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Abstract

We initiate the study of lattice-based pseudo-random functions
(PRFs) for use in multi-party computation protocols, motivated by
their application to distributed key management. We show that the
LWE-based PRF of Boneh et al. (CRYPTO’13) can be turned into a
distributed PRF protocol that runs in only 8 online rounds, improv-
ing over the state-of-the-art by an order of magnitude. The result-
ing protocol can be used as a method for distributed key derivation
and reduces the amount of managed key material in distributed key
management systems from linear in the number of users to constant.
Finally, we support our findings by implementing and evaluating our
protocol using the MP-SPDZ framework (CCS’20).

1 Introduction

Distributed pseudo-random functions (PRFs) are an important build-
ing block in multi-party computation (MPC) protocols. We refer to
[GRR+16, GØS+23] for a list of applications. Here we focus on their
application to distributed key management and, in particular, distrib-
uted key derivation, which we will explain shortly.

1.1 Distributed key management

A distributed key management system [Web23, Dfn23, Lit23] is a cryp-
tographic key management system run by a set of servers such that no
individual server has access to any of the managed keys, but some subset
of k servers can run a protocol to determine any key distributedly. This
is typically achieved through the use of multi-party computation (MPC)
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protocols, whose security relies on the assumption that a certain fraction
of the involved parties is honest and follows the protocol.

At the core of distributed key management typically is a distributed
key generation (DKG) protocol that is used by the servers to generate
new user secret keys. Each key is afterwards stored in secret-shared form
[Sha79], which means that each server holds only a share of each key.
Individual key shares reveal absolutely nothing about the user keys, unless
they are combined with sufficiently many other correlated key shares.

The user can access its key by authenticating against the servers,
downloading the key shares, and reconstructing the key locally. Alter-
natively, it can instruct the servers to run a multi-party computation
protocol with input the secret-shared key, for example, in order to sign a
message without ever reconstructing the key in the clear.

1.2 Key refresh and challenges to scalability

The security of a distributed key management system as described above
relies on the assumption that a certain fraction of the servers are honest
and keep their stored key shares hidden from everyone else.

To maintain security against gradual corruption, the servers are re-
quired to regularly run a share refresh protocol [HJK+95] that updates all
key shares such that old shares become useless and cannot be combined
with new shares to reconstruct the key. A similar protocol is run when-
ever the set of key management servers changes. However, the workload
for refreshing the key share database grows linearly with the number of
keys managed by the system.

One solution to reducing the workload for share refresh is to use a
distributed key derivation (DKD) protocol instead of a DKG for gener-
ating the user key. In contrast to a DKG, which produces a fresh and
uncorrelated key on every run of the protocol, a DKD allows the servers
to deterministically derive a user key from a secret-shared master key and
the user’s identity on demand. This means that user key shares need not
be stored by the servers and the cost for share refresh is reduced from
linear in the number of user keys to constant, because only the secret-
shared master key needs to be maintained and refreshed. Such a DKD
protocol is essentially realized by a suitable distributed PRF protocol, as
we will see in the next section.
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1.3 Suitable distributed PRFs

A pseudo-random function (PRF) is a keyed function Fk : A→ B that is
indistinguishable from a randomly chosen function with the same domain
and range, with respect to a computationally-bounded observer who does
not know the secret key. If the range of the PRF is equal to the key space
of the targeted cryptographic scheme (e.g., an integer prime field in the
case of the ECDSA signature scheme), then the PRF can be used as a key
derivation function to derive a large number of user keys from a single
master key and the corresponding user identities. That is, given a master
PRF key k and a user identity u, the derived user key is Fk(i). Note that
while this user key is completely determined by k and u, yet, it appears
completely random to anyone who does not know the master key k.

By a distributed PRF we mean an interactive protocol that is run
between a set of parties and allows them to evaluate a PRF without
knowledge of the secret key. For our distributed key derivation appli-
cation, we are looking for a distributed PRF that satisfies the following
properties:

User Identifiers ⊆ Input(PRF). The PRF input space must contain
all user identifiers, because the user keys will be derived from them.

