
Practical Key-Extraction Attacks in Leading MPC Wallets

Nikolaos Makriyannis∗ Oren Yomtov∗

August 15, 2023

Abstract

Multi-Party Computation (MPC) has become a major tool for protecting hundreds of bil-
lions of dollars in cryptocurrency wallets. MPC protocols are currently powering the wallets
of Coinbase, Binance, Zengo, BitGo, Fireblocks and many other fintech companies servicing
thousands of financial institutions and hundreds of millions of end-user consumers.

We present four novel key-extraction attacks on popular MPC signing protocols showing how
a single corrupted party may extract the secret in full during the MPC signing process. Our
attacks are highly practical (the practicality of the attack depends on the number of signature-
generation ceremonies the attacker participates in before extracting the key). Namely, we show
key-extraction attacks against different threshold-ECDSA protocols/implementations requiring
106, 256, 16, and one signature, respectively. In addition, we provide proof-of-concept code that
implements our attacks.

∗Fireblocks. E-mails: nikos@fireblocks.com, oyomtov@fireblocks.com.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Contributions . 2
1.3 Our Attacks . 3

1.3.1 Broken Record . 3
1.3.2 6ix1een . 4
1.3.3 Death by 1M cuts . 4
1.3.4 Zero Proof . 5

1.4 Disclosure . 6

2 Preliminaries 6
2.1 Notation . 6
2.2 Paillier Encryption & CRT . 7

3 Our Attack on Implementations of Lindell17 7
3.1 Protocol Description . 8
3.2 Broken Record Attack . 8

4 Our Attack(s) on GG18/20 10
4.1 Protocol Description . 10

4.1.1 Signing (GG18/20) . 10
4.1.2 Verifiable VOLE . 11
4.1.3 Range Proof . 12

4.2 6ix1een Attack . 13
4.2.1 Quality of the Attack . 14

4.3 Death by 1M Cuts Attack . 15
4.3.1 Quality of the Attack . 15

5 Our Attack on BitGo TSS 16
5.1 Zero Proof Attack . 17

1 Introduction

In the blockchain domain, integrity and authenticity are guaranteed through digital signatures.
Each participant interacting with the blockchain possesses a public key (enabling them to receive
digital assets), and knowledge of the corresponding private key permits asset transfer to other
participants. The secure management of this secret material is facilitated by a “wallet” which
allows the owner to securely sign transactions.

MPC Wallets. In recent years, Multi-Party Computation (MPC) [GMW87; Yao86] has emerged
as the gold standard for safeguarding digital assets. It is arguably the preferred tool for institutional
players, protecting hundreds of billions of dollars through MPC wallets. In a typical setting,
several geographically dispersed machines1 (referred to as parties) engage in an interactive key-
generation protocol to calculate the public key associated with the wallet, as well as to obtain their
individual secret key shares which they will use for calculating signatures in the future. Then, when
prompted to sign a message (e.g. at the request of some authenticated user), the parties engage in
an interactive signing protocol for calculating the desired signature. In this document, we refer to
the interactive signing process as threshold signing [Des87; DF89].

Informally speaking, MPC ensures that the underlying “master” private key is never exposed,
and the only information revealed by the MPC protocol is the computation output (i.e. the signa-
tures), even in the presence of corrupted parties.

ECDSA. The most popular signature scheme in the Blockchain space is the Elliptic Curve Digital
Signature Algorithm (ECDSA) [Nat23]. Unlike other signature schemes that can be “thresholdized”
in a natural way (e.g. Schnorr signatures [Sch91] or BLS [BLS04]), ECDSA requires the full power of
MPC to support threshold signing, that is, protocols for threshold ECDSA employ a wide spectrum
of cryptographic techniques, including additive homomorphic encryption (Paillier [Pai99]) and zero-
knowledge proofs (ZKPs). Protocols for threshold ECDSA are fairly abundant in the literature and
they are widely implemented for commercial applications. As prerequisite background, we provide
a brief overview of the threshold-ECDSA protocols from [Lin17a] and [GG18; GG20], discussed
next.

1.1 Background

Lindell17. For the basic two-party case, perhaps the most popular protocol is the Lindell17 pro-
tocol (CRYPTO’17 [Lin17a], J. Cryptol.’21 [Lin21]). The Lindell17 protocol crucially relies on
Paillier as follows: First, during key-generation, letting x denote B’s secret share of the ECDSA
key, party B sends Enc(x) to A encrypted under a Paillier key that B owns, i.e. only B can decryt
the ciphertext, but A can homomorphically operate on it. Then, during signing, party A sends
Enc(s′) to B where s′ is a partial ECDSA signature, and Enc(s′) is calculated by homomorphically
evaluating Enc(x). In the end, B finalizes the signature by decrypting Enc(s′) and performing some
lightweight data-processing.

Among other vendors, the Lindell17 protocol is used by ZenGo and Coinbase WaaS.

1Typically, certain machines are located with a vendor, or wallet provider, while others are situated with the
client, or end user.

1

https://github.com/ZenGo-X/gotham-city/tree/master
https://github.com/coinbase/waas-sdk-react-native

The GG family of Protocols. For the multi-party case, the “GG” family of protocols (CCS’18
[GG18], Manuscript’20 [GG20]2) are implemented widely by vendors and various open-source
projects, e.g. Binance bnb-chain, ING Bank (Open Source Project), BitGo TSS, ZenGo (Open
Source Project), Safeheron, to name a few. The GG protocols also crucially rely on Paillier, how-
ever, Paillier encryption is used for a different purpose; to realize pairwise oblivious linear evaluation
(OLE) which is defined as follows. OLE takes input γ from A and x, β from B, and returns α to
A such that γ · x = α + β mod N , where N is the Paillier public key associated with A (looking
ahead, x corresponds to the B’s ECDSA key share and β, γ are random ephemeral values, and all
parties in the MPC play the roles of A and B with every other party in separate instances of the
OLE).

To instantiate the OLE, party A sends Enc(γ) to B who returns Enc(γ·x−β) by homomorphically
evaluating Enc(γ). To conclude the OLE, A decrypts the received ciphertext to outputs α = x·γ−β
mod N (the moduloN reduction occurs implicitly when B homomorphically computes Enc(x·γ−β).
We note that the roles of A and B have been reversed compared to Lindell17, and the owner of the
Paillier key is now A, and only A can decrypt the ciphertext).

After concluding all the OLE instances (requiring two rounds of interaction), the parties run
an additional seven rounds for [GG18] (or five rounds for [GG20]) in order to produce the final
output, i.e. the signature.

