i′ ∈ K ′, we generate {Comi′,1,Comi′,3} as a commitment to (xi, ui)
(where ui is the random tape used by Simi

S). In both hybrids, for every i′ > i and i′ 6∈ K ′, we
generate {Comi′,1,Comi′,3} as a commitment to a dummy message. The only difference between
these two hybrids in the generation of the i-th commitment. Specifically, if i 6∈ K ′, we generate
{Comi.1,Comi,3} as a commitment to some dummy message in Hyb6,i−1 and in Hyb6,i, we generate
it as a commitment to (xi, ui). We now use a distinguisher against Hyb6,i−1 and Hyb6,i to contra-
dict the computational hiding property of the extractable commitment scheme ECom. Note that
if i ∈ K ′, then Hyb6,i and Hyb6,i−1 are identically distributed. Hence, in the rest of the proof, we
assume w.l.o.g. that i 6∈ K ′.

The reduction generates (xi, ui) as described in Hyb7 and provides this along with a dummy
message as the challenge inputs to the external challenger. The reduction obtains Comi,1 from
the challenger and generates the rest of the first round protocol messages as described in Hyb6,i−1.
Based on the second round message received from the adversary, the reduction checks if K = K ′

and if it is not the case, it generates the view of A and the output of the honest party by running the
subsequent iterations and outputs them. Otherwise, it continues the interaction with the external
challenger. On receiving the second round message from the adversary, the reduction forwards
Comi,2 to the challenger and obtains Comi,3. It uses it to generate the final round protocol message
as in Hyb6,i−1. To compute {yi′}i′ 6∈K′ , the reduction rewinds the second round of the protocol (t−1)
times by sampling a fresh second round messages from the receiver. On receiving another second
round message from A that includes a possibly different C̃omi,2 (in each of the (t− 1) rewinds), it
again checks if K = K ′ and if it is not the case, it outputs a special symbol fail. Else, the reduction
forwards this to the challenger and obtains C̃omi,3. It uses it to compute the final round message of
the protocol for each of the (t − 1) rewinds. If the adversary outputs a valid third round message
in the main thread and in all the (t − 1) rewinding threads, then the reduction runs the Simi′

S for
Πi′ for each i′ 6∈ K ′ on these t threads to compute yi′ . Here, we are using property-2 that to output
yi′ , Simi′

S needs t accepting transcripts. It uses this to compute the view of A and the output of the
honest receiver. On the other hand, if the adversary does not output a valid third round message
in the main thread, then it outputs the view of A and the output of the receiver being ⊥. If the
adversary outputs a valid third round message in the main thread, but does not output a valid
third round message in one of the rewinding threads, then it outputs a special symbol fail. We now
construct a predictor that takes the output of the reduction and does the following: if the output is
the special symbol fail then it outputs a random bit. Otherwise, it runs the distinguisher between
Hyb6,i−1 and Hyb6,i on the output of the reduction and outputs whatever the distinguisher outputs.

Let us fix the first round message of the protocol generated using Comi,1. Let E be the event that
conditioned on fixing the first round message that A produces a second and third round message
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such that K = K ′ and the third round message is valid. Let p be the probability that E happens.
In the case where E happens in both the main thread and all the rewinding threads and in the case
where E does not happen in the main thread, the predictor correctly guesses the challenge bit with
probability 1/2 + µ (for some non-negligible µ) and this follows from the fact that the distinguisher
can distinguish between Hyb6,i−1 and Hyb6,i with non-negligible advantage. On the other hand, when
E happens in the main thread but does not happen in one of the rewinding threads, the probability
that the output of the predictor is equal to the challenge bit is 1/2. Thus, the probability that
the output of the predictor is equal to the challenge bit is (1/2 + µ)(pt + (1− p)) + 1/2(p− pt)) =
1/2 + µ(1− p+ pt) ≥ 1/2 +O(µ) (when t is constant).

6.4.2 Super-Polynomial Simulation Security against Malicious Receivers

Descriptions of SPSimR. (SPSim1
R, SPExtR,SPSim

2
R) are described as follows:

1. For each i ∈ [m], SPSim1
R generates the first round message πSi,1 using Simi

1,R(1λ) and it
chooses a set K ⊂ [m] of size λ uniformly. st consists of the random tape of Simi

1,R(1λ) for
each i ∈ [m].

2. SPExt on input {πRi,1}i∈[m] does the following:

(a) For each i ∈ [m], it runs ExtiR on πRi,1 to compute xi.

(b) It initializes SimΦ by corrupting the receiver client and specifies the set of honest servers
to be [m] \ K. It provides {xi}i∈[m]\K as the first round message from the malicious
receiver to the honest servers and intercepts the query x that it makes to the ideal
functionality. It outputs x and st′ to be {xi}i∈[m] and the random tape of SimΦ.

3. SPSimR
2 on input st, st′ and f(x, y) and the first two round messages in the protocol:

(a) It runs SimΦ (with the input {xi}i∈[m]\K and random tape from st′). It provides f(x, y)
as the output from the trusted functionality. SimΦ outputs {φi}i∈[m]\K .

(b) It then runs Simi
2,R on φi using the random tape in st and obtains πi,3 for each i ∈ [m]\K.

Proof of Indistinguishability.

• Hyb0 : This hybrid corresponds to ViewA(〈A(1λ), S(1λ, y)〉).

• Hyb1 : In this hybrid, we make the following changes:

1. For each i ∈ [m],

(a) We generate the first round message πSi,1 using Simi
1,R(1λ).

(b) We receive πRi,1 from A.

2. For each i 6∈ K, we run ExtiR on πRi,1 to compute xi.

3. For each i 6∈ K, we generate the last round message πi,3 using Simi
2,R on input φi

(computed using extracted xi).

We show in Lemma 6.5 that Hyb0 ≈ε Hyb1.
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• Hyb2 : In this hybrid, we make the following changes:

1. We initialize the simulator SimΦ for the protocol Φ by corrupting the receiver client and
the set [m] \K to be the set of honest servers.

2. We obtain {xi}i 6∈K as in the previous hybrid and we give this as the first round message
from the corrupt client to the honest server. SimΦ queries the ideal functionality on input
x and we record this value. We provide f(x, y) as the output to SimΦ from the ideal
functionality.

3. For each i 6∈ K, SimΦ provides φi as the second round message from the honest servers.
We use this to generate the final round message of the protocol.

We argue in Lemma 6.6 that Hyb1 ≈µ Hyb2.

Lemma 6.5. Assuming the ε-super-polynomial simulation security against malicious receivers of
the inner protocol, we have Hyb0 ≈ε Hyb1.

Proof. Assume for the sake of contradiction that the changes made in the first iteration are dis-
tinguishable with advantage greater than ε. We now give a reduction that breaks the ε-super-
polynomial simulation security of inner protocol against malicious receivers.

The reduction computes (y1, . . . , ym)← Φ1(y) and provides yi as the challenge input for Πi. The
reduction defines an adversary A′ that internally runs A and interacts with the external challenger
as follows. A′ obtains {πSi,1}i∈[m] from the challenger and uses it to compute the first round message
in the protocol. It receives the first round message from A and forwards {πRi,1}i∈[m] to the external
challenger. It generates the second round message as in the previous hybrid and sends it to the
adversary. On receiving the second round message from A, it forwards {πi,2}i 6∈K to the external
challenger. It obtains {πi,3}i 6∈K from the challenger and uses it to compute the third round messages
from the sender in the protocol.

The reduction obtains ViewA′ from the external challenger. The reduction computes the ViewA
and outputs it. We note that if the view of A′ is computed by the external challenger using the real
sender algorithm on the challenge inputs, then the output of the reduction is identically distributed
to Hyb0. Else, it is identically distributed to Hyb1. Since the two hybrids are distinguishable with
advantage ε, it now follows that the reduction breaks the ε-super-polynomial simulation security of
the inner protocol against malicious receivers running and this is a contradiction.

Lemma 6.6. Assuming the µ-statistical simulation security of the protocol Φ, we have Hyb1 ≈µ
Hyb2.

Proof. Assume for the sake of contradiction that these two hybrids are distinguishable with advan-
tage at least µ. We give a reduction to the security of the protocol Φ.

We interact with the external challenger by giving y as the honest sender input. We corrupt the
receiver client and set [m]\K to be the set of honest servers. We extract {xi}i 6∈K as in the previous
hybrid and provide it as the first round message from the corrupted receiver client to the honest
servers. The challenger replies with {φi}i 6∈K as the final round message from the honest servers.
We use this generate the final round message as before. The reduction finally outputs the view of
A along with the output of the honest sender.

Note that if the messages of the protocol Φ generated by the external challenger correspond to
the real protocol messages, then the output of the reduction is identical to Hyb1. Else, it is identically
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distributed to Hyb2. It now follows that since these two hybrids are µ-distinguishable, the above
reduction breaks the µ-simulation security of the protocol Φ and this is a contradiction.

6.4.3 Special Extraction of Malicious Receiver Input

Description of SPSpecExtR. SPSpecExtR does the following:

1. It extracts {x′i}i∈[m] from the extractable commitment using straight-line super-polynomial
time extractor.

2. It initializes an empty set C.

3. For each i ∈ [m], if either (xi, ri) is ⊥ or if πRi,1 6= Πi,1(1λ, R, xi; ri), then it adds i to C.

4. If |C| > λ, then it outputs ⊥.

5. Else, it outputs Rec(C ∩ ([m] \K), {x′i}i∈[m]\K∪C).

We now show that conditioned on the transcript T being accepting for the sender and the output
of SPExt on msgR1 is not ⊥, then x = x′. We show this via a hybrid argument.

• Hyb0 : This corresponds to the output x of SPExt.

• Hyb1 : In this hybrid, we make the following changes:

– For each i ∈ [m], we run the straight-line extractor on the commitments to compute the
value (xi, ri) committed in the extractable commitment Comi

1.

– Initialize an empty set C.

– For each i ∈ [m], if either (xi, ri) is ⊥ or if πRi,1 6= Πi,1(1λ, R, xi; ri), then add i to C.

– If |C| > λ, then output ⊥ instead of x.

Note that since K is uniformly chosen, it follows from a similar argument to Claim 4.4 that
the sender outputs reject at the end of the protocol with overwhelming probability and this
is a contradiction to the fact that the sender is accepting.

• Hyb2 : In this hybrid, if |C| ≤ λ, we output x′ = Rec(C ∩ ([m] \K), {x′i}i∈[m]\K∪C) instead
of x if x 6= ⊥. It follows from the correctness of the protocol Πi that for every i 6∈ C, we
have that x′i is same as xi. Note that if x 6= ⊥ and since |C| ≤ λ, then by the property-3 of
the outer protocol, x′ is same as x. Note that x′ output in Hyb2 is identical to the output of
SPSpecExt.

6.5 Existence of k accepting Transcripts Extractor.

The description of ExtR is exactly same as SPSpecExt except that it uses the k-accepting transcripts
to extract {(xi, ri)}i∈[m] in polynomial time rather than super-polynomial time by relying the k-
rewinding extractor of ECom. It now follows from the property of ECom that the values extracted
by ExtR and SPSpecExt are identical (except with negligible probability) and thus, the output of
both is the same except with negligible probability.
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6.6 Additional Properties

For constructing a watchlist protocol, we require that the 3-round protocol with special extraction
to satisfy an additional property described below.

2-Rewinding Sender Security against Sub-Exponential Adversaries. We require that this
protocol to be secure against any malicious receiver that could rewind an honest sender twice by
giving possibly different second round messages in each rewind. We note that the same construction
and the proof of security can be adapted to give such a protocol based on any 2-rewinding sender
secure inner protocol. As mentioned in Section 5.5, such an inner protocol can be constructed
by relying on a 3-round OT protocol that satisfies 2-rewinding sender security. In section 4.5, we
also described how to construct such an OT protocol. We need the 2-rewinding sender security to
hold even against adversaries that run in time which is polynomial in the running time of SPExtR.
This just follows from assuming that the 2-rewinding sender secure inner protocol is secure against
sub-exponential receivers which in turn follows from sub-exponential hardness of the underlying
2-message OT protocol.

Delayed Function Selection. As in the case of the 2PC protocol described in Section 5, we
require this protocol to also have delayed function selection. This property is directly inherited
from the underlying inner protocol. Further, if we require both delayed function selection and 2-
rewinding sender security then we require the outer protocol’s first round message to be reusable 3
times. In Section 5.5, we described how to modify the protocol from [IKP10, Pas12] to satisfy this
property.

Existence of Straight-Line SPS extractor against Malicious Senders. This property is
directly inherited from the underlying inner protocol.

7 The Watchlist Protocol

In this section, we formally construct and prove security of three-round watchlist protocol. Recall
that in the watchlist protocol, each ordered pair of parties Pi and Pj invoke a `-out-of-m OT
functionality where Pi acts as the receiver and Pj acts as the sender. Specifically, the private input
of party Pj in this OT instance consists of of xj which is the vector of sender inputs of dimension
m and the private input of party Pi is Ki which is a subset of [m] of size `. The output to party
Pi consists of {xj,k}k∈Ki . We note that in the watchlist protocol, every honest party Pi uses the
same Ki in each instance of the OT functionality when acting as the receiver and same xi in each
instance when acting as the sender. However, the corrupted party Pi may choose different Ki and
xi for each instance when acting as the receiver and the sender respectively. For ease of notation,
whenever we use Ki as the receiver input of a corrupted party Pi, we actually mean a set of subsets
{Ki,j}j∈H . Similarly, whenever we use xj as the sender input of a corrupted party Pj , we actually
mean set of vectors, one for each honest party.

7.1 Definitions

Before we proceed to the formal definition of the watchlist protocol, we give an informal overview
of the various properties that the protocol needs to satisfy.
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1. The first requirement is the existence of a straight-line super-polynomial time simulator SimWL

that has oracle access to the watchlist functionality and produces a view of the adversary that
is computationally indistinguishable to the real world. This requirement is same as standard
SPS security. Here, it is crucial that the simulator is straight-line i.e., it does not rewind the
adversary.

2. The second property is about the existence of an “alternate” extraction mechanism of the
malicious receiver inputs. Specifically, we require that if the output of all the honest parties
when acting as the sender is not ⊥ in the protocol, then there exists an alternate super-
polynomial time extractor SPExtWL,R that extracts the adversarial receiver inputs using the
accepting transcript. Further, for each corrupted party, these inputs are the same as the ones
extracted by SimWL except in the case that it is ⊥.

