
Improved SNARK Frontend for Highly Repetitive
Computations

Sriram Sridhar1 and Yinuo Zhang1

1University of California, Berkeley
srirams@berkeley.edu,yinuo.yz@gmail.com

Abstract

Modern SNARK designs typically feature a frontend-backend paradigm:
The frontend compiles a user’s program into some equivalent circuit rep-
resentation, while the backend calls for a SNARK specifically made for
proving satisfiability of the circuit. While the circuit may be defined over
small fields, the backend prover often needs to lift the computation to
much larger fields for achieving soundness. This gap results in concrete
overheads, for example, when representing a SHA-256 program as a circuit
with pairing-based backend SNARKs.

For a class of computations that are highly repetitive, we propose an
improved frontend that partially bridges this gap. Compared with existing
works, our frontend yields circuit representations defined over larger fields
but of smaller size. Our implementation shows that for SIMD computation
with ≈ 180 SHA-256 instances, our improved frontend improves prover
runtime by over 2.6× and reduces memory usage by over 1.3×.

Central to our result and of independent interest, is an efficient tech-
nique for proving non-native modulo arithmetic.

1 Introduction
Succinct arguments [Kil92] allow a prover to convince a verifier that an NP
statement is true through some interactive protocols, with communication and
verifier running time sub-linear in the size of the prover’s witness. Soundness
requires that no computationally bounded prover can convince a verifier of a
false statement. Those arguments can also be paired with an additional zero
knowledge (ZK) property [GMR85], which requires that the verifier does not
learn anything beyond the veracity of the statement. Zero-knowledge Succinct
Non-interactive ARguments of Knowledge (zkSNARKs) are succinct arguments
which are zero-knowledge and do no involve any interactions. Enjoying all these
great properties, zkSNARKs have attracted interests not just from theoretical
standpoints (e.g. proving certain NP relations), but also found numerous real-
world applications, e.g., in the design of blockchains [BCG+14]. This has led
to extensive research towards improving the efficiency of zkSNARKs in practice
[CMT12, Tha13, AHIV17, BBB+18, XZZ+19, BCR+19, Set20, COS20, BFS20,
ZXZS20, ZLW+21], both in terms of prover and verifier running times. As the
time of writing the best SNARK prover running time is already asymptoti-

1

cally linear in the size of the statement [GLS+21, XZS22, CBBZ22] while also
maintaining sublinear verifier running time.

Bird’s Eye View of Modern SNARK Paradigm: Frontend v.s. Back-
end The commonly used SNARKs are general-purpose and engineered to
prove the correctness of (any) computer programs. At a high level, this is
achieved by combining the following two steps:

First, the computer program is complied into a special kind of circuit repre-
sentation which is amenable to the current SNARK technology. This process
is often called the SNARK frontend. Importantly, the satisfiability of such
circuit should reflect the correct evaluation of the computer program. In prac-
tice, this circuit representation resembles the original program and they often
share the same input and output values. Furthermore, it may consist of auxil-
iary input values which are called ”non-deterministic advice”, which helps keep
the size of circuit relatively small and structurally simple. For example, when
the computer program evaluates an inverse x−1 mod p, the corresponding cir-
cuit representation can take the advice of the inverse (say y) and perform the
check x · y = 1 mod p. This becomes a much cheaper task than to perform
an inverse computation inside the circuit. More details on this are provided in
Sec 3.6,3.6.1.

Subsequently, this circuit representation is fed into a SNARK to prove circuit
satisfiability. This process is often referred to as the SNARK backend. Most
aforementioned constructions of SNARKs are examples of such. Some pop-
ular ones [Gro16, CHM+20, BCR+19] target a special circuit representation
called Rank-1 Constraint Systems (R1CS), while some others target circuit rep-
resentations such as Plonk-style representation [GWC19, CBBZ22] or Algebraic
Intermediate Representation (AIR) [BBHR19].

Measuring Prover Efficiency The prover efficiency remains a core bottle-
neck in the real-world deployment of SNARKs. In the view of above paradigm,
we can separate our consideration of prover efficiency with respect to the fron-
tend and backend.

Frontend efficiency is mainly measured by the size of the circuit represen-
tation, relative to the size of the original computer program. For example, in
R1CS (see sec 3.5 for more details), this size is determined by three main char-
acteristics: the length and width (hence dimension) of the matrices, and the
number of non-zero entries in these matrices.

Backend efficiency is mainly measured through the prover’s running time,
relative to the size of the circuit representation. More specifically, for most
popular SNARKs, the prover’s work can be further divided into two categories:
Non-cryptographic operations: These operations are relatively fast and inexpen-
sive. Examples of such are computing non-deterministic advice in the circuit
representation. Cryptographic operations: These operations are usually costly
and expensive for various reasons. For example, in SNARKs which utilize a
pairing-friendly cryptographic group [Gro16], those correspond to heavy oper-
ations such as multi-scalar exponentiations (MSM) in a group of large order.
Other SNARKs [ZXZS20] require Merkle hashing and heavy FFT operations

2

inside a large field. Regardless, the prover’s running time in SNARKs is often
dominated by these cryptographic operations which can be abstractly viewed as
computing arithmetics over some very large field. More details on this can be
found in remark 3.4.1. We point out that there exists certain SNARK construc-
tions (also see sec 1.3 for such examples) where the backend prover does not
need to operate over such large field. However, these SNARKs are not (widely)
used in practice due to various reasons, hence not considered here.

Between Frontend and Backend: The dichotomy of Fields Interest-
ingly, there exists an inconspicuous dichotomy between frontend and backend:
For most computer programs, the circuit representations outputted by the fron-
tend are naturally defined over arithmetics in some finite rings. The size of
such rings are comparable to the size of the variables living inside the computer
program. For example, the circuit representation of the SHA-256 binary compu-
tation can be defined over a field of size ≈ 28 (for example, F253). Nonetheless,
for the sake of soundness, the backend prover is restricted to use much larger
fields where these cryptographic operations need to be performed. For example,
[Gro16] uses the field Fp∗ where p∗ is around 255 bit prime (i.e. p∗ ≈ 2255),
hence orders of magnitude larger than F253. To summarize, the backend sup-
ports proving circuit representations defined over a much larger field than those
being supplied by the frontend.

This dichotomy is often solved by simply embedding the circuit representation
(defined over some smaller field) inside the larger field. When the two fields sub-
stantially differ in size (as for most computer programs), this creates a noticeable
inefficiency in SNARK backend. For example, consider the circuit which checks
that a bit b takes binary values: b2 − b = 0. It is indeed sufficient to check for
this arithmetic relation over any non-trivial field. Yet the backend prover needs
to consider this relation over certain gigantic field Fp∗ (such as that being used
by [Gro16] prover) and subsequently perform multiplications by large random
numbers in this field in order to argue this relation. Conceptually speaking, a
significant portion of field Fp∗ is unused.

In this work we seek to incorporate this aspect into frontend design consider-
ation. More specifically, consider a frontend which outputs some circuit rep-
resentation for a certain program. Furthermore let this circuit be defined over
some field Fp. We wonder if one can devise an alternative circuit with smaller
size by defining it over the larger backend field Fp∗ where p∗ ≫ p. Since the
backend prover operates in Fp∗ and these operations dominate its running time,
a smaller circuit would strictly improve its performance. This motivates us to
study the following (informal) question:

For certain programs, can we improve SNARK frontend efficiency by
exploiting the full power of the backend field?

1.1 Our Contributions
In this work we answer this question positively for a special class of programs
which we call highly repetitive computations (see Sec 3.7 for more details). Infor-
mally speaking, a computation is highly repetitive if the same sub-computation
is repeated multiple times with different inputs. One example of such programs

3

is Same Instruction Multiple Data (SIMD) computation, which is ubiquitous in
many real world applications. More concretely, our main contributions are as
follows:

Techniques for Packing SIMD Circuits We introduce a packing technique
for verifying SIMD computations. More specifically, consider any SIMD compu-
tation consisting of ℓ copies of sub-computations. Our packing technique allows
us to reduce the size of overall circuit representation by ℓ-fold compared to that
of naive representation.1

Techniques for Efficiently Proving Non-native Modulo Arithmetic
Crucial to our main results, and of independent interests, is an efficient em-
bedding technique which allows the prover to embed elements of Zq (where q
is any large modulus) inside elements of Zp∗ (where p∗ is any large prime such
that p∗ ≫ q). Furthermore, due to this embedding, the prover can efficiently
emulate Zq arithmetic operations inside Zp∗ .

Improved Frontend to R1CS for Highly Repetitive Computations To
demonstrate our techniques, we propose a specific SNARK frontend which out-
puts an optimized R1CS instance for SIMD computations and more generally
for highly repetitive computations. Compared with the R1CS instance out-
putted by most existing frontends, ours is constant times smaller yet defined a
over much larger field. Our improvement may vary depending on the choice of
backend fields and certain characteristics of repetitive computations.

Implementation of our Improved Frontend Our improved frontend can
be combined with a class of popular backends which are called commit-and-
prove SNARKs (see def 3.4). This direct combination yields succinct proofs but
only linear verification. For the sake of sublinear verification we require certain
additional properties of backend which are implicit in some existing schemes,
Marlin [CHM+20] being one such example. We thus implement our improved
frontend with Marlin, thereby deriving a full-fledged zk-SNARK.

1.2 Evaluations and Applications
Experiments We evaluate the performance of our improved frontend via the
following experiments: we consider several instances of SIMD computation con-
sisting of (11, 44, 88, 176) SHA-256 programs with 128-bit input.

For each experiment, we set the baseline as the following: we run a circom fron-
tend to compile all n programs into a circuit, and then use the Marlin [CHM+20]
backend to prove these circuits. We compare this with our improved frontend
in the following way; we split the SHA-256 programs into (1,4,8,16) batches
of 11 programs each (the number 11 is our packing factor throughout the pa-
per, chosen to satisfy a constraint that depends on the compiler as well as the
curve used; we use bls12-381 for our experiments). For each batch, we use

1Although our plain packing technique yields circuit size reduction by l-fold, in practice
the reduction is also limited by the backend field size.

4

Improvement factors
n Ptime Mem. Usage Dim. Non-zero
11 1.96 1.27 4.55 1.67
44 2.29 1.32 4.61 1.68
88 2.54 1.30 4.61 1.68
176 2.61 1.35 4.61 1.68

Figure 1: Improvement factors in prover time, memory usage, R1CS dimension
and number of non-zero entries in the R1CS for our frontend compared to a
naïve implementation for n repeated sub-computations of SHA-256 (with 128-
bit input size).

circom [cir] to compile the computations in the batch into one circuit represen-
tation, and then use our improved frontend to pack all 11 circuits together into
one single circuit. Then we run Marlin to prove the batched circuit.

We compare the performance of our improved frontend with the naïve fron-
tend by comparing the prover running time and memory usage. We report the
improvements in Table 1. More details can be found in Table 7 in Sec. 8.

Applications Our improved frontend can be used to speed up a number of
zero-knowledge proof applications which involve highly repetitive computations.
For example, in zkRollup [rol], a prover needs to prove the opening of some
Merkle Tree commitment, which involves proving the knowledge of a root-to-
leaf path which corresponds to some sequential hash computations (such as
SHA-256). As another example, in many Proof-of-Stake blockchains, the proof
involves verifying hundred of signatures. In Cosmos, each corresponds to an Ed-
DSA signature, whose verification involves computing SHA-512 hash functions.

1.3 Related Works
We give a survey of related works which seek to mitigate the dichotomy of field
between SNARK frontend and backend. Some of these techniques are ”backend
oriented” while others are ”frontend oriented”.

Backend Oriented There are a number of works aiming to allow the back-
end prover to run over any finite field (even very small fields). The line of
works [RZR22, BCGL22] achieve this by building some specific Interactive Or-
acle Proof (IOP). However, they currently only remain theoretically interest-
ing since the verifier’s running time and proof size are linear in [RZR22], and
sublinear but still very large in [BCGL22]. Furthermore, these constructions
only work with very specific circuit representations which are not used in prac-
tice. Other works [AHIV17, KKW18] try to achieve this via ”MPC in the
head”, but these protocols also yield considerably large proof size. Finally,
[WYKW21, WYY+22] considers VOLE-based efficient zero-knowledge proofs
but does not achieve sublinear verification.

Frontend Oriented Look-up arguments [GW20, ZBK+22] aim to replace the
task of checking multiple bit-wise (binary) operations in computer programs

5

with look-up of a single value in a large truth table. For example, the bit-wise
XOR operation between two 16-bit strings is replaced with a table consisting
of all 232 possible outputs, each entry in the table being a 16-bit integer value.
Look-up arguments can improve the frontend design via the following way:
Suppose in the circuit representation, a sub-computation involving multiple of
binary gates is repeated frequently. Then one can batch these gates into a single
”look-up gate” with respect to some table, thus reducing each sub-computation
effectively into a ”look-up gate”. On one hand, since the values in this table are
large, this ”look-up gate” must be defined over larger fields. On the other hand,
the size of the circuit becomes much smaller due to reduced number of gates.

We compare our work with look up arguments as follows: Firstly, the gener-
ation of look-up table is so expensive that in order to amortize this cost, the
number of look-ups into the table must be comparable to its size. Hence this
method is most effectively only for repeated binary operations with small size.
In comparison, our method does not need a table and yields improvement even
for small number of repetitions of large binary (or small arithmetic) compu-
tations. Secondly, look-up gates are specialized to the Plonk-style [GWC19]
circuit representation (thus they do not support R1CS representation), whereas
our method can be naturally extended to support all circuit representations.