MPC Wallet Threat Model. Following the usual convention from the cryptography literature,
a single adversary, Adv, controls a subset of parties in the multi-party protocol, and Adv can send
any maliciously-crafted message one their behalf. In the context of MPC wallets, attack outcomes
include:

1. Denial-of-service: Adv prevents the parties from signing.

2. Signature forgery : Adv obtains a signature on a different message than the prescribed message.

3. Key Extraction: Adv extracts the honest parties’ secret shares – eventually the entire key.

For signature forgery and key extraction, the main complexity metric for the adversary is the
number of sessions they attend before extracting the key. In this paper, we show practical key-
extraction requiring few signatures.

1.2 Our Contributions

We present four novel key-extraction attacks; two for the GG18/20, one for implementations of
Lindell17 and one for a custom protocol3 (BitGo TSS) that does not closely follow a protocol from
the literature. Our attacks exfiltrate the secret key in full, and it suffices for the attacker to corrupt
a single party in the MPC. Furthermore, our attacks are highly practical requiring 106 (GG18/20 :
Attack 1), 256 (Lindell17 -Implementations), 16 (GG18/20 : Attack 2), and one signature (BitGo
TSS), respectively. In addition, two of our attacks have the potential for stealthiness, where the

2A variant of the main protocol from [GG20] was published in CCS’20 [CGGMP20] (as part of a merge with
[CMP20]).

3BitGo’s initial threshold ECDSA offering included a protocol (BitGo TSS) that did not closely follow a protocol
from the literature. Namely, BitGo TSS is a bare-bones version of GG18, where all the zero-knowledge proofs are
omitted (cf. BitGoJS library version 16.1.0).

2

https://github.com/bnb-chain/tss-lib
https://github.com/ing-bank/threshold-signatures
https://github.com/BitGo/BitGoJS/tree/master/modules/sdk-lib-mpc/src/tss
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/Safeheron/multi-party-ecdsa-cpp
https://github.com/BitGo/BitGoJS/blob/bitgo%4016.0.0/modules/sdk-core/src/account-lib/mpc/tss/ecdsa/ecdsa.ts

signature-generation process is error-free and it appears benign. Finally, we provide proof-of-
concept code implementing three of our attacks (the most practical ones).

Attack Protocol # Parties # Signatures Stealthiness

Broken Record Lindell17-Implementations 2 256 ✗

6ix1een GG18/20 (New) n 16 ✓
Death by 1M Cuts GG18/20 (Old) n ≈ (n− 1) · 106 ✗

Zero Proof BitGo TSS n 1 ✓

Table 1: Summary of our key-extraction attacks for each protocol.

Remark 1.1 (Old & New GG18/20). In 2021, Makriyannis and Peled [MP21] discovered an at-
tack affecting both GG protocols allowing a malicious attacker to obtain non-trivial leakage of the
ephemeral secret randomness (which was not useful for mounting a practical attack). Following this,
both papers where updated with a proposed fix where the size of a crucial parameter of the protocol
was modified (namely the size of the beta parameter in the OLE). However, most implementations
(e.g., Binance bnb-chain, ING Bank (Open Source Project), ZenGo (Open Source Project)) did
not incorporate this modification, leading to a situation where, in recent years, nearly all imple-
mentations deviated from the updated paper(s). In this document, our attack(s) apply equally to
[GG18] and [GG20], so we will be referring to [GG18; GG20] as a single protocol GG18/20 with
two regimes of parameters, old and new.

1.3 Our Attacks

1.3.1 Broken Record

Our first attack is against implementations of the Lindell17 protocol. We show how the adversary
may craft a malicious partial signature that will cause the signature process to fail or succeed
depending on the value of a targeted bit of the honest party’s share. In the remainder, recall that
A sends Enc(s′) where s′ is a partial signature that depends on the honest party’s share.

The Attack. Adv corrupts A and sends Enc(σ′) to B such that σ′ = s′ is and only if the least
significant bit of x (B’s private share) is zero. Thus, the signature is valid at the end of the signature
ceremony if and only if x’s least significant bit is zero and this value is inadvertently leaked to A
when it is notified that the signature failed or succeeded.

The attack can then be iterated (with suitable adjustments) to leak the higher-order bits, and,
after approximately two hundred signatures, the key can be recovered in full. We provide a fully
working PoC at the following github repository.

Remark 1.2. Our attack does not challenge the security analysis from [Lin17a] because [Lin17a]
assumes that failed signatures terminate signature operations and it specifically instructs parties to
stop signing, i.e. there are no additional signing sessions once an invalid signature is detected by the
honest party.4 In fact, the paper even entertains the idea that bits of the key may be leaked with
the success/failure of the signature acting as an oracle (bottom paragraph, p. 11 of the full-version
document [Lin17b]). In this paper, our contribution lies in demonstrating the attack and providing
a proof-of-concept implementation to fully extract the key.

4In practical terms, this assumption means that the wallet must be locked (at least temporarily).

3

https://github.com/bnb-chain/tss-lib
https://github.com/ing-bank/threshold-signatures
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/fireblocks-labs/zengo-lindell17-exploit-poc

1.3.2 6ix1een

Our second attack targets the post-updateGG18/20 protocol (under the new regime of parameters).
In the 6ix1een5 attack, a single corrupted party extracts the private key in full after sixteen signature
attempts for any number of honest parties.

OLE Parameters. Our attack targets the OLE phase of the protocol (so the solitary corrupted
party uses malicious inputs in the pairwise OLE instances with each of the other parties). Recall
that the OLE takes input γ from A and x, β from B, and returns α to A such that γ · x = α + β
mod N , where N is the Paillier public key associated with A. Our attack specifically leverages
the size of the inputs and outputs in the OLE, so we note that x and k are 256 bits and β is a
random number of roughly 1024 bits and so α = x · γ − β is also 1024 bits (in the “old” regime of
parameters, β is chosen from the range {1, . . . , N}, so β ≈ 22048, cf. Remark 1.1). Adversary Adv
corrupting A extracts B’s secret x as follows.

The Attack. Adv chooses Paillier key N = p1 · . . . · p16 · q where p1 . . . p16 are sixteen random
primes of size 216 and q is a large prime chosen randomly to match the expected size of the Paillier
public key (we stress that honest Paillier keys have the form N = p · q, i.e. a typical RSA number).
Then, in the OLE, Adv sets k = N/pi for a fixed pi ∈ {p1, . . . , p16}, cheats in the zero-knowledge
proof (this is the crux of the attack that we defer to the technical sections), and obtains the value
of x mod pi because α = x · (N/pi) − β mod N and β < N/pi and thus x mod pi ≈ α/(N/pi),
i.e. the closest multiple of (N/pi) to the α-value leaks x mod pi (the exact calculations are deferred
to Section 4).