3. The third property is about the existence of polynomial-time rewinding extractor (that rewinds
the adversary until it obtains k accepting transcripts) and outputs the malicious receiver
inputs that is identical to the one output by SPExtWL,R. For technical reasons, we need to
separate out the existence of a polynomial time rewinding extractor and super-polynomial
time extractor in the alternate extraction mechanism.

4. The fourth property is about the one-rewinding sender non-malleability. Roughly speaking, it
requires that adversarial sender inputs cannot depend on the honest party sender inputs even
if the adversary is allowed to rewind the second and third round message of the protocol once.

Definition 7.1 (Extractable (n,m, `)-Watchlists). Fix any polynomials n = n(λ),m = m(λ), ` =
`(λ). An extractable (n,m, `)-watchlist is a protocol that achieves the simultaneous n-party m-
choose-` OT functionality with the following security guarantees:

1. Real-Ideal Security with Straight-line SPS simulator. There exists a (stateful) straight-
line super-polynomial time simulator SimWL such that for any (stateful) adversary A that is
corrupting an arbitrary subset M of the parties and for any choice of honest party inputs
{xj ,Kj}j∈H (where H denotes the set of honest parties, xj’s denote the sender inputs of party
j, and Kj’s denote the set of executions that player j watches), we have the following two
distributions are computationally indistinguishable:

(a) View of the adversary and the output of all the honest parties H in the real execution of
the protocol.

(b) IdealSPS(1λ,M,A, SimWL) where IdealSPS is given in Figure 6.

Furthermore, the distribution of the messages generated by SimWL on behalf of honest receivers
is identically distributed to the real receiver messages with dummy inputs.

2. Special Extraction of the Malicious Receiver Input. There exists a super-polynomial
time extractor SPExtWL,R such that for any adversary A corrupting a subset M of the par-
ties and for any choice of honest party inputs {xj ,Kj}j∈H , the probability that the following
experiment outputs 1 is negligible:

(a) Sample a transcript T from IdealSPS experiment and let {σj}j∈H be the output of the
honest parties.
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1. Run SimWL(1λ,M) to obtain {msgj1}j∈H and send this to A. Receive {msgi1}i∈M from A.
2. Run SimWL({msgi1}i∈M ) to obtain ({Ki}i∈M , st).
3. Compute the output of the watchlist received by the parties in M when the honest sender inputs are
{xj}j∈H and the malicious receiver inputs are {Ki}i∈M . Let {σi}i∈M be this output.

4. For each r ∈ {2, 3}:

(a) Run SimWL({σi}i∈M , st, {msgik}k∈[r−1],i∈M ) to obtain {msgjr}j∈H and send this to A. Receive
{msgir}i∈M from A.

5. Run SimWL({msgik}i∈M,k∈[3]) to obtain {xi}i∈M .

6. Compute the output of the watchlist received by the parties in H when the honest receiver inputs are
{Kj}j∈H and the malicious sender inputs are {xi}i∈M . Let {σj}j∈H be this output.

7. Output view of A and {σj}j∈H .

Figure 6: Description of IdealSPS .

(b) If σj = ⊥ for each j ∈ H in IdealSPS experiment, then output of the experiment is 0.

(c) Else, run SimWL({msgi1}i∈M ) (where {msgi1}i∈M ∈ T) to obtain ({Ki}i∈M , st).
(d) Run SPExtWL,R(T) to obtain {K ′i}i∈M .

(e) The output of the experiment is 1 if and only if there exists an i ∈ H such that K ′i 6= Ki

whenever Ki 6= ⊥.

3. Existence of k accepting Transcript Extractor. There exists a polynomial time machine
ExtWL,R such that on input any k transcripts T1, . . . ,Tk with common first message such that
in each of the transcript the output of the honest parties is not ⊥ outputs {Kj}j∈H such that
{Kj}j∈H = SPExtWL,R(T1) with overwhelming probability.

4. One-Rewinding Sender Non-Malleability. We require the existence of an (expected) PPT
algorithm ExtWL,S such that for any 1-rewinding adversary A corrupting any set M of the
parties (by 1-rewinding, we refer to an adversary that is allowed to rewind the second and third
round message of the protocol once) and for any choice of honest party inputs {xj ,Kj}j∈H such
that the following two distributions are computationally indistinguishable against adversaries
that run in time which is polynomial in the running time of SPSimWL,R:

(a) Consider the IdealSPS experiment in Figure 6 with the 1-rewinding adversary A (i.e.,
step-4 in the experiment is repeated once more). Let us denote the first execution with
the adversary as the main thread and the rewinding execution with A as the rewind
thread. After step-4, run SimWL on the messages generated in the main thread to compute
{xi}i∈M . Output the view of the adversary A and {xi}i∈M .

(b) Sample uniform random tape {rj}j∈H and execute the protocol honestly with the 1-
rewinding adversary A using the honest inputs {Kj ,xj}j∈H with the above random tape.
Run ExtWL,S(1λ, {Kj ,xj , rj}j∈H) to obtain {xi}i∈M . Output view of the adversary in the
above honest execution along with {xi}i∈M .
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7.2 Construction

Our construction is described in Figure 7, and makes use of the following ingredients:

• A 3 round two-party secure computation protocol Π satisfying Definition 6.1 with delayed-
function selection for NC1 circuits and 2-rewinding sender security.

• An information-theoretic m(λ) · `(λ) non-malleable coding scheme satisfying Definition 3.7.

• A low-depth proof for P according to Definition 3.9.

• An existentially unforgeable signature scheme with algorithms denoted by Signature.Setup,
Signature.Sign and Signature.Verify.

We describe our protocol formally in Figure 7. The correctness of this protocol follows from
correctness of the underlying oblivious transfer, non-malleable codes and signature scheme. In what
follows, we formally prove security according to Definition 7.1.

Theorem 7.2. Let λ denote the security parameter, and m = m(λ), k = k(λ), ` = `(λ) be arbitrary

polynomials. There exists a 3 round ` non-malleable
(
m
k

)
oblivious transfer protocol satisfying

Definition 7.1 that makes black-box use of any 3 round two-party secure computation protocol Π
satisfying Definition 6.1 with 2-rewinding sender security, and any existentially unforgeable signature
scheme.

Proof of Theorem 7.2. We observe that properties 2 and 3 carry over from the properties of the
underlying two-party computation protocol, and 1 is implied by 4 together with security of the two-
party protocol against malicious adversaries (following [IKSS21]). Thus, our key goal is to prove
that the protocol satisfies property 4. To keep exposition simple, we prove this property against
polynomial time distinguishers. We note that indistinguishability against distinguishers running in
time which is polynomial in the running time of SPExtWL,R follows directly from the 2-rewinding
sender security of the underlying 2PC protocol against such distinguishers.

We now consider a man-in-the-middle adversary that participates as an OT receiver in upto `(λ)
executions of this protocol on the right, and participates as an OT sender in upto `(λ) executions
on the left. Towards proving that our protocol satisfies property 1, we will prove that there exists
a PPT algorithm Sim-Ext, that with black-box access to the MIM, and to ` copies of the ideal OT
functionality OT = {OTj({mi,j}i∈[m], ·)}j∈[`] and with input {Kj}j∈[`], simulates an execution of
the protocol with the MIM and extracts all the inputs {({m̃i,j}i∈[m])}j∈[`] used by the MIM in the
executions where the MIM is sender. We will prove that the 1-rewinding view output by Sim-Ext,
that we denote by IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`]) will be such that

RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 ≈c IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`])

where the expression on the left denotes the joint distribution of the view and messages committed
by a 1-rewinding adversary in an interaction where honest senders Sj have inputs {mi,j}i∈[m], and
honest receivers Rj have inputs Kj .

To prove indistinguishability, we define a sequence of hybrid experiments, where the first one
outputs the distribution RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`] and the final one outputs the
distribution IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`]). Formally, these hybrids are defined as follows:
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Inputs: Sender S has inputs {mj}j∈m and receiver R has input a set K ⊆ [m] where |K| = k.

Protocol: S and R do the following.

1. S samples (vk, sk)← Signature.Setup(1λ), then does the following.

• For each i ∈ [λ], j ∈ [m], pick uniform randomness ri,j and compute

(Li,j ,Mi,j ,Ri,j) = NM.Code((vk|mj); ri,j).

• Set instance x = (vk, {(Li,j ,Mi,j ,Ri,j ,mj)}i∈[λ],j∈[m]) and language

L =
{

(vk, {(Li,j ,Mi,j ,Ri,j ,mj)}i∈[λ],j∈[m]) :

∀i ∈ [λ], j ∈ [m],NM.Decode(Li,j ,Mi,j ,Ri,j) = (vk|mj)
}
.

Compute ldp = LDP.Prove(x,L).

2. For each i ∈ [λ], R picks ci ← {0, 1, 2}.

3. Both parties engage in the protocol Π to compute functionality F where:

• R plays the receiver with input K committed in round 1 and delayed function
(c1, . . . , cλ) chosen in round 2.

• S plays the sender with input (x, ldp), where x is parsed as
(vk, {mj , (Li,j ,Mi,j ,Ri,j)}i∈[λ],j∈[m].

• The functionality F on input (vk, {mj , Li,j ,Mi,j ,Ri,j}i∈[λ],j∈[m],K, {ci}i∈[λ]) generates
an output as follows:

– If LDP.Verify(x, ldp) 6= 1, output ⊥. Otherwise set out = vk, {mj}j∈K .
– Additionally, for every i ∈ [λ], if ci = 0, append ({Li,j}j∈[m]) to out, if ci = 1,

append ({Mi,j}j∈[m]) to out, else append ({Ri,j}j∈[m]) to out.
– Output out.

Additionally, S signs messages generated according to Π, denoted by (Π1,Π3). It
sets σ1 = Signature.Sign(Π1, idS , sk), σ3 = Signature.Sign(Π3, idS , sk) where idS is
the identity of the sender. It sends (σ1, σ3) to R.

4. R obtains output out and parses out = (vk, {mj}j∈K , ·). It outputs {mj}j∈K iff
Signature.Verify(σ1,Π1, idS , vk) ∧ Signature.Verify(σ3,Π3, idS , vk) = 1, otherwise outputs
⊥.

Figure 7: `(λ) Non-Malleable m(λ)-choose-k(λ) Oblivious Transfer

Hyb0 : This corresponds to an execution of the MIM with ` honest senders {Sj}j∈[`] on the left,
each using inputs {mi,j}i∈[m] respectively and ` honest receivers on the right with inputs ({Kj}j∈[`])
respectively. The output of this hybrid is RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`].
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Hyb1 : This experiment modifies Hyb1 by introducing an additional abort condition. Specifi-
cally, the experiment first executes the complete protocol corresponding to the real execution
of the MIM exactly as in Hyb0 (including rewinding the MIM once) to obtain the distribution
RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉.

Let p(λ) denote the probability that the MIM completes this execution without aborting. Set
γ(λ) = max

(
λ, p−2(λ)

)
. With the first two rounds of the transcript fixed, the rewind the right

execution up to γ2(λ) times, picking inputs (cj1, . . . , c
j
λ) for each of the ` receivers {Rj}j∈[`] inde-

pendently and uniformly at random in every run. If there exist two rewinding threads where the
MIM completes the protocol execution, denote the inputs chosen by the challenger on behalf of the
honest receiver in these rewinding threads by (c′j1, . . . , c

′j
λ) and (c′′j1, . . . , c

′′j
λ) respectively. For every

j ∈ [`], let index αj ∈ [λ] be such that cjαj = 0, c′jαj = 1, c′′jαj = 2.
Additionally for every j ∈ [`], i ∈ [m], use (L̃jαj ,i, M̃

j
αj ,i

, R̃jαj ,i) obtained as output from the main

and rewinding executions respectively to compute m̃j
i = NM.Decode(L̃jαj ,i, M̃

j
αj ,i

, R̃jαj ,i).
If no such rewinding thread exists, or if there exists j ∈ [`] for which there does not exist α ∈ [λ]

such that cjα = 0, c′jα = 1, c′′jα = 2, then set m̃j
i = ⊥ for all i ∈ [m]. Now, the output of this hybrid

is the joint distribution

ViewMIM〈{Sj({mj
i}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉, {m̃

j
i}j∈[`],i∈[m].

Lemma 7.3. For every unbounded distinguisher D and large enough λ ∈ N,∣∣∣Pr[D(Hyb0) = 1]− Pr[D(Hyb1) = 1]
∣∣∣ = negl(λ)

Proof. Since the MIM’s inputs {m̃j
i}j∈[`] are committed in round 1 of the protocol, then conditioned

on the adversary providing a non-aborting transcript in rewinding executions in Hyb1, by simulation
security of the 2pc, {(m̃j

i}j∈[`] are correctly extracted.
Therefore, to prove this lemma it suffices to show that two rewinding executions (with a non-

aborting transcript) can be found within γ2(λ) attempts, except with probability negl(λ). To
see this, we observe that the probability of a non-aborting transcript is p(λ), and therefore, the
probability that γ2(λ)− 1 out of the γ2(λ) trials abort is negl(λ).

Hyb2: This experiment modifies Hyb1 to execute the superpolynomial simulator of Π in all sessions
where the MIM is a receiver. Specifically, in these executions, instead of the honest sender strategy
with input {mj

i}i∈[m],j∈[`], we execute the superpolynomial simulator Sim-2PCMIM,F(inpSj ,·)
Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,M

j
1,i, . . . ,M

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

Sim-2PCSen expects round 1 and round 2 messages from the MIM, and the MIM in turn expects
corresponding messages from the receiver in the right execution. Receiver messages for the right
execution are generated using honest receiver strategy with inputs Kj fixed, and inputs cj1, . . . , c

j
λ

chosen uniformly at random, exactly as in Hyb1. Denote the view of the MIM by

View
Sim
{F(inpSj ,·)}j∈[`]

〈{Rj(Kj)}j∈[`]〉,

where for every j ∈ [`], inpSj is as defined above.
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Next, with the first round of the transcript fixed, the challenger rewinds the right execution up
to γ2(λ) times, picking inputs (cj1, . . . , c

j
λ) for Rj independently and uniformly at random in every

run, and generating messages in the left execution by running the simulator Sim-2PCSen each time.
If there exist two rewinding executions where the MIM completes the protocol, denote the inputs

chosen by the challenger on behalf of the honest receiver in this rewinding thread by (c′j1, . . . , c
′j
λ) and

(c′′j1, . . . , c
′′j
λ) respectively. For every j ∈ [`], let index αj ∈ [λ] be such that cjαj = 0, c′jαj = 1, c′′jαj =

2. Additionally for every j ∈ [`], i ∈ [m], use (L̃jαj ,i, M̃
j
αj ,i

, R̃jαj ,i) obtained as output from the main

and the two rewinding executions respectively to compute m̃j
i = NM.Decode(L̃jαj ,i, M̃

j
αj ,i

, R̃jαj ,i). If
no such rewinding thread exists, or if there exists j ∈ [`] for which there does not exist α ∈ [λ] such
that cjα = 0, c′jα = 1, c′′jα = 2, then abort. The output of this hybrid is the joint distribution:

View
Sim
{F(inpSj ,·)}j∈[`]

〈{Rj(Kj)}j∈[`]〉, {m̃
j
i}j∈[`],i∈[m],

where for every j ∈ [`], inpSj is as defined above.

