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Abstract—The recent advancements in deep learning have
brought about significant changes in various aspects of peo-
ple’s lives. Meanwhile, these rapid developments have raised
concerns about the legitimacy of the training process of deep
networks. However, to protect the intellectual properties of
untrusted AI developers, directly examining the training pro-
cess by accessing the model parameters and training data by
verifiers is often prohibited.

In response to this challenge, we present zkDL, an efficient
zero-knowledge proof of deep learning training. At the core of
zkDL is zkReLU, a specialized zero-knowledge proof protocol
with optimized proving time and proof size for the ReLU
activation function, a major obstacle in verifiable training due
to its non-arithmetic nature. To integrate zkReLU into the
proof system for the entire training process, we devise a novel
construction of an arithmetic circuit from neural networks. By
leveraging the abundant parallel computation resources, this
construction reduces proving time and proof sizes by a factor
of the network depth. As a result, zkDL enables the generation
of complete and sound proofs, taking less than a minute with a
size of less than 20 kB per training step, for a 16-layer neural
network with 200M parameters, while ensuring the privacy of
data and model parameters.

1. Introduction

The rapid development of deep learning has garnered
unprecedented attention in the decade. However, along with
these advancements, concerns about the legitimacy of deep
learning training have also arisen. In March 2023, Italy
became the first Western country to ban ChatGPT amid
an investigation into a potential violation of the European
Union’s General Data Protection Regulation (GDPR). Fur-
thermore, in January 2023, Stable Diffusion, a star image
generative model, faced accusations from a group of artist
representatives regarding the infringement of copyrights on
millions of images in its training data. As governments con-
tinue to impose new regulatory requirements on increasingly
advanced AI technologies, there is an urgent need to develop
a protocol that can verify the legitimacy of the training
data and process for deep learning models. However, due
to concerns related to intellectual property and business

secrets, model owners are generally hesitant to disclose their
proprietary training data or model snapshots for legitimacy
investigations.

Despite considerable efforts in verifiable machine
learning to address the aforementioned dilemma, numer-
ous fundamental questions remain unanswered. Currently,
cryptography-based approaches have primarily concentrated
on inference-time verification [1], [2], [3], [4], [5], leaving
training-time verification relatively unexplored due to the
substantial computational demands and intricate operations
involved. Pioneering works in verifiable training [6], [7]
have primarily focused on elementary machine learning
algorithms, such as linear regression, logistic regression,
and SVMs. The deep learning algorithms explored have
been strictly constrained by the size of the neural networks
that the backend of the proof system can efficiently handle
and are therefore not extendable to modern deep neural
networks.

Furthermore, the progress of verifiable deep learning has
been hindered by non-arithmetic operations, particularly ac-
tivation functions like ReLU, which are not inherently sup-
ported by zero-knowledge proof (ZKP) systems but exten-
sively used in the realm of deep learning. Early works have
explored square activation and polynomial approximation
as arithmetic alternatives to traditional activation functions
[6], [7], [8]. However, these alternatives deviate from well-
established deep learning structures, raising concerns about
the effectiveness of these models. More recent approaches
have attempted to handle activation functions using bit-
decompositions and look-up tables [1], [5]. Unfortunately,
these methods impose significant demands on computational
resources due to the high space and time complexities they
introduce. Additionally, the modeling of neural networks
as arithmetic circuits that are compatible with handling
activation functions remains unclear. Given the current state
of verifiable deep learning, overcoming the bottleneck posed
by activation functions like ReLU is crucial before practical
applications can be deployed.

In addition to ensuring training correctness, legitimacy
concerns also emerge from the composition of training data,
particularly with regard to copyright issues. However, the
training set’s substantial size and its status as the trainer’s
intellectual property make it impractical to publish the



dataset for inspection. To address this challenge, an efficient
and bidirectionally privacy-preserving protocol is needed to
demonstrate whether queried data points are (not) included
in the training set.

To address these challenges, we propose zkDL, an effi-
cient zero-knowledge proof of deep learning training. With
zkDL, model developers can demonstrate to the government
that the model has been correctly trained in accordance
with the committed data, adhering to the prescribed training
logic. This approach effectively addresses concerns about
the legitimacy of the model. Our main contributions are
summarized as follows:

• We introduce zkReLU, an efficient specialized zero-
knowledge proof tailored for the exact computa-
tion of the Rectified Linear Unit (ReLU) and its
backpropagation, without resorting to polynomial
approximations to handle non-arithmetic operations.
Compared with the general-purpose zero-knowledge
proof (ZKP) backends that impose an infeasible
overhead, zkReLU constitutes a significant stride
towards achieving verifiable deep learning training
for industrial applications.

• We explicitly designed the modelling scheme of
the neural network with ReLU activations as arith-
metic circuits and developed a highly efficient zero-
knowledge proof system over the circuit. This proof
system is compatible with the tensor-based struc-
ture of deep learning and seamlessly connects with
zkReLU, and achieves zero knowledge on both the
model parameters and the training dataset.

• Thanks to the remarkably high degree of paral-
lelization in zkDL, the proving time and proof size
experience slow growth with an additive O(logL)
term as the depth L of the neural network increases.
This scalability allows zkDL to accommodate large
neural networks effectively. For instance, on a 16-
layer network with over 200 million parameters and
a batch size of 128 on the CIFAR-10 dataset, the
proof generation time and proof size are limited
to less than 1 minute and 20 kB per batch update
(i.e., forward and backpropagation process), achiev-
ing over 40× and 10× improvements compared to
bit-decomposition-based proofs, respectively.

• As a by-product, zkDL also enables efficient queries
from data copyright owners regarding the member-
ship status of their data in the training set, thereby
addressing copyright-related legitimacy issues. On
the CIFAR-10 task, it only takes 0.05 milliseconds
for a data copyright owner to confirm that a queried
data point has not been included in the training set.

1.1. Overview of zkDL

The zkDL protocol relies on the presence of a trusted
verifier (e.g., the government) that faithfully follows all the
prescribed protocols in its role as the verifier and provides
honest verification results (accept/reject). The development
of the zkDL protocol follows the roadmap outlined below:

zkReLU with auxiliary inputs. ReLU, a pivotal activa-
tion function in modern neural networks, plays a crucial
role in their success. However, its non-arithmetic nature
poses a significant challenge when proving training with
general-purpose ZKP backends. As depicted in Figure 1,
handling bit-decompositions related to ReLU consumes over
90% of the computational power. Meanwhile, the recently
proposed lookup-table-based handling of ReLU has been
limited to verifiable inferences in quantized int8 networks
[5], rendering it unsuitable for training due to its prohibitive
memory consumption.

BD
94.4%

others
5.6%

Figure 1: Proving Time Allocated for Bit-Decomposition
(BD, shown in red) using General-Purpose Sum-Check Pro-
tocol: average across tested architectures in Section 5.1
(timeouts excluded). The ratio was obtained by re-running
the experiment with all BD-related components removed.

To ensure the efficiency of the zkDL protocol, we intro-
duce zkReLU, a specialized zero-knowledge proof tailored
specifically for ReLU. zkReLU revolutionizes the proof
of the non-arithmetic operations of ReLU and its back-
ward propagation by introducing auxiliary inputs. Given the
potential for malicious manipulation of the values of the
auxiliary inputs, zkReLU incorporates additional validity
proofs on the auxiliary inputs rooted in the homomorphic
commitment scheme. Unlike traditional proofs with general-
purpose ZKP backends, zkReLU retains the tensor-based
structures central to deep learning and significantly reduces
redundancy through the reuse of verified claims on commit-
ted auxiliary inputs during the proof of arithmetic relations.
Furthermore, zkReLU also reduces the correctness of train-
ing to a single inner-product proof, so as to exploit its linear
proving time and logarithmic proof size. This reduction is
accomplished through transformations of the commitments
to achieve compatibility with different proof systems for
the arithmetic relations and auxiliary input validity. The
efficacy of these approaches establishes zkReLU as a central
component for enabling efficient verifiable training with
ReLU in the zkDL framework.

Design of the arithmetic circuit. Constructing an arithmetic
circuit with a layered structure for forward and backward
propagation, and integrating it into a ZKP backend is
indeed a straightforward process. However, this approach
introduces unconnected gaps in the arithmetic circuit due
to the non-arithmetic nature of ReLU. These gaps create
exploitable opportunities for malicious trainers. To address
this concern, in Section 4.2, we propose a rewiring of



the arithmetic circuit. This rewiring anchors the arithmetic
operations within each layer to their arithmetic relations with
auxiliary inputs. As a result, the anchored circuit architecture
not only fills the connectivity gaps but also facilitates a
high degree of parallelization, leading to significant im-
provements in proving time and proof sizes by a factor of
O(L), where L represents the depth of the neural network.

TABLE 1: Comparison of proof time and size: zkDL vs.
Sum-Check Bit-Decomposition (SC-BD). L: number of net-
work layers; D: size of input tensor in each layer; Q: bit
length of each element.

zkDL (ours) SC-BD
Proving time O (DQ+ logL) O

(
D2QL

)
Proof size O (log(DQL)) O(L log (DQ))

Table 1 presents the comprehensive advantages of zkDL
concerning proving time and proof size, achieved through
zkReLU and its compatible design of the arithmetic cir-
cuit. Furthermore, the completeness, soundness, and zero-
knowledge properties are provable in the execution of the
zkDL protocol.

