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Abstract—An attribute-based credential system enables users
to prove possession of a credential and statements over certi-
fied attributes to verifiers in zero-knowledge while maintain-
ing anonymity and unlinkability. In a relational anonymous
credential system, users can further prove their relationship
to other entities in their social graph, such as position in an
organizational hierarchy or friends-of-friends status in an online
social network graph, while protecting their own privacy and
that of other users involved in the social graph. While traditional
anonymous credential schemes make no provisions for privacy-
preserving relationship predicates, a relational credential system
is more usable, because it (i) can facilitate relationship-based
access control with a wide range of predicates and (ii) offers
strong privacy guarantees for relationship proofs. We propose
the first relational credential scheme, based on a new q-SDH
graph signature scheme and an efficient zero-knowledge proof
system for graph predicates. We rigorously prove the security for
the proposed scheme and provide a benchmark using Facebook
social graphs.

I. INTRODUCTION

a) Anonymous Credential Systems.: An anonymous cre-
dential system is a privacy-enhancing technology that enables
users to obtain credentials signed by trusted issuers. The user is
then able to prove possession of credentials, while maintaining
anonymity and unlinkability. Attribute-based systems allow
users to also prove in zero-knowledge statements over private
attributes.

As a concept, anonymous credential systems have been
proposed by Chaum [1], and since then, been refined in
decades of research [2], [3], [4], [5], [6], [7], [8]. They have
been extended to make them more usable and practical in
a number of ways, including 1) privacy-preserving revoca-
tion [3], [9], [10], 2) efficient finite-set attribute encoding [11],
[12], and 3) privacy-preserving delegation [13], [14], [15].
They have been adopted in practice, for instance, in IBM’s
Identity Mixer system [16] or the Trusted Computing Group’s
Direct Anonymous Attestation (DAA) [6]. However, existing
anonymous credential systems are not well prepared to express
relationships between users and entities.

b) Privacy-preserving Relational Access.: To illustrate
the need for privacy-preserving relational access, we introduce
an application scenario in investigative journalism in face of
surveillance in the following running example:
Example 1 (Journalism Vignette). Alice is an investigative
journalist at The Guardian and active on a decentralized online
social network. Bob is a whistleblower, seeking to highlight
ethical misconduct in his organization. He is looking for

trustworthy journalists to prepare a responsible disclosure. He
has hosted articles and evidence on his findings on a service
provider, configured only to be visible and accessible to
friends-of-a-friend in his decentralized online social network.
Alice and Bob have a mutual friend Carol. She is an attorney at
a civil rights organisation, the Electronic Frontier Foundation
(EFF).

We visualize this scenario in Figure 2. Of course the figure
only shows the tiny relevant sub-graph of the social graphs of
the parties involved. Figure 1a shows the friends-relationships
of the people involved and the work-relationships to their
organizations. Figure 1b depicts the corresponding abstraction
in a social graph, where self and IDs are vertex identifiers,
the data enclosed with vertices and edges are labels.

What kinds of requirements might Bob place on
his service provider site to restrict access to trusted
individuals? In the simplest case, Bob may require
that a user accessing his data is a friend-of-a-friend
(FOAF). This requirement translates to a predicate on
the social graph arguing about the presence of a path:

prove you are connected to my node (≤ two hops).

While this is a simple requirement, Bob could specify policies
that are more elaborate and take structure and label distribution
of sub-graphs into account.

prove you are connected to my node (≤ two hops)∧
prove that you are labeled (prof: Journalist)∧
prove that you are with The Guardian (type: work)∧
prove that our mutual friend is with the EFF.

While an online social network (ONS) could facilitate such
access to Bob’s service provider, how can access be achieved
without making the users traceable by the ONS provider? This
does not only mean keeping the identities of users private,
but also requires unlinkability of transactions. Of course, Bob
needs to be sure that only true statements will be accepted and
that the system, hence, guarantees impersonation resilience.

c) Relational Credential Systems.: We propose the new
concept of a relational credential system. In an relational cre-
dential system (ReCS), a trusted issuer signs the user’s social
graph as part of the credential. The user can subsequently
prove predicates over her various relationships to verifiers,
while protecting anonymity. While the issuer may still main-
tain a comprehensive social graph to issue the credentials, the
user’s transactions with verifiers then become unlinkable.

Naive attempts to model similar functionality in a traditional
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Fig. 1: Relationships and social-graph abstraction of the running whistleblower example.

attribute-based credential (ABC) system face a combinatorial
blowup of the credential size in the number of possible con-
nection and label combinations. Complex queries that involve
a node’s properties essentially require computing the powerset
of the attributes, as done in Okishima and Nakanishi’s ABC
system [17], leading to an exponential credential size.

ReCS can realize a wide range of graph predicates, includ-
ing disjointness and isolation, which are particularly useful to
establish separation-of-duty scenarios. In this work, we focus
on connection predicates and relationship-based access control
most used in the social network scenario introduced above.

A. Related Work
a) Anonymous Credential Systems.: Our proposal to

create relational anonymous credentials is rooted in the
Camenisch-Lysyanskaya (CL) line of anonymous credential
schemes [4], [5], especially the SDH-based CL signature
scheme [5], [18], [19] based on bilinear pairings. Specifically,
we build our construction on the q-SDH MoniPoly attribute-
based credential system proposed by Tan and Groß [8],
which realizes a set commitment scheme and an attribute-
based credential scheme expressed on monic polynomials.
This approach is in the tradition of the work of Kate et al. [20],
who offered a first conceptualization and constructions for
constant-size commitments to polynomials, which was also
employed in a recent attribute-based credential system [21].

b) Authenticated Data Structures.: Set commitment
scheme is related to authenticated data structure [22], [23],
[24] (ADS) which allows a data owner to outsource compu-
tations to a server, requiring the operations to be verifiable.
Since ADS can be viewed as a database, it has been adopted
to realize verifiable computation of database queries, partic-
ularly in the graph and relational databases [25], [26], [27].

While ADS also supports public verifiability, the scenario and
security requirements for a graph signature scheme, however,
are different: It requires information about the graph beyond
the predicates proven to stay confidential. For instance, every
data owner holds their own secret key for data structure
authentication in an ADS scheme while it is the trusted third
party who owns the secret key for graph encoding in a graph
signature scheme.

c) Graph Signature Schemes.: Encoding social graphs
in anonymous credentials is also related to general research
on graph signatures [28], [29]. While graphs could be also
be signed in transitive signatures [30], [31], these signature
schemes are not well prepared for complex zero-knowledge
proofs of graph predicates. Groß [32] proposed the general
notion of a graph signature scheme with a corresponding
proof system, which emphasised the independence of the graph
encoding from the proof predicates used eventually and the
expressivity in graph representations and proof systems. This
construction was built on the SRSA Camenisch-Lysysanskaya
signature scheme [4] and on the idea that graphs can be
embedded in CL signatures using prime numbers as means
of encoding. In that, this work drew inspiration from the
Camenisch-Groß attribute-based credential scheme [11], [12],
which offers efficient encoding of finite-set attributes based on
pre-certified prime representatives.

While the SRSA graph signature scheme was originally
proposed as a means to certify system topologies [33], it could
also be used to certify social graphs. However, that scheme’s
limitation to operate over pre-certified prime representatives
constitutes an obstacle to forming a relational anonymous
credential system on arbitrary user identifiers in a dynamically
chaning social graph. While this obstacle could be overcome in
principle by hashing such identifiers to prime numbers, doing
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this in zero-knowledge proofs of knowledge to safeguard pri-
vacy would entail the prohibitive costs of hash-to-prime zero-
knowledge predicates [34], which would render the scheme’s
response time impractical for authentication and authorization
scenarios.

There exist specialized realizations of graph signature
schemes, such as the one by Nakanishi et al. [35], which
focuses on optimized connectivity and isolation proofs by
encoding strongly connected components into accumulators.
The special encoding constitutes an obstacle for the proofs of
general predicates over social graphs needed for the construc-
tion of relational anonymous credentials.

B. Contributions

We propose the concept and first efficient construction of
a relational credential system (ReCS). It enables users not
only to prove statements about private attributes, but also to
prove relationship statements over their social graph while
maintaining privacy. As our ReCS is constructed following
the conventional commit-and-sign approach, we also propose
a multi-set commitment scheme that can commit a collection
of sets. The collection can be viewed as a graph if elements in
the sets are interconnected. Subsequently, we devise a graph
signature scheme, which can sign multi-labeled social graphs.
To use the graph signature as a ReCS system, we offer an
expressive and efficient graph zero-knowledge proof system,
which allows users to prove predicates over their signed social
graph that are not required to be anticipated at signing time.

Our new construction overcomes limitations of the prior
SRSA graph signature scheme [32] as it (i) incorporate
arbitrary group elements as vertex identifiers and labels out
of the box, (ii) uses shorter proofs for the same range of
expressive graph predicates. The first improvement is essential
to enable the new relational anonymous credential system on
social graphs, because it overcomes the previously mandated
restriction to a pre-certified fixed graph alphabet. We prove the
security of the ReCS system based on the q-SDH assumption
in a tight reduction in the standard model. The computation
and communication complexity of the new q-SDH graph
signature scheme is consistently lower than the earlier SRSA
graph signature scheme [32], unless graphs have many labels
per element (> 50). Our performance evaluation on the
implementation shows that it is indeed practical.

II. RELATIONAL CREDENTIAL SYSTEMS

A relational credential system (ReCS) can encode entire
labeled graphs G where the vertices and edges are bit-string
attributes from an attribute space M. To express the interface
of a relational anonymous credential system, we need to define
their constituent elements.

Definition 1 (Notation). We use the following symbols: 1) ⊥:
null output on error; 2) ←: an assignment to a variable;
3) x ∈R S: x is sampled uniformly at random from set
S; 4) P(S): powerset of set S; 5) A() ↔ B(): interactive
protocol between Interactive Turing Machines (ITMs) A and
B; 6) A(. . . : O): the adversary ITM A runs with access to
oracles O.

Definition 2 (Graph). A graph over disjoint vertex and label
universes, V and L, is defined as G = (V,E, fV , fE), where:
• V is a set of vertices from the vertex identifier universe
V ,

• E is a set of edges drawn from V × V ⊆ E = V × V ,
• fV : V → P(L) is a relation associating labels to

vertices,
• fE : E → P(L) is a relation associating labels to edges.

We call the universe of all possible vertex and edge associa-
tions FV and FE , respectively. For a graph G with vertex set V
and edge set E, graph size |G| := |V |+ |E|. We call a graph
G a social graph, if V = V ′ ∪ self such that self 6∈ V ′ is a
special vertex identifier designating the owner of the graph.

Remark 1 (Self). We include a special vertex identifier self
to introduce the concept of ownership. The identifier self

enables owners of a relational anonymous credential to refer
to their own place in their social graph.

Definition 3 (Graph in Set Representation). When a graph
G = (V,E, fV , fE) of size |G| = L is encoded into a multi-
set A = {A1, . . . , AL} ∈ML×n where M is the set element
space, we use the following notation:
• Vi = {i, fV(i)} is the set of vertex with identifier i and

associated labels fV(i) = (m1, . . . ,mn−1).
• E(i,j) = {i, j, fE(i, j)} is the set of undirected edge (i, j)

and associated labels fE(i, j) = (m1, . . . ,mn−2).
• A = {{Vi}i∈V , {E(i,j)}(i,j)∈E}

Definition 4 (Predicates). We call a relation φ ⊆
(V, E ,FV ,FE) a graph predicate. A graph G = (V,E, fV , fE)
satisfies a predicate φ if and only if φ(G) = 1. We call the set
of predicates Φ.

A. Interface

We define a relational credential system as a tuple of
five (interactive) algorithms ReCS := {Setup,Obtain,Sign,
Prove,Verify}:

1) Setup(1κ,L,n)→ (mpk,msk): On the input of the se-
curity parameter κ, maximum graph size L and maximum
node size n, a signer (S) generates the master key pair
(mpk,msk).

2) (Obtain(mpk,GU) ↔ Issue(mpk,msk,GI)) →
(cred or ⊥): The Obtain algorithm is executed by a
user U with a hidden graph GU while the Issue algorithm
is executed by an issuer I who assigns a graph GI
to the user. The issuing protocol outputs credential as
cred = (σ,G) if it completes successfully where σ is
a valid graph signature for G = GU ∪ GI. Otherwise, it
outputs an error ⊥.

3) (Prove(mpk, cred, φ) ↔ Verify(mpk, φ) → (b):
Prover’s private input is a credential σ which consist
of a graph signature and the corresponding graph. This
interactive showing protocol establishes a show proof on
cred for a predicate φ ∈ Φ queried by the verifier such
that φ(G) = 1. At the end of the protocol, if φ(G) = 1
and prover’s proof is valid, Verify outputs b = 1 and
outputs b = 0 otherwise.
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B. Security Requirements

The ReCS system is governed by the requirements un-
linkability and impersonation resilience against active and
concurrent attacks. Unlinkability guarantees that an adversary
cannot learn anything from a user’s transactions beyond the
size of the graph. Impersonation resilience means that an
adversary cannot make false statements or impersonate honest
users. The requirements are defined in games against a prob-
abilistic and polynomially-time Interactive Turing Machine
(ITM), adversary A.

1) Oracles: We first give an overview on the oracles
required to define the security games. The details for these
oracles are in Appendix A.

1) OIssue(mpk,msk,GU,GI, sid): It runs an issuing pro-
tocol as an issuer I for a session identified by sid on
the graph G = (GU ∪ GI) and outputs the corresponding
credential cred.

2) OIssuing(mpk,GU,GI, sid): It returns an issuing tran-
script π corresponding to the graphs and session identity
specified in the query.

3) OVerify(mpk,GU,GI, φ, sid): It runs a showing protocol
as a verifier V for a session identified by sid and outputs
a showing transcript π̃ specified by the issuer public key
mpk, graphs (GU,GI) and predicate φ in the query.

4) OShowing(mpk,GU,GI, φ, sid): It returns a showing tran-
script π̃ corresponds to the issuer public key mpk, graphs
GU,GI, predicate φ and session identity sid specified in
the query.

5) OCorrU(π): It returns the credential cred corresponds to
the queried issuing transcript π.

6) OCorrP(π̃): It returns the credential cred corresponds to
the queried showing transcript π̃.

2) Unlinkability: We consider unlinkability as the privacy
goal for ReCS, similar to that in some attribute-based cre-
dential systems [8], [21]. Unlinkability guarantees that an
adversary cannot learn anything from a user beyond the size
of the signed graph. In an ReCS system, we assume the issuer
is honest but curious, and we concern about four types of
unlinkabilities under active and concurrent attacks (ACA):

1) Issuing unlinkability (IUNL) means that an adversary
should not be able to learn anything about user’s hidden
graph GU from an issuing protocol.

2) Showing unlinkability (SUNL) means that an adversary
should not be able to learn anything about user’s creden-
tial cred from a showing protocol.

3) Graph unlinkability (GUNL) means that an adversary
should not be able to learn anything about user’s signed
graph G = GU ∪ GI from a showing protocol.

4) Protocol unlinkability (PUNL) means that an adversary
should not be able to learn anything about a user’s hidden
graph GU from both issuing and showing protocols.

In the Appendix A, we show that while SUNL-ACA and
IUNL-ACA are independent from each other, SUNL-ACA
and GUNL-ACA are equivalent. Moreover, we prove that
PUNL-ACA implies both IUNL-ACA and GUNL-ACA. There-
fore, for our proposed ReCS, we prove only the security
of protocol unlinkability under active and concurrent attack

(PUNL− ACA) which is defined as a security game between an
adaptive adversary A and a challenger C in Table I.

Essentially, the protocol unlinkability game is a combination
of the issuing unlinkability game (cf. §A) and showing un-
linkability game (cf. §B). In an issuing unlinkability game, A
declares two hidden graphs (GU0,GU1) as challenge and have to
decide the sequence they are used during the issuing protocol.
In a showing unlinkability game, A declares two credentials
(cred0, cred1) and a predicate φ∗ as challenge and have to
decide the sequence they are used during the showing protocol.

Here, in the protocol unlinkability game, A declares two
hidden graphs (GU0,GU1) and a predicate φ∗ as challenge and
have to decide the sequences they are used during both the
issuing and showing protocols. The random bit b1 is to capture
the issuing unlinkability while the random bit b2 is to capture
the showing unlinkability. If a protocol unlinkability adversary
A can at least classify the issuing and showing protocols based
on their hidden graphs, respectively, then it wins the game by
outputting b′ = b1 ⊕ b2.

Definition 5. A probabilistic and polynomial-time adversary
A is said to (tpunl, εpunl)-break the security of the protocol un-
linkability under active and concurrent attacks (PUNL-ACA)
of a ReCS system if A runs in time at most tpunl and wins in
Gamepunl-aca

ReCS,A such that:

Pr
[
Gamepunl-aca

ReCS,A = Win
]
− 1

2
≥ εpunl.

We say that a ReCS is PUNL-ACA-secure, if no adversary
(tpunl, εpunl)-wins Gamepunl-aca

ReCS,A .

3) Impersonation Resilience: This requirement ensures a
malicious prover cannot convince a verifier that he is the
owner of the credential or convince a verifier of statements
that are false. We define our security model as the security
against impersonation under active and concurrent attacks
(IMP-ACA) [8] in the game between an adversary A and a
challenger C as in Table II.

Definition 6. A probabilistic and polynomial-time adversary
A is said to (timp, εimp)-break the security against imperson-
ation under active and concurrent attacks (IMP-ACA) of a
ReCS system if A runs in time at most timp and wins in
Gameimp-aca

ReCS,A such that:

Pr[Gameimp-aca
ReCS,A = Win] ≥ εimp.

We say that a ReCS is imp-aca-secure if no adversary
(timp, εimp)-wins Gameimp-aca

ReCS,A.

III. CRYPTOGRAPHIC PRELIMINARIES

A. Zero-Knowledge Notation

We use the Camenisch-Stadler [36] notation for zero-
knowledge proofs of knowledge of a statement validity in
addition to the knowledge of discrete logarithms. As an
example, let σ be a signature on the value C:

PK{(α, β, σ) : C = gαhβ ∧ Verify(pk, σ, C) = 1}

denotes a zero-knowledge proof of knowledge of discrete
logarithms α and β such that C = gαhβ holds and σ is a
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TABLE I: The PUNL− ACA security game.