Lemma 7.4. Assuming 2-rewinding secure two party computation according to Definition 6.1, for
every PPT distinguisher D and large enough λ ∈ N,∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]

∣∣∣ = negl(λ)

Proof. We consider a sequence of sub-hybrids Hyb1,0,Hyb1,1, . . .Hyb1,` where for every j ∈ [`],
Hyb1,j is identical to Hyb1,j−1, except that instead of executing the honest sender strategy us-
ing honest sender inputs {mj

i}i∈[m], we execute the simulator in the jth left execution, where

Sim-2PCMIM,F(inpSj ,·)
Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,M

j
1,i, . . . ,M

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m])

Suppose the lemma is not true. Then for every large enough λ ∈ N there exists j∗(λ) ∈ [`(λ)],
a polynomial p(·) and a distinguisher D such that for infinitely many λ ∈ N,∣∣∣Pr[D(Hyb1,j∗−1) = 1]− Pr[D(Hyb1,j∗) = 1]

∣∣∣ =
1

q(λ)

We derive a contradiction by building a reduction A that on input λ, obtains j∗(λ) as advice
and with black-box access to the MIM and to D contradicts 2-rewinding security of the two party
computation protocol. A proceeds as follows:

• A first creates receiver R′ that interacts with the external challenger as follows.

– Obtain the first round sender message from the 2pc challenger, and forward this to the
MIM as Sj∗ ’s message in the j∗th left execution. In addition, generate the first round
messages according to receiver strategy with inputs {Kj}j∈[`] for the right execution.
Obtain the first round message from the MIM, which includes a (malicious) sender mes-
sage for the right execution and a (malicious) receiver message for the left execution.
Output the MIM’s receiver message in the j∗th left execution to the challenger of the 2pc.

– Generate the second round message for the right execution according to honest receiver
strategy, and obtain the second round message for the left execution from the challenger.
Forward the MIM’s message in left session j∗ to the challenger.
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– Obtain the third round message for the left execution externally from the challenger, and
forward this to the MIM as S’s message in the j∗th left execution. Generate messages
for the right executions using honest receiver strategy. Obtain the third round message
from the MIM for the right execution.

• Next, A rewinds R′ twice with fixed first round, and obtains MIM outputs as follows.

– Run the second round with honest receiver strategy on the right, and obtain challenger
messages on the left. Obtain the second round message from the MIM, and output the
MIM’s message in session j∗ to the challenger.

– Obtain the third round message for the left execution externally from the challenger,
and forward this to the MIM as S’s message in the j∗th left execution. Obtain the third
round messages from the MIM.

• If none of the executions abort, for every j ∈ [`], find αj ∈ [λ] such that cjαj = 0, c′jαj =

1, c′′jαj = 2. If these do not exist, abort. Otherwise use the outputs of the two-party compu-
tation protocol to compute m̃j

i = NM.Decode(L̃jαj ,i, M̃
j
αj ,i

, R̃jαj ,i) for i ∈ [m], j ∈ [`]. Else, set
m̃j
i = ⊥ for i ∈ [m], j ∈ [`]

• A outputs the entire view of R′ together with {m̃j
i}i∈[m],j∈[`]. If the challenger used honest

sender messages, we denote the distribution output by A in this experiment by Dist1 and
if the challenger used simulated messages, we denote the distribution output by A in this
experiment by Dist2.

If the challenger’s messages correspond to the real sender S, then the distribution output by A
conditioned on not aborting corresponds to Hyb1, and if the challenger’s messages correspond to
Sim-2PCSen, then the distribution output by A conditioned on not aborting corresponds to Hyb2.

By assumption, for infinitely many λ ∈ N,∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]
∣∣∣ =

1

q(λ)

Since the MIM completes any run of the protocol without aborting with probability at least p(λ),
and because aborts are independent of the distinguishing advantage, for infinitely many λ ∈ N:∣∣∣Pr[D = 1 ∧ ¬abort|Hyb1]− Pr[D = 1 ∧ ¬abort|Hyb2]

∣∣∣ ≥ 1

p2(λ) · q(λ)

where ¬abort denotes the event that an execution that is completed in the main thread, is also
completed without aborting in one rewinding execution.

This implies that for infinitely many λ ∈ N:∣∣∣Pr[D(Dist1) = 1]− Pr[D(Dist2) = 1]
∣∣∣ ≥ 1

p2(λ) · q(λ)
,

where Dist1 and Dist2 denote the real and ideal distributions of the underlying 2-party computation
protocol under 2-rewinding security. This implies that D contradicts 2-rewinding security of the
two party computation protocol.
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Hyb3: This hybrid is the same as Hyb2 except whenever the challenger obtains as output a verifi-
cation key in one of the right sessions that is identical to a verification key used in one of the left
sessions, the hybrid outputs ⊥. By existential unforgeability of the signature scheme, given any
PPT adversary MIM, Hyb2 and Hyb3 are computationally indistinguishable.

Hyb4: This hybrid is the same as Hyb3 except that inpSj is set differently. Specifically, for every
j ∈ [`], i ∈ [m] and α ∈ [λ], we set (Ljα,i,M

j
α,i,R

j
α,i)← NM.Sim(1p(λ)), and set

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,M

j
1,i, . . . ,M

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

We note that at this point, the functionality {F(inpSj , ·)}j∈[`] can be perfectly simulated with ac-
cess to the ideal functionality {OTj(mj

i ,m
j
i , ·)}j∈[`]. Moreover, this hybrid runs the super-polynomial

simulator of the two-party computation protocol, which can be split into a straight-line simulator
that extracts adversarial receiver input from the first round, and then a rewinding-based expected
polynomial-time simulator that extracts adversarial sender input. The latter can also be replaced
by a straight-line superpolynomial simulator that extracts the adversarial sender-input by running
the straight-line superpolynomial simulator of the two-party computation protocol. Finally, as long
as the underlying two-party computation protocol has its ideal distribution be identical to an hon-
est execution with dummy inputs, the same is true for our protocol. Therefore, the output of this
hybrid is identical to the ideal distribution IdealMIM({mj

i}i∈[m],j∈[`], {Kj}j∈[`]).

Lemma 7.5. Assuming m(λ) · `(λ) symmetric non-malleable codes satisfying Definition 3.7, for
every unbounded distinguisher D and large enough λ ∈ N,∣∣∣Pr[D(Hyb4) = 1]− Pr[D(Hyb3) = 1]

∣∣∣ = negl(λ)

Proof. We prove indistinguishability between Hyb3 and Hyb4 by considering a sequence of sub-
hybrids, {Hyb3,i,j,k}i∈[1,m],j∈[1,`],k∈[0,λ] where:

• Hyb3 = Hyb3,0,`,λ, Hyb4 = Hyb3,m,`,λ,

• for i ∈ [m], Hyb3,i−1,`,λ = Hyb3,i,1,0

• for j ∈ [`], Hyb3,i,j−1,λ = Hyb3,i,j,0,

• for every i ∈ [m], j ∈ [`], k ∈ [λ], Hyb3,i,j,k is identical to Hyb3,i,j,k−1 except that Hyb3,i,j,k

samples (Ljk,i,M
j
k,i,R

j
k,i)← NM.Code(0).

Suppose the lemma is not true. Then there exists i∗ ∈ [m], j∗ ∈ [`], k∗ ∈ [λ], an unbounded
distinguisher D and a polynomial p(·) such that for large enough λ ∈ N,∣∣∣Pr[D(Hyb3,i∗,j∗,k∗) = 1]− Pr[D(Hyb3,i∗,j∗,k∗−1) = 1]

∣∣∣ =
1

p(λ)
(1)

We now define a set of tampering functions (fMIM, gMIM, hMIM), and a set of additional functions
(wMIM, yMIM, zMIM). Before defining them, we define a shared state for these functions, that is
generated as follows:

58



• Execute Sim-2PCMIM
Sen , using honestR strategy in the right executions with input {Kj}j∈[`] and

uniformly chosen {cj1, . . . c
j
λ}j∈[`], until Sim-2PCSen generates a query to the ideal functionality

F at the end of round 2.

• At this point, Sim-2PCMIM
Sen outputs a view and transcript of the MIM until the third round,

as well as {K̃j}j∈[`] that correspond to the receiver’s inputs in the left execution.

• Rewind the second round twice with uniformly and independently chosen {c′j1, . . . , c′
j
λ}j∈[`]

and {c′′j1, . . . , c′′
j
λ}j∈[`] respectively in each rewind. If for every j ∈ [`(λ)], there exists αj ∈ [λ]

such that cjαj = 0, c′jαj = 1, c′′jαj = 2, continue, otherwise abort.

• Obtain the rewinding message of the adversary in the second round (with the same first
round prefix), as well as (c1, . . . , cn) and (ĉ1, . . . , ĉn) that correspond to the receiver’s chosen
functions in the j∗th left session in this rewinding execution.

• If c̃k∗ , ck∗ and ĉk∗ are all different, continue. Otherwise, abort.

• Generate (Ljk,i,M
j
k,i,R

j
k,i) for every (i, j, k) ∈ [m]×[`]×[λ]\{i∗, j∗, k∗} according to Hyb3,i∗,j∗,k∗−1

(this is identical to setting them according to Hyb3,i∗,j∗,k∗).

• Output the view of the MIM until round 2 in the main the rewinding threads, and also output
(i∗, j∗, k∗), and the values (Ljk,i,M

j
k,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}.

• Additionally, output the receiver’s inputs {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] and also output the sender’s

inputs {skj , vkj , {mj
i}i∈[m]}j∈[`], along with randomness r.

The functions fMIM,i,j , gMIM,i,j and hMIM,i,j correspond to tampering functions, and are defined as
follows.

• The deterministic function fMIM,i,j on input L, sets Lj
∗

k∗,i∗ = L,Mj∗

k∗,i∗ = 0,Rj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃

j
λ}j∈[`] as well as the values

(Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F j(vkj , {mi, L
j
k,i,M

j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen using randomness r on out to generate the third round message
of the protocol transcript in the thread corresponding to the receiver challenge being 0. It
outputs the value Ljαj ,i or M

j
αj ,i

or Rjαj ,i obtained from the MIM.

• The function gMIM,i,j on input M, sets Mj∗

k∗,i∗ = M,Rj
∗

k∗,i∗ = Lj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃

j
λ}j∈[`] as well as the values

(Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F j(vkj , {mi, L
j
k,i,M

j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen using randomness r on out to generate the third round message
of the protocol transcript in the thread corresponding to the receiver challenge being 1. It
outputs the value Ljαj ,i or M

j
αj ,i

or Rjαj ,i obtained from the MIM.
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• The function hMIM,i,j on input R, sets Rj
∗

k∗,i∗ = R,Mj∗

k∗,i∗ = Lj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃

j
λ}j∈[`] as well as the values

(Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F j(vkj , {mi, L
j
k,i,M

j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen using randomness r on out to generate the third round message
of the protocol transcript in the thread corresponding to the receiver challenge being 2. It
outputs the value Ljαj ,i or M

j
αj ,i

or Rjαj ,i obtained from the MIM.

The functions wMIM, yMIM, zMIM generate the threads themselves and are defined as follows.

• Next, the function wMIM on input L, sets Lj
∗

k∗,i∗ = L,Mj∗

k∗,i∗ = 0,Rj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃

j
λ}j∈[`] as well as the values

(Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F j(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the third round message of the protocol tran-
script in the thread corresponding to receiver left challenge being 0. It outputs the resulting
transcript as one thread in the view of the MIM.

• Next, the function yMIM on input M, sets Lj
∗

k∗,i∗ = 0,Mj∗

k∗,i∗ = M,Rj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃

j
λ}j∈[`] as well as the values

(Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F j(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the third round message of the protocol tran-
script in the thread corresponding to receiver left challenge being 1. It outputs the resulting
transcript as another thread in the view of the MIM.

• Next, the function zMIM on input R, sets Lj
∗

k∗,i∗ = 0,Mj∗

k∗,i∗ = 0,Rj
∗

k∗,i∗ = R.

Now, using hardwired values {vkj , {mj
i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃

j
λ}j∈[`] as well as the values

(Ljk,i,M
j
k,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F j(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the third round message of the protocol tran-
script in the thread corresponding to receiver left challenge being 2. It outputs the resulting
transcript as another thread in the view of the MIM.

Note that there is a fixed set of permutations σi,j such that fMIM,i,j , gMIM,i,j , hMIM,i,j can be relabeled
as functions Fi,j , Gi,j , Hi,j such that Fi,j outputs L̃ values, Gi,j outputs M̃ values, and Hi,j outputs
R̃ values.
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By Definition 3.7 of ` augmented non-malleable codes, we have that for every permutation σ
and σ′ on L,M,R, and every Fi,j , Gi,j and Hi,j ,(
σ′(L), σ′(M), {NM.Decode

(
Fi,j(σi,j(L)), Gi,j(σi,j(M)), Hi,j(σi,j(R))

)
}i,j
∣∣∣L,M,R← NM.Code(mj∗

i∗ )
)
≈ε(

σ′(L), σ′(M), {NM.Decode
(
Fi,j(σi,j(L)), Gi,j(σi,j(M)), Hi,j(σi,j(R))

)
}i,j
∣∣∣L,M,R← NM.Code(0)

)
But these distributions upon post-processing (via the functions wMIM, yMIM, zMIM) exactly cor-

respond to the outputs of Hyb3,i∗,j∗,k∗−1 and Hyb3,i∗,j∗,k∗ respectively, whenever c̃
j∗

k∗ , c
j∗

k∗ and ĉ
j∗

k∗ are
all different. On the other hand, when any two of the three values c̃j

∗

k∗ , c
j∗

k∗ and ĉj
∗

k∗ are identical,
the distributions Hyb3,i∗,j∗,k∗−1 and Hyb3,i∗,j∗,k∗ are statistically indistinguishable because of the
two-out-of-three secret sharing property of the code, i.e. they jointly do not depend on all three of
the shares, L,R and M. Since ε(λ) = negl(λ), this contradicts Equation (1), as desired.

