
LaKey: Efficient Lattice-Based Distributed PRF Protocols
Enable Scalable Distributed Key Management

Matthias Geihs
Torus Labs

Hart Montgomery
Linux Foundation

Abstract

Distributed key management allows a set of users to have
their cryptographic keys managed by a set of servers with the
property that the servers do not learn the keys. This allows the
users to not have to deal with the burden of managing secret
key material themselves. While such systems are typically
realized using distributed key generation protocols, where the
servers generate the keys on the behalf of the users using a
distributed protocol, these realizations typically require the
servers to store and maintain an amount of key material that is
linear in the number of users. Another approach to distributed
key management is via distributed key derivation (DKD)
where a distributed PRF is employed to deterministically
derive the user keys on-demand from a constant-size (in the
number of users) secret-shared master key. However, existing
distributed PRF protocols that are suitable for DKD typically
require on the order of 100 interaction rounds between the
servers and are therefore impractical in settings where there
is network latency and users demand real-time interaction.

To resolve the situation, we initiate the study of using
lattice-based pseudorandom functions for efficiently realizing
distributed PRF protocols in the context of distributed key
derivation. Concretely, we show that the LWE-based PRF
presented by Boneh et al. at CRYPTO’13 can be turned into
a distributed PRF suitable for DKD that runs in only 8 online
rounds, which is an improvement over the start-of-the-art by
an order of magnitude. We further present optimizations of
this basic construction. We show a new construction with
improved communication efficiency proven secure under the
same “standard” assumptions. Then, we present even more
efficient constructions, running in as low as 5 online rounds,
from non-standard, new lattice-based assumptions. We sup-
port our findings by implementing and evaluating our protocol
using the MP-SPDZ framework (Keller, CCS ’20). Finally,
we give a formal definition of our DKD in the UC framework
and prove a generic construction (for which our construction
qualifies) secure in this model.

1 Introduction

Distributed pseudo-random functions (PRFs) are an important
building block in multi-party computation (MPC) protocols.
We refer to [GRR+16,GØS+23] for a list of applications. Here
we focus on their application to distributed key management
and, in particular, distributed key derivation, which we will
explain shortly.

1.1 Distributed key management

A distributed key management (DKM) system [Web23,Dfn23,
Lit23] is a cryptographic key management system that is
run by a set of servers and where keys are generated and
stored distributedly, such that they can only be accessed if a
certain subset of the servers cooperate. Here we are mostly
concerned with t-out-of-n access structures, meaning that ac-
cess requires the cooperation of at least t out of n servers.
Indeed, this property is achieved by many secret sharing
schemes [Sha79] and secure multi-party computation (MPC)
protocols [CDN15, EKR18], whose security is based on the
assumption that a certain fraction of the involved parties is
honest and follows the protocol.

At the core of a distributed key management system is
typically a distributed key generation (DKG) protocol that is
used by the servers to fresh keys for onboarding users. The
resulting keys are kept in secret-shared form [Sha79], which
means that each server only holds some partial information
about each key such that the full key can only be reconstructed
by combining a certain number of these so-called key shares.
The user can access its key by authenticating against the
servers, downloading the key shares, and reconstructing the
key locally. Alternatively, it can instruct the servers to run an
MPC protocol to compute a function of the key distributedly
without reconstructing the key in the clear. For example, the
user may instruct the servers to generate a digital signature
for a given message without having to download the key and
computing the signing algorithm locally.

1

1.2 Key refresh and challenges to scalability
The security of a distributed key management system as de-
scribed above relies on the assumption that a certain fraction
of the servers are honest and the corresponding key shares are
stored securely. To maintain security against gradual corrup-
tion, the servers must therefore regularly run a share refresh
protocol [HJK+95] that updates all user key shares so that pre-
viously compromised shares can no longer be combined with
the refreshed shares. A similar protocol is run if the access
structure needs to be changed, e.g., for adding or removing
a server. However, since key shares are stored for each user,
the workload for all of these maintenance operations grows
linearly with the number of users and managed keys.

