
CLRW13 is not Secure Beyond the Birthday
Bound

Breaking TNT with O(2n/2) queries

Mustafa Khairallah

Seagate Research Group, Singapore, Singapore
mustafa.khairallah@seagate.com

Abstract. In this paper, we present a new distinguisher for the Tweak-
aNd-Tweak (TNT) tweakable block cipher with O(2n/2) complexity. The
distinguisher is an adaptive chosen ciphertext distinguisher, unlike pre-
vious attacks that are only non-adaptive chosen plaintext attacks. How-
ever, the attack contradicts the security claims made by the designers.
Given TNT can be seen as the three-round CLRW1 tweakable block ci-
pher, our attack matches its more conservative bound. We provide the
distinguisher description, a probabilistic analysis of its behaviour, ex-
perimental verification and an analysis of why the proof fails to capture
the security of TNT. In summary, the distinguisher is based on collision
counting and exploits non-uniformity in the statistical behaviour of ran-
dom permutations. It reduces the goal of finding the collision to solving
a difference equation defined over a random permutation. Due to this
relation, the number of collisions observed by the distinguisher is twice
as expected from an ideal tweakable block cipher.

Keywords: Tweakable Block Cipher · TBC · Random Permutation ·
Provable Security · TNT · Tweak-aNd-Tweak · CLRW1

1 Introduction

Tweakable Block Ciphers (TBCs) have become important symmetric key prim-
itives. They were introduced by Liskov et al. in their seminal paper “Tweakable
Block Ciphers” [14, 15]. They have gained popularity due to their simplicity and
how they can be used to build modes with Beyond Birthday Bound (BBB) se-
curity and simple security proofs. Several TBC designs have been proposed over
the years. The design of a TBC falls into one of two categories: adhoc designs,
and provable designs. Adhoc designs are designs built from scratch using adhoc
techniques and their security depends mainly on cryptanalysis. Examples of this
category are Deoxys-TBC [10], Skinny [3] and Qarma [1]. Provable designs are
designs where The security of the TBC reduces to the security of an underlying
primitive, such as a block cipher, a permutation or a pseudo-random function.
Examples of this approach is XEX [20], LRW1 and LRW2 [14]. In this work,
we focus on the second category. Particularly, we study the cipher known as

Tweak-aNd-Tweak (TNT) [2]. TNT was proposed in Eurocrypt 2020 and the
designers of TNT claim that given three random permutations, the TNT TBC
is secure against all adversaries that make up to 22n/3 adaptive chosen plaintext
or ciphertext queries.

Contribution In this paper, we study the security claim of TNT. We furnish a
distinguisher between TNT and a family of Tweakable Uniformly Random Per-
mutations (TURPs) using O(2n/2) chosen plaintext queries and O(2n/2) adap-
tive chosen ciphertext queries. We study the distinguisher analytically using the
statistics of random permutations and analysis of the behaviour of difference
equations and Difference Distribution Tables (DDTs) of random permutations.
We also implement and verify the attack experimentally on small instances of
TNT. Since the attack clearly contradicts the security claims of the designers of
TNT, we study their security proof and identify a bug, where a random vari-
able is erroneously assumed to have a uniform distribution, leading to an over
estimation of the security.

Impact As mentioned, the authors of [2] claimed the sTPRP security of TNT to
be 2n/3 bits. In Asiacrypt 2020, the authors of [8] conjectured that the sTPRP
security of TNT is probably 3n/4 bits. In [21], the authors have stated: “A nat-
ural open problem is the exact security of CLRW1r,E. Unlike CLRW2r,E, exact
security of CLRW1r,E for r = 3 already appears challenging, and might require
new proof approaches”. We believe this work answers a critical research question
of both practical and theoretical implications. On one hand, it studies the exact
security of an efficient construction that has several practical applications. On
the other hand, it offers another cautionary tale on how to use statistical proof
techniques such as that χ2 method.1

Outline In Section 2, we give necessary definitions needed to follow the paper.
In Section 3, we motivate the paper by giving an overview of a variety of issues
related to LRW1, TNT and CLRW1 [21]. Sections 4 and 5 describe our main
result; in Section 4 we describe our birthday bound adaptive CCA distinguisher,
while in Section 5 we study the statistical behaviour of the distinguisher show-
ing why it succeeds with birthday bound complexity. In Section 6 we provide
experimental verification of the distinguisher using small ciphers. In Section 7,
we describe the bug in the security proof in [2] that leads to the proven bound
being contradicted by our attack. Finally, the paper is concluded in Section 8.

2 Preliminaries

Block Ciphers A Block Cipher (BC): E : K × {0, 1}n → {0, 1}n is a family of
permutations that are indexed by a secret key K ∈ K. In other words, for each
key K selected uniformly randomly from K, EK(·) is a permutation over {0, 1}n.
A secure BC is indistinguishable from a uniformly random permutation (URP):

1 Refer to [5] for another example of erroneously estimated distributions.

2

P : {0, 1}n → {0, 1}n, for a uniformly random key K ∈ K. We call this Pseudo-
Random Permutation (PRP) security. We refer to the inverse of a block cipher
as its decryption function. We use E−1

K and DK interchangeably. If (EK , DK)
are indistinguishable from (P, P−1), then we refer to this as strong PRP (sPRP)
security.

Tweakable Block Ciphers A Tweakable Block Cipher (TBC): Ẽ : K × T ×
{0, 1}n → {0, 1}n is a family of permutations that are indexed by a secret key
K ∈ K and a public tweak T ∈ T . In other words, for each key K selected uni-
formly randomly from K and any choice of T ∈ T , ẼT

K(·) is a permutation over
{0, 1}n. A secure TBC is indistinguishable from a family of uniformly random
permutations. Such family is sometimes referred to as Tweakable URP (TURP).
We call this Tweakable Pseudo-Random Permutation (TPRP) security. We re-
fer to the inverse of a TBC as its decryption function. We use Ẽ−1

K and D̃K

interchangeably. If (ẼK , D̃K) are indistinguishable from (P̃ , P̃−1), where P̃ is
a TURP, then we refer to this as strong TPRP (sTPRP) security. This is also
commonly referred to as the CCA security of the TBC.