Finally, this proof also directly extends to demonstrate that the security of the watchlist protocol
holds against sub-exponential adversaries that run in time less than or equal to T , where T denotes
the running time of adversaries against which the underlying two-party computation protocol is
2-rewinding sender secure.

8 Three-Round Inner Protocol

In this section, we give a construction of a three-round inner protocol that makes black-box use of
a two-round semi-malicious secure OT protocol. We start with the definition of the inner protocol.

8.1 Definition

We recall the syntax of the inner protocol from [IKSS21].

Syntax. The three-round inner protocol computing a function f is given by a tuple of algorithms
(Π1,Π2,Π3, outΠ) with the following syntax. For each round r ∈ [3], the i-th party in the protocol
runs Πr on 1λ, the index i, the private input xi and the transcript of the protocol in the first (r−1)
rounds to obtain πir. It sends πir to every other party via a broadcast channel. We use π(r) to
denote the transcript of Π in the first r rounds. At the end of the interaction, parties run the public
decoder outΠ(π(3)) to compute the output.11

Definition 8.1 ([IKSS21]). The protocol Π is said to be an inner protocol for computing a funtion
f if it satisfies the following properties.

• Correctness. The protocol Π correctly computes a function f if for every choice of inputs xi
for party Pi,

Pr[outΠ(π(3)) = f(x1, . . . , xn)] = 1

where π(3) denotes the transcript of the protocol Π when the input of Pi is xi.
11By public output decoder, we mean that the decoder does not require access to private randomness of the parties

to compute the output.
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• Security. Let A be an adversary corrupting a subset of the parties indexed by the set M and
let H be the set of indices denoting the honest parties. We require the existence of a simulator
SimΠ such that for any choice of honest parties inputs {xi}i∈H , we have:

Real(A, {xi, ri}i∈H) ≈c Ideal(A, SimΠ, {xi}i∈H)

where the real and ideal experiments are described in Figure 9 and for each i ∈ H, ri is
uniformly chosen.

Real(A, {xi, ri}i∈H)

1. For each i ∈ H, compute πi1 := Π1(1λ, i, xi; ri).

2. Send {πi1}i∈H to A.
3. Receive {πi1}i∈M from A.
4. For each i ∈ H, compute πi2 :=

Π2(1λ, i, xi, π(1); ri).

5. Send {πi2}i∈H to A.
6. Receive {πi2, (xi, ri)}i∈M from A.
7. For each i ∈ H, compute πi3 :=

Π3(1λ, i, xi, π(2); ri).

8. Send {πi3}i∈H to A.
9. Receive {πi3}i∈M from A.
10. Output the view of A and outΠ(π(3)).

IdealΠ(A, SimΠ, {xi}i∈H)

1. For each i ∈ H, compute (πi1, tdi) := SimΠ(1λ, i).

2. Send {πi1}i∈H to A.
3. Receive {πi1}i∈M from A.
4. For each i ∈ H, compute πi2 := SimΠ(1λ, i, π(1)).

5. Send {πi2}i∈H to A.
6. Receive {πi2, (xi, ri)}i∈M from A.

7. Check if the messages sent by corrupt parties in
π(2) are consistent with {xi, ri}i∈M .

8. Semi-Malicious Security: If they are consis-
tent:

(a) For each i ∈ H, compute πi3 ←
SimΠ(1λ, i, f(x1, . . . , xn), {xj , rj}j∈M , π(2)).

9. Equivocality: If they are not consistent:

(a) For each i ∈ H, compute πi3 ←
SimΠ(1λ, i, {xi}i∈H , π(2)).

10. Send {πi3}i∈H to A.
11. Receive {πi3}i∈M from A.
12. Output the view of A and outΠ(π(3)).

Figure 8: Security Game for the Inner Protocol

The main theorem we prove in this section is:

Theorem 8.2. Assume black-box access to a two-round semi-malicious secure OT protocol. Then,
there exists a three-round inner protocol satisfying Definition 8.1.

8.2 Building Blocks

The construction makes use of the following building blocks.
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8.2.1 Protocol Γ

Γ is a three-round protocol that computes the double selection functionality DS [PS21] with publicly
decodable transcript. The double selection functionality is a multiparty functionality where P1 has
input (α, r) ∈ {0, 1} × {0, 1}, P2 has input (s0, s1) ∈ {0, 1} × {0, 1} and for each i ∈ [n], Pi has
additional inputs (zi0, z

i
1). The output of the functionality is given by (sα ⊕ r, {zisα⊕r}i∈[n]). The

protocol Γ has similar syntax as that of Π described earlier. Apart from standard correctness, we
need this protocol to satisfy the following security property.

Security of protocol Γ. Let xi be the input used by party Pi in the protocol Γ. Let A be any
malicious adversary that is corrupting a set of parties indexed by M and let H be the set of honest
parties. We require the existence of stateful SimΓ such that:

• SimΓ on 1λ, i, γ(0) (where γ(0) is the null string) outputs the first round message γi1 and tdi.
Using tdi and the input xi of party Pi, there is a polynomial time algorithm Equivocate that
outputs the second and third round messages of the protocol Γ such that the view of any
adversary in the real execution with the honest parties is computationally indistinguishable
to the distribution of messages generated as above.

•
RealΓ(A, {xi, ri}i∈H) ≈c IdealΓ(A,SimΓ, {xi}i∈H)

where the real and ideal experiments are described in Figure 8 and for each i ∈ H, ri is
uniformly chosen. Note that the only difference between this game and the one described in
Figure 8 is that in this game, the adversary is forced to reveal the input and randomness after
she sends the first round message, whereas in the other game, she only reveals this information
after sending the second round message.

Construction. We give the formal description of the protocol Γ in Figure 10 which is adapted
from the work of Patra and Srinivasan [PS21]. The only difference between our construction and
their construction is that we make use of a two-round oblivious transfer protocol with equivocal
receiver security [GS18, IKSS21]. From Theorem 3.4, we note that such an OT protocol can be
constructed from black-box use of a two-message semi-malicious OT protocol.

Sketch of Security. SimΓ runs the equivocal simulator for the oblivious transfer protocol and
obtains the first round message along with the trapdoor. It sends this first round message to the
adversary. If the first round message or the second round message generated by the adversary is
inconsistent with the sent input, randomness pair, then SimΓ uses the above trapdoor and the inputs
of the honest parties to derive the appropriate secret keys and send the honestly computed second
and third round messages. On the other hand, if the messages are consistent, then SimΓ uses the
same simulation strategy as given in [PS21].

8.2.2 Protocol Ψ

The protocol Ψ is a black-box, publicly decodable, two-round MPC protocol for computing arbitrary
functions in the OT correlations model. Such a protocol was constructed in [GIS18]. We need a
couple of additional properties from this protocol Ψ.
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RealΓ(A, {xi, ri}i∈H)

1. For each i ∈ H, compute γi1 := Γ1(1λ, i, xi; ri).

2. Send {γi1}i∈H to A.
3. Receive {γi1, (xi, ri)}i∈M from A.
4. For round r ∈ {2, 3}:

(a) For each i ∈ H, compute γir :=
Γr(1

λ, i, xi, γ(r − 1); ri).

(b) Send {γir}i∈H to A.
(c) Receive {γir}i∈M from A.

5. Output the view of A and outΓ(γ(3)).

Ideal(A,SimΠ, {xi}i∈H)

1. For each i ∈ H, compute γi1 := SimΓ(1λ, i).

2. Send {γi1}i∈H to A.
3. Receive {γi1, (xi, ri)}i∈M from A.
4. For round r ∈ {2, 3}:

(a) Check if the messages sent by corrupt
parties in γ(r − 1) are consistent with
{xi, ri}i∈M .

(b) Semi-Malicious Security: If they are
consistent:

i. For each i ∈ H, compute γir :=
SimΓ(1λ, i, {xi, ri}i∈M ,DS(x1, . . . , xn),
γ(r − 1)).

(c) Equivocality: If they are not consistent:

i. For each i ∈ H, compute Γir :=
SimΓ(1λ, i, {xi}i∈H , γ(r − 1)).

(d) Send {γir}i∈H to A.
(e) Receive {γir}i∈M from A.

5. Output the view of A and outΓ(γ(3)).

Figure 9: Security Game for the Protocol Γ

1. The protocol Ψ satisfies the same security properties as that of Γ. Specifically, if the first round
message sent by the adversarial parties is consistent with the provided input and randomness,
then the only information that the adversary learns is the output of the functionality. That
is, the simulator produces the last round message of the protocol given the adversarial inputs,
randomness and the output of the function such that this is indistinguishable to the real
execution. On the other hand, if the input, randomness pair provided by the adversary
are inconsistent, then we require the simulator to generate the last round message of the
protocol given the honest party’s inputs such that the view of the adversary generated above
is indistinguishable to the view of the adversary in the real execution. [IKSS21] noted that if
the oblivious transfer in [GIS18] is replaced with a OT with equivocal receiver security then
[GIS18] already satisfies this property.

2. We assume that Ψ has the following syntactic form. For each of the OT correlation that needs
to be generated between a particular receiver and a sender, the receiver samples random
bits (α, r), the sender samples random bits s0, s1 and every party (including the sender and
the receiver) samples two random strings zi0, zi1. To generate the first round and the second
round message in the protocol Ψ only the above sampled information is needed. However, to
compute the output, every party requires (sα ⊕ r, {zisα⊕r}i∈[n]). For security of Ψ, we need to
ensure that only this information is revealed. Specifically, for each OT correlation generated
between every pair of parties, the simulator for Ψ takes the concatenation of these outputs and
simulates the second round message on behalf of the honest parties. The proof that [GIS18]
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construction satisfies this property is implicit in [PS21, Theorem 5.22].

• P1 has input bits (α, r) and strings (z1
0 , z

1
1), P2 has input bits s0, s1 and strings (z2

0 , z
2
1), and each Pi for

i ∈ [3, n] has input strings (zi0, z
i
1). The output of the functionality is given by (sα⊕r, {zisα⊕r}i∈[n]).

• Round-1: In the first round,

1. P1 computes (otr, sk)← OT1(1λ, α) and (otr′, sk′)← OT1(1λ, r).

2. P2 computes (otrb, skb)← OT1(1λ, sb) for each b ∈ {0, 1}.
3. For each i ∈ [n], Pi computes (otrib, sk

i
b) ← OT1(1λ, zib) for each b ∈ {0, 1} where we compute OT1

on each bit of zib.

4. The parties broadcast the above computed messages.

• Round-2: In the second round,

1. For each i ∈ [n],

(a) Pi chooses a masking string mi uniformly at random.
(b) It computes otsi ← OT2(otr,OT2(otr0, z

i
0 ⊕mi, zi1 ⊕mi),OT2(otr1, z

i
0 ⊕mi, zi1 ⊕mi)).

(c) It computes ots′i ← OT2(otr′,mi, zi0 ⊕ zi1 ⊕mi).

2. P2 additionally computes ots← OT2(otr, (s0, sk0), (s1, sk1))

3. Each party broadcasts the above computed messages to the other parties.

• Round-3: In the third round, P1 does the following:

1. It first recovers (sα, skα) from ots and sk.

2. For each i ∈ [n]:

(a) It then recovers OT2(otrα, z
i
0 ⊕mi, zi1 ⊕mi) from otsi and sk.

(b) It then computes (zi0 ⊕ zi1)(sα)⊕ zi0 ⊕mi from OT2(otrα, z
i
0 ⊕mi, zi1 ⊕mi) and skα.

(c) It then computes (zi0 ⊕ zi1)r ⊕mi from ots′i and sk′.
(d) It finally computes zisα⊕r by XORin the values computed in the last two steps.

3. It broadcasts (sα ⊕ r, {zisα⊕r}i∈[n]) to every party and they output the received value.

Figure 10: Description of the Protocol Γ adapted from [PS21]

8.3 Construction

We give the formal description of the construction in Figure 11.

8.4 Proof of Security

In this subsection, we show that the protocol Π described in Figure 11 satisfies the Definition 8.1.
We start with the description of the simulator SimΠ.

8.4.1 Description of Simulator

Let A be an adversary that is corrupting a set of parties indexed by M and let H be the set of
honest parties.
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• Round-1: For each OT correlation to be generated between Pi (acting as the receiver) and Pj (acting as
the sender):

1. Pi chooses random bits α, r.

2. Pj chooses two bits s0, s1.

3. For each k ∈ [n], Pk chooses two random strings zk0 , zk1 .

4. The parties generate the first round message of the protocol Γ using the above sampled inputs.

• Round-2: For each i ∈ [n]:

1. Pi generates the second round message for each execution of the Γ protocol initiated in the first
round.

2. Let yi be the concatenation of the all the inputs chosen by Pi in each execution of the Γ protocol.

3. Let xi denote the augmented inputs that includes Pi’s private input χi along with yi.

4. Pi computes ψi1 ← Ψ1(1λ, i, xi).

5. Pi broadcasts ψi1 to other parties along with the second round messages of all the executions of the
Γ protocol.

• Round-3: For each i ∈ [n]:

1. Pi generates the third round message of all the executions of the Γ protocol.

2. Pi computes ψi2 ← Ψ1(1λ, i, xi, ψ(1)) where ψ(r) is the transcript in the protocol Ψ generated in
the first r rounds.

3. Pi broadcasts ψi2 along with the third round messages in all the executions of the Γ protocol

• Output Computation: For each i ∈ [n]:

1. Pi computes the output of all the executions of the Γ protocol and let δ denote the concatenation
of all these outputs.

2. Pi outputs outΨ(ψ(2), δ).

Figure 11: Three-Round Inner Protocol

• Round-1 Message from SimΠ and A. For each execution of the Γ protocol that is initiated
in the first round, SimΠ samples uniform random inputs on behalf of the honest parties and
runs each execution honestly using the above sampled inputs. SimΠ receives the first round
message from A.

• Round-2 Message from SimΠ and A. SimΠ generates the second round message of each
Γ execution honestly but uses the simulator SimΨ to generate the the first round message in
the protocol Ψ on behalf of the honest parties. It receives the second round message from A
along with the input and randomness used by the adversary.