Gamepunl-aca
ReCS,A

IS ← ∅;SS ← ∅;CU ← ∅; CPV ← ∅; HU ← ∅; HPV ← ∅
O(·)← {OIssue,OVerify,OCorrU,OCorrP}
b1 ← {0, 1}; b2 ← {0, 1}; (mpk,msk)← Setup(1κ, L, n)
(GU0,GU1, φ∗)← AO(mpk,msk)
If |GU0| 6= |GU1|, then return Lose
(πb1 , credb1 )← (Obtain(mpk,GUb1 )↔ A

O((GU0,GU1), (GIb1 ,G
I
1−b1 ), φ

∗)

(π1−b1 , cred1−b1 ) ← (Obtain(mpk,GU1−b1 ) ↔
AO((GU0,GU1), (GIb1 ,G

I
1−b1 ), φ

∗)

If |GI0| 6= |GI1|, then return Lose
If φ(GU0 ∪ GI0) = 0 ∨ φ(GU1 ∪ GI1) = 0, then return Lose
(π̃b2 , 1)← (Prove(mpk, credb2 , φ

∗)↔ AO((GU0,GU1), (GIb1 ,G
I
1−b1 ), φ

∗)

(π̃1−b2 , 1)← (Prove(mpk, cred1−b2 , φ
∗)↔ AO((GU0,GU1), (GIb1 ,G

I
1−b1 ), φ

∗)

b′ ← AO2 ((GU0,GU1), (GIb1 ,G
I
1−b1 ), (πb1 , π1−b1 ), φ

∗, (π̃b2 , π̃1−b2 ))
If (·, ·, ·, πb1 ) ∈ CU ∨ (·, ·, ·, π1−b1 ) ∈ CU , then return Lose
If (·, ·, ·, ·, π̃b2 ) ∈ CPV ∨ (·, ·, ·, ·, π̃1−b2 ) ∈ CPV , then return Lose
If b1 ⊕ b2 = b′, then return Win, else return Lose

Note: (cred0, cred1) : credentials, φ∗ : challenge predicate,
(GU0,GU1) : user hidden graphs, (GI0,GI1) : issuer-assigned graphs,
(π0, π1) : issuing transcript, (π̃0, π̃1) : showing transcript,
IS: active issuing session, SS: active showing session
(CU,CPV ): corrupted user list, (HU,HPV ): honest user list

TABLE II: The imp-aca security game.

Gameimp-aca
ReCS,A

IS ← ∅;SS ← ∅;CU ← ∅;CPV ← ∅;HU ← ∅;HPV ← ∅
(mpk,msk)← Setup(1κ, L, n)
O ← {OIssuing,OVerify,OCorrU,OCorrP}
(G∗, φ∗)← AO(mpk)
(π̃, b)← (AO(mpk,G∗, φ∗)↔ Verify(mpk, φ∗))
If φ∗(GU ∪ GI) = 1 for ∃(·,GU,GI, ·, ·) ∈ CU , return Lose
If φ∗(GU ∪ GI) = 1 for ∃(·,GU,GI, ·, ·, ·) ∈ CPV , return Lose
If b = 1, return Win, else return Lose

Note: G∗ : challenge graph, φ∗ : challenge predicate,
IS : active issuing session, SS : active showing session,
(CU,CPV ) : corrupted user list, (HU,HPV ) : honest user list

valid signature for C. Essentially, the secrets to be proven are
listed in the bracket followed by the corresponding statements.

B. Mathematical Assumptions

Definition 7. co-Discrete Logarithm Assumption (co-
DLOG) [37]. An algorithm C is said to (tcodlog, εcodlog)-break
the co-DLOG assumption if C runs in time at most tcodlog

and furthermore:

Pr[x ∈ Zp : C(g1, g
x
1 ∈ G1, g2, g

x
2 ∈ G2) = x] ≥ εdlog.

We say that the co-DLOG assumption is (tcodlog, εcodlog)-
secure if no algorithm (tcodlog, εcodlog)-solves the co-DLOG
problem.

Definition 8. q-Strong Diffie-Hellman Assumption (SDH)
[19]. An algorithm C is said to (tsdh, εsdh)-break the SDH
assumption if C runs in time at most tsdh and furthermore:

Pr[x ∈ Zp, c ∈ Zp \ {−x}] :

C(g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 ) = (g

1
x+c

1 , c)] ≥ εsdh.

We say that the SDH assumption is (tsdh, εsdh)-secure if no
algorithm (tsdh, εsdh)-solves the SDH problem.

Definition 9. q−co-Strong Diffie-Hellman Assumption (co-
SDH) [37]. An algorithm C is said to (tcosdh, εcosdh)-break
the co-SDH assumption if C runs in time at most tcosdh and
furthermore:

Pr[x ∈ Zp,c ∈ Zp \ {−x}] :

C(g1, g
x
1 , . . . , g

xq

1 , g2, g
x
2 , . . . , g

xq

2 ) = (g
1

x+c

1 , c)] ≥ εcosdh.

We say that the co-SDH assumption is (tcosdh, εcosdh)-secure
if no algorithm (tcosdh, εcosdh)-solves the co-SDH problem.

C. Multi-Set Commitment Schemes

Multi-set commitment schemes are designed to commit
to L multiple sets of messages {A1, . . . , AL}, where each
constituent message set Ai is bounded by size n . We define
a multi-set commitment scheme MSC as a tuple of seven
algorithms:

MSC := (Setup, Commit, Open, OpenIntersection,

VerifyIntersection, OpenDifference, VerifyDifference)

1) Setup (1κ,L,n) → (pk , sk). Generate a pair of public
and secret keys (pk , sk) based on the security parameter
1κ. The public key pk defines the message space M, the
maximum number of sets in the multi-set based on L,
and the maximal size of each constituent set based on n .

2) Commit (pk , A) → (C). On the input of pk , a message
multi-set A = {A1, . . . , AL} ∈ ML×n , select a set of
random opening values O = {o1, . . . , oL} and output the
commitment as C.

3) Open (pk , C,A,O) → b. Return b = 1 if C is a
valid commitment to multi-set A with the corresponding
opening values O under pk . Return b = 0 otherwise.

4) OpenIntersection (pk , C,A,O, (A′, (`, κ))) →
(I,W ) or ⊥. Let A′ = {A′1, . . . , A′L}, 1 ≤ ` ≤ L, κ =
{k1, . . . , kL} and Ii,j = A′j ∩ Ai. If there are `-many
pair of indexes (i, j) such that |Ii,j | = kj ≤ |A′j | holds
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where indexes i and j are unique, respectively, return
these intersecting sets Ii,j as the multi-set I and the
corresponding witnesses W , and return an error ⊥
otherwise.

5) VerifyIntersection (pk , C, (I,W ), (A′, (`, κ)))→ b.
Return b = 1 if W is a witness for I being the intersecting
multi-set of size ` for A′ and the multi-set committed to
in C. Return b = 0 otherwise.

6) OpenDifference (pk , C,A,O, (A′, (¯̀, κ̄))) → (D,W ).
Let A′ = {A′1, . . . , A′L}, κ̄ = {k̄1, . . . , k̄L}, 1 ≤ ¯̀≤ L
and Di,j = A′j \ Ai. If there are ¯̀-many A′j such that
|Di,j | = k̄i ≤ |A′j | holds for all Aj ∈ A, return these dif-
fering sets Di,j as the multi-set D and the corresponding
witness W , and return an error ⊥ otherwise.

7) VerifyDifference (pk , C, (D,W ), (A′, (¯̀, κ̄))) → b.
Return b = 1 if W is the witness for D being the differing
multi-set of size ¯̀ for A′ and the multi-set committed to
in C, and return b = 0 otherwise.

Based on MSC, we can define a graph commitment GC as
follows:

GC := (Setup, Commit, Open, OpenIntersection,

VerifyIntersection, OpenDifference, VerifyDifference)

where the multi-set A = G2MS(G) is now an encoded graph
which is an output of a graph encoding G2MS (cf. §V).
Therefore, whenever we invoke MSC with a graph G, it means
the algorithms in MSC takes in G2MS(G).

Definition 10. A multi-set commitment scheme is perfectly
hiding, if every commitment C = Commit(pk , A) is uniformly
distributed such that there exists a set of opening values O′ 6=
O for all multi-sets A′ 6= A where Open(pk , C,A′, O′) = 1.

Definition 11. An adversary A is said to (tbind, εbind)-break
the binding security of a multi-set commitment scheme, if A
runs in time at most tbind and furthermore:

Pr[Open(pk , C,A1, O1) = Open(pk , C,A2, O2) = 1] ≥ εbind

for any two pairs (A1, O1), (A2, O2) output by A. We say
that a multi-set commitment scheme is (tbind, εbind)-secure
wrt. binding if no adversary (tbind, εbind)-breaks the binding
security of multi-the set commitment scheme.

Definition 12. An adversary A is said to (tinbind, εinbind)-break
the intersecting binding security of a multi-set commitment
scheme, if A runs in time at most tinbind and furthermore:

Pr[VerifyIntersection(pk , C, (I1,W1), (A′, (`, κ))) =

VerifyIntersection(pk , C, (I2,W2), (A′, (`, κ))) = 1] ≥ εinbind

for any two pairs (I1,W1), (I2,W2) output by A. We say
that a multi-set commitment scheme is (tinbind, εinbind)-secure
wrt. intersecting binding if no adversary (tinbind, εinbind)-breaks
the intersecting binding security of multi-the set commitment
scheme.

Definition 13. An adversary A is said to (tdibind, εdibind)-
break the differing binding security of a multi-set commitment
scheme, if A runs in time at most tdibind and furthermore:

Pr[VerifyDifference(pk , C, (D1,W1), (A′, (¯̀, κ̄))) =

VerifyDifference(pk , C, (D2,W2), (A′, (¯̀, κ̄))) = 1] ≥ εdibind

for any two pairs (D1,W1), (D2,W2) output by A. We say
that a multi-set commitment scheme is (tdibind, εdibind)-secure
wrt. differing binding if no adversary (tdibind, εdibind)-breaks
the differing binding security of multi-the set commitment
scheme.

D. SDH Camenisch-Lysyanskaya Signatures

The SDH-based CL signature scheme [5], [18], [19]
is closely related to the BBS signature scheme [38] and
the foundation of the MoniPoly Attribute-based Credential
system [8] we use in our construction. We define the signature
scheme on messages m from a message space M = Z∗p.
The SDH CL-signature scheme is a tuple of five algorithms
CL := {KeyGen, Sign, Verify, Randomize, VerifyRand}:

KeyGen (1κ). Select random generators a, b, c ∈R G1,
g2 ∈R G2 and a secret value x ∈R Z∗p. Output the public key
pk = ((e,G1,G2,GT , p), a, b, c, g2, X = gx2 ) and the secret
key sk = (x).

Sign (pk , sk ,m). Choose s, t ∈R Z∗p. For m ∈ M, compute
v = (am0 b

sc)
1

x+t where the signature is σ = (t, s, v).

Verify (pk, σ,m). Output 1 if e(v,X) = e (ambscv−t, g2)
holds and output 0 otherwise.

Theorem 1 ([19]). The SDH-CL signature is strongly existen-
tial unforgeable against chosen message attack in the standard
model if the SDH problem is intractable.

There are two derivative algorithms from the MoniPoly
credential randomization [8], [39]:

Randomize (pk, σ). Choose r, y ∈R Z∗p and output the ran-
domized signature sig′ = (r, y, t′ = ty, s′ = sr, v′ = vry

−1

).

VerifyRand (pk, σ′,m). Output 1 if e(v′y, X) =

e
(
amrbs

′
crv′−t

′
, g2

)
holds and output 0 otherwise.

Lemma 1. The Randomize algorithm is perfectly hiding.

Proof. Firstly, as t, s ∈ Z∗p are randomly selected, t′ = ty and
s′ = sr are uniformly distributed over Z∗p. Secondly, since z =
ry−1 is randomly distributed over Z∗p, bz and subsequently
v′ = (bz)dlogb(v) have a uniform distribution over G1. Lastly,
it is clear that there exists an unique y ∈ Z∗p and therefore
z ∈ Z∗p for every dlogb(v

′).

E. Pedersen Commitment Scheme

Pedersen commitment scheme [40] is perfectly hiding and
computationally binding under the discrete logarithm assump-
tion. The public parameters pk = (a, b ∈ G) are based on a
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group G of order p in which the discrete logarithm assumption
holds. In order to commit to a message m, one computes

C = Commit(pk,m) = ambr

where r ∈R Z∗p is the opening value.

F. MoniPoly Set Commitment

MoniPoly set commitment (SC) scheme [8], [39] is prov-
ably secure under the co-SDH assumption. The public pa-
rameters is pk = ((e,G1,G2,GT , p), {ai, Xi}0≤i≤n =

{gx′i1 , gx
′i

2 }0≤i≤n). The commitment on a message set A =
{m1, . . . ,mn−1} ∈ Zn−1

p is computed as:

C = Commit(pk,A) = a
(x′+o)

∏
m∈A(x′+m)

0 =

n∏
i=0

ami
i

such that (A, o) are the roots for the monic polynomial:

(x′+o)(x′+m1) · · · (x′+mn−1) = x′n+mnx
′n−1 + · · ·+m0

where MPEncode : Znp → Zn+1
p (cf. §O) is the encoding

algorithm that transforms the multiplicative form at the left-
hand side into the additive form at the right-hand side. In this
work, we view a MoniPoly set commitment as:

C = Commit(pk,A) = a
o
∏

m∈A(x′+m)

0 =

(
n−1∏
i=0

ami
i

)o
that isolates the opening value o ∈R Z∗p from the domain Z∗p×
Z∗p, a feature that is mandatory for our multi-set commitment
(cf. §IV-A). The full construction and security analysis for this
minor tweak is in Appendix P.

IV. A MULTI-SET COMMITMENT SCHEME

We instantiate the interface of amulti-set commitment
scheme MSC from Section III-C based on the MoniPoly SC
scheme [8]. Our overall construction proceeds in three steps:

1) establish a MSC scheme suitable for graphs (§IV-A),
2) encode graphs G into the multi-set structure (§V), and
3) establish the relational credential system in a commit-

and-sign approach (§VI).
The MoniPoly MSC scheme computes a commitment as C =∏L
i=1 Ci where every Ci = a

oi
∏

m∈Ai
(x′+m)

i0
is a MoniPoly

set commitment SC [8] on a constituent set Ai.

Remark 2. The trivial approach of aggregating the MoniPoly
set commitment SC such that

C =

L∏
i=1

a
oi

∏
m∈Ai

(x′+m)

0

is not secure. To be precise, the commitment

C = a

∑L
i=1 oi

∏
m∈Ai

(x′+m)

0 = a
o∗

∏
m∈A∗ (x′+m)

0

is also a commitment for some random (o∗, A∗). This would
allow a prover to cheat during the showing protocol, for
instance, to prove that she owns a set A∗ but not the set A1

queried by the verifier.

A. Construction

The MoniPoly MSC construction defines the seven
algorithms1 below:

Setup (1κ,L,n). Select random generators g1 ∈R
G1, g2 ∈R G2, secret key sk = (x′, α1, . . . , αL) ∈R Z∗p
and set M = ZL×n

p . Generate the public key
as pk = (e,G1,G2,GT , p, {{aik , Xik}nk=0}Li=0)

where {a0k
, X0k

}0≤k≤n = {gx′k1 , gx
′k

2 }0≤k≤n and
{aik , Xik}1≤i≤L = {aαi

0k
, Xαi

0k
}1≤i≤L. If L and n are

fixed, sk can be discarded after pk is generated.

Commit (pk , A). Taking as input a multi-set
A = {A1, . . . , AL} ∈ ZL×n

p , select opening values
O = {o1, . . . , oL} ∈R ZL

p and output the commitment as

C =
∏
Ai∈A Ci =

∏
Ai∈A a

oi
∏

m∈Ai
(x′+m)

i0
.

Open (pk , C,A,O). Return 1 if

e(C,X00) =
∏
Ai∈A

e

(
a
oi

∏
m∈Ai\{mi}

(x′+m)

i0
, X01X

mi
00

)
holds and return 0 otherwise for randomly selected mi ∈ Ai.

OpenIntersection (pk , C,A,O, (A′, (`, κ))). Let A′ =
{A′1, . . . , A′L}, 1 ≤ ` ≤ L, κ = {k1, . . . , kL} and Ii,j =
A′j ∩ Ai. If there are `-many pair of indexes (i, j) such that
|Ii,j | = kj ≤ |A′j | holds where indexes i and j are unique,
respectively, return these intersecting sets Ii,j as the multi-set
I and the corresponding witnesses

W =

({
Wi = a

oi
∏

m∈Ai\{mi}
(x′+m)

i0
,mi

}
Ai∈A\I

,

{
Wi = a

oi
∏

m∈Ai\Ii
(x′+m)

i0

}
Ai∈I

)
where every mi ∈ Ai is randomly selected. Otherwise, return
an error ⊥.

VerifyIntersection (pk , C, (I,W ), (A′, (`, κ))).Return 1
if

e

C ∏
A′i∈A′

a

∏
m∈A′

i
(x′+m)

00
, X0

 =
∏

Ai∈A\I

e
(
Wi, X01X

mi
00

)
e

 ∏
A′i∈A′\I

a

∏
m∈A′

i
(x′+m)

00
, X00

 ·
∏
Ai∈I

e

(
Wia

∏
m∈A′

i
\Ii

(x′+m)

00
, X

∏
m∈Ii

(x′+m)

00

)
holds and return 0 otherwise.

B. Security Properties

Theorem 2 (Hiding). The MoniPoly multi-set commitment
scheme is information-theoretically hiding.

Proof. The hiding property follows directly from the opening
values O being chosen uniformly at random from Z∗p, render-
ing the commitment C a random group element in G1.

While the construction shares a number of similarity to
the MoniPoly set commitment scheme [8], the security proof

1We place the OpenDifference and VerifyDifference algorithms in Ap-
pendix J as they are utilized by the disjointness predicate of our proposed
ReCS which appear in the Appendix M only.
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requires a considerate modification. Specifically, the compu-
tational binding property is now based on the hardness of co-
DLOG problem instead of the q-co-SDH problem as shown
in Appendix J.

Theorem 3 (Binding). The MoniPoly multi-set commitment
scheme is computationally binding if the co-DLOG problem
is hard.

Theorem 4 (Intersecting Binding). The MoniPoly multi-set
commitment scheme is intersecting binding if the co-DLOG
problem is hard.

Theorem 5 (Differing Binding). The MoniPoly multi-set com-
mitment scheme is differing binding if the co-DLOG problem
is hard.

V. GRAPH TO MULTI-SET (G2MS) ENCODING

The second step of our overall construction is to encode
arbitrary graphs as specified in Def. 2 into the multi-set
structure established in the preceding Section IV-A. For that,
we recall the set representation for graphs from Def. 3, in
which a set Vi includes the vertex identifier and all labels for
Vertex i and a set E(i,j) includes the corresponding identifiers
and labels. Formally, we require the encoding from graph to
multi-set fulfils the definition as follows.

Definition 14 (G2MS Encoding). For a graph G = (V ⊆
V, E ⊆ E , fV , fE) and a defined message space M, a graph
to multi-set encoding G2MS : G → ML×n is a function,
which maps vertices i ∈ V and their labels fV(i) as well
as edges (i, j) ∈ E and their labels fE(i, j) onto message
space elements m ∈M. A G2MS encoding is called complete
if all graphs from V and L can be encoded in M. A graph
encoding is called unambiguous, if the encoding is injective.

There are ways to instantiate a G2MS encoding that meets
the requirements defined above. For instance, the prime en-
coding [33], [35] that based on a list of certified prime
numbers which fall in MSC message space ML×n or using
an appropriate hash function that can hash into ML×n .

For clarity of presentation, we take a simpler approach by
assuming vertices and labels are always from the cyclic group
Z∗p, that is, we only consider G such that its universes V and
L is in M. If M = Z∗p as in our MoniPoly MSC, we have
V ⊂ Z∗p \ L,L ⊂ Z∗p \ V . A vertex with identifier i and
associated labels {m1, . . . ,mn} = fV(i) is then represented
as a set Vi = {i, fV} while an edge with identifier (i, j) and
associated labels {m1, . . . ,mn} = fE(i, j) is represented as a
set E(i,j) = {i, j, fE}. A graph G = (V ⊆ V, E ⊆ E , fV , fE)
is thus a multi-set A = {{Vi}i∈V , {E(i,j)}(i,j)∈E}.