2. Related work

Verifiable machine learning inference. Zero-knowledge
proof (ZKP) systems have emerged as important solutions to
address security and privacy concerns in machine learning.
These systems enable the verification of machine learning
inference correctness without disclosing the underlying data
or model. Notably, zkCNN [1] introduced an interactive
proof protocol for convolutional layers, based on the GKR
protocol [9] and its refinements [10], [11], [12]. This solu-
tion provides zero-knowledge verifiable inference for VGG-
scale convolutional neural networks, expanding verifiable
computations to modern deep learning. Meanwhile, zk-
SNARK-based inference, represented by ZEN [2], vCNN
[3], pvCNN [4], and ZKML [5], focuses on enhancing
the compatibility of neural networks with the zk-SNARK
backend [13], [14], [15], [16], [17], [18], scaling up non-
interactive zero-knowledge inference. Once the committed
model is verified to be correctly trained using this work, the
verifiable inference can serve as a downstream application.
On the other hand, there has been a lack of attention on the
efficient proof of non-arithmetic operations (e.g., ReLU) and
the integration of these proofs into the proof system for the
entire neural network.

Verifiable machine learning training. VeriML [6] repre-
sents a pioneering effort in zero-knowledge verifiable train-
ing for fundamental machine learning algorithms. Building
on this foundation, verifiable unlearning [7] takes a signifi-
cant step forward by providing proof of the correct execution
of training logic and updates to the training set in machine
unlearning, which supersedes the probabilistic verifications
of unlearning [19], [20], [21], [22]. However, their work
is confined to scenarios where users contribute data to the

training set and maintain full control over changes (additions
and deletions of data points) through explicit requests. Con-
sequently, their approach only permits proofs for the data
points involved in these requested updates, making it unsuit-
able for addressing legitimate copyright issues concerning
datasets controlled by the model trainer. Furthermore, a
notable limitation lies in the scope of supported models,
encompassing limited-scale neural networks and compro-
mising on unsupported non-arithmetic operations (e.g., re-
placing ReLU with square activation).

Proof of learning (PoL) [23]. PoL serves as a non-
cryptographic-based alternative to verifiable training. How-
ever, its probabilistic guarantees render it unsuitable for
legitimacy-related settings like zkDL [24], [25]. Addition-
ally, its threat model assumes adversaries to forge proofs by
expending less computation resources than training, which
does not deter dedicated malicious trainers capable of devi-
ating from the prescribed training logic (e.g., planting back-
doors) at the cost of equivalent or additional computational
power.

Membership inference attacks (MIA). MIAs can be used
to infer if data points are in the training set [26], [27],
[28], [29], [30], [31], [32], [33], [34], but they did not
provide guarantees of success and may be vulnerable to
defences [35], [36], [37], [38], [39]. Thus, they are not
directly applicable to our setting.

3. Preliminaries

3.1. Pedersen commitments

The Pedersen commitment is a zero-knowledge commit-
ment scheme that relies on the hardness of the discrete log
problem (DLP). Specifically, in a finite field F with prime
order p, committing to d-dimensional vectors requires an
order-p cyclic group G (e.g., an elliptic curve) and uniformly
independently sampled values g = (g0, g1, . . . , gd−1)

⊤ ∼
Gd, and h ∼ G. This scheme allows any d-dimensional
vector v = (v0, v1, . . . , vd−1)

⊤ ∈ Fd to be committed as:

Commit(v; r) = hrgv = hr
d−1∏
i=0

gvii ,

where r ∼ F is uniformly sampled, ensuring zero-
knowledgeness of the committed value v. Alternatively,
the randomness r can be consistently set to 0, creating
a deterministic commitment scheme that remains binding
and privacy-preserving due to the hardness of the DLP.
Moreover, the Pedersen commitment scheme is homomor-
phic. That is, for two commitments comv1

= hr1gv1 and
comv2

= hr2gv2 of vectors v1 and v2, respectively, their
product comv1

· comv2
= hr1+r2gv1+v2 forms a valid

commitment of the sum v1 + v2.

3.2. Sumcheck and GKR protocols

The sumcheck protocol [40], [41] serves as a fun-
damental component in modern proof systems, allowing



for the verification of the correctness of the summation∑
b∈{0,1}d f(b) for a d-variate polynomial f . This protocol

offers an efficient proving time of O(2d) and a compact
proof size of O(d).

Building upon the sumcheck protocol, the GKR protocol
[9] provides an interactive proof for the accurate com-
putation of arithmetic circuits. It leverages the sumcheck
protocol between the layers of the arithmetic circuit, as
well as the Pedersen commitments to the private inputs.
Additionally, zero-knowledge variants of the GKR protocol
[10], [12], [42] have been developed with asymptotically
negligible overhead.

The sumcheck and GKR protocols have found wide ap-
plications in verifying the proper execution of deep learning
models, thanks to their compatibility with tensor structures.
For each tensor S ∈ FD that is discretized from real numbers
(without loss of generality, assume D is a power of 2,
or zero-padding may be applied), its multilinear extension
S̃ (·) : Flog2 D → F is a multivariate polynomial defined as

S̃ (u) =
∑

b∈{0,1}log2 D

S(b)β̃ (u,b) , (1)

where b represents the b-th element of S (identifying the
index by the binary string), and β̃ (·, ·) : Flog2 D×Flog2 D →
F is a polynomial. When restricted to {0, 1}log2 D ×
{0, 1}log2 D, β̃ (b1,b2) =

{
1, if b1 = b2;
0, if b1 ̸= b2,

for b1,b2 ∈

{0, 1}log2 D. In the context of multilinear extensions, we
use the notation of indices and their binary representations
interchangeably.

Specialized variants of the GKR protocols have been
developed for common deep learning operations, such as
matrix multiplication [43], [44] and convolution [1]. How-
ever, representing neural networks as arithmetic circuits
has historically been unclear and inefficient due to non-
arithmetic operations. In this work, we address this issue
by formalizing and optimizing the modelling scheme. Our
proposed scheme maintains full compatibility with the op-
timized GKR protocol for deep learning operations and
facilitates a high degree of parallelization during the proof
generation process.

3.3. Inner-product proofs

Inner-product proofs are essential for zero-knowledge
proofs involving arithmetic relations over F. They focus on
verifying the correctness of the inner-product value v⊤

1 v2

between two vectors v1 and v2 in Fd. Specifically, when
the inputs v1 and v2 are committed as hrgv1hv2 (where
h, g, and h are randomly sampled generators as described
in Section 3.1), Bulletproof [45] can be utilized as a zero-
knowledge inner-product proof. Bulletproof offers an effi-
cient proving time of O(d) and a concise proof size of
O(log d).

In this study, our approach involves combining the zero-
knowledge inner-product proof with a specialized GKR
protocol that is tailored for optimized arithmetic circuits.

This combined approach specifically targets the ReLU non-
linearity, resulting in significant improvements such as ac-
celerated proof generation and reduced proof size.

4. Efficient Proofs of Deep Learning Training
with zkReLU

The proper and tailored handling of non-linearities, espe-
cially ReLU, is essential to achieve efficient zero-knowledge
verifiable training on deep neural networks. Therefore, in
this section, we propose zkReLU, a zero-knowledge proto-
col designed to verify the training of deep neural networks
incorporating ReLU non-linearity, which forms the core
of the zkDL protocol. Our scheme leverages the use of
auxiliary inputs to enable the verification of both the forward
and backward propagations involving ReLU. In Section 4.1,
we outline the scheme for validating the auxiliary inputs
by ensuring their values fall within the appropriate ranges.
This step is crucial for establishing the integrity of the
auxiliary inputs. Subsequently, in Section 4.2, we introduce
a modelling approach that transforms the deep neural net-
works and their corresponding backpropagations into arith-
metic circuits. This modelling scheme addresses the long-
standing ambiguity surrounding zero-knowledge proofs of
deep learning, while maintaining a seamless connection with
the validity checks described in Section 4.1. One of the
advantages of zkReLU is that it achieves a prover time that
scales linearly with the size of the required computations,
thus improving efficiency. Additionally, it maintains a log-
arithmic proof size, preventing the linear growth of proof
size with the depth of the neural network.

When the ReLU activation is applied to the output of
layer ℓ (1 ≤ ℓ ≤ L − 1, where L is the total number of
layers), denoted as Z(ℓ), which corresponds to a linear (fully
connected or convolutional) layer, multiplication operations
are involved in computing Z(ℓ). Consequently, Z(ℓ) is scaled
twice by the scaling factor, which we assume is a power of 2,
i.e., 2R. Consequently, when considering discretized values,
the ReLU operation should also downscale the input by a
factor of 2R. This can be expressed as the activation function

A(ℓ) = ReLU
(⌊

Z(ℓ)

2R

⌉+)
= I

{⌊
Z(ℓ)

2R

⌉
≥ 0

}
⊙
⌊
Z(ℓ)

2R

⌉
.

To simplify the notation, we introduce the rescaled
Z(ℓ)′ :=

⌊
Z(ℓ)

2R

⌉
. This allows us to express Z(ℓ) as Z(ℓ) =

2RZ(ℓ)′+R
(ℓ)
Z , where R

(ℓ)
Z represents the remainder caused

by rounding. However, to establish the notion of “non-
negative” within the finite field, it is necessary to constrain
the scale of Z(ℓ)′. We assume that each element of Z(ℓ)′

is an Q-bit signed integer, where 2Q ≪ |F|. For analysis
purposes only, we decompose Z(ℓ)′ as the magnitude bits
and the sign bits, i.e., Z(ℓ)′ =

∑Q−2
j=0 2jB

(ℓ)
j − 2Q−1B

(ℓ)
Q−1,

where each B
(ℓ)
j for 0 ≤ j ≤ Q − 1 is binary and B

(ℓ)
Q−1

is the negativity of each dimension in Z(ℓ) (1 for negative,
0 otherwise). By introducing the tensor of re-compressed
magnitude bits Z(ℓ)′′ =

∑Q−2
j=0 2jB

(ℓ)
j and including B

(ℓ)
Q−1,



Z(ℓ)′′, and R
(ℓ)
Z as auxiliary inputs, the trainer needs to prove

the following:

A(ℓ) = (1−B
(ℓ)
Q−1)⊙ Z(ℓ)′′, (2)

Z(ℓ) = 2RZ(ℓ)′′ − 2Q+R−1B
(ℓ)
Q−1 +R

(ℓ)
Z . (3)

During backpropagation, the gradient of A(ℓ), denoted
as G

(ℓ)
A , is also typically scaled twice by 2R due to the

involved multiplication operations. Hence, the trainer needs

to rescale it to G
(ℓ)
A

′
:=

⌊
G

(ℓ)
A

2R

⌉
with the remainder R

(ℓ)
GA

.