Other Optimizations on Highly Repetitive Computations The work
of [Tha13] improves the techniques of [GKR08] in the setting of data-parallel
(a.k.a. SIMD) computations. The work of [KST22, BC23, KS23] consider fold-
ing schemes for incrementally verifiable computation (a type of sequentially
repetitive computations) that improves prover’s running time. Furthermore,
the work of [XZC+22] leverages multiple provers to speed up proving SIMD
computations. We point out that the improvements behind all these works do
not rely on mitigating the field discrepancy, hence tangential to our contribu-
tions. In fact we believe that our improved frontend (or at least our techniques)
can be used in conjunction with those works to further speed up their prover
performances.

2 Technical Overview
Improved SNARK Frontend From A Simple Example We give an
overview of our improved frontend for highly repetitive computations based on a
simple example. Consider the following SIMD computation C which computes
the XOR of two length ℓ bit strings: x ∈ {0, 1}ℓ, y ∈ {0, 1}ℓ : C(x,y) →
z = x ⊕ y ∈ {0, 1}ℓ. We can view the computation C as ℓ parallel exe-
cutions of the sub-computation G which outputs the XOR between two bits:
xi ∈ {0, 1}, yi ∈ {0, 1} : G(xi, yi) → zi = xi ⊕ yi ∈ {0, 1}. In order to express
the correctness of computation C, we can simply express the correctness of each
sub-computation G, as follows:

Let’s consider an arithmetic circuit representation for the first sub-computation
G1 on input wires (x1, y1): It first checks all wires are binary (i.e. they are all
in {0, 1}), and then it checks that the output wire is the XOR of input wires.
This circuit representation can be arithmetically described by the following wire
constraints:

6

• x2
1 − x1 = 0; (Which enforces x1 to be binary.)

• y21 − y1 = 0; z21 − z1 = 0;

• x1 + y1 − 2x1 · y1 = z1. (Which enforces z1 = x1 ⊕ y1.)

Here we implicitly define these constraints over the ring of integers. Nonetheless,
notice that it is indeed sufficient for them to hold over any prime field Fp such
that p ≥ 2, since the first three constraints implicitly ensure that all x1, y1, z1 ≤
1 and x1 + y1 − 2x1 · y1 ≤ 2 ≤ p. Therefore, if the fourth equation holds over
Fp, then it in fact holds over the integers.

On the other hand it is easy to see that F2 is the minimum field required to
define this circuit representation. Let’s thus rewrite its wiring constraints as
follows:

• x2
1 − x1 = 0 mod 2; y21 − y1 = 0 mod 2;

• z21 − z1 = 0 mod 2;

• x1 + y1 − 2x1 · y1 = z1 mod 2.

In order to express the correctness of computation C, one can simply repeat
the above constraints for each sub-computation Gi for i ∈ [ℓ]. This simple
approach yields a circuit representation of C consisting of 4ℓ constraints in
total. Furthermore, the circuit can be defined over any field Fp for p ≥ 2.

Nevertheless in most popular SNARKs, the backend prover must operate over
some large field Fp∗ (for example p∗ can be some 255 bit prime). Our goal is
to exploit this sheer size difference, and ”pack” circuits of all sub-computation
inside one single circuit over the larger field Fp∗ . To be more specific, we want
to build another circuit for the same SIMD computation C which has smaller
size, but instead requires a larger field to support.

The mathematical tool which we use for packing these circuits is Chinese Re-
mainder Theorem (CRT), which states that for a set of ℓ coprime numbers
(q1, . . . , qℓ), let q be their product (i.e. q =

∏ℓ
i=1 qi), then there exists the

following ring isomorphism:

Zq
∼= Zq1 × · · · × Zqℓ

This suggests a natural way to pack all the ℓ circuit representations together.
For each i ∈ [ℓ], we will pick a different prime number (for example, we pick
q1 = 2, q2 = 3, and so on). Then let’s consider the circuit representation of
each sub-computation Gi defined over the quotient ring Zqi (which is the same
as prime field Fqi). Since each qi ≥ 2, the corresponding circuit representation
still expresses the correctness of the ith sub-computation Gi.

Let q be the product of these ℓ primes. Instead of considering ℓ circuits with
respect to arithmetic in ring (Zq1 × · · · × Zqℓ), we use one single circuit with
respect to the ring Zq:

• x2 − x = 0 mod q; y2 − y = 0 mod q;

• z2 − z = 0 mod q;

• x+ y − 2x · y = z mod q.

7

Due to ring isomorphism, any wire values (x, y, z ∈ Zq) satisfying the above
circuit representation imply the following fact: for each i ∈ [ℓ], there exists
corresponding wire values (xi = x mod qi, yi = y mod qi, zi = z mod qi)
such that they satisfy the circuit representation (defined over Zqi) for the sub-
computation Gi. In other words, the aforementioned circuit is sufficient to
express the correctness of SIMD computation C.

Let’s recap what we have done so far, we start with a simple circuit represen-
tation consisting of ℓ identical sub-circuits of the same form and over the same
field. Then we consider each circuit over a different prime field yet with the
same guarantee of correctness, and finally use ring isomorphism to simulate all
sub-circuits inside a larger field. During this process, we decrease the complexity
of C by ℓ-fold compared to the simple representation we begin with.

Extend Our Frontend to Highly Repetitive Computations The above
framework generalizes beyond this simple example of SIMD computation. In sec
6, we devise an improved SNARK frontend which can be applied to any SIMD
computation. Our improvement is most significant when the sub-computation
has relatively small variables, whereas the backend field has large size. One such
example is proving multiple SHA-256 programs with pairing-based SNARKs. In
sec 7.3 we extend this frontend to support the broader class of highly repetitive
computations. Here we provide a quick overview. Let there be some SIMD
computation C which consists of ℓ sub-computations: ∀i ∈ [ℓ] : G(xi)→ yi;

First apply an existing frontend to the sub-computation G and retrieve the
corresponding circuit representation G. Let Fp be the minimum prime field
which this circuit must be defined over (we call this notion p-satisfiability, see
sec 3.6.1 for more details).

Then we pick ℓ different primes {qi}i∈[ℓ] such that each qi ≥ p. Our frontend
compiler then packs (using the CRT) all sub-circuit-representations in the fol-
lowing way: The ith sub-circuit G(xi) → yi is lifted into ring Zqi . Then all
sub-circuits are packed into ring Zq. These steps happen only conceptually:
No changes are required for the wiring structure of circuit G. To facilitate this
process, the prover and verifier will both pack all ℓ input and output wire values
{(xi, yi ∈ Zqi)}i∈[ℓ] into elements x, y ∈ Zq. Furthermore the prover will pack
all the intermediate wire values as elements of Zq. Finally the prover proves the
satisfiability of G with respect to input/output wires (x, y) using some existing
SNARK backend.

There is yet a major problem associated with this approach: In most popular
backends, the underlying field is chosen as certain fixed large prime number
p∗ ̸= q (since our q must be a composite). The native field only allows proving
arithmetics over Zp∗ , not over Zq. For large q (as in our case), it is not known
how to efficiently prove these non-native arithmetic relations.

Proving Non-native Modulo Arithmetic As our second contribution, we
propose an efficient ”somewhat homomorphic” embedding scheme which allows
the prover to embed an element of Zq inside elements of Zp∗ . Furthermore,
due to the homomorphism, the prover can now efficiently emulate Zq arithmetic
operations inside Zp∗ .

8

We present a high-level overview of our techniques here: Suppose we want the
prover to prove an example constraint that a · b = c mod q. Instead of trying
to prove this relation over modulo q, let’s ask the prover to supply an additional
shift value k and subsequently prove that a·b = c+k·q (over Z) , which amounts
to a relation that holds over the integers. However, since the backend prover’s
operation is over Zp∗ , this arithmetic relation must become a · b = c + k · q
mod p∗. Consequently, it does not necessarily imply that a · b = c mod q.

To circumvent this problem, we will in fact use a different representation of Zp∗

(and Zq) elements, which is called rational representatives (more details can be
found in sec 4.2). Informally, we say that a rational number a1

a2
is a rational

representative for an element a ∈ Zp∗ if it holds that a = a1

a2
mod p∗. For

the sake of simplicity let’s assume that both p∗ and q are primes so that this
relation is always well-defined. With such representation, the previous equation
becomes:

a1
a2
· b1
b2

=
c1
c2

+
k1
k2
· q mod p∗,

where (a1

a2
, . . . , k1

k2
) are prover’s witness values and q is the (fixed) modulus. The

key observation is the following: If all these rational representatives admit small
numerators and small denominators (e.g. (a1, a2, b1, . . .) are relatively small),
then this arithmetic relation indeed holds over the field of rational numbers,
instead of just holding over modulo p∗. To see this, notice that we can first
multiply both the left and right hand sides by the LCM of denominators, which
yields:

a1 · b1 · c2 · k2 = c1 · a2 · b2 · k2 + k1 · a2 · b2 · c2 · q mod p∗.

Since each individual variables are assumed to be small, the product of them
should still be small. If such products (both right and left hand sides) are less
than p∗, then in fact the equation holds over the integers. Thus we can divide
by the LCM, and get

a1
a2
· b1
b2

=
c1
c2

+
k1
k2
· q,

as desired. The second trick now is to consider these rational numbers again
as rational representatives, nonetheless of Zq elements, instead of Zp∗ elements.
This is equivalent to take this equation over modulo q. Concretely, let a′ = a1

a2

mod q (similarly for b, c, k), then it holds that:

a′ = b′ · c′ mod q,

which is the desired relation that we want to prove.

To summarize, whenever the Zp∗ elements (a, b, c, k) admit rational represen-
tatives such that the denominator and numerators are sufficiently small (we
call such representatives bounded rational representatives), then in fact we can
view these elements as embedded Zq elements. Furthermore, in lemma 4.4 we
show that such embedding is unique. Let S be the subset of Zp∗ where each
element in S is some embedded Zq element. Then the mapping induced by such
embedding gives a natural (somewhat) homomorphism between the set S and
Zq, thus allowing us to emulate Zq arithmetics inside Zp∗ .

9

Furthermore, we show that there exists a protocol (we call it Batch-PoSO)
which allows the prover to efficiently prove that a set of elements belong to S.
Moreover, this protocol can be incorporated into the SNARK frontend. More
details of this protocol can be found in sec 4.3, 4.3.1.

More generally, for any q << p∗, where p∗ is a fixed prime and q can be any
large (composite) number, we show that there exists a set of bounded rational
representative S′ such that:

1. There exists a surjective mapping between S′ and Zq.

2. There exists an injective mapping between S′ and Zp∗ .

Thus there exists a surjective mapping ϕ between a subset S∗ of elements of
Zp∗ and all elements of Zq. Furthermore, ϕ can be viewed as a (somewhat)
surjective homomorphism (epimorphism) between the set S∗ and Zq. Taking
advantage of ϕ, the prover can emulate Zq arithmetics inside Zp∗ .

The main arithmetic intuition behind our improved frontend construction is as
follows: The backend prover first proves that it only uses a subset S∗ of Zp∗

elements which only contains valid embedding of Zq elements. Moreover, this
set membership is efficiently provable via certain appended frontend (Batch-
PoSO). Then combining the somewhat epimorphic mapping ϕ : S∗ → Zq, as
well as the ring isomorphism Zq

∼= Zq1 × · · · × Zqℓ , the prover acquires access
to a somewhat homomorphic mapping between Zp∗ and (Zq1 × . . .Zqℓ), which
allows her to emulate arithmetics in ℓ different finite rings using arithmetics in
Zp∗ .

Merging Our SNARK Frontend with Backends Our improved frontend
can be applied to a wide range of SNARK constructions based on commit-and-
prove protocols (see def 3.4). The combined protocol results in a commit-and-
prove scheme with succinct proofs. Moreover it improves the prover running
time and reduces its memory usage. Nevertheless, such base protocol incurs
linear verifier running time. We show in sec 7.1 how to achieve succinct verifica-
tion through simple modifications to the protocol which only makes non-black-
box use of the vector commitment scheme and index relation of the underlying
commit-and-prove protocol. Furthermore, we show how to turn our protocol
into a full-fledged zk-SNARK using standard techniques in sec 7.2.

3 Preliminaries
Notation: We use λ for the security parameter. Let negl(λ) denote a negligible
function. That is, for all polynomial p(λ), it holds that negl < 1/p(λ) for large
enough λ. We use z to denote a vector, z[i] to denote the ith element in z and
z[i :] to denote vector slicing from the index i. We use the notation < z1 · z2 >
to denote the inner product between two vectors z1 and z2. For an integer
n, we shall use [n] for the set {1, 2, . . . , n}. Let pZ be the ideal generated by
some number p ∈ Z and correspondingly let Zp denote the field Z/pZ, which
corresponds to the integers modulo p. We use diagm(a) to denote the m-by-m
diagonal matrix where the values along the diagonal is a.

10

3.1 Chinese Remainder Theorem
Let (q1, . . . , qn) ∈ Zn be a list of n coprime numbers. The Chinese Remainder
Theorem (CRT) states that there exists the following ring homomorphism:

Z ∼= Zq1 × · · · × Zqn ,

where the homomorphism is given by the mapping f : Z → Zq1 × · · · × Zqn as
follows;

f(a) = (a mod q1, . . . , a mod qn).