• Round-3 Message from SimΠ and A. If the input, randomness pair provided by the adver-
sary are inconsistent, then SimΠ receives the inputs {χi}i∈H of the honest parties and it runs
SimΨ on {(χi, yi)}i∈H where yi is the concatenation of all the inputs used by Pi in executions
of the Γ protocol to obtain the final round message in Ψ. If the inputs, randomness pair are
consistent, then SimΠ extracts the outputs that the adversary receives in each execution of the
Γ protocol (denoted by δ) from the provided randomness and the inputs used by the honest
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parties. It then runs SimΨ on the input, randomness pair of the malicious parties, δ and the
output f(χ1, . . . , χn) and obtains the final round message of Ψ. SimΠ sends the final round
message to adversary and receives the final round message generated by A on behalf of the
corrupted parties.

8.4.2 Proof of Indistinguishability

• Hyb0 : This corresponds to the output of Real(A, {χi, ri}i∈H).

• Hyb1 : In this hybrid, we make the following changes:

1. We generate the first round message from each i ∈ H and for each execution of the
protocol Γ as (γi1, tdi) ← SimΓ(1λ, i, γ(0)) . We then generate the second and the third
round messages using Equivocate.

It follows from the first security property of the protocol Γ that this hybrid is computationally
indistinguishable to Hyb0.

• Hyb2 : In this hybrid, we make the following changes:

1. We generate the first round message of the protocol {γi1}i∈H on behalf of the honest
parties as before and we obtain the first round message from the adversary. We run in
super-polynomial time and extract the input and randomness used to generate the first
round message. We provide this to SimΓ and use it to generate the second and third
round message as in the IdealΓ experiment.

In Lemma 8.3, we show that Hyb2 is computationally indistinguishable to Hyb1.

• Hyb3 : In this hybrid, we make the following changes:

1. We generate the first round and the second round messages in the protocol Ψ as described
in the simulation.

It directly follows from the security property of Ψ that this hybrid is computationally indis-
tinguishable to the previous hybrid.

• Hyb4 − Hyb5 : In this hybrid, we reverse the changes made in Hyb2 and Hyb1 respectively.
Note that Hyb5 is identical to the Ideal experiment generated using SimΠ.

Lemma 8.3. Assuming the security properties of the protocol Γ (described in Figure 9), we have
Hyb1 ≈c Hyb2.

Proof. Assume for the sake of contradiction that Hyb2 and Hyb1 are computationally distinguishable
with non-negligible advantage. We show that this contradicts the security of the protocol Γ. To
show this, we modify the RealΓ experiment such that the messages in this experiment are generated
as in Hyb1. We note that it follows from the first security property of Γ that the original RealΓ
experiment is computationally indistinguishable to the modified RealΓ experiment.

Since the first round messages in both Hyb2 and Hyb1 for each execution of the protocol Γ are
identically distributed to the output of SimΓ, we can non-uniformly fix this message. As a result,
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we can also non-uniformly fix the first round message from the adversary. As a result of this fixing,
we can get the input and randomness used by the adversary to generate its first round message as
part of non-uniform advice.

We provide the external challenger with the input and randomness used by the adversary to
generate the first round message. We use the messages generated by the challenger to complete the
execution with the adversary. We run the distinguisher between Hyb2 and Hyb1 on the view of the
adversary and the output of the honest parties and we output whatever the distinguisher outputs.

If the messages generated by the external challenger in the second and third rounds of the pro-
tocol Γ is distributed as in the modified RealΓ experiment, then the input to the distinguisher is
identical to Hyb1. Otherwise, if these messages are generated by challenger as in the IdealΓ exper-
iment, then input to the distinguisher is identically distributed to Hyb2. Thus, if the distinguisher
can distinguish between Hyb2 and Hyb3 with non-negligible advantage, then this contradicts the
security property of the protocol Γ.

9 4-Round Black-Box MPC Protocol

In this section, we give our construction of a four-round black-box MPC protocol from any two-
message OT protocol that has super-polynomial time security against malicious receivers and sub-
exponential indistinguishability-based security against malicious sendersß. Specifically, we prove
the following theorem.

Theorem 9.1. For some ε > 0, assume black-box access to a two-round oblivious transfer pro-
tocol with super-polynomial time simulation security against malicious receivers and (2λ

ε
, 2−λ

ε
)-

indistinguishability-based security against malicious senders. Then, there exists a four-round proto-
col for computing general functions.

9.1 Building Blocks

The construction makes use of the following building blocks:

1. A three-round watchlist protocol WL = (WL1,WL2,WL3, outWL) satisfying Definition 7.1 with
k = λ, ` = 6λn2 + 1. Let T1(λ) (abbreviated as T1) be the running time of SimWL (which is
the SPS simulator for the watchlist protocol). Let T2(λ) (abbreviated as T2) to be the running
time of SimWL,R (which is the special SPS extractor that over extracts the receiver inputs).

2. A two-round n-client,m-server MPC protocol Φ = (Φ1,Φ2, outΦ) that computes an augmented
functionality g(·) and satisfies ((T1 + T2) · poly(·), negl)-privacy with knowledge of outputs
property against any adversary corrupting upto t servers and an arbitrary number of clients.
Let us now give the description of the functionality g. g takes in (χi, ki) from each party Pi
where ki is a MAC key. It computes y = f(χ1, . . . , χn) and computes σi = MAC(ki, y) for
each i ∈ [n]. It outputs (y, σ1, . . . , σn). We call this protocol as the outer protocol. We set
t = 2λn2 and m = 3t+ 1. We need this protocol to additionally satisfy the property that the
first round message generated by the simulator on behalf of the honest clients to the corrupted
servers is identically distributed to the first round messages generated by honest clients on
some default input. We note that [IKP10, Pas12] constructed such a protocol making black-
box use of a ((T1 + T2) · poly(·), negl)-secure PRG. As noted in [IKSS21], we can delegate the
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PRG computations done by the servers to the clients and ensure that the computations done
by the servers are information-theoretic.

3. For each h ∈ [m], a three-round inner protocol Πh = (Πh,1,Πh,2,Πh,3, outΠh) for computing
the functionality of the h-th server in the outer protocol. We require this protocol to satisfy
Definition 8.1 against adversaries running in time (T1 + T2) · poly(λ) and the distinguishing
advantage being negl(λ).

9.2 Construction

We give the description of the protocol in Figure 12.

9.3 Proof of Security

In this subsection, we prove that the MPC protocol described in Figure 12 satisfies the standard
simulation-based security definition. We start with the description of the simulator.

9.3.1 Description of Simulator

Let A be an adversary that is corrupting a subset M ⊂ [n] of the clients and let H be the set of
honest clients. Sim does the following:

• Round-1 Message from Sim and A:

1. For each i ∈ H:

(a) It computes (φi→1
1 , . . . , φi→m1 )← Φ1(1λ, i,0) where 0 is a default input.

(b) Sim chooses a random subset Ki ⊂ [m] of size λ and sets xi,j = Ki, for every
j ∈ [n] \ {i}. It then chooses a random string ri,h ← {0, 1}∗ for every h ∈ [m] and
sets yi,j = {ri,h, φi→h1 }h∈[m] for every j ∈ [n] \ {i}.

(c) It computes wli1 ←WL1(1λ, i, {xi,j , yi,j}j∈[n]\{i}).

2. It sends {wli1}i∈H to the adversary.

3. Sim receives the first round message {wli1}i∈M from the adversary.

• Extracting the watchlist inputs used by A. Sim does the following:

1. It generates the second and the third round of the protocol using the input {φi→h1 }i∈H,h∈[m]

and the randomness {ri,h}i∈H,h∈[m] honestly as described in Figure 12.

2. If the adversary aborts during this phase, or sends an invalid message then Sim sends ⊥
to the ideal functionality and outputs the view of A.

3. Otherwise, Sim runs the extractor ExtWL,R and ExtWL,S on the adversarial messages while
generating the honest parties messages as explained before to obtain {xi,j , yi,j}i∈M,j∈H .12

4. Sim also estimates the probability that A does not abort during this phase or does not
send an invalid message. For this purpose, it repeatedly rewinds the second and third
round of the protocol until it obtains 12λ executions where the adversary has not aborted

12Specifically, in order to run ExtWL,R, Sim rewinds the adversary until it obtains k accepting transcripts.
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• Round-1: In the first round, the party Pi with input χi does the following:

1. It chooses a random MAC key ki ← {0, 1}∗ and sets zi := (χi, ki).

2. It computes (φi→1
1 , . . . , φi→m1 )← Φ1(1λ, i, zi).

3. It chooses a random subset Ki ⊂ [m] of size λ and sets xi,j = Ki for every j ∈ [n] \ {i}.
4. It chooses a random string ri,h ← {0, 1}∗ for every h ∈ [m] and sets yi,j = {ri,h, φi→h1 }h∈[m] for

every j ∈ [n] \ {i}.
5. It computes wli1 ←WL1(1λ, i, {xi,j , yi,j}j∈[n]\{i}).

6. It broadcasts wli1.

• Round-2: In the second round, Pi does the following:

1. For each h ∈ [m], it computes πih,1 := Πh,1(1λ, i, φi→h1 ; ri,h).

2. It computes wli2 ← WL2(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(1)). (Here, wl(r) denotes the transcript in the
first r rounds of WL.)

3. It broadcasts {πih,1}h∈[m],wl
i
2.

• Round-3: In the third round, Pi does the following:

1. For every h ∈ [m], it computes πih,2 := Πh,2(1λ, i, φi→h1 , πh(1); ri,h). (Here, πh(r) denotes the
transcript in the first r rounds of Πh.)

2. It computes wli3 ←WL3(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(2)).

3. It broadcasts {πih,2}h∈[m],wl
i
3.

• Round-4: In the fourth round, Pi does the following:

1. It runs outWL on i, {xi,j , yi,j}j∈[n]\{i}, the random tape used to generate the messages in WL and
wl(3) to obtain {rj,h, φj→h1 }j∈[n]\{i},h∈Ki .

2. For each j ∈ [n] \ {i} and h ∈ Ki, it checks:

(a) If the PRG computations in φj→h1 are correct.
(b) For each ` ∈ [2], whether πjh,` := Πh,`(1

λ, j, φj→h1 , πh(` − 1); rj,h) where πh(0) is set to be the
null string.

3. If any of the above checks fail, then it aborts.

4. Else, for each h ∈ [m], it computes πih,3 := Πh,3(1λ, i, φi→h1 , πh(2); ri,h).

5. It broadcasts {πih,3}h∈[m] to every party.

• Output Computation. To compute the output, Pi does the following:

1. If a party has aborted before sending the fourth round message, output ⊥.
2. For every h ∈ [m], it computes φh2 := outΠh(i, πh(3)).

3. It runs outΦ on ({φh2}h∈[m]) to recover (y, σ1, . . . , σn).

4. It checks if σi is a valid tag on y using the key ki. If yes, it outputs y and otherwise, it aborts.

Figure 12: Description of the Four-Round MPC Protocol

nor sent an invalid message. Let T be the total number of trials needed until this event
happens. Sim sets ε̃ = 12λ

T . Sim has an internal step counter and if it runs for more than
2λ steps, it aborts.
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• Round-2 and Round-3 messages from Sim and A. Sim repeats the following for λ2

ε̃ time:

1. For each i ∈M and j ∈ H, it parses the above extracted xi,j as a subset of [m] of size λ
and it sets K = ∪i∈M,j∈Hxi,j .

2. For each h ∈ K, Sim generates the messages in the protocol Πh using the input φi→h1

and randomness ri,h for each i ∈ H.

3. For each h 6∈ K, Sim generates the messages in Πh using the simulator SimΠh .

4. Sim receives the second and third round messages from A. If A aborts during this phase,
or sends an invalid message, then Sim goes to the next iteration.

If each of λ
2

ε̃ iterations fail, then Sim outputs a special symbol abort.

• Finding the set of Inconsistent Executions. Sim does the following:

1. It initializes an empty set C.

2. It adds an h ∈ [m] to C if there exists at least one i ∈ M such that for each j ∈ H, the
input, randomness pair present in yi,j is inconsistent with the messages generated by Pi
in Πh, or if the PRG computations are incorrect.

3. If |C| > λ ·n2, Sim aborts the execution and instructs all the honest parties to output ⊥.

• Round-4 Message from Sim and A.

1. Sim performs the same checks that an honest party does at the end of the third round. If
any of the checks done by an honest party fails, then Sim instructs the ideal functionality
to send ⊥ to that specific honest party.

2. Sim sends some inconsistent input, randomness pair on behalf of the malicious parties
for each h ∈ C to SimΠh and provides {φi→h1 }i∈H as the corresponding private inputs of
the honest parties. It obtains the final round message to be sent by all the honest parties
from SimΠh .

3. Sim starts running the simulator SimΦ for the protocol Φ by corrupting the set of clients
indexed by M and the set of serves indexed by K ∪ C. It provides {φi→h1 }i∈H,h∈K∪C as
the dummy first round messages generated by the honest clients to the corrupted servers.

4. For each h 6∈ K∪C, let {(ri,h, φi→h1 )}i∈M be the randomness, input pair that is consistent
with the messages in Πh generated by A such that the PRG computations in {φi→h1 }i∈M
are correct. Sim provides {φi→h1 }i∈M,h6∈K∪C to SimΦ as the first round messages sent
by the malicious clients to the honest servers. SimΦ queries the ideal functionality on
{zi}i∈M .

5. Sim parses zi as (χi, ki) for each i ∈ M . It queries its trusted functionality on {χi}i∈M
and obtains the output y. For each i ∈ M , Sim computes σi = MAC(ki, y) and for each
i ∈ H, it chooses σi uniformly. It provides (y, σ1, . . . , σn) to SimΦ. SimΦ generates the
final round message {φh2}h6∈K∪C .

6. For each h 6∈ K ∪ C, Sim provides SimΠh with the malicious clients randomness and
inputs {(ri,h, φi→h1 )}i∈M and the output φh2 for the inner protocol and obtains the final
round message sent by the honest parties.
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7. Sim sends the last round message on behalf of all the unaborted parties to A and receives
the final round message.

• Output Computation.

1. If some party has aborted at the end of the third round, then Sim instructs the ideal
functionality to send ⊥ to all the honest parties.

2. For each h ∈ [m], Sim computes φh2 using outΠh .

3. It then runs outΦ on (φ1
2, . . . , φ

m
2 ) to compute (y′, σ′1, . . . , σ

′
n).