Iterating the above for each prime yields x mod pi for all 16 possible values of pi. In the end, we
reconstruct x using Chinese Remainder Theorem. We provide a fully working PoC at the following
github repository.

Remark 1.3. The primary source of the vulnerability is that the zero-knowledge proofs relating to
the Paillier moduli only check for square-freeness (i.e. that N and φ(N) are coprime). So, the
malicious N described above will go undetected. The secondary aspect of the vulnerability, crucial
for our attack, arises from a flaw in the range-proof check. Specifically, the proof of soundness of
the ZKP breaks down when the verifier’s random challenge in the ZKP is a proper divisor of N ;
this happens with noticeable probability (and thus can be brute-forced in our attack) because the
malicious N has small factors.

1.3.3 Death by 1M cuts

Our third attack targets the old version of GG18/20 where the beta parameter is chosen from
{1, . . . , N}. In this regime of parameters, the 6ixteen attack is no longer relevant because A’s
output in the OLE, α, completely hides x, for any value of γ. Instead, we will obtain information
leakage through the success/failure of the signature process, akin to the broken record attack.

The Attack. The first few steps of the attack are identical to the 6ix1een. Namely, the attacker
chooses a Paillier modulus with 16 small prime factors and it sets γ = N/pi during signing, where pi
is one of the small factors. When obtaining α, the attacker reassigns α := α−y ·N/pi mod N where

5“6ix1een” because it involves sixteen small primes of size sixteen bits, as well as sixteen signatures.

4

https://github.com/fireblocks-labs/safeheron-gg20-exploit-poc

y denotes a random guess of the value x mod pi, and the attacker proceeds with the remaining
steps of the protocol as if it had selected γ = 0. By noticing that

α− y ·N/pi mod N = ((x mod pi)− y) ·N/pi − β{
= γ · x− β if y = x mod pi

̸= γ · x− β otherwise

it follows that the adversary’s reassigned alpha is consistent with γ = 0 if and only if the adversary
guessed x mod pi correctly, and thus the execution will result in a valid signature only when y = x
mod pi.

When all the remainders have been extracted (in 16 different signing sessions resulting in valid
signatures6 signatures ceremonies), the attacker can reconstruct the x in full using Chinese remain-
der theorem. We note that the complexity of the attack, i.e. the number of signatures it requires,
depends on the size of the chosen primes as well as the number of parameters. For a single cor-
rupted party in a n-party protocol, choosing the smallest possible primes, our attack retrieves the
private key with probability 1/2n−1 after approximately (n− 1) · 106 signatures (cf. Section 4.3.1).

1.3.4 Zero Proof

Our last attack targets the BitGo TSS protocol which does not adhere closely to any paper from
the literature. One may wonder why we include an attack against a custom protocol in our findings.
We believe we have valid reasons for this choice. First, the protocol itself is not particularly exotic;
it is a simplified version of the (old) GG18/20 protocol and it may be viewed as the honest-but-
curious version of GG18/20 where all the ZKPs are omitted. Second, the fact that we exfiltrate
the key in one7 signature is technically noteworthy as, to the best of our knowledge, extracting
more than a few bits of the key (in any number of signatures) was previously unknown.

Remark 1.4 ([TS21] does not apply to BitGo TSS). It’s important to highlight that the attack
outlined in [TS21] (Alpha Rays) is not applicable to BitGo TSS. This is because the attacker in
[TS21] leverages the value gβ (where g denotes the generator of the ECDSA group), shared by the
honest party during the OLE. In BitGo TSS, however, such values are not exchanged among the
parties, rendering the attack ineffective.

The Attack. The first step of our attack is choosing a Paillier key of the form

N = b ·
16∏
i=1

pi · qi (1)

where qi, pi are 17/16-bit primes such that qi = 2pi + 1 (i.e. qi is a strong prime with inner prime
pi) and b is a large prime chosen to compensate for the expected size of N . Then, in the OLE
of first signature session, exploiting the fact there is no ZK proof validating that A’s message is
indeed a ciphertext, we send the value 4 (which is not a possible ciphertext for the chosen key).
Then, when B operates on the message, it returns a value D which, when reduced modulo N yields

6Failed signatures do not result in leakage (we have omitted the details of why in this initial presentation)
7To be precise, the key is extracted in less than one signature. Namely, it is extracted in full in the first OLE

instance of the first signing session.

5

4x (The value −4x is also possible, but we ignore this case in this initial presentation). Finally,
to extract the x, the attacker obtains x mod pi for each of the p′is by brute forcing 4x mod qi
(because 4 generates a group of size pi in Z∗

qi). In the end, the secret x is reconstructed using
Chinese remainder theorem. We provide a fully working PoC at the following github repository.

1.4 Disclosure

We followed the standard 90-day responsible disclosure process for all the vulnerabilities. Specifi-
cally, all affected vendors were notified privately and given ninety days to patch the vulnerabilities
(we provided assistance and answered all technical followup questions to help resolve the vulnera-
bilities with the affected parties).

GG18/20 Vulnerability. The vulnerability was discovered in early May, 2023. Subsequently,
we began notifying impacted entities, which included over 10 vendors and open-source libraries.
The 6ix1een attack was then demonstrated on SafeHeron’s open-source library.

On August 9th, 2023 we published our findings publicly and attached a CVE for this issue:
CVE-2023-33241.

Lindell17 Vulnerability. We validated the vulnerability by extracting the secret share from
ZenGo’s servers (associated with our own mainnet account) in late March 2023. In the beginning
of May 2023, the vulnerability was further confirmed, to varying degrees of exploitability, in an
additional 4 vendors.

On August 9th, 2023 we published our findings publicly and attached a CVE for this issue:
CVE-2023-33242.

BitGo Vulnerability. We validated the vulnerability and we extracted the private key share
against BitGo’s severs (associated with our own mainnet account) on December 5th 2022. We
notified BitGo of the vulnerability on the same day. The vulnerability was announced on March
17th, 2023.

2 Preliminaries

2.1 Notation

Basic notation. Throughout the paper Z and N denote the set of rational, integer and natural
numbers, respectively, and we write x mod n (or [x]n for conciseness) for the remainder of xmodulo
n. Further, Z∗

n = (Z/nZ)∗ denotes the multiplicative group of inverses modulo n ∈ N, where Z/nZ
is the ring of integers modulo n. We let φ : N → N denote Euler’s totient function and we write
gcd(a, b) for the greatest common divisor of a and b.

Algorithms & Protocols. We use roman font (Enc,Dec,PailKeys, . . .) for algorithms and we
write x = Algo(m; ρ) for computing x according to (probabilistic) algorithm Algo on prescribed
inputm and randomizer (random input) ρ. When the randomizer is omitted, we write x← Algo(m)
and it is assumed the randomizer is chosen as prescribed. We use sans-serif letters (Orc∗,Prot, . . .)
to denote oracles and protocols. Oracles are distinguished from protocols using a star (∗) identifier.