Subsequently, G(ℓ)
A

′
is used to compute the gradient of Z(ℓ),

denoted as G
(ℓ)
Z , through Hadamard product ⊙ with 1 −

B
(ℓ)
Q−1. With the additional auxiliary inputs G(ℓ)

A

′
and R

(ℓ)
GA

,
the trainer needs to prove the following:

G
(ℓ)
Z = (1−B

(ℓ)
Q−1)⊙G

(ℓ)
A

′
, (4)

G
(ℓ)
A = 2RG

(ℓ)
A

′
+R

(ℓ)
GA

. (5)

It is important to emphasize that all auxiliary inputs,
namely Z(ℓ)′′ ∈

[
0, 2Q−1

)D
, B

(ℓ)
Q−1 ∈ {0, 1}D, R

(ℓ)
Z ∈[

−2R−1, 2R−1
)D

, G(ℓ)
A

′
∈

[
−2Q−1, 2Q−1

)D
, and R

(ℓ)
GA
∈[

−2R−1, 2R−1
)D

, are bounded and share the same dimen-
sion D. In this analysis, we consider D to represent the size
of the one-dimensional input tensor Z(ℓ). Once the back-
propagation operation concludes, it becomes the trainer’s
responsibility to compute the commitments for these five
auxiliary inputs and transmit them to the trusted verifier.
For the sake of brevity, we use aux(ℓ) to collectively refer
to the auxiliary inputs of layer ℓ. Furthermore, we use the
same notations without the superscript of the layer number,
namely Z′′,BQ−1,RZ,G

′
A,RGA

, and collectively as aux,
to represent the stacked tensors with consistent notation
across all layers. In the absence of ambiguity, we also
employ D to denote the dimension of these tensors.

4.1. zkReLU: Validity of the auxiliary inputs

A malicious trainer may attempt to train low-quality and
illegitimate models by manipulating the values of auxiliary
inputs, while maintaining the correct arithmetic relations
among them and the other components of the neural net-
work. In particular, they may commit to auxiliary inputs that
are outside their respective ranges, and forge proofs using
these invalid values. However, conducting a straightforward
bit-decomposition-based range proof for each auxiliary input
would result in a linear increase in proof size as the total
number of auxiliary inputs summed over all layers grows.
Therefore, in this section, we present the core of the zkReLU
protocol, which involves batching the proofs for the validity
of the auxiliary inputs. This approach optimizes the run-
ning times for both the trainer and trusted verifier, reduces
proof sizes, and maintains the requirements of correctness,
soundness and zero-knowledge.

We recall that for any (K − 1)-bit unsigned integer v,
there is b ∈ {0, 1}K−1 such that

〈
b,2K−1

〉
= v, where

2K−1 =
(
1, 2, . . . , 2K−2

)⊤
. Similarly, for any K-bit signed

integer v, there exists a ∈ {0, 1}K such that ⟨a, sK⟩ = v,
where sK =

(
1, 2, . . . , 2K−2,−2K−1

)⊤
.

However, the range requirements for different auxiliary
inputs are non-uniform. To address this, we first focus on
the decomposition of Z′′ (unsigned (Q−1)-bit integers) and
GA

′ (signed Q-bit integers).
We can handle the range requirement using the bi-

nary matrix B =

(
BZ′′ 0
BGA

′

)
∈ {0, 1}2D×Q, where

BZ′′ and BGA
′ are the element-wise unsigned (Q − 1)-

bit and signed Q-bit representations of Z′′ and GA
′, re-

spectively. Additionally, we define B′ =

(
BZ′′ − 1 0
BGA

′ − 1

)
∈

{0, 1}2D×Q, such that the element-wise product B⊙B′ is

equal to 0. Moreover, by padding BQ−1 =

(
0 BQ−1

0

)
∈

{0, 1}2D×Q and B′
Q−1 =

(
0 BQ−1 − 1

0

)
∈ {0, 1}2D×Q,

we also have the additional requirement that the element-
wise product BQ−1 ⊙B′

Q−1 equals 0.
We consider a random linear combination of B and

BQ−1, given by Bk = B+kBQ−1 and B′
k = B′+kB′

Q−1,
where k ∼ F. We take a uniformly randomly chosen sam-
pling urelu = (u′′

relu,u
′
relu) ∼ F1+log2 D and ubit ∼ Flog2 Q,

and we define the “expansion” of the random vector e(u) =(
β̃ (u,b)

)
b∈{0,1}dim(u)

such that S̃ (u) = S⊤e(u) for any

tensor S (assuming S is one-dimensional for clarity). If the
trainer and trusted verifier agree on the claimed value of
v = (1 − u′′

relu)Z̃
′′ (u′

relu) + u′′
reluG̃

′
A (u′

relu) (which is the

multilinear extension evaluation of
(
Z′′

G′
A

)
at urelu) and

vQ−1 = B̃Q−1 (u
′
relu) (or the commitment thereof on the

trusted verifier’s side, which will be realized in Section 4.2),
the correctness of the relations described above is equivalent
to the following equations with overwhelming probability:〈

e(urelu)
⊤Bk, sQ

〉
= vk, (6)

B̃k (urelu,ubit)− B̃′
k (urelu,ubit) = v′k, (7)

˜Bk ⊙B′
k (urelu,ubit) = 0. (8)

Here, the Bk is correctly computed only if

vk = e(urelu)
⊤BksQ (9)

= e(urelu)
⊤BsQ + ke(urelu)

⊤BQ−1sQ (10)

= e(urelu)
⊤
(
Z′′

G′
A

)
− k2Q−1e(urelu)

⊤
(
BQ−1

0

)
(11)

= v − k2Q−1(1− u′′
relu)vQ−1, (12)

and that its components B and BQ−1 are binary with
specific blocks being zero, such that

v′k = ˜Bk −B′
k (urelu,ubit) (13)

=
˜(

1 k · 1
1

)
(urelu,ubit) (14)

= 1 + (k − 1)β̃ (b(Q− 1),ubit) (1− u′′
relu), (15)



and Bk ⊙ B′
k = 0 (which is equilvalent to

˜Bk ⊙B′
k (urelu,ubit) = 0 with overwhelming probability).

Therefore, we can write all of these equations in the
form of inner products between vectors of length 2BQ, by
flattening the tensors:

⟨Bk, e(urelu)⊗ sQ⟩ = vk, (16)
⟨Bk −B′

k, e(urelu)⊗ e(ubit)⟩ = v′k, (17)
⟨Bk,B

′
k ⊙ (e(urelu)⊗ e(ubit))⟩ = 0, (18)

which is equivalent to〈
Bk − z · 1, z2 · e(urelu)⊗ sQ + (z · 1+B′

k)⊙ (e(urelu)⊗ e(ubit))
〉

= z3 − (1− vk)z
2 + zv′k, (19)

for uniformly randomly chosen z ∼ F. Theorem 4.1 guar-
antees that these equalities are also sufficient to guarantee
the validity of the auxiliary inputs with overwhelming prob-
ability:

Theorem 4.1. With probability p = 1 − O
(

DQ
|F|

)
, if (19)

holds, then Z′′ ∈ [0, 2Q−1)D,BQ−1 ∈ {0, 1}D and GA ∈
[−2Q−1, 2Q−1)D.

Proof of Theorem 4.1. We first note that (19) is a random
linear combination of (16), (17) and (18), which is multi-
plied by z2, z and 1, respectively. Therefore, by Schwartz-
Zipple (SZ) Lemma, with probability 1 − O

(
1
|F|

)
, if (19)

holds, then these three equalities hold. Equivalently, (6), (7)
and (8)) also hold.

On the other hand, applying SZ lemma for multi-linear
extension, if (6), (7) and (8) holds, then with probability
1−O

(
logD+logQ

|F|

)
:

BksQ =

(
Z′′

G′
A

)
− k2Q−1

(
BQ−1

0

)
, (20)

Bk −B′
k =

(
1 k · 1

1

)
=

(
1 0
1

)
+ k

(
0 1
0

)
, (21)

Bk ⊙B′
k = 0. (22)

By the homomorphism of the commitments, Bk = B +
kBQ−1 and B′

k = B′ + kB′
Q−1. Therefore, if (20), (21)

and (22) hold, then(
BsQ −

(
Z′′

G′
A

))
+ k

(
BQ−1sQ + 2Q−1

(
BQ−1

0

))
= 0,

(23)(
B−B′ −

(
1 0
1

))
+ k

(
BQ−1 −B′

Q−1 −
(
0 1
0

))
= 0,

(24)

B⊙B′ + k
(
B⊙B′

Q−1 +B′ ⊙BQ−1

)
+ k2BQ−1 ⊙B′

Q−1 = 0.

(25)

Here, (23), (24) are polynomials of order 1, while (25) is
a polynomial of order 2. Therefore, with probability 1 −
O
(

DQ
|F|

)
over the choice of k, if these three polynomials

all evaluate to 0, then each of the coefficient is 0.