Poisson Distribution The Poisson distribution is a discrete distribution with
parameter λ and its Probability Mass Function (PMF) is defined as:

Poisson(i;λ) = Pr[X = i] =
λie−λ

i!

where the mean and variance are both equal to λ.

Difference Distribution Tables Let π : {0, 1}n → {0, 1}n be a permutation. The
equation

π(x⊕ δ)⊕ π(x) = ∆

is known as the difference equation (δ,∆) over π, where δ,∆ ∈ {0, 1}n and
⊕ is addition in the Galois Field GF(2n). Since π is a permutation, then any
difference equation must have an even number of solutions; either no solutions at
all (0), or an even non-zero number of solutions. Note that if M is a solution for
the difference equation (δ,∆), then M ⊕ δ must also be a solution. A Difference
Distribution Table (DDT) is a 2n×2n table constructed by counting the number
of solutions of each possible difference equation. It looks like Table 1. Each row
or column adds up to 2n and all the entries are even. The entry (0, 0) is always
2n and the rest of the entries of the first row and first column are all zero. If all
the entries are either 0 or 2n, then the permutation is linear. If all the entries
are either 0 or 2, except one, then the permutation is known as an Almost
Perfect Non-linear (APN) permutation. A random permutation is likely to fall
somewhere in between.

3 Motivation

In their seminal paper on Tweakable Block Ciphers [14], Liskov, Rivest and
Wagner presented two constructions for building TBCs using BCs. The first

3

δ
∆

0 1 2 . . . 2n − 1

0 2n 0 2 . . . 0

1 0 0 0 . . . 4

2 0 2 0 . . . 0

.

2n − 1 0 0 8 . . . 2
Table 1. An example of a DDT.

method requires two calls to a BC and is given by

C ← EK(T ⊕ EK(M)).

The second construction requires requires a universal hash function and a BC
and is given by

C ← h(T)⊕ EK(h(T)⊕M).

These two constructions have inspired a lot of work on TBCs. They came to
be known as LRW1 and LRW2, in reference to the authors. We note that in
an extended version of their paper [15]. The authors have renamed the con-
structions as CBC-MAC-Tweaked (CMT) and LRW, respectively. However, the
names LRW1 and LRW2 are more common in the literature.

In 2012, Landecker et al. [12] proposed a generalization of LRW2, dubbed
CLRW2r, where r is a parameter of the construction. The construction simply
cascades r instances of LRW2 with r independent keys and r independent hash
functions. However, generalizations of LRW1 have received less attention until
2020, potentially because LRW1 was proven CPA-secure only up to birthday
bound, and this bound is tight.

Tightness of LRW1 The tightness of the birthday bound of LRW1 is obvious.
Consider an adversary that fixes a message M and chooses q tweaks T1, . . . Tq.
When M is fixed, then a TURP behaves as a random function with domain T ,
while LRW1 behaves as a permutation over T . When q > 2n/2, the adversary
can observe whether there are collision in the output or not. Besides, the lack
of a security proof for CCA security is also not an open question. Consider an
adversary that works as follows:

1. Encrypt Ẽ0
K(A)→ C.

2. Decrypt D̃T
K(C)→ Ā.

3. Encrypt ẼX
K (Ā)→ C̄.

4. Decrypt D̃X⊕T
K (C̄)→ Z.

5. Output 1 if Z = A. Output 0 otherwise.

4

Since all the queries use different tweaks, the responses of a TURP are all uni-
formly distributed. Hence, the adversary outputs 1 with probability 2−n. In the
real world, we consider the four queries as one query:

Z = DK(T ⊕X ⊕DK(EK(X ⊕ EK(DK(T ⊕DK(EK(EK(A)))))))),

where there are three instances of forward and backward queries cancelling each
other, leading to

Z = DK(T ⊕X ⊕X ⊕ T ⊕ EK(A)) = DK(EK(A)) = A.

This observation that we can eliminate the effect of some BC calls by alternating
forward and backward TBC queries will also apply to generalizations of LRW1.

Tweak-aNd-Tweak (TNT) Bao et al. [2] proposed TNT as a three-round gen-
eralization of LRW1. Given three independent random permutations, TNT is
given by

C ← π3(T ⊕ π2(T ⊕ π1(M))).

They give a security proof in the information theoretic setting (the three per-
mutations are uniformly random and the adversary is unbounded) that shows
the construction is CCA secure up to 22n/3 queries, i.e., beyond the birthday
bound. The authors rightly point out that there is a missing link between this
security bound and real constructions built using independent ciphers. In [8],
Guo et al. presented distinguishing attacks on TNT with complexity

√
n23n/4,

alongside a CPA security proof up to 23n/4. However, the attacks presented by
the authors are non-adaptive chosen plaintext attacks. Similar to LRW1, it is
possible that TNT has different CCA and CPA bounds, and these attacks do
not address the tightness of the CCA bound.

CLRW1r,E Zhang et al. [21] recently presented a generalization of LRW1 and
TNT, dubbed as Cascaded LRW1 (CLRW1), and parameterized by the number
of rounds and keys r. It is given by

C ← EKr
(T ⊕ . . . EK2

(T ⊕ EK1
(M))),

and its idealized variant is

C ← πr(T ⊕ . . . π2(T ⊕ π1(M))).

The idealized variant coincides with TNT when r = 3. Besides, when r = 2, it
is similar to LRW1 except with two independent keys. However, its security is
the same as LRW1 and the described attacks on LRW1 also apply to CLRW12

in both the CPA and CCA settings. Interestingly, the authors provide a security
proof in the CPA setting, and rely on the compositional theorem in [11] to
give the a CCA bound when r is odd, given CPA security of two instances
with (r + 1)/2 rounds. This means that their bound for the CCA security of
TNT (CLRW13) is almost the same as the CPA bound for CRLW12, which
is the birthday bound (2n/2), while 22n/3 is only reached with r = 5. This is
significantly worse than the bound given by the TNT designers.