Theorem 6. The G2MS encoding above is complete and
unambiguous.

Proof. As any vertex i and edge (i, j) can be encoded into a
set Vi ∈ Znp and a set E(i,j) ∈ Znp , any graph whose V ⊂ Z∗p
and E ⊂ Z∗p can be encoded into a multi-set A ∈ ZL×n

p . So,
the encoding above is complete.

It is clear that when the the universes V and L are subset
of Z∗p, the encoding above is injective.

We now define the related multi-set operations for A =
G2MS(G).

Definition 15 (Vertex Intersection). Given A = G2MS(G)
where G = (V,E, fV , fE) is a graph. Let Vi = {i, fV(i)} ∈ A
represents the set of vertex identifier and associated labels for
a vertex i ∈ V . Let ki ≤ |V ′i | ≤ |Vi| be a vertex intersection

threshold for the intersecting vertex
∩
V i = (V ′i ∩ Vi). If

|
∩
V i| = ki,

∩
V i is the intersection of two vertices V ′i and Vi.

Definition 16 (Vertex Difference). Given A = G2MS(G) where
G = (V,E, fV , fE) is a graph. Let Vi = {i, fV(i)} ∈ A
represents the set of vertex identifier and associated labels
for a vertex i ∈ V . Let k̄i ≤ |V ′i | ≤ |Vi| be a vertex difference
threshold for the differing vertex V̄i = (V ′i − Vi). If |V̄i| = k̄i,
V̄i is the difference of two vertices V ′i and Vi.

Definition 17 (Edge Intersection). Given A = G2MS(G) where
G = (V,E, fV , fE) is a graph. Let E(i,j) = {i, j, fE(i, j)} ∈
A represents the set of edge identifier and associated labels
for an edge (i, j) ∈ E. Let k(i,j) be an edge intersection

threshold for the intersecting edge
∩
E(i,j) = (E′(i,j) ∩ E(i,j)).

If |
∩
E(i,j)| = k(i,j),

∩
E(i,j) is the intersection of two edges E′(i,j)

and E(i,j).

Definition 18 (Edge Difference). Given A = G2MS(G) where
G = (V,E, fV , fE) is a graph. Let E(i,j) = {i, j, fE(i, j)} ∈
A represents the set of vertex identifier and associated labels
for a vertex (i, j) ∈ E. Let k̄(i,j) ≤ |E′(i,j)| ≤ |E(i,j)| be
a vertex difference threshold for the differing edge Ē(i,j) =
(E′(i,j) −E(i,j)). If |Ē(i,j)| = k̄(i,j), Ē(i,j) is the difference of
two edges E′(i,j) and E(i,j).

Definition 19 (Graph Intersection). Given A′ = G2MS(G′)
and A = G2MS(G) for two graphs G′ = {V ′, E′, fV , fE} and
G = {V,E, fV , fE} such that |V ′| ≤ |V | and |E′| ≤ |E|.
Let (` ≤ |G′|, κ =

{
{ki}i∈V ′ , {k(i,j)}(i,j)∈E′

}
) be the

threshold for I = G2MS(
∩
G) where the intersecting graph is

∩
G = {

∩
V ,
∩
E, fV , fE} = G ∩ G′. If |I| = ` and furthermore

every |
∩
V i| = ki and |

∩
E(i,j)| = k(i,j), I is the intersection of

A′ and A.

Definition 20 (Graph Difference). Given A′ = G2MS(G′) and
A = G2MS(G) for two graphs G′ = {V ′, E′, fV , fE} and
G = {V,E, fV , fE} such that |V ′| ≤ |V | and |E′| ≤ |E|.
Let (¯̀ ≤ |G′|, κ̄ =

{
{k̄i}i∈V ′ , {k̄(i,j)}(i,j)∈E′

}
) be the

threshold for D = G2MS(Ḡ) where the differing graph is
Ḡ = {V̄ , Ē, fV , fE} = G′ − G. If |D| = ¯̀ and furthermore
every |V̄i| = k̄i and |Ē(i,j)| = k̄(i,j), D is the difference of A′

and A.

VI. A RELATIONAL CREDENTIAL SYSTEM

This third step of our construction following a commit-
and-sign approach, establishes the relational credential system
(ReCS).
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A. Construction

We instantiate the ReCS interface defined in Sec-
tion II-A to consist of the five interactive algorithms:
{Setup, Obtain, Sign, Prove, Verify}.

1) Setup: This can be viewed as the combination of
parameter setup for MoniPoly MSC (cf. §IV-A) and CL
signature scheme (cf. §III-D).
Setup(1κ,L,n): Select random generators
{ai0}Li=0, b, c ∈R G1, {Xi0}Li=0 ∈R G2 and two secret
values x, x′ ∈R Z∗p. Output the master public key
mpk = ((e,G1,G2,GT , p), b, c, {{aik = ax

′k

i0
, Xik =

Xx′k

i0
}Li=0}nk=0, X = Xx

00
,V,L) and keep the master secret

key msk = (x′, x) where V is the vertex identifier universe
and L is the label universe.

2) Issuing Protocol: The signing protocol enables a user
U who holds a hidden graph GU to obtain a credential sig
from the issuer I for the graph G = (GU ∪ GI) where GI is a
signer-defined graph and G = (V,E, fV , fE) is a graph.
(Obtain(mpk ,GU)↔ Issue(mpk ,msk ,GI)) :

1) Firstly, the user U chooses a random s′ ∈R Z∗p and proves
his hidden graph A = G2MS(GU) to the signer S by
running the zero-knowledge protocol below:

PK

{
((∀i ∈ V : εi0 , . . . , εini

),

(∀(i, j) ∈ E : ε(i,j)0
, . . . , ε(i,j)n(i,j)

), ρ) :

M =
∏
i∈V

ni∏
k=0

a
εik
ik

∏
(i,j)∈E

n(i,j)∏
k=0

a
ε(i,j)k

(i,j)k
bρ

}
(1)

where clause (1) proves the knowledge of bρ = bs
′

and
A such that∏
i∈V

ni∏
k=0

a
εik
ik

∏
(i,j)∈E

n(i,j)∏
k=0

a
ε(i,j)k

(i,j)k
=

∏
i∈V

a
(x′+i)

∏
m∈fV (i)(x

′+m)

i0

∏
(i,j)∈E

a
(x′+i)(x′+j)

∏
m∈fE (i)(x

′+m)

(i,j)0

is a multi-set commitment MSC.Commit(mpk,A) with
O = {1}|A|.

2) If the proof is verified, I computes a pre-signature σ′ =
CL.Sign(mpk ,msk , G2MS(G)) where G = GU∪GI. To be
precise, I randomly selects s′′, t ∈ Z∗p to sign on M and

C = MPC.Commit(mpk , B) as v =
(
MCbs

′′
c
)(x+t)−1

where B = G2MS(GI) and O = {1}|B|. I returns (σ′ =
(t, s′′, v),GI) to U.

3) If σ′ is a valid CL signature on G = GU∪GI, U completes
the pre-signature σ′ with its own randomness to obtain
the final credential cred = (σ = (t, s = s′ + s′′, v),G).

3) Showing Protocol: Essentially, possession is a com-
pound proof of the PoK protocols for CL.VerifyRand al-
gorithm (cf. §III-D) and MSC.Open algorithm (cf. §IV). Let
the randomized graph signature be σ′ = (r, y, t′ = ty, s′ =
sr, v′ = vry

−1

) = CL.Randomize(mpk , σ), obtained through
the CL-signature randomization algorithm where r, y ∈R Z∗p.

The prover selects {ri, r(i,j)} ∈R Z∗p and runs the showing
protocol for possession as follows:

(Prove(mpk , σ, possession)↔ Verify(mpk , possession)) :

PK

{
(∀i ∈ V : εi0 , εi1), (∀(i, j) ∈ E : ε(i,j)0

, ε(i,j)1
), ρ, ω, τ, γ) :∏

i∈V
e
(
Wi, X

εi1
01
X
εi0
00

) ∏
(i,j)∈E

e
(
W(i,j), X

ε(i,j)1
01

X
ε(i,j)0
00

)
·

(2)

e
(
bρcωv′−τ , X00

)
= e(v′γ , X)

}
(3)

where the witnesses{
Wi = a

r−1
i r

∏
m∈fV (i)(x

′+m)

i0
,W(i,j) = a

r−1
(i,j)

r(x′+j)
∏

m∈fE (i,j)(x
′+m)

(i,j)0

}
in line (2) correspond to the committed graph G in the cre-
dential where Xεi1

01
X
εi0
00

= X
ri(x

′+i)
00

and X
ε(i,j)1
01

X
ε(i,j)0
00

=

X
r(i,j)(x

′+i)
00

. Next, in line (3), v′ = vry
−1

are the public input
for the randomized signature σ′ where bρcωv′−τ = brscrv′−ty

and v′γ = v′y .
As possession predicate is a compound proofs with PoK

for MSC.Open and the PoK for a CL.VerifyRand in a plug-
and-play manner, additional proofs can be modularly added to
the compound proofs to answer complex queries as shown in
Section VII.

B. Security Properties

Theorem 7 (PUNL-ACA). The proposed relational credential
system ReCS is protocol unlinkable under active and concur-
rent attacks.

We prove Theorem 7 in Appendix M.

Theorem 8 (IMP-ACA). The proposed relational credential
system ReCS is secure against impersonation under active
and concurrent attacks, if the co-SDH problem is intractable.

We restate this theorem precisely in Theorem 15 and prove
its security in Appendix M.

VII. A PROOF SYSTEM ON SOCIAL GRAPHS

In this section, we complement the relational credential
system with a zero-knowledge proof system that operates on
social graphs. We focus on the vital predicates for a social
graph application introduced in Example 1 and Figure 2,
connection through multiple hops (§VII-A) and graph coverage
(§VII-B). We include more predicate types in Appendix M.

A. Graph Connection Proof

The purpose of the connection predicate is to show that there
exists a path in the signed graph G with at most ` hops between
two vertices. The predicate connected(i∗,j∗,`) verifies such
connectivity by proving that there exists a secret sequence of
sequential edges E′ = {E′1, . . . , E′`} ⊂ G that connects i∗

and j∗. Let I = {(i∗, j1), (j1, j2), . . . , (j`−1, j
∗)} be the edge
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self

name:	Alice

prof:		Journalist

liveIn:	London

ID:	2

name:	Carol

prof:	Attorney

liveIn:		Santa	Cruz

ID:	3

name:	Bob

prof:	Sys	Admn

liveIn:		Lausanne

ID:	4

name:	EFF

liveIn:		San
					Francisco

ID:	5

name:	The	
					Guardian

liveIn:		London

ID:	2 ID:	3

type:	friend

ID:	2 ID:	4

type:	work

self ID:	2

type:	friend

self ID:	5

type:	work

(a) Connection connected(i,j,`)

self

name:	Alice

prof:		Journalist

liveIn:	London

ID:	2

name:	Carol

prof:	Attorney

liveIn:		Santa	Cruz

ID:	3

name:	Bob

prof:	Sys	Admn

liveIn:		Lausanne

ID:	4

name:	EFF

liveIn:		San
					Francisco

ID:	5

name:	The	
					Guardian

liveIn:		London

ID:	2 ID:	3

type:	friend

ID:	2 ID:	4

type:	work

self ID:	2

type:	friend

self ID:	5

type:	work

(b) Label coverage cover(G′,1)

Fig. 2: Graph proof predicates

identifiers for all the edges in E′. We place the detailed zero-
knowledge proof for connected predicate in Appendix M and
describe the brief idea here:

PK

{
(σ′,G, E′, I) : CL.VerifyRand(mpk, σ′,G) = 1∧ (4)

MSC.VerifyIntersection(mpk,C, (E′,W ), (E′, (`, κ))) = 1∧
(5)

MSC.VerifyIntersection(mpk,CE′ , (I,WI), (I, (|I|, 2))) = 1∧
(6)

MSC.VerifyIntersection(mpk,CV , (I,WV), (I, |I|)) = 1

}
(7)

where clause (4) verifies the validity of the randomized sig-
nature σ′ = CL.Randomize(mpk, σ) and clause (5) confirms
the existence of a set of edges E′ in G by making use of
the MSC intersection algorithms such that |E′l | = kl ∈ κ and
C = MSC.Commit(mpk,G). Similarly, clause (6) extracts all
edge identifiers I from E′ by setting the intersection thresholds
as k1 = 2, . . . , k|I| = 2 for every set in I where CE′ =
MSC.Commit(mpk,E′). Clause (7) is the set membership proof
for I in which CV = a

∏
i∈V(x′+i)

00
= MSC.Commit(mpk,V) is

the MoniPoly MSC commitment on all vertices in the vertex
universe V .

Example 2 (Friend-of-a-Friend). We can use the
connected(i∗,j∗,`=2) predicate to prove a FOAF statement
as introduced with the scenario in Example 1.

prove you are connected to my node (≤ two hops).

Figure 2a depicts how the consecutive edges between Alice
and Bob are proven, without revealing intermediate vertices.

B. Graph Coverage Proof

The purpose of the graph coverage proof is to show that
the prover’s G holds vertex, edge and label constellations the
verifier requires. In formal terms, the graph coverage predicate
cover(G′,`) shows that a graph G′ = (V ′, E′, fV , fE) specified
in the verifier’s predicate intersects with the prover’s signed
graph G = (V,E, fV , fE) at ` secret vertices i and/or edges
(i, j). Let I = G′ ∩ G, the detailed zero-knowledge proof can
be found in Appendix M in which the idea behind the proof
is as follows:

PK

{
(σ′,G, I,G′) : CL.VerifyRand(mpk, σ′,G) = 1∧ (8)

MSC.VerifyIntersection(mpk,C, (I,W ), (G′, (`, κ))) = 1∧
(9)

MSC.Open(mpk,C ′,G′, O′) = 1∧ (10)

MSC.VerifyIntersection(mpk,C ′, (I,WI), (I, (`, κ))) = 1

}
(11)

where clause (8) works the same as clause (4) while clause (9)
shows the existence of I in the signed graph G such that
|Il| = kl ∈ κ. Lastly, clause (11) confirms the same I that
appears in clause (8) exists in C ′ = MSC.Commit(mpk,G′)
whose correctness is verified by the clause (10). Referring to
the running example and Figure 2, let us consider a query
inquiring about labels:

Example 3 (Label Coverage). Bob could require that being a
member of staff of any specified trusted newspaper:

prove that you are with The Guardian (type: work)∨
prove that you are with The WP (type: work)∨
prove that you are with Der Spiegel (type: work).
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This example uses cover(G′,`=1)(G) predicate with

G′ =

{
V ′ =

{
{self}, {ID : 5, name : TheGuardian},

{ID : 5, name : TheWP}, {ID : 5, name : DerSpiegel}
}
,

E′ =
{
{self, ID : 5, type : work}

}}
.

To connect to Bob’s service provider, Alice proves that she
is a member of staff from one of the three newspapers (cf.
Figure 2b).

VIII. PERFORMANCE EVALUATION

We compare the proof complexity and implementation per-
formance in Figure 3.

A. Proof Complexity

In Figure 3a, we compare the computational protocol
complexity of the new scheme to the prior SRSA graph
signature scheme by Groß [32]. For that, we use the number
of point multiplications M1 in G1 (resp. Mx for Gx) as
a benchmarking unit. We set the conversion parameters at
128-bit security level [8] to 1M2 = 2M1, 1MT = 6M1, a
pairing 1P = 9M1 and a modular exponentiation in SRSA
1E = 5M1. We assume that every vertex i ∈ V and edge
(i, j) ∈ E has the same number of labels ` = 10. The number
of edges is set to be twice the number of vertices, |E| = 2|V |.
Figure 3a shows that the computational complexity of the new
q-SDH graph signature scheme is consistently lower than that
of the SRSA-based graph signature scheme [32]. This holds,
unless the number of labels per vertex/edge is large (> 50).
For the relational credential system, our scheme will always
be faster, because the numbers of labels per graph element is
generally small (≤ 20). The proof size is proportional to the
proof complexity.

B. Implementation Benchmarks

We have implemented the ReCS and the underlying q-SDH
graph signature scheme in Java, based on the elliptic curve and
pairing cryptography implementation of the Apache Milagro
Crypto Library (AMCL), v. 3.2. The implementation is based
on the BLS461 curve that offers a 128-bit security for our
ReCS.

We conducted performance experiments on actual social
graphs extracted from Facebook, based on the Stanford Snap
dataset [41]. This dataset was obtained by traversing the social
graph of eight user accounts. From this database, we randomly
selected users and computed their user-specific social graphs.
The graph-size distribution is heavily positively skewed with
a M|G| = 451, Mdn |G| = 94.5 and SD |G| = 770.

Subsequently, we computed 10 warm-up rounds and then
50 evaluation rounds of the issuing and proof system proto-
cols per given graph size. The performance evaluation was
computed on an Intel Core i7-2600S CPU with 2.80GHz,
with 4 cores, while the experiment was restricted to a single
core. The machine had 8 GB RAM and was operating under
Ubuntu 16.04 with kernel version 4.15 and the Oracle JDK

v. 1.8.0 201. We chose a random friend-of-a-friend in the
user’s social network and computed connectivity proofs to
establish the FOAF relationship. While the performance is
linear in the overall graph size as predicted, we display the
results in Figure 3b in square-root scale to better visualize
the majority of small social graphs. The mean execution time
heavily positively skewed, with Mt = 6s, Mdnt = 1.358s and
SD t = 10.3s.

IX. CONCLUSION

We proposed the new concept of a relational credential
system, a privacy-enhancing technology that enables users to
gain access to resources not only based on the possession of
credentials or statements on private attributes, but also based
on predicates on a private social graph. We designed the first
construction of such a system, based on a new construction
for a q-SDH graph signature scheme, which enables the
representation of the social graph in the credential and fea-
tures an efficient and expressive zero-knowledge proof system
thereon. This key ingredient of a new graph signature scheme
can be of independent interest. We proved the unlinkability
and impersonation resilience of this scheme in the standard
model with tight reduction. We believe that our construction
will open up new application cases for anonymous credential
systems and, thereby, make this mainstay privacy-enhancing
technology even more useful.
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APPENDIX

We include a brief definition of the oracles used in the
security proofs in Table III.

Before presenting the analysis, we first present the security
games that define IUNL-ACA, SUNL-ACA and GUNL-ACA.

A. IUNL-ACA

The privacy goal of a secure issuing protocol is to hide the
user’s secret graph GU: an adversary should not be able to
learn from the interaction with a user about GU. We define
this notion as issuing unlinkability (IUNL) under active and
concurrent attack (ACA) through the security game defined in
Table IV.

Definition 21 (IUNL-ACA). Let ReCS =
(Setup, (Obtain, Issue), (Prove, Verify)) be an relational
credential system and let A be an adversary. Let

εiunl = Pr
[
Gameiunl-aca

ReCS,A = Win
]
− 1

2
,

we say that a ReCS is IUNL-ACA secure if εiunl is negligible.