By B ⊙ B′ = 0 and B − B′ =

(
1 0
1

)
, we can de-

duce that B ∈
(
{0, 1}D×(Q−1) 0
{0, 1}D×Q

)
. Therefore

(
Z′′

G′
A

)
=

BsQ ∈
(

[0, 2Q−1)D

[−2Q−1, 2Q−1)D

)
. Similarly, it is also guaranteed

that BQ−1 ∈
(
0 {0, 1}D

0

)
. Therefore, −2Q−1BQ−1 ∈{

0,−2Q−1
}D

, hence BQ−1 ∈ {0, 1}D.

To instantiate the commitment scheme for the tensors,
we assume the existence of g =

(
g0, g1, . . . , gD−1

)⊤ ∼ GD

and h ∼ G, where the D + 1 group elements are sampled
uniformly and independently. Also, to facilitate the com-
mitment of BQ−1 and its extension BQ−1, we introduce
G ∈ G2D×Q, where G[0:D,Q−1] = g, and the remaining
elements of G are uniformly and randomly sampled, which
are independent of g and h. For any tensor V ∈ F2D×Q,
its commitment is given by Commit(V; r) = hrGV.
Therefore, a valid commitment of BQ−1 is also a valid
commitment of BQ−1.

In addition, to enable the commitment of the second
vector in the inner product, we assume the existence of H ∼
G2D×Q, which is sampled independently from G and h. We
denote h = H[0:D,Q−1]. After this, the prover and verifier
run Protocol 1 to complete the setup of the validity checks.

Protocol 1 Setup for the validity checks of the auxiliary
inputs

Require: Both parties knows the commitments comZ′′ and
comG′

A
, and comBQ−1

(= hrQ−1gBQ−1); the trainer
knows the committed values Z′′, G′

A, and BQ−1

1: Trainer computes bit tensors B,B′,B′
Q−1

2: Trainer sends the commitments

comip
B ← hrGBHB′

and comB′
Q−1
← hr′Q−1hB′

Q−1

to the trusted verifier, where r, r′Q−1 ∼ F.
3: Both trainer and trusted verifier compute

comip
BQ−1

← comBQ−1
· comB′

Q−1

In Line 3, we have

comip
BQ−1

= hrQ−1+r′Q−1gBQ−1hB′
Q−1 = hrQ−1+r′Q−1GBQ−1HB′

Q−1 ,

which has the same form as comip
B and can be opened by

the trainer.
After the setup phase, both parties engage in the sum-

check protocol for the arithmetic components of the forward
and backward propagations (which is detailed in Section
4.2), during which the randomness urelu is generated. Ad-
ditionally, the prover possesses the values of v and vQ−1,
while the trusted verifier holds the commitments to these
values. Next, the trusted verifier shares the randomness
values k and ubit with the prover. These values enable the
two parties to proceed with the validity check of (19).



Specifically, the commitments of the two vectors in-
volved in (19) can be efficiently computed from the existing
commitments that are known to both parties. In particular,
we consider e := e(urelu)⊗ e(ubit) and its elementwise in-
version e◦−1, such that He◦−1

can also be directly computed
by both the trainer and trusted verifier (since both e and H
are known to both parties). Therefore, for the second vector
in the inner product,

z2 · e(urelu)⊗ sQ + (z · 1+B′
k)⊙ e

=
(
z2 · 1⊗ (sQ ⊘ e(ubit)) + z · 1+Bk

′)⊙ e,

where ⊘ denotes the elementwise division, such that the
discrete-log-based commitments of the two inputs of (19)
can be computed using Algorithm 1.

Algorithm 1 Transformation of the commitments

Require: Commitments comip
B ∈ G,comip

BQ−1
∈ G, ran-

domness z ∈ F, k ∈ F,urelu ∈ Flog2 D+1,ubit ∈ Flog2 Q.
Precomputed Gprod =

∏2D−1
i=0 Gprod

i .
1: for i← 0, 1, . . . , 2D − 1 do ▷ Pre-computed
2: gprod

i ←
∏Q−1

j=0 G[i,j] ▷ Vectorized as gprod ∈ G2D

3: hprod
i ←

∏Q−1
j=0 G[i,j] ▷ Vectorized as hprod ∈ G2D

4: end for
5: gprod ←

∏2D−1
i=0 gprod

i ▷ Pre-computed
6: hprod ←

∏2D−1
i=0 hprod

i ▷ Pre-computed

7: comip
Bk
← comip

B ·
(
comip

BQ−1

)k

▷ Commitment of Bk

and B′
k

8: return comip
Bk
·
(
gprod

)−z ·
(
hprod

)z2·sQ⊘e(ubit) · (hprod)z

In Line 7, comip
Bk

is a valid commitment of Bk and B′
k:

comip
Bk

= comip
B ·

(
comip

BQ−1

)k

= hrGBHB′
(
hrQ−1+r′Q−1GBQ−1HB′

Q−1

)k

= hr+krQ−1+kr′Q−1GB+kBQ−1HB′+kB′
Q−1

= hr+krQ−1+kr′Q−1GBkHB′
k , (26)

which we denote as hrkGBkHB′
k for simplicity. Therefore,

the returned value equals

comip
Bk
·
(
gprod)−z ·

(
hprod)z2·sQ⊘e(ubit) · (hprod)z

=hrkGBkHB′
kG−z·1Hz2·1⊗(sQ⊘e(ubit))Hz·1

=hrkGBk−z·1Hz2·1⊗(sQ⊘e(ubit))+z·1+Bk
′

=hrkGBk−z·1
(
He◦−1

)(z2·1⊗(sQ⊘e(ubit))+z·1+Bk
′)⊙e

,

which is a valid commitment with the alternative basis
G and He◦−1

. Therefore, after the transformation of the
commitments using Algorithm 1, the equality (19) can be
proven using the zero-knowledge inner-product argument
with a logarithmic proof size [45]. Similarly, the validity of
RZ and RGA

as R-bit integers can also be proved using an

inner product argument, and combined with the argument
for (19) using random linear combinations. However, the
auxiliary input validity proofs require verified claims on
the evaluations of the multilinear extensions of the auxiliary
inputs at the random point urelu. Therefore, achieving this
verification necessitates a compatible design of the arith-
metic circuit, which is described in Section 4.2.

4.2. zkReLU: Arithmetic circuit design

In Section 4.1, we made the assumption that the GKR
protocol is executed on the arithmetic components of the
neural network, encompassing both the forward and back-
ward propagations. This execution is assumed to yield the
randomness urelu and the claims on the evaluation of the
multilinear extensions of the auxiliary inputs at this stage.
However, a straightforward execution of the GKR protocol
on the entire circuit does not produce these results unless
additional expensive post-processings are performed. More-
over, given the large number of non-arithmetic operations
involved, the formulation of the deep neural network and
its backpropagation as an arithmetic circuit still need to
be clearly addressed so as to explicitly construct a proof
system.

Therefore, in this section, we formulate the modelling
of the deep neural networks and their backpropagation as
an arithmetic circuit, and provide a description of the GKR
protocol execution on it. This ensures a seamless connection
with the validity check presented in Section 4.1. It is impor-
tant to note that the protocol outlined in this section should
be carried out immediately after Protocol 1. At this point,
the trainer has already committed to the bit decompositions
but has not yet received the randomness. Other orders of
execution may result in forged proofs.

Upon committing to the auxiliary inputs, the prover pro-
ceeds to compute the proofs for the arithmetic components,
including matrix multiplications in fully connected layers,
convolutions in CNNs, and their corresponding backpropa-
gations, using the GKR protocol. By leveraging the homo-
morphism of the commitment scheme, both the prover and
the trusted verifier can obtain the commitments of G(ℓ)

A and
Z(ℓ). These commitments are acquired based on equations
(3) and (5).

We emphasize that modelling the forward and backward
propagations as a single arithmetic circuit with consistent
layer depths and input/output ordering is not compatible
with zkReLU. This is because non-arithmetic operations
like ReLU and rescaling disrupt the connectivity within the
arithmetic circuit. Instead, it is more accurate to consider
each arithmetic component ℓ, parameterized by W(ℓ), as a
separate arithmetic circuit that are independently connected
with the auxiliary inputs aux(ℓ), as shown in Figure 2.
Specifically, the circuit for forward propagation takes the
previous activation A(ℓ−1) and weight W(ℓ) as inputs and
produces Z(ℓ) as output. On the other hand, the circuit for
backward propagation takes the output gradient G

(ℓ)
Z , the

previous activation A(ℓ−1), and the weight W(ℓ) as inputs,



and generates the weight and activation gradients, G(ℓ−1)
A

and G
(ℓ)
W , respectively.

In the context mentioned, the trusted verifier has access
to the commitments of all tensors except A(ℓ−1) and G

(ℓ)
Z .

It is worth noting that the sumcheck protocols for these
circuits can be executed concurrently, allowing for the use
of the same randomness. Consequently, the claims regarding
the multi-linear extensions of A(ℓ) and G

(ℓ)
Z can be made at

the same point Ã(ℓ) (uA) and G̃
(ℓ)
Z (uGZ

) across different
layers ℓ. This assumes that all layers have the same dimen-
sion, although zero-padding can be employed to achieve this
behaviour otherwise.

Therefore, with randomly and independently chosen
u′′

relu ∼ F and ustack ∼ F⌈log2(L−1)⌉, the trainer can batch
up the proofs for A(ℓ) and G

(ℓ)
Z , which connects the proofs

of the arithmetic components and the validity check of aux-
iliary inputs seamlessly, by running the sumcheck protocol
on (27):

(1− u′′
relu)

L−1∑
ℓ=1

β̃ (ustack, ℓ− 1) Ã(ℓ) (uA)+

+ u′′
relu

L−1∑
ℓ=1

β̃ (ustack, ℓ− 1) G̃
(ℓ)
Z (uGZ

)

=(1− u′′
relu)Ã (ustack,uA) + u′′

reluG̃Z (ustack,uGZ
)

=

1−
∑

b∈{0,1}log2 D

B̃Q−1 (ustack,b)


(
(1− u′′

relu)Ã (ustack,b) β̃ (uA,b)

+u′′
reluG̃Z (ustack,b) β̃ (uGZ

,b)
)
, (27)

where the indices ℓ− 1 are in the form of binary represen-
tation.