5

Observation on CLRW1r Assume two adversaries that are interested in key
recovery of CLRW1r. Both adversaries are only allowed to make a very small
number of queries q, say one query to each available oracle. The first adversary,
P is a CPA adversary, and can make 1 query. The second adversary C is a CCA
adversary and can make 1 adaptive query to each of the forward and backward
oracles. P receives

C ← EKr (T ⊕ . . . EK2(T ⊕ EK1(M)))

and is required to guess r keys. C, on the other hand, can make two carefully
selected queries

C ← EKr
(T0 ⊕ . . . EK2

(T0 ⊕ EK1
(M)))

X ← DK1
(T1 ⊕ . . . (T1 ⊕DKr

(C)))

and try to guess the keys corresponding to

X ← DK1
(T1 ⊕ . . . DKr−1

(T1 ⊕ T0 ⊕ EKr−1
(T0 ⊕ . . . EK2

(T1 ⊕ EK1
(M))))

which only requires guessing r − 1 keys. This indicates that similar to LRW1/
CLRW12, CLRWr is indeed weaker in the CCA setting that in the CPA setting.
However, this observation in itself is not an attack on any of the bounds of
TNT or CLRW1r, since the TNT is only proven secure in the idealized model
and the bound of CLRW1r falls apart if any of the keys is guessed correctly.
Nevertheless, this observation merits a deeper look into the CCA security of
CLRW1r. In this work, we start by studying the CCA security of CLRW13/TNT
in the idealized model: the three cipher calls use three independent uniformly
random permutations. For simplicity, we will refer to this variant as TNT, while
all the results apply to CLRW13, as well.

4 Birthday-Bound Distinguisher for TNT

In this section, we describe our CCA distinguishing attack against TNT. The
distinguisher D is parameterized by the complexity q and a threshold θ(q). It
makes q forward queries and q backward queries. It is described in Algorithm 1.

π1

T

π2

T

π3 π−1
3

T ⊕∆

π−1
2

T ⊕∆

π−1
1M X

Fig. 1. One iteration of the distinguisher in Algorithm 1.

6

Algorithm 1 The distinguisher D against the CCA security of TNT.

1: M
$←− {0, 1}n

2: ∆← itobn(2
n−1)

3: L← [0 ∀ 1 ≤ i ≤ 2n]
4: coll← 0
5: for i ∈ {0, 1, · · · , q − 1} do
6: C ← Ẽ(itobn(i),M)
7: X ← Ẽ−1(itobn(i)⊕∆,C)
8: coll← coll+ L[btoi(X)]
9: L[btoi(X)]← L[btoi(X)] + 1
10: end for
11: if coll ≥ θ(q) then
12: return 1
13: else
14: return 0
15: end if

The description of the distinguisher is quite simple: Cascade the forward and
inverse queries, with tweaks T and T ⊕∆ where ∆ and the plaintext M are fixed
for all queries, and ∆ ̸= 0. Make sure that for all 0 < i < q, 0 < j < q and i ̸= j,
Ti ̸= Tj and Ti ̸= Tj⊕∆. Count the number of collisions at the output of backward
queries. One iteration of the distinguisher is visually depicted in Figure 1, and
Figure 2 depicts the effective behavior as the effect of π3 is removed and we have
an XOR with a constant ∆ between the forward and backward queries. Figure 3
shows the internal values in the effective trace during one iteration.

π1

T

π2

∆

π−1
2

T ⊕∆

π−1
1M X

Fig. 2. The effective iteration of the distinguisher in Algorithm 1.

Analysis of the distinguisher In the ideal world, each query uses a unique tweak
and a new uniform random permutation is sampled for each query. Hence, all
the responses X are uniformly distributed. Given two queries, the probability
of collision is 1/2n, and the behaviour follows the birthday collision search. The
input space of the construction in Figure 2 is T and has size of 2n possibilities.
Thus, the expected number of collisions in the range of X can be estimated by(

2n

2

)
2n

=
2n − 1

2
.

7

In the real world, we have a relation that is maintained across all queries:

Vo ⊕ Ve = ∆.

Furthermore, each query defines a difference equation over π2:

π2(Uo ⊕ δ)⊕ π2(Uo) = ∆,

where δ = Uo ⊕ Ue. By construction, this equation must have at least two

π1

So Uo

T

π2

∆

Vo Ve

π−1
2

T ⊕∆

Ue Se

π−1
1M X

Fig. 3. The internal values of an iteration of the distinguisher in Algorithm 1.

solutions. The first is is Uo and the second is Ue. Hence, the query (T ⋆,M),
where T ⋆ = Ue ⊕ So collides with (T,M). However, whether this is the only
collision that leads to X, or not, depends on the difference distribution of the
permutation π2. For now, let the set of solutions to the difference equation

π2(x⊕ β)⊕ π2(x) = ∆

be Sβ,∆. Consider an equation π2(x⊕ δ)⊕ π2(x) = ∆ that has four solutions:

π2(Uo ⊕ δ)⊕ π2(Uo) = ∆

π2((Uo ⊕ δ)⊕ δ)⊕ π2(Uo ⊕ δ) = ∆

π2(Uo ⊕ γ ⊕ δ)⊕ π2(Uo ⊕ γ) = ∆

π2((Uo ⊕ γ ⊕ δ)⊕ δ)⊕ π2(Uo ⊕ γ ⊕ δ) = ∆

and the four corresponding tweaks

So ⊕ Uo

So ⊕ Uo ⊕ δ

So ⊕ Uo ⊕ γ

So ⊕ Uo ⊕ γ ⊕ δ.

Then,
S(0)
e = (Uo ⊕ δ)⊕ So ⊕ Uo ⊕∆ = So ⊕ δ ⊕∆

8

S(1)
e = Uo ⊕ (δ ⊕ So ⊕ Uo)⊕∆ = So ⊕ δ ⊕∆

S(2)
e = (Uo ⊕ γ ⊕ δ)⊕ (So ⊕ Uo ⊕ γ)⊕∆ = So ⊕ δ ⊕∆

S(3)
e = (Uo ⊕ γ)⊕ (δ ⊕ So ⊕ Uo ⊕ γ)⊕∆ = So ⊕ δ ⊕∆.

