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Abstract—Contact discovery is a crucial component of social
applications, facilitating interactions between registered contacts.
This work introduces Arke, a novel contact discovery scheme that
addresses the limitations of existing solutions in terms of privacy,
scalability, and reliance on trusted third parties. Arke ensures the
unlinkability of user interactions, mitigates enumeration attacks,
and operates without single points of failure or trust. Notably,
Arke is the first contact discovery system whose performance
is independent of the total number of users and the first that
can operate in a Byzantine setting. It achieves its privacy goals
through an unlinkable handshake mechanism built on top of
an identity-based non-interactive key exchange. By leveraging
a custom distributed architecture, Arke forgoes the expense of
consensus to achieve scalability while maintaining consistency in
a Byzantine fault tolerant environment. Performance evaluations
demonstrate that Arke provides enough throughput to support
the needs of the most popular messaging applications while main-
taining sub-second latencies in a large geo-distributed setting.

I. INTRODUCTION

Contact discovery enables users of social applications, such
as messengers, payment systems, or media-sharing platforms,
to find and interact with their registered contacts [69]. This
process allows bootstrapping social applications on top of an
existing social graph, providing immediate value to the appli-
cation. This is particularly effective when the social graph uses
familiar and widely shared identifiers such as phone numbers,
email addresses or usernames from popular platforms.

Current solutions have significant shortcomings in meeting
several important expectations. Some fail to adequately protect
users’ privacy, exposing their underlying social relations either
by design [88], [90] or when targeted by enumeration or
crawling attacks [53], [60]. These solutions often rely on
centralized parties [32], [59] or trusted hardware for privacy
protection [70]. Finally, all these solutions express some form
of dependency on the total number of users (either in latency,
computation or storage) and may not be suitable for applica-
tions with billions of users1.

Arke2 is a novel contact discovery scheme that addresses
the limitations found in existing systems. Arke ensures the
unlinkability of user interactions and effectively mitigates
enumeration attacks. It prioritizes user privacy by ensuring
that no information about users, their messages, or their com-
munication partners is revealed. Additionally, Arke enforces
a bi-directional relationship requirement, meaning that users

1WhatsApp, the most popular end-to-end encrypted messaging application,
was reported to have 2.7 billion unique active users in June 2023 [28]

2In Greek mythology, Arke is the messenger of the Titans.

can only discover each other if they are mutually seeking
contact. This approach prevents crawling attacks, setting it
apart from traditional contact discovery schemes. Furthermore,
Arke supports multiple applications sharing the same con-
tact discovery infrastructure while maintaining independent
security assumptions. Notably, Arke represents a significant
advancement as the first privacy-preserving contact discovery
system whose performance is independent of the total number
of users in the system (often referred to as the database size).
Moreover, Arke stands out as the first contact discovery system
designed without any single points of failure or trust; Arke
offers scalability in terms of throughput and extremely low
latency despite the presence of a Byzantine adversary.

The Arke contact discovery protocol generalizes the con-
struction of Chaum et al. [32], known as UDM (User Dis-
covery with Minimal information disclosure). Implicit to the
UDM architecture is the fact that a contact discovery scheme
can be built by combining a key exchange and an unlinkable
handshake. First, users run a key exchange to establish a shared
secret. Then, using this secret, the users run the handshake
protocol to establish an end-to-end encrypted channel, without
revealing any connection details to third parties. Chaum et
al. [32] realize both of these subprotocols with the help of
centralized parties (the Public-Key Manager and Encrypted
ID Manager respectively). Arke improves on these require-
ments. The key exchange is instantiated with a variant of
the Boneh-Waters identity-based non-interactive key exchange
(ID-NIKE) [17]. By utilizing distributed key generation [47]
and blind threshold BLS signatures [13], we modify the
original protocol to distribute the master secret key and enable
oblivious and verifiable key issuance. We then present a
custom unlinkable handshake protocol which only requires an
untrusted (and potentially distributed) public bulletin board.
The design of this handshake ensures that each system resource
is mutated by at most a single user, eliminating the need for
an expensive consensus protocol to maintain consistency in the
distributed setting. Instead, Arke relies on a simpler and more
efficient primitive based on Byzantine Consistent Broadcast
(BCB) [23].

We implement and evaluate a prototype of Arke written
in Rust on Amazon EC2 in a large geo-distributed wide-area
network deployment. We show that after a short one-time
offline phase taking only a couple of seconds, Arke supports
over 1’500 users per second with a latency of less than 0.5
seconds even when the infrastructure is maintained by 50
authorities. Furthermore, Arke can maintain this throughput
with sub-second latency even when up to a third of these



authorities fail.

Contributions. This paper makes the following contributions:

• It generalizes the UDM construction of Chaum et
al. [32] and presents Arke — a novel construction that
is the first with performance independent of the total
number of users in the system, and the first designed
to operate in a Byzantine environment. It does so
by introducing a threshold and oblivious variant of
the Boneh-Waters ID-NIKE [17], as well as a custom
unlinkable handshake.

• It proves the security and privacy guarantees of the
system (left as an open question in the work of Chaum
et al. [32]).

• It shows how Arke maintains consistency of a dis-
tributed key-value store without requiring consensus
but instead using simpler and more efficient broadcast-
based primitives.

• It provides a full implementation of Arke and a per-
formance evaluation on a real geo-distributed environ-
ment under varying system loads and fault scenarios.

• It shows how existing blockchains can leverage Arke
to build a privacy-preserving contact discovery service
for their wallets, and how messaging services such as
Signal [83], Telegram [87], and WhatsApp [91] can
run Arke to allow users to privately discover each
other’s public keys.

II. SYSTEM OVERVIEW

Arke enables Alice to discover a message msgB from a
sender Bob known only by his identifier idB through the
establishment of a shared cryptographic secret between them.
An identifier is a public human-readable string unique to a
user, such as a phone number, an email address, or a social
media handle. Arke aims to be efficient and privacy-friendly
by hiding the identifiers, messages, and relationships between
users.

A. Actors

Arke is composed of the following actors.

Users. A user, Alice, owns a human-readable identifier idA
and a message (or payload) msgA. She wishes to allow specific
users to discover her message on the conditions that (i) Alice
knows the other user’s identifier and (ii) the other user knows
Alice’s identifier. Users wish to hide their relationships with
other users from any observer.

Registration Authorities. A registration authority (RA) attests
to the binding between users and their identifiers. A registra-
tion authority could be a social media service (e.g., Twitter)
allowing the use of usernames as identifiers or a messaging
service verifying a phone number, or any third party running an
interactive protocol with the user to verify their identifiers (e.g.,
by sending them a text code). Identifiers always specify the
registration authority that attested to them. As a result, multiple
services (e.g., Signal [83], Telegram [87], WhatsApp [91], or
any third-party service) can all use the user’s phone number
as an identifier by appending their unique RA domain, e.g.,

phone_number@domain. A registration authority can be a
single entity or a distributed set of authorities. The concrete
deployment structure is decided by the respective service
designers/operators. For simplicity of presentation, we assume
henceforth that a registration authority is a single entity.

Key-issuing Authorities. The key-issuing authorities (KAs)
are a committee of n entities that share a threshold key (see
Section IV). They are tasked with issuing private keys to users
who present a valid proof of registration. Arke assumes that at
most t key-issuing authorities are Byzantine (see Section II-D).

Storage Authorities. The Arke storage is operated by a set of
3f + 1 independent storage authorities out of which at most
f are Byzantine (see Section II-C). We present the storage
authorities as independent entities but they may coincide with
the key-issuing authorities (by setting t = f ) or coincide with
the maintainers of most existing blockchains (see Section V-B).
In the general setting, storage authorities may enforce their
own access control policy and only accept write requests from
users registered with RAs of their choice.

B. Protocol Outline

Arke is divided into two phases: (i) a setup phase where
users obtain a long-term private key over their identifier, and
(ii) a discovery phase where users use their private keys to
anonymously exchange messages with their contacts over an
untrusted public message board. The setup phase is executed
only once (or rarely) and the discovery phase is executed
every time a user wishes to make her message discoverable
or discover the message of a contact. Figure 1 provides an
overview of Arke and the interactions between its actors.

Setup phase. Alice convinces a registration authority that she
owns the identifier idA and receives a signed attestation in
return (➊). She then blinds her identifier and attestation to
submit anonymous key-issuance requests to at least t + 1
key-issuing authorities. Upon verifying a request, each key-
issuing authority blindly emits a share of Alice’s private key.
Finally, Alice locally combines the shares to obtain her long-
term private key (➋).

Discovery phase. After running the setup phase, Alice wishes
to signal to Bob that she has registered and optionally sends
him a message. Using her long-term private key and Bob’s
identifier, Alice locally derives a shared secret with Bob (➌).
From this shared secret, Alice can derive a label and a sym-
metric key used for encryption. She encrypts her message and
writes the ciphertext and label to the distributed Arke store (➍).
Bob can discover Alice’s message by locally deriving the same
shared secret (using his long-term private key and Alice’s
identifier) (➎) and reading the distributed Arke store (➏). Arke
divides time in a sequence of epochs (e.g., lasting about 1 or 2
weeks). After a fixed number of epochs, the storage authorities
delete the records of inactive users (see Section B-C).

C. Design Goals

Arke guarantees several system security, privacy, and per-
formance properties.

System security properties. Arke maintains several systems
security properties depending on which assumptions (Sec-
tion II-D) hold. These security properties are formally defined
and proved in Appendix C.
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Fig. 1. Arke overview. During the setup phase, users run an (anonymous) identification procedure with a registration authority to obtain an attestation
over their identifier (➊). They then use this attestation along with their blinded identifier to obtain a long-term private key by interacting with the key-issuing
authorities (➋). During the discovery phase, users locally derive a shared secret with each contact (➌,➎) and use it to read and write the Arke distributed store
and discover their messages (➍,➏).

• Validity: Alice can only update the Arke store by
updating messages associated with her identifier idA.

• Write consistency: No correct storage authorities
hold conflicting records.

• Read consistency: No two read operations over the
same label return a different ciphertext.

• Write termination: A correct user can eventually
update the store to make its message discoverable.

• Read termination: A correct user can eventually read
the store and learn the message associated with a user
with a known identifier.

Privacy properties. Arke upholds the following privacy prop-
erties:

• Anonymity: The identities of active Arke users are
kept hidden from the key-issuing authorities, storage
authorities, and any third-party observer. Identities
may also be hidden from the relevant registration
authority if their authentication mechanism is anony-
mous. This mechanism is left at the discretion of each
registration authority and is out of our design scope.

• Confidentiality: Messages exchanged over Arke are
encrypted and recipient-anonymous.

• Unlinkability: None of the authorities or third-party
observers can determine whether Alice and Bob have
exchanged messages over Arke.

• Selective discovery: Users may choose whether or
not to be discoverable by other users on a per-
user basis. The default behavior is to remain hidden.
This property contrasts with other contact discovery
schemes where users make themselves discoverable
to all, allowing crawling attacks as studied by Hagen
et al. [53].

Performance properties. Arke also guarantees the following
system and performance properties. Section VI demonstrates
these properties through a thorough implementation and eval-
uation of Arke.

• High-throughput: Arke provides enough throughput
to support multiple applications with billions of users
each; we estimate that Arke can support the combined
user base of WhatsApp, Facebook Messenger, Signal,
and Telegram.

• Low-latency: Arke achieves sub-second latency even
for large geo-distributed deployments.

• Performance under (crash-)faults: The performance
(throughput and latency) of Arke is virtually unaf-
fected by (crash-)faulty authorities. Note that evaluat-
ing a BFT system while experiencing Byzantine faults
is an open research problem [9].

• Bounded storage: Storage is not growing linearly
over time. Arke enables authorities to periodically
purge their store entries. This property is proven as
part of consistency.

Additional properties. Furthermore, Arke guarantees the fol-
lowing meta-properties:

• Censorship resistance: Correct users can always ob-
tain private keys from the key-issuing authorities.
Furthermore, correct users can write and read the Arke
store despite the presence of Byzantine authorities.
This property is proved as part of write termination
and read termination.

• Authorities Non-Interactivity: Neither the Arke key-
issuing authorities nor the storage authorities need to
communicate with each other. This property allows for
easier deployment and is crucial to integrate Arke into
the Sui blockchain [71] (see Section V-B).

D. Threat Model

We define the main assumptions under which Arke guar-
antees the properties of Section II-C.

Assumption 1: Correct registration authorities. Arke guar-
antees the security properties of Section II-C for identifiers
attested by correct registration authorities. Indeed, a malicious
RA could falsely issue attestations and impersonate any user
it desires. Fortunately, recent work on authenticating web data
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has shown that privacy-preserving, untrusted and correct RAs
can be realized in practice [96], [94], [31], [29], [65]. Some
of these solutions are under active development at the time
of publication of this work [89], [75]. Additionally, Arke
mitigates the threat of malicious RAs by confining each RA
to a unique domain (see Section II-A and Section IV-C).

Assumption 2: BFT authorities. Arke assumes a computa-
tionally bounded adversary that controls the network and can
corrupt at most t key-issuing authorities (out of 2t+1) and up
to f (out of 3f+1) storage authorities in every epoch. We say
that authorities corrupted by the adversary are Byzantine or
faulty and the rest are honest or correct. Byzantine authorities
may act arbitrarily, while correct ones follow the protocol.

Assumption 3: Cryptography. The cryptographic schemes
used in Arke assume the existence of a non-degenerate and
efficiently computable bilinear map e : G1 × G2 → GT

for which the decisional bilinear Diffie-Hellman (DBDH)
assumption holds. Hash functions are modeled as random
oracles. Finally, we assume the existence of zero-knowledge
non-interactive proofs (or arguments) of knowledge for NP
relations.

Assumption 4: Network model. To capture real-world
networks we assume that links between users and correct
authorities are reliable (the authorities do not communicate
with each other). That is, all messages among the correct
authorities eventually arrive. We assume a known ∆ and
say that execution of a protocol is eventually synchronous
if there is a global stabilization time (GST) after which all
messages sent among honest parties are delivered within the
network delay ∆ time. An execution is synchronous if GST
occurs at time 0, and asynchronous if GST never occurs.
Arke assumes an eventually synchronous network. Finally, we
assume that messages between users and storage authorities
are anonymous. In practice, Arke requires that users query
the storage via an anonymity network such as Tor, Nym or
Loopix.

Assumption 5: Roughly synchronized clocks. Arke assumes
that users have roughly synchronized clocks with the correct
storage authorities.

Definition 1 (Roughly Synchronized Clocks). While a user
is in epoch Epoch, correct authorities are either in epoch
Epoch, Epoch− 1, or Epoch + 1. Also, users remain in the
same epoch of each correct authority for a duration of at least
3∆ (where ∆ is the bound on message propagation time during
periods of synchrony introduced in assumption 4).

III.PRELIMINARIES

For a security parameter λ, let G1, G2 and GT be groups
of prime order q > 2λ such that there exists an efficiently
computable and non-degenerate bilinear map e : G1 × G2 →
GT . We denote by g1, g2, and gT the canonical generators of
G1, G2, and GT , respectively, and by H : {0, 1}∗ → {0, 1}l,
H1 : {0, 1}∗ → G1, and H2 : {0, 1}∗ → G2 hash functions.
We treat H , H1, and H2 as random oracles.

A. Zero Knowledge Proofs

A zero-knowledge proof of knowledge (ZKPoK) is a tuple
of algorithms, or protocols, that prove that an instance x and
witness w are in a relationR. Importantly, a ZKPoK allows the
prover to prove that it knows the secret witness w; as opposed
to simply proving the existence of the witness.

