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Abstract. In CRYPTO’02, Liskov et al. have introduced a new sym-
metric key primitive called tweakable block cipher. They have proposed
two constructions of designing a tweakable block cipher from block ci-
phers. The first proposed construction is called LRW1 and the second
proposed construction is called LRW2. Although, LRW2 has been ex-
tended in later works to provide beyond birthday bound security (e.g.,
cascaded LRW2 in CRYPTO’12 by Landecker et al.), but extension of
the LRW1 has received no attention until the work of Bao et al. in EU-
ROCRYPT’20, where the authors have shown that one round extension
of LRW1, i.e., masking the output of LRW1 with the given tweak and
then re-encrypting it with the same block cipher, gives security up to
22n/3 queries. Recently, Khairallah has shown a birthday bound distin-
guishing attack on the construction and hence invalidated the security
claim of Bao et al. This has led to the open research question, that how
many round are necessary for cascading LRW1 to achieve beyond birthday
bound security ?
In this paper, we have shown that cascading LRW1 up to four rounds are
necessary for ensuring beyond the birthday bound security. In particu-
lar, we have shown that CLRW14 provides security up to 22n/3 queries.
Security analysis of our construction is based on the recent development
of the mirror theory technique for tweakable random permutations under
the H-Coefficient framework.

Keywords: Tweakable Block Cipher, Mirror Theory, Block Cipher, H-Coefficient
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1 Introduction

Liskov et al. have introduced a new symmetric key primitive called tweakable
block cipher in [15]. They have proposed two constructions of desigining a tweak-
able block cipher from block ciphers. The first proposed construction is called
LRW1 and the second proposed construction is called LRW2. LRW1 transforms a
block cipher into a tweakable block cipher by masking the encryption output of
the input message with the given tweak which is again re-encrypted to produce
the ciphertext, i.e.,

LRW1K(T,M)
∆
= EK(EK(M)⊕ T ).



Therefore, LRW1 requires two block cipher calls to process an n-bit message
and n-bit ciphertex. On the other hand, LRW2 transforms a block cipher into
a tweakable block cipher by masking the input and output of the block cipher
with hash of the given tweak, i.e.,

LRW2K,K′(T,M)
∆
= EK(M ⊕HK′(T ))⊕HK′(T ).

Therefore, this construction requires a single block cipher call and a hash function
evaluation to process n-bit message and variable length tweak. It has been shown
in [15] that both LRW1 and LRW2 achieves birthday bound CCA security.

Although, LRW2 has been extended in later works to provide beyond birthday
bound security (e.g., cascaded LRW2 by Landecker et al. [14]), but no extension
of the LRW1 construction has been made until the work of Bao et al. [1] where
the authors have considered the 3-round cascading of the LRW1 construction,
called TNT (abbreviated as “The Tweak-aNd-Tweak” construction. TNT is the
extension of the basic LRW1 construction by masking its output with the given
tweak and then it is re-encrypted with an independent block cipher to produce
the ciphertext. For a given block cipher family E : {0, 1}n × {0, 1}n → {0, 1}n,
indexed by n-bit secret key, the construction TNT gives a family of tweakable
block cipher TNT[E] : {0, 1}3n×{0, 1}n×{0, 1}n → {0, 1}n, indexed by a 3n-bit
secret key and an n-bit public tweak as follows:

TNTK1,K2,K3
[E] := EK3

(T ⊕ EK2
(T ⊕ EK1

(M))︸ ︷︷ ︸
LRW1K1,K2

).

TNT has been proven to be secured roughly up to 22n/3 chosen-plaintext and
chosen-ciphertext queries. Later in [8], Guo et al. have shown that TNT achieves
3n/4-bit security bound against all possible information theoretic CPA adver-
saries. In [21], Zhang et al. have studied the security analysis of the generalization
of LRW1 construction, called CLRW1−r to denote r-round cascading of the basic
LRW1 constuction, defined as follows:

CLRW1-rK1,K2,...,Kr (M,T )
∆
= EKr (T ⊕ EKr−1(T ⊕ · · · (T ⊕ EK2(T ⊕ EK1(M)))).

To prove the security of the construction, authors have adopted the idea of
the coupling technique to show that CLRW1-r achieves CCA security up to
2(r−1)n/(r+1) queries, when r is odd and r ≥ 2. On the other hand, it achieves
CCA security up to 2(r−2)n/r queries, when r is even and r ≥ 2.

Despite of establishing beyond birthday security bound on TNT, a recent work
of Khairallah [12] has shown a birthday bound chosen ciphertext distinguishing
attack on the TNT construction and hence, invalidated the security claim of Bao
et al. [1] and Guo et al. [8]. Therefore, by virtue of the result by Zhang et al. [21],
TNT achieves a tight birthday bound security 1. However, very recently, Jha et

1 Note that for TNT, r = 3. Therefore, by plugging-in the value of r into the security
bound of CLRW1-r [21] yields security upto 2n/2 queries.
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al. [11] have shown an alternative birthday bound security proof on TNT us-
ing the standard H-Coefficient technique that removes the unnecessary constant
factors arises due to the general coupling-based security analysis on CLRW1-r.