4. For each i ∈ H, if (y, σi) 6= (y′, σ′i) then Sim instructs the trusted functionality to send
⊥ to Pi. Else, it instructs the functionality to deliver the output to Pi.

Running time analysis of Sim. Let ε be the probability that the adversary does not abort nor
sends an invalid message in the step where Sim is extracting the watchlist inputs. By a standard
argument (see for instance [GK96a]), we can show that ε̃ is at most a constant factor of the actual ε
except with 2−λ probability. The expected running time of Sim consists of the following components:

• All the steps before the extraction of the watchlist inputs used by A. The expected running
time of these steps is poly(λ).

• With probability 1− ε, Sim outputs the view of A in poly(λ) steps.

• With probability ε, the expected additional work done by Sim is given by 12λ
ε poly(λ) +

λ2

ε̃ poly(λ) + poly(λ) · (EWL,R + EWL,S) where EWL,R is the expected running time of ExtWL,R

and EWL,S is the expected running time of ExtWL,S .

• In case where ε̃ is not within a constant factor of ε, we can bound the running time of Sim by
2λ. But the probability of this event happening is 2−λ.

Thus, the expected running time of Sim is upper bounded by poly(λ) as ε ·EWL,R and ε ·EWL,S is
bounded above by poly(λ). Specifically, EWL,R is upper bounded by k

ε · poly(λ) and EWL,S is upper
bounded by poly(λ)

ε .

9.3.2 Proof of Indistinguishability

We now show that the real execution and the ideal execution generated by Sim are computationally
indistinguishable using a hybrid argument.

• Hyb0 : This corresponds to the view of the adversary and the outputs of the honest parties in
the real execution of the protocol.

• Hyb1 : In this hybrid, we make the following changes:

1. We define an adversary A1 that internally interacts with A. A1 obtains the messages
corresponding to the watchlist protocol externally. It generates the messages for the
protocols {Πh}h∈[m] as in Hyb0. It combines these two messages and sends them to A.
Whenever A1 receives a message from A, it extracts the messages corresponding to the
watchlist protocol and forwards them externally.
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2. We run the simulator for the watchlist protocol SimWL on A1. SimWL queries the ideal
functionality on the inputs of the adversary used in the watchlist protocol and we answer
the query using the inputs {(xi,j , yi,j)}i∈H,j∈M of the honest parties.

3. SimWL outputs the view of A1, {(xi,j , yi,j)}i∈M,j∈H along with the instruction for each
i ∈ H to either deliver the output of the watchlist functionality to Pi or deliver ⊥.
We compute the outputs of the honest unaborted parties using their inputs used in the
watchlist protocol and the corrupted parties inputs output by SimWL. We extract the
view of A in the first three rounds from view of A1.

4. For the unaborted parties, we use the output of the watchlist functionality to perform
the same checks as described in Figure 12 before sending the fourth round message. We
then generate the final round inner protocol message πih,3 for each h ∈ [m] and generate
the view of the A. We compute the output of each honest party as described in the
protocol. We output the final view of A and the output of all the honest parties.

In Lemma 9.2, we show that Hyb0 and Hyb1 are computationally indistinguishable from the
security of the watchlist protocol.

• Hyb2 : In this hybrid, we make the following changes:

1. We define an adversary A2 that internally interacts with A. We start running SimWL on
A2 and now explain how A2 generates the messages corresponding to the inner protocol.

2. We run SimWL on A2 to generate the first round message of the watchlist protocol on
behalf of the honest parties. We send this to A2 which forwards it to A. It receives the
first round message from A. We run SimWL on this message to extract {xi,j}i∈M,j∈H .
We parse each xi,j as a subset of [m] of size λ and denote K = ∪i∈M,j∈Hxi,j .

3. For each h ∈ K, A2 generates the messages in the protocol Πh as before using the honest
parties inputs and uniformly chosen randomness. For each h 6∈ K, A2 uses the simulator
SimΠh to generate the messages on behalf of the honest parties.

4. SimWL outputs the view of A2, {yi,j}i∈M,j∈H along with the instruction for each i ∈
H to either deliver the output of the watchlist functionality to Pi or deliver ⊥. We
compute the outputs of the honest unaborted parties in the watchlist protocol using
their corresponding inputs used in this protocol. We extract the view of A in the first
three rounds from view of A2.

5. For each i ∈M and j ∈ H, we parse yi,j as (ri,h, φ
i→h
1 ) and check if the messages in the

protocol Πh sent by Pi are consistent with this input, randomness pair and if the PRG
computations in φi→h1 are correct. If for each j ∈ H, if this pair is inconsistent, or if the
PRG computations in φi→h1 are incorrect then we provide SimΠh with some inconsistent
input, randomness pair on behalf of the malicious parties and provide {φj→h1 }j∈H as the
honest party inputs.

6. If for each i ∈ M , there exists at least one j ∈ H such that the input randomness
pair (ri,h, φ

i→h
1 ) in yi,j is consistent with all the messages sent in Πh and if the PRG

computations in φi→h1 are correct, then we provide φh2 := Φ2(i, {φi→h1 }i∈[n]) as the output
of the functionality along with the consistent input, randomness pair of the corrupted
parties to SimΠh and obtain the final round message from SimΠh on behalf of all unaborted
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honest parties. We use this to generate the view of A as well as compute the output of
all the honest parties as in the previous hybrid.

Let T1 be the running time of SimWL. In Lemma 9.3, we show that Hyb1 ≈c Hyb2 from the
security of the inner protocol against adversaries running in time T1.

• Hyb3 : In this hybrid, we make the following changes:

1. We initialize an empty set C.

2. We add an h ∈ [m] to C if there exists at least one i ∈M such that for each j ∈ H, the
input, randomness pair present in yi,j = (ri,h, φ

i→h
1 ) is inconsistent with the messages

generated by Pi in Πh or if the PRG computations in φi→h1 are incorrect.

3. If |C| > λ · n2, we abort the execution and instruct all the honest parties to output ⊥.

In Lemma 9.4, we show that Hyb2 ≈s Hyb3.

• Hyb4 : In this hybrid, we make the following changes:

1. We define an adversary A3 that internally interacts with A. We start running SimWL on
A3 and now explain how A3 generates the messages corresponding to the inner protocol.

2. We run SimWL on A3 to generate the first round message of the watchlist protocol on
behalf of the honest parties. We send this to A3 which forwards it to A. It receives the
first round message from A. We run SimWL on this message to extract {xi,j}i∈M,j∈H .
We parse each xi,j as a subset of [m] of size λ and denote K = ∪i∈M,j∈Hxi,j .

3. A3 starts running the simulator SimΦ for the outer protocol by corrupting the set of
clients indexed by M and the set of servers indexed by K. SimΦ provides the first
round messages {φi→h1 }i∈H,h∈K as the first round messages sent by the honest clients
to the corrupted servers. It uses this as the honest party’s input and chooses uniform
randomness to generate the protocol messages in Πh for each h ∈ K. It also uses this
to answer the oracle query of SimWL. For each h 6∈ K, A3 uses the simulator SimΠh to
generate the messages in the protocol Πh just like A2.

4. SimWL outputs the view of A3, {yi,j}i∈M,j∈H along with the instruction for each i ∈ H to
either obtain the output of the watchlist functionality to Pi or obtain ⊥. We compute the
outputs of the honest unaborted parties using their inputs used in the watchlist protocol.
We extract the view of A in the first three rounds from view of A3.

5. At the end of the third round, we define the set C as in the previous hybrid and abort
if |C| > λ · n2. If |C| ≤ λ · n2, we instruct SimΦ to adaptively corrupt the set of servers
indexed by C and obtain {φi→h1 }i∈H,h∈C as the first round messages that honest clients
send to the set of servers in C in the first round. We give this as the honest parties’
inputs to the inner protocol simulator SimΠh for each h ∈ C.

6. For each h 6∈ C ∪K and for each i ∈M , we first extract the consistent input φi→h1 (such
that all the PRG computations are correct) and the randomness ri,h that party Pi used
in the protocol Πh from {yi,j}j∈H (output by SimWL). We give {φi→h1 }i∈M,h6∈C∪K as the
first round message sent by the corrupted clients to the honest servers.
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7. SimΦ queries its own ideal functionality on input {zi}i∈M . We use this to compute
(y, σ1, . . . , σn) honestly (using the private inputs of the honest parties) and provide this
as the output from the ideal functionality to SimΦ.

8. SimΦ outputs the second round messages {φh2}h6∈C∪K as the second round message sent by
the honest servers. For each h 6∈ C ∪K, we provide φh2 as the output of the functionality
along with the consistent input, randomness pair of the corrupted parties to SimΠh and
obtain the final round message from SimΠh on behalf of all unaborted honest parties. We
use this to generate the view of A as well as compute the output of all the honest parties
as in the previous hybrid.

In Lemma 9.5, we show that Hyb3 ≈c Hyb4 from the security of the outer protocol against
adversaries running in time T1 · poly(λ).

• Hyb5 : In this hybrid, we make the following two changes:

– When SimΦ queries the ideal functionality on {zi = (xi, ki)}i∈M , we query f on {xi}i∈M
and obtain the output y. For each i ∈ M , we compute σi := MAC(ki, y) and for each
i ∈ H, we choose σi uniformly at random.

– In the output phase, we recover (y′, σ′1, . . . , σ
′
n) as in the previous hybrid and then check

if y′ = y and if for each i ∈ H, if σ′i = σi. For every i ∈ H, such that above check passes,
we instruct the ideal functionality to deliver the outputs to Pi. For all other parties, we
instruct them to abort.

Hyb5 is statistically close to Hyb4 from the one-time security of the MAC scheme and the
uniformity of the tags property of the one-time MAC scheme.

• Hyb6 : In this hybrid, we generate the first round messages that the honest clients send to
corrupt servers C ∪K as Φ1(1λ, i,0) where 0 is a default input.

Hyb6 is identically distributed to Hyb5 from the property of the outer protocol that the dis-
tribution of the first round messages from the honest clients to the corrupted servers that is
generated by SimΦ is identically distributed to the messages generated honestly using a default
input.

• Hyb7 : In this hybrid, we make the following changes:

1. We fix the first round message in the protocol.

2. We run the adversary A in the first three rounds as in the previous hybrid. If A aborts
in this phase or sends an invalid message, then we abort the execution and output the
view of A and instruct all the honest parties to output ⊥. We call this execution as the
first rewind thread.

3. If the adversary does not abort nor sends an invalid message in the rewind thread, then
we estimate the probability that adversary sends such a valid message. Specifically, we
repeatedly run A (by sampling independent second round and third round messages)
until we obtain 12λ executions where the adversary’s third round message is valid. Let T
be the total number of trials until we obtain 12λ successful executions. We set ε̃ = 12λ/T .
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4. We then go back to the main thread and repeat the following for λ2/ε̃ times. In each
trial, we generate an independent second round and third round message and wait until
the adversary does not abort and does not send any invalid messages. If the adversary
fails to send a valid third round message in each of the trials, we output the special
symbol abort. Otherwise, we continue the execution in the main thread as before and
output the view of the adversary in the main thread and compute the outputs of all the
honest parties in the main thread.

In Lemma 9.6, we show that Hyb6 ≈s Hyb7.

• Hyb8 : In this hybrid, we make the following changes:

1. In the first rewind thread, we additionally run SPExtWL,R (running in time T2) to compute
{x′i,j}i∈M,j∈H . We parse each x′i,j as a set of [m] of size λ and we set K ′ = ∪i∈M,j∈Hx

′
i,j .

2. In the main thread, we use this value K ′ instead of K in the main thread as the set
of inner protocol executions that are generated honestly and the set of servers that are
corrupted initially in the outer protocol. Note that to compute the output of the watchlist
protocol, we still use {xi,j}i∈M,j∈H that is output by SimWL.

By the property of SPExtWL,R it follows that K ′ computed above is a superset of K and
|K ′| ≤ λn2. Thus, via identical arguments given in Lemma 9.4 and Lemma 9.2, we can use
the security of the outer and the inner protocols respectively against adversaries running in
time (T1 + T2) · poly(λ) to corrupt the set of servers corresponding to K ′ instead of K.

• Hyb9 : In this hybrid, we make the following changes:

1. In the first rewind thread, we run SimWL on the first round message generated by A to
compute the set K as in the previous hybrid.

2. We run φ1(1λ, i,0) to compute {φi→h1 }h∈[m] for each i ∈ H.

3. For each h 6∈ K in the first rewind thread as well as the rewind threads used in computing
ε̃, we generate the first two round messages on behalf of the honest parties for the protocol
Πh using the input {φi→h1 }i∈H and uniformly chosen randomness ri,h. These messages
were generated using the simulator SimΠh in the previous hybrid.

Via an identical argument to Lemma 9.2, in each of the rewind threads (including the ones
used in estimating ε̃), we can rely on the security of the inner protocol against adversaries
running in time (T1 + T2) · poly(λ) to show that Hyb8 ≈c Hyb9.

• Hyb10 : In this hybrid, we make the following changes:

1. In both the main thread and in the first rewind thread, we run the watchlist protocol
WL using honestly chosen x′i,j and yi,j = {ri,h, φ

i→h
1 }h∈[m] (where ri,h is the same as the

one used in the main thread for each h ∈ K ′) for each i ∈ H and j ∈ M . Note that in
the previous hybrid, we generated the messages of the watchlist protocol using SimWL.

2. We run ExtWL,S on the rewind thread to extract the inputs {yi,j}i∈M,j∈H and use this to
continue with the rest of the execution in the main thread as in the previous hybrid.
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In Lemma 9.7, we show that Hyb9 is computationally indistinguishable to Hyb10 from the
1-rewinding sender non-malleability property of the watchlist protocol.

• Hyb11 : In this hybrid, we use the rewinding extractor ExtWL,R to compute {x′i,j}i∈M,j∈H
instead of running the straightline extractor SPSExtWL,R. This hybrid is statistically close
to the previous hybrid since the output of these two extractors are the same except with
negligible probability. We note that Hyb11 identically distributed to the ideal execution with
ideal world adversary Sim.

Lemma 9.2. Assuming the super-polynomial time simulation security of the watchlist protocol WL,
we have Hyb0 ≈c Hyb1.

Proof. Assume for the sake of contradiction that Hyb0 and Hyb1 are computationally distinguishable.
We now show that this contradicts the super-polynomial time simulation security of the WL.