We make use of two types of ZKPoK. The first proves
knowledge of the discrete logarithm of some public value
y with respect to the canonical generator g. The second is
a zk-SNARK3 for generic NP relations. Note that although
we could use the zk-SNARK to prove the discrete logarithm
relation, the resulting protocol would be much more compu-
tationally expensive for the prover.

Schnorr DLOG. For a group G of prime order q, the Schnorr
DLOG ZKPoK is a Σ-protocol for the relation

RDLOG := {((x, y), α) : y = xα}

where x, y ∈ G and α ∈ Zq . It can be compiled into a
non-interactive zero-knowledge proof (NIZK) using the Fiat-
Shamir transform. We denote the resulting algorithms as:

• DLOG.Prove((x, y), α) → π. Given an instance
(x, y) and the corresponding witness α such that
((x, y), α) ∈ R, output a proof π.

• DLOG.Verify((x, y), π) → {0, 1}. Given the instance
(x, y) and proof π, return 1 if the proof is valid and
0 otherwise.

zk-SNARK for Hash Pre-images. A SNARK is defined as a
quadruple of algorithms ΠR:

• Setup(λ) → (crs, td). The Setup algorithm produces
a common reference string crs and a trapdoor td.

• Prove(crs, x, w) → π. Given the common reference
string and an instance-witness pair (x,w) ∈ R, output
a proof π.

• Verify(crs, x, π) → {0, 1}. Given the common refer-
ence string, instance, and proof, return 1 if the proof
is valid and 0 otherwise.

• Simulate(crs, td, x) → π. Using the common ref-
erence string and the trapdoor, produce a proof for
the instance x without knowledge of a corresponding
witness.

The main security properties of a SNARK are perfect com-
pleteness and knowledge soundness. Perfect completeness
states that a prover that knows a valid witness for the instance x
will always be able to produce an accepting proof. Knowledge
soundness states that if a proof was accepted, then it holds with
overwhelming probability that the prover knew a valid witness.
A SNARK is said to be zero-knowledge if proofs produced
by Prove and Simulate have (almost) identical probability
distributions. We use the acronym zk-SNARK to specify that a
SNARK upholds the zero-knowledge property. We use a zk-
SNARK to keep users’ identities private while still attesting

3Zero-knowledge succinct non-interactive argument of knowledge
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that hashed values are correct. Let id be an identifier and
α ∈ Zq a blinding factor, we define the relation RID as:

RID :=
{(

îd, (id, α)
)
: îd = (H1(id)

α, H2(id)
α)
}

For our benchmarks, we instantiate the zk-SNARK for RID

using Groth16 [51].

B. Distributed Key Generation

A distributed key generation (DKG) protocol allows n
participants to jointly compute shares of a master secret
without needing to compute, reconstruct or store this secret.
The DKG can be parametrized with respect to a threshold t:
any subset of at least t + 1 participants can perform actions
that would normally require knowledge of the secret key; on
the other hand, any smaller subsets cannot.

DKGs and security. Pedersen [77] is the first to propose a
DKG scheme. While the Pedersen-DKG is attractive for its
efficiency and simplicity, Gennaro et al. [47] show that a
rushing adversary can influence the probability distribution of
the master secret. Such an adversary would gain some a-priori
knowledge on the secret key. Consequently, the Pedersen-
DKG cannot be used as a stand-in replacement for a generic
trusted key generation. Nevertheless, the Pedersen-DKG can
be shown secure for certain applications: Gennaro et al. [48]
demonstrate the unforgeability of Schnorr signatures under the
Pedersen-DKG; Gurkan et al. [52] show that Pedersen-DKG
is security-preserving for a large class of protocols, including
BLS signatures and El-Gamal encryption. They obtain this
latter result by introducing the notions of key-expressable
DKGs and rekeyability, both of which are summarized below.
In Section IV, we leverage these notions to show that Arke’s
cryptographic primitives remain secure when instantiated with
efficient but weakly-secure DKGs such as the Pedersen-DKG.

Key-expressable DKGs. The notion of key-expressability [52]
captures the a-priori knowledge gained by the adversary of
Gennaro et al. [47]. It describes a weaker security requirement
than Gennaro et al.’s [47] correctness and secrecy. A key-
expressable DKG does not output a uniformly distributed
public key pkA. Instead it outputs a public key

pk = f(α, pkA, pkB) = (pkA)
αpkB

where pkA = gskA for a uniformly distributed skA, and α, pkB
are attacker-controlled values. Gurkan et al. [52] show that
Pedersen-DKG is a key-expressable DKG.

Rekeyability. Informally, a protocol is said to be rekeyable
if it is possible to transform objects (ciphertexts, signatures,
etc.) that were formed using one set of keys into equivalent
objects formed under a related set of keys. For example, a BLS
signature under key sk1, σ = H1(m)sk1 , can be transformed
into a signature under the key αsk1 + sk2 by computing σα ·
H1(m)sk2 . A full formal definition is given in [52].

C. Identity-Based Non-Interactive Key Exchange

Boneh-Waters ID-NIKE. We give a self-contained definition
of the Boneh-Water ID-NIKE [17] adapted for our asymmetric
pairing setting.

Definition 2 (Boneh-Waters ID-NIKE [17]). The Boneh-
Waters identity-based key exchange consists of three efficiently

ExpIND−SKΣ,A (λ)

1 : b
$←− {0, 1}

2 : Qe ← ∅, Qk ← ∅
3 : msk← Setup(λ)

4 : O ← {OExtract, OReveal}

5 : (id∗, id
′
∗)← A

O

6 : γ ← Test(id∗, id
′
∗)

7 : b̂← AO
(γ)

8 : if (̂b = b) ∧ (id∗ /∈ Qe)∧
(id′∗ /∈ Qe) ∧

(
(id∗, id

′
∗) /∈ Qk

)
9 : return 1

10 : return 0

OExtract(id)

1 : skid ← Extract(msk, id)

2 : Qe ← Qe ∪ {id}
3 : return skid

OReveal(id, id′)

1 : skid ← Extract(msk, id)

2 : kid,id′ ← SharedKey(skid, id
′
)

3 : Qk ← Qk ∪ {(id, id′), (id′, id)}
4 : return kid,id′

Test(id∗, id
′
∗)

1 : if b = 0

2 : skid∗ ← Extract(msk, id∗)

3 : γ0 ← SharedKey(skid∗ , id
′
∗)

4 : if b = 1

5 : γ1
$←− GT

6 : return γb

Fig. 2. IND-SK security game for ID-NIKEs

computable algorithms Setup, Extract, and SharedKey as
follows:

• Setup(λ): Choose a random msk
$←− Zq and output

msk.

• Extract(msk, id): compute dl = H1(id)
msk and dr =

H2(id)
msk. Output skid = (dl, dr).

• SharedKey(skid, id
′): We assume that identifiers are

lexicographically ordered. Parse skid as (dl, dr) and
output kid,id′ :

kid,id′ =

{
e(dl, H2(id

′)), if id < id′

e(H1(id
′), dr), if id > id′

Note that SharedKey(skid, id
′) = SharedKey(sk′id, id) for all

id ̸= id′ and pp generated by Setup.

The security notion for such schemes is that of “indis-
tinguishability of shared keys” (IND-SK) and is formalized
by Paterson and Srinivasan [76]. In the IND-SK game, an
adversary is tasked with distinguishing between the shared key
for a pair of identities (id∗, id

′
∗) and a random element from

the key space, in this case, GT . The adversary may request
identity keys and shared keys from its oracles. The security
game is formalized in Figure 2.

We say that an ID-NIKE scheme Σ is IND-SK secure if
for any probabilistic polynomial-time adversary A:

Pr
[
ExpIND−SKΣ,A (λ) = 1

]
≤ 1

2
+ negl(λ)

Boneh and Waters [17] show that the ID-NIKE of Defi-
nition 2 is secure under the decision bilinear Diffie-Hellman
(DBDH) assumption in the random oracle model.

D. Authenticated Encryption with Associated Data (AEAD)

Authenticated Encryption with Associated Data (AEAD)
is a symmetric key primitive that encrypts and authenticates
a message. Senders may choose to associate context data to
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the ciphertext in a cryptographically binding way. An AEAD
scheme is defined by the following algorithms:

• AEAD.Enck(m, d) → (c, tag). Given a key k, mes-
sage m, and associated data d, encrypt m to produce
the ciphertext c. Authenticate the associated data and
ciphertext to produce a tag tag. Output (c, tag).

• AEAD.Deck(c, tag)→ m′. Given a key k, ciphertext
c, and associated data tag, verify the authenticity of
the associated data and ciphertext. If the verification
rejects, output m′ ←⊥. Otherwise decrypt c and
output m′ ← m.

IV.THE ARKE CONTACT DISCOVERY PROTOCOL

The Arke contact discovery protocol combines an ID-
NIKE scheme with an unlinkable handshake. The ID-NIKE
allows users to establish shared secrets amongst each other
knowing only their (potentially low-entropy) identifiers. Using
this shared secret, they can run the unlinkable handshake to
exchange arbitrary messages through an untrusted key-value
store. We describe a private and trust-minimized variant of
the Boneh-Waters ID-NIKE (Section IV-A), and an unlinkable
handshake protocol (Section IV-B), and show how to combine
both to build a contact discovery protocol (Section IV-C).

A. Threshold Oblivious ID-NIKE

The ID-NIKE defined by Boneh and Waters [17] relies
on a trusted third party to issue private keys to users. We
modify their protocol to meet our privacy desiderata by (i)
allowing users to verify the private keys they are issued, (ii)
separating the key issuance operation into a registration and
an extraction phase and, (iii) distributing the master secret key.
We achieve modifications (i) and (iii) by applying techniques
outlined by Boneh and Franklin [15]; we achieve modification
(ii) by improving upon the result of Sui et al. [86]. We refer to
the resulting protocol as a threshold and oblivious ID-NIKE.

Verifiable key issuance. One way to hold the trusted third
party accountable is to allow other parties in the system to
verify the issuance of private keys. To this effect, we modify
the Setup algorithm to output a master public key mpk and
introduce the VerifyPK and VerifyExtract algorithms:

• Setup(λ) → (msk,mpk): choose a random msk
$←−

Zq and compute the corresponding public key mpk =
(gmsk

1 , gmsk
2 ). Output msk and mpk.

• VerifyPK(pk) → {0, 1}: parse pk as (pkl, pkr). If
e (pkl, g2) = e (g1, pkr), output 1 (accept). Otherwise
output 0 (reject).

• VerifyExtract(mpk, id, θ) → {0, 1}: parse mpk as
(mpkl,mpkr) and θ as (θl, θr) ∈ G1 × G2. If
e (θl, g2) = e (H1(id),mpkr) and e (g1, θr) =
e (mpkl, H2(id)), output 1 (accept). Otherwise, output
0 (reject).

The VerifyPK algorithm enforces that the terms in the pk
tuple are equal to the generators g1 and g2 taken to the same
power. Indeed, consider pk = (g1

x, g2
y) for x, y ∈ Zq . We

use the non-degenerate and the bilinear properties to show the
following equivalence:

1← VerifyPK(pk) ⇐⇒ e (g1
x, g2) = e (g1, g2

y)

⇐⇒ e (g1, g2)
x
= e (g1, g2)

y

⇐⇒ x = y

(1)

As shown by Boneh and Franklin [15], albeit in a different
setting, VerifyExtract accepts if and only if the input θ is
equal to the expected private key. Given the public key
pk = (g1

x, g2
y) = (g1

x, g2
x) from above, we can write:

1← VerifyExtract(pk, id, θ)

⇐⇒
{
e (θl, g2) = e (H1(id), g2

x)

e (g1, θr) = e (g1
x, H2(id))

⇐⇒ (θl, θr) = (H1(id)
x
, H2(id)

x
) = Extract(x, id)

(2)

Oblivious key issuance. In the Boneh-Waters ID-NIKE, users
must reveal their identifier to a trusted third party to obtain
their secret key. We follow the approach of Sui et al. [86]
and separate this trusted party into two entities: a registration
authority and a key-issuing authority. We allow the registration
authority to learn identifiers but not to compute their private
keys. Its role is to attest that a user A owns the identifier idA.
On the other hand, the key-issuing authority is able to produce
private keys but does not learn which identities have requested
keys.

To this effect, we introduce a setup algorithm for the
registration authority, SetupR, and replace the Extract algo-
rithm by five efficiently computable algorithms Register, Blind,
VerifyID, BlindExtract and Unblind:

• SetupR: Produces private and public parameters for a
registration authority.

• Register: Upon valid authentication, a registration
authority produces a signature attesting that user A
owns the identifier idA.

• Blind: Produce a masked version of an identifier and
its corresponding registration signature. The blinded
identifier and signature are accompanied by optional
proof of their validity.

• VerifyID: Verify that a valid registration signature was
issued for a blinded identifier.

• BlindExtract: Given a blinded identifier, produce the
corresponding blinded secret key.

• Unblind: Recover an identifier’s secret key from a
blinded secret key.

We give a concrete construction of an oblivious ID-NIKE in
Appendix A. Our construction can be seen as an improvement
over that of Sui et al. [86]. Indeed, while their approach
succeeds in blinding the extracted secret key, it fails to provide
anonymity from the key-issuing authority. Furthermore, their
one-time password mechanism requires that the key-issuing
authority maintain a list of registered users.

Distributed key issuance. In the oblivious setting described
above, the key-issuing authority is still all-powerful in that it
is able to extract the private key of any identifier. To minimize
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the trust placed in the key-issuing authority, we distribute it
into n entities that each hold a share of the master secret
key (a widely popular approach, suggested in [15] amongst
many other works). Using a (t, n)-threshold DKG, we ensure
that the ID-NIKE remains IND-SK secure when no more than
t parties are malicious. As discussed in Section III-B, we
do not require the strong security properties of Gennaro et
al. [47], and instead rely on the weaker requirement of a key-
expressable DKG [52]. Doing so allows us to instantiate our
scheme using the efficient Pedersen-DKG [77].

We distribute the key-issuing authority by replacing the
SetupE algorithm with a key-expressable DKG [52]. The ex-
traction algorithm is the same as BlindExtract but is renamed
to BlindPartialExtract to emphasize the fact that it outputs
blinded partial secret keys. Similarly, the verification of a
partial private key is identical to VerifyExtract but is renamed
to VerifyPartialExtract. Finally, we introduce the Combine
algorithm to reconstruct a secret key from a set of t + 1 key
shares.

Definition 3 (Threshold and Oblivious ID-NIKE). Let ΠID be
a knowledge sound zk-SNARK for the relation RID. We define
the (t, n)-threshold variant of the oblivious Boneh-Waters ID-
NIKE as follows:

• SetupDKGE(λ, t, n) → (msk1, . . . ,mskn, pp).
All n participants P1, . . . , Pn jointly execute a key-
expressable DKG to compute Shamir secret shares
msk1, . . . ,mskn of an (unknown) master secret key
msk. They jointly output a transcript, a set of partial
public keys {mpki = (gmski

1 , gmski
2 )}ni=1 and master

public key mpk = (gmsk
1 , gmsk

2 ). Output mski to Pi

and pp← (transcript,mpk).

• SetupR(λ, pp) → (rsk, pp). Choose a random
registration secret key rsk

$←− Zq and compute the
registration public key rpk = (grsk1 , grsk2 ). Output rsk
and pp← pp||rpk.

• VerifyPK(pk) → {0, 1}. Parse pk as (pkl, pkr). If
e (pkl, g2) = e (g1, pkr), output 1 (accept). Otherwise
output 0 (reject).

• Register(rsk, id) → τid. Compute τl = H1(id)
rsk

and τr = H2(id)
rsk. Output the registration signature

τid = (τl, τr).

