
A Novel CCA Attack for NTRU+ KEM ⋆

Joohee Lee1, Minju Lee1, and Jaehui Park2

1 Sungshin Women’s University, Seoul, Republic of Korea
{jooheelee, 20211082}@sungshin.ac.kr

2 Seoul National University, Seoul, Republic of Korea
hiems1855@gmail.com

Abstract. The KpqC competition has begun in 2022, that aims to stan-
dardize Post-Quantum Cryptography (PQC) in the Republic of Korea.
Among the 16 submissions of the KpqC competition, the lattice-based
schemes exhibit the most promising and balanced features in perfor-
mance. In this paper, we propose an effective classical CCA attack to
recover the transmitted session key for NTRU+, one of the lattice-based
Key Encapsulation Mechanisms (KEM) proposed in the KpqC competi-
tion, for the first time. With the proposed attacks, we show that all the
suggested parameters of NTRU+ do not satisfy the claimed security. We
also suggest a way to modify the NTRU+ scheme to defend our attack.

Keywords: Post-Quantum Cryptography, KpqC Competition, Key Encapsu-
lation Mechanism, NTRU+

1 Introduction

Recently, there have been increasing research efforts from both industry and
academia on Post-Quantum Cryptography (PQC), following the initiation of a
standardization project by the National Institute of Standards and Technology
(NIST) aimed at developing new standards for public-key cryptosystems resilient
to quantum attacks [13]. In this circumstance, the KpqC research center has
initiated a competition for standardization of PQC algorithms in the Republic
of Korea, called KpqC competition [2], since 2022.

Among the various PQC schemes, the lattice-based schemes using structured
lattices [6, 10, 11, 7, 16, 1, 9, 4, 14] exhibit the most promising features in
performance. Especially, the lattice-based KEMs enjoy not only fast encryption,
decryption speeds better than the former standards such as RSA encryption,
but also balanced sizes of public keys and ciphertexts which are around 1 KB,
respectively, for the security level corresponding to AES-128.

The NTRU encryption [6] was suggested as a first encryption scheme based on
the structured lattices, and has been analyzed without severe security degrada-
tion since proposed. In this regard, NTRU-type schemes have been also proposed
to the NIST PQC standardization project [16, 7, 3]. Recently, Lyubashevsky and

⋆ The attack was first reported in the KpqC bulletin on June 14, 2023.

Seiler [12] proposed an NTRU-based KEM that enables the number theoretic
transform (NTT) by introducing cyclotomic ring Z7681[X]/(X768 − X384 + 1),
which results several times to several dozen times faster key generation, encap-
sulation, and decapsulation than the NTRU KEM submitted to NIST. Also,
Duman et al. [5] suggest a generic transformation with new message encoding
called generalized one-time pad (GOTP) to make the decryption failure rate in-
dependent from the message, and achieve more compact parameters than those
of [12].

NTRU+ KEM [8, 2] is one of the successors of this line of works with addi-
tional advantages, and is one of the lattice-based KEMs selected as the 1st round
candidates of the KpqC competition. NTRU+ takes the NTT-friendly rings as
the base rings to exploit NTT, and suggests a new generic transformation with
a new encoding method called Semi-generalized One Time Pad (SOTP). They
also suggest a CCA transformation without re-encryption to integrate their CPA-
secure NTRU-type encryption into CCA-secure KEM.

In this paper, we suggest a novel CCA attack for NTRU+, which exploits
the features of SOTP. Since SOTP combines addition over Z and the bit-wise
XOR operation, we introduce an unreported ambiguity in between, by mali-
ciously modifying the ciphertext. Using such situations on the attacker’s side,
we show that an attacker can retrieve a transmitted session key encapsulated in
the challenge ciphertext in the CCA security game of CCA-NTRU+. This breaks
OW-CCA security of CCA-NTRU+, and hence the claimed IND-CCA security
does not hold for all suggested parameters. We also suggest a way to modify
the CCA-NTRU+ algorithm to defend our attack. In future works, our attack
algorithm for special encoding would provide useful insights for both theorist
and practitioner to design and implement NTRU-type schemes securely.

Paper Organization In Section 2, we explain the basic notation, necessary back-
grounds on key encapsulation mechanism, and the NTRU+ KEM in its CCA
version. In Section 3, we present the CCA attack algorithm on NTRU+ KEM
with concrete examples, and discuss how to defend such an attack. In Section 4,
we conclude the paper.