Output(PRF) = KeySpace: The PRF output distribution should be
indistinguishable from the key distribution of the targeted crypto-
graphic scheme. Specifically, in the case of ECDSA, we are looking
for a uniform distribution over a prime field.

Secret-shared output: The output of the distributed PRF should be
in secret-shared form so that it remains hidden from the servers and
can be fed into subsequent multi-party computation protocols such
as a multi-party signature generation protocol [DKL+19, KG21].

Robust to faulty or malicious servers: The protocol must be robust
and secure against a subset of faulty or malicious servers.

Well-founded assumptions: The security of the protocol should rely
on well-founded security assumptions that are reliable in real world
applications.

Low round complexity: The protocol should require only a small num-
ber of interactions between the servers in order to be deployable to
settings where the servers reside in different locations and the net-
work latency between them is relatively high.
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Why do we focus on round complexity? We choose to focus on
measuring performance in terms of round complexity because we found
this to be a major bottleneck with respect to existing candidate protocols
and our application. Moreover, while communication and computational
complexity can be mitigated by upgrading the server infrastructure, round
complexity can only be mitigated by moving the servers closer to each
other, which is far more costly, or may not be possible at all (e.g., for
regulatory reasons).

1.4 State of the art

[GØS+23] give an overview of the state of the art of MPC-friendly PRF
constructions and we mostly summarize their observations here.

Traditional PRFs (e.g., AES [DBN+01], SHA-3 [Dwo15]) are not de-
signed for use in MPC protocols. They typically have a higher multiplica-
tive depth than specialized constructions and work over bytes instead of
prime fields.

The Naor-Reingold construction [NR97] yields an efficient distributed
PRF protocol but has a public output and is therefore not suitable for
our use case. [GRR+16] describe an efficient distributed PRF protocol
based on the hardness of the Shifted Legendre Symbol Problem, which,
however, is a rather unconvential and seemingly less reliable assumption
[BBU+19].

LowMC [ARS+15], MiMC [AGR+16], GMiMC [AGP+19], HadesMiMC
[GLR+20], and Rescue [AABS+20] are invertible block ciphers. However,
invertibility is not required for our application, and a lower multiplica-
tive complexity may be achieved by working with non-invertible functions
[DGG+21].

Farfalle [BDH+17] is an efficiently parallelizable permutation-based
PRF construction with arbitrary input and output length. Ciminion
[DGG+21] is a modified version of Farfalle based on a Feistel scheme.
However, both require the expensive computation of a key schedule. Fi-
nally, Hydra [GØS+23] is a recent MPC-friendly PRF construction with
comparable performance to Ciminion but without the need for a key
schedule. Both compare favorably to the state of the art in terms of mul-
tiplicative complexity, but still require on the order of 100 online commu-
nication rounds per PRF evaluation, which incurs a significant latency
overhead in our application.

Another interesting candidate for MPC-friendly PRFs is the “dark
matter” PRF construction family [BIP+18]. We note that this has been
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used to construct oblivious PRFs [ADD+23] but has the drawback that
it uses a non-standard assumption and has only been analyzed in the
semi-honest 3-party setting.

1.5 Contribution

We show that the lattice-based PRF construction of Boneh et al. [BLM+13]
can be turned into a distributed PRF protocol that fulfills all our require-
ments (cf. Section 1.3) and runs in only 2 + log22(q) + log22(q/p) online
rounds, where q and p are lattice parameters. For concrete parameter
choices, this results in a distributed PRF protocol running in only 8 on-
line rounds, improving over the state-of-the-art by an order of magnitude.
We support our findings by implementing and evaluating our protocol us-
ing the MP-SPDZ framework of Keller [Kel20].