• Blind(pp, id, τid) → (α, îd, τ̂id, π). Sample a ran-
dom blinding factor α

$←− Zq . Compute

îd = (H1(id)
α, H2(id)

α)

π = ΠID.Prove(ppZK, îd, (id, α))

τ̂id = τid
α

(3)

Output the blinding factor α, blind identifier îd, blind
registration signature τ̂id and the blinding proof π.

• VerifyID(pp, îd, τ̂id, π) → {0, 1}. Parse rpk as
(pkl, pkr), îd as (îdl, îdr), and τ̂id as (τ̂l, τ̂r). Check

that the following equations hold:

e (τ̂l, g2)
?
= e

(
îdl, pkr

)
e (g1, τ̂r)

?
= e

(
pkl, îdr

)
ΠID.Verify(ppZK, ID, πID)

?
= 1 (accept)

(4)

If all equations verify successfully output 1, otherwise
output 0.

• BlindPartialExtract(mski, îd) → ŝkid,i. Compute

and output the blind secret key share ŝkid,i = îd
mski

.

• Unblind(ŝkid,i, α) → skid,i. Compute and output

the partial key skid,i = ŝkid,i
1
α .

• VerifyPartialExtract(mpki, id, θ). Parse mpki as
(mpki,l,mpki,r) ∈ G1 × G2 and θ as (θl, θr) ∈
G1 × G2. If e (θl, g2) = e

(
H1(id),mpki,r

)
and

e (g1, θr) = e
(
mpki,l, H2(id)

)
, output 1 (accept).

Otherwise, output 0 (reject).

• Combine({skid,i}t+1
i=1) → skid. Using a set of t+1

valid partial keys, compute dl and dr using Lagrange
interpolation “in the exponent”. Let Li denote the
Lagrange coefficient for the i-th share in the given
set, dl =

∏t+1
i=1 dl,i

Li and dr =
∏t+1

i=1 dr,i
Li . 4 Output

the user key skid = (dl, dr).

• SharedKey(skid, id
′) → kid,id′ . We assume that

identifiers are lexicographically ordered. Parse skid
as (dl, dr) and output kid,id′ :

kid,id′ =

{
e(dl, H2(id

′)), if id < id′

e(H1(id
′), dr), if id > id′

For all id ̸= id′ and pp generated by SetupDKGE , it holds
that SharedKey(pp, skid, id

′) = SharedKey(pp, sk′id, id) .

IND-SK security. We show that the threshold and oblivious
ID-NIKE described here is IND-SK secure under the DBDH
assumption in the random oracle model if ΠID is a knowledge
sound SNARK for RID.

Theorem 1. The threshold and oblivious ID-NIKE of Defini-
tion 3 is IND-SK under the DBDH assumption when modeling
the functions H1, H2 as random oracles, and if ΠID is a
knowledge sound SNARK for RID.

Proof intuition. We provide intuition for the proof of The-
orem 1; a full proof is presented in Appendix A. The proof
follows from three lemmas:

• Lemma 1 shows that the (centralized) oblivious variant
of the Boneh-Waters ID-NIKE is IND-SK secure
under the same assumptions as the Boneh-Waters ID-
NIKE if ΠID is a knowledge sound SNARK for RID.

• Lemma 2 shows that the oblivious variant of the
Boneh-Waters ID-NIKE is rekeyable with respect to
the master secret key msk.

4As required, dl =
∏t+1

i=1 dl,i
Li = H1(id)

∑t+1
i=1 mskE,iLi = H1(id)mskE

and analogously for dr .
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• Lemma 3 shows that key-expressable DKGs are secu-
rity preserving for rekeyable oblivious ID-NIKEs.

Combining the three lemmas, we show that one can replace the
SetupE algorithm of the oblivious variant of the Boneh-Waters
ID-NIKE with a key-expressable DKG to obtain an IND-SK
secure threshold and oblivious ID-NIKE.

We prove Lemma 1 by showing a reduction from the classic
IND-SK security game to the oblivious IND-SK game. In
a nutshell, the adversary performing the reduction takes on
the role of the registration authority. It samples a registration
key and can naturally answer the inner adversary’s Register
queries. To answer BlindExtract oracle queries, the reduction
must first “unblind” the queried identifier. This is done by
running the extractor for ΠID. We show that this reduction
strategy has an overwhelming success probability if ΠID is a
knowledge sound SNARK for RID.

We prove Lemma 2 in the same way Gurkan et al. [52]
show the rekeyability of BLS signatures. Indeed, private keys
are very similar in their structure to BLS signatures.

Finally, we prove Lemma 3 by showing a reduction from
the IND-SK security of threshold and oblivious ID-NIKEs to
that of oblivious ID-NIKEs. The reduction takes advantage of
the key-expressability of the DKG to “convert” private keys
and shared keys from the centralized setting to equivalent keys
in the distributed setting.

Anonymity from the key-issuing authorities. Identifiers are
kept hidden from the key-issuing authorities if ΠID is a zero-
knowledge SNARK for RID. We prove this claim by showing
the existence of an algorithm SimulateID that does not know
an identifier yet produces tuples (îdsim, τ̂sim, πsim) which are
statistically indistinguishable from tuples (îd, τ̂id, π) produced
by an honest prover running Blind [35].

• SimulateID(crs, td) → (îdsim, τ̂sim, πsim). Sample
τ̂sim

$←− G1 ×G2 and compute:

îdsim = τ̂sim ◦ rpk−1

πsim = ΠID.Simulate(crs, td, îdsim)

By construction, the tuple (îdsim, τ̂sim, πsim) satisfies the checks
of VerifyID. Furthermore, since the blinding factors are sam-
pled uniformly from Zq , then (îdsim, τ̂sim) follow the same
probability distribution as (îd, τ̂id). Finally, by the zero-
knowledge property of ΠID, it holds that πsim is statistically
indistinguishable from π.

B. Unlinkable Handshake

Performing an identity-based key exchange only addresses
half of the contact discovery problem. Users must also ex-
change an initial message (or flag) in a privacy-preserving way
without prior knowledge of each other’s network addresses.
We present an unlinkable handshake protocol over a public,
untrusted message board. We use the message board as a key-
value store. In this section, we treat the store as a black box;
Section V shows how to efficiently instantiate such storage
with minimal trust assumptions and no single point of failure.

Overview. Using their shared ID-NIKE key, Alice and Bob
each locally derive a “write tag”, a “read tag” and an AEAD

encryption key. They use the AEAD encryption key to en-
crypt their messages and post the resulting ciphertexts on the
message board at a unique location derived from their “write
tag”. We allow all users and network observers to read from
the store. However, only users that know read tags destined
for them and the corresponding encryption key will be able to
recover messages.

Definition 4. Let G be an abelian group of prime order p with
canonical generator g. Let DLOG be a non-interactive instan-
tiation of the Schnorr proof of discrete logarithm compiled
using the Fiat-Shamir heuristic. We use a variant of the proof
where an extra “context” nonce is added to the transcript.
This nonce will be used to bind a proof to a specific session
between the message board and a user, thus preventing replay
attacks. We denote π

(r)
x as a proof of knowledge of the secret

exponent x during session r.

Let AEAD be an IND-CCA secure authenticated encryption
with associated data scheme. We denote K the set of accepted
keys for this scheme and C the set of ciphertexts.

The handshake is parametrized by two functions, a key
derivation function KDF : {0, 1}∗ → K and a tag derivation
function TDF : {0, 1}∗ × {0, 1} → Zp. Assuming that every
pair of users A and B have derived a shared secret sAB , the
unlinkable handshake is defined as:

• Write(r)(sAB, idA, idB,m) → (locw, π(r)
w , c).

Compute a symmetric key k = KDF(sAB) and tag
tw such that:

tw =

{
TDF(sAB , 0), if idA < idB
TDF(sAB , 1), if idA > idB

Compute locw = gtw . Using the derived key and
tag, compute the ciphertext c = AEAD.Enck(g

tw ,m).
Finally, for the current session r, compute the
proof π

(r)
tw = DLOG.Prove((g, locw), tw, r). Output

(locw, π
(r)
w , c).

• VerifyWrite(r)(locw, π(r)
w ) → {0, 1}. Compute

and output b = DLOG.Verify(locw, π
(r)
w , r).

• Read(sAB, idA, idB) → m. Compute a symmetric
key k = KDF(sAB) and tag tr such that:

tr =

{
TDF(sAB , 1), if idA < idB
TDF(sAB , 0), if idA > idB

Compute locr = gtr . Retrieve the value c′ associ-
ated with location locr in the store. Compute m =
AEAD.Deck(c

′, locr).

Importantly, A and B can derive the same AEAD symmetric
key. Furthermore, A’s read tag matches the definition of B’s
write tag (and conversely).

The handshake is said to be complete when a pair of
users have both performed the Write and Read operations. Let
tA, cA and tB , cB be the write tags and ciphertexts derived by
A and B respectively, we define the transcript of a completed
handshake as:

tr← (r, r′, gtA , gtB , π
(r)
tA , π

(r′)
tB , cA, cB)
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Confidentiality. The handshake described above can be shown
to preserve the confidentiality of the underlying messages.
Indeed if KDF is a secure pseudorandom function, then the
derived symmetric key kAB is indistinguishable from random.
This in turn allows us to uphold the IND-CCA property of the
AEAD scheme.

Unlinkability. To meet our privacy goals, we need to ensure
that observing a transcript does not leak information about the
identities of the users that generated it. This property should
still hold even if the adversary controls all other identities
identities and is successful in completing handshakes with each
of the target users. Furthermore, we assume that each identity
has a fixed message that it tries to communicate.

We capture this security notion by defining an unlinkability
game (see Figure 3). An adversary A is tasked with distin-
guishing between a transcript for the pair of identities id∗, id

′
∗

and a random transcript. The adversary is allowed to query
any shared secret or valid transcripts, and may even complete
valid handshakes with both of the target identities.

We say that a handshake HS is unlinkable if for any
probabilistic polynomial-time adversary A:

Pr
[
ExpUnlinkabilityHS,A (λ) = 1

]
≤ 1

2
+ negl(λ)

Theorem 2. The handshake presented in Definition 4 is
unlinkable if shared secrets between users are established
using an IND-SK secure ID-NIKE.

Proof (Theorem 2): Let Σ denote a secure ID-NIKE. As-
sume for the sake of contradiction that there exists an adversary
A for which Pr

[
ExpUnlinkabilityHS,A (λ) = 1

]
> 1

2 + negl(λ).

We construct an adversary B that runs A as a sub-routine
against the IND-SK game (Figure 2). Let TM be a table
mapping identifiers to messages. TM is initialized as the empty
table. B simulates any call to the function M (line 3 of
OTranscript and line 6 of Test) by running the following
SimMessage routine: if id ∈ TM , return TM [id]; else, m $←−M,
write TM [id] ← m and return m. B simulates A’s oracles as
follows:

• OSecret: replace line 1 of the OSecret procedure by
a call to OReveal.

• OTranscript: replace line 1 of the OTranscript proce-
dure by a call to OReveal. Replace line 3 with a call
to SimMessage.

• Test: B returns the same identity pair id∗, id
′
∗ that A

outputs (line 4 of the game’s code) and receives the
value γ. Call SimMessage for each of the provided
identities. Perform the loop of lines 7 and 8 of the
test procedure replacing s by γ.

Notice that after all of A’s queries, it holds that the exclusion
sets of both games are equal. Indeed every update to Q
generated the same update to Qk and no queries were made
to B’s OExtract oracle. Therefore, Qe = ∅. Furthermore,
by definition of ExpIND−SKΣ,B (λ), s and γ follow the same
distribution. Therefore:

Pr
[
ExpIND−SKΣ,B (λ) = 1

]
= Pr

[
ExpUnlinkabilityHS,A (λ) = 1

]

We have shown that B gains a non-negligible advantage in
the IND-SK game against the secure ID-NIKE Σ, there-
fore reaching a contradiction. Thus, for a secure ID-NIKE
scheme Σ there exists no PPT adversary A such that
Pr

[
ExpUnlinkabilityHS,A (λ) = 1

]
> 1

2 + negl(λ). Therefore, HS is
an unlinkable handshake.

Bilateral handshake. An important property of our handshake
is that it is bilateral: each user may choose to participate or
withhold from performing the handshake with a given user. In
that sense, the adversary in the unlinkability game is stronger
than most real-world adversaries. Indeed in the unlinkability
game, the adversary may coerce any user into performing
the handshake with her. In practice, the bilateral property of
the handshake protects our system from “crawling attacks” as
studied by Hagen et al. [53].

Overwrite protection. If TDF is a collision-resistant hash
function (CRHF) then write and read tags may only be derived
by users that know the relevant shared seed (except for a very
unlikely collision). This in turn implies that only users that
know a shared seed are able to produce a valid ZKPoK for the
relevant tag. Thus verifying the ZKPoK in the Write protocol
enforces access control for a given write location.

Bounded storage. Unfortunately, this access control is not
enough to prevent a malicious user from filling up the message
board with fake messages. This adversary can pick random
tag values and produce valid proofs for those. The mitigation
strategy depends on the nature of the store authorities.

Protecting our custom-built store authorities (Section V)
against those attacks requires the introduction of a privacy-
preserving rate-limiting mechanism. Users are allowed a fixed
number of store writes per epoch; any further attempts to
write should either require a re-authentication from the user or
be prevented and optionally incur some form of punishment.
Such a mechanism can be implemented using PrivacyPass [43]:
users (or their client-side software) periodically authenticate
to their registration authority and request PrivacyPass tokens
which they can later redeem at each store write. PrivacyPass
has the advantage of using lightweight cryptography and is in
the process of being standardized by the IETF. On the other
hand, it does not allow to identify cheaters as would be the
case with more cryptography-intensive approaches [24], [79].

If the store authorities coincide with the maintainers of an
existing blockchain (Section V-B), the native token required
to pay for the blockchains’ gas cost effectively acts as a
rate-limiting mechanism. As a result, Arke does not need to
introduce any new access control mechanism.

C. Contact Discovery

Let RdomID be a variant of RID where part of the hash
functions’ input is public:

RdomID :=

{ (
(îd, dom), (id, α)

)
:

îd = (H1(id||dom)α, H2(id||dom)α)

}
Let ID-NIKE designate the threshold and oblivious ID-NIKE
of Definition 3 where ΠID is replaced with a proof ΠdomID

for RdomID, and HS designate the unlinkable handshake of
Definition 4.
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ExpUnlinkabilityHS,A (λ)

1 : b
$←− {0, 1}

2 : Q← ∅
3 : O ← {OTranscript, OSecret}
4 : (id∗, id

′
∗)← AO

5 : tr∗ ← Test(id∗, id
′
∗)

6 : b̂← AO(tr∗)

7 : if (̂b = b) ∧ ((id∗, id
′
∗) /∈ Q)

8 : return 1

9 : return 0

OSecret(id, id′)

1 : s← S(id, id′)

2 : Q← Q ∪ {(id, id′), (id′, id)}
3 : return s

OTranscript(id1, id2)

1 : s← S(id1, id2)

2 : for i = 1..2 do

3 : mi ←M(idi)

4 : (loci, πi, ci)←Write(ri)(s, id1, id2,mi)

5 : Q← Q ∪ {(id1, id2), (id2, id1)}
6 : return (r1, r2, loc1, loc2, π1, π2, c1, c2)

Test(id1, id2)

1 : if b = 0

2 : s← S(id1, id2)

3 : m1 ←M(id1),m2 ←M(id2)

4 : if b = 1

5 : s
$←− S

6 : m1
$←−M,m2

$←−M
7 : for i = 1..2 do

8 : (loci, πi, ci)←Write(ri)(s, id1, id2,mi)

9 : return (r1, r2, loc1, loc2, π1, π2, c1, c2)

Fig. 3. Unlinkability game. Here M and S respectively denote the set of messages and shared secrets. Similarly, M : I → M and S : I × I → S denote
the implicit maps from identities to messages and shared secrets. We assume that S(a, b) = S(b, a).