The above recent progresses on the security of cascaded LRW1 opens the direc-
tion to investigate about the number of rounds necessary for cascading LRW1 to
achieve beyond birthday bound security. Note that, by the virtue of the result
of Zhang et al. [21], we already know that 5 rounds are sufficient to achieve the
CCA security of the construction as with r = 5, it yields CCA security upto
22n/3 queries. On the other hand, with r = 4, Zhang et al. results provides CCA
security of 4-round cascaded LRW1 upto 2n/2 queries. However, the security
bound on 4 round cascading LRW1 is not tight as there is no birthday bound
attack on the construction. Therefore, it remains an interesting open avenue to
ask whether we have a birthday bound CCA attack? or it achieves a beyond
birthday bound security? An answer to this question will essentially solve the
following open problem:

How many rounds are necessary for cascading LRW1 to achieve BBB
security ?

1.1 Our Contribution

In this paper, we answer the above question affirmatively and show that 4 rounds
for cascading LRW1 are sufficient to cross the birthday bound barrier. In particu-
lar, we consider the 4 round cascading LRW1 construction dub as CLRW14.Given
a block cipher family E : {0, 1}n × {0, 1}n → {0, 1}n, indexed by n-bit se-
cret key, the CLRW14 construction gives a family of tweakable block cipher:
CLRW14[E] : {0, 1}4n × {0, 1}n × {0, 1}n → {0, 1}n, indexed by a 4n-bit secret
key and an n-bit public tweak, given as follows:

CLRW14
K1,K2,K3,K4

[E] := EK4
(T ⊕ EK3

(T ⊕ EK2
(T ⊕ EK1

(M)))︸ ︷︷ ︸
TNTK1,K2,K3

).

The pictorial description of the construction is given below.

M EK1 + EK2 + EK3 + EK4 C

T T T

V1 U2 V2 U3 V3 U4

In this paper, we have shown that the construction CLRW14 provides security
up to 22n/3 queries. In particular, we have the following security result, proof of
which is deferred until Sect. 3
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Theorem 1. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher. Then, for
any (q, t) adversary A against the strong tweakable pseudorandom permutation
security of CLRW14[E] with q ≤ 22n/3, there exists a (q, t′) adversary A′ against
the strong pseudorandom permutation security of E, where t′ = t, such that

Advtsprp
CLRW14[E]

(A) ≤ 4Advsprp
E (A′) +

13q4

23n
+

4q2

22n
+

28q3

22n
.

Security analysis of our construction is based on the recent development of the
mirror theory technique for tweakable random permutation coupled with the
H-Coefficient technique.

2 Preliminaries

Notations: For q ∈ N, we write [q] to denote the set {1, . . . , q}. For a natural
number n, {0, 1}n denotes the set of all binary strings of length n and {0, 1}∗ de-
notes the set of all binary strings of arbitrary length. For x, y ∈ {0, 1}n, we write
z = x⊕y to denote xor of x and y. For two strings x, y, we write x‖y to denote the
concatenation of x followed by y. Often we write (x, y) ∈ {0, 1}2n to denote the
2n-bit string x‖y. For a natural number n, we write (xi, yi)i∈[q] to denote the q
tuple ((x1, y1), (x2, y2), . . . , (xq, yq)), where each xi, yi ∈ {0, 1}n. We write x← y
to denote the assignment of the variable y into x. For a set X , X←$ {0, 1}n de-
notes that X is sampled uniformly at random from {0, 1}n. For a tuple of random
variables (X1, . . . , Xq), we write (X1, . . . , Xq)←$ {0, 1}n to denote that each Xi

is sampled uniformly from {0, 1}n and independent to all other previously sam-

pled random variables. Similarly, we write (X1, . . . , Xq)
wor←−− {0, 1}n to denote

that each Xi is sampled uniformly from {0, 1}n \ {X1, . . . , Xi−1}.
The set of all permutations over X is denoted as Perm(X ). When X = {0, 1}n,
then we omit X and simply write Perm(n) to denote the set of all permutations
over {0, 1}n. We say that an n-bit permutation P ∈ Perm maps a q-tuple xq =
(x1, x2, . . . , xq) to yq = (y1, y2, . . . , yq), where each xi, yi ∈ {0, 1}n, denoted as

xq
P7→ yq if for all i ∈ [q], we have P(xi) = yi. We say that tuple xq is permutation

compatible with tuple yq if there exists at least one permutation P ∈ Perm such

that xq
P7→ yq. In other words, xq is permutation compatible with tuple yq if for

all i ∈ [q], xi = xj ⇔ yi = yj , i 6= j ∈ [q]. For integers 1 ≤ b ≤ a, we write (a)b
to denote a(a− 1) . . . (a− b+ 1), where (a)0 = 1 by convention.