Thus,
S(0)
e = S(1)

e = S(2)
e = S(3)

e

and they form a multi-collision. The value propagation of this example is visually
depicted in Figure 4.

π1

So Uo

So ⊕ Uo

π2

∆

V
(0)
o V

(0)
e

π−1
2

So ⊕ Uo ⊕∆

Uo ⊕ δ So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ δ

So ⊕ Uo ⊕ δ

π2

∆

V
(0)
e V

(0)
o

π−1
2

So ⊕ Uo ⊕ δ ⊕∆

Uo So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ γ

So ⊕ Uo ⊕ γ

π2

∆

V
(2)
o V

(2)
e

π−1
2

So ⊕ Uo ⊕ γ ⊕∆

Uo ⊕ γ ⊕ δ So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ γ ⊕ δ

So ⊕ Uo ⊕ γ ⊕ δ

π2

∆

V
(2)
e V

(2)
o

π−1
2

So ⊕ Uo ⊕ γ ⊕ δ ⊕∆

Uo ⊕ γ So ⊕ δ ⊕∆

π−1
1M X

Fig. 4. The propagation in a four-way multi-collision.

If we know the exact values of |Sβ,∆| ∀β ∈ {0, 1}n, we can calculate the
exact number of collisions in the range of X. However, since the permutation

9

is secret, such information is not available. The next best thing is to know for
a given ∆, how many equations have 0 solutions, how many equations have 2
solutions,...etc. Let Qi be the number of values β such that π2(x⊕β)⊕π2(x) = ∆
has i solutions and m is the maximum number of possible solutions for any such
equation. Then, the number of collisions is given by

coll = Q2 +Q4 ∗ 6 +Q6 ∗ 15 +Q8 ∗ 28 + ...+Qm

(
m

2

)
. (1)

If π2 is an APN, then coll = 2n−1. This means that on the average, the APN
case has half a collision more than the ideal case. This may not be enough to
distinguish between the two cases. However, if π2 deviates in the slightest from
being an APN, e.g., if one of the considered equations has 4 solutions, we get

coll = 2n−1 − 2 + 6 = 2n−1 + 4,

which is 4.5 more than the ideal case. As we consider that more equations have
more than two solutions, the number of expected collisions increases. The worst
case scenario is when π2 is an affine permutation, in which case, the expected
number of collisions is

(
2n

2

)
. However, this case is not relevant for attacks on

designs based on block ciphers. We are interested in the expected number of
collisions when π2 is a random permutation. In the next section, we show that
the expected number of collisions is 2n, twice that of the ideal world.

5 On the Statistics of Random Permutations

A random permutation over n bits is sampled uniformly from the set of all
possible permutations over n bits. We recall that the DDT of a permutation π is
a 2n × 2n table that for an input difference β and output difference ∆ includes
the number of solutions of the difference equation:

π(X ⊕ β)⊕ π(X) = ∆.

O’Connor showed in Eurocrypt 93 [18] that the expected percentage of zeros
in such table for a random permutation is 60.65%. If π is an APN, then the
percentage of zeros will be slightly higher than 50%. This already shows that
the distinguishing advantage is non-negligible, as the relatively high percentage
of zeros will be offset by many entries that are larger than 2, since each row and
column in the DDT must add up to 2n. In fact, Daemen and Rijmen [6] showed
that the distribution of the entries of the DDT is given by Poisson’s distribution.
Particularly,

Pr[|Sβ,∆| = x] =
0.5x/2e−0.5

(x/2)!
.

Using Bayes’ theorem, then for x > 0,

Pr[|Sβ,∆| = x||Sβ,∆| > 0] =

10

Pr[|Sβ,∆| = x] Pr[|Sβ,∆| > 0||Sβ,∆| = x]

Pr[|Sβ,∆| > 0]
=

Pr[|Sβ,∆| = x]

Pr[|Sβ,∆| > 0]
=

0.5x/2e−0.5

(x/2)!(1− e−0.5)

These distributions can be used to estimate Equation 1. Let x = 2i, then2

E[coll] = e−0.5 · 2n
∑
i>0

0.5i
(
2i
2

)
i!

=

e−0.5 · 2n
∑
i>0

0.5i 2i(2i−1)
2

i!
=

e−0.5 · 2n+1
∑
i>0

0.5ii(i− 0.5)

i!
=

e−0.5 · 2n+1
∑
i>0

0.5ii(i− 1 + 0.5)

i!
=

e−0.5 · 2n+1
∑
i>0

(
0.5ii(i− 1)

i!
+

0.5ii× 0.5

i!

)
=

e−0.5 · 2n+1

(∑
i>0

0.5ii(i− 1)

i!
+
∑
i>0

0.5ii× 0.5

i!

)
=

e−0.5 · 2n+1

(∑
i>1

0.5i

(i− 2)!
+ 0.5

∑
i>0

0.5i

(i− 1)!

)
=

e−0.5 · 2n+1

(
0.52

∑
i>1

0.5i−2

(i− 2)!
+ 0.52

∑
i>0

0.5i−1

(i− 1)!

)
=

e−0.5 · 2n+1
(
0.52e0.5 + 0.52e0.5

)
= 0.5 · 2n+1.

Therefore,
E[coll] = 2n,

which means that the distinguisher in Algorithm 1 is expected to have twice as
many collisions in the real world as in the ideal world. θ(q) can be generalized
as:

θ(q) = 22d−1 + 22d−2

when q = 2n/2+d, which is ≈ 1.5× the expected number of collisions in the ideal
case.

2 ex =
∑∞

i=0
xi

i!
and ex =

∑
i>b

xi−b−1

(i−b−1)!
.

11

To verify that the sampled permutations follow the same distribution, we
have implemented a Monte-Carlo experiment to estimate the probability distri-
bution of the number of solutions of a difference equation given that solutions
exist by generating many random permutations for 16 ≥ n ≥ 30. Almost all the
generated permutations satisfied that the percentage of zero entries is around
60.65%. We found that the distribution settles around approximately the distri-
bution in Table 2.