2 Preliminaries

Notations. Throughout the paper, we denote the security parameter as λ > 0.
We denote T as the set of ternary values −1, 0, and 1, i.e., T := {−1, 0, 1} ⊂ Z,
and T n = {−1, 0, 1}n. Also, we identify n-bit string with an n-dimensional
vector in {0, 1}n. We define n-bit string 1⃗ as an n-dimensional vector of which
components are all 1’s, i.e., 1⃗ := (1, 1, · · · , 1) ∈ {0, 1}n. For i ∈ {1, · · · , n} and
an n-dimensional vector b, we define πi(b) as an i-th component of b. We denote
ei as an n-bit string of which the i-th component is 1 and the other components
are all 0’s. We denote Rq = Zq[X]/(Xn −Xn/2 + 1) for n = 2i3j .

2

2.1 Key Encapsulation Mechanism

Definition 1. A key encapsulation mechanism (KEM) with a key space K con-
sists of three algorithms, key generation KeyGen, encapsulation Encaps, and de-
capsulation Decaps algorithms, defined as follows.

– KeyGen(1λ): the key generation algorithm KeyGen is a probabilistic algorithm
that takes a security parameter λ as an input, and outputs a pair of public
key and secret key (pk, sk).

– Encaps(pk): the encapsulation algorithm is a probabilistic algorithm that in-
puts a public key pk and retrieves a pair of a ciphertext c and a key K ∈ K.

– Decaps(sk, c): the decapsulation algorithm is a deterministic algorithm that
takes a secret key sk and a ciphertext c as inputs and outputs a key K ∈
K ∪ {⊥} where K =⊥ if c is an invalid ciphertext.

Correctness. KEM is defined to be δ-correct if

Pr[K ̸= K ′|K ′ ← Decaps(sk, c), (c,K)← Encaps(pk)] ≤ δ,

where the probability is taken over (pk, sk)← KeyGen(1λ) and the randomness
in Encaps algorithm.

Security. We define two notions OW-CCA (one-way against chosen ciphertext
attack) security and IND-CCA security of KEM, respectively.

Game OW-CCA Odec(c)

1: (pk, sk)← KeyGen(1λ) 1: if c = c∗

2: (K∗, c∗)← Encaps(pk) 2: return ⊥
3: K ′ ← AOdec(·)(pk, c∗) 3: else return

4: return [K ′ = K∗] 4: K ← Decaps(sk, c)

Table 1: OW-CCA game for KEM

Definition 2 (OW-CCA Security of KEM). Let KEM = (KeyGen,Encaps,Decaps)
be a KEM scheme with a key space K. OW-CCA (one-way against chosen ci-
phertext attacks) is defined via the OW-CCA game in Table 1 and the advantage
of adversary A is defined by

AdvOW-CCA
KEM (A) := Pr[OW-CCAA

KEM = 1].

Definition 3 (IND-CCA Security of KEM). Let KEM = (KeyGen,Encaps,Decaps)
be a KEM scheme with a key space K. IND-CCA (indistinguishability under
chosen ciphertext attacks) is defined via the IND-CCA game in Table 2 and the
advantage of an adversary A is defined by

AdvIND-CCA
KEM (A) :=

∣∣∣∣Pr[IND-CCAA
KEM = 1]− 1

2

∣∣∣∣ .
3

Game IND-CCA Odec(c)

1: (pk, sk)← KeyGen(1λ) 1: if c = c∗

2: (K0, c
∗)← Encaps(pk) 2: return ⊥

3: K1 ← K 3: else return

4: b← {0, 1} 4: K ← Decaps(sk, c)

5: b′ ← AOdec(·)(pk, c∗,Kb)

6: return [b = b′]

Table 2: IND-CCA game for KEM

We remark that if a KEM achieves IND-CCA security, i.e., the advantage
of IND-CCA security is negligible in security parameter λ, then the OW-CCA
security also holds.

2.2 NTRU+

In this section, we briefly explain the NTRU+ KEM [8, 2], of which security is
based on the hardness assumptions of the NTRU [6] and Learning with Errors
(LWE) [15, 11] problems.

In NTRU+, they suggest new message encoding and decoding algorithms
called SOTP and Inv, respectively. Designing new encoding and decoding algo-
rithms is a crucial part of NTRU+, since it allows messages to be sampled from
the bit string space without any constraints on distribution, and also guarantees
cryptographically negligible correctness errors in the worst case. We review the
definitions of

SOTP : {0, 1}n × {0, 1}2n → T n and

Inv : T n × {0, 1}2n → {0, 1}n,

as follows.