One solution to reducing the size of the key share database
is to use a distributed key derivation (DKD) protocol instead
of a DKG for generating user keys. In contrast to a DKG,
which produces a fresh and uncorrelated key on every run of
the protocol, a DKD allows the servers to deterministically
derive a user key from the user’s identity and a secret-shared
master key on-demand. Consequently, the servers no longer
need to store and maintain the individual user key shares, but
only need to store and maintain a single secret-shared master
key. Thereby, the database size and maintenance workload are
reduced from linear in the number of user keys to constant.

1.3 Application requirements
A DKD can essentially be realized by employing a distributed
PRF that satisfies a certain set of requirements. Informally
speaking, a pseudo-random function (PRF) is a keyed function
Fk : A→ B that is indistinguishable from a randomly chosen
function with the same domain and range, with respect to a
computationally-bounded observer who does not know the
secret key. If the range of the PRF is equal to the key space
of the targeted cryptographic scheme (e.g., an integer prime
field in the case of the ECDSA signature scheme), then the
PRF can be used as a key derivation function to derive a
large number of user keys from a single master key and the
corresponding user identities. That is, given a master PRF key
k and a user identity u, the derived user key is Fk(u). Note
that while this user key is completely determined by k and u,
yet, it appears completely random to anyone who does not
know the master key k.

By a distributed PRF we mean an interactive protocol that
is run between a set of parties and allows them to evalu-
ate a PRF without knowledge of the full secret key. For our
distributed key derivation application, we are looking for a
distributed PRF that satisfies the following properties:

User Identifiers ⊆ Input(PRF). The PRF input space must
contain all user identifiers, because the user keys will be
derived from them.

Output(PRF) = Key Space: The PRF output distribution
should be indistinguishable from the key distribution

of the targeted cryptographic scheme. Specifically, in the
case of ECDSA, we are looking for a uniform distribu-
tion over a prime field.

Secret-shared output: The output of the distributed PRF
should be in secret-shared form so that it remains hid-
den from the servers and can be fed into subsequent
multi-party computation protocols such as a multi-party
signature generation protocol [DKL+19, KG21].

Robust to faulty or malicious servers: The protocol must
be robust and secure against a subset of faulty or mali-
cious servers.

Well-founded assumptions: The security of the protocol
should rely on well-founded security assumptions that
are reliable in real world applications.

Low round complexity: The protocol should require only a
small number of interactions between the servers in order
to be deployable to settings where the servers reside in
different locations and the network latency between them
is relatively high.

Why do we focus on round complexity? We focus on
measuring performance in terms of round complexity because
we found this to be a major bottleneck with respect to existing
candidate protocols and our application. Existing distributed
PRF protocols have a round complexity on the order of 100
rounds and more (cf. Table 3), where each round adds a small
delay depending on the network latency, which in turn affects
the user experience of the key management system.

1.4 State of the art
[GØS+23] give an overview of the state of the art of MPC-
friendly PRF constructions and we mostly summarize their
observations here.

Traditional PRFs (e.g., AES [DBN+01], SHA-3 [Dwo15])
are not designed for use in MPC protocols. They typically
have a higher multiplicative depth than specialized construc-
tions and work over bytes instead of prime fields.

The Naor-Reingold construction [NR97] yields an effi-
cient distributed PRF protocol but has a public output and is
therefore not suitable for our use case. [GRR+16] describe
an efficient distributed PRF protocol based on the hardness
of the Shifted Legendre Symbol Problem, which, however,
is a rather unconvential and seemingly less reliable assump-
tion [BBU+19].

LowMC [ARS+15], MiMC [AGR+16], GMiMC
[AGP+19], HadesMiMC [GLR+20], and Rescue [AABS+20]
are invertible block ciphers. However, invertibility is not
required for our application, and a lower multiplicative
complexity may be achieved by working with non-invertible
functions [DGG+21].

2

Farfalle [BDH+17] is an efficiently parallelizable
permutation-based PRF construction with arbitrary input and
output length. Ciminion [DGG+21] is a modified version of
Farfalle based on a Feistel scheme. However, both require
the expensive computation of a key schedule. Finally, Hy-
dra [GØS+23] is a recent MPC-friendly PRF construction
with comparable performance to Ciminion but without the
need for a key schedule. Both compare favorably to the state
of the art in terms of multiplicative complexity, but still re-
quire on the order of 100 online communication rounds per
PRF evaluation, which incurs a significant latency overhead
in our application.