1.6 Related work

[MK23] also addresses the problem of scalable distributed key manage-
ment via on-demand distributed key derivation. In comparison to our
approach, they use the lattice-based PRF construction from [BLM+13]
as an almost key-homomorphic PRF, which leads to a non-interactive
approximate distributed PRF protocol. Due to the PRF not being ex-
actly key homomorphic, they have to account for a small error in the
key derivation. This unfortunately makes the protocol rather complex to
implement as it requires the use of particular secret sharing schemes and
zero-knowledge proofs to maintain protocol efficiency, correctness, and se-
curity. In contrast, our approach does not impose any additional require-
ments on the used secret sharing scheme and can be directly paired with
subsequent MPC protocols without the need for costly post-processing of
the generated key shares.

1.7 Organization

Section 2 introduces notation, basic primitives, and the lattice-based PRF
construction of [BLM+13]. Section 3 describes how we optimize the con-
struction for the MPC setting. Section 4 describes how we implement the
construction as an MPC protocol and evaluates its performance.
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2 Preliminaries

2.1 Notation

We first introduce some basic notation. For an integer n ∈ N we denote
by [n] the set {1, . . . , n}. For a random variable X we denote by x← X
the process of sampling a value x according to the distribution of X.
Similarly, for a finite set S we denote by x ← S the process of sampling
a value x according to the uniform distribution over S. We denote by
x a vector (x1, . . . , x|x|). For two bit-strings x and y we denote by x∥y
their concatenation. For a bit string x ∈ {0, 1}ℓ, for every j ∈ [ℓ], let
x|j denote the bit string comprising the bits j through ℓ of x. A non-
negative function f : N → R is negligible if it vanishes faster than any
inverse polynomial in some (security) parameter λ. For a group G of
order p, element g ∈ G and a matrix M ∈ Zn×m

p (for any n and m in N),
we denote the matrix in Gn×m whose (i, j)th entry is gmi,j by gM. We
denote by Rki(Za×b

p ) the set of all a× b matrices over Zp of rank i.

Distributions. By ηBin(k) we denote the uniform distribution on {0, 1}k.
For an α ∈ (0, 1) and a prime q, the random variable Ψα over Zq is defined
as ⌈qX⌋ (mod q) where X is a normal random variable with mean 0 and
standard deviation α/

√
2π. For two probability distributions X and Y

over a finite domain D, we define their statistical distance as

∆(X,Y ) =
1

2

∑
a∈D
|Pr[X = a]− Pr[Y = a]| .

We denote the uniform distribution over a finite domain D by U(D). The
following theorem describes a bound on the statistical distance between
U(Zm) and U(Zn) mod m, for m,n ∈ N.

Theorem 2.1. For m,n ∈ N , ∆(U(Zm), U(Zn) mod m) ≤ m/n.

A similar bound is also used in [GRR+16], but left without a proof. For
completeness, we include a proof of the theorem in Appendix A.

Rounding. We use ⌊·⌋ to denote rounding a real number to the largest
integer which does not exceed it. For integers q and p where q ≥ p ≥ 2,
we define the function ⌊·⌋p : Zq → Zp as ⌊x⌋p = i, where i · ⌊q/p⌋ is the
largest multiple of ⌊q/p⌋ that does not exceed x. For a vector v ∈ Zm

q ,
we define ⌊v⌋p as the vector in Zm

p obtained by rounding each coordinate
of the vector individually. A probability distribution χ over R is said to
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be B-bounded if it holds that Prx←χ[|x| > B] is negligible in the security
parameter.

2.2 Pseudorandom Functions

A pseudorandom function (PRF) [GGM86] is an efficiently computable
function F : K × X → Y such that for a uniform k in K and a uniform
function f : X → Y, an oracle for F (k, ·) is computationally indistin-
guishable from an oracle for f(·). In this paper, we allow our PRFs to be
further parameterized by a public parameter pp. When needed, this pp
is generated by a Setup algorithm.

Security for a PRF is defined using an experiment between a challenger
and an adversary A. For b ∈ {0, 1} define the following experiment
ExptPRFb :

1. Given security parameter λ, the challenger samples and publishes
public parameters pp to the adversary. Next, if b = 0 the challenger
chooses a random key k ∈ K and sets f(·) := Fpp(k, ·). If b = 1 the
challenger chooses a random function f : X → Y.