6

https://github.com/fireblocks-labs/bitgo-tss-exploit-poc

All oracles except the single-party IntCom∗ (Definition 4.6) are two-party oracles, i.e. they receive
input and deliver output to both parties during the oracle-call.

Groups & ECDSA. We write (G, g, q) for the group-generator-order tuple associated with the
ECDSA algorithm and we use multiplicative notation for the relevant operations. For an arbitrary
set S, we write x ← S for x chosen uniformly at random from S. Finally, HASH : {0, 1}∗ → Zq

denotes the cryptographic hash function associated with ECDSA (and is instantiated with SHA2),
and we recall the ECDSA signing formula: for secret key x ∈ Zq and message msg ∈ {0, 1}∗,
ECDSA signatures consist of pairs (R, s) such that{

R = gk s.t. k ∈ Zq

s = [k−1(HASH(msg) + r · x)]q s.t. r = R|proj
,

where (·)|proj : G→ Zq is the so-called “conversion function” associated with ECDSA.

2.2 Paillier Encryption & CRT

Definition 2.1 (Paillier Enc.). Define (PailKeys,Enc,Dec) as the three-tuple of algorithms below.

1. Let (N, σ)← PailKeys where N = p · p′ is the public key and σ = (p− 1)(p′− 1) is the secret
key such that p, p′ are random primes of bit-length 1024.

2. For m ∈ ZN , let EncN (m; ρ) = (1 +N)m · ρN mod N2, where ρ← Z∗
N .

3. For C ∈ Z∗
N2 , letting µ = σ−1 mod N , Decσ(C) =

(
[Cσ]N2−1

N

)
· µ mod N.

(We use calligraphic letters to denote Paillier ciphertexts)

Claim 2.2. Paillier encryption is additively homomorphic. Namely, for every N ∈ N such that
gcd(N,φ(N)) = 1, it holds that EncN (m; ρ)α = EncN (α · m; ρα) mod N2 and EncN (m; ρ) ·
EncN (m; ρ) = EncN (m+m′; ρ · ρ′) mod N2, for every m,m′ ∈ ZN and ρ, ρ′ ∈ Z∗

N .

Theorem 2.3 (Chinese Remainder Theorem.). Let p1, . . . , pn denote n distinct primes and write
M =

∏n
i=1 pi and ui = [(M/pi)

−1]pi ·M/pi. For x ∈ N such that x < M , it holds that

x =

n∑
i=1

ui · [x]pi mod M.

3 Our Attack on Implementations of Lindell17

In this section, we present our attacks on implementations of Lindell17. Specifically those imple-
mentations that ignore failed signatures. To simplify the presentation, we have opted to describe
Lindell17 (Protocol 3.3) in the presence of oracles that help the parties calculate certain correlated
values. These oracles don’t impact the attack and are solely for presentation purposes (the oracles
are defined below together with the protocol).

7

In our attack (Attack 3.5), corrupted A extracts B’s secret share share, xB, in 256 separate
signature sessions, and the adversary uses prior knowledge of the secret share to advance to the
next iteration of the overall attack. That is, in the ℓ-th attack, the adversary uses the bits of xB
that it extracted in the first ℓ − 1 attacks in order to craft a malicious partial signature that will
leak the ℓ-th bit of xB via the failure/success of the signature-generation process.

3.1 Protocol Description

Definition 3.1 (KeyGen∗). Define KeyGen∗ on input (G, g, q) from A and B such that KeyGen∗

returns the tuple (X,xA, N, C) ∈ G×Zq×Z×Z∗
N2 to A and the tuple (X,xB, N, σ) ∈ G×Zq×Z×Z

to B where xA, xB ← Zq are uniformly random and (X,N, σ, C) are set as follows

(N, σ)← PailKeys and

{
X = gxA+xB

C ← EncN (xB)
.

(PailKeys and Enc denote the key-generation and encryption algorithms from Definition 2.1)

Definition 3.2 (MulShare∗). Define MulShare∗ taking common input (G, g, q) and secret inputs kA
and kB ∈ Zq from A and B respectively such that MulShare∗ returns R = gkA·kB ∈ G.

Protocol 3.3 (Lindell17 (A,B)).

Oracles: KeyGen∗, MulShare∗

Operations: (Key-Generation)

Upon activation, parties call KeyGen∗(·) and obtain the following output:

(a) Common Output: ECDSA pk X = gxA+xB ∈ G and Paillier pk N ∈ Z.

(b) Secret output: A gets xA ∈ Zq and C = EncN (xB)

(c) Secret output: B gets xB ∈ Zq and Paillier secret key σ ∈ Z.

Operations: (Signing) When prompted on message msg, set m = HASH(msg) and do:

1. A, B, sample kA ← Zq and kB ← Zq respectively.

2. Parties call MulShare∗(G, g, q) on input kA and kB and obtain R = gkA·kB .

3. A sets r = R|proj and sends D ∈ Z∗
N2 to B where

D = EncN
(
[k−1

A (m+ rxA)]q
)
· C[r·k

−1
A]q mod N2

4. B outputs (R, s) where s = k−1
2 ·Decσ(C) mod q iff (R, s) is a valid signature.

3.2 Broken Record Attack

Claim 3.4. Under Attack 3.5, party B finalizes the signature correctly if and only if

xB − yB mod 2ℓ = 0.

8

Proof. Recall that the s-part of the signature in an honest execution of Protocol 3.3 satisfies s =
(2ℓkB)

−1(m+ r(xA + xB)) mod q when A chooses kA = 2ℓ. Next. we calculate express Dec(D′) as
a function of s. Namely, for ζ = [2−ℓ(m+ rxA)]q and ζ ′ = yB · r′ · [2−ℓ]q,

Dec(D′) =
(
ζ + yB · r′ · ε

)
+ [xB · r′ · 2−ℓ]N mod N

= ζ + ζ ′ + (xB − yB) · r′ · [2−ℓ]N mod N

=

{
ζ + ζ ′ + xB−yB

2ℓ
· r′ if [xB − yB]2ℓ = 0

ζ + ζ ′ + xB−yB−2ℓ−1

2ℓ
· r′ + N+1

2 otherwise

and thus

Dec(D′) =

{
s · kB mod q if [xB − yB]2ℓ = 0

s · kB + N−q
2 mod q otherwise

.