Another interesting candidate for MPC-friendly PRFs is the
“dark matter” PRF construction family [BIP+18]. We note that
this has been used to construct oblivious PRFs [ADD+23] but
has the drawback that it uses a non-standard assumption and
has only been analyzed in the semi-honest 3-party setting.

Another approach for distributed generation of secret shares
is via Pseudo-Random Secret Sharing (PRSS) [CDI05]. How-
ever, with this approach it is unclear how the master key can
be reshared and therefore it is not suitable for a system that
runs over extending periods of time (like a key management
system) and protection against gradual server corruption is
needed. Moreover, it only works in a setting with an honest
super majority.

Other related work. [MK23] also addresses the problem of
scalable distributed key management via on-demand distrib-
uted key derivation. In comparison to our approach, they use
the lattice-based PRF construction from [BLM+13] as an al-
most key-homomorphic PRF, which leads to a non-interactive
approximate distributed PRF protocol. Due to the PRF not
being exactly key homomorphic, they have to account for a
small error in the key derivation. This unfortunately makes
the protocol rather complex to implement as it requires the
use of particular secret sharing schemes and zero-knowledge
proofs to maintain protocol efficiency, correctness, and secu-
rity. In contrast, our approach does not impose any additional
requirements on the used secret sharing scheme and can be
directly paired with subsequent MPC protocols without the
need for costly post-processing of the generated key shares.

1.5 Our contributions

We show that the lattice-based PRF construction of Boneh et
al. [BLM+13] can be turned into a distributed PRF protocol
that fulfills all our requirements (cf. Section 1.3) and runs in
only 2+ log2

2(q)+ log2
2(q/p) online rounds, where q and p

are lattice parameters. For concrete parameter choices, this
results in a distributed PRF protocol running in only 8 on-
line rounds, improving over the state-of-the-art by an order
of magnitude, at the expenense of more communication in
the preprocessing phase. We also propose several enhanced

constructions that further improve the efficiency of the re-
sulting protocol. We support our findings by implementing
and evaluating our protocol using the MP-SPDZ framework
of Keller [Kel20]. Finally, we model our application of dis-
tributed key management in the UC Framework [Can00] and
show that it can be efficiently instantiated using an MPC
framework such as MP-SPDZ [Kel20] and our distributed
PRF protocol.

1.6 Organization
Section 2 introduces notation, basic primitives, and the lattice-
based PRF construction of [BLM+13]. Section 3 describes
how we adapt the construction to the MPC setting. Section 4
describes a number of enhanced constructions that further im-
prove the efficiency. Section 5 describes the implementation
of our constructions as MPC protocols and evaluates their
performance. Section 6 models our application in the UC
framework and shows that it can be efficiently realized using
our distributed PRF protocol.

2 Preliminaries

We first introduce some basic notation. For an integer n ∈ N
we denote by [n] the set {1, . . . ,n}. For a random variable
X we denote by x← X the process of sampling a value x
according to the distribution of X . Similarly, for a finite set
S we denote by x← S the process of sampling a value x ac-
cording to the uniform distribution over S. We denote by x
a vector (x1, . . . ,x|x|). For two bit-strings x and y we denote
by x∥y their concatenation. For a bit string x ∈ {0,1}ℓ, for
every j ∈ [ℓ], let x| j denote the bit string comprising the bits j
through ℓ of x. A non-negative function f : N→ R is negligi-
ble if it vanishes faster than any inverse polynomial in some
(security) parameter λ. For a group G of order p, element
g ∈ G and a matrix M ∈ Zn×m

p (for any n and m in N), we
denote the matrix in Gn×m whose (i, j)th entry is gmi, j by gM.
We denote by Rki(Za×b

p) the set of all a×b matrices over Zp
of rank i. We use (Z) to denote computing an operation over
the integers (rather than something like mod q) when it may
not be clear from context.