2. The adversary (adaptively) sends input queries x1, . . . , xQ in X and
receives back f(x1), . . . , f(xQ).

3. Eventually the adversary outputs a bit b′ ∈ {0, 1}.

Let Wb denote the probability that A outputs 1 in experiment ExptPRFb .

Definition 2.2 (Pseudorandom Function). A PRF Fpp : K × X → Y is
secure if for all efficient adversaries A the quantity

AdvPRF[F,A] := |W0 −W1|

is negligible.

2.3 Lattice Preliminaries

Learning with errors. The learning with errors (LWE) problem was
introduced by Regev [Reg05] who showed that solving the LWE problem
on average is as hard as (quantumly) solving several standard lattice
problems in the worst case.

Definition 2.3 (Learning With Errors). For integers q = q(n) ≥ 2 and
a noise distribution χ = χ(n) over Zq, the learning with errors problem
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(Zq, n, χ)-LWE is to distinguish between the following pairs of distribu-
tions:

{A,A⊺s+ χ} and {A,u},

where m = poly(n), A ← Zn×m
q , s ← Zn

q , χ ← χm, and u ← Zm
q . We

refer to the m columns of the matrix A as the LWE sample points.

Regev [Reg05] shows that for a certain noise distribution χ, for n
polynomial in λ, and a sufficiently large q, the LWE problem is as hard
as the worst-case SIVP and GapSVP under a quantum reduction (see
also [Pei09, BLP+13]). These results have been extended to show that
s can be sampled from a low norm distribution (in particular, from the
noise distribution χ) and the resulting problem is as hard as the basic
LWE problem [ACP+09]. Similarly, the noise distribution χ can be a
simple low-norm distribution [MP13].

Learning with rounding. Banerjee, Peikert, and Rosen [BPR12] con-
sider a related problem, denoted the “learning with rounding” (LWR)
problem. (Recollect the notation ⌊·⌋p from Section 2.1.)

Definition 2.4 (Learning With Rounding). For integers q = q(λ) and
p = p(λ) such that q > p ≥ 2 the learning with rounding problem
(Zq, n, p)-LWR is to distinguish between the following pairs of distribu-
tions:

{As, ⌊As⌋p} and {A, ⌊u⌋p},

where m = poly(n), A← Zn×m
q , s← Zn

q , and u← Zm
q .

Banerjee et al. show that for any B-bounded distribution χ over Z and
q ≥ pBnω(1), the (Zq, n, p)-LWR problem is at least as hard as solving
the (Zq, n, χ)-LWE problem.

Definition 2.5. For an α ∈ (0, 1) and a prime q, let Ψα denote the
distribution over Zq of the random variable ⌊q X⌉ mod q where X is a
normal random variable with mean 0 and standard deviation α/

√
2π.

Theorem 2.6 (cf. [Reg05]). If there exists an efficient, possibly quantum,
algorithm for deciding the (Zq, n,Ψα)-LWE problem for q > 2

√
n/α then

there is an efficient quantum algorithm for approximating the SIVP and
GapSVP problems, to within Õ(n/α) factors in the ℓ2 norm, in the worst
case.
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2.4 Lattice-Based PRF from [BLM+13]

We restate the LWE-based PRF from [BLM+13], Section 5. It will serve
as the basis for our MPC-friendly PRF construction.

Construction. Let q, p, n, and m be integers such that m = n⌈log q⌉
and p divides q. We will be using the definition of the rounding function
⌊·⌋p and the definition of ηBin(m) from Section 2.1, and the standard LWE

noise distribution Ψα.
Let the public parameter pp be a pair of matrices of the formA0,A1 ∈

Zm×m
q where each row of A0 and A1 is sampled from ηBin(m) such that

both matrices are full rank. The secret key k is a vector in Zm
q . Define

Flwe : Zm
q × {0, 1}ℓ → Zm

p as follows:

Flwe(k, x) =

⌊
ℓ∏

i=1

Axi · k

⌋
p

.