The sumcheck protocol on (27) outputs the claims
on B̃Q−1 (ustack,unew) , Ã (ustack,unew) , G̃Z (ustack,unew),
which is the evaluations at the same random point, and can
be verified with respect to the Pedersen commitments of
these tensors. By concatenating u′′

relu, ustack, and unew, we
get the urelu that is needed for the validity check of the
auxiliary inputs as described in Section 4.1. The full zkDL
protocol between the trainer T and trusted verifier V , on
the committed data X,y, model parameters W, gradients
GW and auxiliary inputs aux (denoting the commitments
collectively as com ← Commit (X∥y∥W∥GW∥aux) for
simplicity), is summarized as Protocol 2.

Protocol 2 achieves perfect completeness and near-
certain soundness, ensuring that the proof’s acceptance by
the trusted verifier closely aligns with the prover’s adherence
to the prescribed training logic. These two properties are
formally stated in Theorems 4.2 and 4.3, respectively.

Theorem 4.2 (Completeness). Consider a neural network
with ReLU activation function, such that ReLU and its back-
propagation are the only non-arithmetic operation. Assume

Protocol 2 zkDL
Require: T knows X,y,W,GW,aux, V knows com

1: T and V run Protocol 1 to set-up zkReLU
2: for Layers ℓ← 1, 2, . . . , L do
3: T and V run the GKR protocol on layer ℓ
4: end for
5: Run the sumcheck protocol on (27)
6: T and V each run Algorithm 1
7: T and V run the inner-product proof on (19)

that the unscaled Z(ℓ) and G
(ℓ)
A are (Q+R)-bit integers for

each layer ℓ. If the trainer satisfies the following conditions:

• Correctly decomposes Z(ℓ) and G
(ℓ)
A as specified in

(3) and (5), respectively.
• Computes A(ℓ) and G

(ℓ)
Z as specified in (2) and (4),

respectively.
• Performs all arithmetic operations correctly.
• Fully adheres to Protocol 2.

Then, the proof generated by the trainer will be accepted
by the trusted verifier with probability 1, achieving perfect
completeness.

The correctness of Theorem 4.2 is primarily attributed to
the design of zkDL and the underlying zkReLU, as outlined
in Appendix A. However, from a practical perspective, the
definition of soundness should not solely focus on the arith-
metic relations and validity of the auxiliary inputs. Instead,
it should capture the implied correctness of the ReLU’s
forward and backward propagations, which constitute the
ultimate objective of zkDL.

Theorem 4.3 (Soundness). Assume the same neural network
architecture as in Theorem 4.2 and that 2Q+R ≪ |F|. If λ is
the security parameter of the Pedersen commitment scheme,
and the size of the model and data are both polynomially
bounded by λ, then with probability 1 − negl (λ), the
following holds: If a proof in Protocol 2 is accepted by
the trusted verifier, it implies that:

• All arithmetic relations involved in the forward and
backward propagations hold.

• The forward and backward propagation of the ReLU
activation for each layer ℓ is correctly computed as:

A(ℓ) = I
{⌊

Z(ℓ)

γ

⌉
≥ 0

}
⊙
⌊
Z(ℓ)

γ

⌉
, (28)

G
(ℓ)
Z = I

{⌊
Z(ℓ)

γ

⌉
≥ 0

}
⊙

⌊
GA

(ℓ)

γ

⌉
. (29)

Proof of Theorem 4.3. The execution of the GKR protocol
within each layer in Line 3 and the sumcheck protocol
between the layers and the auxiliary inputs guarantees that
the soundness error of all arithmetic relations is bounded by
negl (λ).

Therefore, the remaining goal is to demonstrate that a
valid proof implies the correct execution of the forward and
backward propagations with a probability of 1− negl (λ).
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Figure 2: The Arithmetic Circuit Design Compatible with zkReLU: The entire circuit is anchored by the auxiliary inputs
aux(ℓ) =

(
Z(ℓ)′′,B

(ℓ)
Q−1,R

(ℓ)
Z ,G

(ℓ)
A

′
,R

(ℓ)
GA

)
through arithmetic relations (black lines) in replacement of non-arithmetic

operations (blue dash arrows, i.e., the “comparison-with-0” operation in ReLU and its gradient). The gradients of the model
parameters are marked in black. The data and model parameters are bound by the Pederson commitments and are marked
blue. The other tensors are either linear combinations (green) or Hadamard products (orange) of the auxiliary inputs.

This ensures that Equations (28) and (29) hold for each
layer ℓ. For simplicity, we will omit the layer index ℓ in the
following analysis.

Consider the decomposition of Z based on Equation
(3). According to Theorem 4.1, with a probability of
1−negl (λ), the acceptance of the auxiliary input validity
proof implies that Z′′ ∈ [0, 2Q−1)D, BQ−1 ∈ {0, 1}D,
and RZ ∈ [−2R−1, 2R−1)D. Now, suppose there exists
another triplet (Z′′⋆,B⋆

Q−1,R
⋆
Z) with the same range as

(Z′′,BQ−1,RZ), and it is also a valid decomposition of
Z based on Equation (3). Then, we have:

2R(Z′′⋆ − Z′′) + (R⋆
Z −RZ) = 2Q+R−1(B⋆

Q−1 −BQ−1).

By considering the range requirements of the auxiliary
inputs, we observe that the left-hand side of the equation
lies within the range

[
−2Q+R−1 + 1, 2Q+R−1 − 1

]
, while

the right-hand side takes values in {−2Q+R−1, 0, 2Q+R−1}.
Given the assumption that 2Q+R ≪ |F|, the intersection of
these two ranges is 0, which implies that B⋆

Q−1 = BQ−1.
Furthermore, since 2R(Z′′⋆ − Z′′) is a multiple of 2R and
R⋆

Z − RZ is bounded within [−2R + 1, 2R − 1], both
values must be 0 in order to satisfy the summation equation.
Therefore, the decomposition of Z as shown in Equation (3)
is unique. Similarly, the decomposition of GA as shown in
Equation (5) is also unique.

It is worth noting that by setting Z′ ←
⌊
Z
γ

⌉
, RZ ← Z−

2RZ′, Z′′ ← Z′ − 2RI {Z′ < 0}, and BQ−1 = I {Z′ < 0},
we satisfy the validity of the decomposition given by
Equation (3), as well as the range requirements of Z′′,
BQ−1, and RZ. Similarly, by setting G′

A ←
⌊
GA

γ

⌉
and

RGA
← GA − 2RG′

A, we satisfy the validity of the
decomposition given by Equation (5), as well as the range
requirements of G′

A and RGA
. Therefore, with a probability

of 1− negl (λ), these form the unique decomposition that
is necessary for generating a valid proof.

Also, note that with a probability of 1− negl (λ), the
arithmetic relations given by Equations (2) and (4) hold.
Therefore, combining these with the unique values of the
decomposition, we have:

A =
(
Z′ − 2RI {Z′ < 0}

)
⊙ I {Z′ ≥ 0} = Z′ ⊙ I {Z′ ≥ 0} ,

GZ = G′
A ⊙ I {Z′ ≥ 0} ,

which are equivalent to Equations (28) and (29). This
completes the proof of soundness with a probability of
1− negl (λ).

In addition to fulfilling the completeness and sound-
ness requirements, the zkDL protocol also guarantees zero-
knowledge, ensuring that it reveals no information about
the training set and model parameters. This property is
formalized in Theorem 4.4, and the proof is outlined in
Appendix A.

Theorem 4.4 (Zero-knowledge). Assuming the usage of the
zero-knowledge Pedersen commitment scheme and the zero-
knowledge variant of the GKR protocol [10], [12], [42],
Protocol 2 is zero-knowledge. In particular, for a security
parameter λ and any probabilistic polynomial (PPT) algo-
rithm A, there exists a simulator S = (S1,S2) such that
the following two views are indistinguishable by A when
provided with the public parameter pp (corresponding to
the generators used in the commitment scheme) as input.



Real:
1: com ← Commit (X∥y∥W∥GW∥aux;pp)
2: π ← ⟨T ,A⟩ .zkDL(com;pp)
3: return com , π

Ideal:
1: com ← S1

(
1λ;pp

)
2: π ← ⟨S2,A⟩ (com ;pp), given oracle access to C
3: return com , π

In the given context, Commit (X∥y∥W∥GW∥aux;pp)
represents the process of making commitments for the data,
model parameters, gradients, and auxiliary inputs using the
generators contained in pp. The event C = Ca∧Cv denotes
the occurrence of two conditions: the satisfaction of all
arithmetic relations (Ca) and the fulfillment of the value
requirements for all auxiliary inputs (Cv).