In particular, let q =
∏n

i=1 qi, then it induces the following ring isomorphism:

Zq
∼= Zq1 × · · · × Zqn ,

where the inverse mapping f−1 : Zq1 × · · · × Zqn → Zq is given as follows:

f−1(a1, . . . , an) =

n∑
i=1

ai · λi mod q,

where each coefficient λi here is an integer such that

λi mod qi = 1 and ∀j ̸= i, λi mod qj = 0.

We note that the coefficients λi could be efficiently computed as follows. Let
Q =

∏
j ̸=i qj be the product of qj ’s except for qi. Then,

λi = Q ·Q−1,

where Q−1 is such that Q ·Q−1 = 1 mod qi.

3.2 Vector Commitment Scheme
A vector commitment scheme is a pair of algorithms (KeyGen,Commit), with
the following syntax.

• KeyGen(1λ) : The commitment key generation algorithm take as input the
security parameter, outputs a commitment key K and specifies an allowed
message space Fn

p∗ .

• Commit(K, z; r) : The commitment algorithm takes as input a commit-
ment key K, an vector z ∈ Fn

p∗ , and a randomness r, and outputs a
commitment c.

Furthermore, we require them to satisfy the following properties.

• Succinct Commitments. The size of commitment c is independent of
the length of vector n.

• Computational Binding. For non-uniform probabilistic polynomial
time algorithm A, there exists a negligible function ν(λ) such that

Pr[K ← KeyGen(1λ), (z1, z1, r1, r2)← A(1λ,K) :

z1 ̸= z2 ∧ Commit(K, z1; r1) = Commit(K, z2; r2)] ≤ negl(λ).

11

• Optional Computational Hiding. For any non-uniform probabilis-
tic polynomial time distinguisher D, and any two vectors z1, z2, there
exists a negligible function negl(λ) such that |Pr[K ← KeyGen(1λ) :
D(1λ,Commit(K, z1)) = 1]−Pr[K ← KeyGen(1λ) : D(1λ,Commit(K, z2)) =
1]| ≤ negl(λ). If the hiding property holds for any unbounded adversary,
then we say the commitment scheme is statistical hiding.

Additive Homomorphic Vector Commitment. We observe that most of
existing vector commitment scheme such as [BBB+18, KZG10] have the follow-
ing “additive homomorphism” structure, which allows us to add two commit-
ments Commit(z1; r1) and Commit(z2; r2) to obtain a new commitment Commit(z1+
z2; r1 + r2).

3.3 Interactive Proof Systems
Interactive Proofs. An interactive proof system for a language L ∈ NP in
the CRS model is a pair of algorithms (Setup,P,V), where the setup algorithm
takes as input a security parameter λ, and outputs a crs, P takes as input the
crs, an instance X ∈ L, and a witness w for X. The verifier takes X as input. The
prover tries to convince the verifier that X ∈ L, by interacting with it in multiple
rounds. Furthermore, we require P,V to satisfy the following properties.

• Completeness. For any instance X ∈ L, and any witness w of x, we have
Pr[crs← Setup(1λ),P(crs, x, w)↔ V(crs, x) : V accepts] = 1.

• Soundness. For any non-uniform PPT malicous prover P∗, there exists
an negligible function negl(λ) such that

Pr[crs← Setup(1λ), x← P∗(crs),
P∗(x)↔ V(crs, x) : x /∈ L ∧ V accept] ≤ negl(λ).

Public-coin. A public-coin interactive protocol (P,V) is an interactive pro-
tocol where the verifier’s random coins are public to the prover. Namely, each
of verifier’s message is a uniform random string and the verification process is
public.

Argument of Knowledge. A public-coin interactive argument of knowledge
for a language L ∈ NP is a pair of algorithms (Setup,P,V),

• Perfect Completeness. For any adversary A, we have

Pr[crs← Setup(1λ), (x,w)← A(1λ, λ),

P(crs, x, w)↔ V(crs, x) : V accept ∨ (x,w) /∈ RL] = 1,

where RL is the NP-relation of L.

• Knowledge Soundness. For all non-uniform PPT malicious prover P∗,
there exists an expected polynomial time extractor E such that for non-
uniform PPT adversary A, there exists a negligible function negl(λ) such

12

that ∣∣∣∣Pr [crs← Setup(1λ), (X∗, r∗)← A(1λ, crs),
⟨P∗(crs,X∗; r∗),V(crs,X∗)⟩ : V accept

]
−

Pr

[
crs← Setup(1λ), (X∗, r∗)← A(1λ, crs),

(W)← EO(crs,X∗) : V accept ∧
(X∗,W)∈R

] ∣∣∣∣
≤ negl(λ),

where r∗ is the randomness of P∗, and

O = ⟨P∗(crs,X∗; r∗)↔ V(crs,X∗)⟩

is the execution between the malicious prover P∗ and the verifier V. The
adversary A is allowed to rewind the prover P∗ to some point and resume
it with fresh randomness from this point onwards.

Honest Verifier Zero-Knowledge. We say an public-coin interactive proto-
col in CRS model (Setup,P,V) for a language L is honest-verifier zero-knowledge,
if there exists a PPT simulator S such that, for any instance X ∈ L, and any
witness w for X,

{crs← Setup(1λ), t← ⟨P(crs,X, w),V(crs,X)⟩ : (crs, t)}λ,X
≈{S(1λ,X)}λ,X,

where t is the transcript of the protocol.

3.4 Commit-and-Prove Protocols
A public-coin commit-and-prove protocol for a vector commitment scheme (Setup,Commit)
and a language L ∈ NP is a public-coin interactive proof system (Setup,P,V)
for the following language,

LK(L) = {(c,X) | ∃(w, r) : RL(X, w) = 1 ∧ c = Commit(K,w; r)},

where RL is the NP-relation for L, and K ← Setup(1λ) is generated by KeyGen.

Commit-and-Prove SNARK A commit-and-prove SNARK is a succinct
non-interactive argument of knowledge (SNARK) if it is further equipped with
the following properties:

• Non-Interactive: The prover only sends a single proof (denoted by π)
to the verifier and no further interaction is required.

• Succinctness: We say that the proof is succinct if the length of π is
independent of the size of the instance |X, w|. Furthermore, we say that
the verification is succinct if the verifier’s runtime is also sublinear in the
size of the instance.

• Argument of Knowledge. The commit-and-prove protocol must be an
argument of knowledge.

13

3.4.1 Field choice

Most existing commit-and-prove SNARKs are designed to support proving lan-
guages involving arithmetic relations over certain field. Nonetheless, depending
on the construction of underlying vector commitment schemes, the choices of
such field can vary.

Since the field choice plays an important role in this work, here we give a
brief review of different vector commitment schemes and the corresponding field
choices. Readers may also consult the survey of [Tha23], Ch.19.3 for more
details.

• The first category utilizes a commitment scheme that is based on certain
algebraic hardness in a known-order group. The examples of such are
[KZG10] [BBB+18]. These schemes are among the most popular ones
and they are widely adopted in many real-world applications. However,
the choice of field is very limited due to many required properties of the
group. In these popular curves such as BLS12-381 and BN-254, the group
order p∗ is a fixed ≈ 255-bit prime number. This also constraints the field
choice to be Fp∗ .

• The second category utilizes a commitment scheme that is based on collision-
resistant hash functions. The examples of such are [COS20][ZXZS20].
Here the field is rather flexible but often needs to support FFT operations
and p∗ is often chosen as a fixed ≈ 64-bit prime number.

• The third category utilizes hardness of unknown order groups [BFS20,
CFKS22, AGL+23, SB23]. These systems are not widely used in practice
due to slow running time hence not of our interests.

In our work we mainly consider the first category as they capture a wide range
of SNARKs deployed in practice. In the scope of this work, we only point out
that since the prime p∗ is very large, each group operation becomes very slow.
For this reason the prover’s efficiency in these systems is often dominated by
the number of group operations that she needs to perform.

3.5 Rank-1 Constraint Systems
Definition 3.1 (R1CS). Rank-1 Constraint Systems is a type of commonly used
arithmetic EQC in cryptographic proof systems. An R1CS instance is a tuple
X = (F, A,B,C, io,m, n) where io denotes the public input and output of the
instance, and A,B,C ∈ Fm×(1+n) with n ≥ |io|.

An R1CS instance is said to be satisfiable if there exists a witness w ∈ Fn−|io|

such that (A · z) ◦ (B · z) = (C · z), where z = (1, io, w) ∈ Fn+1, · is the
matrix-vector product and ◦ is the Hadamard (entry-wise) product. We denote
by RR1CS(X, w) = 1 in this case.

Dear to our interest is another property: We say that an R1CS instance is k-
bounded if for every witness w that makes R1CS satisfiable, each entry of the
following vectors (matrices) (z,A,B,C,A · z,B · z, C · z) is in [0, k] (where we
must consider the operation (A · z) ◦ (B · z) = (C · z) over the integers).

14

3.6 Existentially Quantified Circuits
In this work we consider existentially quantified circuits (EQCs) introduced in
[OBW22]. EQCs are circuits which consist of sets of wires taking values from
some domain (such as bits in boolean circuits) and constraints that express
certain relationships among wire values (such as the constraint x ∧ y = z).
EQCs have two kinds of wire values: explicit inputs values which are assigned
to input wire values at the start of execution, and existentially quantified wire
values, which may take any value consistent with the explicit input values and
the set of constraints.

EQCs capture non-deterministic, non-uniform computation. Their non-determinism
stems from the existentially quantified inputs whose values are, in principle,
“guessed” by the execution substrate. Their non-uniformity reflects the fact
that a circuit of a given size encodes a computation for a fixed-size input.

We especially consider the family of arithmetic EQCs where the constraints are
over the arithmetic operators (∗/·,+,−) corresponding to multiplication/addi-
tion/subtraction.

In particular, boolean circuits are such examples where for each of AND, OR,
XOR and NOT gates, we can consider these analytical representations:

• x ∧ y = xy

• x ∨ y = x+ y − xy

• x⊕ y = x+ y − 2xy

• ¬x = 1− x

3.6.1 EQC Compiler

An EQC compiler is a compiler infrastructure which takes a computer program
as input, and produces an EQC instance such that the resulting EQC instance
encodes the satisfiability of the original computer program. In this work we
specifically consider the EQC compiler that outputs an R1CS instance:

Definition 3.2 (R1CS-type EQC compiler). Let P be a computer program
which takes some value x as input, and let y be the alleged output. A R1CS-
type EQC compiler takes as input the program P , its input/output values (x, y)
and produces an R1CS instance X = (F, A,B,C, io = x||y,m, n). The EQC
compiler must satisfy completeness and soundness as follows: The instance X
is satisfiable if and only if P (x) = y.

We define the following two additional properties of EQC compiler which meet
our interests:

• k-bounded: The compiler always output a k-bounded R1CS instance.

• p-satisfiable: The compiler output a R1CS instance over certain field Fp

(i.e. X = (Fp, A,B,C, . . .)). Furthermore, for every p′ ≥ p, the field Fp′

can be used to substitute Fp in the sense that the instance X is satisfiable
over Fp if and only if it is satisfiable over Fp′ .

15

We observe that most EQC compilers [OBW22] [KPS18] [cir] admit those prop-
erties by design for certain values of k and p. Furthermore, for computer pro-
grams where all the variables are sufficiently small, such as AES, MD5 and
SHA-256 computations, these EQC compilers are naturally k-bounded and p-
satisfiable for small values of k and p (for example, in AES and SHA-256, [cir]
admits k = p = 28). For all other programs, these compilers can be made to
satisfy these two properties (still with small values of k and p) by allowing to
output larger EQC instances.

Remark 3.3 (Backend v.s. Frontend). In the modern language of SNARKs,
the process of compiling a computer program into a suitable EQC instance (such
as R1CS) is often referred to as the SNARK frontend (such as the role of
aforementioned EQC compiler). These instances are then consumed by various
SNARKs schemes targeting for circuit satisfiability. This process of proving
EQC instance is often referred to as the SNARK backend.

3.7 Highly Repetitive Computation
Highly repetitive computation refers to computations where the same sub-
computation is applied to multiple pieces of input which may or may not depend
on each other. For example, in recursive programs certain sub-computation
might be repeated for many times, each time taking the previous output as the
next input.

For example, consider the incremental computation C where the sub-computation
G is repeated ℓ times iteratively: That is: C(x) = G(G . . .G(x))︸ ︷︷ ︸

ℓ times

. SIMD com-

putation can be viewed as a special case of highly repetitive computation.

3.7.1 Data Parallel Computation

Data parallel computation, or same instruction multiple data (SIMD) refers
to computations where the same sub-computation is applied independently to
multiple pieces of input data. This format of computation is ubiquitous in many
real world applications. In this work we often denote the sub-computation by
G, which could be either some computer programs or some arithmetic circuits.

For example, consider the SIMD computation C where the sub-computation G
is repeated ℓ times with ℓ different independent inputs (x1, . . . , xℓ). That is:
C(x1, . . . , xℓ) = (G(x1), . . . , G(xℓ)).