Distributions. By ηBin(k) we denote the uniform distribu-
tion on {0,1}k. For an α ∈ (0,1) and a prime q, the random
variable Ψα over Zq is defined as ⌈qX⌋ (mod q) where X is
a normal random variable with mean 0 and standard devia-
tion α/

√
2π. For two probability distributions X and Y over a

finite domain D, we define their statistical distance as

∆(X ,Y) =
1
2 ∑

a∈D
|Pr[X = a]−Pr[Y = a]| .

We denote the uniform distribution over a finite domain D
by U(D). The following theorem describes a bound on the

3

statistical distance between U(Zm) and U(Zn) mod m, for
m,n ∈ N.

Theorem 2.1. For m,n ∈ N, ∆(U(Zm),U(Zn) mod m) ≤
m/n.

A similar bound is also used in [GRR+16], but left without a
proof. For completeness, we include a proof of the theorem
in Appendix A.1.

Rounding. We use ⌊·⌋ to denote rounding a real number to
the largest integer which does not exceed it. For integers q and
p where q≥ p≥ 2, we define the function ⌊·⌋p : Zq→ Zp as
⌊x⌋p = i, where i · ⌊q/p⌋ is the largest multiple of ⌊q/p⌋ that
does not exceed x. We also overload ⌊·⌋p for p a power of 2 in
the natural way so that it is well-defined over Z: in this case,
we define ⌊x⌋p to be eliminating the lowest log p bits of x and
then outputting x/p. For a vector v ∈ Zm

q , we define ⌊v⌋p as
the vector in Zm

p obtained by rounding each coordinate of the
vector individually. A probability distribution χ over R is said
to be B-bounded if it holds that Prx←χ[|x|> B] is negligible
in the security parameter.

2.1 Pseudorandom Functions
A pseudorandom function (PRF) [GGM86] is an efficiently
computable function F : K ×X → Y such that for a uniform
k in K and a uniform function f : X →Y , an oracle for F(k, ·)
is computationally indistinguishable from an oracle for f (·).
In this paper, we allow our PRFs to be further parameterized
by a public parameter pp. When needed, this pp is generated
by a Setup algorithm.

Security for a PRF is defined using an experiment between
a challenger and an adversary A . For b ∈ {0,1} define the
following experiment ExptPRFb :

1. Given security parameter λ, the challenger samples and
publishes public parameters pp to the adversary. Next, if
b = 0 the challenger chooses a random key k ∈ K and
sets f (·) := Fpp(k, ·). If b = 1 the challenger chooses a
random function f : X → Y .

2. The adversary (adaptively) sends input queries x1, . . . ,xQ
in X and receives back f (x1), . . . , f (xQ).

3. Eventually the adversary outputs a bit b′ ∈ {0,1}.

Let Wb denote the probability that A outputs 1 in experiment
ExptPRFb .

Definition 2.2 (Pseudorandom Function). A PRF Fpp : K ×
X → Y is secure if for all efficient adversaries A the quantity

AdvPRF[F,A] := |W0−W1|

is negligible.

2.2 Lattice Preliminaries
Learning with errors. The learning with errors (LWE)
problem was introduced by Regev [Reg05] who showed that
solving the LWE problem on average is as hard as (quan-
tumly) solving several standard lattice problems in the worst
case. Here we define LWE with the flexibility to sample the
key from a non-uniform distribution.

Definition 2.3 (Learning With Errors). For integers q =
q(n) ≥ 2, a noise distribution χ = χ(n) over Zq, and a key
distribution Ψ over Zn

q, the learning with errors problem
(Zq,n,χ,Ψ)-LWE is to distinguish between the following
pairs of distributions:

{A,A⊺s+χ} and {A,u},

where m = poly(n), A←Zn×m
q , s←Ψ, χ← χm, and u←Zm

q .
We refer to the m columns of the matrix A as the LWE sample
points.

Regev [Reg05] shows that for a certain noise distribution
χ (a discrete Gaussian), for Ψ the uniform distribution over
Zn

q, for n polynomial in λ, and a sufficiently large q, the LWE
problem is as hard as the worst-case SIVP and GapSVP un-
der a quantum reduction (see also [Pei09, BLP+13]). These
results have been extended to show that Ψ can be sampled
from a low norm distribution (in particular, from the noise
distribution χ) and the resulting problem is as hard as the ba-
sic LWE problem [ACP+09a, BLP+13]. Similarly, the noise
distribution χ can be a simple low-norm distribution [MP13]
if m is small enough.