2.1 Block Cipher

Let n, κ ∈ N be two natural numbers. A block cipher E : {0, 1}κ × {0, 1}n →
{0, 1}n is a function that takes as input a key K ∈ {0, 1}k and an n-bit string
x ∈ {0, 1}n and outputs an element y ∈ {0, 1}n such that for each k ∈ {0, 1}κ,
the function Ek is bijective from {0, 1}n to {0, 1}n. Due to the bijectivity of the
function Ek, its inverse function E−1

k exists. However, we will not be concerned
about it. We fix positive even integers n and κ to denote the block size and
the key size of the block cipher respectively in terms of number of bits and we
assume that κ = n throughout the paper.
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2.2 Tweakable Block Cipher

Let n, κ, t ∈ N be three natural numbers. A tweakable block cipher (TBC) is

a mapping Ẽ : {0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n, where {0, 1}κ is called
the key space and {0, 1}t is called the tweak space, such that for all key k ∈
{0, 1}κ and for all tweak t ∈ {0, 1}t, Ẽ

t

k is a permutation over {0, 1}n. We de-
note TBC({0, 1}κ, {0, 1}t, {0, 1}n), the set of all tweakable block ciphers with
key space {0, 1}κ, tweak space {0, 1}t and message space {0, 1}n. A tweak-
able permutation with tweak space {0, 1}t and domain {0, 1}n is a mapping

P̃ : {0, 1}t × {0, 1}n → {0, 1}n such that for all tweak t ∈ {0, 1}t, P̃
t

is a per-
mutation over {0, 1}n. We write TP({0, 1}t, n) to denote the set of all tweakable
permutations with tweak space {0, 1}t and n-bit messages.

2.3 Security Definitions

A distinguisher A is an algorithm that tries to distinguish between two oracles
O1 and O0 via black box interaction with one of them. At the end of interaction
it returns a bit b ∈ {0, 1}. We write AO = b to denote the output of A at the end
of its interaction with O. The distinguishing advantage of A against O1 and O0

is defined as

∆A[O1;O0] =
∣∣Pr[AO1 = 1]− Pr[AO0 = 1]

∣∣ , (1)

where the probabilities depend on the random coins of O1 and O0 and the
random coins of the distinguisher A. The time complexity of the adversary is
defined over the usual RAM model of computations.

I. Security Definition of Block Cipher. We capture the security notion of
a block cipher E with key size κ and block size n in terms of indistinguishabilty
advantage from an uniform random permutation. More formally, we define the
pseudorandom permutation (prp) advantage of E with respect to a distinguisher
A as follows:

Advprp
E (A)

∆
= ∆A[EK ; P] =

∣∣Pr[AEK = 1]− Pr[AP = 1]
∣∣ ,

where the first probability is calculated over the randomness of K ←$ {0, 1}κ
and the second probability is calculated over the randomness of P←$ Perm(n).
We say that E is (q, t, ε) secure if the maximum pesudorandom permutation
advantage of E is ε where the maximum is taken over all distinguishers A that
makes q queries to its oracle and runs for time at most t.

II. Security Definition of Twekable Block Cipher. An adversary A for
tweakable block cipher has access to the oracle in either of the two world: in the
real world, it has access to the oracle (Ẽk(·, ·)) for some fixed key k ∈ {0, 1}κ.

In the ideal world, it has access to the oracle (P̃(·, ·)) oracles for some P̃ ∈
TP({0, 1}t, n). Adversary A queries to the oracle in an adaptive way and after
the interaction is over, it outputs a single bit b. We assume that A does not
repeat any query to the oracle. We call such an adversary A, a non-trivial (q, t)
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adaptive adversary, where A makes total q many queries with running time at
most t.

Let Ẽ ∈ TBC({0, 1}κ, {0, 1}t, {0, 1}n) be a tweakable block cipher and A be a non-
trivial (q, t) adaptive adversary with oracle access to a tweakable permutation
and its inverse with tweak space {0, 1}t and domain {0, 1}n. The advantage of A
in breaking the strong tweakable pseudorandom permutation (STPRP) security

of Ẽ is defined as

AdvTPRP
Ẽ

(A)
∆
= |Pr[AẼK ,Ẽ

−1
K = 1]− Pr[AP̃,P̃

−1

= 1]|, (2)

where the first probability is calculated over the randomness of K ←$ {0, 1}κ and

the second probability is calculated over the randomness of P̃←$ TP({0, 1}t, n).
When the adversary is given access only to the tweakable permutation and not
its inverse, then we say the tweakable pseudorandom permutation (TPRP) ad-

vantage of A against Ẽ. We say that Ẽ is (q, t, ε) secure if the maximum strong

tweakable pesudorandom permutation advantage of Ẽ is ε where the maximum
is taken over all distinguishers A that makes a total of q queries to its oracle and
runs for time at most t.