Table 2. The estimated probability distribution of the number of solutions for a dif-
ference equation over a random permutation, when it is known that solutions exist.

x 2 4 6 ≥ 8

Pr(x) 0.772 0.192 0.032 0.004

The distribution in Table 2 helps us estimate the number of expected solu-
tions and the probability of a collision. Note that while stopped at 8 solutions,
including mores solutions only increases the probability of collision. Since the
probability of more than 8 solutions seems to be very small, we believe estima-
tion to be a good enough approximation. Assuming the maximum number of
solutions is 8, we can estimate Qi as

E[Qi] = 0.3935× Pr[i]× 2n.

By substituting in Equation 1, we get

E[coll] = 0.3935× 2n(0.772 + 0.192× 6 + 0.032× 15 + 0.004× 28) =

0.3935× 2.516× 2n ≈ 2n.

This estimation indicates that when π2 is a random permutation (or a well-
designed block cipher), the expected number of collisions is twice that of the
ideal world. Hence, by setting q = c2n/2 for a small constant c, and setting the
appropriate θ, in Algorithm 1, we get a distinguisher that succeeds with very
high probability. In the next section, we verify these estimations with practical
experiments.

6 Experimental Verification

In order to gain more confidence in the attack, we have implemented two exper-
iments to verify the distinguishing advantage. In the first experiment, we used
random permutations generated using Python NumPy’s shuffle and argsort

functions, to generate and invert a permutation, respectively. We generated per-
mutations of sizes 16, 20, 24, 28 and 32 bits and performed the distinguishing
attack on each generated permutation. This implementation is given in Ap-
pendix B. Results where taken over an average of 1, 000 ∼ 10, 000 random gen-
erations (each consisting of 3 independent permutations). In the ideal world,

12

random values are sampled, since the uniqueness of the tweak ensures each per-
mutation is sampled at most once. Table 3 includes the average number of col-
lisions for n = 16 and n = 20, which matches the number of collisions observed
for other values of n, as well. The distinguisher reaches 16 expected collisions in
the real world 4× faster than the distinguisher in [8] for n = 16 and 16× faster
for n = 20.

Table 3. Average number of collisions using random permutations.

n 16

log2(q) 6 7 8 9 10 11

real 0.06 0.27 0.96 3.72 15.62 63.59

ideal 0.023 0.12 0.48 1.98 7.91 31.17

n 20

log2(q) 8 9 10 11 12 13

real 0.073 0.203 1.02 4.01 15.69 63.63

ideal 0.023 0.11 0.47 1.94 7.92 32.57

Table 4 shows the success rate for the different values of n and different pa-
rameters q and θ(q). The distinguisher reaches ≥ 85% with complexity 2n/2+3

and and 99% success rate with complexity 2n/2+4, since each iteration includes
two queries to the construction. For large n, the factors 23 and 24 are small. For
a visual representation, Figure 5 shows the comparison between the complexity
of the distinguisher against the birthday bound and the claim in [2]. The distin-
guisher breaks the claim with ≥ 85% success rate for 18 < n ≤ 24, and breaks it
with ≥ 99% for n > 24. With complexity 2n/2+5, we get a success rate of almost
100%, and an attack that breaks the security claim for In practice, n ≥ 64.

Table 4. The success rate achieved for different values of n and q.

n q (85%) θ(q) (85%) Success Rate q (99%) θ(q) (99%) Success Rate

16 10 12 87.2% 11 48 99%
20 12 12 86.6% 13 48 99%
24 14 12 90% 15 48 99%
28 16 12 85% 17 48 99%
32 18 12 87.5% 19 48 99%

In order to validate our experiments further, and eliminate any issues that
may arise from Python’s random generation, we ran a second experiment using
the implementation of the 16-bit cipher Small-Present-16 [13] provided by the
authors of [8]. This implementation is provided in Appendix C. The number
of collisions is taken as an average over 10, 000 executions of the attack. The
results are presented in Table 5. The results statistically match the random
permutation case. A sample of the distribution of the number of solutions for

13

n

lo
g

C
om

pl
ex

ity

0

5

10

15

20

25

16 18 20 22 24 26 28 30 32

q(85%) Claim Birthday q(99%)

Claim vs Complexity

Fig. 5. The complexity of the distinguisher for different success rates compared to the
claim of [2] and the birthday bound.

a input difference against all possible output differences and for a given key is
given in Table 6. The distribution follows closely the simulated distribution in
Table 2, which both validates our simulations and indicates that Small-Present-
16 behaves closely to a randomly selected permutation. We have also replicated
the success rate experiment and got 90.9% for q = 210 and 99.7% for q = 211.

Table 5. Average number of collisions using Small-Present-16.

n 16

log2(q) 6 7 8 9 10 11

real 0.058 0.25 0.98 4.02 16 63.94

ideal 0.027 0.12 0.49 1.98 7.98 31.92

14

Table 6. A sample of the distribution of the number of solutions for a difference
equation defined over Small-Present-16 for a given secret key.

x 2 4 6 ≥ 8

Pr(x) 0.773 0.191 0.031 0.005

7 On the Security Proof of TNT

The authors of [2] presented a CCA security proof of TNT that clearly con-
tradicts our attack. Assuming our attack is correct, given it is supported by
practical verification, theoretical analysis and practical estimations, the contra-
diction must stem from a bug in the proof. The proof follows the χ2 method
proposed by Dai et al. [7]. Compared to other proof methods, this method is
quite recent. After carefully studying the security proof, we identified an issue
that involves a fundamental, yet subtle, case analysis. The main technique of
the proof, from a high level point of view, works as follows:

– A deterministic distinguisher observes the first l − 1 queries and selects
whether the next query is a forward or inverse query as well as the tweak Tl

and the plaintext Ml or ciphertext Cl.
– Find the probability distribution of all the internal values of the construction

given the first l− 1 query. We call a set of possible vectors of internal values
Inter.

– For each possible Inter, estimate the probability distribution of each possible
response to query l.

The authors then analyze different possible cases and apply the χ2 method on
the resulting distribution.

In order to better understand the issue, we analyze our distinguisher in the
flow of the security proof. The distinguisher in Algorithm 1 works as follows:

– If l is odd, it makes a forward query (X0, Tl−2 + 1).
– If l is even, it makes a backward query (Yl−1, Tl−1 ⊕∆).