Security. [BLM+13], Theorem 5.1 establishes the security of Flwe un-
der the LWE assumption. We restate the theorem here for reference.

Theorem 2.7. The function Flwe is pseudorandom under the (Zq, n,Ψα)-
LWE assumption for parameter choices satisfying α ·mℓ · p ≤ 2−ω(logn).

3 Optimizing for MPC

In the following, we describe how we optimize the lattice-based PRF
construction of [BLM+13] (cf. Section 2.4) for the MPC setting, with a
particular focus on the application to distributed key derivation.

3.1 Using A Random Oracle

For practical purposes, it is generally accepted to rely on the random
oracle model (ROM) [BR93]. Relying on this model, we can replace the
product

∏ℓ
i=1Axi by a call to a hash function H(x) modeled as a random

oracle. This leads to the following PRF construction, which we essentially
consider a “folklore” construction.

Construction. Let q, p, l, m, and n be integers such that m = n⌈log q⌉
and p divides q. Let H : {0, 1}∗ → Zl×m

q be a cryptographic hash function
that gets as input a binary string of arbitrary length and outputs a matrix
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in Zl×m
q . The secret key k is a vector in Zm

q . Define Fro : Zm
q ×{0, 1}∗ →

Zl
p as follows:

Fro(k, x) = ⌊H(x) · k⌋p .

Security. The following theorem establishes the security of Fro under
the LWE assumption in the random oracle model. We note that this
follows almost immediately from the proof of hardness of learning with
rounding in [BPR12], Theorem 3.2.

Theorem 3.1. Let n, p, and q be integers, and let χ be any B-bounded
distribution over Z such that, for security parameter λ, q = q(λ), p =
p(λ), q > p ≥ 2, and q ≥ pBnω(1). Any adversary that can win the PRF
security game as defined in Definition 2.2 with non-negligible advantage
ε can be used to solve the (Zq, n, p)-LWR problem with advantage ε.

Proof. Suppose we are given access to a (Zq, n, p)-LWR oracle which ei-

ther outputs “real” samples of the form
(
Ai ∈ Zl×m

q , ⌊Ak⌋p ∈ Zl
p

)
for a

fixed (but uniformly random) key k ∈ Zm
q and “fresh” uniformly random

samples Ai or “random” samples
(
Ai ∈ Zl×m

q , r ∈ Zl
p

)
. We show how

to build a PRF simulation such that any adversary that wins the PRF
security game can be used to solve the associated LWR problem.

Consider the following challenger C in the PRF security game. C
will keep a database consisting of entries of the form

(
{0, 1}∗,Zl×m

q ,Zl
p

)
.

Recall that C has access to a (Zq, n, p)-LWR oracle O which is either
a “real” or “random” LWR oracle. C does the following on respective
queries:

• On query xi ∈ {0, 1}∗ to H, C checks if xi exists in the database. If
so, it responds with the second entry in the database (some Ai ∈
Z l×m
q , as we will see soon). If not, it queries the LWR oracle, getting

a query of the form
(
Ai ∈ Zl×m

q , ti ∈ Zl
p

)
, where t could be either

“real” or “random”, depending on the LWR oracle. C then adds
the tuple (xi,Ai, ti) to the database.

• On query xi ∈ {0, 1}∗ to F , C checks if xi exists in the database.
If so, it responds with the third entry in the database (some ti ∈
Z l
q). If not, it queries the LWR oracle, getting a query of the form(
Ai ∈ Zl×m

q , ti ∈ Zl
p

)
, where t could be either “real” or “random”,

depending on the LWR oracle. C then adds the tuple (xi,Ai, ti) to
the database.
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Note that if the LWR oracle is “real”, then C simulates Fro perfectly.
On the other hand, if the LWR oracle is “random”, then C simulates a
truly random function. Thus, any adversary that can win the PRF game
with advantage ε can be used to solve the LWR problem with identical
advantage, completing the proof.