B. SUNL-ACA

The privacy goal of a secure showing protocol is to hide the
user credential cred: an adversary should not be able to learn
from the interaction with a prover about cred. We define this
notion as showing unlinkability (SUNL) under active attack
(ACA) through the security game defined in Table V.

Definition 22 (SUNL-ACA). Let ReCS =
(Setup, (Obtain, Issue), (Prove, Verify)) be an attribute
credential system and let A be an adversary. Let

εsunl = Pr
[
Gamesunl-aca

ReCS,A = Win
]
− 1

2
,

we say that ACS is SUNL-ACA secure if εsunl is negligible.

C. GUNL-ACA

The privacy goal of a secure showing protocol is to hide the
graphs (GU,GI) in the credential: an adversary should not be
able to learn from the interaction with a prover about (GU,GI).
We define this notion as graph unlinkability (GUNL) under
active and concurrent attack (ACA) through the security game
in Table VI.

Definition 23 (GUNL-ACA). Let ReCS =
(Setup, (Obtain, Issue), (Prove, Verify)) be an relational
credential system and let A be an adversary. Let

εgunl = Pr
[
Gamegunl-aca

ReCS,A = Win
]
− 1

2
,

we say that ReCS is GUNL-ACA secure if εgunl is negligible.
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TABLE III: Oracle specifications.

OIssue(mpk,msk,GU,GI, sid)
If (GU,GI, sid) 6∈ IS, then
IS ← IS ∪ (GU,GI, sid)

(π, σ)← U(sid,mpk,GU)
HU ← HU ∪ {sid,GU,GI, σ, π}
Return (cred, π)

OIssuing(mpk,GU,GI, sid)
If (sid,GU,GI, ·, π) ∈ HU ∪ CU , then

return {π}
(·, π)← OIssue(mpk,msk,GU,GI, sid)
Return (π)

OVerify(mpk,GU,GI, φ, sid)
If (GU,GI, φ, sid) 6∈ SS, then
SS ← SS ∪ (GU,GI, φ, sid)

If (sid,GU,GI, ·, ·) 6∈ CU ∪HU , then
If (sid,GU,GI, ·, ·, ·) 6∈ CPV ∪HPV , then
(cred, ·)← OIssue(mpk,msk,GU,GI, sid)

(π̃, 1)← P(sid,mpk, cred, φ)
HPV ← HPV ∪ {sid,GU,GI, cred, φ, π̃}
Return (π̃)

OShowing(mpk,GU,GI, φ, sid)
If (GU,GI, φ, sid) 6∈ SS, then
SS ← SS ∪ (GU,GI, φ, sid)

If (sid,GU,GI, ·, φ, π̃) ∈ CPV ∪HPV , then
return {π̃}

(π̃)← OVerify(mpk,GU,GI, φ, sid)
Return (π̃)

OCorrU(π)
If (·, ·, ·, ·, π) 6∈ HU , return ⊥
HU ← HU \ {sid,GU,GI, cred, π}
CU ← CU ∪ {sid,GU,GI, cred, π}
Return (cred)

OCorrP(π̃)
If (·, ·, ·, ·, ·, π̃) 6∈ HPV , return ⊥
HPV ← HPV \ {sid,GU,GI, cred, φ, π̃}
CPV ← CPV ∪ {sid,GU,GI, cred, φ, π̃}
Return (cred)

Note: IS : issuing session, SS : showing session, U: user, P: prover, (CU,CPV ) : corrupted user list, (HU,HPV ) : honest user list,
π : signing transcript, π̃ : showing transcript

TABLE IV: The IUNL− ACA security game.

Gameiunl-aca
ReCS,A

IS ← ∅;SS ← ∅;CU ← ∅; HU ← ∅
O(·)← {OIssue(·),OCorrU(·)}
b← {0, 1}; (mpk,msk)← Setup(1k);
(GU0,GU1)← AO(mpk,msk)
If |GU0| 6= |GU1|, then return Lose
(πb, credb)← (Obtain(mpk,GUb)↔ A

O(GU0,GU1,GIb ,G
I
1−b))

(π1−b, cred1−b)← (Obtain(mpk,GU1−b)↔ A
O(GU0,GU1,GIb ,G

I
1−b))

If |GIb | 6= |G
I
1−b|, then return Lose

b′ ← AO((GU0,GU1), (GIb ,G
I
1−b), (πb, π1−b))

If (·, ·, ·, ·, πb) ∈ CU ∨ (·, ·, ·, ·, π1−b) ∈ CU , then return Lose
If b = b′, then return Win, else return Lose

Note: (GU0,GU1) : challenge graphs, (GI0,GI1) : issuer-assigned graphs,
(π0, π1) : issuing transcript, IS: issuing session,
SS: showing session, CU : corrupted user list,
HU : honest user list

D. Relating the Security Notions

Adopting Bellare et al.’s approach [42], for each pair of
notions

A,B ∈ {IUNL− ACA, SUNL− ACA, GUNL− ACA, PUNL− ACA},

we show one of the following:

1) Implication (A ⇒ B) : A proof that if ReCS is any
relational credential system meeting notion of security A
then ReCS also meets notion of security B.

2) Separation (A 6⇒ B) : A construction of a ReCS that
provably meets notion of security A but provably does
not meet notion of security B.

Figure 4 is the summary of the relations among the security
notions discussed in this work. We claim that for any pair
of notions A,B, it is the case that A implies B if and only
if there is a path from A to B in the graph. For instance,
we claim that IUNL-ACA does not imply PUNL-ACA. If
we have IUNL-ACA implies PUNL-ACA, then pair with
GUNL-ACA implying SUNL-ACA would give IUNL-ACA
implying SUNL-ACA, which has been proven to be false.

PUNL-ACA

IUNL-ACA SUNL-ACA GUNL-ACA

Thm
. 13 Thm. 14

Thm. 9
Thm. 10

/
Thm. 11

/

Thm. 12
Fig. 4: Relationships among privacy security notions. An arrow
represents an implication and a hatched arrow represents a
separation. The number on an arrow or hatched arrow refers
to the theorem in this paper which establishes this relationship.

E. SUNL-ACA ⇒ GUNL-ACA

Theorem 9 ((SUNL-ACA ⇒ GUNL-ACA)). If a probabilistic
polynomial time adversary A breaks the SUNL-ACA security
of a ReCS, then it also breaks the GUNL-ACA security of a
ReCS such that:

εsunl = εgunl

Proof. To simplify the explanation, we view the graph un-
linkability adversary as B = {B1,B2,B3} with respect to the
the training, challenge and guessing phase in Gamegunl-aca

ReCS,B .
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TABLE V: The SUNL− ACA security game.

Gamesunl-aca
ReCS,A

IS ← ∅;SS ← ∅;CPV ← ∅; HPV ← ∅
O(·)← {OVerify(·),OCorrP(·)}
b← {0, 1}; (mpk,msk)← Setup(1k);
(cred0, cred1, φ∗)← AO(mpk,msk)
If |GU0| 6= |GU1| ∨ |GI0| 6= |GI1|, then return Lose
If φ∗(GU0 ∪ GI0) = 0 ∨ φ∗(GU1 ∪ GI1) = 0, then return Lose
(π̃b, 1)← (Prove(mpk, credb, φ

∗)↔ AO(cred0, cred1, φ∗)
(π̃1−b, 1)← (Prove(mpk, cred1−b, φ

∗)↔ AO(cred0, cred1, φ∗)
b′ ← AO((cred0, cred1), φ∗, (π̃b, π̃1−b))
If (·, ·, ·, ·, ·, π̃b) ∈ CPV ∨ (·, ·, ·, ·, ·, π̃1−b) ∈ CPV , then return Lose
If b = b′, then return Win, else return Lose

Note: (cred0, cred1) : challenge credentials, φ∗ : challenge predicate,
(GU0,GU1,GI0,GI1) : challenge graphs, (π0, π1) : issuing transcript,
IS: issuing session, SS: showing session,
CPV : corrupted user list, HPV : honest user list

TABLE VI: The GUNL− ACA security game.

Gamegunl-aca
ReCS,A

IS ← ∅;SS ← ∅;CPV ← ∅; HPV ← ∅
O(·)← {OVerify(·),OCorrP(·)}
b← {0, 1}; (mpk,msk)← Setup(1k);
((GU0,GI0), (GU1,GI1), φ∗)← AO(mpk,msk)
If |GU0| 6= |GU1| ∨ |GI0| 6= |GI1|, then return Lose
If φ(GU0 ∪ GI0) = 0 ∨ φ(GU1 ∪ GI1) = 0, then return Lose
(π0, cred0)← (Obtain(mpk,GU0)↔ Issue(mpk,msk,GI0)
(π1, cred1)← (Obtain(mpk,GU1)↔ Issue(mpk,msk,GI1)
(π̃b, 1)← (Prove(mpk, credb, φ

∗)↔ AO((GU0,GI0), (GU1,GI1), φ∗)
(π̃1−b, 1)← (Prove(mpk, cred1−b, φ

∗)↔ AO((GU0,GI0), (GU1,GI1), φ∗)
b′ ← AO((GU0,GI0), (GU1,GI1), φ∗, (π̃b, π̃1−b))
If (·, ·, ·, ·, ·, π̃b) ∈ CPV ∨ (·, ·, ·, ·, ·, π̃1−b) ∈ CPV , then return Lose
If b = b′, then return Win, else return Lose

Note: (cred0, cred1) : credentials, φ∗ : challenge predicate,
(GU0,GU1,GI0,GI1) : challenge graphs, (π0, π1) : issuing transcript,
IS: issuing session, SS: showing session,
CPV : corrupted user list, HPV : honest user list

Assume B exists, we can construct an adversary A =
{A1,A2,A3} to break the showing unlinkability of a ReCS
with the help from B. Specifically, A runs B as its sub-routine
as follows:

Algorithm AO1 (mpk,msk)
((GU0,GI0), (GU1,GI1), φ∗)← BO1 (mpk,msk)
(cred0)← OIssue(mpk,msk, (GU0,GI0), sid)
(cred1)← OIssue(mpk,msk, (GU1,GI1), sid)
return (cred0, cred1, φ

∗)
Algorithm AO2 (cred0, cred1, φ

∗)
(π̃b, 1)← BO2 ((GU0,GI0), (GU1,GI1), φ∗)
(π̃1−b, 1)← BO2 ((GU0,GI0), (GU1,GI1), φ∗)
return (π̃b, π̃1−b)

Algorithm AO3 ((cred0, cred1), φ∗, (π̃b, π̃1−b))
b′ ← BO3 ((GU0,GI0), (GU1,GI1), φ∗, (π̃b, π̃1−b))
return b′

Since A simulates the environment perfectly, we have:

εsunl = Pr[Gamesunl-aca
ReCS,A = Win]− 1

2

= Pr[Gamegunl-aca
ReCS,A = Win]− 1

2

= εgunl +
1

2
− 1

2
= εgunl

as required.

F. GUNL-ACA ⇒ SUNL-ACA

Theorem 10 ((GUNL-ACA⇒ SUNL-ACA)). If a probabilistic
polynomial time adversary A breaks the GUNL-ACA security
of a ReCS, then it also breaks the SUNL-ACA security of a
ReCS such that:

εgunl = εsunl

Proof. To ease the explanation, we view the showing
unlinkability adversary as B = {B1,B2,B3} with respect
to the the training, challenge and guessing phase in
Gamesunl-aca

ReCS,B . Assume B exists, we can construct an
adversary A = {A1,A2,A3} to break the graph unlinkability
of a ReCS with the help from B. Specifically, A runs B as
its sub-routine as follows:

Algorithm AO1 (mpk,msk)
(cred0, cred1, φ

∗)← BO1 (mpk,msk)
(σ0,GU0,GI0)← cred0; (σ1,GU1,GI1)← cred1

return ((GU0,GI0), (GU1,GI1), φ∗)
Algorithm AO2 ((GU0,GI0), (GU1,GI1), φ∗)

(π̃b, 1)← BO2 (cred0, cred1, φ
∗)

(π̃1−b, 1)← BO2 (cred0, cred1, φ
∗)

return (π̃b, π̃1−b)
Algorithm AO3 ((GU0,GI0), (GU1,GI1), φ∗, (π̃b, π̃1−b))
b′ ← BO3 ((cred0, cred1), φ∗, (π̃b, π̃1−b))
return b′
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During the challenge phase, if the credential generation
algorithm is not deterministic, with high probability, A2’s
prover uses valid (cred′0 6= cred0, cred

′
1 6= cred1) to interact

with the verifier A2. We highlight that by the definition of
SUNL-ACA, B2 cannot distinguish whether (cred0, cred1) or
(cred′0, cred

′
1) are used in the showing protocol as long as

φ(GU0∪GI0) = φ(GU1∪GI1) = 1 holds. If B can distinguish so, it
can set GU0 = GU1 and GI0 = GI1 to run the challenge phase with
(cred0, cred1) in which it can always win the SUNL− ACA

game.
Since A simulates the environment perfectly, we have:

εgunl = Pr[Gamegunl-aca
ReCS,A = Win]− 1

2

= Pr[Gamesunl-aca
ReCS,A = Win]− 1

2

= εsunl +
1

2
− 1

2
= εsunl

as required.

G. IUNL-ACA 6⇒ SUNL-ACA

Theorem 11 (IUNL-ACA 6⇒ SUNL-ACA). If there exists a
ReCS which is IUNL-ACA secure, then there exists an ReCS′

which is IUNL-ACA secure but not SUNL2-ACA secure.

Proof. Assume there exists an IUNL-ACA secure
ReCS = (Setup, (Obtain, Issue), (Prove, Verify)),
since otherwise, the theorem is vacuously true.
We now modify the ReCS into a new ReCS′ =
(Setup′, (Obtain′, Issue′), (Prove′, Verify′)) which is
also IUNL-ACA secure but not SUNL-ACA secure. The new
ReCS′ is defined as follows.

Algorithm Setup′(1k)
(mpk,msk)← Setup(1k)
return (mpk,msk)

Algorithm Obtain′(mpk,GU)
(π, cred)← Obtain(mpk,GU)
return (π, cred)

Algorithm Issue′(mpk,msk,GI)
(π)← Issue(mpk,msk,GI)
return (π)

Algorithm Prove′(mpk, cred, φ∗)
(π̃)← Prove(mpk, cred, φ∗)
m̃1 ← π̃ \ {m̃2, . . .}
π̃ ← π̃ \ m̃1

m̃1 ← m̃1 ∪ cred
π̃ ← π̃ ∪ m̃1

return (π̃)
Algorithm Verify′(mpk, φ∗)
m̃1 ← π̃ \ {m̃2, . . .}
π̃ ← π̃ \ m̃1

m̃1 ← m̃1 \ cred
π̃ ← π̃ ∪ m̃1

(π̃)← Verify(mpk, φ∗)
return (π̃, d)

Essentially, the first outgoing message m̃1 of Prove′ is
appended with cred while Verify′ ignores the appended cred.

The incoming messages for Verify are always valid and the
showing protocol executes successfully.

a) ReCS′ is not SUNL-ACA secure.: As the outgoing
message m̃1 ∪ cred → m̃1 ∈ π̃ of the prover in the showing
protocol is the input message m̃1 for the verifier, A from
SUNL-ACA can view the showing transcript π̃ and extract
cred to win in the game.

b) ReCS′ is IUNL-ACA secure.: By the definition of
IUNL-ACA, the credential cred is not accessible to its A
through out the security game. Also, A does not have a way to
force the prover in using the cred (which might not exist) of
its interest in a showing protocol. So, if ReCS is IUNL-ACA
secure, then ReCS′ is also IUNL-ACA secure.

H. SUNL-ACA 6⇒ IUNL-ACA

Theorem 12 (SUNL-ACA 6⇒ IUNL-ACA). If there exists a
ReCS which is SUNL-ACA secure, then there exists an ReCS′

which is SUNL-ACA secure but not IUNL-ACA secure.

Proof. Assume there exists an SUNL-ACA secure
ReCS = (Setup, (Obtain, Issue), (Prove, Verify)),
since otherwise, the theorem is vacuously true. We
now modify the ReCS into a ReCS′ = (Setup′,
(Obtain′, Issue′), (Prove′, Verify′)) which is also
SUNL-ACA secure but not IUNL-ACA secure. The new
ReCS′ is defined as follows.

Algorithm Setup′(1k)
(mpk,msk)← Setup(1k)
return (mpk,msk)

Algorithm Obtain′(mpk,GU)
(π, cred)← Obtain(mpk,GU)
m1 ← π \ {m2, . . .}
π ← π \m1

m1 ← m1 ∪ GU
π ← π ∪m1

return (π, cred)
Algorithm Issue′(mpk,msk,GI)
m1 ← π \ {m2, . . .}
π ← π \m1

m1 ← m1 \ GU
π ← π ∪m1

(π)← Issue(mpk,msk,GI)
return (π)

Algorithm Prove′(mpk, cred, φ∗)
(π̃, d)← Prove(mpk, cred, φ∗)
return (π̃)

Algorithm Verify′(mpk, φ∗)
(π̃, d)← Verify(mpk, φ∗)
return (π̃)

Basically, the first outgoing message m1 of Obtain′ is
appended with GU while Issue′ ignores the appended GU. The
incoming messages for Issue are always valid and the issuing
protocol executes successfully.

a) ReCS′ is not IUNL-ACA secure.: As the outgoing
message m1∪GU → m1 ∈ π of the user in the issuing protocol
is the input message m1 for the issuer, A from IUNL-ACA
can view the issuing transcript π and extract GU to win in the
game.
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b) ReCS′ is SUNL-ACA secure.: By the definition of
SUNL-ACA, the graph GU in the issuing protocol is not privy
to its A which can choose (GU,GI) of its favour to generate
cred. So, if the ReCS is SUNL-ACA secure, then ReCS′ is also
SUNL-ACA secure.

I. PUNL-ACA ⇒ IUNL-ACA

Theorem 13 (PUNL-ACA ⇒ IUNL-ACA). If a probabilistic
polynomial time adversary A breaks the PUNL-ACA security
of a ReCS, then it also breaks the IUNL-ACA security of a
ReCS such that:

εpunl =
1

2
εiunl

Proof. To explain in a concise manner, we view the issu-
ing unlinkability adversary as B = {B1,B2,B3} with re-
spect to the the training, challenge and guessing phase in
Gameiunl-aca

ReCS,B. Assume B exists, we can construct an adversary
A = {A1,A2,A3} to break the protocol unlinkability of a
ReCS with the help from B. Specifically, A runs B as its sub-
routine as follows:

Algorithm AO1 (mpk,msk)
(GU0,GU1)← BO1 (mpk,msk)
φ← Φ s.t. φ(GU0) = φ(GU1) = 1
return (GU0,GU1, φ∗)

Algorithm AO2 ((GU0,GU1), (·, ·), φ∗)
(πb, credb)← BO2 (GU0,GU1,GIb ,GI1−b)
(π1−b, cred1−b)← BO2 (GU0,GU1,GIb ,GI1−b)
GIb1 ← G

I
b ; GI1−b1 ← G

I
1−b

πb1 ← πb;π1−b1 ← π1−b
return ((GIb1 ,G

I
1−b1), (πb1 , π1−b1))

Algorithm AO3 ((GU0,GU1), (GIb1 ,G
I
1−b1), (πb1 , π1−b1), φ∗, (π̃b2 , π̃1−b2))

b′ ← BO3 ((GU0,GU1), (GIb ,GI1−b), (πb, π1−b))
return b′

where A simulates the environment perfectly for B. During the
challenge phase, as A2 acts as the man-in-the-middle between
its user and B2, the graphs (GIb1 ,G

I
1−b1) = (GIb ,GI1−b) are

determined by B2 instead. Besides, as B2 does not run the
showing protocols, A2 runs the showing protocols by itself to
get (π̃b2 , π̃1−b2). Finally, A sets the output b′ from B as its
guess. The probability of A winning the game is:

Pr[Gamepunl-aca
ReCS,B = Win] = Pr[b1 ⊕ b2 = b′]

=
1

2
(Pr[b′ = 0|b1 ⊕ b2 = 0] + Pr[b′ = 1|b1 ⊕ b2 = 1])

=
1

2
(Pr[b′ = b1 = b2] + Pr[b′ = b1 6= b2])

=
1

2

(
εiunl +

1

2

)
+

1

2

1

2

=
1

2
εiunl +

1

2
.