We define the contact discovery protocol for a registration
authority RA, key-issuing committee (KA1, . . . ,KAn), user U
and bulletin board BB as follows:

1) U ↔ RA: U and RA engage in an authentication
protocol (defined by RA) to prove that the identifier
idU belongs to U . Upon successful completion, RA
sends τU = ID-NIKE.Register(rskRA, idU ||dom).

2) U ↔ KAi, for up to 2t+1 key-issuing authorities (and
a minimum of t+ 1 in the ideal case): U computes

(α, îdU , τ̂U , π) = ID-NIKE.Blind(pp, (idU ||dom), τU )

and sends the blind key-issuance request (îdU , τ̂U , π).
If ID-NIKE.VerifyID(pp, (îdU , dom), τ̂U , π) = 1,
KAi sends ID-NIKE.BlindPartialExtract(mski, îdU ).

3) U , one-time local operation: let ŝki and αi denote
the i-th blind share and the i-th blinding factor, U
computes:

ski = ID-NIKE.Unblind(ŝki, αi)

sk = ID-NIKE.Combine({ski}t+1
i=1)

4) U , locally, for each contact identifier idC : compute a
share secret sU,C As

sU,C = ID-NIKE.SharedKey(sk, idC)

5) U ↔ BB, store write for each contact idC : U sends
a write request

(locw, π
(r)
w , c) = HS.Write(r)(sU,C , idU , idC ,m)

If HS.VerifyWrite(r)(locw, π
(r)
w ) = 1, BB writes c in

the location locw.
6) U ↔ BB, store read for each contact idC : U and BB

perform HS.Read.

For clarity, this definition omits checking the correctness of
the key shares (performed by the user), that the public key
of the registration authority maps to its recognized domain
(performed by the store authorities), and the validity of the
rate-limiting tokens (performed by the store authorities, see
Section IV-B).

Discovery epochs. Taking advantage of the roughly synchro-
nized clocks (see Assumption 5), we can define discovery

epochs of fixed duration (e.g., one week or one month). At
the end of each epoch, store entries can be wiped. This allows
the store to drop any values that are left behind after a complete
handshake. On the other hand, handshakes that were only
partially completed during such an epoch are aborted and will
require users to once again perform the discovery phase.

RAs and KAs in practice. Using the domain separation
discussed above, multiple registration authorities can co-exist
under the same committee of key-issuing authorities and even
use the same identifiers. Identifiers may be phone numbers,
email addresses, social media handles, ENS domains, etc.
Registration can be performed by first parties, e.g., Twitter
attests to the ownership of a given handle, or third-party,
e.g., a service offers to authenticate phone numbers or email
addresses via one-time challenges or using private and trustless
web authentication methods [96], [94], [31], [29], [65]. Finally,
key issuance may be performed by a committee of signers.
This committee can be set up for contact discovery only or
may take advantage of existing networks deployed in the wild
such as Lit Protocol [67].

Forward secrecy. Although we have shown that messages on
the store are securely encrypted, the Arke protocol does not
provide confidentiality if the system is compromised. Indeed,
the AEAD symmetric key is deterministically computed from
the shared secret derived using an ID-NIKE. As shown by
Paterson and Srinivasan [76], ID-NIKEs do not provide for-
ward secrecy. Therefore, an adversary that succeeds in either
(i) compromising t + 1 key-issuing authorities or more, (ii)
compromising an identity’s secret key or (iii) compromised
a shared secret between two identities, will be able to re-
cover messages from the store. To mitigate such risks, we
recommend that users only include “public” information in
their initial message, and use it to establish an out-of-bound
communication channel. Such a message could contain public
keys to establish an end-to-end encrypted channel over the
Signal protocol or an Ethereum wallet address to receive
payments.

Committee updates. In certain situations it may become
necessary to reconfigure the composition of Arke’s key-issuing
committee. These include scenarios in which new members
want to join the committee to further increase its resilience
against compromise or in which existing members need to be
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removed from the committee, e.g., because their nodes have
been offline for too long. Simply re-running the DKG-based
setup in such situations is counter-productive, however, since
it would produce a new key pair and force all existing clients
to rerun the setup to switch to the new key pair resulting in
large overheads for authorities and clients alike. To avoid that,
Arke can use resharing techniques similar to those presented
by Wong et al. [92] and as used in practice by drand [80].
These allow resharing an existing DKG-key to a new set of
nodes by refreshing the individual key shares of each node
without changing the actual shared key pair. That way the
configuration of Arke’s key-issuing committee can be changed
without affecting clients in any way. It furthermore provides
Arke with a mechanism to recover from node compromise
assuming less than a threshold of nodes were corrupted at any
given moment and honest nodes delete their old key shares
after resharing is finished.

V. THE ARKE KEY-VALUE STORE

We present two types of distributed stores that fulfill the
required properties set in Section II-C. Section V-A presents a
custom store designed to be run by large messaging companies
such as WhatsApp, Signal, and Telegram across multiple
data centers. Section V-B illustrates how to leverage existing
(production-ready) blockchains as Arke store without requiring
any modification to their protocol.

A. Custom Arke Store

This store provides extremely low latency by forgoing
consensus and instead leveraging simpler and more efficient
broadcast-based primitives (based on Byzantine Consistent
Broadcast [23]). This store is designed to sustain a Byzan-
tine adversary (to withstand partially corrupt store operators)
but Appendix B shows a straightforward conversion into a
crash fault-tolerant store. Appendix B additionally details the
protocol messages and data structures run by the store’s
nodes, provides complete algorithms, explains how to clean up
storage, and how to scale the system by maximizing parallel
processing of transactions and leveraging more hardware to
increase its capacity. Appendix C formally proves the validity,
consistency, and termination of this store protocol.

Figure 4 presents an overview of the protocol allowing
user A to respectively write and read the key-value pairs
(locAB , cAB) and (locBA, cBA) from the store.

Writing the store. Steps ➊-➌ of Figure 4 illustrate the high-
level interactions between user A and the storage authorities
to allow the user to write the distributed store. User A uses
its writing tag tAB (Section IV-B) as a private signing key to
create and sign a write transaction. This transaction mutates
(or creates) the key-value pair (locBA, cBA) = (gtBA

1 , cBA) of
the Arke store (➊). The user transaction is then sent to each
Arke storage authority (➋). The authorities check it for validity
and lock the store entry to mutate (➌). The write operation is
completed as soon as 2f+1 authorities successfully terminate
this step. Algorithm 1 of Appendix B-B describes in details
how authorities process incoming write transactions.

Synchronization. Steps ➍-➐ of Figure 4 illustrate the store
synchronization step. At this stage, user signature keys are
not needed anymore, and the synchronization process may

be performed by any user client or third-party synchronizer
process. Storage authorities always provide idempotent replies
to protocol messages: it is safe to send multiple times the same
message to an authority. After processing a write transaction,
each authority returns a vote to the user or synchronizer
process (➍). The user collects the votes from a quorum of
2f + 1 authorities to form a certificate (➎). The certificate is
then sent back to all validators (➏). The authorities check the
certificate and upon success mutate the specified store entry
and release the locks to allow future updates (➐). Algorithm 2
of Appendix B-B describes this step in details. The write and
synchronization mechanisms can be seen as the ‘Signed Echo
Broadcast’ implementation of a Byzantine consistent broadcast
on the label (locBA,Version) [23].

Reading the store. Steps ➑-➓ of Figure 4 illustrate the mini-
mal interactions between user A and the storage authorities to
allow the user to read the distributed store. The user creates
a read transaction to read the value cBA associated with
a specified store entry locBA = gtBA

1 (➑). Each authority
replies with a read reply containing the latest value they
hold for that store entry or None if the entry is not in their
store (➒). Finally, user A processes the replies performs the
synchronization protocol described above (in case it did not
terminate), and deduces the latest value associated with the
queried key (➓). Algorithm 3 of Appendix B-B describes in
details how readers process incoming read replies.

B. Existing Blockchains as Arke Store

Section V-A illustrates a minimal Arke store; we now
show how Arke can natively leverage most types of existing
blockchains as a store. User A wishing to write the key-
value pairs (locAB , cAB) to the store first format the key
locAB = gtAB

1 into a blockchain address addrAB . Virtually
all existing blockchains format public keys into addresses
by hashing addrAB = H(gtAB

1 ||const), where const is a
public and blockchain-specific constant. The next paragraphs
illustrate how to implement an Arke store over different types
of blockchains.

Payment-only platforms. An Arke store can be any dis-
tributed payment platform where the transaction format al-
lows user-defined metadata. For instance, Arke can easily
use Bitcoin [72] as a store. A user A wishing to write the
store makes a Bitcoin transaction sending an arbitrary number
of coins to the address addrAB (deterministically derived
from locAB as mentioned above) and additionally, writes the
OP_RETURN opcode. This opcode allows users to specify
up to 80 arbitrary bytes within the transaction (by setting
OP_RETURN_MAX_BYTES to 80); user A writes the byte
representation of cAB . User A reads the blockchains by locally
generating addrBA; it can then use any light client capable
of parsing OP_RETURN, such as Chain [30], to retrieve the
content of addrBA and parse cBA. Alternatively, Arke can
leverage other platforms not allowing to augment transactions
with arbitrary metadata by encoding cAB in the less significant
digits of the transfer amount.

Smart contract platform. An Arke store can also consist
of any traditional smart contract platforms [93], [3], [36],
[11], [78], [4], [46], [40], [62], [26] or rollup [5], [74]. A
dedicated smart contract maintains a key-value map of the
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Fig. 4. Example of Arke write (➊-➌), sync (➍-➐), and read (➑-➓) protocol with 4 authorities.

pairs (locAB , cAB) that users can easily read and write. To
implement good state hygiene, both user A and B can delete an
entry of the key-value map by proving knowledge of the secret
key associated with locAB (which they can locally derive).

Leverage consensus-less operations. Recent blockchains such
as Sui [71] and Linera [66] allow users to program some
types of transactions to entirely forgo consensus. For instance,
Sui [71] is a smart-contract platform that forgoes consensus
for single-writer operations and only relies on consensus for
multi-writer operations, combining the two modes securely. As
a result, any operation that can be expressed as a single-writer
operation can leverage its consensus-less path and benefit from
sub-second latency and lower gas fees. Arke can natively
benefit from this feature. User A writes the store by creating a
owned object [12] containing cAB as the only field; it then
transfers ownership of that object to the address addrAB .
User A reads the blockchain by locally deriving addrBA

and querying all objects owned by that address. Appendix D
implements an Arke store on Sui using exclusively owned
objects in less than 10 LOC.

VI. IMPLEMENTATION AND EVALUATION

We implement all main Arke operations in Rust based
on arkworks [6]. We additionally implement and evaluate
our custom Arke store described in Section V-A. We open-
source all our implementations5 and measurement data to
enable reproducible results6. In the following sections, we
use m5d.8xlarge instances whenever experimenting on
Amazon Web Services (AWS). These instances provide 10
Gbps of bandwidth, 32 virtual CPUs (16 physical cores) on
a 2.5 GHz, Intel Xeon Platinum 8175, 128 GB memory, and
run Linux Ubuntu server 22.04. We select this type of instance
because it provides decent performance and is in the price
range of ‘commodity servers’.

A. Setup Phase

Table I shows the performance of all operations of the
Arke setup protocol described in Section IV on a single CPU
core. We perform our benchmarks on both a m5d.8xlarge
Amazon Web Services (AWS) instance and a Macbook Pro
equipped with an M1 processor. The function Assemble private
key is evaluated for a committee of 10 authorities. We compute
the average time over 50 runs.

5https://github.com/asonnino/arke
6https://github.com/asonnino/arke/tree/main/code/arke/results/results-main

Function AWS MBP

(RA) User registration 66.12 ms 4.13 ms
(User) Private key request 23,402.37 ms 2,259.66 ms
(KA) Issue blind partial key 358.05 ms 20.78 ms
(User) Assemble private key 584.91 ms 41.85 ms

TABLE I. MICROBENCHMARK OF THE ARKE SETUP FUNCTIONS ON A
M5D.8XLARGE AWS INSTANCE AND A MACBOOK PRO EQUIPPED WITH

AN M1 CPU. EACH DATA POINT REPRESENTS THE AVERAGE TIME (OVER
50 RUNS) IN MILLISECONDS REQUIRED TO EVALUATE THE FUNCTION. THE
FUNCTION Assemble private key IS EVALUATED FOR A COMMITTEE OF 10.

The table shows that user registration (performed by the
registration authority) is cheap, taking respectively about 66
and 4 ms on our AWS instance and our M1 Macbook Pro.
Generating private key requests is the most expensive opera-
tion; it takes about 23 seconds on our AWS instance and 2
seconds on an M1 Macbook Pro; this operation is however
performed by the user (and only once) and thus does not take
resources away from the key authorities. Issuing blind partial
keys over a key request (performed by the key authority) is
also cheap; it takes about 350 ms on our AWS instance and 20
ms on our M1 Macbook Pro, mostly spent verifying the user’s
key request. Assembling a quorum of blind partial keys into
a full private key (performed by the user) takes about 600 ms
on our AWS instance and 41 ms on our M1 Macbook Pro. We
implement this operation pessimistically requiring the user to
verify each blind partial key before aggregation.

B. The Arke Custom Store

We implement a networked multi-core Arke store au-
thority as described in Section V-A. It uses tokio [1] for
asynchronous networking and persists data structures using
Rocksdb [2]. Our implementation uses TCP to achieve reli-
able point-to-point channels, necessary to correctly implement
the distributed system abstractions.

We particularly aim to demonstrate the performance claims
of Section II-C, reformulated as follows. (C1) Arke scales well
with the committee size. (C2) Arke achieves low latency even
under high load, in the WAN, and with large committee sizes.
(C3) Arke achieves enough throughput to operate at planetary
scale. (C4) Arke is robust when some parts of the system
inevitably crash-fail. Note that evaluating BFT protocols in
the presence of Byzantine faults is still an open question [9].

Experimental setup. We deploy a Arke testbed on AWS, using
m5d.8xlarge instances across 10 different AWS regions: N.
Virginia (us-east-1), Oregon (us-west-2), Canada (ca-central-
1), Frankfurt (eu-central-1), Ireland (eu-west-1), London (eu-
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Fig. 5. Arke WAN latency-throughput with 10, 20, and 50 authorities (no
faults); one shard per authority.

west-2), Mumbai (ap-south-1), Singapore (ap-southeast-1),
Tokyo (ap-northeast-1), and Sydney (ap-southeast-2). All data
are persisted on the NVMe drives provided by the AWS
instance (rather than the root partition).

In the following graphs, each data point in the latency
graphs is the average of the latency of all operations of the
run, and the error bars represent one standard deviation (error
bars are sometimes too small to be visible on the graph). We
instantiate one benchmark client colocate with each authority
submitting client requests at a fixed rate for 3 minutes. We
benchmark two operations; (i) write and (ii) write followed by
synchronize (see Section V-A); we do not benchmark read as it
is a simple database query common to many classic systems.
When referring to latency, we mean the time elapsed from
when the client submits the write request to when it assembles
a certificate over the request (resp. when it is notified that a
quorum of authorities is synchronized).