2.4 H-Coefficient Technique

H-Coefficient technique developed by Patarin, serves as a “systematic” tool to
upper bound the distinguishing advantage of any deterministic and computation-
ally unbounded distinguisher A in distinguishing the real oracle O1 (construction
of interest) from the ideal oracle O0 (idealized version). The collection of all the
queries and responses that A made and received to and from the oracle, is called
the transcript of A, denoted as τ . Sometimes, we allow the oracle to release more
internal information to A only after A completes all its queries and responses,
but before it outputs its decision bit. Note that, revealing extra informations
will only increase the advantage of the distinguisher.

Let Xre and Xid denote the transcript random variable induced by the interac-
tion of A with the real oracle and the ideal oracle respectively. The probability
of realizing a transcript τ in the ideal oracle (i.e., Pr[Xid = τ ]) is called the
ideal interpolation probability. Similarly, one can define the real interpolation
probability. A transcript τ is said to be attainable with respect to A if the ideal
interpolation probability is non-zero (i.e., Pr[Xid = τ ] > 0). We denote the set
of all attainable transcripts by Ω. Following these notations, we state the main
result of H-Coefficient technique in Theorem 2. The proof of this theorem can
be found in [18].

Theorem 2. Let Ω = Ωgood t Ωbad be a partition of the set of attainable tran-
scripts. Suppose there exists εgood ≥ 0 such that for any good transcript τ ∈
Ωgood, we have

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1− εratio,
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and there exists εbad ≥ 0 such that Pr[Xid ∈ Ωbad] ≤ εbad. Then,

∆A[O1;O0] ≤ ε1 + ε2. (3)

2.5 Mirror Theory For Tweakable Random Permutations

Mirror theory, as introduced by Patarin [20], is a combinatorial technique to
estimate the number of solutions of a linear systems of equalities and linear non
equalities in finite groups. Let there exists a set of linear equation L of the form

E = {X1 ⊕ Y1 = λ1, X2 ⊕ Y2 = λ2, . . . , Xq ⊕ Yq = λq},

where Xq and Y q are unknonws and λq ∈ ({0, 1}n)q are knowns. However,
there are equalities and non-equalities restriction on Xq and Y q which uniquely
determines the distinct set of variables in the given system of equations L, which
is denoted as X̃q and Ỹ q respectively. Without loss of generality, we assume that
[qX ] and [qY ] are two index sets which are used to index the elements of X̃q and

Ỹ q respectively. Given such an ordering, we view the two sets X̃q and Ỹ q as
ordered sets X̃q = {X ′1, X ′2, . . . , X ′qX} and Ỹ q = {Y ′1 , Y ′2 , . . . , Y ′qY } respectively.
Now, we define two surjective index mappings: φX : [q] → [qX ] such that i 7→ j
if and only if Xi = X ′j . Similarly, φY : [q] → [qY ] such that i 7→ j if and only if
Yi = Y ′j . Therefore, L is uniquely determined by the triplet (φX , φY , λ

q).

Given such a system of linear equations L = (φX , φY , λ
q), we associate a edge-

labeled bipartite graph, called equation-graph, denoted as L(G) = ([qX ]∪[qY ], E , L),
where E = {(φX(i), φY (i)) : i ∈ [q]} and L is an edge labeling function defined
as L((φX(i), φY (i))) = λi, i.e., each labeled edge of the graph corresponds to an
unique equation in L.

Now, we list out three properties of an equation graph as follows: (a) cycle-
freeness: which asserts that L is cycle-free if and only if L(G) is acylic. (b) ξmax

component: which gives an upper bound on the maximum size of a component
of L(G) and finally (c) non-degeneracy: which says that the there does not
exist any even length path of length at least 2 in L(G) such that the sum of the
labels of its edges become zero. Under these three conditions, the fundamental
theorem of mirror theory states that

the number of solutions (x1, x2, . . . , xqX , y1, y2, . . . , yqY ) to the given sys-
tem of linear equations L such that the correspondinf equation graph
L(G) satisfies the above three conditions, denoted as h(q), is at least

h(q) ≥ (2n)qX (2n)qY
2nq

.

Over the past several years, a number of studies [6, 7, 13, 16] have shown only a
loose lower bound with a non-zero error term ε. Only recently, due to the work
of Cogliati et al. [4], the above lower bound has been achieved with zero error
term as long as ξmax ≤ 2n/4/

√
n.
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Mirror theory fundamentally works for bounding the pseudorandomness of sum
of permutations [2,5,9,19] with respect to a random function. However, the tra-
ditional setup of mirror theory is not suited for bounding the pseudorandomness
of tweakable block ciphers with respect to tweakable random permutation. This
is because, ideally, in sum of permutation based constructions, coupled with
H-Coefficient technique, the real interpolation probability is

h(q)

(2n)qX (2n)qY

and the ideal interpolation probability is 2−nq. Therefore, by canceling out the
term 2nq in the ratio of real to ideal interpolation probability, we obtain the
lower bound of the ratio for a good transcript. However, this is not true for the
setting when the ideal world is tweakable random permutation because, in that
case the ideal intepolation probability is

Pr[Xid = τ ] =
∏
T∈T q

1

(2n)µT
.