Therefore, by definition, the advantage of A is:

εpunl = Pr[Gamepunl-aca
ReCS,B = Win]− 1

2

=
1

2
εiunl +

1

2
− 1

2
=

1

2
εiunl

as required.

J. PUNL-ACA ⇒ GUNL-ACA

Theorem 14 (PUNL-ACA ⇒ GUNL-ACA). If a probabilistic
polynomial time adversary A breaks the PUNL-ACA security
of a ReCS, then it also breaks the IUNL-ACA security of a
ReCS such that:

εpunl =
1

2
εgunl

Proof. To explain neatly, we view the graph unlinkability
adversary as B = {B1,B2,B3} with respect to the the training,
challenge and guessing phase in Gamegunl-aca

ReCS,B . Assume B
exists, we can construct an adversary A = {A1,A2,A3} to
break the protocol unlinkability of a ReCS with the help from
B. Specifically, A runs B as its sub-routine as follows:

Algorithm AO1 (mpk,msk)
((GU0,GI0), (GU1,GI1), φ∗)← BO1 (mpk,msk)
return (GU0,GU1, φ∗)

Algorithm AO2 ((GU0,GU1), (GI0,GI1), φ∗)
b′1 ← {0, 1}
(πb1 , credb1)← Issue(mpk,msk,GIb′1)

(π1−b1 , cred1−b1)← Issue(mpk,msk, ,GI1−b′1)

(π̃b, 1)← BO2 (GU0,GU1,GI0,GI1, φ∗)
(π̃1−b, 1)← BO2 (GU0,GU1,GI0,GI1, φ∗)
π̃b2 ← π̃b; π̃1−b2 ← π̃1−b
return ((πb1 , π1−b1), (π̃b1 , π̃1−b1))

Algorithm AO3 ((GU0,GU1), (GIb1 ,G
I
1−b1), (πb1 , π1−b1), φ∗, (π̃b2 , π̃1−b2))

b′ ← BO3 ((GU0,GI0), (GU1,GI1), φ, (πb, π1−b))
return b′

where A simulates the environment perfectly for B. During
the challenge phase, as B2 does not run the issuing protocols,
the signer A2 interacts with its user to generate (πb1 , credb1)
and (π1−b1 , cred1−b1). During the issuing, A2 guesses the
sequence b1 ∈ {0, 1} selected by its prover and chooses a
graph GI0 or GI1 , that is, GIb′1 and GI1−b′1 for a bit b′1 ∈ {0, 1}.
Even if A2 made a wrong guess such that b1 6= b′1, B cannot
discover this error because when φ(GU0∪GI0) = φ(GU1∪GI1) = 1,
it must be φ(GU0) = φ(GU1) and φ(GI0) = φ(GI1) and therefore
φ(GU0 ∪ GI1) = φ(GU1 ∪ GI0) = 1. Moreover, as explained in
Section F, B is not able to distinguish valid (credb2 , cred1−b2)
under φ∗ during a showing protocol.

Subsequently, A2 acts as the man in the middle between its
prover and B2 to get (π̃b2 , π̃1−b2). Finally, A sets the output
b′ from B as its guess. The probability of A winning the game
is:

Pr[Gamepunl-aca
ReCS,B = Win] = Pr[b1 ⊕ b2 = b′]

=
1

2
(Pr[b′ = 0|b1 ⊕ b2 = 0] + Pr[b′ = 1|b1 ⊕ b2 = 1])

=
1

2
(Pr[b′ = b2 = b1] + Pr[b′ = b2 6= b1])

=
1

2
(εgunl +

1

2
) +

1

2

1

2

=
1

2
εgunl +

1

2
.

Hence, by definition, the advantage of A is:

εpunl = Pr[Gamepunl-aca
ReCS,B = Win]− 1

2

=
1

2
εgunl +

1

2
− 1

2
=

1

2
εgunl
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as required.

OpenDifference (pk , C,A,O, (A′, (¯̀, κ̄))). Let A′ =
{A′1, . . . , A′L}, κ̄ = {k̄1, . . . , k̄L}, 1 ≤ ¯̀ ≤ L and Di,j =
A′j \Ai. If there are ¯̀-many A′j such that |Di,j | = k̄j ≤ |A′j |
holds for all Ai ∈ A, group these differing sets Di,j with
respect to A′j as Dj and subsequently as the multi-set D where
each Dj contains Di,j for every Ai ∈ A. Return D and the
corresponding witness

W =
({
∀Ai ∈ A : Wi,j = a

qi,j(x′)
i0

, ri,j(x
′),{

∀m ∈ Di,j : Wi,j,m = a
qi,j,m(x′)
i0

, ri,j,m(x′)
}}

A′j∈D

)
.

Specifically, let the polynomial divisor be
di,j(x

′) =
∏
m∈Di,j

(x′ + m), the monic polynomial

fi(x
′) = oi

∏
m∈Ai

(x′ +m) in the commitment Ci = a
fi(x

′)
i0

can be rewritten2 as fi(x′) = di,j(x
′)qi,j(x

′) + ri,j(x
′) while

the (k̄i − 1)-degree ri,j(x′) = (x′ +m)qi,j,m(x′) + ri,j,m(x′)
for every m ∈ Di,j where ri,j,m(x′) is a non-zero constant.
If no such multi-set D exists, return an error ⊥.

VerifyDifference (pk , C, (D,W ), (A′, (¯̀, κ̄))). Let D =
{Dj}

A′j

¯̀

∈A′
where each Dj contains Di,j for every Ai ∈ A,

return 1 if the following conditions hold:

1) ∀Di,j ∈ A′ : e

(∏
Ai∈A

∏
A′j∈A′

a

∏
m∈A′

j
(x′+m)

00
, X00

)
=

e

(∏
Ai∈A

∏
A′j∈A′\D

a

∏
m∈A′

j
(x′+m)

00
, X00

)
·∏

Ai∈A
∏
A′j∈D

e

(
a

∏
m∈A′

j
\Di,j

(x′+m)

00
, X

∏
m∈Di,j

(x′+m)

00

)
2) ∀Di,j ∈ D is disjoint to A :

a) ∀Di,j ∈ D : Ri,j = a
ri,j(x′)
i0

6= 1G1

b) ∀Dj ∈ D : e (C,X00) =∏
Ai∈A e

(
Wi,j , X

∏
m∈Di,j

(x′+m)

00

)
·

e
(∏

Ai∈ARi,j , X00

)
3) ∀m ∈ Di,j is co-prime to the respective remainders Ri,j

above.
a) ∀m ∈ Di,j : Ri,j,m = a

ri,j,m(x′)
i0

6= 1G1

b) ∀m ∈ Di,j : e
(∏

Ai∈ARi,j , X00

)
=

e
(∏

Ai∈AWi,j,m, X
(x′+m)
00

)
·

e
(∏

Ai∈ARi,j,m, X00

)
and return 0 otherwise.

Theorem 3 (Binding). The MoniPoly multi-set commitment
scheme is computationally binding if the co-DLOG problem
is hard.

Proof. Given a co-DLOG instance (g1, h1 = gx1 ∈
G1, g2, h2 = gx2 ∈ G2), we construct a challenger C that runs
the adversary A of MoniPoly multi-set commitment scheme
as a sub-routine to find the solution x.

2Note that ri,j(x′) 6= 0 and therefore a
ri,j(x

′)
i0

6= 1G1
whenever di,j(x′)

cannot divide fi(x′), i.e., the sets Ai and Dj are disjoint.

C sets {a0k
= gx

′k

1 , X0k
= gx

′k

2 }nk=0 and {a1k
=

hx
′k

1 , X1,k = hx
′k

2 }nk=0 for randomly chosen x′ ∈ Z∗p. Sub-
sequently, C chooses random {bi}Li=2 ∈ Z∗p and tosses a fair
coin c ∈ {0, 1} for L−1 times. If c = 0, {aik = abix

′k

0k
, Xik =

Xbix
′k

0k
}. Else if c = 1, {aik = abix

′k

1k
, Xik = Xbix

′k

1k
}. C

publishes {{aik , Xik}nk=0}Li=0 as the public parameters.
If an adversary can output a commitment C for two different

multi-sets (A,O) 6= (A∗, O∗) such that:

L∏
i=1

a
oi

∏
m∈Ai

(x′+m)

i0
= C =

L∏
i=1

a
o∗i

∏
m∗∈A∗

i
(x′+m∗)

i0
,

the co-DLOG solution can be extracted. We first analyse the
case of A 6= A∗ and O 6= O∗ but we do not consider the
difference in a single set such that Ai 6= A∗i and oi 6= o∗i
as this will not happen by Theorem 16. Assume it is only
Ai 6= A∗i and oj 6= o∗j for two indices i 6= j. Assume c

is distributed evenly, with probability of L
2(L−1) , the i-th and

j-th sets fall under the bases g1 and h1, respectively:

g

∑
∀is.t.c=0 bioi

∏
m∈Ak

(x′+m)

1 h

∑
∀js.t.c=1 bjoj

∏
m∈Ak

(x′+m)

1

= gu1h
v
1

= g

∑
∀is.t.c=0 bio

∗
i

∏
m∈A∗

k
(x′+m∗)

1 h

∑
∀js.t.c=1 bjo

∗
j

∏
m∗∈A∗

k
(x′+m∗)

1

= gu
∗

1 hv
∗

1 .

Therefore, C can compute x = u−u∗
v∗−v mod p to solve the

co-DLOG problem. Now we consider the case of A 6= A∗

only, that is, |A ∩ A∗| ≥ 2 while O = O∗. It is clear that the
equation above is still applicable and the same goes to the case
of O 6= O∗ only, that is, A = A∗ while |O ∩O∗| ≥ 2.

Theorem 4 (Intersecting Binding). The MoniPoly multi-set
commitment scheme is intersecting binding if the co-DLOG
problem is hard.

Proof. The intersecting witness W is itself a MoniPoly multi-
set commitment on the intersecting set I = {A′1∩A1, . . . , A

′
`∩

A`}. Therefore, if the commitment C is binding, so does
W . Without loss of generality, let all the threshold values
ki ∈ κ be ki = |A′i| in OpenIntersection. When we
have A′ ∩ A = I = A′ ∩ A∗ for a query set A′, it is a
special case of the pair (A,O) 6= (A∗, O∗) that can fulfil the
OpenIntersection algorithm. When O 6= O∗ (resp. O = O∗),
it must be |A ∩A∗| ≥ 1 (resp. |A ∩A∗| ≥ 2) where we
have ` ≤ min(|A|, |A∗|) (resp. ` ≤ min(|A|, |A∗|) − 1)
with |A| 6= |A∗|; or ` ≤ |A| − 1 (resp. ` ≤ |A| − 2) with
|A| = |A∗|.

Theorem 5 (Differing Binding). The MoniPoly multi-set com-
mitment scheme is differing binding if the co-DLOG problem
is hard.

Proof. The intersecting witness W is itself a MoniPoly multi-
set commitments on quotients qi,j(x′) and qi,j,m(x′). Also,
by fundamental theorem of algebra, the non-zero remainders
ri,j(x

′) and ri,j,m(x′) are unique with respect to the unknown
secret x′. Therefore, if the multi-set commitment C is binding,
so does W . To elaborate further, let all the threshold values
k̄i ∈ κ̄ be k̄i = |A′i| in OpenDifference. When we have
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|A′ − Ā| = ¯̀ = |A′ − Ā∗| for a query A′, it is a special
case of the pair (A,O) 6= (A∗, O∗) that can fulfil the
OpenDifference algorithm. When O 6= O∗ (resp. O = O∗),
it must be |A ∩A∗| ≥ 1 (resp. |A ∩A∗| ≥ 2), we have
¯̀ ≤ min(|A|, |A∗|) when |A| 6= |A∗|; or ¯̀ ≤ |A| when
|A| = |A∗|.

K. Pedersen Vector Commitment Scheme

It is known that Pedersen commitment scheme can be ex-
tended to a vector commitment scheme by expanding pk to in-
clude more random generators such that pk = (a1, . . . , an, b ∈
G). The vector commitment of n messages {m1, . . . ,mn} is
computed as:

C := am1
1 · · · amn

n br

where r ∈R Z∗p. For the completeness of the security analysis,
we give the security proof of the perfectly hiding and binding
properties for Pedersen vector commitment in the context of
our ReCS issuing and showing protocols.

Lemma 2. The Pedersen vector commitment in the issuing
and showing protocols are perfectly hiding.

Proof. In clause (3) of showing protocol, the equation C =
bρcωv′τ can be viewed as a Pedersen vector commitment such
that for each vector (ρ, ω), there exists an unique opening
value τ such that:

dlogb(C) = ρ+ dlogb(c)ω + dlogb(v
′)τ (mod p)

τ =
dlogb(C)− ρ− dlogb(c)ω

dlogb(v
′)

(mod p)

As the discrete logarithms with respect to the base b are not
known and τ = −ty ∈ Z∗p is uniformly distributed, the vector
(ρ = sr, ω = r) is perfectly hidden.

The proof for the clause (1) in issuing protocol follows the
same approach.

Lemma 3. The Pedersen vector commitment in the issuing and
showing protocol is binding if the DLOG problem is hard.

Proof. The proof is similar to that in Theorem 3. Let the
equation C = bρcωv′τ in clause (3) of showing protocol
be a Pedersen vector commitment. Given a DLOG instance
(g1, g2 = gx1 ), we construct a challenger C that finds the
solution x with the help of an adversary A of the Pedersen
vector commitment scheme. C tosses a fair coin to decide
either g1 or g2 is used as the base for (b, c, v′), respectively.
Assuming b = gr11 while c = gr22 , v

′ = gr32 for randomly
selected r1, r2, r3 ∈ Z∗p, C publishes (b, c, v′) as the public
parameters for the Pedersen vector commitment scheme.

If an adversary can output a Pedersen vector commitment
C for two different sets A = (α, (β, γ)), A∗ = (α∗, (β∗, γ∗))
such that |A ∩A∗| ≥ 2 and:

C = bαcβv′γ = bα
∗
cβ
∗
v′γ
∗

⇔ gr1α1 gr2β+r3γ
2 = gr1α

∗

1 gr2β
∗+r3γ

∗

2

we have a probability of at least 1/2 that the distinct set
elements fall under g1 and g2, respectively. Without loss of
generality, assuming α 6= α∗ and β 6= β∗, C can compute:

x =
r1(α∗ − α)

r3(β − β∗)
mod p

to solve the DLOG problem.
The proof for the clause (1) in issuing protocol follows the

same approach.

L. Random Self-Reducibility

Lemma 4 (Issuing RSR). The initialization of the issuing
protocols in the graph signature scheme has random self-
reducibility.

This follows directly from the random self-reducibility
(RSR) of the q-SDH problem [43] and Schnorr-like identi-
fication scheme [44].

Lemma 5. [Showing RSR] The showing protocols in the graph
signature scheme have random self-reducibility.

Proof. This follows directly from Lemma 4. Furthermore, the
public input v′ = vry

−1

from the randomized signature σ′ =
(r, y, t · r, s · r, vry−1

) also possesses self-reducibility from the
Decisional DH assumption. Specifically, we can view v as:

vx =
∏
i∈V

Ci
∏

(i,j)∈E

C(i,j)b
scv−t

for the signature elements at the right hand side. In
CL.Randomize, the prover first constructs a DH tuple
(v, vx, vr, vrx) for a randomly chosen r ∈ Z∗p. However, this
DH tuple is linkable because the signature element v is re-
vealed. The prover further randomizes the DH tuple by raising
it to the power of y−1 to get (vy

−1

, vxy
−1

, vry
−1

, vrxy
−1

) and
constructs the Decisional DH tuple (vr, vrx, vry

−1

, vrxy
−1

) for
proving to the verifier. This is exactly exploiting the random
self-reducibility of a Decisional DH tuple.

M. Representation Hiding

Lemma 6. The randomization in the ReCS showing protocol
is perfectly hiding.

Proof. The blinding factors r, {ri, r(i,j)} act as the open-
ing values and turns the G1,G2,GT elements at the left-
hand side into MoniPoly commitments which are perfectly
hiding. Specifically, in possession, the random values
r, y, ri, r(i,j) turns the G1,G2 elements:

Wi =

(
a

∏
w∈fV (i)(x

′+w)

i0

)rr−1
i

,W(i,j) =

(
a

(x′+j)
∏

w∈fE (i,j)(x
′+w)

(i,j)0

)rr−1
(i,j)

,(
Xx′+i

00

)ri
,
(
Xx′+i

00

)r(i,j)

into MoniPoly set commitments and the G1 elements
bsrcrv′−ty into a Pedersen vector commitment (Lemma 2).
Therefore, these values inherit the perfectly hiding property
from the two commitment schemes.
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When the elements above are evaluated under pairing oper-
ations, as r is uniformly chosen, the GT elements:

e

(
a
r−1
i

∏
w∈fV (i)(x

′+w)

i0
, X

ri(x
′+i)

00

)r
,

e

(
a
r−1
(i,j)

(x′+j)
∏

w∈fE (i,j)(x
′+w)

(i,j)0
, X

r(i,j)(x
′+i)

00

)r
are uniformly distributed under GT regardless the combina-
tions of vertex and edge identifiers i, j, (i, j) and random
exponents ri, r(i,j) in a pairing function.

The proof for other predicates follow the same approach.

To show the PUNL-ACA security, it is sufficient to show
that the witnesses, the committed dataset in the signing pro-
tocols and showing protocols are perfectly hiding. Then, we
demonstrate that every instance of the protocols is uniformly
distributed due to the random self-reducibility property. This
implies that even when A is given the master secret key and
access to the issue oracle, it does not gain an advantage in
linking a user’s transaction. The security proof for PUNL-ACA
dependent on (i) the random self-reducibility of the issuing
and showing protocols (Lemmas 4 and 5). (ii) the perfect
hiding property of the committed graph and randomized graph
signatures (Lemma 6) and

Recall Theorem 7 from Section VI-B:

Theorem 7 (PUNL-ACA). The proposed relational credential
system ReCS is protocol unlinkable under active and concur-
rent attacks.