□

Note that xB − yB mod 2ℓ = 0 if and only if ℓ-the least significant bit of xB is zero. Thus, in
conclusion, B recovers the happy-flow formula and obtains s if xA− yB = 0 mod 2ℓ. (Otherwise, s
is offset by [k−1

B · (N − q)/2]q and the resulting signature is invalid).

Attack 3.5 (Broken Record: Corrupted A in Protocol 3.3).

Auxiliary input: Adv holds yB = xB mod 2ℓ−1

(the attack is initialized with ℓ = 1 and yB =⊥, and yB is updated after each attack.)

Operations:

1. Call MulShare∗ on inputs kA = 2ℓ (chosen by Adv) and kB (chosen by B).

All parties obtain R = g2
ℓ·kB ∈ G from MulShare∗.

Adv sets ε = [2−ℓ]q − [2−ℓ]N and

r′ =

{
r if r is even (recall r = R|proj)
r + q otherwise

.

2. Adv sends D′ ∈ Z∗
N2 to B where, for ζ = [k−1

A (m+ rxA)]q,

D′ = EncN (ζ + yB · r′ · ε) · (Cr
′
)[2

−ℓ]N mod N2

3. Adv deduces that

xB mod 2ℓ =

{
yB if sig succeeds

yB + 2ℓ−1 if sig fails

9

4 Our Attack(s) on GG18/20

In this section, we present our attacks on GG18/20. To simplify the presentation, we describe
our attacks against a generic two-party protocol (Protocol 4.2)8 and we only briefly mention how
the attack generalizes to the multiparty case. We recall that each of our attacks applies to a
certain parameter choice of the protocol (specified further below), and, as before, the adversary is
corrupting A. In order to keep the description of Protocol 4.2 simple, we use a number of different
oracles and subprotocols according to the diagram in Figure 1 (where each edge denotes an oracle
or subprotocol invocation).

Each of our attacks is relevant to a certain value of parameter λ in AffComb∗λ, and λ is hardcoded
as one of two possible values: q5 (where q is the order of the ECDSA group) or 22048 (the size of the
Paillier modulus). Specifically, when λ = q5, Attack 4.8 applies which recovers the key in sixteen
signatures regardless of the number of parties, and, when λ = 22048, Attack 4.11 applies which
recovers the key in approximately one million signatures per honest party because each share is
extracted separately (so each additional honest party incurs an additional 1M signatures to recover
their share).

4.1 Protocol Description

As shown in Figure 1 the signing protocol invokes two subprotocols VeVole (Verifiable VOLE) and
RngProof (Range Proof), and four oracles AffComb∗λ (Affine Combination), PaillierWF∗ (Paillier
Well-Formedness), SumShare∗ (Additively Share), and IntCom∗ (Integer Commitment).We describe
each (sub)protocol starting from the root of the tree to the leaves, and each oracle is described
together with the relevant protocol.

GGλ

SumShare∗ VeVole

PaillierWF∗ RngProof

IntCom∗

AffComb∗λ

Figure 1: Illustration of the GG protocol dependencies. We note that (both of) our attacks
target the two subprotocols, that is, corrupted party A uses maliciously-chosen values in VeVole
and RngProof when calculating the messages to be sent to B.

4.1.1 Signing (GG18/20)

Definition 4.1 (SumShare∗). Define SumShare∗ taking secret inputs vA and vB ∈ Zq from A and
B respectively such that SumShare∗ returns R = gvA+vB ∈ G. (This oracle simply returns a random

8Protocol 4.2 may be viewed as a Paillier-based variant of [DKLS23]

10

a random group element to the parties as well as an additive share vP of the discrete log to each
P ∈ {A,B}.)

Protocol 4.2 (GG18/20 (A,B)).

Oracle & Sub-protocol : SumShare∗(·) and VeVole(·)
Common Input: Group-generator-order tuple (G, g, q)

Operations: (Key-Generation)

Parties call SumShare∗(G, g, q) and obtain:

(a) Common Output: ECDSA pk X = gxA+xB ∈ G.

(b) Secret Output: P gets xP ∈ Zq.

Operations: (Signing) When prompted on message msg, set m = HASH(msg) and do:

1. Each P ∈ {A,B} samples kP ← Zq.

2. Parties call SumShare∗ on input kP from P ∈ {A,B} and obtain R = gkA+kB .

3. Parties execute VeVole(. . .) on input (R,X, kP, xP) from P ∈ {A,B} and obtain:

(a) Common Output: Empty

(b) Secret Output: P gets random αP, βP, α̂P, β̂P, γP ∈ Zq such that: letting Q = {A,B} \ P{
αP + βQ = γP · xQ mod q

α̂P + β̂Q = γP · kQ mod q

4. Each P ∈ {A,B} sets r = R|proj and sends (ŝP, δP) ∈ Z2
q to Q ∈ {A,B} \ {P} where{

ŝP = γP ·m+ r · (xPγP + αP + βP) mod q

δP = kPγP + α̂P + β̂P mod q

5. Each P ∈ {A,B} outputs (R, s) where s = (δA+δB)
−1 ·(ŝA+ŝB) mod q iff (R, s) is a valid signature.

4.1.2 Verifiable VOLE

Definition 4.3 (PaillierWF∗). Define PaillierWF∗ taking secret input (NP, σP) from each P ∈ {A,B}
such that PaillierWF∗ returns (NA, NB) to A and B if φ(N) = σ and gcd(N, σ) = 1. Else, return
⊥. (This oracle takes a paillier key and the corresponding secret key from each party and validates
that the secret key is coprime to the public key.)

Definition 4.4 (AffComb∗λ). Define AffComb∗λ taking common input (CA, NA, CB, NB, X,R) and
secret input (xP, kP) ∈ Z2

q from each P ∈ {A,B} such that

1. If gxA+xB ̸= X ∈ G or gkA+kB ̸= R ∈ G, AffComb∗λ returns ⊥.

11

2. Else, AffComb∗λ returns (DP, D̂P, βP, β̂P) ∈ Z∗2
N2

P
×Z2

q to P ∈ {A,B} where (for Q ∈ {A,B}\{P}){
DP = CxQ

P · EncNP
(νQ) mod N2

P for νQ ← Zλ

D̂P = CkQP · EncNP
(νQ) mod N2

P for ν̂Q ← Zλ

and

{
βP = −νP mod q

β̂P = −ν̂P mod q
.

(This oracle finalizes the VOLE operation in a verifiable way)

Protocol 4.5 (VeVole (A,B)).