Definition of SOTP and Inv in [8, 2]

SOTP(x ∈ {0, 1}n, u ∈ {0, 1}2n)
1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: y = (x⊕ u1)− u2 ∈ T n

3: return y

Inv(y ∈ T n, u ∈ {0, 1}2n)
1: u = (u1, u2) ∈ {0, 1}n × {0, 1}n
2: x = (y + u2)⊕ u1 ∈ {0, 1}n
3: return x

4

NTRU+ also adopted an NTT-friendly ring over cyclotomic polynomialRq =
Zq[X]/(Xn−Xn/2+1) where q is a prime and n = 2i3j following the strategies
in [12, 5] to speed up the algorithms in its AVX2 optimizations. Hence, the AVX2
optimized implementation shows the quite fast running time results which are
from 14 to 43 kcycles for key generation, from 14 to 26 kcycles for encapsulation,
and from 12 to 24 kcycles for decapsulation.

We review the IND-CCA KEM CCA-NTRU+ in the NTRU+ proposal as
follows. Let K be a key space, ψ1 be a centered binomial distribution over Z
obtained by subtracting two random bits from each other, and G : {0, 1}∗ →
{0, 1}2n and H : {0, 1}∗ → {0, 1}n ×K are cryptographic hash functions.

– KeyGen(1λ)→ (pk, sk)
1) f ′, g ← ψn

1

2) f = 3f ′ + 1
3) If the inverses of f and g do not exist in Rq,
start over from the beginning.
4) (pk, sk) =

(
h = 3g · f−1 mod q, f

)
– Encaps(pk)→ (K, c)

1) m← {0, 1}n
2) (r,K) = H(m)
3) M = SOTP(m,G(r))
4) c = h · r +M mod q

– Decaps(sk, c)→ Kor ⊥
1) M = (c · f mod q) mod 3
2) r = (c−M) · h−1 mod q
3) m = Inv(M,G(r))
4) (r′,K) = H(m)
5) if r = r′, return K, and otherwise, return ⊥.

3 CCA Attack for NTRU+

In this section, we demonstrate our attack idea for NTRU+ with an example,
and explain how to launch the attack for the NTRU+ implementation.

3.1 Overview

In the SOTP algorithm, an n-bit bit string m with another 2n-bit bit string
u = (u1, u2) are encoded into T n, say M := SOTP(m,u = (u1, u2)) = (m ⊕
u1) − u2 ∈ T n. In contrast, the Inv algorithm inputs an n-dimensional ternary
vector M ∈ T n together with 2n-bit bit string u = (u1, u2) and computes a
binary string m′ := Inv(M,u = (u1, u2)) = (M + u2)⊕ u1. We remark that the
correctness holds, i.e., Inv(SOTP(m,u), u) = m.

We observed that if an input for Inv is maliciously modified, i.e., the input
is not legitimately constructed using the SOTP algorithm, then Inv may have to
deal with non-binary n-dimensional vectors, rather than an n-bit bit strings as

5

intermediate value M + u2. In their theoretical definition of Inv, they assumed
the output is a binary bit string for any ternary inputs (See Figure 13 from the
NTRU+ proposal [8, 2]), and they did not consider the case that an intermediate
value or an output of Inv can be non-binary.

Moreover, in their implementation of the Inv algorithm, they enforced the
output of Inv to be a binary n-dimensional vector by putting &0x1 at the end
of the computation for each component. For example, one can check this in
line 313, 337 (resp. 284) in poly.c file of ntruplus576 (resp. ntruplus768) of
the reference implementation of NTRU+ implementation published at [2]. Since
there is an ambiguity in the theoretical definition of Inv when the intermediate
value or output is non-binary, we follow the implementational definition that
computes

Inv(M,u = (u1, u2)) = ((M + u2)⊕ u1) & 1⃗ ∈ {0, 1}n. (1)

We use the above observations and definition of Inv in (1) to show that
the ciphertext of CCA-NTRU+ is malleable. More precisely, we show that it is
possible to modify the challenge ciphertext of CCA-NTRU+ in its security game,
and then ask decapsulation oracle for a few times to achieve the secret key
corresponding to the challenge ciphertext. This breaks the OW-CCA security of
CCA-NTRU+, and hence the claimed IND-CCA security does not hold.