Hence, in this case, the ratio of real to ideal interpolation probability becomes∏
T∈T q

1
(2n)µT

2nq
.

Notice that, when µT , denoted as multi-collision of tweak T , reaches q, the ratio
becomes (1 − q2/2n), a bound deterimental for constructions achieving beyond
birthday bound security.

To get rid of this bottlneck, Mennink [17] used the idea of limiting the maximum
number of tweak repetitions upto 2n/4 times, which was in turn used in the
context of proving 3n/4-bit security of cascaded LRW2 construction. Later, Jha
and Nandi [10] developed a variant of mirror theory result that is suited for
tweakable block cipher based constructions when the ideal world is tweakable
random permutation. In fact, unlike [17], their result [10] is not dependent on
the maximum number of repetitions of tweak.

General Set Up: For a given system of linear equations L, we associate an
edge-labeled bipartite graph L(G) = (X ∪Y, E) with the labeling function L, an
edge (x, y) with label λ is called an isolated-edge if the degree ofboth x and y
is 1. We call a component C is star if ξC ≥ 3 and there exists an unique vertex,
called center vertex, with degree ξC − 1 and all the other vertices have degree
exactly 1. A component C is called X -type (resp. Y-type) if the center vertex of
the component C lies in X (resp. Y)

For a given system of linear equations L and its corresponding associated equa-
tion graph L(G), we write α (resp. β,, γ) to denote the number of isolated edges
(resp. number of components of X -type and number of components of Y-type).
Similarly, q1 denotes the number of equations such that none of its variables
have collided with any other variables. q2 denotes the number of equations of

8



X -type and q3 denotes the number of equations of Y-type. Note that α = q1.
Jha and Nandi [10] have given a lower bound on the number of solutions for a
given system of linear equations L such that X ′i values are pairwise distinct and
Y ′i values are pairwise distinct. Formally, we have the following result:

Theorem 3. Let L be an system of linear equation as defined above with q ≤
2n−2 and any component of L(G) have atmost 2n−1 edge. Then the number of
tuple of solution (x1, x2, . . . , xqX , y1, y2, . . . , yqY ) of L, denoted by h(q), where
xi 6= xj and yi 6= yj, for all i 6= j, satisfies

h(q) ≥

(
1− 13q4

23n
− 2q2

22n

(
β+γ∑
i=α+1

e2
i

)
4q2

22n

)
× (2n)q1+β+q3 × (2n)q1+q2+γ∏

λ∈λq
(2n)µλ

(4)

where ei denote the number of edge in i-th component ∀i ∈ [α+ β + γ].

3 Proof of Theorem 1

This section is entirely devoted for establishing the security bound shown in The-
orem 1. We fix a (q, t) adversary A against the strong tweakable pseudorandom
permutation security of CLRW14[E] and we let

δ = Advtsprp
CLRW14[E]

(A).

The first step of the proof consists in replacing the four independent keyed block
ciphers Ek1 ,Ek2 ,Ek3 and Ek4 used in the construction with four independently
sampled n-bit random permutations P1,P2,P3 and P4 at the cost of the strong
pseudorandom permutation advantage of the underlying block cipher and denote
the resulting construction as CLRW14[P], where P = (P1,P2,P3,P4). Therefore,
we have

δ ≤ 4Advsprp
E (A′) + Advtsprp

CLRW14[P]
(A)︸ ︷︷ ︸

δ∗

,

where t′ = t. We replace successively Ek1 ,Ek2 ,Ek3 and Ek4 by a random permu-
tation, each time constructing an hybrid SPRP-adversary, and we consider the
best of the four adversaries). Our goal is now to upper bound δ∗. Note that, we
have

δ∗ ≤ max
A

∣∣∣Pr[P ∈ Perm(n)4 : ACLRW14[P] = 1]− Pr[P̃ ∈ TP({0, 1}n, n) : AP̃ = 1]
∣∣∣ ,

where the maximum is taken over non-trivial adversaries. Hence, we see that
δ∗ cannot be larger than the advantage of the best non-trivial distinguisher
between the two oracle CLRW14[P] for a tuple of n-bit random permutations

P = (P1,P2,P3,P4) and the tweakable random permutation P̃←$ TP({0, 1}n, n).
This formulation of the problem now allows us to use the H-coefficients technique.
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We fix a non-trivial distinguisher A and assume that A is computationally
bounded and hence without loss of generality a deterministic distinguisher. A
interacts either with the real world CLRW14[P] for a tuple of n-bit random per-
mutations P = (P1,P2,P3,P4), or with the ideal world a tweakable random

permutation P̃←$ TP({0, 1}n, n), making at most q queries, and outputting a
single bit. Let

τ := {(M1, T1, C1), (M2, T2, C2), . . . , (Mq, Tq, Cq)}

be the list of queries of A and corresponding answers. As defined before, we call
a transcript τ attainable (with respect to distinguisher A) if the probability to
obtain this transcript in the ideal world is non-zero. As before, we denote Ω the
set of attainable transcripts and Xre (resp. Xid), the probability distribution of
the transcript τ induced by the real world, (resp. the ideal world). Recall that,
we have partitioned the set of attainable transcripts into two disjopint sets: set
of bad transcripts, denoted as Ωbad and the set of good transcripts, denoted
as Ωgood. For the purpose of the security analysis of our construction, we set
Ωbad = ∅.