3.2 Optimizing lattice parameters

Our goal is to choose the PRF parameters so that the PRF can be evalu-
ated efficiently as an MPC protocol. In particular, we focus on minimizing
the online round count, which is important for achieving low latency in
our distributed key derivation application.

We observe that if we choose q and p as powers of 2, then both the
modulo operation x mod q as well as the rounding operation ⌊x⌋p can be
expressed efficiently by bitwise operations. For an integer x with binary
representation x1, . . . , xn, we have

⌊x mod q⌋p = int(xlog2(q/p), . . . , xlog2(q)) ,

where int(x1, . . . , xn) =
∑n

i=1 xi · 2i−1.
As we will see later, this adaptation enables us to evaluate the modulo

and rounding operation efficiently in the MPC setting.

3.3 Adapt message space and compose outputs

For our application, we need the PRF to output random values in a prime
field Zp′ , where p′ is determined by the application. However, so far the
lattice PRF outputs a vector in Zl

p, where p is a power of 2.

Adapt message space. As we would like to obtain PRF outputs in
Zp′ , for some prime p′, we will choose Zp′ as the native message space
of computation, which is also compatible with many MPC protocols.
State-of-the-art MPC protocols allow for non-interactive addition and
one-round multiplication over Zp′ .

Compose outputs. To convert a vector of random elements over Zp

into a single random value over Zp′ , we use the following map Mcomp,

Mcomp : Zl
p → Zp′ ;x 7→

l∑
i=1

xi · pi−1 .
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We denote the composed PRF by

Fcomp : Zm
q × {0, 1}∗ → Z′p; (k, x) 7→Mcomp(Fro(k, x)) .

Security. The security of the PRF Fcomp follows from the security of
Fro (Theorem 3.1) and a bound on the statistical distance between the
distribution of Mcomp over uniform-random inputs and the uniform dis-
tribution over Zp′ (Theorem 2.1).

Theorem 3.2. Fcomp satisfies Definition 2.2.

Proof. By a corollary of Theorem 2.1, we have that

∆
(
Mcomp(U(Zl

p)), U(Zp′)
)
≤ p′/pl .

Moreover, by Theorem 3.1 we know that Fro is computationally indis-
tinguishable from U(Zl

p). It follows from hybridizing the above state-
ments that Fcomp is computationally indistinguishable from U

(
Zp′

)
, and

that the advantage AdvPRF[Fcomp,A] is negligible for all polynomially-
bounded A.

4 Implementation & Evaluation

4.1 Implementation

In order to better understand the practical performance of our lattice-
based PRF Fcomp as an MPC protocol, we implemented and evaluated it
using the MP-SPDZ framework [Kel20], which is a framework for eval-
uating MPC protocols that comes with its own high-level programming
language and supports a variety of base MPC protocols. The source code
can be found at https://github.com/torusresearch/MP-SPDZ/blob/

lattice-prf/Programs/Source/lattice_prf.mpc.

MPC setup. We configure MP-SPDZ to use mal-shamir as the base
MPC protocol, which is a maliciously secure MPC protocol based on
Shamir secret sharing that requires an honest majority, and thereby sat-
isfies our robustness requirement. Moreover, it supports prime field mes-
sage spaces, which suits the message space of our PRF construction. We
run our experiments between 3 parties and with security against 1 cor-
rupted party, and we use a prime field Zp′ as the native message space,
where p′ is a 256-bit prime.
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PRF parameters. We choose the lattice PRF parameters q and p as
powers of 2, with varying concrete values during the experiments (e.g.,
q = 212 and p = 28). Furthermore, we set l = ⌈(log2(p′) + ∆s)/ log2(p)⌉,
where ∆s = 40 controls the statistical distance between Fcomp and Fro.

Key generation. For generating the master PRF key, the parties need
to sample secret shares of a uniformly random k ∈ Zm

q . As there is no
method for directly sampling secret-shared values modulo q over the mes-
sage space Zp′ , we rely on random bit sampling [RW19]. Concretely, for
each entry of k, we sample log2 q shared random bits and then accumulate
them to obtain a shared random integer in Zq.