4 Building Blocks
4.1 CRT Packing
Definition 4.1 (CRT Packing Scheme). Let there be a set of coprime numbers
(q1, . . . , qn) and let q =

∏
i∈[n] qi. A CRT Packing Scheme with respect to this

set consists of the two algorithms (CRT.Pack,CRT.Unpack) with the following
syntax:

• CRT.Pack(a1, . . . , an)→ a: The packing algorithm takes as input ai ∈ Zqi

and outputs a number a ∈ Zp.

16

• CRT.Unpack(a) → (a1, . . . , an): The unpacking algorithm takes as input
some number a ∈ Zq and outputs a set of n numbers (a1, . . . , an) where
ai ∈ Zqi for every i ∈ [n].

As described in Sec. 3.1, the packing and unpacking algorithm are naturally
defined by the ring isomorphism Zq

∼= Zq1 × · · · × Zqn .

4.2 Rational Representative
Consider the quotient ring Zp for any prime number p ∈ Z. While it is natural
to represent every element in Zp as integers in Z ranging from [0, p − 1), in
[CKLR21] the authors propose an alternative representative, which they call
”rational representative”. The goal of using this representative is to simplify
the task of proving non-native arithmetic operations in cryptographic proofs
(jumping ahead this becomes one of the core problems in this work). In the
original context of [CKLR21] this turns out to be very useful in the setting of
performing range proofs.

Following the notations of [CKLR21, CGKR22], we provide the following defi-
nition of rational representatives:

Definition 4.2 (Rational Representative). Let Q be the set of rationals (we
always assume the numerator and denominator are coprime), that is:

Q =
{n

d
| n, d ∈ Z, gcd(n, d) = 1

}
Then for any element x ∈ Zp, we say that x is represented by some rational
n
d ∈ Q if it holds that x = n · d−1 mod p.

Note that for each x ∈ Zp, it can have multiple rational representatives. Nev-
ertheless in many cryptographic protocols, it is often desired that this repre-
sentative be unique (i.e. any x ∈ Zp cannot be represented by more than one
rational). Therefore, the authors in [CKLR21] consider a smaller subset of
rationals: S ⊆ Q. In this subset S, each x ∈ Zp has at most one (unique)
representative in the set.

Such uniqueness does not come for free, it comes at the cost that certain elements
x′ ∈ Zp do not admit any representative in the set S. Nevertheless, with some
careful construction of such set, the elements of our interest will always admit
representatives. One example is the set of Bounded Rational Representative:

Definition 4.3 (Bounded Rational Representative). The set of bounded rational
QN,D ⊆ Q contains all the rationals whose numerator is bounded by N and
denominator bounded by D, that is:

QN,D =
{n

d
⊆ Q | |n| ≤ N, |d| ≤ D

}
⊆ Q.

In this case the elements of our interest are all number in [0, N] ⊂ Zp. The
cardinality of such set depends on both N and D, and when both are small
enough, it can be shown that each element in Zp admits unique representative.

Lemma 4.4 (Critierion for unique representative in QN,D). Let N,D be so that
N · D < p/2. Then for any x ∈ Zp, if there is a representative in QN,D of x
(i.e. there exists some n

d so that x = n · d−1 mod p), then n
d must be unique.

17

Proof. Suppose for the sake of contradiction that there exists two rationals
n1

d1
, n2

d2
such that n1

d1
≠ n2

d2
, and furthermore x = n1

d1
= n2

d2
mod p. Multiplying

by the common denominator d1 · d2, we have n1 · d2 = n2 · d1 mod p. However,
since N ·D < p/2, it in fact holds that n1 · d2 = n2 · d1 over Z (not just modulo
p). Thus n1

d1
= n2

d2
, which is a contradiction.

4.3 Proof of Short Opening (PoSO)
In [CKLR21], the authors also designed a companion protocol which allows a
prover P to convince a verifier V (in zero-knowledge) that a committed value
x ∈ Zp admits a rational representative in QN,D for any choice of (N,D). Such
a protocol is called a Proof of Short Opening (PoSO). The name arises from
the fact that the prover shows the existence of some ’short’ (bounded) rational
representative that can be used to open the commitment (hence short opening).

The PoSO protocol is one of our main building blocks, so we will explain it in
more details in this section. At a high level, PoSO mimics a Sigma protocol for
proving knowledge of a committed value. Here we implicitly assume that the
allowed message space in the commitment scheme is Zp. In order to show that
a commitment c = Commit(x) (where x ∈ Zp) admits short opening, the prover
samples a random mask x̃ ∈ [L] (where L is just large enough to hide the value
x) and sends its commitment c̃ = Commit(x̃) to the verifier. The verifier then
responds with a small random challenge γ ∈ [D], and the prover then sends
the value v := x · γ + x̃ (as well we the underlying commitment randomness) to
the verifier. The verifier then checks that v is a valid opening for the combined
commitment c̃+ c (assuming the commitment scheme is additive homomorphic,
see Sec 3.2), and further checks that v ∈ [N].

To see that this protocol indeed proves short opening of x, observe that via
forking lemma [PS01], one can extract the committed value x as x = v1−v2

γ1−γ2

mod p, where the numerator is in the range [−N,N] and the denominator is in
the range [−D,D].

4.3.1 Batch Proof of Short Opening (Batch-PoSO)

While in [CKLR21] the role of PoSO is to prove in zero-knowledge the shortness
of a single element, it does not fit our primary interest in this work. Instead we
seek for a batched variant of PoSO which allows a prover to convince the verifier
that, for some vector z ∈ Zn

p∗ that is committed as c = Commit(z) via a vector
commitment, each entry z[i] in the vector admits short opening. In particular,
we require that the proof must be succinct (we do not require zero-knowledge).
That is, the proof size is independent of the dimension of the vector. We call
such protocol Batch-PoSO. We provide its formal definition as follows:

Definition 4.5 (Batch-PoSO). A Batch Proof of Short Opening (Batch-PoSO)
is a commit-and-prove protocol for the following promise language (LR,1, LN,D):

• A vector z ∈ Zn
p is said to be in the language LR,1 if for all i ∈ [n], the

entry z[i] ∈ [0, R].

• A vector z ∈ Zn
p is said to be in the language LN,D if for all i ∈ [n], the

entry z[i] admits a rational representative in QN,D.

18

Remark 4.6. We remark that by using promise language for Batch-PoSO, we
allow a gap between completeness and soundness: For completeness, we only
require honest prover being able to prove that each element z[i] in the vector is
in the range [0, R]. Whereas for soundness, any prover cannot succeed whenever
the opening has numerator beyond the range [−N,N] or denominator beyond
range [−D,D] (a.k.a. does not admit bounded rational representative).

A protocol for Batch-PoSO is given in [CGKR22] and implicitly given in [GJJZ22].
We first present a high level sketch of the protocol. The core idea is to mimic
the basic PoSO protocol (described above). The prover first sends the verifier
the commitment c = Commit(z) which she aims to prove short opening. Now
the main difference from PoSO is that instead of asking the verifier to send
the challenge as a single short element, the verifier will send a short random
vector r ∈ Zn

p∗ such that each entry r[i] is small (i.e. ∀i ∈ [n], r[i] ∈ [0, D)).
Furthermore, no mask is required from the prover’s side since we don’t require
zero-knowledge. Upon receiving the random vector, the prover then computes
the inner product v :=< z ·r > over Zp∗ and sends v along with a proof π of the
correctness of this inner product to the verifier (This can be achieved by combin-
ing with many existing commit-and-prove schemes which has succinct proofs).
The verifier then accepts if both that π is a valid proof and that v ∈ [N].

The formal description of Batch-PoSO is provided in Fig 2.

Batch-PoSO
• Ingredients: A commit-and-prove protocol (with succinct proofs) for

proving arithmetic relations over Zp∗ , where p∗ is a fixed prime deter-
mined by the underlying vector commitment scheme.

• Preliminary: The prover holds some vector z ∈ Zn
p∗ . Both the

prover and verifier receive (R,N,D) which defines the promise language
(LR,1, LN,D).

• Construction:
1. The prover generates c := Commit(z;u) with some randomness u,

and sends c to the verifier.
2. The verifier samples r ∈ Zn

p∗ such that each entry r[i] is small (i.e.
∀i ∈ [n], r[i] ∈ [0, D)), and then sends them to the prover, who
computes v :=< z · r >

3. The prover and verifier prepares the following R1CS instance (for
proving correctness of above inner product): XPoSO = (A,B,C, io =
[1, v], 1, n + 1), where A = [r[1], . . . , r[n], 0, 0], B = [0, . . . , 0, 1] and
C = [0, . . . , 1, 0].

4. The prover and verifier execute the commit-and-prove protocol with
respect to the R1CS instance XPoSO and commitment c.

P
(
1λ, (XPoSO, u)

)
↔ V(1λ,XPoSO).

If the prover succeeds in the commit-and-prove protocol and that
v ∈ [N], the verifier accepts, otherwise it rejects.

Figure 2: Description of Batch-PoSO.

19

Security proof for Batch-PoSO We prove that the Batch-PoSO protocol
described in Fig 2 satisfies completeness and soundness via the following two
claims:

Claim 4.7 (Completeness of Batch-PoSO). Whenever N ≥ R ·D · n, the above
Batch-PoSO satisfies completeness.

Proof. It is easy to see that if for each i ∈ [n], z[i] ∈ [R], then v :=< z · r > ≤
R ·D · n ≤ N . Thus v ∈ [N] and the verifier will always accept (assuming the
commit-and-prove protocol also has perfect completeness).

Claim 4.8 (Soundness of Batch-PoSO). For any fixed constant N , and for any
{zi}i∈[n] with zi ∈ Zp for each i, if

Pr

[
r1, r2, . . . , rn ← [0, D) :

n∑
i=1

ri · zi ∈ [N]

]
> 1/D,

then for each i, there exists two integers zi,1 ∈ [−N,N], zi,2 ∈ [1, D] such that
zi = zi,1 · z−1i,2 mod p∗. Thus the soundness error of Batch-PoSO is at most
1/D (plus the soundness error of the underlying commit-and-prove protocol of
inner product relation).

Proof. The proof relies on probabilistic method. More specifically, since we
have:

Pr
r1,r2,...,rn←[0,D)

[
n∑

i=1

ri · zi ∈ [N]

]
> 1/D,

by averaging argument, for each i ∈ [n], there must exist
(r∗1 , r

∗
2 , . . . , r

∗
i−1, r

∗
i+1, . . . , r

∗
n) such that

Pr
ri←[0,D)

 n∑
j ̸=i

r∗j · zj + ri · zi ∈ [N]

 > 1/D.

Since there are only D choices of ri, there exists r1i , r
2
i ∈ [0, D), (r1i > r2i) such

that
n∑

j ̸=i

r∗j · zj + r1i · zi ∈ [N]
∧ n∑

j ̸=i

r∗j · zj + r2i · zi ∈ [N].

Let zi,2 := r1i − r2i ∈ [1, D), thereby, let

zi,1 :=

 n∑
j ̸=i

r∗j · zj + r1i · zi

−
 n∑

j ̸=i

r∗j · zj + r2i · zi

 = zi,2 · zi ∈ [−N,N].

It follows that zi = zi,1 · z−1i,2 mod p∗, where zi,1 ∈ [−N,N], zi,2 ∈ [1, D] as
desired.

20

Lemma 4.9 (LCM bound for Batch-PoSO). Given {zi}i∈[n] and zi,1 ∈ [−N,N], zi,2 ∈
[1, D] such that zi = zi,1 · z−1i,2 mod p∗, define L := LCM{zi,2}i∈[n]. Also sup-
pose that L > D > 4 and that NDn < p∗. Then, we additionally have

Pr

[
r1, r2, . . . , rn ← [0, D) :

n∑
i=1

ri · zi < N mod p∗

]
≤ 1

D
+

b

L

where b = gcd(z1, . . . , zn, L).

Importantly, when b = 1, this says that if L > D, then the prover succeeds only
with low probability.

Proof. Note that the condition in the probability statement above is equivalent
to (for some c ∈ [N])

n∑
i=1

ri · zi = c mod p∗

=⇒
n∑

i=1

ri · zi,1
L

zi,2
= cL mod p∗

where L = LCM{zi,2}i∈[n]. Here, both LHS and RHS are lesser than p∗ (due
to the condition in the statement of the lemma), hence this equation holds over
Z. We can rewrite this in the following form:

n∑
i=1

ri
zi,1
zi,2
∈ Z

=⇒
n∑

i=1

rizi,1
L

zi,2
= 0 mod L

The proof is by induction. WLOG, let b = 1. If not, we can divide all coefficients
and c by b, and consider the probability mod k/b. (If c is not divisible by b, the
probability is 0, which is smaller than the required upper bound)

Consider the base case n = 1. Here,

Pr
r←[0,D)

[rz = c mod L] = Pr
r←[0,D)

[r = cz−1 mod L]

≤ 1

D
+

1

L

since z is invertible modulo L.

Suppose the statement is true for n− 1. For n, notice that

Pr

[
r1, r2, . . . , rn ← [0, D) :

n∑
i=1

ri · zi = c mod L

]

=
1

D

∑
θ←[0,D)

Pr

[
r1, . . . , rn−1 ← [0, D) :

n−1∑
i=1

ri · zi = c− znθ mod L

]

21

Here, let b′ = gcd(z1, . . . , zn−1, L). Then, gcd(b′, zn) = b = 1. Notice that any
probability term in the above summation is zero if c − znθ is not divisible by
b′. Since c − znθ is an arithmetic progression with common difference coprime
to b′, we can upper bound the number of θs for which b′ | (c − znθ) - this is at
most ⌈D/b′⌉.