3.1 Analysis of Good Transcripts

In this section, we fix a transcript τ = {(M1, T1, C1), (M2, T2, C2), . . . , (Mq, Tq, Cq)}
and we have to lower bound

p(τ) = Pr[P ∈ Perm(n)4 : CLRW14[P] 7→ τ ].

The proof will proceed in two steps: first, we will lower bound the probability
that permutations P1 and P4 satisfy some conditions given in the definition
below, and then, assuming (P1,P4) is good, we will lower bound the probability,
over the choice of P2 and P3, that CLRW14[P] 7→ τ . For this second step, we will
directly appeal to mirror theory result for tweakable random permutation [11]
as stated in Theorem 3 that lower bounds the number of solutions of a given
system of bivariate affine equations.
We start by giving the conditions defining good pairs of permutations (P1,P4).
We stress that these conditions cannot be accommodated in the definition of
bad transcripts since they depend on values of P1 and P4 which do not appear
in the queries transcript, so that they cannot be defined from the transcript τ
alone.

Definition 1. A pair of permutations (P1,P4) is said to be bad if at least one
of the following conditions is fulfilled

1. Bad1: There exists i, j ∈ [1, q] such that P1(Mi) ⊕ Ti = P1(Mj) ⊕ Tj and
P−1

4 (Ci)⊕ Ti = P−1
4 (Ci)⊕ Ti holds.

2. Bad2: There exists i, j, k ∈ [1, q] such that P1(Mi) ⊕ Ti = P1(Mj) ⊕ Tj and
P−1

4 (Ci)⊕ Ti = P−1
4 (Ck)⊕ Tk holds.

10



3. Bad3: There exists i, j, k ∈ [1, q] such that P1(Mi) ⊕ Ti = P1(Mj) ⊕ Tj and
P1(Mi)⊕ Ti = P1(Mk)⊕ Tk holds.

4. Bad4: There exists i, j, k ∈ [1, q] such that P−1
4 (Ci)⊕ Ti = P−1

4 (Cj)⊕ Tj and
P−1

4 (Ci)⊕ Ti = P−1
4 (Ck)⊕ Tk holds.

Otherwise we say that (P1,P4) is good. We denote Πgood, resp. Πbad the set of
good, resp. bad pairs of permutations (P1,P4).

The first step towards studying good transcripts will be to upper bound the
probability that the pair (P1,P4) is bad.

Lemma 1. For any integer q such that q ≤ 2n−2, one has

Pr[(P1,P4) ∈ Πbad] ≤ 12q3

22n
+

2q2

22n
.

Proof. For bounding the probability of a pair (P1,P4) being bad, we individually
bound the probability of each of the above events defined in definition 1 and then
we derive the probability that a pair of randomly sampled permutation is bad
by summing up the individual bound due to the virtue of the union bound. In
order to do this, we make the following observations:

Observation 1: Consider a pair of query response tuple (Mi, Ti, Ci) and (Mj , Tj , Cj)
such that Ti = Tj . Since, we have considered non-trivial adversary, we must have
Mi 6= Mj and hence Ci 6= Cj . Therefore, we have

Pr[P1(Mi)⊕ Ti = P1(Mj)⊕ Tj ] = Pr[P−1
4 (Ci)⊕ Ti = P−1

4 (Cj)⊕ Tj ] = 0

Observation 2: Consider a pair of query response tuple (Mi, Ti, Ci) and (Mj , Tj , Cj)
such that Ti 6= Tj . Let us consider Mi = Mj . In this case, we have

Pr[P1(Mi)⊕ Ti = P1(Mj)⊕ Tj ] = 0.

Similarly, if we consider Ci = Cj , then we have

Pr[P−1
4 (Ci)⊕ Ti = P−1

4 (Cj)⊕ Tj ] = 0.

Observation 3: Consider a pair of query response tuple (Mi, Ti, Ci) and (Mj , Tj , Cj)
such that Ti 6= Tj and also Mi 6= Mj . In this case, we have

Pr[P1(Mi)⊕ Ti = P1(Mj)⊕ Tj ] ≤ 2−n,

due to the randomness of the permutation P1. Similarly, if we consider Ci 6= Cj ,
then we have

Pr[P−1
4 (Ci)⊕ Ti = P−1

4 (Cj)⊕ Tj ] ≤ 2−n,

due to the randomness of the permutation P1. Now, it remains to bound the
probability of the individual bad events.