Proof. We show that an adversary A can win in the PUNL-
ACA-security game with a negligible advantage εpunl only,
with C as the ReCS system simulator.

Game0. This is an attack on the original ReCS scheme. Let
Si denotes a successful distinguishing attempt in Gamei, by
definition we have:

Pr
[
Gamepunl−aca

ReCS,A = Win
]

= Pr[S0] ≤ εpunl +
1

2
. (12)

Game1. C selects two random bits b1, b2 ∈ {0, 1} and gener-
ates (mpk,msk) as in the original algorithm and forwards to
A so that the latter can play the role of users and signers. In
addition, C maintains the corrupted user lists CU,CPV and
honest user lists HU,HPV required by the oracles. Since C
does not alter the key generation algorithm, this gives:

Pr[S1] = Pr[S0]. (13)

Game2. In the u-th session, A can retrieve an issuing proto-
col transcript πu ← OIssuing(mpk ,GUu,GIu, sidu) and subse-
quently obtain credu ← OCorrU(πu). Without lost of general-
ity, we assume A always uses different graphs (GUu,GIu). A can
also acts as the issuer through OIssue(mpk ,msk,GU,GI, sid)
oracle to interact with users which are simulated by C. As
every signing protocol session is uniformly distributed by
Lemma 4 and the user hidden graph GU is perfectly hidden by
Lemma 2, A does not gain any advantage in the two operations
above:

Pr[S2] = Pr[S1]. (14)

Game3. Now A also queries for π̃u ←
OVerify(mpk ,GUu,GIu, φu, sidu) concurrently to interact
with C which acts as the provers. A can also query for
credu ← OCorrP(π̃u). As C knows credu and every protocol
session is uniformly distributed by Lemma 5, the interaction
is the same as in the original show proof from the view of
A. Following Lemma 1 and 6, this is true even if A knows
some credentials credu from the issuing protocols, which
now have been perfectly hidden by the randomly selected
r, y ∈ Z∗p. This gives:

Pr[S3] = Pr[S2]. (15)

Game4. At some point, A decides the challenge (GU0,GU1, φ∗)
such that every |GU0| = |GU1|. If the condition is not met, C
aborts as the challenge graphs can be trivially identified. C
obtains the credential in the sequence of credb1 and cred1−b1
with A as the issuer. A is allowed to add new graphs
GIb1 ,G

I
1−b1 of arbitrary sizes to the the signatures as long as

|GI0| = |GI1| and φ∗(GU0
∗ ∪ GI0) = φ∗(GU1

∗ ∪ GI1) = 1. C aborts
otherwise. Next, C completes the challenge showing protocol
with A as the verifier in the sequence of cred∗b2 and cred∗1−b2 .
From time to time, A still can query the oracles as before
with the restriction of querying the challenge transcripts to the
corruption oracles. In a matter of fact, even if A issue such
queries, it gets only error reply ⊥ from the corruption oracles.
This is because the challenge issuing and showing transcripts
are not recorded in the oracle list as they are not generated
through querying oracles. Finally, if A makes a correct guess
b′ = b1 ⊕ b2, it wins the game with the probability:

Pr[S4] = Pr[S3] = Pr[b′ = b1 ⊕ b2] =
1

2
+ εpunl. (16)

Combining the probability from equation (12) to (16), we have
a negligible εpunl as required and A runs in time tpunl.

We design the impersonation resilience security of the ReCS
system based on a reduction to the (co-)SDH problem. We
utilise the Multi-Instance Reset Lemma [44] as the knowledge
extractor for achieving tight security reduction. Under the
setting of this lemma, the adversary A can run N parallel in-
stances of impersonation under active and concurrent attacks.
The challenger C can simulate such environment by exploiting
the random self-reducibility of the given SDH instance [43].

Recall Theorem 8 from Section VI-B

Theorem 8 (IMP-ACA). The proposed relational credential
system ReCS is secure against impersonation under active
and concurrent attacks, if the co-SDH problem is intractable.

More formally, this theorem translates to the following:

Theorem 15. If an adversary A (timp, εimp)-breaks the imp-
aca-security of the proposed ReCS system, then there exists
an algorithm C which (tcosdh, εcosdh)-breaks the q-co-SDH
problem such that:

εcosdh

tcosdh
=
εimp

timp
,
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or an algorithm C which (tsdh, εsdh)-breaks the SDH problem
such that:

εsdh

tsdh
≥ 1

3 · 2Ntimp

6εsdh

tsdh
≥ εimp

timp
− 1 + (q − 1)!/pq−2

timpp

where N is the total adversary instance, q is the total
credential simulated throughout the game and p is the group
order.

We differentiate the ReCS adversary A into A =
{Abind,A1,A2,A3} corresponding to four different simula-
tion strategies by the challenger C:
• Abind: breaks the binding security of the MoniPoly multi-

set commitment.
• A1: impersonate with credential element t∗ 6∈ CU ∪
CPV ∪HU ∪HPV is new to C

• A2: impersonate with credential element t∗ ∈ CU ∪
CPV ∪HU ∪HPV is known to C

• A1: impersonate with credential elements s∗, t∗ ∈ CU ∪
CPV ∪HU ∪HPV are known to C

While Abind has been described in Theorem 3, we present
Lemma 7, 8 and 9 corresponding to the adversaries A1, A2

and A3.

Lemma 7. If an adversary A1 (timp, εimp)-breaks the imp-
aca-security of the proposed ReCS, then there exists an
algorithm C which (tsdh, εsdh)-solves the SDH problem such
that:

εimp ≤ N

√√
εsdh − 1 +

q! + pq−1

pq
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q is the num-
ber of signature queries allowed, while T (q2) is the time
parametrized by q to setup the simulation environment and
to extract the SDH solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 )

where q is the maximum number of signature queries allowed,
we show that if A1 exists, there exists an algorithm C which
can output (g

1
x+t

1 , t) by acting as the simulator for the ReCS
as follows:

Game0. This is the attack by A1 on the real N instances of
ReCS. Let Si be the event of a successful impersonation in
Gamei, by assumption, we have:

Pr
[
Gameimp−aca

ReCS,A = Win
]

= Pr[S0] = εimp. (17)

Game1. To simulate the environment of the ReCS, for the
first (out of the total N ) instance, C uniformly and randomly
selects distinct {tai}Li=0, tb, tc, x

′, t1, . . . , tq ∈ Z∗p. Next, let
f(x) denotes the polynomial f(x) =

∏q
k=1(x+tk) and fu(x)

denotes the polynomial fu(x) =
∏q
k=1,k 6=u(x + tk). C com-

putes master public key as mpk = (e,G1,G2,GT , p, {{aik =

g
f(x)tai

x′k

1 , Xik = g
tai
x′k

2 }Li=0}nk=0, b = g
f(x)tb
1 , c =

g
f(x)tc
1 , {Xi}Li=1, X = (gx2 )ta0 ) to implicitly set the master

secret key msk = (x). C sends mpk to the adversary A1 and
creates the four empty lists (CU,CPV,HU,HPV ) as defined
in the Table III. Since tai , tb, tc, x

′, t1, . . . , tq are uniformly
random, the distribution of the simulated mpk is the same as
that of the original scheme. So, we have:

Pr[S1] = Pr[S0]. (18)

Game2. In this game, A1 issues concurrent queries for
{πu} ← OIssuing(mpk ,GUu,GIu, sidu). Subsequently, A1 can
obtain the corresponding credential {credu} ← OCorrU. With-
out loss of generality, we assume different (GUu,GIu) are used
in every sidu session of the u-th query. If A1 interacts with
the signer simulated by C without going through oracles, their
interaction during an issuing protocol is as follows:

1) A1 concurrently initializes the initial signing protocol
with C by running the zero-knowledge protocol to prove
the knowledge for its hidden graph GUu and the secret
exponent s′u ∈ Z∗p. Without loss of generality, we assume
A1 always executes this protocol honestly. Therefore, C
always resets successfully to extract GUu and s′u.

2) C chooses a random graph GIu and random s′′u ∈ Z∗p to
set:

vu =
∏
i∈Vu

a
(x′+i)

∏
m∈fV (i)(x

′+m)

u,i0∏
(i,j)∈Eu

a
(x′+i)(x′+j)

∏
m∈fE (i,j)(x

′+m)

u,(i,j)0
b
s′u+s′′u
u cu

where au,i0 = g
fu(x)tai
1 , au,(i,j)0

= g
fu(x)ta(i,j)

1 , bu =

g
fu(x)tb
1 , cu = g

fu(x)tc
1 . C adds the record

(sidu,GUu,GIu, credu = (σu = (tu, su =
s′u + s′′u, vu),GUu ∪ GIu), πu) to CU and returns
σ′ = (tu, s

′′
u, vu) and GIu to A1.

Since C’s choices of tu, s′′u are independent from A1’s view,
a collision vi = vj for some i, j ≤ q in a round of A1’s
concurrent queries happens with a negligible probability. A1

can formulate credu = (sigu,GUu ∪ GIu) as in the original
signing protocol. This gives:

Pr[S2] = Pr[S1] + Pr[Col]

≤ Pr[S1] +

q∏
i=1

i/p

≤ Pr[S1] + q!/pq (19)

where A1 can ask for, at most, q credentials.

Game3. In this game, A1 issues concurrent queries for
{π̃u} ← OVerify(mpk ,GUu,GIu, φ, sidu) where it plays the role
of verifiers to interact with proves simulated by C concurrently.
When A1 asks for a show proof on (GUu,GIu, φu), we assume
C already has the appropriate credential credu on hand. Else,
C simulates a valid credu as in the previous games and
adds it to HU before interacting with A1. If the protocol
ends successfully, the showing transcript π̃u is added to
HPV . Subsequently, A1 can also query for the corresponding
credentials credu ← OCorrP(π̃u). Therefore, we have:

Pr[S3] = Pr[S2]. (20)
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Game4. A1 decided to impersonate a user whose graph
G∗ = {V ∗, E∗, fV , fE} can satisfy its intended predicate φ∗

such that φ∗(G∗) = 1. If there exits GUu,GIu ∈ CU∪CPV such
that φ∗(GUu ∪ GIu) = 1, C aborts. This means the possession

predicate is excluded as possession always returns true for
all corrupted credentials. A1 is still allowed to query the
oracles as in the previous games but the queries are bounded by
the restrictions on (G∗, φ∗) above. Essentially, A1 can query
for the transcripts involving (G∗, φ∗) but it is not allowed to
recover the corresponding cred∗ from OCorrU and OCorrP.

Finally, if A1 completes a showing protocol with φ∗ such
that the verifier C returns 1, C obtains a valid showing protocol
transcript π̃∗1 . C resets A1 to the beginning of the game and
activates it in parallel using the N − 1 instances {mpk i}Ni=2

randomized through random self-reduction [43] of the given
SDH instance. In essence, the polynomial f(x) in the i-th
instance is constructed as f(xxi) and we have Xi = Xxi for
randomly selected {xi ∈ Z∗p}2≤i≤N . If C obtains another valid
transcript π̃∗2 from one of the N − 1 instances, it can extract
the secret exponents (r∗, y∗, t∗, s∗) and subsequently recover
the credential elements (v∗1 , v

∗
2). Let

Z =
∑
i∈V ∗

tai(x
′ + i)

∏
m∈fV

(x′ +m)+∑
(i,j)∈E∗

ta(i,j)
(x′ + i)(x′ + j)

∏
m∈fE

(x′ +m) + tbs
∗ + tc,

C can now reconstruct cred∗1 = (t∗, s∗, v∗ = v∗1 ,G∗) used

by A1 in π̃∗1 where v∗ = g
f(x)Z
x+t∗

1 . Since A1 must output t∗ /∈
{t1, . . . , tq}, if v∗ /∈ CU∪CPV ∪HU∪HPV , C can construct
a polynomial c(x) of degree n−1 such that f(x) = c(x)(x+
t∗) + r to compute:

v∗1/Zrg
− c(x)

r
1 = g

f(x)Z
Zr(x+t∗)−

c(x)
r

1

= g
c(x)(x+t∗)+r

r(x+t∗) − c(x)
r

1 = g
1

x+t∗
1

and output (g
1

x+t∗
1 , t∗) as the solution for the SDH instance.

On the other hand, if we have v∗ ∈ CU ∪ CPV ∪ HU ∪
HPV , C can extract the discrete logarithm x to break the
SDH assumption.

By Multi-Instance Reset Lemma [44], we obtain:

Pr[S4] ≤ Pr[S3] + N

√√
εsdh − 1 + 1/p+ 1. (21)

Summing up the probability from (17) to (21), we have εimp ≤
N
√√

εsdh − 1+1/p+1+q!/pq as required. The time taken by
C is at least 2Ntimp due to reset and interacting with N parallel
impersonation instances, in addition to the environment setup
and the final SDH solution extraction that cost T (q2).

Lemma 8. If an adversary A2 (timp, εimp)-breaks the imp-
aca-security of the proposed ReCS, then there exists an
algorithm C which (tsdh, εsdh)-solves the SDH problem such
that:

εimp ≤ N

√√
εsdh − 1 +

q! + pq−1

pq
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q is the num-
ber of signature queries allowed, while T (q2) is the time
parametrized by q to setup the simulation environment and
to extract the SDH solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 )

where q is the number of signature queries allowed, there
exists an algorithm C which can output (g

1
x+t

1 , t) by acting as
the simulator for the ReCS as follows:

Game0. This is the same as the Game0 in Lemma 7 where
we have:

Pr
[
Gameimp−aca

ReCS,A = Win
]

= Pr[S0] = εimp. (22)

Game1. The setting for {aik , Xik}, X is the same as the
Game1 in Lemma 7 but not for (b, c). Let fu′,u(x) de-
notes the polynomial fu′,u(x) =

∏q
k=1,k 6=u′,u(x + tk). C

uniformly selects random distinct s1, . . . , sq ∈ Z∗p to set
(b = g

f(x)tb−
∑q

u=1 fu(x)
1 , c = g

f(x)tc+
∑q

u=1 sufu(x)
1 ). C then

sends mpk to A2. This gives:

Pr[S1] ≤ Pr[S0]. (23)

Game2. This is the same as the Game2 in Lemma 7 except
that, after resetting A2, C simulates the pre-signature σ′u =
(tu, s

′′
u, vu) for (GUu,GIu) such that:

vu =
∏
i∈Vu

a
(x′+i)

∏
m∈fV (i)(x

′+m)

u,i0∏
(i,j)∈Eu

a
(x′+i)(x′+j)

∏
m∈fE (i,j)(x

′+m)

u,(i,j)0
b
s′u+s′′u
u cu

where s′′u = su − s′u. When the protocol ends, A2 obtains the
graph signature σu = (tu, su = s′u + s′′u, vu) and a graph GIu.
As C simulates issuing perfectly, we have:

Pr[S2] ≤ Pr[S1] + q!/pq. (24)

where A1 can make, at most, q signature queries.

Game3 This is the same as that in Lemma 7 and we have:

Pr[S3] = Pr[S2]. (25)

Game4. Similar to the Game4 in Lemma 7, C can extract
the elements (t∗, s∗, v∗) of σ∗ from the Multi-Instance Reset
Lemma. Since A2 must output t∗ = tu ∈ {t1, . . . , tq} but
s∗ 6= su ∈ {s1, . . . , sq} for an u ∈ {1, . . . , q}, v∗ is in the
form:

v∗ =

(
g
f(x)Z+

∑q

u′=1,u′ 6=u
(su′−s

∗)fu′,u(x)+(su−s∗)fu(x)

1

)1/(x+tu)

.

where

Z =
∑
i∈V

(tai(x
′ + i)

∏
m∈fV(i)

(x′ +m))+

∑
(i,j)∈E

(ta(i,j)
(x′ + i)(x′ + j)

∏
m∈fV(i)

(x′ +m)) + s∗tb + tc.

C proceeds to compute c(x) of degree q− 2 and r ∈ Z∗p from
the knowledge of {t1, . . . , tq} such that fu(x) = c(x)(x +
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tu) + r. Moreover, it will be the case v∗ /∈ CU ∪ CPV ∪
HU ∪ HPV or C can extract x to solve the SDH problem.
Subsequently, C calculates:(
v∗/g

fu(x)Z+
∑q

u′=1,u′ 6=u
(su′−s

∗)fu′,u(x)+c(x)(su−s∗)
1

) 1
r(su−s∗)

= g
(fu(x)−c(x)(x+tu))(su−s∗)

r(su−s∗)(x+tu)

1

= g
1

x+tu
1

and outputs (g
1

x+tu
1 , tu) as the solution for the SDH instance.

Therefore, we have:

Pr[S4] ≤ Pr[S3] + N

√√
εsdh − 1 + 1/p+ 1 (26)

and summing up the probability from (23) to (26), we have
εimp ≤ N

√√
εsdh − 1 + 1/p+ 1 + q!/pq as required. The time

taken by C is at least 2Ntimp due to reset and interacting
with N parallel impersonation instances, in addition to the
environment setup and the final SDH solution extraction that
cost T (q2).

Lemma 9. If an adversary A3 (timp, εimp)-breaks the imp-
aca-security of the proposed graph signature system, then
there exists an algorithm C which (tsdh, εsdh)-solves the SDH
problem such that:

εimp ≤ N

√√
εsdh − 1 +

q! + pq−1

pq
+ 1,

timp ≤ tsdh/2N − T (q2).

where N is the total of adversary instances, q is the num-
ber of signature queries allowed, while T (q2) is the time
parametrized by q to setup the simulation environment and
to extract the SDH solution.

Proof. Given a q-SDH instance (g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , g2, g
x
2 )

where q is the number of signature queries allowed, there
exists an algorithm C which can output (g

1
x+t

1 , t) by acting as
the simulator for the ReCS as follows:

Game0. This is the same as the Game0 in Lemma 7:

Pr
[
Gameimp−aca

ReCS,A = Win
]

= Pr[S0] = εimp. (27)

Game1. The precomputations and setting are
the same as the Game1 in Lemma 7 except
for ({{aik = g

(f(x)tai
−
∑q

k=1 fk(x))x′k

1 }Li=0}nk=0,

b = g
f(x)tb−

∑q
u=1 fu(x)

1 , c = g
f(x)tc+

∑q
u=1 zufu(x)

1 ) where the
random z1, . . . , zq ∈ Z∗p are uniformly distributed. This gives:

Pr[S1] ≤ Pr[S0]. (28)

Game2. This is the same as the Game2 in Lemma 7 except
that, after resetting A3, C simulates the pre-signature σ′u =
(tu, s

′′
u, vu) for (GUu,GIu) by letting

su =zu −
∑
i∈Vu

tai(x
′ + i)

∏
m∈fV(i)

(x′ +m)−

∑
(i,j)∈Eu

ta(i,j)
(x′ + i)(x′ + j)

∏
m∈fE(i,j)

(x′ +m)

to simulate

vu =
∏
i∈Vu

a
(x′+i)

∏
w∈fV (i)(x

′+w)

u,i0∏
(i,j)∈Eu

a
(x′+i)(x′+j)

∏
w∈fE (i,j)(x

′+w)

u,(i,j)0
b
s′u+s′′u
u cu

for s′′u = su − s′u. When the protocol ends, A3 obtains the
credential as σu = (tu, su, vu) on the graph GUu ∪ GIu. As C
simulates the issuing perfectly, we have:

Pr[S2] ≤ Pr[S1] + q!/pq. (29)

where A1 can ask for, at most, q credentials.