Oracles & Sub-protocol : PaillierWF∗(·), AffComb∗λ(·) and RngProof(·)
Common Input: Group Elements (R,X) ∈ G2

Secret Input: Each P ∈ {A,B} holds field elements (xP, kP) ∈ Z2
q

Operations: (One-time setup)

1. Each P ∈ {A,B} samples Paillier key pair (NP, σP)← PailKeys.

2. Parties call PaillierWF∗ on inputs (NA, σA) and (NB, σB) and obtain (NA, NB).

(If (NA, NB) =⊥, abort)

Operations: (VOLE)

1. Each P ∈ {A,B} samples γP ← Zq and ρP ← ZNP
and sets CP = EncP(γP; ρP).

2. Parties execute RngProof on inputs (CA, γA, ρA) and (CB, γB, ρB). Obtain:

(a) Common Output: (CA, CB) ∈ Z∗
N2

A
× Z∗

N2
B
. (If (CA, CB) =⊥, abort)

(b) Secret Output: N/A

3. Call AffComb∗λ on input (CA, NA, CB, NB, X,R) and secret input (xP, kP) from P ∈ {A,B}.

(a) Common Output: (DA, D̂A) ∈ Z∗2
N2

A
and (DB, D̂B) ∈ Z∗2

N2
B
.

(b) Secret Output: Each P ∈ {A,B} gets βP, β̂P.

4. Each P ∈ {A,B} sets

{
αP = DecP(DP) mod q

α̂P = DecP(D̂P) mod q
and outputs (γP, αP, α̂P, βP, β̂P).

4.1.3 Range Proof

Definition 4.6 (IntCom∗). Define IntCom∗ to be a single-party oracle such that:

1. On input (com, α), IntCom∗ returns X← {0, 1}256 and stores (X, α) in memory.

2. On input (eval, z, X, e, Y), IntCom∗ retrieves (X, α) and (Y, β) from memory and returns true
if z = α · e+ β. Else, return false.

For conciseness, we write X← IntCom∗(α) and true/false← IntCom∗(eval, z, X, e, Y) respectively.
(This single-party oracle serves as an integer commitment scheme that verifies linear combination
of commited values over Z – rather than some finite algebraic structure)

12

Protocol 4.7 (RngProof (A,B)).

Oracles: IntCom∗(·)
Common Input: Paillier pks (NA, NB) ∈ N2 and Ring Elements (CA, CB) ∈ Z∗

N2
A
× Z∗

N2
B

Secret Input: Each P ∈ {A,B} holds (γP, ρP) ∈ Zq × Z∗
NC

s.t. CP = EncP(γC; ρP)

Operations:

1. Each P ∈ {A,B} does

(a) Call XP ← IntCom∗(com, γP).

(b) Call YP ← IntCom∗(com, uP) where uP ← Zq3 .

(c) Sample µP ← Z∗
NP

, and set FP = EncP(uP;µP) ∈ Z∗
NP

.

(d) Send (CP,FP, XP, YP, zP, wP) to Q ∈ {A,B} \ {P}, where
zP = uP + eP · γP (no modulo reduction)

wP = ρP · µe
P mod NP

eP = HASH(P, CP,FP, XP, YP)

2. When P ∈ {A,B} obtains (CQ,FQ, XQ, YQ, zQ, wQ) from Q ∈ {A,B} \ {P}, do:

(a) Set eQ = HASH(PQ, CQ,FQ, XQ, YQ) and b← IntCom∗(eval, zQ, XQ, eQ, YQ).

(b) Verify that EncQ(zQ;wQ) = FQ · CeQQ mod N2
Q and zQ ∈ {1, . . . , q3}

(c) If no error was detected and b = true, output (CA, CB).
Else, output ⊥.

4.2 6ix1een Attack

We now describe our attack on GGq5 that extracts the key in 16 signatures. As mentioned in the
introduction, the attacker corrupting A chooses a malicious Paillier modulus comprising of sixteen
small primes. Then, in the j-th signature ceremony, the attacker sets CA = EncNA

(NA/pj) where
pj is the j-th small factor of NA. Observe that NA/pj > 22000, suggesting that the verification
in Item 2b of Protocol 4.7 or the integer commitment RngProof in Item 2a of Protocol 4.7 should
detect such a malicious input. As we shall see next, however, there is a way for the C to slip through
without detection.

The attacker cheats in RngProof by brute-forcing eA until eA = 0 mod pj (such an eA will be
found with overwhelming probability because pj is small). We note that such a value of eA allows
the attacker to cheat because FA · CeAA = FA · EncNA

(0) mod N2
A, an thus the range proof will not

yield an error for zA = uA + eA · 0 when using γA = 0.
Then, when the honest party operates on B and returns DA, simple data processing will yield

the value of xB mod pi. Iterating the attack sixteen times with different primes allows the attacker
to obtain xB in full, using CRT (Theorem 2.3).

Multi-Party Case. In multiparty GG18/20, each pair of parties essentially execute Protocol 4.2,
except that they need to adjust the last round messages. Specifically, letting αi,j denote Pi’s output
in the OLE with Pj (when playing A) and βi,j denote Pi’s ephemeral input in the OLE with Pj

13

(when playing B), party Pi sends ŝi, δi where{
ŝi = γi ·m+ r · (xPi

γi +
∑

j ̸=i αi,j + βi,j) mod q

δi = kPi
γi +

∑
j ̸=i α̂i,j + β̂i,j mod q

The signature is set as (r, s) where s = (
∑

j ŝj) · (
∑

j δj)
−1 mod q. It is not hard to see that Adv

can perform Attack 4.8 on all counterparties simultaneously, thus obtaining the key in full after
sixteen signatures.

Attack 4.8 (6ix1een: Corrupted A in Protocol 4.2 – λ = q5).

Operations:

1. Sample p1, . . . , p16 primes of size 216 and prime b such that b ·
∏16

j=1 pj ≈ 22048.

Set NA = b ·
∏16

j=1 pj and σA = φ(NA)

2. In the VeVole execution of the j-th signature session do:

(a) Set γA = 0 and CA = EncA(NA/pj) (all other values are sampled as prescribed).

(b) When executing RngProof do:

– Brute force uA ← Zq until eA = HASH(. . .) = 0 mod pj .
(if no such value is found after 232 tries, output NoCheat)

(c) When obtaining DA, set

yj =
DecσA

(DA)− [DecσA
(DA)]NA/pj

NA/pj

Stealthiness. To avoid causing failures, Attack 4.8 can be made stealthy as follows. The attacker
reassigns DA := DA · (yj ·NA/pj)

−1 mod N2
A and D̂A := D̂A · (ŷj ·NA/pj)

−1 mod N2
A where

ŷj =
DecσA

(D̂A)− [DecσA
(D̂A)]NA/pj

NA/pj

and subsequently proceeding with the protocol as prescribed. That is, the attacker “corrects” DA

and D̂A by the offset it caused with the malicious input, and then proceeds normally.