Example 4.5 (FCNN). We examine a fully connected neural
network (FCNN) comprising L layers, assuming inputs and
outputs of dimension d and employing the square loss.
Consider a batch of data points denoted as (X = A(0),Y).
In this context, we establish the following requirements:

Z(ℓ) = A(ℓ−1)W(ℓ), 1 ≤ ℓ ≤ L, (30)

A(ℓ) = (1−B
(ℓ)
Q−1)⊙ Z(ℓ)′′, 1 ≤ ℓ ≤ L− 1, (31)

G
(L)
Z = Z(L)′ −Y, (32)

G
(ℓ)
A = G

(ℓ+1)
Z W(ℓ+1)⊤, 1 ≤ ℓ ≤ L− 1, (33)

G
(ℓ)
W = G

(ℓ)
Z

⊤
A(ℓ−1), 1 ≤ ℓ ≤ L, (34)

G
(ℓ)
Z = (1−B

(ℓ)
Q−1)⊙G

(ℓ)
A

′
, 1 ≤ ℓ ≤ L− 1. (35)

Here, the prover sends the commitments of auxiliary inputs
Z(ℓ)′′, B(ℓ)

Q−1, R(ℓ)
Z , G(ℓ)

A

′
, R(ℓ)

GA
for each layer 1 ≤ ℓ ≤ L

to the verifier, along with the commitments of the weights
and data. The homomorphism of the commitments allows
for direct verification of the equality in (32). Furthermore,
the equality checks in (30), (33), and (34) can be performed
using the sumcheck for matrix products. Notably, since the
tensors involved in these operations are either committed
values or A(ℓ) and G

(ℓ)
Z , and assuming the layers have

the same dimension or zero-padding is applied otherwise,
the equality check for multiple layers can be batched using
random linear combination, resulting in a reduced proof
size by a factor of L. Additionally, batching these proofs
simplifies the correctness verification, as it relies on claims
of random point evaluation on the stacked tensors GZ

and GA and reduces to the claims involving B̃Q−1 (urelu),
Z̃′′ (urelu), and G̃′

A (urelu) using (31) and (35).

4.3. Overhead analysis

The zkReLU protocol, along with its compatible arith-
metic circuit design, significantly reduces the computational
overhead for the trainer in terms of both the time and space

complexity of the proof. Table 1 provides an overview of the
asymptotic advantages gained in proof time and sizes when
compared with the naive bit decomposition and conventional
sequential proofs that follow the ordering of the layers in
the neural network.

Proving time. The non-arithmetic operations, including
ReLU, have been the dominant factor contributing to the
time complexity of zero-knowledge proofs for machine
learning. In Section 4.1, the validity proof requires O(DQ)
group and field operations for each layer, which is asymp-
totically equivalent to the computation time needed for
representing valid auxiliary inputs using bits. Specifically,
the transformations of the auxiliary inputs and their com-
mitments into a single inner product require O(DQ) time,
as well as the proof of the inner product itself.

In contrast, straightforwardly performing the sumcheck
protocol between the auxiliary inputs and their bit decom-
positions would require Ω(D2Q) operations per layer [9],
[10], [11], [12] on the equation:

ãux (u) =
∑

i∈{0,1}log2 D

∑
j∈{0,1}log2 D

∑
k∈{0,1}log2 Q

β̃ (u, i) ãdd (i, j, k) B̃ (j, k) 2k,

(36)

where B̃ represents the multilinear extension of bit decom-
position of the auxiliary input aux, and ãdd corresponds
to the multilinear extension of wiring predicates used for
the proofs on general arithmetic circuits. Therefore, an
improvement factor of O(D) is achieved for each ReLU
activation. Additionally, due to the design of the circuit that
incurs high parallelizability, the proof time on the entire
forward and backward propagation process can be further
compressed.

Parallelization. The proof of the training process based on
zkReLU offers a higher degree of parallelization compared
to the training process itself. As described in Section 4.2, the
order of proof generation is NOT bound by the precedence
relationships of the neural network layers. Instead, as illus-
trated in Figure 3, the trainer needs to prove independently
for each layer a) the arithmetic relations within the layer, b)
the arithmetic relations between the layer and the auxiliary
inputs, and c) the validity of the auxiliary inputs. Therefore,
each of the three steps can be run on all layers in parallel,
without being subject to the ordering of the layers in the
neural network. As a result, the total proving time can be
reduced by a factor of O (L), while only adding an O(logL)
overhead to combine the proofs for all layers, which is
typically dominated by the O(DQ) per-layer proving time.

Given that deep learning computations are commonly
performed in highly parallelized environments, harnessing
a significant degree of parallelization can effectively lever-
age the available computational resources and substantially
diminish the additional overhead imposed on the original
training time. Additionally, parallelization not only avoids
incurring a trade-off between proof time and proof sizes but
also reduces the proof size.

Proof size. By leveraging the independent nature of different
layers in the circuit, the proofs of arithmetic operations
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(a) Run the GKR protocol on each layer
in parallel on the same randomness.

L a y e r s  1 , 2 , ⋯ , 𝐿

Auxiliary inputs 1, 2, ⋯ , 𝐿

⋯ ⋯

⋯ ⋯

(b) Prove the arithmetic relations, as in
Section 4.2, between all layers and the
auxiliary inputs in parallel.

Auxiliary Input Validity Proof

L a y e r s  1 , 2 , ⋯ , 𝐿

Auxiliary inputs 1, 2, ⋯ , 𝐿

⋯ ⋯

⋯ ⋯

(c) Run the validity proof, as in Section
4.1, on all auxiliary inputs in parallel.

Figure 3: The proof is conducted in three consecutive steps, where the proving process in each step is denoted by the red
lines. In each step, the proof can be generated in parallel over all L layers. This reduces the proof time by a factor of O (L).

in different layers can be batched using a random linear
combination. Additionally, the committed auxiliary inputs
and outputs from different layers can be stacked together
and committed as a single tensor.

Therefore, by using the same randomness for all layers
in each step of the proof (as illustrated in Figure 3), the
proofs for all layers can be compressed into one, which only
introduces an additive overhead of O(logL) to the proof
size of a single layer, where L represents the total number
of layers. In contrast, a serially generated proof concatenates
the proofs of each layer, resulting in a linear growth of proof
size in the number of layers multiplied by the proof size of
a single layer. Typically, the proof size of a single layer
is O (log(DQ)), where D represents the dimensionality of
the auxiliary inputs in a single layer and Q represents the
maximum number of bits for the values of the auxiliary
inputs.

4.4. Dealing with training data

Upon verification of the training logic based on zkReLU,
the trusted verifier provides an endorsement for the commit-
ted model parameters and datasets. The committed model
parameters can be utilized for zero-knowledge verifiable
inferences, while the authenticity of the training data can
also be verified using the commitment of the data points.

Since each data point is typically involved in the training
loop multiple times and may be assigned to different batches
in different epochs, it is necessary to individually commit
the data points before the training begins. In each step of
the zkReLU protocol, a claim must be proven regarding
the random-point evaluation of the multilinear extension
X̃ (u,v). Here, X = (x0,x1, . . . ,xB−1) represents the
data batch with a batch size of B and dimension d. For
convenience, we assume both B and d are powers of 2.
Additionally, u ∼ Flog2 B and v ∼ Flog2 d represent the
randomness generated during the execution of the zkReLU
protocol.

To achieve this, the data points are separately commit-
ted using the Pedersen commitment scheme, resulting in

commitments comx0 ,comx1 , . . . ,comxB−1
. Both the trainer

and trusted verifier can then compute the commitment of
X̃ (u, ·) ∈ Fd as follows:

comX̃(u,·) :=
∏

i∈{0,1}log2 B

comβ̃(u,i)
xi

.

Subsequently, the trainer proceeds to perform a proof of
opening directly on comX̃(u,·) in order to demonstrate the
claim regarding X̃ (u,v).

In addition to the endorsement by the trusted verifier,
the trainer constructs a Merkle tree on all data points. This
Merkle tree can be checked by the trusted verifier and
enables data copyright owners to inquire about the mem-
bership status of their data points in the training set. The
identification of data points is accomplished using Pedersen
hash functions, assuming a hash output bit length of k,
and employing deterministic Pedersen commitments with
the randomness set to 0, as described in Section 3.1.

The Merkle tree is constructed based on a complete
binary tree with a height of k, ensuring that each data point
is stored in a leaf node identified by its hash, presented in the
form of a bit string. When a data point is queried, the trainer
can provide a zero-knowledge proof of membership or non-
membership. This proof takes the form of a path from the
leaf node identified by (a prefix of) the hash of the queried
data point to the root of the Merkle tree [46]. Further details
regarding the proof of membership or non-membership are
provided in the appendix.

5. Experiments

In this section, we present the experimental evaluations
of zkDL conducted on a Linux server equipped with 2
AMD EPYC 7532 CPUs, each with 32 cores and 256
GB of RAM. The experiments were performed using the
CIFAR-10 dataset, with a dimension of 3,072, padded to
4,096 as a power of 2. The neural network architecture and
circuit design described in Example 4.5 were utilized for
the experiments. To control the rounding errors caused by
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Figure 4: Per-step proving time and proof size with different orders of proof (OP): The parallel proof generation in zkReLU
(ours), and the conventional layer-by-layer proof generation formalized by Liu et al. in 2021 [1]. By our design, the proof
time is reduced by a factor of O(L), and the proof sizes grow slowly by an additive term O(logL), instead of multiplied
by an O(L) factor as the depth L of the neural network grows.

TABLE 2: Proving times (s) and proof sizes (kB) of zkReLU
and Sum-Check Bit-Decomposition (SC-BD) on a full-
connected network of L = 2 layers. Runs exceeding the time
limit are marked as > 103 (s). #param and #aux represent
the number of parameters and auxiliary inputs in each run.
The table records the performance of proof generation of
whole networks in one batch update.

Width # param BS # aux zkReLU (ours) SC-BD
time (s) size (kB) time (s) size (kB)

64 8.3K

16 5.1× 103 0.033 9.4 12 14
32 1.0× 104 0.068 10 44 15
64 2.0× 104 0.13 11 2.1× 102 16

128 4.1× 104 0.27 12 > 103 17

256 130K

16 2.0× 104 0.14 11 2.0× 102 16
32 4.1× 104 0.50 12 > 103 17
64 8.2× 104 0.57 13 > 103 18
128 1.6× 105 1.2 14 > 103 20

1,024 2.1M

16 8.2× 104 0.80 13 > 103 18
32 1.6× 105 1.4 14 > 103 20
64 3.3× 105 2.8 14 > 103 21
128 6.5× 105 6.0 15 > 103 22

4,096 33M

16 3.3× 105 3.9 14 > 103 21
32 6.5× 105 6.6 15 > 103 22
64 1.3× 106 11 16 > 103 23
128 2.6× 106 25 17 > 103 24

quantization, a scaling factor of 216 was applied, and all
real values involved in the computation were assumed to
fall within the range of [−215, 215), making them amenable
to scaling as 32-bit integers. Notably, no overflow issues
were encountered during the experiments. We employed the
MCL library [47] to handle finite fields and elliptic curves,
while the XTensor library [48] was utilized for tensor-based
operations involved in deep learning and their associated
proofs.