3.2 Example

In this section, we show an example case in which, given a ciphertext c⃗ of
CCA-NTRU+, an attacker successfully generates a modified ciphertext c⃗′. Here,
we assume n = 4 for simplicity.

Counterexample of injectivity of the Inv algorithm Suppose m = (1, 0, 1, 1) and
u = (u1, u2) = (1, 1, 0, 1, 1, 0, 1, 0). Let M := SOTP(m,u) ∈ T n. We will show
that one can produce M ′ ̸=M in T n such that Inv(M ′, u) = m = Inv(M,u).

In this case,

SOTP(m,u) = (m⊕ u1)− u2
= ((1, 0, 1, 1)⊕ (1, 1, 0, 1))− (1, 0, 1, 0)

= (0, 1, 1, 0)− (1, 0, 1, 0)

= (−1, 1, 0, 0) =M.

For example, consider M ′ :=M + (2, 0, 0, 0) = (1, 1, 0, 0) ∈ T n. Then,

Inv(M ′, u) = ((M ′ + u2)⊕ u1) & 1⃗

= (((1, 1, 0, 0) + (1, 0, 1, 0))⊕ (1, 1, 0, 1)) & 1⃗

= ((2, 1, 1, 0)⊕ (1, 1, 0, 1)) & (1, 1, 1, 1) (2)

= (3, 0, 1, 1) & (1, 1, 1, 1)

= (1, 0, 1, 1) = m.

6

We note that 3&1 = 11(2) & 01(2) = 1 in the first component of the fourth
line of the above equation array, since & denotes the bit-wise AND operation.

Remark 1. Our counterexample shows that, for M ′ ∈ T n and u ∈ {0, 1}2n,
Inv(M ′, u) = m does not imply SOTP(m,u) = M ′ since SOTP(m,u) = M
which is the contrast of the claim of the NTRU+ submission (See Section 6.1.,
Message-Hiding and Rigidity Properties of SOTP in [8, 2]).

Generating a Modified Ciphertext We will use the above counterexample to
show an example to generate a modified ciphertext for a given ciphertext of
CCA-NTRU+. Suppose that c = h · r + M is a ciphertext of CCA-NTRU+,
where h is a public key, and the encapsulation sets m = (1, 0, 1, 1) ∈ {0, 1}n,
(r,K) ← H(m), G(r) = u = (1, 1, 0, 1, 1, 0, 1, 0), and M = SOTP(m,G(r)) to
generate c.

Consider c′ := c + (2, 0, 0, 0). We remark that c′ = h · r +M ′, since M ′ =
M + (2, 0, 0, 0). When we decapsulate c′, the following holds.

1. Since M ′ = (1, 1, 0, 0) ∈ T n,

(c′ · f mod q) mod 3 =M ′.

2. Since c′ − M ′ = (c + (2, 0, 0, 0)) − (M + (2, 0, 0, 0)) = c − M , the same
r = (c′−M ′) ·h−1 = (c−M) ·h−1 value as in the encapsulation is recovered.

3. Inv(M ′, G(r)) produces m = Inv(M,G(r)) as shown in (2).
4. Hence, for (r′,K)← H(m), r′ = r holds since m and r are the same values

as in the encapsulation.

Hence, the decapsulation successfully outputs K which is the secret key encapsu-
lated in the ciphertext c, despite we decapsulated c′. This can be generalized and
exploited as a crucial part of our attack to recover the secret key corresponding
to the challenge ciphertext for CCA-NTRU+ described in the next section.

3.3 Attack Algorithm

In this section, we explain our attack algorithm to recover the secret key corre-
sponding to the challenge ciphertext of CCA-NTRU+ in the CCA security game.
Suppose that the challenge ciphertext c∗ in the CCA security game satisfies

c∗ = h · r∗ +M∗ mod q,

where h is a public key, (r∗,K∗)← H(m∗) ∈ {0, 1}n for m∗ ∈ {0, 1}n.
We first consider the case that the first component of M∗ ∈ T n is −1,

i.e., π1(M
∗) = −1. Since the challenge ciphertext c∗ is honestly generated by

the challenger and we assumed π1(M
∗) = −1, it should be the case that the

first component of G(r∗) ∈ {0, 1}2n is 1, i.e., π1(G(r
∗)) = 1, since otherwise

π1(M
∗ +G(r∗)) = −1 /∈ {0, 1}n.