Benchmark in the common case. Figure 5 illustrates the
latency and throughput of Arke for varying numbers of au-
thorities. Every authority runs one shard (it thus runs on a
single machine). We observe virtually no performance differ-
ence between runs with 10, 20, or even 50 authorities, thus
validating our claim (C1). Arke can process about 1,500 req/s
with sub-second latency in all configurations. As expected the
difference between simple write requests and write followed
by synchronize is minimal. The latter displays a slightly higher
latency due to the extra round-trip required to synchronize
the authorities (about 100-200 ms) but throughput remains
the same. This observation validates our claim (C2). Based
on the system usage estimates for the large-scale end-to-
end encrypted messaging service WhatsApp (Section I), we
would arrive at the requirement to process around 120 req/s.
Thus Arke exceeds by over 10x the throughput required to
operate at this scale which validates claim (C3). Assuming
Facebook Messenger, Signal, and Telegram have similar usage
to WhatsApp, Arke can process the combined load of these
services and thus operate at a planetary scale.

Benchmark under faults. Figure 6 shows the performance
of Arke for a 10-authorities deployment when the system is
experiencing (crash-)faults; after running without faults for
one minute, 0, 1, and 3 authorities permanently crash. Every
authority runs a single shard (each authority thus runs on a
single machine). The figure shows that there is no noticeable
throughput drop under crash faults. Arke can finalize around
1,500 req/s with a sub-second latency. The latency slightly
increases with the number of faulty authorities (by at most
200 ms). Clients finalize operations as soon as the fastest
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Fig. 6. Arke WAN latency-throughput with 10 validators (0, 1, and 3 faults);
one shard per authority

quorum of authorities replies (see Section V-A); as authorities
crash, clients are thus left with fewer authority replies from
which to assemble certificates. This observation validates our
claim (C4). The performance of Arke shines compared to
traditional consensus systems [10], [20], [21], [22], [27], [95]
that are known to suffer 10x or 20x performance drop when
experiencing leader failures [8], [21], [41], [54], [73], [81],
[84].

VII. RELATED WORK

We review related work under two different lenses. We first
survey existing contact discovery schemes. Then, we review
related cryptographic techniques to the ones used in Arke.

A. Contact Discovery

Arke implements a private contact discovery scheme by
combining a key exchange with an unlinkable handshake.
This architecture generalizes the constructions of Chaum et
al. [32]. Their construction, known as UDM, implements both
the key exchange and handshake by relying on honest-but-
curious centralized parties. Furthermore, it requires to maintain
a public mapping from (hashed) identifiers to public keys. Such
a mapping requires storage that grows linearly in the number
of system users. Finally, Chaum et al.[32] do not give proofs
of the security and anonymity properties of their system.

Alternative architectures usually rely on Private Set Inter-
section (PSI) and Private Information Retrieval (PIR) schemes.
PSI-based contact discovery protocols based on FHE [33],
[34], [37] are unsuitable for large-scale contact discovery
because the server’s computation complexity increases linearly
with the size of the database (for each client) during the online
phase. A recent trend in mobile private contact discovery
specifically designs protocols for large-scale contact discov-
ery [44], [59], [61] typically by utilizing Bloom filters and
Cuckoo filters to store the larger set. Kiss et al. [61] enhance
PSI for the unbalanced setting and mobile clients by redis-
tributing the necessary setup computation and communication
costs, which depend linearly on the database size, to a pre-
computation phase. Building upon these promising outcomes,
Kales et al. [59] build an unbalanced PSI protocol for mobile
private contact discovery to optimize the performance and
communication cost of two OPRF-based PSI protocols with
malicious client security. PIR-PSI [44] combines two-server
PIR and PSI for private contact discovery to achieve sublinear
communication complexity in the database size. However,
due to the lack of PIR-preprocessing, the servers perform
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online computation linearly in the database size for each
query, making it unsuitable for large-scale deployments. Hetz
et al. [55] integrate and further optimize the design of Kales et
al. [59] by leveraging the two-server PIR protocol from Kogan
et al. [63] which minimize the communication of unbalanced
OPRF-based PSI Kales et al.. for mobile devices. They then
enhance the performance of the balanced PSI protocol of
Kolesnikov et al. [64] by utilizing PIR based on distributed
point functions (DPFs) [18], [19] to reduce the input set sizes.

Despite these advancements, Signal still considers the
complexity of PSI and PIR-based protocols to be too high for
their purpose [69]. As a result, Signal currently runs a contact
discovery service in an Intel Software Guard Extensions (SGX)
enclave [39], [56], [57], [70] and hides the memory access
patterns using Path ORAM [38], [85]. This approach scales
well but the enclave is a single point of failure and attack,
and relying on Intel SGX requires trust in Intel (as debated
by many works [42], [58], [7], [82]). Arke instead relies on
cryptographic techniques and a threshold assumption to solve
private contact discovery with unprecedented scalability by
keeping the complexity of the protocol constant regardless of
the database size.

B. Cryptographic Techniques

Key escrow in ID-based cryptography. One of the main
challenges in making Arke private and fault-tolerant is limiting
the scope of the trusted third party in the Boneh-Waters ID-
NIKE. This problem, known as the key escrow problem, is
inherent to identity-based cryptography and is well-studied in
the literature. Boneh and Franklin [15] introduce the first con-
struction for an identity-based encryption scheme. In the same
paper, they show that their construction can be thresholdized
by replacing the TTP by a committee of non-colluding entities
that each hold a Shamir secret share of a uniformly distributed
secret key. This key distribution can be performed without
a trusted party by running a DKG protocol that upholds the
correctness and secrecy properties of Gennaro et al. [47]. We
follow the same approach, and show that our system remains
secure even when using more efficient but less secure DKG
schemes such as the Pedersen-DKG [77].

Another (and orthogonal) approach to solving the key
escrow problem is anonymous key issuance. This notion,
formalized by Chow [35], reinforces the definition of blind
key issuance [25], [50]. Sui et al. [86] propose a blind key-
issuing protocol for the Boneh-Franklin IBE based on blind
BLS signatures [16] and a password mechanism. This scheme
however does not provide anonymity against the KA. Our
construction can be seen as adapting that of Sui et al. [86] to
the ID-NIKE setting and replacing the password mechanism
with a zk-SNARK, thus achieving anonymity from the KA.
Recently, Emura et al. [45] constructed an anonymous key
issuance mechanism based on Boldyreva’s [13] blind BLS
signature alone. This scheme removes the need for the zk-
SNARK and is therefore more efficient than the one presented
in this work. However, it strengthens the role of the RA:
it is now responsible for correctly verifying identities and
for providing users with uniformly distributed randomness.
Running such a scheme would further broaden the scope of
Assumption 1 (correct RA; see Section II-D).

There are many other techniques that mitigate the trust
placed in the key-issuing authority. For example, Goyal [49]
introduces the notion of accountable IBE. These are schemes
in which the key-issuing authority is still all-powerful, however
if it misbehaves, it runs the risk of being caught and punished.
The design space for identity based cryptography is broad and
an exhaustive exploration of these techniques is outside of the
scope of this work.

IBE schemes. Identity-based encryption (IBE) schemes are
close relatives to the ID-based key exchanges that we use.
In fact, Paterson and Srinivasan [76] show how to convert
any secure ID-NIKE into a secure IBE scheme. However, the
difference in functionality is crucial in designing an efficient
unlinkable handshake. In the IBE setting, any party may
encrypt to someone’s identity. The recipient is equipped with
the decryption key, but cannot authenticate the sender from the
ciphertext alone. On the other hand, combining an ID-NIKE
with an AEAD scheme allows us to establish a symmetric
channel, which implicitly authenticates the communicating
party. Furthermore, the ID-NIKE functionality allows us to
derive pseudorandom read and write tags for the unlinkable
handshake. These tags are crucial in implementing a handshake
in which the users are not required to perform trial decryption
of all the stored messages.

Oblivious message retrieval. Oblivious message retrieval [68]
(OMR) is very similar in spirit to our unlinkable handshake.
Users have access to a public message board and are interested
in knowing which messages are addressed to them, without
having to read or trial decrypt the full board. Writing and
reading relevant messages from the board should not reveal
the sender or reader’s identities. Note that, as opposed to
our unlinkable handshake, this setting does not assume the
existence of a shared secret between sender and recipient.

Liu and Tromer [68] achieve a practical OMR construction
from fully-homomorphic encryption. Their scheme introduces
an additional party, the detector. Given a detection key and
an upper bound for the number of expected messages, the
detector can perform “re-encryption” (decryption under FHE)
to produce a digest indicating to the user which messages are
relevant to their detection key. They estimate detector costs
to be $1 per million messages scanned. Our approach forgoes
this cost (and additional party) as users can identify relevant
messages using only the ID-NIKE output.

VIII. CONCLUSION

Arke is the first Byzantine fault-tolerant privacy-preserving
contact discovery system whose performance is independent
of the total number of users in the system (i.e., the database
size). Our experimental implementation shows that Arke can
support 1,500 user requests per second in a large geo-
replicated environment, thus largely surpassing the combined
estimated needs of WhatsApp, Facebook Messenger, Signal,
and Telegram. Furthermore, Arke can maintain this throughput
while providing sub-second finality even when a third of the
infrastructure is Byzantine. Arke is based on an unlinkable
handshake mechanism built on an ID-NIKE protocol and on
a custom broadcast-based distributed architecture forgoing the
expense of consensus.
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APPENDIX A
SECURITY PROOF: THEOREM 1

Recall that Theorem 1 states that the threshold oblivious
ID-NIKE of Definition 3 is IND-SK secure under the DBDH
assumption if the hash functions H1 and H2 are modeled as
random oracles and ΠID is a knowledge sound SNARK for
RID. The proofs follow from the three lemmas below:

Lemma 1. The oblivious variant of the Boneh-Waters ID-
NIKE (see Definition 5) is IND-SK secure, assuming that
the Boneh-Waters ID-NIKE is IND-SK secure and ΠID is a
knowledge sound SNARK for RID.

Lemma 2. The oblivious variant of the Boneh-Waters ID-
NIKE is rekeyable [52] with respect to the key issuer’s master
secret key. Furthermore, the OReveal oracle is rekeyable with
respect to the master secret key.

Lemma 3. A key-expressable DKG [52] preserves IND-SK
security for an oblivious ID-NIKE Σ′ if:

• Σ′ is rekeyable with respect to the master secret key.

• BlindExtract = BlindPartialExtract

• the OReveal oracle is rekeyable with respect to the
master secret key.

We prove each lemma individually in the following sub-
sections.

A. Proof of Lemma 1

To prove Lemma 1, we make explicit the definition of our
oblivious variant of the (centralized) Boneh-Water ID-NIKE
as described in Section IV.

Definition 5 (Oblivious Boneh-Waters ID-NIKE). Let ΠID

be a knowledge sound SNARK (e.g., Groth16 [51]) for the
relation RID as defined in Section III-A. We assume that the
public parameters for ΠID are pre-computed and passed to all
algorithms as part of the variable pp. The oblivious Boneh-
Waters ID-NIKE is defined by the following eight efficient
algorithms:

• SetupE(λ) → (msk,mpk). Choose a random key-
extraction secret key msk

$←− Zq and compute the key-
extraction public key mpk = (gmsk

1 , gmsk
2 ). Output msk

and mpk.
• SetupR(λ) → (rsk, rpk). Choose a random reg-

istration secret key rsk
$←− Zq and compute the

registration public key rpk = (grsk1 , grsk2 ). Output rsk
and rpk.

• VerifyPK(pk) → {0, 1}. Parse pk as (pkl, pkr). If
e (pkl, g2) = e (g1, pkr), output 1 (accept). Otherwise
output 0 (reject).

• Register(rsk, id) → (τid). Compute τl = H1(id)
rsk

and τr = H2(id)
rsk. Output τid = (τl, τr).

• Blind(pp, id, τid) → (α, îd, τ̂id, π). Sample
a random blinding factor α

$←− Zq .
Compute îd = (H1(id)

α, H2(id)
α), π =

ΠID.Prove(crs, id, α, îd, H1, H2) and τ̂id = τid
α.

Output (α, îd, τ̂id, π).
• VerifyID(pp, îd, τ̂id, π) → {0, 1}. Parse rpk as

(pkl, pkr), îd as (îdl, îdr), and τ̂id as (τ̂l, τ̂r). Check
that the following equations hold:

e (τ̂l, g2)
?
= e

(
îdl, pkr

)
e (g1, τ̂r)

?
= e

(
pkl, îdr

)
ΠID.Verify(ppZK, îd, π)

?
= 1 (accept)

(5)

If all equations verify successfully output 1, otherwise
output 0.

• BlindExtract(msk, îd) → ŝkid. Compute and output
ŝkid = îd

msk
.

• Unblind(ŝkid, α) → skid. Compute and output

skid = ŝkid
1
α .

• VerifyExtract(mpk, id, θ). Parse mpk as
(mpkl,mpkr) and θ as (θl, θr) ∈ G1 × G2.
If e (θl, g2) = e (H1(id),mpkr) and
e (g1, θr) = e (mpkl, H2(id)), output 1 (accept).
Otherwise, output 0 (reject).

• SharedKey(pp, skid, id
′) → kid,id′ . As in the classic

Boneh-Waters ID-NIKE, we assume that identifiers are
lexicographically ordered. Parse skid as (dl, dr) and
output kid,id′ :

kid,id′ =

{
e(dl, H2(id

′)), if id < id′

e(H1(id
′), dr), if id > id′

We also define an appropriate variant of the IND-SK game.
As in the classic IND-SK game (recall Figure 2), the adversary
A must determine whether some value γ is the shared key for a
pair of target identities or a random element from GT . A may
register any identities of her choice and use the registration
token to obtain those identities’ secret keys. A may also query
the shared key for any identity pair of her choice. The game
is formally described in Figure 7.

We say that an oblivious ID-NIKE scheme Σ′ is IND-SK
secure if for any probabilistic polynomial-time adversary A:

Pr
[
ExpObliviousIND−SK

Σ′,A (λ) = 1
]
≤ 1

2
+ negl(λ)

Proof (Lemma 1): We prove Lemma 1 by contradiction.
Suppose that there exists an adversary A such that:

Pr
[
ExpObliviousIND−SK

Σ′,A (λ) = 1
]
>

1

2
+ negl(λ)

where Σ′ designates the oblivious ID-NIKE of Definition 5.
Let Σ designate the Boneh-Waters ID-NIKE. We will construct
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ExpObliviousIND−SK
Σ′,A (λ)

1 : b
$←− {0, 1}

2 : Qr ← ∅, Qk ← ∅
3 : (msk,mpk)← SetupE(λ)

4 : (rsk, rpk)← SetupR(λ)

5 : (crs, td)← ΠID.Setup(λ)

6 : pp← (mpk, rpk, crs)

7 : O ← {ORegister,

OBExtract, OReveal}

8 : (id∗, id
′
∗)← A

O
(pp)

9 : γ ← Test(id∗, id
′
∗)

10 : b̂← AO
(γ)

11 : if (̂b = b) ∧ (id∗ /∈ Qr)∧
(id′∗ /∈ Qr) ∧

(
(id∗, id

′
∗) /∈ Qk

)
12 : return 1

13 : return 0

ORegister(id)

1 : τ ← Register(rsk, id)

2 : Qr ← Qr ∪ {id}
3 : return τ

OBExtract(îd, τ̂ , π)

1 : if VerifyID(pp, îd, τ̂ , π) = 0

2 : return ⊥
3 : else

4 : ŝkid ← BlindExtract(msk, îd)

5 : return ŝkid

Fig. 7. Indistinguishability of shared keys (IND-SK) security game for
oblivious ID-NIKEs. OReveal and Test are defined as in Figure 2.

an adversary B that runs A as a subroutine, and gains a non-
negligible advantage in ExpIND−SKΣ,B .