Computation modulo q. Evaluating the PRF in MPC requires com-
puting the matrix-vector product H(x) · k modulo q, where H(x) is a
public matrix and k is a secret-shared vector.

We first compute the matrix-vector product H(x) · k over the prime
field Zp′ . Note that p′ must be large enough so that the computation
does not wrap. Per row of H(x), this involves m cleartext-ciphertext
multiplications and m− 1 ciphertext-ciphertext additions, which can all
be done locally. Let y ∈ Zl

p′ denote the resulting vector.
Next, we compute each entry of y modulo q. Since q is a power of 2,

this can be done using algorithm sint.mod2m of MP-SPDZ, which runs
in 1 +

⌈
log22(q)

⌉
online rounds and makes use of pre-shared random bits.

Rounding operation. Given the vector y′ = H(x) ·k mod q, we next
compute the rounding operation ⌊y′⌋p. Concretely, this means we need
to map each element y′i of y

′ to the largest integer j such that j∗q/p ≤ y′i.
Since q and p are powers of 2, this is equivalent to cutting off the log2(q/p)
lowest order bits of y′i. In MP-SPDZ this can be done using algorithm
sint.right shift, which runs in 1+

⌈
log22(q/p)

⌉
online rounds and makes

use of pre-shared random bits.

Composition. Finally, we compose the entries of the rounded output
vector ⌊y′⌋p into a single uniform random value y′′ ∈ Zp′ by evaluating
Mcomp. This involves plaintext-ciphertext multiplications and ciphertext-
ciphertext additions, which can all be done locally.

Total round count. The total round count for computing Fcomp(x) in
MPC is 2 + log22(q) + log22(q/p). For q = 212 and p = 28, this results in
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a MPC PRF protocol running in 8 online rounds, assuming sufficiently
many shared random bits have been generated during preprocessing.

4.2 Parameter selection

In the following, we describe the lattice parameters that we use for our
evaluation. Our parameter selection is inspired by the parameters of
Frodo [BCD+16] with 128 bit classical security, as this scheme relies on
a similar assumption.

As the lattice dimension we choose a fixed value of m = 512. We note
that the lattice dimension does not affect the complexity of the multi-
party computation. This is because only the size of the secret key k and
the hash output H(x) depend on m. However, as the vector product
H(x) ·k collapses these vector elements onto a single element, and this is
computed locally at the start of the protocol, the interactive part of the
protocol does not depend on m at all.

For the modulo parameter q and the rounding parameter p, we use the
two parameter sets (q, p) = (212, 28) and (q, p) = (232, 224). Here, smaller
values optimize for round complexity, while larger values optimize for
preprocessing complexity due to the lower number of pre-shared random
bits required.

4.3 Evaluation

We measure the performance of our distributed PRF protocol for the
parameters described in Section 4.2. We run our experiments on a single
machine with an M1 Pro CPU, 32GB of RAM, and without network
latency. The results are shown in Table 1.

Parameter set Time (ms) Data (MB) Rounds Bits

(q, p) = (212, 28) 11.07 0.41 8 5328
(q, p) = (232, 224) 7.65 0.40 10 2688

Table 1: Measurements for running one evaluation of our distributed
lattice-based PRF protocol for different lattice parameters. Time is the
time required to run the protocol on a single machine without network
latency. Data is the total amount of data sent between all parties. Rounds
is the number of online communication rounds. Bits is the number of pre-
shared random bits consumed.
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Comparison with other protocols. We compare our distributed PRF
protocol with existing constructions in Table 2, relying on the implemen-
tations from [GØS+23]. Most of the other protocols are designed for
producing multiple field elements per protocol evaluation, and for some
protocols producing 2 elements is the minimum. Therefore, we compare
the different protocols for the case of producing 2 field elements, which
results in a doubling of the communication data size of our protocol.