Learning with rounding. Banerjee, Peikert, and Rosen
[BPR12] consider a related problem, denoted the “learning
with rounding” (LWR) problem (recall the notation ⌊·⌋p).

Definition 2.4 (Learning With Rounding). For integers q =
q(λ) and p = p(λ) such that q > p≥ 2 and a key distribution
Ψ over Zn

q, the learning with rounding problem (Zq,n, p,Ψ)-
LWR is to distinguish between the following pairs of distribu-
tions:

{A,
⌊
AT s

⌋
p} and {A,⌊u⌋p},

where m = poly(n), A← Zn×m
q , s←Ψ, and u← Zm

q .

Banerjee et al. show that for any B-bounded distribution
χ over Z and q≥ pBnω(1), the (Zq,n, p)-LWR problem is at
least as hard as solving the (Zq,n,χ)-LWE problem. We note
that some papers in this area (e.g. [BLM+13]) define LWE
and LWR to use non-uniform samples, and not just keys, but
we do not need non-uniform samples in our proofs, so we can
simplify our definitions here.

For both LWE and LWR, we sometimes treat the parameter
m as an arbitrary polynomial, meaning that we can “query”
and LWE/LWR “oracle” and receive any polynomial number
of samples that we like. This greatly simplifies our proofs and
is standard in the literature (e.g. [BLM+13]).

4

2.3 Lattice-Based PRF from [BLM+13]

We restate the LWE-based PRF from [BLM+13], Section 5. It
will serve as the basis for our MPC-friendly PRF construction.

Construction. Let q, p, n, and m be integers such that m =
n⌈logq⌉ and p divides q. Let Ψα be the standard LWE discrete
Gaussian noise distribution with parameter α.

Let the public parameter pp be a pair of matrices of the
form A0,A1 ∈Zm×m

q where each row of A0 and A1 is sampled
from ηBin(m) such that both matrices are full rank. The secret
key k is a vector in Zm

q . Define FLWE : Zm
q ×{0,1}ℓ→ Zm

p as
follows:

FLWE(k,x) =

⌊
ℓ

∏
i=1

Axi ·k

⌋
p

.

Security. [BLM+13], Theorem 5.1 establishes the security
of FLWE under the LWE assumption. We restate the theorem
here for reference.

Theorem 2.5. The function FLWE is pseudorandom under the
(Zq,n,Ψα)-LWE assumption for parameter choices satisfy-
ing α ·mℓ · p≤ 2−ω(logn).

3 Adaptation to MPC

In the following, we describe how we adapt abd optimize the
lattice-based PRF construction of [BLM+13] (cf. Section 2.3)
for the MPC setting, with a particular focus on the application
to distributed key derivation. It turns out that highly struc-
tured, lattice-based PRFs like that of [BLM+13] compose
quite efficiently with certain arithmetic MPC protocols, a
fact that seemingly has not been exploited extensively in the
MPC literature. The intuition is quite natural–MPC protocols
designed for arithmetic circuits will quite naturally fit lattice-
based schemes–but rather than explain this in detail, we will
show it with performance numbers later in the paper.

We note that the PRF FLWE from [BLM+13] outputs a
vector of entries over Zm

p , and we need to output an integer
that is uniform modulo a large prime (i.e. the ECDSA group
order). At a first glance, it might be tempting to choose p to
directly be this prime and output a single entry in the output
vector of FLWE . However, as shown in [Reg05] (and implicitly
in Theorem 2.5), the hardness of LWE (and, by corollary,
LWR) is proportional to the ratio of the noise (or number
of rounded bits) to the modulus. The larger p gets in our
case, the worse security we have, and if we choose p to be
exponentially large, there may be an efficient attack on our
scheme (note that Theorem 2.5 does not hold in this case).
Thus, we must compose many small LWR outputs into one
larger one, which we do in our construction below.