Reduction overview. The reduction strategy is simple: B will
take on the role of “registration authority” and emulate A’s
oracles. When A produces a test query (id∗, id

′
∗), B forwards

that query to her own Test routine. Similarly, when A produces
a guess b̂, B forwards that guess as her own.

A and B are subject to the same Test routine. Therefore,
comparing the win conditions for both experiments (line 8
of Figure 2 and line 11 of Figure 7) reveals that B wins in
ExpIND−SKΣ,B if A wins in ExpObliviousIND−SK

Σ′,A and Qe ⊆ Qr; put
more directly, B wins if A wins and B’s OExtract queries are
a subset of A’s ORegister queries.

Running A’s oracles. To run A as a subroutine, B must
correctly emulate its oracles while maintaining Qe ⊆ Qr. By
definition, the OReveal and Test procedures are identical in
both the classical and oblivious IND-SK game. It also follows
that the exclusion sets Qk (the collection of OReveal queries)
are identical for A and B.

B can imitate ORegister by taking on the role of the
registration authority. Indeed B runs SetupR and replies to
A’s queries by running Register.

To emulate the OBExtract oracle, B must first extract the
queried identifier and blinding factor from A. She can then
query her own OExtract oracle to obtain the secret key for
the extracted identifier. More specifically, B runs the following
procedure:

1 : if VerifyID(pp, îd, τ̂ , π) = 0

2 : return ⊥
3 : else

4 : (id, α)← EA(crs, qt)

5 : skid ← OExtract(id)

6 : ŝkid ← skid
α

7 : return ŝkid

where qt is the transcript of all of A’s oracle queries and their

respective answers.

Unfortunately, this process is not a perfect emulation of
OBExtract. Indeed, the extractor E may fail to recover a
valid witness (id, α). This would lead B to output a value
that does not follow the expected distribution for blind keys.
Furthermore, even if the extractor is successful, it may be the
case that the extracted identity is not one of A’s registered
identities; thus breaking the invariant imposed by our reduction
Qe ⊆ Qr. We capture both of these failure conditions in the
EmulateOracle experiment defined in Figure 8.

Win probability in ExpEmulateOracle
ΠID,P

. We show that for
any arbitrary PPT algorithm P, the success probability in
EmulateOracle is overwhelming if ΠID is a knowledge sound
SNARK. The success probability can be written as:

Pr
[
ExpEmulateOracle

ΠID,P (λ) = 1
]
= Pr

[
(ŝk = ŝk∗) ∧ (Qe ⊆ Qr)

]
(6)

First, we show that if ΠID.E is successful in extracting a
valid witness, then ŝk = ŝk∗. Assume

(
îd∗, (id, α)

)
∈ RID,

then:

skα = OExtract(id)α

= (H1(id)
msk, H2(id)

msk)α

= (H1(id)
α, H2(id)

α)msk

= îd∗
msk

Therefore, using EXT as shorthand notation for the event(
îd∗, (id, α)

)
∈ RID:

Pr
[
ŝk = ŝk∗

]
≥ Pr [EXT] (7)

Using the result from Equation (7) and applying Bayes’ the-
orem to Equation (6), we express the EmulateOracle success
probability as:

Pr
[
ExpEmulateOracle

ΠID,P (λ) = 1
]
≥ Pr [Qe ⊆ Qr | EXT] Pr [EXT]

(8)

By definition, Pr [EXT] denotes the probability that the
extractor for ΠID is successful in recovering a valid witness.
Therefore, it holds that Pr [EXT] > 1 − negl(λ) if ΠID is a
knowledge sound SNARK.

We now evaluate the probability Pr [Qe ⊆ Qr | EXT]. Let
id ∈ I, α ∈ Zq such that

(
îd∗, (id, α)

)
∈ RID. Assume, for

the sake of argument, that id /∈ Qr. Parsing τ̂∗ as (τ̂l, τ̂r) and
rpk as (pkl, pkr), we know from lines 8 and 9 of Figure 8
that:

e (τ̂l, g2) = e (H1(id)
α, pkr) (9)

Using the bilinear property of our pairing, we can rewrite
Equation (9) as:

e
(
τ̂l

1
α , g2

)
= e (H1(id), pkr) (10)

Notice that Equation (10) is the verification equation for
a BLS signature. Here (id, τ̂l

1
α ) is a valid BLS message-

signature pair for the secret key rsk. However, if id /∈ Qr,
then (id, τ̂l

1
α ) is in fact a forgery. Since BLS signatures are
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ExpEmulateOracle
ΠID,P (λ, aux,OExtract)

1 : Qr ← ∅, Qe ← ∅
2 : (msk,mpk)← SetupE(λ)

3 : (rsk, rpk)← SetupR(λ)

4 : (crs, td)← ΠID.Setup(λ)

5 : pp← (mpk, rpk, crs)

6 :
(
id∗, α∗, (îd∗, τ̂∗, π∗)

)
← ForceValidRequestP(rsk, pp, aux)

7 : ŝk∗ ← BlindExtract(msk, îd∗)

8 : (id, α)← ΠID.EP(crs, aux)
9 : sk ← OExtract(id)

10 : ŝk ← sk
α

11 : if (ŝk = ŝk∗) ∧ (Qe ⊆ Qr)

12 : return 1

13 : return 0

ForceValidRequestP(rsk, pp, aux)

1 : while
(
(îd∗, (id∗, α∗)) /∈ RID

)
∨

(
VerifyID(pp, îd∗, τ̂∗, π∗) = 0

)
do :

2 : idq ← P(pp, aux)

3 : aux← aux||(idq,Register(rsk, idq))
4 : Qr ← Qr ∪ {idq}

5 :
(
id∗, α∗, (îd∗, τ̂∗, π∗)

)
← P(pp, aux)

6 : return
(
id∗, α∗, (îd∗, τ̂∗, π∗)

)

Fig. 8. Blind identity extraction game. OExtract is defined as in Figure 2. P is an arbitrary PPT algorithm and aux denotes auxiliary inputs to P.

existentially unforgeable in the random oracle model assuming
the CDH problem is hard, we can conclude that:

Pr [Qe ⊆ Qr | EXT] > 1− negl(λ)

Having established that the probabilities
Pr [Qe ⊆ Qr | EXT] and Pr [EXT] are both overwhelming,
we can rewrite Equation (8) as:

Pr
[
ExpEmulateOracle

ΠID,P (λ) = 1
]
> 1− negl(λ)

thus proving that the success probability in ExpEmulateOracle
ΠID

is
overwhelming if ΠID is a knowledge sound SNARK.

Successful reduction. As A is a probabilistic polynomial-
time algorithm, it will produce at most a polynomial number
of queries to ORegister. Therefore, the probability that B is
successful in answering all off A’s OBExtract queries is also
overwhelming. In that case, B perfectly simulates A’s oracles.
Thus we establish:

Pr
[
ExpIND−SKΣ,B (λ) = 1 | ExpObliviousIND−SK

Σ′,A (λ) = 1
]
> 1−negl(λ)

Using the law of total probability and Bayes’ theorem, it
holds that:

Pr
[
ExpIND−SKΣ,B (λ) = 1

]
> 1− negl(λ)

thus proving that our reduction is successful.

Therefore, we conclude that the oblivious variant of the
Boneh-Waters ID-NIKE (Definition 5) is IND-SK secure,
assuming that the Boneh-Waters ID-NIKE is IND-SK secure
and ΠID is knowledge sound.

B. Proof of Lemma 2

We prove Lemma 2 using a similar argument to the one
given in Gurkan et al. [52] (Appendix D.2) for the rekeyability
of BLS signatures. The goal is to show that all algorithms
behave as expected when fed a linear combination of private
keys (and the corresponding public key) instead of the expected
uniformly distributed private key.

We briefly recall some notions introduced by the rekeya-
bility definition of [52]. Given a function fmsk that relates two
secret keys mskA and mskB , we say that an algorithm Πi

is rekeyable with respect to the secret key if there exists an
efficient algorithm rekeyi such that:

rekeyi(α,mpkA,mskB , x,Πi(mskA, x; r))

= Πi(fmsk(α,mskA,mskB), x; r)

for all x ∈ Domain(Πi) and randomness r.

Similarly, given a function fmpk that relates the correspond-
ing public keys, we say that algorithms (Πi,Πj) are rekeyable
with respect to the secret key if (1) Πi is rekeyable with respect
to the secret key and, (2):

Πj(mpkA, y) =

Πj(fmpk(α,mpkA,mpkB), rekeyi(α,mpkA,mskB , y))

for all y ∈ Image(Πi).

Proof (Lemma 2): We show that all algorithms in the
ID-NIKE construction of Definition 5 that take the master
secret key as input are rekeyable with respect to the master
secret key. Furthermore, let UnblindVerifyExtract denote the
sequential applications of Unblind and VerifyExtract, we show
that (BlindExtract,UnblindVerifyExtract) is rekeyable with
respect to the secret key. We do so by giving explicit definitions
for fmsk, fmpk, rekeyBE the rekeying function for BlindExtract
and rekeyOR, the rekeying function for the OReveal oracle (as
defined in Figure 2).

Let (mskA,mpkA) ← SetupE(λ) and (mskB ,mpkB) ←
SetupE(λ). Given some coefficient α ∈ N, we define the
function fmsk relating master secret keys and fmpk relating
master public keys as:

fmsk(α,mskA,mskB) = αmskA +mskB
fmpk(α,mpkA,mpkB) = (mpkA)

α ◦mpkB

Notice that:

fmpk(α,mpkA,mpkB) = (mpkA)
α ◦mpkB

= (g1, g2)
αmskA+mskB

= (g1, g2)
fmsk(α,mskA,mskB)

(11)
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Rekeying VerifyPK. Plugging the values from Equation (11)
into the VerifyPK algorithm will accept if and only if the
original public key mpkA was indeed well-formed (see Equa-
tion (1)). Thus, VerifyPK is rekeyable with respect to the public
key.

Rekeying BlindExtract. Given a blinded identifier îd and a
blind key ŝk ← BlindExtract(mskA, îd), we define rekeyBE
as:

rekeyBE(α,mpkA,mskB , îd, ŝk) = ŝk
α
◦ îd

mskB

As required:

ŝk
α
◦ îd

mskB
= îd

αmskA ◦ îd
mskB

= îd
αmskA+mskB

= BlindExtract(fmsk(α,mskA,mskB), îd)

We can show that (BlindExtract,UnblindVerifyExtract) is
rekeyable with respect to the secret key by observing the
previously shown equalities:

fmpk(α,mpkA,mpkB) = (g1, g2)
αmskA+mskB

rekeyBE(α,mpkA,mskB , îd, ŝk) = îd
αmskA+mskB

As shown in Equation (2), the VerifyExtract algorithm always
outputs 1 when the equalities above are respected.

Rekeying OReveal. Given an identity pair (id, id′) and their
shared key k ← ORevealmskA(id, id

′), we define rekeyOR as:

rekeyOR(α,mpkA,mskB , (id, id
′), k)

=

{
kα · e

(
H1(id), H2(id

′)
)mskB

, if id < id′

kα · e
(
H1(id

′), H2(id)
)mskB

, if id > id′

Assuming without loss of generality that id < id′, it holds that:

kα · e
(
H1(id), H2(id

′)
)mskB

= e
(
H1(id), H2(id

′)
)αmskA · e

(
H1(id), H2(id

′)
)mskB

= ORevealfmsk(α,mskA,mskB)(id, id
′)

C. Proof of Lemma 3

Finally, we prove Lemma 3. To do so, we introduce the
experiment ExpThrOblIND−SK

Σ,A . This game is a DKG variant of
Figure 7, constructed as prescribed by Gurkan et al. [52]. It
is identical to ExpObliviousIND−SK

Σ,A with the initial SetupE step
(line 3) being replaced by a key-expressible DKG denoted by
SetupDKGE and defined as follows:

• SetupDKGE(λ, t, n) → (msk1, . . . ,mskn, pp).
Participants P1, . . . , Pn execute a key-expressible
DKG to compute Shamir secret shares
msk1, . . . ,mskn of an (unknown) master secret
key msk. They jointly output a transcript and master
public key mpk = (gmsk

1 , gmsk
2 ). Output mski to Pi

and pp← (transcript,mpk).

Proof (Lemma 3): Let Σ denote an oblivious ID-NIKE,
and Σ′ denote a key-expressible DKG variant of the same

oblivious ID-NIKE. Let A be a PPT adversary in the experi-
ment ExpThrOblIND−SK

Σ′,A with key-extraction public key mpk. We
construct an adversary B that retains the same advantage as A
but against ExpObliviousIND−SK

Σ,B with public key mpkA.

B receives the public key mpkA from its challenger. Let
n be the number of participants expected by A and I the
set of indices that A corrupts. B runs SimDKG(Sim, I, n),
acting as Sim to interact with A and obtains the tuple
(transcript,mpk, α,mpkB ,mskB) as per the definition of
a key-expressable DKG. Note that by definition mpk =
fmpk(α,mpkA,mpkB).

B can emulate A’s oracles as follows:

• OBExtractmsk(pp, îd, τ̂ , π) - B queries
OBExtractmskA(pp, îd, τ̂ , π) to obtain the value
ŝkid. It computes

ŝk′id = rekeyBE(α,mpkA,mskB , îd, ŝkid)

and outputs ŝk′id.

• ORevealmsk(id, id
′) - B queries ORevealmsk1(id, id

′) to
obtain the value kid,id′ . It computes

k′id,id′ = rekeyOR(α,mpkA,mskB , (id, id
′), kid,id′)

and outputs k′id,id′ . Notice that B is able to rekey kid,id′
without knowledge of either of the user secret keys
skid and skid′ .

• Testb(id, id
′) - B queries Testb(id, id

′) to obtain the
value k(b). It computes

k
(b)
∗ = rekeyOR(α,mpkA,mskB , (id, id

′), k(b))

and outputs k
(b)
∗ .

When A returns a bit b̂, B returns that same bit. B perfectly
simulates A’s oracles and key expressability implies that it
also perfectly simulates the DKG. A and B run in the same
experiment and return the same bit, therefore their advantages
are equal.

APPENDIX B
DETAILED ARKE CUSTOM STORE

This appendix complements Section V-A It details the
protocol messages and data structures run by the store’s
nodes, provides complete algorithms, explains how to clean up
storage, and how to scale the system by maximizing parallel
processing of transactions and leveraging more hardware to
increase its capacity.

A. Protocol Messages and Data Structures

Arke storage authorities and users run the read and write
protocol described in Section V-A by exchanging the following
messages:

• A write transaction (WRITETX) is a structure sent
by user A to the storage authorities to update a
specific store entry. The transaction is signed by user
A using the tag tAB as the secret key and contains
the following fields:
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◦ The value cAB to write on the store.
◦ The location of the store locAB = gtAB

1 where
to write.

◦ A version number ensures the freshness of the
transaction.

◦ The current epoch number.
◦ A signature by tAB over the transaction’s

fields.
The transaction also supports a few self-explanatory
access operations, such as version(WRITETX) to get
its version number and functions to access the key-
value pair to update.

• A vote (VOTE) on a write transaction contains the
transaction itself as well as the identifier and signature
of a store authority.

• A certificate (CERT) on a write transaction contains
the transaction itself as well as the identifiers and
signatures from at least a quorum of 2f + 1 storage
authorities. A certificate may not be unique, and the
same logical certificate may be signed by a different
quorum of storage authorities. However, two different
valid certificates on the same transaction are treated
as representing semantically the same certificate. The
identifiers of signers are included in the certificate
(i.e., accountable signatures [14]) to identify validators
ready to process the certificate. Similarly to trans-
actions, certificates support several self-explanatory
access functions to get its version number and the key-
value pair to update.