7

Then, we define c′ := c∗ + 2 · e1 and send it to the decapsulation oracle of
CCA-NTRU+. The decapsulation oracle first gets

M ′ := (c′ · f mod q) mod 3 =M∗ + 2 · e1, (3)

since M∗ + 2 · e1 ∈ T n. It then recovers the same r∗ used in the encapsulation
since

(c′ −M ′) · h−1 = ((c∗ + 2 · e1)− (M∗ + 2 · e1)) · h−1

= (c∗ −M∗) · h−1 = r∗.

Then, the decapsulation oracle computes

Inv(M ′, G(r∗)) = ((M ′ + u1)⊕ u2) & 1⃗

= (((M∗ + 2 · e1 + u1)⊕ u2) & 1⃗

= ((M∗ + u1)⊕ u2) & 1⃗ = m∗,

where π1(u1) = π1(G(r
∗)) = 1 and m∗ := Inv(M∗, G(r∗)). We note that, under

the assumption π1(M
∗) = −1, the first component of M ′+u1 becomes 2, and it

is canceled out to be zero by &1⃗ operation at the end so that it is equal to the first
component of M∗ + u1 again. This implies the decapsulation oracle successfully
recover the initial randomness m∗ for the challenge ciphertext, and hence it
produces the values (r′,K ′)← H(m∗) in which r′ = r∗ andK ′ = K∗, the correct
decapsulation result of the challenge ciphertext. To sum up, the decapsulation
oracle does not abort and successfully returns K∗ which is a decapsulation result
of the challenge ciphertext c∗.

We remark that π1(M
∗) = −1 does not always hold by its definition. More

precisely, if legitimately generated, (π1(M
∗), π1(G(r

∗)), π1(M
∗+G(r∗))) should

be one of the four cases corresponding to the rows in Table 3, and the probability
that each case happens is 1/4. In Case II, III, and IV, the relation (3) does not
hold after modulo 3 operation since M∗ + 2 · e1 /∈ T n, so that it produces
r := (c′ −M ′) · h−1 ̸= r∗ and m := Inv(M ′, G(r)) ̸= m∗. Hence, in these three
cases, the decapsulation fails with overwhelming probability.

This implies that the decapsulation oracle is expected to produce a decap-
sulation result which equals to the decapsulation of the challenge ciphertext in
Case I in Table 3, and abort otherwise. Also, the same holds for the i-th compo-
nent in general, for i = 1, · · · , n. Hence, the attacker can proceed with the same
strategy for the i-th component of the challenge ciphertext by sending c∗ +2 · ei
to the decapsulation oracle increasing i = 1, · · ·n, until she gets the decapsula-
tion result of the challenge ciphertext. The attack succeeds in the fourth trial in
average. We present the pseudocode for our attack algorithm in Algorithm 1.

Theorem 1. For CCA-NTRU+, an attacker described in Algorithm 1 termi-
nates in polynomial time in λ, and wins the OW-CCA game with an overwhelm-
ing probability.

Proof. First, Algorithm 1 terminates in time O(n), hence in polynomial time in
λ. If an attacker loses, then it splits into two cases :

8

πi(M
∗) πi(G(r

∗)) πi(M
∗ +G(r∗))

I -1 1 0

II 1 0 1

III 0 1 1

IV 0 0 0

Table 3: Possible cases of (πi(M
∗), πi(G(r

∗)), πi(M
∗ +G(r∗))) for i = 1, · · · , n

Algorithm 1 Pseudocode for our attack algorithm

Require: a challenge ciphertext c∗ ∈ Rq

Ensure: a secret key K ∈ {0, 1}2λ
for i ∈ {1, · · · , n} do

c′ ← c∗ + 2 · ei (Note that c′ ̸= c∗)
Send c′ to the decapsulation oracle Odec

if Odec outputs K ′ then
Output K ′ as a decapsulation for c∗

break;
end if

end for

i) the decapsulation oracle Odec aborts for all i ∈ {1, · · · , n}.
ii) the decapsulation oracle Odec outputs a wrong output K ′ ̸= K∗ for some

i ∈ {1, · · · , n}.
The first case occurs only if Case I never happens for all i = 1, · · · , n. Hence,

the probability of the first case is upper-bounded by (1−1/4)n which is negligible
in λ.

The latter happens with probability 1/2n, assuming the hash functions are
the random oracles, and hence the probability it happens is negligible in λ.