Let (So, Uo, Vo) are the output of π1, input of π2 and output of π2 in the last
(odd) query l − 1, and we estimate the probability

Pr[Xl = Xi|Xi ∈ Ql and i is odd].

Let (Si, Ui, Vi) and (Se, Ue, Ve) are the corresponding internal values of Xi and
Xl, respectively. Then, we know that

Vo ⊕ Ve = ∆

and
Pr[Xl = Xi|Xi ∈ Ql and i is odd] =

Pr[Se = S
′
|X

′
∈ Ql and i is odd] =

15

Pr[Ue ⊕ Tl−1 ⊕∆ = Ui ⊕ Ti−1 ⊕∆|X
′
∈ Ql and i is odd] =

Pr[Ue ⊕ Ui = Tl−1 ⊕ Ti−1|X
′
∈ Ql and i is odd] =

Since X0 is fixed for all odd queries, so is So. Thus, Uo ⊕ Tl−1 = Ui−1 ⊕ Ti−1.
Therefore,

Pr[Ue ⊕ Ui = Uo ⊕ Ui−1|X
′
∈ Ql and i is odd] =

Pr[Ue ⊕ Uo = Ui ⊕ Ui−1|X
′
∈ Ql and i is odd] ≈ |Sδ,∆| − 1

2n

where δ = Uo ⊕ Ue. As discussed in the analysis of the distinguisher, this prob-
ability depends on the DDT of π2 and is not the same for every permutation.
Thus, it deviates from the distribution assumed in [2]. In terms of the proof
presented in [2], the event we are discussing belongs to case 5 (case 1 if we swap
all the forward and backward queries). In this case, the authors claim

Pr[Xl = Xi|Xi ∈ Ql and i is odd] ≤ 4l

22n
+

1

2n − l

(Equation (9) of [2]). It is easy to see that our analysis/distinguisher violates
this bound. We argue that the distribution assumed for case 5/case 1 - class B
erroneously underestimates the probability of certain bad events, and by chang-
ing the distribution to account for these bad events, the proof argumentation
falls apart. Besides, it is not clear how to do so in the existing proof framework
using the χ2 method.

In particular, we look at the term 4l/22n. The term stems from the following
argument in [2]:

“It remains to bound Pr[Inter ∈ A|Ql−1]. For this, note that once the values
in Inter except for (Sl,Wl) have been fixed, the number of choices for (Sl,Wl)
is at least (2n − α(Ql−1))(2

n − γ(Ql−1)) ≥ 22n/4, where α(Ql−1) ≥ q ≥ 2n/2
and γ(Ql−1) ≥ q ≥ 2n/2 are the number of distinct values in (S1, . . . Sl−1)
and (W1, . . .Wl−1). Out of these ≥ 22n/4 choices, the number of choices that
ensure the desired property TNT(Tl, Xl) = Yl is at most l−1, which results from
the following selection process: we first pick a pair of input-oput (Ui, Vi) with
i ≤ l − 1, and then set Sl = Tl ⊕ Ui and Wl = Tl ⊕ Vi. Therefore, Pr[Inter ∈
A|Ql−1] ≤ 4l/22n,and thus the upper bound in this case is

4l

22n
+

1

2n − l
′′.

Consider the first case of the 4-way multi-collision in Figure 4, which we recall
in Figure 6. We note that if the triplet (δ, So, Uo) is known, then the collision
happens with probability 1, which puts it in class A. Then, what remains is to
calculate what is the probability that the adversary can force this collision, i.e.,

Pr[Inter ∈ A|Ql−1] = Pr[Ue ⊕ Uo = T1 ⊕ T2|Ql−1],

where T1 and T2 are determined by the adversary during previous queries. This
means than once Uo in Inter is fixed (both Uo and Ue belong to a queries

16

i, j < l), Ue has at most 2n − 1− α(Ql−1) choices
3, where α(Ql−1) ≤ q ≤ 2n−1

is the number of distinct values in {U1, . . . Ul}\{Uo, Ue} only 1 of them enforces
the collision. In other words,

Pr[Inter ∈ A|Ql−1] =

Pr[Ue ⊕ Uo = T1 ⊕ T2|Ql−1]

≥ 1

2n − 1− α(Ql−1)

≥ 1

2n − 1
≫ 4l

22n
,

when l≪ q, contradicting Equation (9) of [2].

π1

So Uo

T1 = So ⊕ Uo

π2

∆

V
(0)
o V

(0)
e

π−1
2

So ⊕ Uo ⊕∆

Ue = Uo ⊕ δ So ⊕ δ ⊕∆

π−1
1M X

π1

So Uo ⊕ δ

T2 = So ⊕ Uo ⊕ δ

π2

∆

V
(0)
e V

(0)
o

π−1
2

So ⊕ Uo ⊕ δ ⊕∆

Uo So ⊕ δ ⊕∆

π−1
1M X

Fig. 6. A class A Collision.

Note that the values of Vi and Wi for i < l did not affect the behaviour of the
collision or the probability that Inter is in class A. It seems the ambiguity may
stem from applying the χ2 method to a primitive with two dependent functions
(Ẽ and its inverse). By cascading forward and backward queries, we managed
to eliminate Wi for all 1 ≤ i ≤ q and the values of Wl do not matter for the
attack. Similarly, by fixing the difference between Vo and Ve to a constant ∆, we
minimize the effect of their exact values on the attack.

A potential fix of this issue could be to add a tweak dependent operation
after π3, to prevent π3 and π−1

3 from cancelling each other out. However, such
solution may introduce new issues and is beyond out scope of study. On the
other hand, we argue that fixing the proof using the exact same method is

3 We use the notation of [2] in this part.

17

neither required nor needed, since [21] already provides a birthday bound proof
and our distinguisher shows its tightness.