• A read transaction (READTX) is a structure specifying
a store entry locBA = gtBA

1 to read.

• A read reply (READREPLY) on a read transaction
contains the transaction itself as well as the latest
tuple (CERT, VOTE) known by a store authority. It also
contains the identifier and signature of that authority.

Each store authority maintains two persistent tables ab-
stracted as key-value maps, with the usual contains, get, and
set operations.

• The lock map records the last valid update to a store
entry embedded in the last valid certificate CERT seen
by the authority. It also stores the last vote VOTE
that the authority generated to further update the key.
Alternatively, it may hold None if the store entry does
not exist or the authority did not see the transaction
before. The lock map is defined as follows:

LockDb[key(WRITETX)]→ (CERT,LockVoteOption)

B. Store Core Operations

We detail the operations performed by the authorities when
receiving write transactions and certificates from users and
describe how users process read replies from the authorities.

Process write transaction. Algorithm 1 shows how storage
authorities process write transactions; that is, step ➌ of Fig-
ure 4 (see Section V-A). Upon receiving a write transaction
WRITETX the storage authority calls PROCESSTX to perform
several checks:

• Check (1.1): It ensures that the author of WRITETX is
authorized to write in the specified store location. That
is, check that WRITETX is correctly signed using the
secret key corresponding to the public key locAB =
gtAB
1 included in the transaction as the public key.

• Check (1.2): It tries to acquire a (mutex) guard over
the store entry key(WRITETX); otherwise, it returns
an error and terminates the processing of WRITETX.
Acquiring a guard ensures that no other task can
concurrently perform the next step of the algorithm
on the same key.

• Check (1.3): It ensures the transaction is for the cur-
rent epoch Epoch. This check is crucial to maintain
consistency across epochs as the LockDb store is
partially reset upon epoch change (see Appendix B-C).

• Check (1.4): It ensures the version number of
WRITETX is the next natural integer expected in the
sequence (Line 14). If it is the first time the authority
writes this store entry (i.e., LockDb[loc] is empty), the
value PrevCert at Line 13 is a placeholder certificate
without content and with version number zero; and
LockVote = None.

• Check (1.5): It checks that LockDb[key(WRITETX)]
is either None or set to the same transaction
WRITETX, and atomically sets it to VOTE. In other
words, no other transaction WRITETX′ ̸= WRITETX
has been signed for the same version number. This
is an important validity check to implement byzantine
consistent broadcast [23] and ensure safety.

If all checks are successful then the authority returns a vote
VOTE, i.e., a signature on the write transaction. Processing a
transaction is idempotent upon success, and always returns a
vote (VOTE) within the same epoch. Any party may collate
a transaction and votes (VOTE) from a quorum of 2f + 1
authorities of epoch Epoch, to form a certificate CERT. Many
tasks can call ProcessTx concurrently (or in parallel). Arke
only acquires mutexes7 on the minimum amount of data: the
store entry that the transaction is trying to update (Algorithm 1
Line 7).

Process write certificates. Algorithm 2 shows how storage
authorities process write certificates; that is, step ➐ of Figure 4
(see Section V-A). Upon receiving a certificate CERT a Arke
authority calls ProcessCert of Algorithm 2 to perform a
number of checks:

• Check (2.1): It ensures the certificate is signed by a
quorum of 2f+1 authorities. Optionally, the authority
may re-check that the writer is authorized to update
the specified store entry (check (1.1)); if they aren’t
the certificate CERT is proof of catastrophic failure
and that the BFT assumption broke.

7This mutex ensures that correct authorities never return two different votes
over the same store entry update. The following scenario may happen if we
omit the mutex Line 7. Two different transactions (WRITETX and WRITETX′)
updating the same store entry (with the same version) may be submitted
concurrently to the authority. Both transactions pass all checks until Line 20.
The first transaction then assigns the lock Line 20 and the authority returns
VOTE; the second transaction then overwrites the lock and the validator returns
a conflicting VOTE′.
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Algorithm 1 Process WRITETX

// Executed upon receiving a write transaction from a user.
// Many tasks can call this function concurrently.

1: procedure PROCESSWRITETX(WRITETX)
2: // Check (1.1): Check transaction validity (Appendix B-B)
3: if !valid(WRITETX) then return Error
4:
5: // Check (1.2): Try to acquire a mutex over key(WRITETX)
6: loc← key(WRITETX)
7: guard = ACQUIREGUARD(loc) ▷ Error if cannot guard
8:
9: // Check (1.3): Ensure WRITETX is for the current epoch.

10: if epoch(WRITETX) ̸= Epoch then return Error
11:
12: // Check (1.4): Check WRITETX’s version
13: (PrevCert, LockVote)← LockDb[loc] ▷ None if no loc
14: Version← version(PrevCert) + 1 ▷ Expected version
15: if Version ̸= version(WRITETX) then return Error
16:
17: // Check (1.5): Only sign non-conflicting transactions
18: VOTE ← sign(WRITETX)
19: if LockVote == None then
20: LockDb[loc]← (PrevCert, VOTE)
21: else if LockVote ̸= VOTE then
22: return Error
23:
24: // Return a vote on WRITETX
25: return VOTE

• Check (2.2): It tries to acquire a guard over the store
entry key(CERT); otherwise, it returns an error and
terminates the processing of CERT. Acquiring a guard
ensures that no other task can concurrently perform
the next step of the algorithm on the same key, or
call PROCESSWRITETX (Algorithm 1) with a new
transaction over the same store entry key(CERT).

• Check (2.3): It ensures the certificate is for the current
epoch Epoch. This check is crucial to maintain con-
sistency across epochs as the LockDb store is partially
reset upon epoch change (see Appendix B-C).

• Check (2.4): It ensures that CERT is newer than the
latest certificate seen by the authority. This check
ensures the state of the authority cannot be reverted
by replaying older certificates.

If all check succeeds, the value associated with the store
entry key(CERT) is updated to value(CERT) and the version
number expected for the next update to version(CERT). These
two operations are implicitly performed at Line 16: the latest
value and version of key(CERT) are persisted as part of the
certificate CERT. Further, the lock previously set to LockVote
is now released in order to accept future updates of key(CERT).

Process read replies. Algorithm 3 shows how the reader
processes read replies received from a quorum of storage
authorities; that is, step ➓ of Figure 4 (see Section V-A).
The reader collects at least 2f +1 read replies [READREPLY].
Check (3.1) filters out

1) Any malformed or empty reply. Malformed replies
do not contain valid authorities’ signatures and empty
replies contain (CERT, VOTE) = (None,None).

Algorithm 2 Process CERT

// Executed upon receiving a write certificate from a user.
// Many tasks can call this function concurrently.

1: procedure PROCESSWRITECERT(CERT)
2: // Check (2.1): Check certificate validity (Appendix B-B)
3: if !valid(CERT) then return Error
4:
5: // Check (2.2): Try to acquire a mutex over key(WRITETX)
6: loc← key(WRITETX)
7: guard = ACQUIREGUARD(loc) ▷ Error if cannot guard
8:
9: // Check (2.3): Ensure CERT is for the current epoch

10: if epoch(CERT) ̸= Epoch then return Error
11:
12: // Check (2.4): Check CERT’s version
13: (PrevCert, LockVote)← LockDb[loc] ▷ None if no loc
14: Version← version(PrevCert) ▷ Expected version
15: if Version < version(CERT) then
16: LockDb[loc]← (CERT,None) ▷ Write value(CERT)

17:
18: return Ack ▷ Acknowledgement certificate processing

Algorithm 3 Process READREPLY

// Executed upon receiving read replies from an authority.
1: procedure PROCESSREADREPLY([READREPLY])
2: // Check (3.1): Filter out invalid replies (Appendix B-B).
3: [READREPLY]← valid([READREPLY])
4:
5: if ![READREPLY] then ▷ If the reply set is empty
6: return None
7:
8: (CERT, VOTE)← HIGESTREPLY([READREPLY])
9: if CERT ≥ VOTE then

10: DISSEMINATECERT(CERT) ▷ Optional
11: return value(CERT)
12: else
13: WRITETX ← tx(VOTE)
14: return FINISHSYNC(WRITETX) ▷ Finish sync

2) Any reply concerning protocol messages with epoch
number e such that e + E ≤ Epoch. The parameter
E is the maximum number of epochs for which the
storage authorities keep a store entry, and Epoch is
the current epoch of the reader.

After this check, if the set [READREPLY] is empty replies, the
reader reads None (Line 6). Alternatively, the reader looks
for the highest certificate and the highest valid vote (Line 8).
These are simply the certificate and valid vote included in
the set [READREPLY] with the highest version. A valid vote
contains a WRITETX that passes Check (1.1) of Algorithm 1.
Finally, the reader compares the highest certificate CERT
with the highest vote VOTE. If the certificate has a higher
version than the vote, the reader optionally disseminates the
certificate to any authority who missed it (Line 10) and then
reads value(CERT). Alternatively, the reader concludes that
further authority synchronization is needed (Line 14). It then
performs the synchronization steps ➍-➐ of Figure 4 described
in Section V-A, or waits for another party to synchronize the
authorities. The reader then re-tries the read operation.
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C. Epoch Change

Epoch changes serve two main purposes, they allow un-
locking any store entry partially written by faulty writers and
they are used to clean up storage by deleting hold entries.

Transactions unlocking. A faulty writer may sign two con-
flicting transactions WRITETX and WRITETX′ with the same
version number and both updating the same store entry loc =
key(WRITETX) = key(WRITETX′). It is then possible that a
set of f + 1 correct authorities process WRITETX and lock
LockDb[loc]← (PrevCert, VOTE) (Line 20 of Algorithm 1),
and the other f correct authorities process WRITETX′ and
lock LockDb[loc] ← (PrevCert, VOTE′). As a result, there
may never be a certificate neither over WRITETX nor over
WRITETX′. The store entry loc is then effectively locked
forever.

Arke allows unlocking loc at the end of every epoch
by dropping all locks. That is, authorities forget all votes
they issued during the epoch. Authorities set LockDb[loc] ←
(PrevCert,None) for every entry in their store8. Intuitively,
dropping all locks at epoch change is safe because the check
(2.3) of Algorithm 2 ensures certificates are only valid for a
single epoch (see Section C).

Storage cleanup. One of the main properties of Arke is its
ability to clean up storage after long periods of inactivity.
Correct authorities delete keys that have not been updated
in the last E epochs. That is, they drop the store entries
LockDb[loc] for every entry loc associated with a certificate
CERT where epoch(CERT)+E < Epoch (where Epoch is the
current epoch). This operation is performed asynchronously
and lazily at runtime to avoid the cost of iterating through the
store upon epoch change. Upon loading the latest certificate
from storage (Line 13 Algorithm 2), the store LockDb returns
None if PrevCert should be deleted. Intuitively, this operation
is safe (see Section C) because readers only consider a
certificate CERT if epoch(CERT) + E > Epoch (check (3.1)
of Algorithm 3), and it preserves liveness because readers and
correct authorities are in the same epoch Epoch for a duration
δ > 0 (i.e., correct authorities have roughly synchronized
clocks, see Section II-D).

D. Scaling the Arke Store

Arke scales and achieves high performance with two main
strategies: (i) authorities can process multiple transactions and
certificates in parallel, and (ii) they can take advantage of more
hardware to further increase throughput.

Scaling on multiple cores. Algorithm 1 and Algorithm 2 are
designed to take advantage of all the CPU cores available on
the authority machine. This is achieved by taking a simple
guard on the store entry to update (rather than on the entire
state) and processing non-conflicting updates in parallel. Both
functions PROCESSWRITETX (Algorithm 1) and PROCESS-
CERT (Algorithm 2) can be called by multiple tasks.

Scaling on multiple machines. storage authorities can scale
and arbitrarily increase their throughput by using more hard-
ware. That is, rather than limiting each authority to operate

8This operation may be performed lazily at runtime to avoid the cost of
iterating through the store upon every epoch change.

on a single server, they could operate on a rack or even an
entire data center. Arke requires no state sharing between
the machines of the authority and thus allows for a very
efficient sharding at each authority by key. Each machine is
responsible to handle write, sync, and read operations only on a
predefined subset of the keys. The consistent broadcast channel
implementing the write operation is executed on a per-entry
basis. Therefore, the protocol does not require any state sharing
between shards. Section VI illustrates how storage authorities
take advantage of multiple machines to linearly increase their
throughput.

E. Crash Faults Only

This store can be easily converted to only tolerate crash
faults rather than more general Byzantine faults. Since the
protocol is essentially leaderless, it does not require any leader-
rotation sub-protocol (contrarily to typical Paxos and Raft-
based protocols) and can be simply converted by removing
signatures from each protocol message (Appendix B-A). The
system can then operate with a committee of 2f + 1 (rather
than 3f + 1) and tolerate up to f faults.

APPENDIX C
CUSTOM STORE PROOFS

We argue that Arke store presented in Section V-A and Sec-
tion B satisfies the security properties defined in Section II-C
under the assumptions defined in Section II-D.

A. Validity

The validity of Arke relies on assumption 2 (BFT) and
assumption 3 (cryptography) defined in Section II-D. Arke
can avoid relying on the BFT assumption for validity if we
augment Algorithm 2 (Appendix B-B) to (re-)run Check (1.1)
of Algorithm 1 upon processing certificates (Appendix B-B).

Authenticated writes. We start by showing that users can only
update the Arke store at locations associated with their own
username. That is, malicious users cannot interfere with the
discovery protocol of other users.

Lemma 4. No correct storage authority issues a vote VOTE
over a transaction WRITETX writing the Arke store at a
location locBC = gtBC

1 if the transaction’s author does not
know tBC .

Proof: Check (1.1) of Algorithm 1 requires the user
to prove knowledge of tBC (through a digital signature);
otherwise WRITETX is ignored and the protocol returns an
error.

Lemma 5. No correct storage authority issues a vote VOTE
over a transaction WRITETX generated by user A (known
by username idA) writing the Arke store at a location locBC

derived from the usernames idB (of user B) and idC (of user
C), with idA ̸= idB ̸= idC .

Proof: Let’s assume a correct authority issues a vote
VOTE over WRITETX writing the Arke store at a location
locBC = gtBC

1 . The privacy property of the Arke key-
derivation protocol (Theorem 1) along with the collision-
resistance of the hash-function H (assumption 3, see Sec-
tion II-D) ensures only users B and C can obtain tBC . As

23



a result, user A generated WRITETX without the knowledge
of tBC and a correct authority issued VOTE over WRITETX.
This is however a direct contradiction of Lemma 4.

Theorem 3 (Authenticated Writes). No user A (known by
username idA) can generate a transaction WRITETX that
updates the store of correct storage authorities at a location
locBC derived from the usernames idB (of user B) and idC
(of user C), with idA ̸= idB ̸= idC .

Proof: Let’s assume a correct storage authority updates
its storage at location locBC as specified by WRITETX. The
Arke store is only updated by Algorithm 2 (Line 16) upon
processing a valid certificate (Check (2.1)). User A thus obtains
a valid certificate CERT over WRITETX. The BFT assumption
(assumption 2, see Section II-D) ensures there are at most
f Byzantine authorities; user A thus obtained at least f + 1
votes over WRITETX from correct storage authorities. This is
however a direct contradiction of Lemma 5 (ensuring that no
correct authorities issue a vote over WRITETX).

Replay prevention. Theorem 3 ensures that no malicious user
A can generate a transaction to update the Arke at locations
unrelated to its username. We now show Arke withstands
replays of old certificates (generated by correct users). This
is particularly important as the storage authorities may drop
part of their LockDb store upon cleanup (Appendix B-C).