Prior works on zero-knowledge verifiable inference,
whether bit-decomposition-based or lookup-table-based [1],

[2], [5], lack sufficient techniques to generalize the ver-
ifiability to the training phase, especially concerning the
handling of ReLU. As a result, we follow the approach of
pioneering works on zero-knowledge verifiable training [6],
[7] and implement the bit-decomposition-based handling of
ReLU on the general-purpose ZKP backends, serving as our
baseline for comparison.

5.1. Experiments on zkReLU

To evaluate the effectiveness of the zkReLU protocol,
we initially focus on 2-layer perceptrons, which include only
one ReLU activation. We vary the width (number of neurons
in each layer) and the batch size (BS), recording the per-
batch proving time and proof size in Table 2. Additionally,
we compare the proving time and sizes of zkReLU with the
naive bit-decomposition (BD) approach using the sumcheck
protocol, which represents how ReLU is handled in general-
purpose zero-knowledge proof (ZKP) backends. A proving
time limit of 103 seconds is set for each experiment run. In
the case of a timeout, the proof size is derived analytically
without matching it with the experimental results for a sanity
check.

In Table 2, it can be observed that the proof time and
proof sizes both exhibit a feasible rate of growth with respect
to the increasing width and batch sizes. This scalability
allows the proof of training logic based on zkReLU to
be applied to models with 33 millions parameters within
a running time of less than a half minute. In contrast,
the naı̈ve bit-decomposition (BD)-based method experiences
unrealistic running times, except for small models and batch
sizes. This highlights the limitation of using general-purpose



TABLE 3: Proof size (i.e., the number of hash values released by the model trainer) and verification time (in milliseconds)
of proof of (non-)membership for different positivity ratios with various hash functions. The second column refers to the
number of queried data to be verified w.r.t. their training membership. The third column shows the tree construction time
ttree (in seconds).

hash # data ttree (s)
Positivity ratio

0 0.1 0.5 0.9 1
size (#) time (ms) size (#) time (ms) size (#) time (ms) size (#) time (ms) size (#) time (ms)

md5
10

174
148 0.84 260 4.6 697 12 1,136 19 1,244 22

100 1,059 5.9 2,168 37 6,632 110 11,042 200 12,163 220
1,000 7,148 48 18,248 350 62,565 1,300 107,094 2,200 118,180 2,300

sha1
10

256
136 0.79 284 5.9 854 17 1,419 29 1,564 32

100 1,033 5.7 2,481 54 8,196 170 13,905 320 15,333 370
1,000 6,995 45 21,312 530 78,583 2,900 135,775 4,600 150,122 6,000

sha256
10

602
147 0.99 388 13 1,342 41 2,288 71 2,530 79

100 1,036 6.3 3,436 100 12,987 460 22,575 780 24,962 870
1,000 7,163 53 31,055 1,100 126,617 7,100 222,259 15,000 246,158 17,000

† zkDL achieves 100% membership inference accuracy in all above experiments, in contrast to a maximum of 63.7% with MIA [30].

zero-knowledge proof (ZKP) backends as a black box for
deep learning proofs. It emphasizes the need for specifically
tailored ZKP schemes to effectively prove the correctness
of deep learning execution, particularly during the training
process.

Additionally, we conduct experiments to further investi-
gate the advantage of the high degree of parallelization in
the circuit design compatible with zkReLU. We focus on
the proof of training logic on multi-layer perceptrons with
varying depths. We compare the optimized running times
and proof sizes of parallel proofs, where the same random-
ness is applied to each layer, against those of conventional
sequential proofs that align with the layer structure assumed
in previous works [5], [6], [7] and formalized by Liu et al.
in 2021 [1]. The results of these experiments are presented
in Figure 4.

The parallel generation of proofs in zkReLU offers a
significant advantage over conventional sequential proofs,
as the proving time is no longer subject to linear increase
with respect to the depth of the network. This parallelization
enables the proof of the entire forward and backward process
to be completed within tens of seconds, even for a 16-layer
perceptron with over 200M parameters. Additionally, the
proof size is efficiently controlled under 30 kB, compared
to the larger sizes of up to 200-300 kB that occur with
increasing depth. By harnessing the parallel computational
resources available for deep learning, the proof genera-
tion based on zkReLU-compatible circuits achieves more
favourable proof times and sizes, representing a significant
step forward in the practical application of zero-knowledge
proofs for deep learning in the AI industry.

5.2. Additional experiments on the training data

To evaluate the proof of (non-)membership described
in Section 4.4, we implemented the Merkle tree on the
CIFAR-10 training set using three different hash functions:
md5,sha1,sha256. We conducted experiments with vary-
ing query sizes and positivity ratios (the ratio of positive data
points, i.e., members of the training set, in the query set)
and recorded the results.

Table 3 illustrates that Merkle tree construction times,
proof sizes, and verification times increase with the query
size and output length of the hash. Notably, queries with a
larger positivity ratio exhibit increased complexity. However,
when data copyrights are not violated (positivity ratio is 0),
it only takes 0.05 milliseconds on average for a copyright
owner to confirm that a data point they own is not in the
training set. This constitutes a significant improvement over
naı̈vely loading and scanning the entire committed dataset,
which takes 14 seconds.

Furthermore, the proof of (non-)membership achieves
100% accuracy due to the correctness and soundness of
the Merkle tree. No data point was found for which the
trainer can lie about its membership in the training dataset.
This represents a substantial improvement over membership
inference attacks [34], which achieve only 59.0% to 63.7%
accuracy on the same dataset (CIFAR-10). These results
underscore the crucial role of zkDL in providing rigorous
guarantees of data legitimacy in deep learning.

6. Conclusion

This paper presents zkDL, a novel solution to the
challenge of zero-knowledge verifiable training for neu-
ral networks. Specifically focusing on the ReLU activa-
tion function, zkDL addresses the historical incompatibility
with general-purpose ZKP backends. The protocol’s design
includes multiple efficient and mutually compatible ZKP
systems tailored for deep learning training, as well as a
novel modeling scheme of neural networks as arithmetic cir-
cuits, enabling a high degree of proof parallelization. These
advancements significantly reduce time and communication
costs associated with proving legitimate execution of deep
learning training, effectively resolving legitimacy issues sur-
rounding trained neural networks. Looking ahead, further
theoretical development and practical implementations of
efficient ZKP systems tailored for deep learning are antici-
pated to establish zkDL as a powerful tool safeguarding the
AI industry’s development.
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Appendix A.
zkReLU

Proof sketch of Theorem 4.2. By the perfect completeness
of the GKR protocol and the underlying sumcheck protocol,
the trusted verifier accepts the interactive proofs in Lines 3
and 5 with probability 1, assuming the correct execution of
all arithmetic operations within each layer and the Hadamard
products in Equations (2) and (4).

Moreover, given the assumption that Z(ℓ) and G
(ℓ)
A are

(Q+R)-bit integers, the decomposition based on Equations
(3) and (5) ensures that the auxiliary inputs fall within their
respective ranges. By correctly computing Bk and B′

k, the
trainer establishes the equalities in Equations (6), (7), (8),
and the inner product in Equation (19). Therefore, based
on the perfect completeness of the inner-product proof [45],
the trusted verifier accepts the validity of the auxiliary inputs
with probability 1 in Line 7.

Proof sketch of Theorem 4.4. First, consider the GKR pro-
tocol applied to all the arithmetic operations involving X, y,
W, GW, and aux. By assuming the zero-knowledge prop-
erties of the commitment scheme and the GKR protocol,
there exist simulators Sa = (Sa1 ,Sa2 ) such that Sa1 simulates
the generation process of the commitments and Sa2 simulates
the GKR-based proof of the arithmetic circuits, given oracle
access to Ca.

On the other hand, the auxiliary input validity proofs
involve the zero-knowledge commitments of additional in-
puts, comip

B and comip
BQ−1

as defined in Protocol 1. These
commitments are subsequently transformed in Algorithm 1
to perform the zero-knowledge inner-product proof. There-
fore, there exists another simulator Sv = (Sv1 ,Sv2 ) such that
Sv1 simulates the generation of the commitments and Sv2
simulates the inner-product proof, given oracle access to Cv.
Thus, with S1 = Sa1 and S2 = (Sv1 ,Sa2 ,Sv2 ), the ideal view
is indistinguishable from the real view.

Appendix B.
Proof of (non-)membership

This section presents the proof of (non-)membership
based on a Merkle tree that allows data copyright owners to
query the membership of their data points in the dataset. Af-
ter verifying the proofs of data quality and training logic, the
trusted verifier requests the trainer to submit the root value
of the Merkle tree, which the trusted verifier also computes
itself using the commitments of all data points. If the two
computed root values match, the trusted verifier endorses

the private dataset and model parameters by publishing a
digital signature on the committed model parameters and
the root value of the Merkle tree. This signature enables
the proof of (non-)membership. Upon the query on a data
point, in the form of its commitment, the trainer computes
the path in the Merkle tree to the root as the proof. The data
copyright owner checks whether the reconstructed root value
matches the one signed by the trusted verifier, providing a
cost-effective and privacy-preserving way of verifying data
ownership.