8 Conclusion

In this paper, we studied the security of the TNT tweakable block cipher, show-
ing an adaptive chosen ciphertext attack with birthday bound complexity. This
contradicts the claims made by the designers, and answers an important open
research question on the exact security of the CLRW13. We show that it has tight
birthday bound security. We believe our observations on the use of the statis-
tics of random permutations will be beneficial in the analysis of other schemes,
especially those whose security is based on statistical techniques such as the χ2

method.
The designers of TNT were motivated by a simple question: what is the min-

imum number of iterations (or tweak addition) required to produce a secure TBC
(especially those with BBB security), with provable security? They answered this
question as 3 iterations and 2 tweak additions. However, in the light of our work,
the answer to this question in the BBB case has to be deferred to [21], giving
answer of 5 iterations and 4 additions to get 2n/3-bit security.

As future work, we plan to investigate the application of observations on the
statistics of random permutations in the analysis of other constructions, includ-
ing hash-based TBCs. We give an example of using such statistics to show the
lack of simple collision counting distinguishers against the XOR-PRF construc-
tion. Another interesting research direction is investigating the χ2 method more
closely to understand why the proof in [2] failed, and how to correctly estimate
distributions to avoid these pitfalls in the future.

A Counting Collisions in the XOR-PRF Construction

The XOR-PRF construction is a simple method to convert a BC into a PRF
using two calls to the BC and a single key. In the analysis of the construction,
the BC is replaced by a single random permutation. Assume π is a random
permutation, then the XOR-PRF is given by

f(M)← π(0∥M)⊕ π(1∥M).

Several efforts have been presented to prove its security and applications [7, 5, 4,
9, 17, 19], with the best bound on the form q/2n. This bound is obviously tight,
as pointed out in [7]. The adversary can simply query all 2n−1 possible inputs
and observe if any of the outputs is 0n, which is impossible using XOR-PRF.
It is still interesting to find if there are other distinguishers. In this appendix,
we show that it is unlikely that distinguishers based on simple collision counting
exist. We do so by relying on similar observations to those used in Algorithm 1.
Note that each query defines a difference equation as

π(0∥M)⊕ π(0∥M ⊕ δ) = ∆.

18

This time, the input difference is always fixed to δ = 1∥0n−1. The query also
already gives two solutions to the equation: 0∥M and 1∥M . If the equation
(1∥0n, ∆) has only two solutions, then it is impossible to find another input to
the XOR-PRF construction that outputs ∆. If the number of solutions s ≥ 4,
then the query is part of a multi-collision of size:(

s/2

2

)
.

The expected number of collisions in the output space of XOR-PRF can be
counted as

2n ×
∑
s>2

Pr[s]×
(
s/2

2

)
=

2n ×
∑
i>1

0.5ie−0.5

i!
×
(
i

2

)
=

2n ×
∑
i>1

0.5ie−0.5

(i− 2)!× 2
=

2n × 0.53
∑
i>1

0.5i−1e−0.5

(i− 2)!
=

2n × 0.53 = 2n−3.

In the ideal world, when XOR-PRF is replaced by a random function, the ex-
pected number of collision in the output space is(

2n−1

2

)
2n

=
2n−1(2n−1 − 1)

2n+1
=

2n−1 − 1

22
= 2n−3 − 1

2
,

which implies that there is very small difference in the expected number of
collisions between XOR-PRF and a random function, and it is unlikely that
even with 2n−1 queries a distinguisher based on collision counting has a sig-
nificant advantage. In fact, not only does the number of collisions match that
of a random function, but also the distribution of szes of multi-collision, e.g.,
the expected number of outputs with 0 occurences, 1 occurrence, 2 occurences,
3 occurences,. . . etc. It is interesting to find a distinguisher for the XOR-PRF
construction when the ideal random function is defined over the output space
{0, 1}n \ {0}. However, collision counting may not be the way to find such dis-
tinguisher, which attests to the soundness of the construction.

B Python Implementation of Algorithm 1

19

1 from numpy import random

2 import numpy as np

3 from random import randint

4 from math import sqrt

5 from tqdm import trange

6

7 # Select the world: 1: Real, 0: Ideal

8 #world = randint(0,1)

9 world = 0

10

11 # TBC block size

12 n = 28

13

14 c = 2

15 # Attack complexity

16 q = (1 << int(n/2+c))

17

18 # Distinguisher threshold

19 theta = (1 << (2*c-1)) + (1 << (2*c-2))

20

21 # Generate 3 random permutations

22 pi1 = np.array([_ for _ in range(1<<n)])

23 random.shuffle(pi1)

24

25 pi2 = np.array([_ for _ in range(1<<n)])

26 random.shuffle(pi2)

27

28 pi3 = np.array([_ for _ in range(1<<n)])

29 random.shuffle(pi3)

30

31 # Generate the inverse of each of the 3 permutations

32 beta1 = np.argsort(pi1)

33 beta2 = np.argsort(pi2)

34 beta3 = np.argsort(pi3)

35

36 # TNT

37 def enc (m,t):

38 c = 0

39 c = pi1[m] ^ t

40 c = pi2[c] ^ t

41 c = pi3[c]

42

43 return c

44

45 # TNT^-1

46 def dec (m,t):

47 c = 0

48 c = beta3[m] ^ t

49 c = beta2[c] ^ t

50 c = beta1[c]

20

51

52 return c

53

54 # Fixed message

55 m0 = randint(0,((1<<n)-1))

56

57 # A list to store the multi-collisions.

58 L = [[] for _ in range((1<<n))]

59

60 # Collision counter

61 cnt = 0

62

63 # Delta ensures all the queries in the attack have different tweaks

64 # Helps simplify the ideal case, as no tweaks are repeated and we can

65 # simply sample a random value each time.

66 delta = q

67

68 # A list of the number of collisions on value c

69 coll = np.zeros((1<<n))

70

71 # For every iteration, take a random tweak and itself xor delta, and

72 # make an encryption call followed by a decryption call.

73 # Due to the uniqueness of tweaks, in the ideal case this amounts to

74 # sampling a uniform block.