I. Bounding Bad1. We fix a pair of indices i 6= j ∈ [q] and consider the following
pair of query-response tuple (Mi, Ti, Ci), (Mj , Tj , Cj) ∈ τ . Now, let us consider
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the following two possibilities: (a) if Ti = Tj , then due to the observation 1,
the probability of the event Bad1 = 0. (b) On the other hand, if Ti 6= Tj , but
Mi = Mj or Ci = Cj leads to probability of the event Bad1 = 0. Finally, if
Ti 6= Tj , and both Mi 6= Mj and Ci 6= Cj , we have the probability of the above
event is at most 1/(2n−q)(2n−q−1) ≤ 4/22n assuming q ≤ 2n−1−1. Therefore,
by varying over all possible choices of indices, we have

Pr[Bad1] ≤ 2q2

22n
. (5)

II. Bounding Bad2. We fix a triplet of indices i, j, k ∈ [q] such that i 6=
j, and i 6= k. Now, we consider the following triplet of query-response tuple
(Mi, Ti, Ci), (Mj , Tj , Cj), (Mk, Tk, Ck) ∈ τ . Now, let us consider the following
two possibilities: (a) if Ti = Tj or Ti = Tk, then due to the observation 1,
the probability of the event Bad2 = 0. (b) On the other hand, if Ti 6= Tj and
T − i 6= Tk, but Mi = Mj or Ci = Cj leads to probability of the event Bad2 = 0.
Finally, if Ti 6= Tj , and Ti 6= Tk and both Mi 6= Mj and Ci 6= Cj , we have the
probability of the above event is at most 1/(2n−q)(2n−q−1) ≤ 4/22n assuming
q ≤ 2n−1 − 1. Therefore, by varying over all possible choices of indices, we have

Pr[Bad2] ≤ 4q3

22n
. (6)

III. Bounding Bad3. We fix a triplet of indices i, j, k ∈ [q] such that i 6= j 6= k.
Now, we consider the following triplet of query-response tuple (Mi, Ti, Ci), (Mj , Tj , Cj),
(Mk, Tk, Ck) ∈ τ . Now, let us consider the following two possibilities: (a) if
Ti = Tj or Ti = Tk, then due to the observation 1, the probability of the event
Bad3 = 0. (b) On the other hand, if Tj = Tk, then as Mj 6= Mk, the probability
of the event Bad3 = 0. (c) Moreover, if Ti, Tj , Tk are all distinct, then either
Mi = Mj , or Mi = Mk, or Mj = Mk leads to the probability of the above event
to 0. Finally, if Ti, Tj , Tk are all distinct, and Mi,Mj ,Mk are also distinct, then
we have the probability of the above event is at most 1/(2n−q)(2n−q−1) ≤ 4/22n

assuming q ≤ 2n−1−1. Therefore, by varying over all possible choices of indices,
we have

Pr[Bad3] ≤ 4q3

22n
. (7)

IV. Bounding Bad4. We fix a triplet of indices i, j, k ∈ [q] such that i 6= j 6= k.
Now, we consider the following triplet of query-response tuple (Mi, Ti, Ci), (Mj , Tj , Cj),
(Mk, Tk, Ck) ∈ τ . Now, let us consider the following two possibilities: (a) if
Ti = Tj or Ti = Tk, then due to the observation 1, the probability of the event
Bad4 = 0. (b) On the other hand, if Tj = Tk, then as Cj 6= Ck, the probability
of the event Bad4 = 0. (c) Moreover, if Ti, Tj , Tk are all distinct, then either
Ci = Cj , or Ci = Ck, or Cj = Ck leads to the probability of the above event to
0. Finally, if Ti, Tj , Tk are all distinct, and Ci, Cj , Ck are also distinct, then we
have the probability of the above event is at most 1/(2n−q)(2n−q−1) ≤ 4/22n

assuming q ≤ 2n−1−1. Therefore, by varying over all possible choices of indices,
we have

Pr[Bad4] ≤ 4q3

22n
. (8)
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By summing up the individual bounds of the above bad events, we obtain the
result. ut

We are now ready for the second step of the reasoning.

Definition 2. Fix any pair of permutations (P1,P4). We define a new query
transcript τ ′ depending on (P1,P4) as

τ ′ = {(T,P1(M)⊕ T,P−1
4 (C)⊕ T ) : (T,M,C) ∈ τ}.

We also denote

p′(τ,P1,P4) = Pr[P2,P3←$ Perm(n) : CLRW14[P2,P3] 7→ τ ′]

.
Therefore, we have

Lemma 2. One has

Pr[Xre = τ ]

Pr[Xre = τ ]
≥

∑
(P1,P4)∈Πgood

p′(τ,P1,P4)

((2n)!)2
∏

T∈T q
(1/2n)µT

,

where µT is the multi-collision of tweak T in T q.