Hence, the above summation can be bounded as

1

D

∑
θ←[0,D)

Pr

[
r1, r2, . . . , rn−1 ← [0, D) :

n−1∑
i=1

ri · zi = c− znθ mod L

]

≤ 1

D
·
⌈
D

b′

⌉
·
(

1

D
+

b′

L

)
<

1

D
·
(
D

b′
+ 1

)
·
(

1

D
+

b′

L

)
=

(
1

b′
+

1

D

)
·
(

1

D
+

b′

L

)
=

1

L
+

1

D

(
1

b′
+

b′

L
+

1

D

)
Notice that when L > D > 4, we have

1

b′
+

b′

L
+

1

D
<

1

2
+

2

L
+

1

D
< 1

This completes the proof.

5 Proving Non-native Modulo Arithmetic
Many commit-and-prove protocols are equipped with a corresponding vector
commitment scheme where the committed vectors are over Fn

p∗ , where Fp∗ is
some fixed prime field (also see remark 3.4.1 for more discussion). Due to this
reason these protocols naturally allow for proving modulo relations over the ring
Zp∗ for such fixed choice of p∗.

5.1 Non-native Arithmetic
One of main difficulties in many proof systems is to prove arithmetic relations
over some modulus q ̸= p∗, which is an example of proving non-native arithmetic
relations.

Many solutions have been proposed to deal with this difficulty. Some utilize bit
decomposition, such as [KPS18]. This approach introduces a large number of
constraints (thus jeopardize efficiency) whenever the modulus q becomes large.
Other constructions utilize certain special ring encodings, such as [GNSV21].
But this approach only achieves designated-verification (which is less desirable
than public verifiablity) and still poses many constraints onto the backend.

One of our main contribution is to propose an efficient solution to this problem
for any (reasonably large) modulus q << p∗. Our solution is based on a differ-
ent characterization of Zq elements and makes use of the Batch-PoSO protocol

22

described in previous section. Furthermore it builds directly on top of these
existing commit-and-prove protocols with minimal overhead.

Jumping ahead out main use case of this technique is for proving R1CS relations
which is defined over some arbitrary ring Zq. This can be seen as en example of
proving modulo q arithmetics. Let’s denote such instance by Xq = (Zq, A,B,C,
io,m, n). We thus restrict our attention to commit-and-prove protocols which
targets for R1CS relations. Below we first summarize all our ingredients.

Ingredients.

• A vector commitment scheme (KeyGen,Commit) over the message space
Zn
p∗ .

• A commit-and-prove protocol (KeyGen,Commit,P,V) for the vector com-
mitment scheme (KeyGen,Commit) that allows for proving R1CS relations
over Zn

p∗ . We also require it to be an argument of knowledge.

5.2 Overview
We present an high-level overview of our techniques. The most intuitive idea
(despite having some challenges) is to transform the R1CS instance Xq into a
new instance Xp∗ such that it is defined over Zp∗ . The resulting instance can
then be proved via the commit-and-prove protocol which supports proving Zp∗

relations.

For this purpose, we build the following R1CSTransformer: The transformer will
perform the following changes to each constraint in Xq. For example, suppose
we want the prover to prove the constraint that a · b = c mod q. Instead
of proving this relation over modulo q, let’s now ask the prover to supply an
additional shift value k and subsequently prove that a · b = c + k · q (over Z) ,
which is a relation that holds over the integers. We then add this constraint to
Xp∗ . In other words, we add the constraint that a · b = c+ k · q in the instance
Xp∗ . Nevertheless, since all of (a, b, c, k) now lives in the ring Zp∗ , this constraint
only holds over Zp∗ . Importantly, it does not necessarily imply that a · b = c
mod q.

To deal with this issue, we will in fact use a different encoding of Zq elements
and embed them in Zp∗ . We emphasize that this encoding is only possible
whenever q << p∗. More details follow in subsequent sections.

5.3 Encoding Zq elements
Again we will use rational representative as discussed in section 4.2 to encode
Zq elements. That is, for any value x ∈ Zq, it is represented by some rational
n
d ∈ Q such that x = n · d−1 mod q. However, a new issue arises in this
setting: Since q can be arbitrary, it might be any composite number. Thus the
denominator d might not even admit its inverse modulo q if gcd(d, q) ̸= 1. For
this reason, we will restrict the set of rational representative to those whose
denominator admits inverse modulo q. Similar to definition 4.2, we define the
notion of q−invertible rational representative:

23

Definition 5.1 (q−Invertible Rational Representative). Let Qq be the following
set of rationals:

Qq =
{n

d
| n, d ∈ Z, gcd(n, d) = 1, gcd(q, d) = 1

}
Then for any value x ∈ Zq, we say that x is represented by the rational n

d ∈ Qq

if x = n · d−1 mod q.

5.4 Proving Arithmetic Relation Over Zq

Equipped with such encoding of Zq elements, we now explain how to prove
any arithmetic relations modulo q. Recall that we add the constraint that
a · b = c+k ·q mod p∗. Since this constraint is defined over Zp∗ , we can assume
that each of (a, b, c, k) lives in the ring Zp∗ .

We want to embed the ring Zq inside Zp∗ as follows: Instead of treating (a, b, c, k)
as Zp∗ elements, we will view each as an element of Zq (via our Zq encodings). To
achieve this, we first map Zp∗ elements to their bounded rational representatives:
For example, consider the representation of a as a1

a2
such that (gcd(a1, a2) =

1, a = a1

a2
mod p∗; a1, a2 are both small). We assert that all of (a, b, c, k) admit

such bounded representatives. Then we have:

a1
a2
· b1
b2

=
c1
c2

+
k1
k2
· q mod p∗

Similar to what we have proved in lemma 4.4, if all the rational representative in
the above equation have both bounded numerator and bounded denominator,
then in fact we can argue that this equation indeed holds over the field of rational
numbers, instead of merely modulo p∗.

More concretely, let’s assume that all of (a, b, c, k) admit bounded representative
in QN,D such that (ND)2 < q and N · D3 · (q + 1) < p∗. Then let’s multiply
both sides of the equation by the LCM of the denominators:

a1 · b1 · c2 · k2 = a2 · b2 · c1 · k2 + k1 · a2 · b2 · c2 · q mod p∗

Since a1, b1 ≤ N and c2, k2 ≤ D, it holds that the left hand side a1 ·b1 ·c2 ·k2 < p∗

and furthermore the right hand side a2 · b2 · c1 · k2 + k1 · a2 · b2 · c2 · q < p∗.
Dividing back the LCM, the following equation will hold over rational numbers:

a1
a2
· b1
b2

=
c1
c2

+
k1
k2
· q

We furthermore consider another mapping which maps each of above ratio-
nal representative into a Zq element: Let’s first assert that all these rational
representatives (a1

a2
, b1
b2
, c1
c2
, k1

k2
) are also q−invertible, then we map them to Zq

elements by taking the above equation modulo q, which now becomes:

a1
a2
· b1
b2

=
c1
c2

mod q

Let’s denote by a′ = a1

a2
mod q, b′ = b1

b2
mod q, c′ = c1

c2
mod q. We say that

(a′, b′, c′ ∈ Zq) are embedded Zq elements of (a, b, c ∈ Zp∗).

24

Moreover, since ND <
√
q < p/2, by lemma 4.4 (a′, b′, c′) are in fact unique

embeddings of (a, b, c). Thus the constraint a · b = c+ k · q mod p∗ now implies
a′ · b′ = c′ mod q.

To conclude, whenever (a, b, c) ∈ Zp∗ admit rational representative in QN,D∩Qq,
we can define a mapping ϕ : {a, b, c} → Zq as follows: Let a1

a2
∈ QN,D ∩Qq be

the rational representative of a, then ϕ(a) → a′ where a′ = a1

a2
mod q (similar

for b, c). The mapping ϕ is somewhat homomorphic in that a · b = c mod p∗

implies a′ · b′ = c′ mod q.

5.4.1 Batch-PoSO for Representative in QN,D ∩Qq

One important aspect behind the embedding is that we must ensure an element
a ∈ Zp∗ admit representative in QN,D ∩ Qq. In this section we argue that
the Batch-PoSO protocol already suffices to prove this by simply tuning the
parameters.

Let qmin be the smallest divisor of q. Observe that whenever D < qmin, we must
have QN,D ⊆ Qq. This is to say QN,D ∩Qq = QN,D.

We have shown via lemma 4.8 that the Batch-PoSO protocol as described in Fig
2 guarantees that a vector z admits rational representative in QN,D. In order
to design a Batch-PoSO for Representative in QN,D ∩ Qq, it suffices to update
D = min(D, qmin − 1).

5.5 Commit-and-Prove Construction
In this section we present a formal construction of a commit-and-prove protocol
which supports proving modulo arithmetics where the modulus q << p∗. We
start by describing the R1CSTransformer.

The R1CS Transformer Zq → Zp∗ In Fig 3 we give the description of a
R1CSTransformer which compiles the R1CS instance Xq into a new instance Xp∗

which is defined over Zp∗ . For ease of subsequent security analysis, we further
assume that Xq is k-bounded (see def 3.1 for its definition).

In Fig 4, we present our full commit-and-prove protocol for proving arithmetic
relations over Zq. It uses the following components:

• The R1CSTransformer, in Fig 3.

• The aforementioned ingredients in Sec 5.1.

• The Batch-PoSO protocol in Fig 2.

R1CS transformer which compiles Xq to Xp∗

1. Parse Xq = (Zq, A,B,C, io,m, n).
2. Let A′ = A||diagm(0), B′ = B||diagm(0), C ′ = C||diagm(q).
3. Set Xp∗

= (Zp∗ , A′, B′, C ′, io,m, (n+m)).

Figure 3: Description of R1CS Transformer

25

Commit-and-prove for arithmetic over Zq

1. The prover and the verifier run R1CSTransformer on the instance Xq to
obtain a R1CS instance Xp∗

= (Zp∗ , A,B,C, io,m, (n+m)).
2. Let W be prover’s witness. The prover computes a shift vector k ∈ Zm

q

such that (A · z||k) ◦ (B · z||k) = (C · z||k) holds over the integers, where
z = (1, io,W) ∈ Zn+1

q .
3. The prover then sets the final witness value as W = W||k. The prover

generates c := Commit(W;u) with some randomness u, and sends c to
the verifier.

4. The prover and verifier execute the commit-and-prove protocol with re-
spect to the R1CS instance Xp∗ and commitment c.

P
(
1λ, (Xp∗

, u)
)
↔ V(1λ,Xp).

5. Let qmin be the smallest divisor of q. The prover and verifier execute the
Batch-PoSO protocol for the language (LR,1, LN,D) on the commitment
c, where the parameters are set to be (R = q, D = qmin − 1, N =
R ·D · (m+ n)). This protocol is repeated for λ/ log(D) times.

6. The verifier accepts if the prover succeeds in all protocols.

Figure 4: Description of Commit-and-prove for Xq.

Remark 5.2 (Merging Batch-PoSO). We point out that although there exists
two commit-and-prove schemes in Fig 4, one for the instance Xp∗ and one for
multiple executions of Batch-PoSO protocols, these two schemes can be easily
merged together by augmenting the instance Xp∗ to include all constraints as
required for PoSO (which itself is also an R1CS instance). We defer the detail
of this merging to our final protocol (see Fig 6).

5.6 Security Proofs for Commit-and-Prove Protocol of Mod-
ulo Arithmetics

In this section we give security proofs for our commit-and-prove protocol which
is described in fig 4.

Completeness We show that this construction achieves completeness. In
particular, if the instance Xq is satisfiable and the prover P holds a satisfy-
ing witness W for the instance Xq, then she can convince the verifier V with
probability 1.

The prover will first use W to compute the vector k ∈ Zm
q such that (A · z||k) ◦

(B · z||k) = (C · z||k) over the integers, where z = (1, io,W) ∈ Zn+1
q . Since this

equation holds over the integers, it also holds over modulo p∗. Thus the concate-
nated witness W||k is a valid witness for the instance Xp∗ . Therefore the prover
can succeed in the commit-and-prove protocol for this instance with probability
1 due to the completeness of the underlying commit-and-prove protocol.

Furthermore, since (W||k) ∈ Z(m+n)
q , due to the completeness of Batch-PoSO

(lemma 4.7), the prover will also pass all Batch-PoSO protocols with probability

26

1.

Soundness Assuming that k · q2min · (q · (m + n))2 < p∗, we show that this
construction has soundness error at most 1/2λ.

Suppose that Xq is not satisfiable, we consider two cases:

• Case I: Assume the prover’s concatenated witness W||k does not admit
representative in QN,D. Then by soundness of Batch-PoSO (lemma 4.8),
the prover can pass each Batch-PoSO protocol with probability at most
1/D, thus the soundness error in this case is at most 1

D

λ/ log(D)
= 1/2λ.

• Case II: Assume the prover’s concatenated witness W||k admits repre-
sentative in QN,D. We argue that If the prover can pass the commit-and-
prove protocol for Xp∗ with probability greater than 1/2λ, then Xq must
be satisfiable.