75 print("Attack Started")

76 for _ in trange(q):

77 t0 = _

78 t1 = t0 ^ delta

79 c = enc(m0,t0)

80 c = dec(c,t1)

81 if (world == 0):

82 c = randint(0,(1<<n)-1)

83

84 coll[c] = coll[c] + len(L[c])

85 cnt = cnt + len(L[c])

86 L[c].append([t0,t1,c,m0])

87

88 # Guess the world

89 if (cnt >= theta):

90 guess = 1

91 else:

92 guess = 0

93

94 print("cnt:",np.mean(cnt))

95

96 if (world == 0):

97 print("Answer: Ideal World")

98 else:

99 print("Answer: Real World")

100

21

101 if (world == guess):

102 print("Success")

103 else:

104 print("Fail")

C C++ Implementation of Algorithm 1 on
TNT-Small-Present-16

This implementation needs to be integrated into the library at [16].

1

2 #include <cstdint>

3 #include <gtest/gtest.h>

4

5 #include "ciphers/small_present16.h"

6 #include "utils/utils.h"

7 #include "ciphers/tnt_small_present16.h"

8

9 #include <stdlib.h>

10 #include <time.h>

11 #include <iostream>

12

13 using namespace std;

14

15 using ciphers::tnt_small_present16_context_t;

16 using ciphers::tnt_small_present16_state_t;

17 using ciphers::tnt_small_present16_tweak_t;

18 using ciphers::tnt_small_present16_key_t;

19

20 // ---

21

22 int main(int argc, char **argv) {

23

24 tnt_small_present16_key_t k;

25 tnt_small_present16_state_t m,x,xe;

26 tnt_small_present16_state_t t;

27 tnt_small_present16_context_t ctx;

28

29 int i, q, c, j;

30 int L [65536];

31 int coll[10000];

32 float avg;

33 int world;

34 int guess;

35 int success;

36

37 srand(time(NULL));

38

39 success = 0;

22

40

41 world = rand()%2;

42

43 for (i = 0; i < 10000; i++) {

44 coll[i] = 0;

45 }

46 q = 1 << 11;

47 for (j = 0; j < 10000; j++) {

48 world = rand()%2;

49 for (i = 0; i < 6; i++) {

50 k[i] = rand()%256;

51 }

52 for (i = 0; i < 65536; i++) {

53 L[i] = 0;

54 }

55 for (i = 0; i < 2; i++) {

56 m[i] = rand()%256;

57 }

58

59 tnt_small_present16_key_schedule(&ctx, k);

60

61 for (i = 0; i < q; i++) {

62 t[0] = i & 0xff;

63 t[1] = (i>>8) & 0xff;

64 tnt_small_present16_encrypt(&ctx, t, m, x);

65 t[1] ^= 0x80;

66 tnt_small_present16_decrypt(&ctx, t, x, xe);

67 c = xe[0] + (xe[1] << 8);

68 if (world == 0) {

69 c = rand()%65536;

70 }

71 coll[j] += L[c];

72 L[c] += 1;

73 }

74 guess = 1;

75 if (coll[j] < 48) {

76 guess = 0;

77 }

78 if (guess == world) {

79 success++;

80 }

81 }

82

83 cout << "success: " << success << endl;

84

85 }

23

References

1. Avanzi, R.: The qarma block cipher family. almost mds matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Transactions
on Symmetric Cryptology pp. 4–44 (2017)

2. Bao, Z., Guo, C., Guo, J., Song, L.: Tnt: how to tweak a block cipher. In: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 641–673. Springer (2020)

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The skinny family of block ciphers and its low-latency
variant mantis. In: Advances in Cryptology–CRYPTO 2016: 36th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II 36. pp. 123–153. Springer (2016)

4. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to prp to prf conversion.
IACR Cryptol. ePrint Arch. 1999, 24 (1999)

5. Bhattacharya, S., Nandi, M.: A note on the chi-square method: A tool for proving
cryptographic security. Cryptography and Communications 10, 935–957 (2018)

6. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. Journal of Mathematical Cryptology 1(3), 221–242 (2007)

7. Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via
the chi-squared method. In: Annual International Cryptology Conference. pp. 497–
523. Springer (2017)

8. Guo, C., Guo, J., List, E., Song, L.: Towards closing the security gap of tweak-and-
tweak (tnt). In: Advances in Cryptology–ASIACRYPT 2020: 26th International
Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part I 26. pp. 567–597.
Springer (2020)

9. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Fast Software Encryption: 13th International Workshop, FSE 2006,
Graz, Austria, March 15-17, 2006, Revised Selected Papers 13. pp. 310–327.
Springer (2006)

10. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: The deoxys aead family. Journal of
Cryptology 34(3), 31 (2021)

11. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal se-
curity. In: International Workshop on Fast Software Encryption. pp. 133–151.
Springer (2013)

12. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Annual Cryptology Conference. pp. 14–30.
Springer (2012)

13. Leander, G.: Small scale variants of the block cipher present. Cryptology ePrint
Archive (2010)

14. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Advances in
Cryptology—CRYPTO 2002: 22nd Annual International Cryptology Conference
Santa Barbara, California, USA, August 18–22, 2002 Proceedings 22. pp. 31–46.
Springer (2002)

15. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. Journal of cryptol-
ogy 24, 588–613 (2011)

24

16. List, E.: TNT · GitLab — gitlab.com. https://gitlab.com/elist/tnt, [Accessed 08-
08-2023]

17. Lucks, S.: The sum of prps is a secure prf. In: Advances in Cryptol-
ogy—EUROCRYPT 2000: International Conference on the Theory and Applica-
tion of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings
19. pp. 470–484. Springer (2000)

18. O’Connor, L.: On the distribution of characteristics in bijective mappings. In: Ad-
vances in Cryptology—EUROCRYPT’93: Workshop on the Theory and Applica-
tion of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings
12. pp. 360–370. Springer (1994)

19. Patarin, J.: A proof of security in o(2n) for the xor of two random permutations. In:
International Conference on Information Theoretic Security. pp. 232–248. Springer
(2008)

20. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes ocb and pmac. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 16–31. Springer (2004)

21. Zhang, Z., Qin, Z., Guo, C.: Just tweak! asymptotically optimal security for the
cascaded lrw1 tweakable blockcipher. Designs, Codes and Cryptography 91(3),
1035–1052 (2023)

25