4.2.1 Quality of the Attack

We conclude this section by estimating the quality of Attack 4.8. Namely, we heuristically model
the hash function as a random oracle and we find that Adv recovers the key after sixteen signatures,
almost surely (cf. Claims 4.9 and 4.10).

Claim 4.9. For fixed j, attacker Adv outputs NoCheat with probability at most 2−1000.

Proof. Modelling the hash function as a random oracle, it holds that Pr[eA ̸= 0 mod pj] = (1−1/pj)
in one single trial. Thus, Pr[NoCheat] = (1− 1/pj)

232 ≤ exp(−232/pj) < 2−1000 since pj ≈ 216. □

14

Claim 4.10. For fixed j, it holds that xB mod pj =
DecσA (DA)−[DecσA (DA)]NA/pj

NA/pj
.

Proof. By the definition of the AffComb∗λ oracle, notice that DA = EncNA
([xB · NA/pj + νB]NA

)
where νB ∈ {1, . . . , q5}. Thus, since νB < NA/pj (because NA is 2048 bits and pj is roughly 16 bits)
it follows that

DecNA
(DA)− [DecNA

(DA)]NA/pj = [xB ·NA/pj + νB]NA
− νB

= [xB]pj ·NA/pj

□

4.3 Death by 1M Cuts Attack

We now describe our attack on GG22048 that extracts the key in 16 successful signatures (i.e.leakage
is only obtained when the signature process yields a valid signature). The attack proceeds almost
identically to Attack 4.8 except that, when the attacker obtains DA and D̂A, it reassigns those value
according to a (random) guess of the pair (xB, kB) mod pj and it continues the execution as the
protocol prescribes.

In the end, if the the execution leads to valid signature, the attacker deduces the value of
(xB, kB) mod pj , In the event that the signature is invalid, no leakage is obtained on xB (because
of the kB which is a fresh random value every time) and thus the attack must be repeated with the
same pj .

Attack 4.11 (Death by 1M Cuts: Corrupted A in Protocol 4.2 for λ = 22048).

Operations:

1. Same as items Item 1 in Attack 4.8.

2. In the VeVole execution of the j-th signature session sample (a, b)← Zpj
and do:

(a) Same as items Items 2a and 2b in Attack 4.8.

(b) When obtaining DA, D̂A, reasign (continue the process as the protocol prescribes hereafter){
DA := DA · EncNA

(−a · (NA/pj)) mod N2
A

D̂A := D̂A · EncNA
(−b · (NA/pj)) mod N2

A

(c) If the process terminates in a valid signature deduce that (xB, kB) = (a, b) mod pj .

4.3.1 Quality of the Attack

We conclude this section by estimating the quality of Attack 4.11.

Claim 4.12. For fixed j, attacker Adv outputs NoCheat with probability at most 2−1000.

Proof. Same as Claim 4.9. □

15

Claim 4.13. Using the notation from Attack 4.11, in the j-th iteration, if (xB, kB) ̸= (a, b) mod pj
and m ̸= −(xA + xB)r mod q then the protocol yields an invalid signature with probability at least
1− p2j/q ≈ 1.

Proof. Let ε = −[xB − a]pj · N/pj mod q and ε̂ = −[kB − b]pj · N/pj mod q. Write s′ for the
signature string reconstructed by the parties, and note that

s′ = (δA + δB + ε) · (ŝA + ŝB + ε̂)−1

= (γ · (m+ rx) + ε) · (kγ + ε̂)−1

= (s+ ε · (kγ)−1) · (1 + ε̂ · (kγ)−1)−1 mod q,

where x = xA + xB, γ = γB and k = kA + kB mod q. So, assuming m = HASH(msg) ̸= −xr
mod q, note that the signature verifies if s′ = s mod q which, letting ρ = (kγ)−1, is equivalent to
s · (1 + ε̂ρ) = (s + ε · ρ) mod q and thus s = ε · (ε̂)−1 mod q (assuming ρ, ε̂ ̸= 0). For random
k ← Zq, ε · (ε̂)−1 has at most p2j possible values whereas s has q. Thus, with probability at least

1− p2j/q, it holds that s ̸= s′ and the signature invalid. □

On the number of required signatures for extracting the key. We conclude this section
by estimating the number of signature sessions required in order to extract the key. Recall that
Attack 4.11 yields a valid signature (and thus useful leakage) only when (a, b) = (xB, kB) mod q,
i.e. the attacker correctly guesses the remainders of both xB and kB modulo pj . The claim below
relates the key-extraction probability to the the number of signatures, with respect to parameter
τ ∈ [0, 1] (which captures the probability that a single remainder was extracted successfully).

Claim 4.14. For fixed τ ∈ [0, 1], letting ℓ ∈ N denote the number of primes, Attack 4.11 successfully
extracts the key with probability at least τ ℓ after

∑ℓ
i=1 fτ (pi) signatures, where fτ (p) = ⌈log(1 −

τ)/ log(1− 1/p2)⌉.

Proof. We know that the attack yields a valid signature for a given pj with probability 1/p2j . Thus,

after fτ (pj) tries, our attack does not yield leakage with probability (1 − 1/p2j)
fτ (pj) ≤ 1 − τ (by

the definition of fτ), and the claim follows immediately. □

In conclusion, when combining with brute-force techniques, Attack 4.11 extracts the key with
probability 0.44 after 1.4 × 106 signatures (choosing {p1, . . . , pℓ} = {3, 5, 7, . . . , 173}, i.e. the first
39 odd primes). If the Paillier moduli are checked for very small factors (as many implementations
do), then the malicious modulus can be suitably chosen to avoid detection (though it makes the
attack more expensive in terms of signatures required to extract the key). For instance, choosing
{p1, . . . , pℓ} = {6481, 6491, . . . , 6653}, Attack 4.11 extracts the key with probability 0.15 after
1.8× 109 signatures.

5 Our Attack on BitGo TSS

In this section, we present the Zero Proof attack on BitGo TSS. Since the protocol is quite similar
to Protocol 4.2 (in fact it is a bare-bones version), we only explain how it differs from Protocol 4.2.

16

BitGo TSS

SumShare∗ VeVole

AffComb∗22048

Figure 2: Illustration of the BitGo TSS protocol dependencies. Zero Proof targets the VeVole
subprotocol, and the beta parameter is chosen from the maximum range (λ = 22048).

BitGo TSS. In a nutshell, BitGo TSS protocol is the same as Protocol 4.2 except that there is
no range proof subprotocol (RngProof) or well-formedness check (PaillierWF∗) when invoking the
Verifiable VOLE protocol. Instead, each party simply sends the relevant values over the communi-
cation channel, namely the Paillier public key NA and ciphertext CA, which are used to carry out
the protocol to its conclusion.