We start interacting with the watchlist external challenger by providing the inputs {xi,j , yi,j}i∈H,j∈[n]\{i}
of the honest parties. Let A1 be the adversary defined in the description of Hyb1. We provide the
external challenger with A1 as the adversary against the watchlist protocol. The external chal-
lenger provides the view of A1 and the output of all the honest parties in the watchlist protocol.
We extract the view of A in the first three rounds from the view of A1 and we use the output of
the honest parties in the watchlist protocol to perform the same checks as described in Figure 12
at the end of the third round. We generate the final round message and compute the view of A in
the overall protocol along with the outputs of all the honest parties (as described in Hyb0). We run
the distinguisher between Hyb0 and Hyb1 on this and output whatever the distinguisher outputs.

If the view of A1 and the output of the honest parties in the watchlist protocol are generated
by the external challenger as in the real execution, then the input to the distinguisher is distributed
identically to Hyb0. Otherwise, the input to the distinguisher is identical to Hyb1. Thus, if the
distinguisher can distinguish between Hyb0 and Hyb1 with non-negligible advantage, the above
reduction breaks the super-polynomial time simulation security of the watchlist protocol and this
is a contradiction.

Lemma 9.3. Assuming the security of the inner protocol against adversaries running in time T1 ·
poly(λ), we have Hyb1 ≈c Hyb2.

Proof. Assume for the sake of contradiction that there exists a distinguisher that can distinguish
between Hyb1 and Hyb2 with non-negligible advantage. We will use this distinguisher to break the
security of the inner protocol.

We define the adversary A2 as described in Hyb2. This adversary interacts with the simulator
SimWL for the watchlist protocol and generates the messages for the inner protocol executions by
interacting with the external challenger. SimWL provides the first round message of the watchlist
protocol to A2 and it forwards it to A. A2 receives the first round message from A corresponding
to the watchlist protocol and forwards it to SimWL. SimWL runs in super-polynomial (specifically,
time T1) time and computes {xi,j}i∈M,j∈H from this message. We interpret xi,j as a subset of [m]
of size λ and denote K = ∪i∈M,j∈Hxi,j .
A2 begins interacting with the external challenger for Πh to generate messages in executions

h 6∈ K. A2 provides the external challenger with the honest party inputs {φi→h1 }i∈H in Πh for each
h 6∈ K. For each h ∈ K, A2 generates the messages in the protocol Πh using honest party inputs
{φi→h1 }i∈H and uniformly chosen randomness {ri,h}i∈H . We run SimWL on A2 and obtain the view
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of A2, {yi,j}i∈M,j∈H and instruction for each i ∈ H to either obtain the output of the watchlist
functionality to Pi or obtain ⊥. We extract the view of A in the first three rounds from ViewA2 .

For each i ∈M and j ∈ H, we parse yi,j as (ri,h, φ
i→h
1 ) and check if the messages in the protocol

Πh sent by Pi are consistent with this randomness, input pair. If for each j ∈ H, this pair is
inconsistent, or if the PRG computations in φi→h1 are incorrect, then we provide an inconsistent
input, randomness pair on behalf of the corrupted parties to the external challenger. If for each
i ∈ M , there exists at least one j ∈ H such that the input randomness pair (ri,h, φ

i→h
1 ) in yi,j

is consistent with all the messages sent in Πh and if the PRG computations in φi→h1 are correct,
then we forward this to the external challenger. In either case, we obtain the final round message
from the external challenger and we use this to generate the view of A in the entire protocol as
well as compute the output of all the honest parties as in the previous hybrid. Finally, we run the
distinguisher between Hyb1 and Hyb2 on the view of A and the outputs of the honest parties and
output whatever the distinguisher outputs.

We note that if the messages in the inner protocol Πh for each h 6∈ K is generated by the
external challenger using the honest party’s inputs and uniform randomness, then the input to the
distinguisher is identically distributed to Hyb1. Else, it is identically distributed to Hyb2. The
running time of the above reduction is bounded by T1 · poly(λ) as the running time of SimWL is
upper bounded by T1. Since the distinguisher is assumed to distinguisher between Hyb1 and Hyb2

with non-negligible advantage, this contradicts the security of the inner protocol against adversaries
running in time T1 · poly(λ).

Lemma 9.4. Hyb2 ≈s Hyb3.

Proof. We show that if |C| > λ · n2 then every honest party aborts at the end of the third round in
Hyb2.

Let us fix some honest party i ∈ H. Note that its watched executions Ki is uniformly distributed
and is independent of the view of the adversary in the first three rounds. This follows since we are
running SimWL in Hyb2 to generate the messages of the honest parties in the watchlist protocol. We
now show that if |C| > λ ·n2 then the probability that |Ki∩C| = 0 is at most 2−O(λ). If |Ki∩C| 6= 0
then the honest party i aborts at the end of the third round.

Pr[|Ki ∩ C| = 0] =

(m−|C|
λ

)(
m
λ

)
≤

(
m−λ·n2

λ

)(
m
λ

)
= (1− λ · n2

m
)(1− λ · n2

m− 1
) . . . (1− λ · n2

m− (λ− 1)
)

< (1− λ · n2

m
)λ

≤ e−O(λ) (Since m = O(λ · n2))

By an union bound, the probability that there exists an honest party that does not abort is at
most n · e−O(λ) = 2−O(λ).
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Lemma 9.5. Assuming the privacy with knowledge of outputs property of the outer protocol against
adversaries running in time T1 · poly(λ), we have Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are distinguishable with non-
negligible advantage. We will show that this contradicts the security of the outer protocol against
adversaries running in time T1 · poly(λ).

We define the adversary A3 as described in Hyb4. We compute the set K as described there. We
start interacting with the challenger for the outer protocol by corrupting the set of clients indexed
by M and the set of servers indexed by K. We provide {zi}i∈H to the external challenger as the
honest clients inputs and obtain {φi→h1 }h∈K as the first round message from the honest clients to the
corrupted servers. We use this to complete the execution of the first three rounds with A as given in
the hybrid description. SimWL at the end of the third round outputs the view of A3, {yi,j}i∈M,j∈H
along with instruction for each i ∈ H to either obtain the output from the watchlist or obtain abort.
We extract the view of A in the first three rounds from the view of A3. We construct the set C as
described in the hybrid and abort if |C| > λ ·n2. Otherwise, we instruct the challenger to adaptively
corrupt the set of servers indexed by C and obtain the first round messages {φi→h1 }i∈H,h∈C from
the challenger. We provide this to SimΠh for each h ∈ C as the inputs of the honest parties. For
each h 6∈ C ∪ K and for each i ∈ M , we first extract the consistent input φi→h1 (such that the
PRG computations are all correct) and the randomness ri,h that party Pi in the protocol Πh from
{yi,j}j∈H (output by SimWL). We give {φi→h1 }i∈M,h6∈C∪K to the external challenger as the first
round message sent by the corrupted clients to the honest servers. The challenger outputs the
second round messages {φh2}h6∈C∪K sent by the honest servers. For each h 6∈ C ∪K, we provide φh2
as the output of the functionality along with the consistent input, randomness pair of the corrupted
parties to SimΠh and obtain the final round message from SimΠh on behalf of all unaborted honest
parties. We use this to generate the view of A as well as compute the output of all the honest
parties as in the previous hybrid. We finally run the distinguisher between Hyb3 and Hyb4 on this
and output whatever the distinguisher outputs.

We note that |K ∪C| ≤ 2λn2 and hence, the above reduction emulates a valid adversary against
the outer protocol. Further, the running time of the adversary is upper bounded by T1 ·poly(λ) since
the running time of SimWL is bounded by T1. We note that if the messages for the outer protocol are
generated by the challenger as in the real execution then the input to the distinguisher is identical
to Hyb3 and is otherwise, identically distributed to Hyb4. Since we assumed that the distinguisher
can distinguish between Hyb3 and Hyb4 with non-negligible advantage, this contradicts the security
of the outer protocol against adversaries running in time T1 · poly(λ).

Lemma 9.6. Hyb6 ≈s Hyb7

Proof. The only difference between Hyb6 and Hyb7 is that Hyb7 sometimes outputs the special
symbol abort whereas Hyb6 never outputs this. We now argue that the probability that Hyb7

outputs the special symbol abort is negligible.
By a standard argument given in [GK96a], we note that ε̃ is within a constant factor of ε except

with probability 2−λ. Thus, the probability that in each of λ2

ε̃ trials that the adversary aborts or

fails to send a valid message is at most (1− ε)
λ2

ε̃ < e−O(λ) if ε̃ is within a constant factor of ε. Thus,
Hyb6 and Hyb7 are statistically close.

Lemma 9.7. Assuming the 1-rewinding non-malleable security of the watchlist protocol against
adversaries running in time T2 · poly(λ), we have Hyb9 ≈c Hyb10.
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Proof. Assume for the sake of contradiction that Hyb8 and Hyb9 are computationally distinguishable
with non-negligible advantage. We use this to break the 1-rewinding security of the watchlist
protocol against adversaries running in time T2 · poly(λ).

We start interacting with a watchlist challenger and provide honestly chosen x′i,j for each i ∈ H
and j ∈ M and yi,j = {ri,h, φ

i→h
1 }h∈[m] as the honest party’s inputs. We define an adversary A4

that completes the execution of the first rewind thread as in Hyb9 but obtains the messages in the
watchlist protocol externally. We provide A4 to the external challenger and the challenger outputs
the view of A4 along with {yi,j}i∈M,j∈H . We extract the view of the A in the three rounds of the
first rewind thread from the view of A4. If A has aborted or sent an invalid message, then we run
the distinguisher between Hyb9 and Hyb10 on the view of A generated above and output of all the
honest parties set to ⊥. We output whatever this distinguisher outputs. Else, we first compute
K ′ using the super-polynomial time extractors SPExtWL,R (running in time T2) on the view of A
in the first rewind thread. We define a new adversary A5 that has the first round messages of the
watchlist protocol to be the same as that of A4 but completes the execution of the second and the
third round of the protocol as in the main thread of Hyb9. We provide the challenger with A5 and
it provides with the view of A5. We extract the view of A in the first three rounds of the main
thread from view of A5. If A had aborted or sent an invalid message in this view, then we output a
random bit to the external challenger and abort the execution. Otherwise, we use the view of A in
the first three rounds along with {yi,j}i∈M,j∈H output by the external challenger and K ′ computed
as above to complete the execution with the adversary and generate the view of the adversary in the
main thread along with the output of the honest parties as in Hyb9. We finally run the distinguisher
between Hyb9 and Hyb10 on this and output whatever it outputs.

We note that the above reduction runs in time T2 · poly(λ). We note that if the messages
in the watchlist protocol are generated by the challenger using the real inputs then the input
to the distinguisher is identical to Hyb10. Otherwise, it is distributed identically to Hyb9. Let
the probability that the distinguisher correctly predicts whether it is given a sample from Hyb9

or Hyb10 be 1/2 + 1/q(λ) for some polynomial q(·). Let ε be the probability that the adversary
does not abort nor send an invalid message in the first rewind thread. From the previous hybrid
arguments, it follows that the probability that the adversary does the same in the main thread is at
most ε+ negl(λ) (and is lower bounded by ε− negl(λ)). We now estimate the probability that this
reduction breaks the 1-rewinding non-malleable security of the watchlist protocol. This probability
is

≥ (1− ε)(1/2 + 1/q(λ)) + ε(ε− negl(λ))(1/2 + 1/q(λ)) + ε(1− ε− negl(λ))1/2

≥ 1/2 + (1 + ε2 − ε)(1/q(λ))− negl(λ)

≥ 1/2 + (3/4)(1/q(λ))− negl(λ)

Thus, the above reduction breaks the 1-rewinding non-malleable security of the watchlist pro-
tocol and this is a contradiction.
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A Extractable Commitment with Straight-Line Extraction

In this section, we give a construction of a three-round commitment scheme that has straight-line
extraction by a super-polynomial time extractor.

A.1 Definition

Definition A.1. A three-round extractable commitment scheme (ECom1,ECom2,ECom3,Verify) is
said to admit a super-polynomial time, straight-line extraction if it satisfies the following properties:

• Completeness: For every input message msg of the committer C, the output of Verify on
a transcript generated by the interaction 〈R(1λ), C(1λ,msg)〉 and the internal randomness of
the receiver outputs 1 with probability 1.

• Hiding against Malicious Receivers. For every adversary A corrupting the receiver R
and for any two input messages msg0,msg1 of the committer C:{

ViewA(〈A(1λ), C(1λ,msg0))
}
≈c
{
ViewA(〈A(1λ), C(1λ,msg1))

}
86

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf 
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf 


• Extraction: For every adversary A that corrupts the committer, there exists an expected PPT
machine Ext and a super-polynomial time, straight-line machine SPExt that make black-box
use of A and output (ViewA,msg) such that:

1. ViewA output by Ext is identically distributed to ViewA(〈R(1λ),A(1λ)〉).
2. If there exists some message msg′ and random tape r such that the committer transcript

in ViewA is consistent with input msg′ using the random tape r, then msg′ = msg except
with negligible probability where (ViewA,msg)← (Ext)A(1λ).

3. (SPExt)A(1λ) ≈s (Ext)A(1λ).

A.2 Building Blocks

The construction uses the following building blocks.

Extractable Commitment. A three round extractable commitment scheme (ECom1,ECom2,ECom3)
that is (T2, ε)-hiding against malicious receivers running in time T2 and satisfies over extraction (see
Definition 3.5).

Pairwise Verifiable Secret Sharing. A pairwise verifiable, k-out-of-m secret sharing scheme
(Share,Rec) that has the following properties:

• Correctness. For any secret s,

Pr[Rec(Sh1, . . . ,Shm) = s : (Sh1, . . . ,Shm)← Share(s)] = 1

• Perfect Secrecy. For any two secrets s0, s1 and for any subset K ⊂ [m] of size k, we have:{
ShK : (Sh1, . . . ,Shm)← Share(s0)

}
≡
{
ShK : (Sh1, . . . ,Shm)← Share(s1)

}
• Pairwise Verifiability. If there exists a set K ⊆ [m] of size at least S(m, k) such that for

every i, j ∈ K, (Shi, Shj) are pairwise consistent, then for any value of Sh[m]\K , the output of
Rec(Sh1, . . . ,Shm) is the same.

We set k = 2λ, m = cλ for some large constant c, and S(m, k) = m− k.

Setting the Parameters. We set T2 ≥ poly(
(
m
k

)
· λ) and ε ≤ negl(

(
m
k

)
· λ).