Overall, our protocol compares favorably in terms of running time
and round complexity. However, we note that due to the large number
of random bits consumed by our protocol, it requires siginificantly more
communication, especially during the preprocessing phase.

Protocol Time (ms) Data (MB) Rounds

Ciminion [DGG+21] 31.93 0.28 283
GMiMC [AGP+19] 59.04 0.28 670
HadesMiMC [GLR+20] 47.81 0.19 466
Hydra [GØS+23] 21.42 0.07 140
MiMC [AGR+16] 33.18 0.25 331
Rescue [AABS+20] 26.35 0.28 124

Our protocol (212, 28) 18.76 0.82 8
Our protocol (232, 224) 11.34 0.80 10

Table 2: Comparison of existing distributed PRF protocols with our
protocol for generating 2 field elements, measured using MP-SPDZ.
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D. Stehlé. Classical hardness of learning with errors. In
STOC’13, pages 575–584, 2013.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom func-
tions and lattices. In D. Pointcheval and T. Johansson, ed-
itors, Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, volume 7237 of Lecture Notes in
Computer Science, pages 719–737. Springer, 2012.

[BR93] M. Bellare and P. Rogaway. Random oracle are practical: A
paradigm for designing efficient protocols. In Proceedings of
the First ACM Conference on Computer and Communica-
tions Security, pages 62–73, 1993.

[DBN+01] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham,
E. Roback, and J. Dray. Advanced encryption standard (aes),
2001-11-26 2001.

[Dfn23] Dfns. Dfns web page. https://www.dfns.co, July 2023.

[DGG+21] C. Dobraunig, L. Grassi, A. Guinet, and D. Kuijsters. Ci-
minion: Symmetric encryption based on toffoli-gates over
large finite fields. In A. Canteaut and F. Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II, volume 12697 of Lecture Notes in
Computer Science, pages 3–34. Springer, 2021.

[DKL+19] J. Doerner, Y. Kondi, E. Lee, and A. Shelat. Threshold ecdsa
from ecdsa assumptions: The multiparty case. In 2019 IEEE

17

https://www.dfns.co


Symposium on Security and Privacy (SP), pages 1051–1066,
2019.

[Dwo15] M. Dworkin. Sha-3 standard: Permutation-based hash and
extendable-output functions, 2015-08-04 2015.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct
random functions. J. ACM, 34(4):792–807, 1986.
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A Proof of Theorem 2.1

Proof. Let m,n ∈ N, X = U(Zm), and Y = U(Zn) mod m. By the
definition of the statistical distance, we have

∆(X,Y ) =
1

2

∑
a∈Zm

|Pr[X = a]− Pr[Y = a]|

=
1

2

∑
a∈Zm

|1/m− Pr[Y = a]| .
(1)

For a ∈ Zm, define Da = {x ∈ Zn : x mod m = a}. We have

Pr[Y = a] =
∑
b∈Da

Pr[U(Zn) = b] = |Da|/n , (2)

where

|Da| =

{
⌈n/m⌉ if a < n mod m,

⌊n/m⌋ else.
(3)

Next, we determine an upper bound on |1/m−Pr[Y = a]| by writing out
the equation using (2) and (3). For a < n mod m, we have∣∣∣∣ 1m − Pr[Y = a]

∣∣∣∣ = ∣∣∣∣ 1m − ⌈n/m⌉n

∣∣∣∣ = ∣∣∣∣ 1m − n+m− n mod m

mn

∣∣∣∣ ≤ 1

n
,

(4)
and for a ≥ n mod m,∣∣∣∣ 1m − Pr[Y = a]

∣∣∣∣ = ∣∣∣∣ 1m − ⌊n/m⌋n

∣∣∣∣ = ∣∣∣∣ 1m − n− n mod m

mn

∣∣∣∣ ≤ 1

n
. (5)

Finally, by combining (1), (4), and (5), we obtain an upper bound on the
statistical distance of X and Y ,

∆(X,Y ) ≤ 1

2

∑
a∈Zm

1/n ≤ m/n .
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