Theorem 4 (Deliver-Once). Once a correct storage authority
processes a (valid) certificate CERT, it does not update its
LockDb storage with a certificate CERT′ older than CERT.

Proof: Let’s assume a storage authority stores CERT′ in
its LockDb store (Line 16 of Algorithm 2) after it processed
CERT. Since CERT′ is older than CERT, it follows that either
(i) epoch(CERT) > epoch(CERT′), or (ii) version(CERT) >
version(CERT′). In case (i), Check (2.3) of Algorithm 2 en-
sures the authority stops processing CERT′ and returns an error.
In case (ii), Check (2.4) of Algorithm 2 ensures the authority
ignores CERT′ and does not update its LockDb storage. As a
result, there are no scenarios where a correct storage authority
updates its LockDb with CERT′ after processing CERT, hence
a contradiction.

B. Consistency

We show the consistency properties of Arke described in
Section II-C, namely write consistency and read consistency.
These properties heavily rely on assumption 2 (BFT), assump-
tion 3 (cryptography), and assumption 5 (roughly synchronized
clocks) defined in Section II-D. The lemmas and theorems of
this section implicitly assume that no adversary can forge a
vote (assumption 2 (cryptography)).

Lemma 6 (BCB Consistency). No two conflicting transac-
tions, namely transactions sharing the same storage location
loc, version Version, and epoch Epoch, are certified.

Proof: The proof of this lemma directly follows from the
consistency property of Byzantine consistent broadcast (BCB)
over the label (loc,Version,Epoch) [23]. Let’s assume two
conflicting transactions WRITETXA and WRITETXB taking as
input the same storage location loc with version Version are

certified during the same epoch Epoch. Then f+1 correct stor-
age authority performed (1.3), Check (1.4), and Check (1.5) of
Algorithm 1 and produced VOTEA over WRITETXA; and f+1
correct storage authority did the same and produced VOTEB

ove WRITETXB . Correct storage authorities reject transactions
for older epochs (Check (1.3)) and with versions older than
their latest certificate (Check (1.4)). Both WRITETXA and
WRITETXB thus contain the current epoch and a version
higher than the latest certificate known to the authority. Finally,
a correct storage authority performs the check (1.5) and does
not successfully process both (conflicting) WRITETXA and
WRITETXB ; it instead returns an error at Line 22. As a result,
a set of f + 1 correct storage authority produced VOTEA but
not VOTEB , and a distinct set of f+1 correct storage authority
produced VOTEB but not VOTEA. Hence there should be
f + 1+ f + 1 = 2f + 2 correct storage authority additionally
to the f byzantine. However N = 3f + 1 < 3f + 2 hence a
contradiction.

Lemma 6 operates over the label (loc,Version,Epoch)
rather than only (loc,Version) because check (1.5) of Algo-
rithm 1 relies on the integrity of the votes stored in LockDb.
These votes may however be dropped upon epoch change
(Appendix B-C). There can thus exist multiple certificates
with the same (loc,Version) but different epochs. This is
not a problem because certificates carry their epoch number
and are only valid for the current epoch (see Check (2.3) of
Algorithm 2).

Write consistency. Write consistency intuitively ensures that
correct storage authorities do not hold conflicting records.

Theorem 5 (Write Consistency). No two correct storage
authorities hold conflicting certificates in their LockDb store.
That is, two certificates sharing the same storage location,
version, and epoch.

Proof: Let’s assume the LockDb store of two correct
storage authorities S and S′ respectively hold conflicting the
certificates CERT and CERT′. Check (2.1) ensures correct
authorities only store valid certificates in their LockDb store.
This implies that authority S received the valid certificate
CERT and authority S′ received the valid (conflicting) certifi-
cate CERT′. Lemma 6 however ensures CERT = CERT′, hence
a contradiction.

Read consistency. Read consistency intuitively ensures that
two correct users attempting to read the same storage location
do not read different values.

Lemma 7 (Safe Cleanup). No correct user reads the value c if
at least one correct storage authority deletes c (upon cleanup).

Proof: Let’s assume a correct user reads c and one correct
storage authority deletes c. A correct authority S at epoch es
deletes a value c wrote at epoch ec when

es > E + ec (12)

(where E > 0 is a system parameter, see Appendix B-C).
Check (3.1) ensures correct users at epoch eu only read c if

eu < E + ec (13)
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Furthermore, assumption 5 (roughly synchronized clocks, see
Section II-D) ensures that either

eu = es, eu = es + 1, or eu = es − 1 (14)

Substituting Equation (14) into Equation (12), we (conserva-
tively) find that authority S deletes c when

eu > E + ec − 1 (15)

Combining Equation (13) and Equation (15), we find that
a correct reader only reads c when S deletes it if the two
following conditions are both met:{

eu < E + ec, and
eu > E + ec − 1

There exists however no eu (and thus no ev) for which both
conditions hold, hence a contradiction.

Theorem 6 (Read Consistency). No two correct users sending
a read transaction READTX for the same store location loc
read two different values c and c′.

Proof: Let’s assume two correct users read the different
values c and c′ for the same store location loc. Users only read
values from (valid) certificates (Line 11 of Algorithm 3). As
a result, one correct user read c while the other read c′ This
either implies that (i) there exist two correct and conflicting
certificates over c and c′ (which would be a contradiction
of Lemma 6) or (ii) that one user reads c′ = None after a
correct authority deletes c′ (which would be a contradiction of
Lemma 7).

C. Termination

We prove the termination (liveness) properties of Arke
described in Section II-C, namely write termination and read
termination. These properties heavily rely on assumption 2
(BFT), assumption 3 (cryptography), assumption 4 (network
model), and assumption 5 (roughly synchronized clocks) of
Section II-D. The termination properties only apply to cor-
rect transactions and certificates defined in Definition 6 and
Definition 7, respectively.

Definition 6 (Correct Write Transaction). A correct trans-
action WRITETX is valid (see Appendix B-B), contains the
expected version, and does not non-equivocates (i.e., it is the
only transaction over the triple (loc,Version,Epoch)).

Definition 7 (Correct Certificate). A correct certificate CERT
is valid (see Appendix B-B) and contains the highest version
number generated for the specific store entry it writes.

Writer termination. Writer termination intuitively means that
a correct writer can eventually update the storage authorities
to make its key discoverable. The writer starts this process by
submitting a transaction WRITETX manifesting its intent to
make its key discoverable. Arke considers the key discoverable
when f + 1 correct storage authorities hold a certificate over
WRITETX.

The following lemmas assume the existence of a correct
synchronizer. As discussed in Section V-A such synchronizer
does not need the knowledge of any secret and can be
implemented by the writer or by correct storage authorities

(in which case its existence is implied by assumption 2 (BFT)
of Section II-D).

Lemma 8 (WRITETX Availability). If a correct user submits
a transaction WRITETX to the storage authorities, a correct
synchronizer eventually learns WRITETX.

Proof: A correct user terminates the process of submitting
WRITETX when a set {S} of 2f+1 storage authorities receive
WRITETX (see Section II-B). The synchronizer queries all
(3f + 1) storage authorities and waits for the first 2f + 1
replies. Since at most f of those authorities are Byzantine
(assumption 2 (BFT), see Section II-D), the synchronizer is
guaranteed to receive a set {S′} of 2f +1 replies. By quorum
intersection, at least one correct authority is part of both {S}
and {S′} and thus delivers WRITETX to the synchronizer.

Lemma 9. During periods of synchrony, a correct synchro-
nizer can obtain a certificate CERT over a correct transaction
WRITETX.

Proof: The proof of this lemma directly follows from
the termination property of Byzantine consistent broadcast
(BCB) [23]. The synchronizer first disseminates WRITETX
to all (3f + 1) storage authorities. Since WRITETX is valid,
Check (1.1) succeeds. Check (1.2) always passes for the first
copy of WRITETX received by the authority (at any given
time). During periods of synchrony, assumption 4 (network)
and assumption 5 (roughly synchronized clocks) ensure Check
(1.3) succeeds; indeed correct authorities receive WRITETX
during the same epoch Epoch of its generation and remain
sufficiently long in epoch Epoch. Check (1.4) passes since
WRITETX contains the next expected version number. Finally,
correct transactions do not equivocate; thus WRITETX is
the first and only transaction accessing a particular storage
location, and always passes Check (1.5). Since all checks pass,
the BFT assumption (assumption 2 (BFT)) ensures that at least
2f + 1 authorities reply with a vote VOTE over WRITETX.
The synchronizer then locally aggregates these votes into a
certificate CERT.

Lemma 10. During periods of synchrony, at least f + 1
correct storage authorities at epoch Epoch can hold a correct
certificate CERT over a transaction WRITETX generated at
epoch Epoch if a correct synchronizer holds CERT.

Proof: The synchronizer repetitively disseminates CERT
to all (3f+1) storage authorities until it receives acknowledg-
ments from a set {S} of 2f+1 authorities. Correct authorities
always acknowledge the receipt of CERT. Indeed, Check (2.1)
passes since CERT is valid, and Check (2.2) always passes for
the first copy of CERT received by the authority (at any given
time). During periods of synchrony, assumption 4 (network)
ensures Check (1.3) succeeds; indeed the authorities receive
CERT during epoch Epoch. Finally, Check (1.4) passes since
CERT is correct and thus contains the highest version generated
for its store entry. Since {S} contains at most f Byzantine
authorities (assumption 2, BFT), the remaining f + 1 storage
authorities of {S} are correct and thus hold CERT.

Theorem 7 (Writer Termination). During periods of syn-
chrony, if a correct writer submits a correct transaction
WRITETX (generated at epoch Epoch), at least f +1 correct
storage authorities eventually receive a certificate CERT over

25



WRITETX.

Proof: During periods of synchrony, assumption 4 (net-
work) ensures a correct synchronizer manages to perform the
following steps within the same epoch Epoch; and assump-
tion 5 (roughly synchronized clocks) ensures correct author-
ities remain sufficiently long in epoch Epoch. (i) A correct
synchronizer obtains WRITETX after the correct writer submits
it to the storage authorities (Lemma 8). (ii) The synchronizer
obtains a certificate CERT over WRITETX (Lemma 9). (iii)
The synchronizer disseminates CERT to the storage authorities;
Lemma 9 ensures a least f +1 correct storage authorities hold
CERT.

Theorem 7 mentions that writer termination is only guar-
anteed during periods of synchrony where the synchronizer
manages to complete the synchronization protocol within the
epoch of the transaction’s generation. Assumption 4 (network)
ensures that a period of synchrony eventually happens; a
correct user generates and submits its transaction every epoch
until then. This is not a practical limitation as Arke’s epochs
are long (e.g., 10 days) and the protocol is responsive [95]
(i.e., it does not need to wait until the end of each epoch to
make progress).

Reader termination. Reader termination guarantees that a
user B can eventually discover the key of user A if (i) user
A made its key discoverable to user B, and (ii) user B knows
the username idA of user A.

Lemma 11. During periods of synchrony, if f + 1 correct
storage authorities hold a certificate CERT over the key values
(loc, c) (with c ̸= None), a user knowing loc can eventually
read c.

Proof: The user continuously queries all (3f +1) storage
authorities at location loc until it receives 2f +1 valid replies
(that is, replies passing Check (3.1)). Under assumption 2
(BFT), quorum intersection ensures at least one of those replies
originated from a correct storage authority holding CERT. The
user then parses CERT to obtain c. During periods of synchrony
(assumption 4, network), the steps above run before storage
cleanup and thus c ̸= None.

Theorem 8 (Read Termination). During periods of synchrony,
A correct user B can eventually discover the key pkA of user
A known by username idA if (i) user A made pkA discoverable
to user B, and (ii) user B knows the username idA.

Proof: From condition (i) it follows that user A derived
the shared key k and the writing tag tAB , and submitted a
transaction WRITETX to write the key-value

(locAB , cAB) = (gtAB
1 ,AEADk(pkA))

to the storage authorities. Theorem 7 then ensures f+1 correct
storage authorities hold a certificate CERT over WRITETX.
Condition (ii) indicates that user B knows idA; by definition
of ID-NIKE (Section IV-B) user B can also derive the same
shared key k and the writing tag tAB ; user B can thus compute
locAB = gtAB

1 . Under assumption 4 (network), Lemma 11
ensures user B can use locAB to eventually retrieve CERT
before storage cleanup. Finally, user B uses the shared k
to decrypt cAB = AEADk(pkA) (embedded into CERT) and
recover pkA.

Theorem 8 guarantees reader termination only during peri-
ods of synchrony. This assumption is necessary for the proofs
since storage authorities clean up their storage after a fixed
number of epochs. This assumption is however overly theoret-
ical as store entries are only deleted after several months.

Key discovery termination. Theorem 9 argues that correct
users eventually succeed in running the setup phase (Sec-
tion IV) and obtain long-term credentials over a username they
own.

Theorem 9 (Key Discovery Termination). A correct user A
owning username idA can eventually receive the long-term
credentials (H1(idA)

s, H2(idA)
s).

Proof: This theorem is proven by construction on the
setup protocol described in detail in Section IV. The user
first proves ownership of idA and receives an attestation from
the KYC provider. The user then continuously sends this
attestation to all (3f+1) credentials authorities. Assumption 2
(BFT) ensures the user eventually receives 2f+1 partial long-
term credential {(H1(idA)

si , H2(idA)
si)}, i ∈ [0, . . . , 2f +1]

(algorithms defined in Definition 3). The user then aggregates
those partial long-term credentials into a consolidated long-
term credential (H1(idA)

s, H2(idA)
s) using Lagrange inter-

polation (see algorithm Combine of Definition 3).

APPENDIX D
SUI MOVE ARKE STORE

This section complements Section V-B by presenting a Sui
move contract implementing an Arke store using exclusively
owned objects. As a result, this contract does not require con-
sensus and can operate exclusively throughput the consensus-
less path of Sui.
module arke::arke {

use sui::tx_context::{TxContext};
use sui::object::{Self, UID};
use sui::transfer;

/// A discovery object holding a cipher.
struct Discovery has key, store {

id: UID,
cipher: vector<u8>

}

/// Initialize a discovery object with a cipher and
transfer it to a specific address.

entry fun write(cipher: vector<u8>, addr: address,
ctx: &mut TxContext) {
let discovery = Discovery {

id: object::new(ctx),
cipher: cipher

};
transfer::transfer(discovery, addr);

}

/// Delete the discovery object when it is no longer
needed.

entry fun delete(discovery: Discovery) {
let Discovery { id, cipher: _ } = discovery;
object::delete(id);

}
}

The contract starts by defining a Discovery object
holding a cipher cAB . It then exposes two functions, write
and delete. User A writes the store by calling the write
function parametrized with the cipher cAB and an address
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addrAB uniquely derived from the key locAB (see Sec-
tion V-B); the function creates a discovery (owned) object
holding cAB and transfers its ownership to addrAB . User B
reads the blockchain by locally deriving addrAB and querying
all objects owned by that address; the query will return the
discovery object created by user A. For good hygiene, both
users A and B can delete the object when no longer needed
by calling the delete function.

Altnerative implementation. This contract can alternatively
be implemented through events (no objects); every party emits
an event that is read from the blockchain by the other party.
This implementation is cheaper as it does not involve object
mutation and does not require state cleanup. However, the
client software will have to rely on full nodes to relate these
events and manually verify them through specific message
sequence numbers (to detect selective censorship) and integrity
checks. In contrast, the object-based implementation depicted
above is slightly more expensive but it is easier to implement
and verify as it does not require any additional logic on the
client side.
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