Consider each constraint i ∈ [m] in Xq:

A[i] · z ·B[i] · z = C[i] · z mod q

This constraint is substituted with the following constraint in Xp∗ :

A[i] · z ·B[i] · z = C[i] · z+ k[i] · q mod p

Suppose the prover succeeds in the commit-and-prove protocol. Due to
knowledge soundness of the commit-and-prove protocol, we can extract
from the prover the extended witness vector z||k ∈ Zn+m

q such that z, k[i]
will pass the above constraint. Since the prover’s witness W||k admits
representative in QN,D, both z and k[i] admit representative in QN,D.
We slightly abuse the notation and write z1

z2
as the corresponding vector

of rational representative for z (and similarly for k), then we have:

A[i] · z1
z2
·B[i] · z1

z2
= C[i] · z1

z2
+

k1[i]

k2[i]
· q mod p

Multiply by LCM of denominators (denote the LCM by L), we have:

A[i] · z1 ·B[i] · z1 · L = (C[i] · z1 + k1[i] · q) · L mod p

Since Xq is k-bounded, the value of A[i] ·z1 ·B[i] ·z1 is at most k assuming
z1 ∈ Zn+1

k . However, the guarantee that we have on z is that z1 ∈
Zn+1
N=q·D·(m+n). Nonetheless under this condition it will blow up the value

of A[i] · z1 · B[i] · z1 by at most (N/k)2. Thus we can can still bound
this value by k · (N/k)2 < k · D · (q · (m + n))2. Similarly, the value
C[i] · z1 +k1[i] · q is at most (k+ q2) ·D · (m+ n). We can always assume
that left term k ·D · (q · (m+ n))2 dominates.

Furthermore, by lemma 4.9, the LCM L is at most D. Since k ·D2 · (q ·
(m+n))2 < k · q2min · (q · (m+n))2 < p∗, this equation must also hold over
the integers. Thus we have:

A[i] · z1
z2
·B[i] · z1

z2
= C[i] · z1

z2
+

k1[i]

k2[i]
· q

27

Moreover, since we have set D = qmin − 1, as discussed in Sec 5.4.1, this
further implies that both z and k[i] admit representative in Qq (thus can be
viewed as element in Zq). Finally we define the corresponding embedded
Zq elements as z′ = z1

z2
mod q. It can be seen that:

A[i] · z′ ·B[i] · z′ = C[i] · z′ mod q

Thus z′ contains a satisfying witness for the instance Xq, and this is a
contradiction.

6 Improved Frontend for SIMD Computations
In this section we show how to build a commit-and-prove protocol for any com-
putation that is data-parallel (SIMD) (see def 3.7.1). We point out that our core
effort is to design a better frontend (an compiler to R1CS instances) which can
be readily combined with many existing commit-and-prove schemes (backends).

We first list the necessary ingredients as follows.

Ingredients.

• A commit-and-prove protocol for arithmetics over Zq for any choice of q
as shown in Fig 3;

• A k-bounded and p-satisfiable EQC compiler which takes as input some
program G, and outputs some R1CS instance. (see Sec 3.6.1);

• A CRT packing scheme (see Def 4.1).

Roadmap: Our roadmap in this section is as follows: The primary goal is
to design a specific R1CSCompiler that outputs an optimized R1CS instance for
any SIMD computation. We will start with a toy example in Sec 6.1 where we
will explain the idea behind such a compiler for a simple SIMD computation.
We will then extend this idea to general SIMD computation in Sec 6.2. Then
in Sec 6.3 we will present the full description of our specific R1CSCompiler. We
then combine this compiler with the commit-and-prove protocol for arithmetics
over Zq described in the previous section so as to derive an optimized commit-
and-prove protocol for SIMD computation.

6.1 A Toy Example
Consider a simple SIMD computation in the form of a circuit C which consists
of two copies of the subcircuit G. The subcircuit G takes a single input x and
outputs G(x) = x(x + 1) (where the operation is over the integers). That is
C(x1, x2) := (G(x1), G(x2)) = (x1(x1+1), x2(x2+1)). Let’s furthermore denote
this pair of output values as (y1, y2).

Observe that in order to express the correctness of computing circuit C, we
could simply enforce the following two constraints:

y1 = x1(x1 + 1); y2 = x2(x2 + 1).

28

Our improvement stems from the following goal: We would like to combine these
two constraints into one single constraint. In order to achieve this, notice that
although both constraints are defined over the integers, whenever the values of
x1 and x2 are small, we can in fact consider these constraints over finite rings.
For example: Assume that x1 ≤

√
q1 − 1 for some prime q1, then we have

x1(x1 + 1) < q1. Consider the ring Zq1 , observe that

y1 = x1(x1 + 1) mod q1 ⇐⇒ y1 = x1(x1 + 1).

Similarly, let’s pick a different prime number q2 such that x2 ≤
√
q2 − 1, then

we can instead write these two constraints:

y1 = x1(x1 + 1) mod q1; y2 = x2(x2 + 1) mod q2.

Notice that both constraints are expressed as finite ring operations (over Zq1 and
Zq2 respectively). This readily suggests a way of packing those two constraints
using the CRT isomorphism.

Applying the CRT packing (see Sec 4.1), let q = q1 · q2. We pack the values
into X = CRT.Pack(x1, x2), Y = CRT.Pack(y1, y2). The ring isomorphism
Zq
∼= Zq1 × Zq1 implies that:

Y = X(X + 1) mod q ⇐⇒ y1 = x1(x1 + 1) ∧ y2 = x2(x2 + 1).

Therefore, instead of writing two constraints, we could have merged them into
a single constraint of the same format. This comes at the cost of packing the
values inside a larger modulus.

6.2 Handling General SIMD Computations
In general, we can consider any SIMD computation C where the sub-computation
G is repeated ℓ times with ℓ different independent inputs (x1, . . . , xℓ). That is:
C(x1, . . . , xℓ) = (G(x1), . . . , G(xℓ)).

We first apply the k-bounded and p-satisfiable EQC compiler on the program
G. The compiler outputs some R1CS instance which we shall denote by XG =
(AG, BG, CG, io = ⊥,m, n). For each sub-computation i ∈ [ℓ], let yi be its
alleged output. We denote by Xi

G where we substitute the input/output values
ioi with the corresponding value (xi, yi): That is, ioi = xi||yi. It follows that
Xi

G encodes the satisfiability of the sub-computation G on input value xi and
output yi.

Let Wi be prover’s alleged witness for the ith instance. Let zi = (1, ioi,Wi) ∈
Zn+1
k be its extended witness vector.

We want to use CRT packing to pack all the ℓ instances into just one instance.
First, we choose ℓ smallest different prime numbers (q1, . . . , qℓ) such that each
qi ≥ p. Let q =

∏ℓ
i=1 qi and let z = CRT.Pack(z1, . . . , zℓ). Observe that the

CRT isomorphism implies that:

(AG · z) ◦ (BG · z) = CG · z mod q~w�
∀i ∈ [ℓ] : (AG · zi) ◦ (BG · zi) = CG · zi mod qi.

29

Due to p-satisfiability of the compiler, it further holds that:

∀i ∈ [ℓ] : (AG · zi) ◦ (BG · zi) = CG · zi mod qi~w�
(AG · zi) ◦ (BG · zi) = CG · zi mod p.

To conclude, let io = CRT.Pack(io1, . . . , ioℓ) and let the packed R1CS instance
be XC = (Zq, AG, BG, CG, io,m, n). It is satisfiable if and only if all of

{
Xi

G

}
i∈[ℓ]

are satisfiable. In other words, XC encodes the satisfiability of the SIMD circuit
C.

The only caveat now is that the instance XC is defined over some arbitrarily
chosen modulus q. Furthermore, the modulus q is very large (this increases with
the number of sub-computations).

Fortunately, we already know how to deal with this issue: The aforementioned
commit-and-prove protocol for modulo arithmetics over Zq can be used to prove
such instance.

6.3 Commit-and-Prove Protocol for SIMD Computation
In this section we formally present our commit-and-prove protocol for any SIMD
computation C. Let C consists of N identical copies of the sub-computation G,
each copy i has its input and alleged output ioi. For some choice of ℓ (which we
refer to as the packing factor from now on), We will split these N copies into
N/ℓ batches, each batch consisting of ℓ copies. The description of R1CSCompiler
is given in Fig 5.

R1CS Compiler for SIMD computations
1. Apply the k-bounded and p-satisfiable EQC compiler on the program G,

and let XG = (AG, BG, CG, io = ⊥,m, n) be the resulting R1CS instance
for G.

2. Choose ℓ smallest different prime numbers (q1, . . . , qℓ) such that each
qi ≥ p. Let q =

∏ℓ
i=1 qi and assert that k · p2 · (q · (m+ n))2 < p∗.

3. Let T = N/ℓ. For each j ∈ [T], do the following:
• For i ∈ [ℓ], let ioji be the input and alleged output for the (j ·T + i)th

sub-computation.
• Pack the values {ioji}i∈[ℓ] via CRT packing: CRT.Pack({ioji}i∈[ℓ])→

ioj .
Construct the following matrices:

AC = diagT (AG);
BC = diagT (BG);
CC = diagT (CG).

4. Set XC = (Zq, AC , BC , CC , io1|| . . . ||ioT ,m ∗ T, n ∗ T).

Figure 5: Description of R1CS compiler for SIMD computations.

After obtaining the R1CS instance XC from the compiler, we then use our
commit-and-prove protocol for arithmetics over Zq (described in Fig 4) to prove

30

such instance. This concludes our commit-and-prove protocol for SIMD com-
putations.

For ease of subsequent analysis, we also provide a complete description of our
commit-and-prove protocol in Fig 6. Notice that in the final protocol, we only
make a single black-box use of the underlying commit-and-prove construction.
In other words, our contribution can be seen as an improved frontend for SIMD
computations.

A Commit-and-Prove Protocol for SIMD Computations
• Basic Ingredients:

– A commit-and-prove protocol for proving arithmetic relations over
Zp∗ where p∗ is a fixed prime determined by the underlying vector
commitment scheme (see Def 3.2);

– A k-bounded and p-satisfiable EQC compiler which takes as input
any program G, and outputs some R1CS instance. (see Sec 3.6.1);

– A CRT packing scheme (see Def 4.1).
• Preliminaries:

– Let SIMD computation C consist of N identical copies of the sub-
computation G, where each copy i has its input and alleged output
as ioi.

– Let ℓ be the packing factor, we will split these N copies into N/ℓ
batches, each batch consisting of ℓ copies.

Full Construction
• Preprocessing Phase:

1. Apply the EQC compiler to the program G, and let XG =
(AG, BG, CG, io = ⊥,m, n) be the resulting R1CS instance for G.

2. Choose ℓ smallest different prime numbers (q1, . . . , qℓ) such that each
qi ≥ p. Let q =

∏ℓ
i=1 qi and assert that k · p2 · (q · (m+ n))2 < p∗.

3. Let T = N/ℓ. For each j ∈ [T], do the following:
– For i ∈ [ℓ], let ioji be the input and alleged output for the

(j · T + i)th sub-computation.
– Pack the values {ioji}i∈[ℓ] via CRT packing:

CRT.Pack({ioji}i∈[ℓ])→ ioj .
Construct the following matrices:

AC = diagT (AG);
BC = diagT (BG);
CC = diagT (CG).

4. Set merged R1CS instance to be Xq
C = (Zq, AC , BC , CC ,

io1|| . . . ||ioT ,m ∗ T, n ∗ T).
5. Apply R1CSTransformer (described in Fig 3) to the instance Xq

C to
obtain a R1CS instance Xp∗

C = (Zp∗ , A′C , B
′
C , C

′
C , io1|| . . . ||ioT ,m ∗

T, (m+ n) ∗ T).

31

A Commit-and-Prove Protocol ... (continued)
• Commit-and-Prove Phase:

1. Let {Wj
i}i∈[ℓ],j∈[T] be the set of corresponding witness values. The

prover set zji = (1, ioji ,W
j
i) and then pack these values as zj =

CRT.Pack(zj1, . . . , z
j
ℓ) for each j ∈ [T]. Finally it sets the concate-

nated extended witness as z = z1|| . . . ||zT.
2. The prover then computes the vector k ∈ Zm∗T

q such that (A′C ·
z||k) ◦ (B′C · z||k) = (C ′C · z||k) over the integers.

3. The prover then resets the extended witness as z = z||k and commits
to it as c := Commit(z||k;u) with some randomness u, and then
sends c to the verifier.

4. Merging λ/ log(p) executions of Batch-PoSO:
(a) Both prover and verifier set up the following PoSO parameters:

(R = q, D = p, N = R · p · (m+ n) ∗ T).
(b) For j ∈ [λ/ log(p)], the verifier samples random vector rj ∈

Z(m+n)∗T
p∗ such that each entry rj [i] is small (i.e. ∀i ∈ [(m +

n) ∗ T], rj [i] ∈ [0, D)). It then sends them to the prover, who
computes vj :=< z · rj >

(c) The prover and verifier prepare the following R1CS instance:
XPoSO = (A,B,C, io = ⊥, λ/ log(p), (m + n) ∗ T + 1), where

A =

 r1||0||0
. . .

rλ/ log(p)||0||0

, B =

0 . . . ||0||1. . .
0 . . . ||0||1

 and C =

0 . . . ||1||0. . .
0 . . . ||1||0

.