Using the Merkle tree reduces the size of the proof
and limits the information leaked about data points that
are not being queried. However, the original version of
the Merkle tree cannot be directly applied since it cannot
handle the proof of non-membership, where a data point is
excluded from the training set as required. To address this,
we introduce a variant of the Merkle tree that supports both
the proof of membership and non-membership.

To construct the Merkle tree, we assume the existence
of a collision-resistant hash function hash : {0, 1}∗ →
{0, 1}k. The model trainer begins by computing the hash
of the commitment of each data point: {hash(comd) : d ∈
D}.

For analysis purposes, we consider the complete binary
tree Tk with depth k (which is not required to be imple-
mented). The nodes of depth i (0 ≤ i ≤ k) in Tk can
be identified with bit strings of length i. The root of Tk
is identified with the empty string ϵ, and each of the 2k

leaves of Tk is identified with a bit string of length k. For
each leaf node b1b2 . . . bk, we define Pathk(b1b2 . . . bk)
as the path from the node to the root, i.e., b1b2 . . . bk →
b1b2 . . . bk−1 → · · · → b1b2 → b1 → root, where the
root is represented by the empty string. We also define
HD := {hash(comd)}d∈D as the collection of hashes of
the data points. Due to the collision-resistance property,
there is a bijection between HD and D with an overwhelm-
ing probability.

We define the subtree corresponding to the training set
D as the union of the paths from the nodes to the root in
HD, i.e., Tree(HD) :=

⋃
h∈HD

Pathk(h); and its frontier
as the nodes that are not in Tree(HD), but have its parent
in Tree(HD), i.e.,

Frontier(HD) := {vb : vb /∈ Tree(HD), v ∈ Tree(HD)}

(where b ∈ {0, 1} is a bit). Then, we define another subtree
TD := Tree(HD) ∪ Frontier(HD) where each node in
TD either is a leaf node of TD or has two children in TD,
such that Frontier(HD) ∪HD is exactly the set of leaf
nodes of TD.

Then, the model trainer constructs the Merkle tree based
on TD by assigning values to its nodes. We denote the value
assignment as ValTD (·), such that the leaf nodes of TD are
first assigned as follows:

• Each hd = hash(comd) ∈ HD is assigned value
ValTD (hd)← comd;

• Each v ∈ Frontier(D) is assigned value
ValTD (v)← ϵ;
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Figure 5: Example of proof of (non-)membership. The green
values are the hashes of the data points, the red values are
the frontier, and the yellow values are the remaining parts
of the Merkle tree.

Then, by executing Algorithm 2 as hD ←
MerkleTree(HD ∪ Frontier(HD),ValTD ), the
value of each remaining node v is assigned such that
ValTD (v) = hash(ValTD (v0),ValTD (v1)). The model
owner only publishes the root value of TD, denoted by hD,
which equals ValTD (root).

Algorithm 2 (Re-)construction of Merkle tree:
MerkleTree(S,Val)

Require: A set of leaf nodes S identified by their binary
representation, and the value of each node Val : S →
{0, 1}∗

1: procedure MERKLETREE(S,Val)
2: depth← max{length(s) : s ∈ S}
3: for k ← depth,depth− 1, . . . 1 do
4: Sk ← {s ∈ S : length(s) = k}
5: S′

k−1 ← {v : v0, v1 ∈ Sk}
6: if 2

∣∣S′
k−1

∣∣ ̸= |Sk| then
7: Abort since exists v ∈ Sk whose sibling is

not in Sk

8: end if
9: S ← S ⊔ S′

k−1 ▷ Must be disjoint union, abort
otherwise

10: for v ∈ S′
k−1 do ▷ Recursively compute the

hashes
11: Val(v)← hash(Val(v0),Val(v1))
12: end for
13: end for
14: {root} ← S′

0 ▷ By execution, |S′
0| = 1

15: return Val(root)
16: end procedure

An example of the Merkle tree with k = 3 is shown
in Figure 5. The hashes of the data points are HD =
{000, 010, 011} (marked in green), which store the values
of the commitments of the corresponding data points. The
frontier Frontier(HD) is marked in red, with each node
storing the value of ϵ. The yellow-coloured nodes are the
rest of the Merkle tree TD, with each node storing the hash
value of its two children. The uncolored vertices are not part
of TD.

When queried about any data point d, the model trainer
can compute a proof of its (non-)membership in D by
proving the (non-)membership of hd := hash(Commit(d))
(note that Commit(d) is assumed to be deterministic [49])
in HD using the Merkle tree TD. To prove a data point
d ∈ D, the model trainer needs to show that hd is a leaf of
TD, by reconstructing the path from hd to the root in TD
and show that the value of the reconstructed root matches
hD. On the other hand, to prove a data point d /∈ D (with is
equivalent to hd /∈ HD with overwhelming probability), the
model trainer needs to show that there exists an element of
the Frontier(HD), s, that is a prefix of hd or hd itself
(denoted by s ⪯ hd), and reconstruct the path from s to the
root with the correct reconstructed root value. In general, to
accommodate queries for multiple data points E, we define
HE := {hash(Commit(d)) : d ∈ E}, which can be agreed
upon by both parties. The model trainer can then prove the
training set (non-)membership of each data point in E using
Protocol 3:

Protocol 3 Trainers generates the proof of (non-
)membership

Require: HE : the hashed commitments of the queried data
points

1: Hinc
E , Hexc

E ← HD ∩HE , HE\HD ▷ Hashes of the
data points included and excluded from the training set

2: F exc ← {s ∈ Frontier(HD) : ∃h ∈ Hexc
E , s ⪯ h}

3: FE ← Frontier(Hinc
E ∪ F exc)

4: πmem ← (F exc,Frontier(FE))
5: return Hinc

E , Hexc
E , πmem

Note that the output of Protocol 3 includes the values
of the nodes in Tree(Hinc

E ) and F exc, as well as fron-
tier of the union of these two sets, Frontier(Hinc

E ∪
F exc). This allows the data copyright owner to recon-
struct the Merkle tree and compute its root. Specifically, let
hE ← MerkleTree(Hinc

E ∪ F exc ∪ Frontier(Hinc
E ∪

F exc),ValE), where ValE is the restriction of ValTD onto
Hinc

E ∪ F exc ∪ Frontier(Hinc
E ∪ F exc) since the model

trainer only needs to release the values on these nodes. Then,
the data copyright owner can check the validity of the proof
by verifying that the reconstructed root value hE matches
that received from the model trainer hD as Protocol 4.

For example, in Figure 5, let HE = {000, 001, 011, 101}
be the queried set. The model trainer computes Hinc

E =
{000, 011} and Hexc

E = {001, 101}, and therefore F exc =
{001, 1}. Therefore, the corresponding Frontier(Hexc

E ∪
F exc) = {010}. Then, based on the released values of
these nodes, the value of the root can be recovered by
reconstructing the Merkle tree and then checked with the
published value hD to verify the proof.

Theorem B.1 (Data Membership). Consider the scenario
when a data copyright owner queries the trainer on a batch
of his/her data points E, in the following steps:

• The data copyright owner sends the hashes of the
queried data points HE to the trainer;



Protocol 4 Data copyright owner verifies the proof of (non-
)membership

Require: The queried data points E (identified by
their hashes HE); root value of the training set
Merkle tree hD; the hashed commitments of the
queried data points HE ; output of Protocol 3,
Hinc

E , Hexc
E , (F exc,Frontier(FE)) = πmem sent

from the trainer; the released node values ValE .
1: Check HE

?
= Hinc

E ⊔Hexc
E ▷ Disjoint union, reject

otherwise
2: Check Val(v)

?
= ϵ for each s ∈ F exc

3: Check
?

∃ s ∈ F exc such that s ⪯ h for each h ∈ Hexc
E

4: Check hD
?
= MerkleTree(Hinc

E ∪ F exc ∪
Frontier(Hinc

E ∪ F exc),ValE)
5: return accept if all checks pass, otherwise reject.

• The trainer sends Hinc
E and Hexc

E (the hashes of
the queried data points that the trainer claims to
be included in and excluded from the training set
D, respectively) to the data copyright owner, along
with the proof πmem.

• The data copyright owner checks the validity of the
proof using Protocol 4.

With probability 1− negl (λ), the followings hold:
• If the trainer fully adheres to Protocol 3 to compute

Hinc
E , Hexc

E and πmem, the data copyright owner
accepts the membership result returned from the
trainer.

• If the trainer lies about the training set membership
of any queried data point, i.e., Hinc

E ̸= HD ∩ HE

or Hexc
E ̸= HE\HD, the data copyright owner

rejects the membership result returned from the
trainer.

Proof sketch of Theorem B.1. If Protocol 3 has been fol-
lowed by the trainer, then the execution can be represented
as HE = Hinc

E ⊔ Hexc
E . Additionally, F exc is a subset of

Frontier(HD), such that Val(v) = ϵ for each v ∈ F exc,
and for each h ∈ Hexc

E , there exists s ∈ F exc such that
s ⪯ h. Furthermore, since ValE and ValTD coincide for
each sent node, the value of the root node recovered from
the proof matches that of hD. As a result, all checks have
passed, and the data copyright owner can accept the proof
through Protocol 4.

Consider the case when the trainer outputs Hinc
E ̸=

HD ∩ HE or Hexc
E ̸= HD\HE . To pass Protocol 4, it

must hold that HE = Hinc
E ⊔ Hexc

E . Therefore, there is
either h /∈ HD such that h ∈ Hinc

E , or h′ ∈ HD such
that h ∈ Hexc

E . However, in either case, the trainer needs
to compute a valid path in the Merkle tree from h (or one
of the predecessors of h′) to the root and match the value
of hD at the root. Since the hash function used is non-
invertible and collision-resistant, the polynomial-time trainer
can only succeed with negligible probability. Therefore, the
data copyright owner rejects the proof with probability at
least 1− negl (λ).
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