To sum up, we showed that i) and ii) happen with negligible probability
in λ so that the adversary finds the correct secret key corresponding to the
challenge ciphertext and wins the OW-CCA game in polynomial time for all but
a negligible probability in λ.

Remark 2. As noted, the CCA-NTRU+ KEM algorithm does not achieve IND-
CCA security, since it is not OW-CCA secure as shown in Theorem 1.

3.4 Discussion

In this section, we provide some insights on why this attack can take place, and
how one can prevent it when designing KEMs based on the NTRU assumption.

The attack exploits that the intermediate value of the computation of Inv can
be non-binary which is not considered in the theoretical definition throughout
the NTRU+ document. However, we emphasize that the vulnerability comes not

9

only from the implementation aspects, but also from the theoretical definition
itself, since the theoretical definition does not deal with the non-binary interme-
diate values in Inv. The ambiguity of the theoretical definition for the non-binary
intermediate values led us to follow the description of Inv in the implementation
as well.

We remark that, to defend the attack, the simplest way is to check if each
component of the intermediate valueM+u2 of Inv is binary, and reject otherwise.
The rejection can also be implicitly held by generating and outputting a random
session key instead. This way may create other vulnerabilities against physical
attacks, such as simple power analysis, due to the process of checking whether
the intermediate value is binary or not. Hence, it would have to be designed
carefully concerning secure implementation, and the change should be addressed
in the theoretical specification (and also in the security proofs) as well as in the
implementation.

4 Conclusion

In this paper, we suggest a CCA attack for NTRU+, using the features of the
encoding method SOTP. We explain our observation and the attack idea with
an example, and present an attack algorithm to recover a key corresponding to
the challenge ciphertext of CCA-NTRU+. We also suggest a countermeasure to
modify CCA-NTRU+ KEM to make it secure against our attack.

Acknowledgments. This work is the result of commissioned research project sup-
ported by the affiliated institute of ETRI [2023-080]. This work was partly sup-
ported by the Sungshin Women’s University Research Grant of 2023 (Grant
No. H20230056). We thank Suhri Kim, Hansol Ryu, and Kyung Chul Jeong for
fruitful discussion and comments.

References

[1] Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367. IEEE (2018)

[2] Center, K.R.: Kpqc competition round 1, available from: https://www.kpqc.or.
kr/competition.html [last accessed June 2023]

[3] Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z.: Algorithm specifications and supporting doc-
umentation. Brown University and Onboard security company, Wilmington USA
(2019)

[4] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems pp. 238–268 (2018)

[5] Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.: A
thorough treatment of highly-efficient ntru instantiations. In: IACR International
Conference on Public-Key Cryptography. pp. 65–94. Springer (2023)

10

https://www.kpqc.or.kr/competition.html
https://www.kpqc.or.kr/competition.html

[6] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: International algorithmic number theory symposium. pp. 267–288.
Springer (1998)

[7] Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-HRSS-KEM. NIST
submissions (2017)

[8] Kim, J., Park, J.H.: Ntru+: Compact construction of ntru using simple encoding
method. Cryptology ePrint Archive (2022)

[9] Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key en-
capsulation mechanism for iot devices. IEEE Access 7, 2080–2091 (2018)

[10] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Topics in Cryptology–CT-RSA 2011: The Cryptographers’ Track at the RSA
Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings.
pp. 319–339. Springer (2011)

[11] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. Journal of the ACM (JACM) 60(6), 1–35 (2013)

[12] Lyubashevsky, V., Seiler, G.: Nttru: truly fast ntru using ntt. Cryptology ePrint
Archive (2019)

[13] NIST: Post-quantum cryptography, available from: https://csrc.nist.gov/

projects/post-quantum-cryptography [last accessed June 2023]
[14] Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,

Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon. Post-Quantum Cryptog-
raphy Project of NIST (2020)

[15] Regev, O.: The learning with errors problem. Invited survey in CCC 7(30), 11
(2010)

[16] Zhang, Z., Chen, C., Hoffstein, J., Whyte, W., Schanck, J.M., Hulsing, A., Rijn-
eveld, J., Schwabe, P., Danba, O.: NTRUEncrypt. Tech. Rep. (2019)

11

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

	A Novel CCA Attack for NTRU+ KEM
	Introduction
	Preliminaries
	Key Encapsulation Mechanism
	NTRU+

	CCA Attack for NTRU+
	Overview
	Example
	Attack Algorithm
	Discussion

	Conclusion