Game3 This is the same as that in Lemma 7:

Pr[S3] = Pr[S2]. (30)

Game4. By definition, A3 must output t∗ = tu ∈ {t1, . . . , tq}
and s∗ = su ∈ {s1, . . . , sq} for a u ∈ {1, . . . , q}. Note that
it must be the case v∗ /∈ CU ∪ CPV ∪ HU ∪ HPV or x
can be extracted to solve the SDH problem. In the unlikely
case of (G∗, s∗, t∗, v∗) ∈ HU ∪ HPV which happens with
probability 1/p, C aborts. Similar to the Game4 in Lemma 7,
C can extract the signature elements (t∗, s∗, v∗) through the
Multi-Instance Reset Lemma where v∗ is in the form:

v∗ = g
fu(x)(Z+s∗tb+tc)+

∑q

u′=1,u′ 6=u
(zk−z∗)fu′,u(x)+(zu−z∗)fu(x)

1

for

Z =
∑
i∈V

tai(x
′ + i)

∏
m∈fV(i)

(x′ +m)−

∑
(i,j)∈E

ta(i,j)
(x′ + i)(x′ + j)

∏
m∈fE(i,j)

(x′ +m)

and z∗ = s∗+Z. C proceeds to compute c(x) of degree q−2
and the remainder r ∈ Z∗p from the knowledge of {t1, . . . , tq}
such that fu(x) = c(x)(x+tu)+r. Subsequently, C calculates:(
v∗g
−fu(x)(Z+s∗tb+tc)−

∑q
k=1,k 6=u(zk−z∗)fk,u(x)+(zk−z∗)c(x)

1

) 1
r(zu−z∗)

= g
(fu(x)−c(x)(x+tu))(zu−z∗)

(x+tu)r(zu−z∗)
1

= g
1

x+tu
1

and outputs (g
1

x+tu
1 , tu) as the solution for the SDH instance.

Therefore, we have:

Pr[S4] ≤ Pr[S3] + N

√√
εsdh − 1 + 1 (31)

and summing up the probability from (27) to (31), we have
εimp ≤ N

√√
εsdh − 1 + 1/p+ 1 + q!/pq as required. The time

taken by C is at least 2Ntimp due to reset and interacting
with N parallel impersonation instances, in addition to the
environment setup and the final SDH solution extraction which
cost T (q2).

Combining Theorem 3, Lemmas 7, 8, and 9 gives Theo-
rem 15 as required.
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The detailed connection proof is at below:

PK

{
(∀i ∈ V : εi0 , εi1), (∀(i, j) ∈ E \ E′} : ε(i,j)0

, ε(i,j)1
),

{εl,0}`−1
l=2 , {εl,1}

`−1
l=1 , ε, ρ, ω, τ, γ) :∏

i∈V
e
(
Wi, X

εi1
01
X
εi0
00

) ∏
(i,j)∈E\E′

e
(
W(i,j), X

ε(i,j)1
01

X
ε(i,j)0
00

)
·

(32)

e
(
W ′1, (X02

Xi∗

01
)ε(X01

Xi∗

00
)ε1,1

)
· (33)

e
(
W ′2, X

ε
02
X
ε1,1
01

X
ε2,1
01

X
ε2,0
00

)
· · · · · · (34)

· · · e
(
W ′`−1, X

ε
02
X
ε`−2,1

01
X
ε`−1,1

01
X
ε`−1,0

00

)
· (35)

e
(
W ′` , (X02

Xj∗

01
)ε(X01

Xj∗

00
)ε`−1,1

)
· (36)

e
(
bρcωv′−τ , X00

)
= e(v′γ , X) ∧ (37)

e

(
CV

`−2∏
l=1

WVl
, X00

)
= (38)

`−1∏
l=1

e
(
WVl−1

, Xε
01
X
εl,1
00

)
e
(
a−1

00
WV ,WV`−1

)}
(39)

In this proof, Clauses (32) to (37) represent the possession

predicate while Clause (39) is the proof of cumulative product
for all vertex identifiers in E′. To be precise, Clause (32)
shows the correctness for G \ E′ and Clauses (33) to (36)
show the correctness for E′. Specifically, Clause (33) verifies
correctness of the first edge E′1 ∈ E′, Clauses (34) and (35)
verifies the correctness of E′2, . . . , E

′
`−1 while Clause (36)

verifies the correctness of the last edge E′` ∈ E. Equality
is proven, as the matching edges share the same randomness

r(i∗,j∗) ∈ Z∗p where W ′k = a
rr−1

(i∗,j∗)
∏

m∈fE (ik,jk)(x
′+m)

(ik,jk)0
for

1 ≥ k ≥ `. Lastly, Clause (39) is the set membership proof
to prove that it is the vertices but not labels that connect the
edges. To be precise, it shows that the cumulative product
of encoded vertex identifiers in E′ is a subset of the vertex
domain V where

WV0 = a00 , {WVl
= a

rl(i∗,j∗)
∏l

k=1(x′+jk)

00
}`−2
l=1 ,

WV`−1
= X

r`−1
(i∗,j∗)

∏`−1
k=1(x′+jk)

00
,WV = C

1/r`−1
(i∗,j∗)

∏`−1
k=1(x′+jk)

V

are witnesses for the cumulative product and CV =

a
∏

m∈V(x′+m)

00
= SC.Commit(pk , G2MS(V), 1|V|) is a

MoniPoly commitment.

The below executes the protocol for cover(G′,`)(G), where
Vi represents the set of vertex identifier and associated labels
for vertex i and E(i,j) represents the set of edge identifiers
and associated labels for edge (i, j).

PK

{
(∀i ∈ V \ I : εi0 , εi1), (∀(i, j) ∈ E \ I : ε(i,j)0

, ε(i,j)1
),

(∀i ∈ I : {εik}
|V ′i |
k=0), (∀(i, j) ∈ I : {ε(i,j)k}

|E′(i,j)|
k=0 ),

ρ, ω, τ, γ, (∀i ∈ V ′ \ I : εi0 , εi1), (40)
(∀i ∈ V ′ : αi), (∀(i, j) ∈ E′(i,j) : α(i,j))) :

∏
i∈I

e

W ′i , |V
′
i |∏

k=0

X
εik
0k

 ∏
(i,j)∈I

e

W ′(i,j), |E
′
(i,j)|∏
k=0

X
ε(i,j)k
0k

 ·
(41)∏

i∈(V \I)

e
(
Wi, X

εi1
01
X
εi0
00

) ∏
(i,j)∈(E\I)

e
(
W(i,j), X

ε(i,j)1
01

X
ε(i,j)0
00

)
·

(42)

e
(
bρcωv′−τ , X00

)
= e(v′γ , X) ∧

(43)

∏
i∈I

e

a00
,

|V ′i |∏
k=0

X
εik
0k

 ∏
(i,j)∈I

e

a00
,

|E′(i,j)|∏
k=0

X
ε(i,j)k
0k

 ·
(44)∏

i∈(V ′\I)

e
(
W ′i , X

εi1
01
X
εi0
00

) ∏
(i,j)∈(E′\I)

e
(
W ′(i,j), X

ε(i,j)1
01

X
ε(i,j)0
00

)
=

(45)

e

∏
i∈V ′

Cαi
i

∏
(i,j)∈E′

C
α(i,j)

(i,j) , X00

}
(46)

where clauses (41) to (43) are the possession predicate. To
be precise, clause (41) represents the intersecting multi-set I =
G′ ∩ G such that

W ′i = a
r−1
i r

∏
m∈Vi\V ′i

(x′+m)

i0
,W ′(i,j) = a

r−1
i r

∏
m∈E(i,j)\E

′
(i,j)

(x′+m)

(i,j)0
,

|V ′i |∏
k=0

X
εik
0k

= X
ri

∏
m∈V ′

i
(x′+m)

00
,

|E′(i,j)|∏
k=0

X
ε(i,j)k
0k

= X
r(i,j)

∏
m∈E′

(i,j)
(x′+m)

00

for randomly selected r, {ri, r(i,j)} ∈ Z∗p. The non-intersected
portion G \ I is then represented by line (42). Similar to
the possession proof, clause (44) proves the correctness
of randomized credential sig′ where ω = r, ρ = sr, τ =
ty, γ = y for randomly selected y ∈ Z∗p. The clauses (44),
(45) and (46) show that I ⊆ G′ and |I| = ` where clause (44)
corresponds to the correctness for I taken from clause (41)
while clause (45) addresses the non-intersecting portion G′\I:

W ′i = a
oir
−1
i

∏
m∈V ′

i
\m∗

i
(x′+m)

00
,W ′(i,j) = a

o(i,j)r
−1
(i,j)

∏
m∈E′

(i,j)
\m∗

(i,j)
(x′+m)

00

X
εi1
01
X
εi0
00

= X
ri(x

′+m∗i )
00

, X
ε(i,j)1
01

X
ε(i,j)0
00

= X
r(i,j)(x

′+m∗(i,j))

00

for randomly chosen m∗i ∈ V ′i and m∗(i,j) ∈ E
′
(i,j). Lastly, we

have the following in clause (46):∏
i∈V ′

Cαi
i

∏
(i,j)∈E′

C
α(i,j)

(i,j)

=
∏
i∈I

Crii
∏

i∈V ′\I

Coii
∏

(i,j)∈I

C
r(i,j)

(i,j)

∏
(i,j)∈E′\I

C
o(i,j)

(i,j)
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such that MoniPoly MSC commitments

Ci = a

∏
m∈V ′

i
(x′+m)

00
= MSC.Commit(mpk, V ′i , 1) and

C(i,j) = a

∏
m∈E′

(i,j)
(x′+m)

00
= MSC.Commit(mpk,E′(i,j), 1)

are computed by the verifier using the base a00
while

oi, o(i,j) ∈ Z∗p are randomly chosen by the prover.
Our ReCS is capable to support more proofs such as the

graph disjointness and graph isolation proposed in the Groß’
SRSA graph signature scheme [32], [33]. To achieve this, we
introduce two new predicates vertices and edges that can
isolate vertices and edges, respectively, from a graph.

Remark 3. While the the proof predicates presented here cover
the same range as the ones proposed by Groß’ SRSA graph
signature scheme [32], [33], our predicates have different
semantics. This is because the MoniPoly set commitment
scheme and the underlying monic polynomial structure
enable us to implicitly cover aspects that the original graph
signature scheme needed to model as explicit protocols. For
instance, Groß’ partition predicate is implicitly realized by
our vertices predicate. The disjoint predicate in Groß’
scheme proves the pair-wise differences of vertices and edges
in a graph, but this is indirectly done by our vertices and
edges predicates.

vertices : proves the correctness of the vertex composition,
that is, all cumulated vertex identifiers are subsets of the
identifier universe. Intuitively, this is a possession proof plus
a proof of cumulative product for all vertex identifiers in the
signed graph:

PK

{
{εl0 , εl1}

`=|V |
l=1 , (∀(i, j) ∈ E : ε(i,j)0

, ε(i,j)1
), ρ, ω, τ, γ) :

∏̀
l=1

e

(
Wl,

1∏
k=0

X
εlk
0k

) ∏
(i,j)∈E

e
(
W(i,j), X

ε(i,j)1

(i,j)1
X
ε(i,j)0

(i,j)0

)
·

(47)

e
(
bρcωv′−τ , X00

)
= e(v′γ , X) ∧ (48)

e

(
aΞV

00

`−1∏
l=1

WVl , X00

)
=
∏̀
l=1

e

(
WVl−1

,

1∏
k=0

X
εlk
0k

)
e
(
a−1

00
WV\V ,WV`

)}
(49)

where Wl = a
r−1
l

∏
w∈fV(il)

(x′+w)

00
, εl0 = rl, εl1 = rlil

for randomly selected rl ∈ Z∗p. The clause (49) is a
proof of cumulative product for all vertex identifiers
{il} in X

εl1
01
X
εl0
00

= X
rl(x

′+il)
00

with witnesses WV0
=

a00
, {WVl

= a
∏l

k=1 rk(x′+ik)
00

}`−1
l=1 ,WV`

= X
∏`

k=1 rk(x′+ik)
00

where rl ∈ Z∗p are randomly selected by the prover.
Clause (49) also contains the set membership proof
with witnesses WV = C

1/
∏`

k=1 rk(x′+ik)
V where

CV = a
∏

i∈V(x′+i)

00
= MSC.Commit(mpk,V), {1}|V|) is

the MoniPoly MSC commitment on all encoded vertices in
V using the base a00

. At clause (47), specific bases X(i,j)k

are used for the edges but not required for the vertices

because a successful set membership proof implicitly verifies
every encoded vertex identifier is unique in the cumulative
product. The public inputs WV1

, . . . ,WV` are witnesses for
the cumulative product of encoded vertex identifiers with
WV0

= a00
.

edges : proves the correctness of the edge composition,
that is, all cumulated edge identifiers and labels are subsets
of the identifiers and labels universes. Intuitively, this is a
possession proof plus a proof of cumulative product for all
edge identifiers in the signed graph:

PK

{
(∀i ∈ V : εi0 , εi1), {{εk,l0 , εk,l1 , εk,l2}

|Ek|
l=1 }

`
k=1, ρ, ω, τ, γ) :

∏
i∈V

e
(
Wi, X

εi1
i1
X
εi0
i0

) ∏̀
k=1

|Ek|∏
l=1

e
(
Wk,l, X

εk,l2
02

X
εk,l1
01

X
εk,l0
00

)
·

(50)

e
(
bρcωv′−τ , X00

)
= e(v′γ , X) ∧ (51)

e

∏̀
k=1

CV

|Ek|−1∏
l=1

WVk,l
, X00

 =

∏̀
k=1

|Ek|∏
l=1

e
(
WVk,l−1

, X
εk,l2
02

X
εk,l1
01

X
εk,l0
00

)
e
(
a−1

00
WVk ,WVk,|Ek|

)}
(52)

where clauses (50) and (51) answers the possession predi-
cate with witnesses

Wi = a
rr−1

i

∏
m∈fV (i)(x

′+m)

00
,

Wk,l = a
rr−1

k,l (x
′+jk,l)

∏
m∈fE (ik,l,jk,l)

(x′+m)

00

and {{rk,l}|Ek|
l=1 }`k=1 ∈ Z∗p are randomly selected by

the prover. All edge identifiers {E1 = {E1,1 =
{i1,1, j1,1}, . . . , E1,|E1|}, . . . , E`} =

⋃
(i,j)∈E i, j in the

signed graph G are extracted by X
εk,l2
02

X
εk,l1
01

X
εk,l0
00

=

X
rk,l(x

′+ik,l)(x
′+jk,l)

00
. Every vertex identifier i in each set

Ek is unique such that (Ek \ {i}) ∩ {i} = ∅. At clause (50),
specific bases Xik are used for the vertices but not the edges
because the cumulative products proof and set membership
proof at clause (52) confirm a node with two vertex identifiers
must be an edge. The witnesses are constructed in the
similar way as in the vertices predicate such that {WVk,0

=

a00
, {WVk,l

= a
∏l

u=1 rk,u(x′+ik,u)(x′+jk,u)
00

}|Ek|−1
l=1 ,WVk,|Ek|

=

X
∏|Ek|

l=1 rk,l(x
′+ik,l)(x

′+jk,l)
00

,WVk =

C
1/

∏|Ek|
l=1 rk,l(x

′+ik,l)(x
′+jk,l)

V }`k=1.

disjoint (G′). When a verifier requests a show proof
for the predicate disjoint(G′), i.e., showing a sub-graph
G′ = (V ′, E′, fV , fE) is not inside the signed graph G such
that G′ ∩ G = ∅, the prover can make use of MoniPoly
MSC.VerifyDifference algorithm. As edge identifiers must
have appeared in the vertex identifiers, it is sufficient to show
only V ′ ∩ V = ∅:
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PK

{
((∀i ∈ V : εi0 , εi1), (53)

(∀(i, j) ∈ E : ε(i,j)0
, ε(i,j)1

), (∀i ∈ V ′ : αi),

ρ, ω, τ, γ) :

vertices ∧ e (a00 ,WV`
) = e

(
WV , X

∏
i∈V ′ (x

′+i)

00

)
e (R,X00

) ∧ R 6= 1G1

(54)(
∀i ∈ V ′ : e (R,X00

) = e
(
Wi, X01

Xi
00

)
e
(
aαi

00
, X00

)
∧ aαi

00
6= 1G1

)}
(55)

where X
∏

i∈V ′ (x
′+i)

00
in clause (54) is computed by the

verifier. The vertices proof provides the cumulative product
WV`

= X
∏`

k=1 rk(x′+ik)
00

for the set membership proof where

WV = a
q(x′)

∏`
k=1 rk

00
, R = a

r(x′)
∏`

k=1 rk
00

are the witnesses.