(d) Both the prover and verifier augment the R1CS instance Xp∗

C

with XPoSO. Let’s denote this final instance as X∗.
(e) The prover sets v = v1|| . . . ||vλ/ log(p), and resets the extended

witness as z = z||v, where v is part of the output (i.e. it
appears in io). It then sends v as part of the claimed output to
the verifier.

5. The prover and verifier execute the commit-and-prove protocol with
respect to the R1CS instance X∗ and commitment c.

P
(
1λ, (X∗, u)

)
↔ V(1λ,X∗).

6. If this passes and that v[j] ∈ [N] for each j ∈ [|v|], the verifier
accepts, otherwise it rejects.

Figure 6: Description of our full commit-and-prove protocol for SIMD compu-
tations.

6.4 Security Proofs for Commit-and-Prove Protocol for
SIMD Computation

In this section we give security proofs of our commit-and-prove protocol for
SIMD computation described in Fig 6.

Completeness We show that this construction achieves completeness. In
particular, suppose the computation C is correct, that is, the alleged outputs is

32

the result of applying the computation C over its inputs. In this case we argue
that the prover can pass the commit-and-prove protocol with probability 1.

Since the computation C is correct, each of sub-computation G must be cor-
rect with respect to the corresponding inputs and outputs in {ioji}i∈[ℓ],j∈[T].
Therefore, we can find the corresponding witness such that each R1CS instance
XG = (AG, BG, CG, ioji ,m, n) is satisfiable. Let {Wj

i}i∈[ℓ],j∈[T] be the set of cor-
responding witness values. Define zji = (1, ioji ,W

j
i). Then it holds that for all

i ∈ [ℓ] and j ∈ [T]:

(AG · zji) ◦ (BG · zji) = CG · zji mod p.

Due to p-satisfiability of the compiler, we have:

(AG · zji) ◦ (BG · zji) = CG · zji mod qi.

Now we define the CRT packed value zj = CRT.Pack(zj1, . . . , z
j
ℓ). Due to the

CRT isomorphism, it holds that:

(AG · zj) ◦ (BG · zj) = CG · zj mod q

Thus the concatenated extended witness z = z1|| . . . ||zT must be a satisfying
witness for the instance XC . The prover can thus succeed with probability 1
due to the completeness of our commit-and-prove protocol for arithmetic over
Zq.

Soundness We show that this construction achieves soundness. In particular,
suppose that the output of C is not the correct evaluation over its inputs, we
argue that in this case the prover can pass the commit-and-prove protocol with
probability at most 1/2λ.

In fact, it suffices to show that the instance XC output by our compiler can not
be satisfiable. It then follows from our soundness argument in Sec 5.6 that the
prover can succeed in the commit-and-prove protocol with probability at most
1/2λ.

In order to show that the instance XC output by our compiler can not be
satisfiable, we prove the contra-positive: Suppose XC is satisfiable with respect
to some witness W, then the output of C must be the correct evaluation over
its inputs.

First, we parse the witness as W = W1|| . . . ||WT . Furthermore let zj =
(1, ioj ,Wj) be the extended witness vector for each j ∈ [T]. Since zj is a
satisfying witness with respect to Xj

G, we must have:

(AG · zj) ◦ (BG · zj) = CG · zj mod q

Now let (zj1, . . . , z
j
ℓ) = CRT.Unpack(zj). Due to the CRT isomorphism, it holds

that for each i ∈ [ℓ]:

(AG · zji) ◦ (BG · zji) = CG · zji mod qi.

Furthermore, due to p-satisfiability of the compiler, we have:

(AG · zji) ◦ (BG · zji) = CG · zji mod p.

33

Thus each instance XG is satisfiable with respect to inputs and outputs ioji .
Therefore, for each sub-computation G, the output is the correct evaluation
over its input. Thus the output of C must be the correct evaluation over its
inputs.

7 Extensions and Optimizations
We will describe some useful extensions and optimizations to our above commit-
and-prove protocol for SIMD computations in this section.

7.1 Adding Succinct Verification
The aforementioned commit-and-prove protocol for SIMD computations is mainly
designed to optimize prover efficiency. Nevertheless, it incurs a large cost on the
verifier due to the use of Batch-PoSO protocol, hence it does not meet succinct
verification. More precisely, the verifier’s work (running time) in this protocol
is linear in the length of the prover’s witness (which is comparable to the size of
the instance). This is undesirable in many practical use cases where we demand
succinct verification.

We describe in this section how to make the verification succinct (assuming the
underlying commit-and-prove protocol has succinctness). Let’s first identify the
verifier’s work in the Batch-PoSO protocol implicitly defined in Fig 6:

1. Let’s denote the number of executions of Batch-PoSO by K. In this case
K = λ/ log(p). The verifier first needs to sample K random vectors, each
of which has length (m+ n) ∗ T .

2. The verifier needs to read the value v which is the result of K Batch-PoSO
executions, and furthermore checks that v has small entries (i.e. smaller
than N).

3. The verifier needs to merge the two R1CS instances Xp∗

C and XPoSO. The
first instance has size (in terms of dimension) (m ∗T, (m+n) ∗T) and the
second instance has size (K, (m+ n) ∗ T).

Our goal is to make the verification independent of (m,n, T). Instead it should
only dependent on the security parameter λ. That is, the verifier’s runtime
should be p(λ) for some apriori fixed polynomial p(·).

We now explain how to modify our protocol so as to achieve O(p(λ)) verification
time. In particular, we will modify the above three tasks one by one:

1. Reusing Randomness: We notice that the reason that verifier needs
to sample random vectors of length (m + n) ∗ T is that in the Batch-
PoSO protocol, the prover holds a vector z of length (m+ n) ∗ T . To deal
with this problem, we make the following changes: Instead of executing
a single Batch-PoSO protocol on the vector z, we will break z into c =
(m+n)∗T

p(λ) number of chunks, each chunk with size p(λ). Let’s split it into
z = z1|| . . . zc, where each zi has length p(λ). Then we execute a Batch-
PoSO protocol for each chunk zi. Importantly, we can ask the verifier to
sample only one random vector r ∈ Zp(λ)

D , and reuses this vector across all

34

c Batch-PoSO protocols. By union bound, this incurs a soundness error
of at most c/D for the original vector z. To amplify the final soundness
error to 1/2λ, we will instead perform K = λ

log(p)−log(c) repetitions of
Batch-PoSO. To conclude, the randomness complexity can be reduced to
K · p(λ) ≈ O(p(λ)).

2. Proving Smallness Inside R1CS: Recall that the second task for verifier
is to check that the vector v has small entries, where the length of this
vector depends on the number of Batch-PoSO. However, after reusing
the randomness, we have a total number of c · K = O((m+n)∗T

p(λ)) Batch-
PoSO, thus making this vector’s size depend on (m,n, T). To remove this
overhead, we will instead ask the prover to show that v has small entries
inside the R1CS instance (so that the verifier does not need to check for
smallness). This can be easily achieved via the bit-decomposition method,
as follows:

(a) For each entry v[i], we bit-decompose this value into b1, . . . , blog(N)

number of bits.

(b) Add the R1CS constraint that b2j − bj = 0 for each bit bj , which
enforces bj take binary values.

(c) Add the R1CS constraint that v[i] =
∑log(N)

j=1 2j · bj , which shows the
correct bit-decomposition.

Notice that these two constraints ensure that the entry v[i] ≤ N . One
subtle issue with this approach is that the prover’s extended witness be-
comes z||v||b (where b consists of all bit decompositions), whereas the
verifier previously only receives the commitment to z. Therefore we need
to allow the prover to update its commitment as follows: The prover ini-
tially sends the verifier a commitment to the vector z|| 00 . . . 0︸ ︷︷ ︸

|v|+|b|

. Then she

sends the commitment 00 . . . 0︸ ︷︷ ︸
|z|

||v||b to the verifier upon seeing the ran-

domness. She furthermore proves to the verifier that both commitments
are well-formed (i.e. correctly padded with 0’s). The verifier can then use
the linear homomorphic property of vector commitment (which is already
inherent in most SNARKs, also see below for more discussions) to combine
these two commitments and retrieve a commitment to z||v||b.

3. Fast Augmentation of R1CS Instance: The verifier’s third task is to
merge the two R1CS instances Xp∗

C and XPoSO, both being very large. We
observe that in many existing commit-and-prove SNARKs, these instances
are typically given as succinct commitments to the verifier so as to achieve
holography. Since we are interested in succinct verification, we mainly
consider these type of commit-and-prove schemes.

Whereas the first instance can be given as a commitment value (due to
preprocessing) to the verifier, the verifier needs to prepare (and commit to)
the second instance, and then merges the two committed instances. While
this problem seems to be difficult for any arbitrary commitment scheme,
fortunately in practice most commit-and-prove SNARKs utilize a special

35

type of vector commitment scheme that is linearly homomorphic (see Sec
3.2 for more discussion). Furthermore, in many holographic schemes such
as [CHM+20] [COS20] [Set20], the commitment of R1CS is often done by
first committing to the positions (indices) of all non-zero entries in the
three (A,B,C) matrices, and then the values of these non-zero entries.

This suggests a way for fast augmentation of R1CS instances: We will
create the final R1CS instance X∗ as follows:

(a) During the preprocessing phase, we first commit to the positions
(indices) of all non-zero entries of both instances Xp∗

C and XPoSO.
Notice that this is doable since Xp∗

C is generated in the preprocessing
phase, and furthermore we can fix apriori the indices of non-zero
entries of XPoSO.

(b) Recall that the non-zero entries of XPoSO (almost) entirely depends
on the verifier’s randomness. For each repetition j ∈ [c ·K], the non-
zero entries have the form rj||rj|| . . . ||rj where rj ∈ Zp(λ)

D . Leveraging
the homomorphic property of vector commitments, we can generate
p(λ) number of committed masks in the preprocessing phase, where
these masks take the following form:

c1 = Commit([1, 0, . . . , 0︸ ︷︷ ︸
p(λ)

, 1, 0, . . . , 0︸ ︷︷ ︸
p(λ)

, . . . 1, 0, . . . , 0︸ ︷︷ ︸
p(λ)

], r1),

c2 = Commit([0, 1, . . . , 0︸ ︷︷ ︸
p(λ)

, 0, 1, . . . , 0︸ ︷︷ ︸
p(λ)

, . . . 0, 1, . . . , 0︸ ︷︷ ︸
p(λ)

], r2),

...
cp(λ) = Commit([0, 0, . . . , 1︸ ︷︷ ︸

p(λ)

, 0, 0, . . . , 1︸ ︷︷ ︸
p(λ)

, . . . 0, 0, . . . , 1︸ ︷︷ ︸
p(λ)

], rp(λ)).

Then the verifier can commit to the non-zero entries by computing
crj =

∑p(λ)
i=1 ci · rj[i]. This takes a total of p(λ) operations.

(c) In order to combine the commitments of non-zero entries for all rep-
etitions of PoSO, we can again use the homomorphic property of
vector commitments. This step largely resembles the above method,
but we will instead treat each committed vector as non-zero entries.
Overall, it takes the verifier O(p(λ)) operations to commit to all the
non-zero entries in the instance XPoSO.

(d) To summarize, the verifier will combine the two instances Xp∗

C and
XPoSO as follows: It obtains the commitment to indices of all non-
zero entries, the commitment to values of non-zero entries in Xp∗

C as
well as the c ·K ·p(λ) mask commitments in the preprocessing phase.
It will additively combine the masks with its randomness, and then
combine it with the commitment of non-zero entries in Xp∗

C . Overall,
this takes the verifier O(p(λ)) operations.

36

7.2 Turning into zk-SNARK
In this section we describe how to further obtain zero-knowledge and moreover
turn our scheme into zero-knowledge commit-and-prove SNARK (zk-SNARK).

Honest Verifier Zero-knowledge: We observe that the view of the verifier
in our above modified protocol is the same as its view in the final commit-and-
prove protocol. Hence if the underlying commit-and-prove protocol satisfies
honest verifier zero-knowledge, so does our protocol.

Fiat-Shamir Transform: We can easily turn our protocol into a non-interactive
protocol by applying Fiat-Shamir heuristics. Instead of letting the verifier send
the randomness, we will generate them using some hash function applied to the
prover’s commitment c. More specifically, we will read every log(D) bits of the
hash outputs and interpret it as a random value in ZD. Thus if the underlying
commit-and-prove protocol is a zk-SNARK, so will be our protocol.

7.3 Adding Support for Highly Repetitive Computations
We point out that our protocol for SIMD computations can be easily modified so
as to support highly repetitive computations. We start with a simple example:
Consider the highly repetitive computation C where the sub-computation G is
repeated ℓ times iteratively: That is: C(x) = G(G . . .G(x))︸ ︷︷ ︸

ℓ times

.

Let’s further denote by xi the input to the ith iteration of sub-computation G
and yi the corresponding output. That is, G(xi) = yi. Notice that due to the
iterative structure, it is require that xi = yi−1 for all i ∈ [ℓ].

In the paradigm of EQC, let’s add the following existentially quantified wire
values {(xi, yi)}i∈[ℓ]. Then we can equivalently view the iterative computation
of C as consisting of the following two components:

• A SIMD computation C ′ where the sub-computation G is repeated ℓ times
with ℓ different independent inputs (x1, . . . , xℓ). That is: C(x1, . . . , xℓ) =
(y1 = G(x1), . . . , yℓ = G(xℓ)). For this component, we can use our
commit-and-prove protocol for SIMD computations. Let ℓ be the packing
factor. Recall that the inputs and outputs are packed via CRT as:

CRT.Pack({x}i∈[ℓ])→ x;

CRT.Pack({y}i∈[ℓ])→ y.