A.3 Construction

We describe the construction in Figure 13.
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• Round-1: C does the following:

1. It computes (Sh1, . . . , Shm)← Share(msg).

2. For each i ∈ [m],

(a) It chooses ri ← {0, 1}∗ as the randomness for an extractable commitment scheme.
(b) It computes Comi

1 := ECom1(Shi; ri).

3. It sends {Comi
1}i∈[m] to R.

• Round-2: R does the following:

1. It chooses a random set K ⊂ [m] of size λ.

2. For each i ∈ [m],

(a) It computes Comi
2 ← ECom2(Comi

1).

3. It sends {Comi
2}i∈[m],K.

• Round-3: C does the following:

1. For each i ∈ [m],

(a) It computes Comi
3 := ECom3(Comi

2, Shi; ri).

2. It sends {Comi
3}i∈[m], {Shi, ri}i∈K to R.

• Verification: R does the following:

1. For each i ∈ K,

(a) It checks if {Comi
1,Com

i
3} is correctly computed extractable commitment to Shi using random-

ness ri.
(b) If it is not the case, then it outputs 0.

2. For each i, j ∈ K,

(a) It checks if Shi and Shj are pairwise consistent.
(b) If it is not the case, it outputs 0.

3. Else, it runs VerifyECom on {Comi
1,Com

i
2,Com

i
3} and its internal randomness for each i ∈ [m] and if

any of the checks fail, it outputs 0. If all the checks pass, it outputs 1.

Figure 13: Three-Round Extractable Commitment satisfying Definition A.1

A.4 Proof of Security

A.4.1 Hiding against Malicious Receivers

We show this via a hybrid argument.

• Hyb0 : This corresponds to ViewA(〈A(1λ), C(1λ,msg0)).

• Hyb1 : In this hybrid, we make the following changes:

1. We repeat the following for λ ·
(
m
λ

)
iterations.

(a) Before sending the first round message, we randomly choose a subset K ′ ⊂ [m] of
size λ.

(b) After receiving the second round message from A, we check if K = K ′, we proceed
to complete the execution with A. Else, we move to the next iteration.
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2. If fail to proceed in each of λ ·
(
m
λ

)
iterations, we output a special symbol fail.

By an identical argument to Lemma 4.11, we can show that Hyb0 ≈s Hyb1.

• Hyb2 : In this hybrid, we make the following changes to each of the λ ·
(
m
λ

)
iterations:

1. For each i 6∈ K ′, we generate {Comi
1,Com

i
3} as extractable commitments to some dummy

message instead of commitment to Shi.

By an identical argument to Lemma 4.12, we can rely on the (T2, ε)-hiding property of ECom
to show that Hyb1 ≈(T2,ε) Hyb2.

• Hyb3 : In this hybrid, in each of the λ ·
(
m
λ

)
iterations, we generate {Shi}i∈K′ using Share(msg1)

instead of Share(msg0). It follows from the perfect secrecy of the secret sharing scheme that
Hyb3 and Hyb2 are identically distributed.

• Hyb4 : In this hybrid, we compute (Sh1, . . . ,Shm) ← Share(msg1) and make the following
changes to each of the λ ·

(
m
λ

)
iterations:

1. For each i 6∈ K ′, we generate {Comi
1,Com

i
3} as extractable commitments to Shi instead

of commitment to a dummy message.

This just corresponds to reversing the changes made in Hyb2 and hence, by the exact same
argument, we have Hyb3 ≈(T2,ε) Hyb4.

• Hyb5 : In this hybrid, we reverse the changes made in Hyb1. Via an identical argument
given above, we can show that Hyb5 and Hyb4 are statistically close. We note that Hyb5 is
distributed identically to ViewA(〈A(1λ), C(1λ,msg1)).

A.4.2 Extraction

We begin with the description of Ext. Ext runs the honest receiver strategy and outputs the view
of A and msg = ⊥ if any one of the checks made by the honest receiver fails. If all the checks
pass, it runs the extractor for ECom on the adversary and obtains for each i ∈ [m], the committed
value Shi. It computes msg := Rec(Sh1, . . . ,Shm). Finally, it outputs the view of A and msg. It is
straightforward to see that the view of the adversary generated by Ext is identically distributed to
its view when interacting with an honest receiver. Additionally, it follows from the property of the
rewinding extractor for ECom that if the commitments {Comi

1,Com
i
3}iß[m] are generated correctly,

then {Shi}i∈[m] output by this extractor is the value committed except with negligible probability.
This is sufficient to show the second property under extraction given in Definition A.1.

We now give the description of SPExt. SPExt is exactly same as Ext except that it obtains
{Shi}i∈[m] by running the super-polynomial time, straight-line extractor for ECom. It then computes
msg exactly as described in Ext and finally outputs the view of adversary along with msg. We now
argue that the output of SPExt and Ext are statistically indistinguishable.

Lemma A.2. (SPExt)A(1λ) ≈s (Ext)A(1λ).

Proof. We show this through a sequence of hybrids.

• Hyb0 : This corresponds to the output of (SPExt)A(1λ).
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• Hyb1 : In this hybrid, we make the following changes:

1. We non-uniformly fix the first round message from the committer and extract the values
inside {Comi

1}i∈[m].

2. We initialize an empty set C and for each i ∈ [m], it adds i to C if the Comi
1 is generated

incorrectly.

3. If |C| > λ, then we set msg = ⊥.
4. Else, we compute msg as before and output the view of A and msg.

We note that if |C| > λ, the probability that |C ∩ K| = 0 is 2−O(λ) (since K is uniformly
chosen random subset of [m]; see Claim 4.4). Thus, except with negligible probability the
output of Hyb0 and Hyb1 are exactly the same.

• Hyb2 : In this hybrid, we make the following changes:

1. We initialize an empty set C ′.

2. We compute the inconsistency graph G where the set of vertices is given by [m] and we
add an edge (i, j) if Shi and Shj are pairwise inconsistent.

3. We set C ′ to be the minimum vertex cover of this graph.

4. If |C ′| > λ, we set msg = ⊥.

Via a proof that is identical to Claim 4.8, we can show that Hyb2 and Hyb1 are statistically
close.

• Hyb3 : In this hybrid, we additionally run the rewinding extractor for ECom to obtain
Sh′1, . . . ,Sh

′
m. We check if |C| or |C ′| is greater than λ or if any of the checks made by

the honest party fails. If that is the case, we set msg = ⊥. Otherwise, we set msg as
Rec(Sh′1, . . . ,Sh

′
m)

We note that except with negligible probability for every i 6∈ C, Shi obtained by SPExt and
the one obtained in the Hyb1 are identical and this follows from the property of the rewinding
extractor for ECom. Since |C ∪ C ′| < 2λ, it now follows from the pairwise verifiability of the
secret sharing scheme that the value reconstructed by in Hyb2 and Hyb3 is the same.

• Hyb4,Hyb5 : In these two hybrids, we reverse the changes made in Hyb2 and Hyb1 respectively.
Via identical arguments, we can show that Hyb4 ≈s Hyb3 and Hyb4 ≈s Hyb5. We note that
Hyb5 is identically distributed to the output of the (Ext)A(1λ).

B Definitions of Secure Multiparty Computation

Here, we provide a formal definition of secure multiparty computation. Parts of this section have
been taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a functionality. The security of a
protocol is defined with respect to a functionality f . In particular, let n denote the number of parties.
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A non-reactive n-party functionality f is a (possibly randomized) mapping of n inputs to n outputs.
A multiparty protocol with security parameter λ for computing a non-reactive functionality f is
a protocol running in time poly(λ) and satisfying the following correctness requirement: if parties
P1, . . . , Pn with inputs (x1, . . . , xn) respectively, all run an honest execution of the protocol, then
the joint distribution of the outputs y1, . . . , yn of the parties is statistically close to f(x1, . . . , xn). A
reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , f`) computed in a
stateful fashion in a series of phases. Let xji denote the input of Pi in phase j, and let sj denote the
state of the computation after phase j. Computation of f proceeds by setting s0 equal to the empty
string and then computing (yj1, . . . , y

j
n, sj) ← fj(s

j−1, xj1, . . . , x
j
n) for j ∈ [`], where yji denotes the

output of Pi at the end of phase j. A multi-party protocol computing f also runs in ` phases, at
the beginning of which each party holds an input and at the end of which each party obtains an
output. (Note that parties may wait to decide on their phase-j input until the beginning of that
phase.) Parties maintain state throughout the entire execution. The correctness requirement is
that, in an honest execution of the protocol, the joint distribution of all the outputs {yj1, . . . , y

j
n}`j=1

of all the phases is statistically close to the joint distribution of all the outputs of all the phases in
a computation of f on the same inputs used by the parties.

B.1 Defining Security.

We assume that readers are familiar with standard simulation-based definitions of secure multi-party
computation in the standalone setting. We provide a self-contained definition for completeness and
refer to [Gol04] for a more complete description. The security of a protocol (with respect to a
functionality f) is defined by comparing the real-world execution of the protocol with an ideal-
world evaluation of f by a trusted party. More concretely, it is required that for every adversary
A, which attacks the real execution of the protocol, there exist an adversary Sim, also referred to
as a simulator, which can achieve the same effect in the ideal-world. Let’s denote x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed
in the presence of an adversary A. The honest parties follow the instructions of π. The adversary
A takes as input the security parameter k, the set I ⊂ [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable REALπ,A(z),I(λ,x) whose value
is determined by the coin tosses of the adversary and the honest players. This random variable
contains the output of the adversary (which may be an arbitrary function of its view) as well
as the outputs of the uncorrupted parties. We let REALπ,A(z),I denote the distribution ensemble
{REALΠ,A(z),I(λ,x)}k∈N,〈x,z〉∈{0,1}∗ .

The ideal execution – security with abort. In this second variant of the ideal model, fairness
and output delivery are no longer guaranteed. This is the standard relaxation used when a strict
majority of honest parties is not assumed. In this case, an ideal execution for a function f proceeds
as follows:

• Send inputs to the trusted party: As before, the parties send their inputs to the trusted
party, and we let x′i denote the value sent by Pi. Once again, for a semi-honest adversary we
require x′i = xi for all i ∈ I.

91



• Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

• Adversary instructs trusted party to abort or continue: This is formalized by having
the adversary send either a continue or abort message to the trusted party. (A semi-honest
adversary never aborts.) In the latter case, the trusted party sends to each uncorrupted party
Pi its output value yi. In the former case, the trusted party sends the special symbol ⊥ to
each uncorrupted party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf,A(z)(λ,x) as
above,and we let {IDEALf,A(z),I(λ,x)}k∈N,〈x,z〉∈{0,1}∗ . Having defined the real and the ideal worlds,
we now proceed to define our notion of security.

Definition B.1. Let k be the security parameter. Let f be an n-party randomized functionality, and
Π be an n-party protocol for n ∈ N. We say that Π t-securely computes f in the presence of malicious
(resp., semi-honest) adversaries if for every PPT adversary (resp., semi-honest adversary) A there
exists an expected PPT adversary (resp., semi-honest adversary) Sim such that for any I ⊂ [n] with
|I| ≤ t the following quantity is negligible:

|Pr[REALΠ,A(z),I(λ,x) = 1]− Pr[IDEALf,A(z),I(λ,x) = 1]|

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

We specialize this definition to the setting of (multi-party) simultaneous m-choose-` OT. We
consider a specific function fOT,n,m,`, which represents the pairwise m-choose-` ideal OT func-
tionality implemented between n parties. In more detail, for every pair of parties Pi and Pj for
i, j ∈ [n], i 6= j, this functionality (implemented by the trusted party) obtains strings {xι,i,j}ι∈[m] as
well as a choice set kj,i which is a subset of [m] of size ` from party Pi. It obtains strings {xι,j,i}ι∈[m]

and choice set ki,j which is a subset of [m] of size ` from party Pj . It outputs {xι,i,j}ι∈kj,i to Pj and
{xι,j,i}ι∈ki,j to Pi.

Definition B.2 (Multi-party OT with Superpolynomial Simulation). Let k be the security param-
eter. Let Π be an n-party protocol for n ∈ N. We say that Π computes simultaneous n-party
m-choose-` OT with super-polynomial simulation in the presence of malicious (resp., semi-honest)
adversaries if for every PPT adversary (resp., semi-honest adversary) A there exists a 2λ

ε adversary
(resp., semi-honest adversary) Sim that makes straight-line, black-box access to A and interacts with
the fOT,n,m,` ideal functionality such that for any I ⊂ [n] with |I| ≤ n− 1 the following quantity is
negligible:

|Pr[REALΠ,A(z),I(λ,x) = 1]− Pr[IDEALA(z),I(λ,x) = 1]|

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

Remark B.3 (Security with Selective Abort). We can consider a slightly weaker definition of
security where the ideal world adversary can instruct the trusted party to send aborts to a subset of
the uncorrupted parties. For the rest of the uncorrupted parties, it instructs the trusted functionality
to deliver their output. This weakened definition is called security with selective abort.
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Remark B.4 (Privacy with Knowledge of Outputs). Ishai et al. [IKP10] considered a further
weakening of the security definition where the trusted party first delivers the output to the ideal
world adversary which then provides an output to be delivered to all the honest parties. They called
this security notion as privacy with knowledge of outputs and showed a transformation from this
notion to security with selective abort using unconditional MACs.

B.2 Security Against Semi-Malicious Adversaries

We take this definition almost verbatim from [AJL+12]. We consider a notion of a semi-malicious
adversary that is stronger than the standard notion of semi-honest adversary and formalize security
against semi-malicious adversaries. A semi-malicious adversary is modeled as an interactive Turing
machine (ITM) which, in addition to the standard tapes, has a special witness tape. In each round of
the protocol, whenever the adversary produces a new protocol message msg on behalf of some party
PPk, it must also write to its special witness tape some pair (x, r) of input x and randomness r that
explains its behavior. More specifically, all of the protocol messages sent by the adversary on behalf
of PPk up to that point, including the new message m, must exactly match the honest protocol
specification for PPk when executed with input x and randomness r. Note that the witnesses given
in different rounds need not be consistent. Also, we assume that the attacker is rushing and hence
may choose the message m and the witness (x, r) in each round adaptively, after seeing the protocol
messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may also
choose to abort the execution on behalf of PPk in any step of the interaction.

Definition B.5. We say that a protocol Π securely realizes f for semi-malicious adversaries if it
satisfies Definition B.1 when we only quantify over all semi-malicious adversaries A.
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