The witnesses {Wi = a
qi(x

′)
∏`

k=1 rk
00

} and secret remainders
{αi = ri(x

′)
∏`
k=1 rk} at clause (55) are computed through

MoniPoly MSC.OpenDifference where every remainder
ri(x

′) is a constant.

isolated (i,j). This predicate allows a prover to prove the
disjointness of two vertex identifiers {i∗, j∗} in the signed
graph G = (V,E, fV , fE). Specifically, a bi-partition variant
of edges is executed followed by a disjoint to show that
i∗ and j∗ are from the edge sets Ei∗ and Ej∗ , respectively,
such that E = {Ei∗ ∪ Ej∗} and (Ej∗ ∩ Ei∗) = ∅:

PK

{
({{εi,k,l0 , εi,k,l1 , εi,k,l2}

|Ei∗,k|
l=1 }`i∗k=1, {{εj,k,l0 , εj,k,l1 , εj,k,l2}

|Ej∗,k|
l=1 }`j∗k=1,

(∀i ∈ V : εi0 , εi1), (∀j̄ ∈ Ej∗ : αj̄0 , αj̄1 , βj̄), ρ, ω, τ, γ) :

`i∗∏
k=1

|Ei∗,k|∏
l=1

e
(
Wi,k,l, X

εi,k,l2
02

X
εi,k,l1
01

X
εi,k,l0
00

)
· (56)

`j∗∏
k=1

|Ej∗,k|∏
l=1

e
(
Wj,k,l, X

εj,k,l2
02

X
εj,k,l1
01

X
εj,k,l0
00

)
· (57)∏

i∈V
e
(
Wi, X

εi1
i1
X
εi0
i0

)
e
(
bρcωv′−τ , X00

)
= e(v′γ , X) ∧

(58)

e
(
a00

, X
εi∗,k,l2
02

X
εi∗,k,l1
01

X
εi∗,k,l0
00

)
= e(Wi∗ , X01

Xi∗

00
) ∧

(59)

e
(
a00

, X
εj∗,k,l2
02

X
εj∗,k,l1
01

X
εj∗,k,l0
00

)
= e(Wj∗ , X01

Xj∗

00
) ∧

(60)

e

C`i∗V `i∗∏
k=1

|Ei∗,k|−1∏
l=1

WVi∗,k,l
, X00

 =

`i∗∏
k=1

|Ei∗,k|∏
l=1

e
(
WVi∗,k,l−1

, X
εi,k,l2
02

X
εi,k,l1
01

X
εi,k,l0
00

)
e
(
a−1

00
WVi∗,k ,WVk,|Ei∗,k|

)
∧

(61)

e

(
`i∗∏
k=1

WEi∗,k , X00

)
=

`i∗∏
k=1

e
(
WEi∗,k−1

,WVk,|Ei∗,k|

)
∧

(62)

e

C`j∗V `j∗∏
k=1

|Ej∗,k|−1∏
l=1

WVj∗,k,l
, X00

 =

`j∗∏
k=1

|Ej∗,k|∏
l=1

e
(
WVj∗,k,l−1

, X
εj,k,l2
02

X
εj,k,l1
01

X
εj,k,l0
00

)
e
(
a−1

00
WVj∗,k ,WVk,|Ej∗,k|

)
∧

(63)

e

 `j∗∏
k=1

WEj∗,k , X00

 =

`j∗∏
k=1

e
(
WEj∗,k−1

,WVk,|Ej∗,k|

)
∧

(64)

e(WEj∗,`j∗
, X00)e

|Ej∗ |−1∏
l=0

WVl
, X00

 =

|Ej∗ |∏
l=0

e
(
WVl−1

, X
αj̄1
01

X
αj̄0
00

)
e
(
a−1

00
WV ,WV|Ej∗ |

)
∧ (65)

e
(
WEi∗,`i∗

, X00

)
= e

(
WEj∗,`j∗

,W
)

e (R,X00
) ∧ R 6= 1G1

∧
(66)(

∀j̄ ∈ Ej∗ : e (R,X00) = e
(
Wj̄ , X

αj̄1
01

X
αj̄0
00

)
e
(
a
βj̄

00
, X00

)
∧ a

βj̄

00
6= 1G1

)}
(67)

where clauses (56) to (58) are the possession proof where
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the first two clauses represent the graph bi-partition such that

Wi,k,l = a
rr−1

(i,j)

∏
w∈fE (i,j)(x

′+w)

(i,j)0
,

X
εi,k,l2
02

X
εi,k,l1
01

X
εi,k,l0
00

= X
r(i,j)(x

′+i)(x′+j)
00

for an edge (i, j) ∈ Ei∗,k ⊆ Ei∗ with Ei∗,k =

{(il, jl)}
|Ei∗,k|
l=1 and Ei∗ = {Ei∗,k}|Ei∗ |

k=1 . The values Wj,k,l and
X
εj,k,l2
02

X
εj,k,l1
01

X
εj,k,l0
00

are constructed analogously. Next, the
clauses (59) and (60) show that the identifiers i∗ and j∗ are
from two edges Ei∗,k, Ej∗,k, respectively. Subsequently, these
two edges are shown to fall in the bi-partition Ei∗,k ∈ Ei∗ and
Ej∗,k ∈ Ej∗ , respectively, by the proof of cumulative products
for Ei∗ (resp. Ej∗ ) at clauses (61) and (62) (resp. clauses (63)
and (64)). Particularly, clause (61) shows the correctness of
cumulated product for all encoded edge identifiers (i, j) ∈
Ei∗,k while clause (62) show the correctness of cumulated
product for all sets Ei∗,k ∈ Ei∗ . The same information with
respect to Ej∗ is delivered by clauses (63) and (64). Sourcing
the cumulated product WEj∗,`j∗

for encoded edge identifiers
from clause (64), clause (65) extracts the edge identifiers as
vertex identifiers j̄ ∈ Ej∗ in X

αj̄1
01

X
αj̄0
00

= X
rj̄(x′+j̄)

00
to be

used as the divisor at clause (67) such that
∏
j̄∈Ej∗

rj̄ =∏`j∗

l=1

∏|Ej∗,k|
k=1 r(i,j). In the case of |Ej∗ | > |Ei∗ |, the edge

identifiers which acts as the divisor for the disjoint proof in
equations (65) to (67) are sourced from WEi∗,`j∗

instead.
While isolated hardly find a useful scenario in social

graph, it is useful in application with graph data in general,
such as topology attestation [33].

In the prior SRSA graph signature scheme by Groß [32],
the cover predicate works differently compared to ours. The
SRSA cover(V ′) checks whether the queried vertex set V ′

covers all vertices in the committed graph V ∈ G such that
V ⊆ V ′. On the contrary, our cover(G′,`) predicate checks
whether a queried graph G′ overlaps the committed graph
G such that |G′ ∩ G| ≥ `. This difference occurs in other
predicates as well where ours take in more general inputs
(i.e., graph and threshold) and therefore are more computing
expensive. To achieve a purposeful comparison for protocol
complexity and size, we consider the SRSA predicates that
take in the same inputs instead of vertices V ′ only.

For the protocol complexity, we use the number of point
multiplications M1 in G1 (resp. Mx for Gx) as a bench-
marking unit. We set the conversion parameters [8] at 128-
bit security level to 1M2 = 2M1, 1MT = 6M1, a pairing
1P = 9M1 and a modular exponentiation in SRSA 1E =
5M1. We illustrate the complexity comparison for the PoK
predicates in Table VIII and Figure 3a. In order to ease
the presentation, we assume that every vertex Vi ∈ V and
edge Ei ∈ E has the same number of labels l = 10. The
number of edges is twice the number of vertices, |E| = 2|V |
and the threshold is ` = |V |/10. Figure 3a shows that the
computational complexity of the new q-SDH graph signature
scheme is consistently lower than that of the SRSA-based
graph signature scheme [32]. We note that the complexity
comparison only considers pure graph operations, not the
cost for zero-knowledge hash-to-prime predicates to make

general identifiers usable by the SRSA scheme, a considerable
overhead.

We also compare the proofs size of the two schemes in
Table IX. We consider 128-bit security level by using the
BLS12-461 curve parameters in Section VIII-B for our scheme
while setting the RSA modulus N to have |N | = 3072. The
size of for the responses in our scheme is fixed to the size of
group order |p| = 308 and that of the SRSA scheme is set to
|N | only. We apply a conservative setting for the range proof
parameters (t = 160, l = 80, s = 80).

While the relational credential system is based on a new
MoniPoly multi-set commitment scheme, it is useful to con-
sider set commitment schemes and their properties as context.
We introduce a different set commitment scheme in the
MoniPoly framework in Sections P. This variants differ in the
approach to blinding compared to the original MoniPoly set
commitment scheme [8]. The scheme presented in Section P
is most closely related to the multi-set commitment scheme
defined in this paper.

N. General Interface

A set commitment scheme SC is a tuple of seven algo-
rithms [8]:

SC = (Setup,Commit,Open,OpenIntersection,

VerifyIntersection,OpenDifference,VerifyDifference)

1) Setup (1k, n) → (pk, sk). A pair of public and secret
keys (pk, sk) are generated by a trusted authority based
on the security parameter input 1k. The message domain
D is defined and n−1 is the maximum messages allowed.
If n is fixed, sk can be discarded.

2) Commit (pk,A) → (C). On the input of pk and a
message set A ∈ Dn−1, select a random opening value
o ∈R D, output the commitment C.

3) Open (pk,C,A, o) → b. Return b = 1 if C is a valid
commitment to A with the opening value o under pk,
and return b = 0 otherwise.

4) OpenIntersection (pk, C,A, o, (A′, l)) →
(I,W ) or ⊥. If |A′∩A| ≥ l holds, return an intersection
set I = A′ ∩ A of length l with the corresponding
witness W , and return an error ⊥ otherwise.

5) VerifyIntersection (pk, C, (I,W ), (A′, l)) → b. Re-
turn b = 1 if W is a witness for S being the intersection
set of length l for A′ and the set committed to in C, and
return b = 0 otherwise.

6) OpenDifference (pk,C,A, o, (A′, l̄)) → (D,W ). If
|A′−A| ≥ l̄ holds, return the difference set D = A′−A
of length l̄ with the corresponding witness W , and return
⊥ otherwise.

7) VerifyDifference (pk,C, (D,W ), (A′, l̄)) → b. Re-
turn b = 1 if W is the witness for D being the difference
set of length l̄ for A′ and the set committed to in C, and
return b = 0 otherwise.

If a set commitment scheme is perfectly hiding and com-
putational binding, we say that the set commitment scheme is
secure.
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TABLE VII: Complexity for our proofs of knowledge predicate.

Predicate Point Mult. (G1) Point Mult. (G2) Mult. (GT ) Pairing

possession (l + 1)n+ (l + 2)m+ 15 6(n+m) n+m n+m+ 2

cover (l + 1)(n′′ + n) + (l + 2)(m′′ +m) +
l(n′ +m′) + 2n′ + 3m′ + 15

6(n+m+ n′′ +m′′) n+m+ n′ +m′ − 2 n+m+ n′′ +m′′ + 3

connected (l + 1)n+ (l + 2)m− 2`+ 15 + |V|+
(`2 + `)/2

6(n+m) + 13`− 8 n+m+ `− 1 n+m+ `+ 3

Note: l: label, n: |V |, m: |E|, n′: |V ′|, m′: |E′|, n′′: |V ′ − V |, m′′: |E′ − E|, `: threshold

TABLE VIII: PoK protocol complexity comparison for SRSA-based and MoniPoly graph signature schemes.

Predicate SRSA [32], [33] Ours (Point Mult. G1)
RSA Mod. Exp. Approx. Point Mult. G1

possession 10(n+m) + 58 50(n+m) + 290 (l + 28)n+ (l + 29)m+ 33

cover 10n+ 10m+ 14`+ 68 50n+ 50m+ 70`+ 345
(l + 28)n+ (l+ 29)m+ (l + 8)n′ + (l + 9)m′ + (l +
22)n′′ + (l + 23)m′′ + 30

connected 10n+ 10m+ 104`+ 107 50n+ 50m+ 520`+ 535 (l + 28)n+ (l + 29)m+ 17`+ 61

Note: l: label, n: |V |, m: |E|, n′: |V ′|, m′: |E′|, n′′: |V ′ − V |, m′′: |E′ − E|, `: threshold

TABLE IX: PoK protocol size comparison for SRSA-based and MoniPoly graph signature schemes.

Pedicate SRSA [33], [32] Ours

possession (3(n+m) + 12)N + 7t+ 2b+ 3(l + s) (n+m+ 3)G1 + (n+m)G2 + (2(n+m) + 5)p

cover (3(n+m) + 12 + 22n′ + 24m′)N + 7t+ 2b+ 3(l + s)
(n+m+ n′′ +m′′ + 4)G1 + (n+m+ n′′ +m′′)G2 + (2(n+
m+ n′′ +m′′) + n′ +m′ + 5)p

connected (3(n+m)− 10 + 44`)N + 7t+ 2b+ 3(l + s) (n+m+`+2)G1+(n+m+1)G2+(2(n+m−`)+2(`−1)+7)p

Note: l: label, n: |V |, m: |E|, n′: |V ′|, m′: |E′|, n′′: |V ′ − V |, m′′: |E′ − E|, `: threshold

Definition 24. A set commitment scheme is perfectly hiding
if every commitment C = Commit(pk,A) is uniformly dis-
tributed such that there exists an o′ 6= o for all A′ 6= A where
Open(pk, C,A′, o′) = 1.

Definition 25. An adversary A is said to (tbind, εbind)-break
the binding security of a set commitment scheme if A runs in
time at most tbind and furthermore:

Pr[Open(pk,C,A1, o1) = Open(pk, C,A2, o2) = 1] ≥ εbind

for any two pairs (A1, o1), (A2, o2) output by A. We say that
a set commitment scheme is (tbind, εbind)-secure wrt. binding
if no adversary (tbind, εbind)-breaks the binding security of the
set commitment scheme.

O. MPEncode Algorithm

Figure 5 quotes the MoniPoly encoding MPEncode().

P. Variant of MoniPoly Set Commitment

It is not hard to see that computing our variant
C = Commit(pk,G) with an opening value o is equivalent
to computing an original C = Commit(pk,G) with an
opening value o − x′. Since finding x′ yields an intractable
DLOG problem and finding two different opening values
that produce the same C breaks the co-SDH assumption,
the externally-blinded MoniPoly variant is as secure as the

Fig. 5: MPEncode(): Algorithm by Tan and Groß [8] to
convert an attribute set into polynomial coefficients.

Input: Attribute set A = {m0, . . . ,mn−1} and prime order p.
Output: L = {m0, . . . ,mn}.
Post-conditions:

∏n−1
i=0 (x′ +mi) =

∑n
i=0 mix

′i

1: L[|A|+ 1]← 1
2: if |A| = 1 then
3: L[0]← A[0]
4: return L
5: end if
6: L[0]← A[0]×A[1] mod p
7: L[1]← A[0] +A[1] mod p
8: for i← 2 to |A| do
9: for j ← i to 0 do

10: if j = i then
11: L[i]← L[i− 1] +A[i]
12: else if j = 1 then
13: L[j]← L[j]×A[i] + L[j − 1]
14: L[0]← L[0]×A[i]
15: else
16: L[j]← L[j]×A[i] + L[j − 1]
17: end if
18: end for
19: end for
20: return L

original scheme, as in Theorem 16.

Setup (1κ). Same as that in Section M.

Commit (pk,A). Taking as input a message set
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A = {m1, . . . ,mn} ∈ Z∗p, select a random opening

value o ∈R Z∗p, output the commitment as C = a
o

n∏
k=1

(x′+mk)

0 .

Open (pk,C,A, o). Return 1 if e(C,X0) =

e(a
o
∏

m∈A\m∗ (x′+m)

0 , X1 X
m∗

0 ) holds and return 0 otherwise
for a randomly selected m∗ ∈ A.

OpenIntersection (pk,C,A, o, (A′, `)). If |A′ ∩ A| ≥ `
holds, return an intersection set I = A′ ∩ A of length ` and
a witness W such that W = a

o
∏

m∈(A−I)(x
′+m)

0 . Otherwise,
return a null value ⊥.

VerifyIntersection (pk,C, I,W, (A′, `)). Return 1 if

e(Ca
∏

m∈A′ (x
′+m)

0 , X0) = e(Wa
∏

m∈A′\I(x′+m)

0 , X
∏

m∈I(x′+m)

0 )

holds and return 0 otherwise.

OpenDifference (pk,C,A, o, (A′, ¯̀)). If |A′ ∩ A| ≥ ¯̀

holds, return a difference set D = A′ − A of

length ¯̀ and the witness
(
W = a

q(x′)
0 , {rk}

¯̀−1
k=0,{

Wi = a
qi(x

′)
0 , ri

}
i∈D

)
. Specifically, let the polynomial

divisor be d(x′) =
∏
m∈D(x′ + m), the monic polynomial

f(x′) = o
∏
m∈A

(x′ + m) in the commitment C = a
f(x′)
0

can be rewritten3 as f(x′) = d(x′)q(x′) + r(x′) while
r(x′) = (x′ + i)qi(x

′) + ri(x
′) for every i ∈ A′ where

ri(x
′) = ri is a constant.

VerifyDifference (pk,C,D, (W, {rk}
¯̀−1
k=0, {Wi, ri}i∈A′), (A′, ¯̀)).

Return 1 if the following conditions hold:

e
(
Ca
−r(x′)
0 a

∏
m∈A′ (x

′+m)

0 , X0

)
=

e

(
Wa

∏
m∈A′\D(x′+m)

0 , X
d(x′)
0

)
∧ ar(x

′)
0 6= 1G1∧(

∀i ∈ D : e
(
a
r(x′)
0 a−ri

0 , X0

)
= e

(
Wi, X1X

i
0

)
∧ ari

0 6= 1G1

)
and return 0 otherwise.

Remark 4. The set difference algorithm in the original
MoniPoly commitment scheme [8] can verify whether d(x′)
and r(x′) have a common monic divisor by using only the
coefficients {dk, rk} because its opening value randomizes
only the coefficients in r(x′). However, in our variant, the
opening value also randomizes the secret value x′, making it
impossible to verify this condition as x′ is not known.

Theorem 16. The MoniPoly set commitment scheme above is
perfectly hiding and computational binding under the q-SDH
assumption.

Proof. As o is randomly selected, ao0 and C = (ao0)

n∏
k=1

(x′+mk)

have uniform distribution over G1. For every C and every set

3Note that r(x′) 6= 0 and therefore ar(x
′)

0 6= 1G1
whenever d(x′) cannot

divide f(x′), i.e., the sets A and D are disjoint.

A = {m1, . . . ,mn} ∈ Znp \−x′, there exists a unique opening
value o ∈ Z∗p such that:

dloga0
(C) = o

n∏
k=1

(x′ +mk) mod p

o =
dloga0

(C)
n∏
k=1

(x′ +mk)
mod p

where x′ ∈ Z∗p is not known. Therefore, our MoniPoly set
commitment variant is perfectly hiding.

Next, given a co-SDH challenge (g1, g
x′

1 , . . . , g
x′q

1 ,
g2, g

x′

2 , . . . , g
x′q

2 ), we show that a challenger C can
find a solution (g

1
x′+b , b) by running an adversary

A which can break the computational binding
of our MoniPoly set commitment scheme. Let
a0 = g1, . . . , aq = gx

′q

1 , X0 = g2, . . . , Xq = gx
′q

2 , if A
outputs (A, o) 6= (A∗, o∗) such that:

a
o
∏

m∈A(x′+m)

0 = C = a
o∗

∏
m∗∈A∗ (x′+m∗)

0 ,

we show that a co-SDH solution can be extracted. Without
loss of generality, assuming (o, a ∈ A) 6= (o∗, b ∈ A∗) and
b 6∈ A, C can extract:

a
o(x′+a)

∏
m∈A\a(x′+m)

0 = a
o∗(x′+b)

∏
m∗∈A∗\b(x′+m∗)

0

a

o(x′+a)
∏

m∈A\a(x′+m)

x′+b

0 = a
o∗

∏
m∗∈A∗\b(x′+m∗)

0

a
o((x′+b)q(x′)+r(x′))

x′+b

0 = a
o∗

∏
m∗∈A∗\b(x′+m∗)

0

a
or(x′)
x′+b

0 =
a
o∗

∏
m∗∈A∗\b(x′+m∗)

0

a
oq(x′)
0

a
1

x′+b

0 =

ao∗∏m∗∈A∗\b(x′+m∗)

0

a
oq(x′)
0

 1
or(x′)

where q(x′) is the quotient polynomial and r(x′) is the remain-
der. As o is known and deg(r(x′)) = 0, C can compute 1

or(x′)

mod p and the denominator as aoq(x
′)

0 =

(
deg(q(x′))∏

k=0

awk

k

)o
where {wk} are the coefficients for q(x′).

When we have |A ∩ A′| = ` = |A∗ ∩ A′| for a query set
A′, it is a special case of the pair (A, o) 6= (A∗, o∗) that
can fulfil the OpenIntersection algorithm. As it must be
|A ∩A∗| ≥ 1, we have ` ≤ min(|A|, |A∗|) with |A| 6= |A∗|;
or ` ≤ |A|−1 with |A| = |A∗|. Also, |A′∩Ā| = ¯̀= |A′∩Ā∗|
is a special case that can fulfil OpenDifference. As it must be
|A ∩A∗| ≥ 1, we have ¯̀≤ min(|A|, |A∗|) when |A| 6= |A∗|;
or ¯̀≤ |A| when |A| = |A∗|.