• Constraints which enforces consistency between the current output value
yi and next input value xi+1. However, since both inputs and outputs are
given as packed values in the witness, we must first unpack these values
in order to complete this constraint. In more details, we will add the
following constraints:

– Unpacking Constraints: x = CRT.Pack({x}i∈[ℓ]). This is equiv-
alent to adding the single R1CS constraints that x =

∑ℓ
i=1 xi · λi

mod q, where λi’s are apriori fixed Lagrange coefficients as defined
in Sec 3.1. Similarly we will add these unpacking constraints for y.

37

– Consistency Constraints: xi = yi−1 for all i ∈ [ℓ].

For any other highly repetitive computations, we can adopt similar methodology
and add these unpacking constraints and certain consistency constraints which
enforce correct relationship between intermediate wire values.

8 Implementations and Evaluations
We first explain the metrics which we will use to measure the performance
of SNARK frontend and backend. In out setting, since our compiler outputs
an R1CS instance, we will use the complexity of R1CS to serve as metrics for
frontend.

8.1 Implementation
We implement the frontend for R1CS in JavaScript that outputs an R1CS in-
stance given the number of repeated copies of SHA-256 programs to be packed,
with non-black box usage of circom’s code to work with directly with R1CS.
circom code for SHA-256 was obtained from the circomlib package and modi-
fied to ensure smallness of all matrix and witness entries. We then implement a
modified version of Marlin’s commit-and-prove protocol in Rust from the Mar-
lin backend arkworks library [ac22] to benchmark the prover’s time as well as
memory usage for the circuits output by our frontend implemented above.

We run this code on an Amazon Linux EC2 instance (i4i.8xlarge) with 32 vCPUs
and 256GB RAM, due to large memory usage, especially for larger circuit sizes.

Parameter Choices For our experiments, we notice that the SHA256 circuit
(with minor modifications) satisfies the k-bounded property with k = 4 and
the output by circom (with the optimisation flag --O1) satisfies p-satisfiability
with p = 28. We can then apply our compiler, choosing the largest set of
primes greater than p that satisfy the condition kp2(q(m+n)2) < p∗. In all our
experiments, we have (m+n) < 220 and p∗ ≈ 2254 (we use the curve bls12-381).
This constrains q < 293, and we can write q as a product of at most 11 primes
that are larger than p, and this gives us our maximal packing factor of 11 while
obtaining 80-bit security.

8.2 Our Experiments
To estimate prover time for the packed version, we add the additional compo-
nents of the protocol (updating the verification key) on top of the Marlin prover
- these consist of updating the proving key commitment to an LDE of a matrix
polynomial of C to contain the random values generated for PoSO. This is rela-
tively lightweight, and the main prover cost comes from the additional non-zero
entries and constraints that are added, which are presented above in Table 7.
The packed verifier consists of the base verifier and a similar updation proce-
dure for the verification key (which is a fixed cost regardless of the instance size;
details in Sec. 7.1). Table 7 contains details of prover time and properties of the
R1CS matrices for different instance sizes, and the improvement our frontend
provides over using a naïve compiler.

38

Packed
Instance Size Ptime(s) Mem Usage(GB) Dim. Non-Zero

11 96 3.46 70702 886336
44 301 12.52 279076 3530461
88 543 24.5 558151 7060911
176 1058 47.15 1116301 14121811

Baseline
Instance Size Ptime(s) Mem Usage(GB) Dim. Non-Zero

11 188 4.4 321553 1483856
44 688 16.5 1286209 5935424
88 1377 31.8 2572417 11870848
176 2760 63.6 5144833 23741696

Figure 7: (R1CS instance X = (A,B,C, io,m, n)) Table of values for Prover time,
memory usage, R1CS dimension max (m,n) and number of non-zero entries in
A,B,C for our frontend compared to a naïve implementation for n repeated
sub-computations of SHA-256 (with 128-bit input size). The instance size is the
number of SHA-256 programs that are compiled into the final circuit with our
frontend (“packed”) or the naïve technique (“baseline”). The packing factor is
11, as computed in Sec. 8.

We obtain a final verification time of approximately 900 milliseconds, most of
which is taken up by computing the updated commitment in the verification
key, specifically an MSM of size 10000×11, which we fix to keep the verification
time constant regardless of the instance size. This is a trade-off with the prover
time, as decreasing the PoSO size helps verification, but increases the number
of constraints and non-zero entries and affects the prover time.

The proof size of unmodified Marlin is 904 bytes, and our proof adds at most
2 evaluations and 2 commitments (group elements) to the proof, which add
another 171 bytes to the proof, bringing us to a larger but constant proof size
around 1KB.

39

References
[ac22] arkworks contributors. arkworks zksnark ecosystem, 2022.

[AGL+23] Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mopuri, and
Sriram Sridhar. Dew: A transparent constant-sized polyno-
mial commitment scheme. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, Public-Key Cryptography – PKC 2023, pages
542–571, Cham, 2023. Springer Nature Switzerland.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE Symposium
on Security and Privacy, pages 315–334. IEEE Computer Society
Press, May 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Ri-
abzev. Scalable zero knowledge with no trusted setup. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 701–732. Springer, Heidel-
berg, August 2019.

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient
accumulation/folding for special sound protocols. Cryptology
ePrint Archive, Paper 2023/620, 2023. https://eprint.iacr.
org/2023/620.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: De-
centralized anonymous payments from bitcoin. In 2014 IEEE Sym-
posium on Security and Privacy, pages 459–474. IEEE Computer
Society Press, May 2014.

[BCGL22] Jonathan Bootle, Alessandro Chiesa, Ziyi Guan, and Siqi Liu.
Linear-time probabilistic proofs with sublinear verification for alge-
braic automata over every field. Cryptology ePrint Archive, Paper
2022/1056, 2022. https://eprint.iacr.org/2022/1056.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transpar-
ent succinct arguments for R1CS. In Yuval Ishai and Vincent Rij-
men, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 103–128. Springer, Heidelberg, May 2019.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent
SNARKs from DARK compilers. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 677–706. Springer, Heidelberg, May 2020.

40

https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2022/1056

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang.
Hyperplonk: Plonk with linear-time prover and high-degree cus-
tom gates. Cryptology ePrint Archive, Paper 2022/1355, 2022.
https://eprint.iacr.org/2022/1355.

[CFKS22] Hien Chu, Dario Fiore, Dimitris Kolonelos, and Dominique
Schröder. Inner product functional commitments with constant-
size public parameters and openings. In Clemente Galdi and
Stanislaw Jarecki, editors, Security and Cryptography for Networks,
pages 639–662, Cham, 2022. Springer International Publishing.

[CGKR22] Geoffroy Couteau, Dahmun Goudarzi, Michael Klooß, and Michael
Reichle. Sharp: Short relaxed range proofs. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 609–622. ACM Press, November 2022.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra,
Noah Vesely, and Nicholas P. Ward. Marlin: Preprocessing zk-
SNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

[cir] circom. https://github.com/iden3/circom.

[CKLR21] Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle.
Efficient range proofs with transparent setup from bounded integer
commitments. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS,
pages 247–277. Springer, Heidelberg, October 2021.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler.
Practical verified computation with streaming interactive proofs.
In Shafi Goldwasser, editor, ITCS 2012, pages 90–112. ACM, Jan-
uary 2012.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal:
Post-quantum and transparent recursive proofs from holography.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidel-
berg, May 2020.

[GJJZ22] Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang.
Succinct zero knowledge for floating point computations. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 1203–1216. ACM Press, November 2022.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-
time programs. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 39–56. Springer, Heidelberg, August 2008.

[GLS+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler,
and Riad S. Wahby. Brakedown: Linear-time and post-quantum
snarks for r1cs. Cryptology ePrint Archive, Paper 2021/1043, 2021.
https://eprint.iacr.org/2021/1043.

41

https://eprint.iacr.org/2022/1355
https://github.com/iden3/circom
https://eprint.iacr.org/2021/1043

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

[GNSV21] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez.
Rinocchio: Snarks for ring arithmetic. Cryptology ePrint Archive,
Paper 2021/322, 2021. https://eprint.iacr.org/2021/322.

[Gro16] Jens Groth. On the size of pairing-based non-interactive argu-
ments. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-
ROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified
polynomial protocol for lookup tables. Cryptology ePrint Archive,
Paper 2020/315, 2020. https://eprint.iacr.org/2020/315.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru.
Plonk: Permutations over lagrange-bases for oecumenical noninter-
active arguments of knowledge. Cryptology ePrint Archive, Paper
2019/953, 2019. https://eprint.iacr.org/2019/953.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and argu-
ments (extended abstract). In 24th ACM STOC, pages 723–732.
ACM Press, May 1992.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[KPS18] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xjs-
nark: A framework for efficient verifiable computation. In 2018
IEEE Symposium on Security and Privacy (SP), pages 944–961,
2018.

[KS23] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive ar-
guments for customizable constraint systems. Cryptology ePrint
Archive, Paper 2023/573, 2023. https://eprint.iacr.org/
2023/573.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova:
Recursive zero-knowledge arguments from folding schemes. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IV, volume 13510 of LNCS, pages 359–388. Springer, Heidel-
berg, August 2022.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-
size commitments to polynomials and their applications. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 177–194. Springer, Heidelberg, December 2010.

[OBW22] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. Circ: Compiler
infrastructure for proof systems, software verification, and more.

42

https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573

In 2022 IEEE Symposium on Security and Privacy (SP), pages
2248–2266, 2022.

[PS01] David Pointcheval and Jacques Stern. Security arguments for dig-
ital signatures and blind signatures. Journal of Cryptology, 13, 10
2001.

[rol] circom.

[RZR22] Noga Ron-Zewi and Ron D. Rothblum. Proving as fast as comput-
ing: Succinct arguments with constant prover overhead. In Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2022, page 1353–1363, New York, NY, USA,
2022. Association for Computing Machinery.

[SB23] István András Seres and Péter Burcsi. Behemoth: transparent
polynomial commitment scheme with constant opening proof size
and verifier time. Cryptology ePrint Archive, Paper 2023/670,
2023. https://eprint.iacr.org/2023/670.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs
without trusted setup. In Daniele Micciancio and Thomas Risten-
part, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 704–737. Springer, Heidelberg, August 2020.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evalua-
tion. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 71–89. Springer, Heidelberg,
August 2013.

[Tha23] Justin Thaler. Proofs, arguments, and zero-knowledge, 2023.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Shaun
Wang. Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. 2021 IEEE
Symposium on Security and Privacy (SP), pages 1074–1091, 2021.

[WYY+22] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao
Wang. AntMan: Interactive zero-knowledge proofs with sublinear
communication. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 2901–2914. ACM Press,
November 2022.

[XZC+22] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng
Zhang, Yongzheng Jia, Dan Boneh, and Dawn Song. zkBridge:
Trustless cross-chain bridges made practical. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022,
pages 3003–3017. ACM Press, November 2022.

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero
knowledge proof with linear prover time. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume
13510 of LNCS, pages 299–328. Springer, Heidelberg, August 2022.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Pa-
pamanthou, and Dawn Song. Libra: Succinct zero-knowledge

43

https://eprint.iacr.org/2023/670

proofs with optimal prover computation. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 733–764. Springer, Heidelberg, August 2019.

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary
Maller, Anca Nitulescu, and Mark Simkin. Caulk: Lookup ar-
guments in sublinear time. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 3121–
3134. ACM Press, November 2022.

[ZLW+21] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn
Song, Xiang Xie, and Yupeng Zhang. Doubly efficient interac-
tive proofs for general arithmetic circuits with linear prover time.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
159–177. ACM Press, November 2021.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song.
Transparent polynomial delegation and its applications to zero
knowledge proof. In 2020 IEEE Symposium on Security and Pri-
vacy, pages 859–876. IEEE Computer Society Press, May 2020.

44

	Introduction
	Our Contributions
	Evaluations and Applications
	Related Works

	Technical Overview
	Preliminaries
	Chinese Remainder Theorem
	Vector Commitment Scheme
	Interactive Proof Systems
	Commit-and-Prove Protocols
	Field choice

	Rank-1 Constraint Systems
	Existentially Quantified Circuits
	EQC Compiler

	Highly Repetitive Computation
	Data Parallel Computation

	Building Blocks
	CRT Packing
	Rational Representative
	Proof of Short Opening (Lg)
	Batch Proof of Short Opening (Batch-Lg)

	Proving Non-native Modulo Arithmetic
	Non-native Arithmetic
	Overview
	Encoding Lg elements
	Proving Arithmetic Relation Over Lg
	Batch-Lg for Representative in Lg

	Commit-and-Prove Construction
	Security Proofs for Commit-and-Prove Protocol of Modulo Arithmetics

	Improved Frontend for SIMD Computations
	A Toy Example
	Handling General SIMD Computations
	Commit-and-Prove Protocol for SIMD Computation
	Security Proofs for Commit-and-Prove Protocol for SIMD Computation

	Extensions and Optimizations
	Adding Succinct Verification
	Turning into zk-SNARK
	Adding Support for Highly Repetitive Computations

	Implementations and Evaluations
	Implementation
	Our Experiments