5.1 Zero Proof Attack

Attack 5.1 (Zero Proof: Adv corrupting A in BitGo TSS).

Operations:

1. Sample q1, . . . , q16 strong primes of size 217, i.e. such that qj and pj = (qj − 1)/2 are both primes,

for all j ∈ {1, . . . , 16}. Sample arbitrary prime b s.t. b ·
∏16

j=1 qjpj ≈ 22048.

Set NA = b ·
∏16

j=1 qjpj .

2. When signing, do: (only one signature ceremony)

(a) Set CA = 4. After obtaining DA, do:

(b) For j ∈ {1, . . . , 16}, brute force yj ∈ {1, . . . , pj} such that

4yj = D
2·[2−1]pj
A mod qj .

(c) When obtaining yj = xB mod pj for all j, reconstruct xB using CRT (Theorem 2.3).

Claim 5.2. It holds that yj = xB mod pj for every j ∈ {1, . . . , 16}.

Proof. For some µ, ν ∈ Z∗
N chosen by B, note that

DA = 4xB · (1 + µ ·N) · νNA mod N2
A = 4xB · νNA mod NA

= 4xB · (νpj)qj
∏

ℓ ̸=j pℓqℓ mod qj =

{
4xB if ν is a square mod qj

−4xB otherwise
,

where the last equality holds by Lagrange’s theorem (because Z∗
qj has order 2pj). In conclusion,

17

since 4 has order pj in Zqj , we deduce that D
2·[2−1]pj
A = 42·[2

−1]pj ·xB = 4xB mod qj and yj = xB
mod pj , as desired. □

Multi-Party Case. Similarly to Attack 4.8, Attack 5.1 retrieves the key in a single signature
regardless of the number of parties, because all the honest party fall into the same trap and calculate
the D-value in the same way.

Stealthiness. “Stealthifying” Attack 5.1 is somewhat tricky because the Pallier key is so distorted
that it is not obvious how use it in order to “decrypt” DA (since DA is not even a ciphertext for
the chosen Paillier key). However, with the knowledge of xB, the attacker can compute DA ·4−xB =
EncNA

(νB) mod N2
A and subsequently infer νB. By following a similar process for D̂A, the attacker

can extract kB and deduce ν̂B, and, in conclusion, the attacker sets γA = 0 and{
ŝA = νB + βA mod q

δA = ν̂B + β̂A mod q

which yields an error-free signature process.

References

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil Pair-
ing”. In: J. Cryptology 17.4 (2004), pp. 297–319 (cit. on p. 1).

[CGGMP20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. “UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts”.
In: CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020. Ed. by Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna. ACM, 2020, pp. 1769–1787 (cit. on p. 2).

[CMP20] Ran Canetti, Nikolaos Makriyannis, and Udi Peled. UC Non-Interactive, Proactive,
Threshold ECDSA. Cryptology ePrint Archive, Paper 2020/492. 2020 (cit. on p. 2).

[Des87] Yvo Desmedt. “Society and Group Oriented Cryptography: A New Concept”. In:
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applica-
tions of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20,
1987, Proceedings. 1987, pp. 120–127 (cit. on p. 1).

[DF89] Yvo Desmedt and Yair Frankel. “Threshold Cryptosystems”. In: Advances in Cryp-
tology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 20-24, 1989, Proceedings. 1989, pp. 307–315 (cit. on
p. 1).

[DKLS23] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. “Threshold ECDSA
in Three Rounds”. In: IACR Cryptol. ePrint Arch. (2023), p. 765. url: https:
//eprint.iacr.org/2023/765 (cit. on p. 10).

[GG18] Rosario Gennaro and Steven Goldfeder. “Fast Multiparty Threshold ECDSA with
Fast Trustless Setup”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. 2018, pp. 1179–1194 (cit. on pp. 1–3).

18

https://eprint.iacr.org/2023/765
https://eprint.iacr.org/2023/765

[GG20] Rosario Gennaro and Steven Goldfeder. One Round Threshold ECDSA with Identi-
fiable Abort. Cryptology ePrint Archive, Paper 2020/540. 2020 (cit. on pp. 1–3).

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority”. In: Proceedings of
the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New
York, USA. 1987, pp. 218–229 (cit. on p. 1).

[Lin17a] Yehuda Lindell. “Fast Secure Two-Party ECDSA Signing”. In: Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II. 2017, pp. 613–644
(cit. on pp. 1, 3).

[Lin17b] Yehuda Lindell. “Fast Secure Two-Party ECDSA Signing”. In: IACR Cryptol. ePrint
Arch. (2017), p. 552 (cit. on p. 3).

[Lin21] Yehuda Lindell. “Fast Secure Two-Party ECDSA Signing”. In: J. Cryptol. 34.4
(2021), p. 44. doi: 10.1007/s00145-021-09409-9 (cit. on p. 1).

[MP21] Nikolaos Makriyannis and Udi Peled. “A Note on the Security of GG18”. 2021 (cit.
on p. 3).

[Nat23] National Institute of Standards and Technology. Digital Signature Standard (DSS).
Federal Information Processing Publication 186-5. 2023 (cit. on p. 1).

[Pai99] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes”. In: Advances in Cryptology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Techniques, Prague, Czech Repub-
lic, May 2-6, 1999, Proceeding. Ed. by Jacques Stern. Vol. 1592. Lecture Notes in
Computer Science. Springer, 1999, pp. 223–238 (cit. on p. 1).

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: J. Cryp-
tol. 4.3 (1991), pp. 161–174 (cit. on p. 1).

[TS21] Dmytro Tymokhanov and Omer Shlomovits. “Alpha-Rays: Key Extraction Attacks
on Threshold ECDSA Implementations”. In: IACR Cryptol. ePrint Arch. (2021),
p. 1621. url: https://eprint.iacr.org/2021/1621 (cit. on p. 5).

[Yao86] Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: IEEE (1986)
(cit. on p. 1).

19

https://doi.org/10.1007/s00145-021-09409-9
https://eprint.iacr.org/2021/1621

	Introduction
	Background
	Our Contributions
	Our Attacks
	Broken Record
	6ix1een
	Death by 1M cuts
	Zero Proof

	Disclosure

	Preliminaries
	Notation
	Paillier Encryption & CRT

	Our Attack on Implementations of Lindell17
	Protocol Description
	Broken Record Attack

	Our Attack(s) on GG18/20
	Protocol Description
	Signing (GG18/20)
	Verifiable VOLE
	Range Proof

	6ix1een Attack
	Quality of the Attack

	Death by 1M Cuts Attack
	Quality of the Attack

	Our Attack on BitGo TSS
	Zero Proof Attack