Proof. It is easy to see that, once P1 and P4 is fixed, CLRW14[P] 7→ τ is equivalent
to CLRW14[P2,P3] 7→ τ ′. Therefore,

p(τ) =
∑

(π1,π4)∈Perm(n)2

Pr[(P1,P4)←$ Perm(n)2 : P1 = π1,P4 = π4] · p′(τ, π1, π4)

≥
∑

(π1,π4)∈Πgood

Pr[(P1,P4)←$ Perm(n)2 : P1 = π1,P4 = π4] · p′(τ, π1, π4)

≥
∑

(π1,π4)∈Πgood

p′(τ, π1, π4)

((2n)!)2
. (9)

Moreover, the ideal interpolation probability for transcript τ , where the ideal
world is a tweakable random permutation, is precisely 1/(2n)q1 ·1/(2n)q2 · · · 1/(2n)qµ ,
where µ is the distinct number of tweaks in q queries and qi is the number of
queries with tweak Ti, which is nothing but∏

T∈T q
(1/2n)µT .

By taking the ratio of the real to ideal interpolation probability, the result fol-
lows. ut

Now, we will lower bound p′(τ, π1, π4) for any good pair of permutations (π1, π4) ∈
Πgood. Note that, p′(τ,P1,P4) = Pr[P2,P3←$ Perm(n) : CLRW14[P2,P3] 7→ τ ′

which is equivalent to say that for a pair of randomly chosen permutations P2,P3,
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we are interested to lower bound the probability that the following system of
bivariate affine equations hold:

L =


P2(V 1

1 ⊕ T1)⊕ P−1
3 (U4

1 ⊕ T1) = T1

P2(V 1
2 ⊕ T2)⊕ P−1

3 (U4
2 ⊕ T2) = T2

...
...

...
...

...

P2(V 1
q ⊕ Tq)⊕ P−1

3 (U4
q ⊕ Tq) = Tq

Therefore, we have

p′(τ,P1,P4) = Pr[(P2,P3)←$ Perm(n)2 : L holds].

To lower bound the above probability, we need to count the number of solutions
of such a system of bivariate affine equations L. To do this, we cast the above
system of equations in a graph L(G) having q many edges by represeting each
variable of the equations as a vertex and we connect two vertices if the corre-
sponding variables are part of the same equation. Since, (π1, π4) is good, the
associated equation graph is nice in the sense that it does not contain any cycle,
otherwise it would satisfy event Bad1. Similarly, each component is either a P2-
type star graph or P3-type star graph such that each star graph has exactly 3
vertices, otherwise it would satisfy either of the events Bad2, Bad3 or Bad4. Let α
be the number of components having isolated edges, β be the number of compo-
nents of P2-type, and γ be the number of components of P3-type. Moreover, q1

denotes the number of equations of isolated types, q2 be the number of equations
of P2-type, and q3 be the number of equations of P3-type. Therefore α = q1 and
hence, we plug-in the result of mirror theory, i.e., Theorem 3 to lower bound the
above probability, i.e., we have

p′(τ,P1,P4) =
h(q)

(2n)q1+β+q3(2n)q1+q2+γ

≥
(

1− 13q4

23n
− 2q2

22n
−
( β+γ∑
i=1

e2
α+i

)
4q2

22n

)
︸ ︷︷ ︸

∆g

·
∏
T∈T q

1

(2n)µT
(10)

Recall that, T q denotes the set of distinct tweaks queried among q queries, µT
denotes the multi-collision of tweak T , and ej denotes the number of edges in the
j-th component for j ∈ [α+β+γ]. Since, the equation graph for our construction
is nice, we have ej = 2. Therefore, we have

∆g =

(
1− 13q4

23n
− 2q2

22n
− 16q2(β + γ)

22n

)
(11)
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From Eqn. (9) and Eqn. (10), we have

p(τ) = ∆g ·
∏
T∈T q

1

(2n)µT
Pr[(P1,P4)←$ Perm(n)2 : (P1,P4) ∈ Πgood]

= ∆g ·
∏
T∈T q

1

(2n)µT
1− Pr[(P1,P4)←$ Perm(n)2 : (P1,P4) ∈ Πbad]

= ∆g ·
∏
T∈T q

1

(2n)µT

(
1− 12q3

22n
− 2q2

22n

)
︸ ︷︷ ︸

∆b

, (12)

where Eqn. (12) follows from Lemma 1. As the ideal interpolation probability is

Pr[Xid = τ ] =
∏
T∈T q

1

(2n)µT
,

by taking the ratio of the real to ideal interpolation probability, we have

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ ∆g∆b ≥

(
1− 13q4

23n
− 4q2

22n
− 28q3

22n

)
,

where the last inequality follows from the fact that (1− a)(1− b) ≥ (1− a− b)
when a, b ≤ 1. Moreover, we have substituted the value β+ γ = q into Eqn. (11)
to derive the final lower bound on the ratio of the real to ideal interpolation
probability. ut

4 Conclusion

In this paper, we have shown that 4 rounds are neccessary for cascading LRW1
to achieve beyond birthday bound security. Our security analysis is heavily in-
flunced on the result of mirror theory tailored for tweakable random permuta-
tions [10]. However, the tightness of its security bound remains open. Likewise
the tight security analysis of key-alternating cipher [3], a similar research direc-
tion is to study the tight secrity analysis of r-round cascaded LRW1.
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