3.1 Use a random oracle

For practical purposes, it is generally accepted to rely on
the random oracle model (ROM) [BR93]. Relying on this
model, we can replace the product ∏

ℓ
i=1 Axi by a call to a hash

function H(x) modeled as a random oracle. This leads to the
following PRF construction.

Construction. Let q, p, l, m, and n be integers such that
m = n⌈logq⌉ and p divides q. Let H : {0,1}∗→ Zl×m

q be a
cryptographic hash function that gets as input a binary string
of arbitrary length and outputs a matrix in Zl×m

q . The secret
key k is a vector in Zm

q sampled uniformly at random. Define
FRO : Zm

q ×{0,1}∗→ Zl
p as follows:

FRO(k,x) = ⌊H(x) ·k⌋p .

Security. The following theorem establishes the security of
FRO under the LWE assumption in the random oracle model.
We note that this follows almost immediately from the proof
of hardness of learning with rounding in [BPR12], Theorem
3.2.

Theorem 3.1. Let n, p, and q be integers, and let χ be any
B-bounded distribution over Z such that, for security param-
eter λ, q = q(λ), p = p(λ), q > p≥ 2, and q≥ pBnω(1). Any
adversary that can win the PRF security game as defined in
Definition 2.2 with non-negligible advantage ε can be used to
solve the (Zq,n, p)-LWR problem with advantage ε.

Proof. Suppose we are given access to a (Zq,n, p)-LWR
oracle which either outputs “real” samples of the form(

Ai ∈ Zl×m
q ,⌊Aik⌋p ∈ Zl

p

)
for a fixed (but uniformly ran-

dom) key k ∈ Zm
q and “fresh” uniformly random samples

Ai or “random” samples
(
Ai ∈ Zl×m

q ,r ∈ Zl
p
)
. We show how

to build a PRF simulation such that any adversary that wins
the PRF security game can be used to solve the associated
LWR problem.

Consider the following challenger C in the PRF security
game. C will keep a database consisting of entries of the form(
{0,1}∗,Zl×m

q ,Zl
p
)
. Recall that C has access to a (Zq,n, p)-

LWR oracle O which is either a “real” or “random” LWR
oracle. C does the following on respective queries:

• On query xi ∈ {0,1}∗ to H, C checks if xi exists in the
database. If so, it responds with the second entry in the
database (some Ai ∈ Zl×m

q , as we will see soon). If not,
it queries the LWR oracle, getting a query of the form(
Ai ∈ Zl×m

q , ti ∈ Zl
p
)
, where t could be either “real” or

“random”, depending on the LWR oracle. C then adds
the tuple (xi,Ai, ti) to the database.

• On query xi ∈ {0,1}∗ to F , C checks if xi exists in the
database. If so, it responds with the third entry in the

5

database (some ti ∈ Zl
q). If not, it queries the LWR or-

acle, getting a query of the form
(
Ai ∈ Zl×m

q , ti ∈ Zl
p
)
,

where t could be either “real” or “random”, depending
on the LWR oracle. C then adds the tuple (xi,Ai, ti) to
the database.

Note that if the LWR oracle is “real”, then C simulates FRO

perfectly. On the other hand, if the LWR oracle is “random”,
then C simulates a truly random function. Thus, any adversary
that can win the PRF game with advantage ε can be used to
solve the LWR problem with identical advantage, completing
the proof.

3.2 Adapt lattice parameters
Our goal is to choose the PRF parameters so that the PRF
can be evaluated efficiently as an MPC protocol. In particular,
we focus on minimizing the online round count, which is
important for achieving low latency in our distributed key
derivation application.

We observe that if we choose q and p as powers of 2, then
both the modulo operation x mod q as well as the rounding
operation ⌊x⌋p can be expressed efficiently by bitwise oper-
ations. For an integer x with binary representation x1, . . . ,xn,
we have

⌊x mod q⌋p = int(xlog2(q/p), . . . ,xlog2(q)) ,

where int(x1, . . . ,xn) = ∑
n
i=1 xi ·2i−1.

As we will see later, this adaptation enables us to evaluate
the modulo and rounding operation efficiently in the MPC
setting.

3.3 Adapt message space and compose outputs
For our application, we need the PRF to output random values
in a prime field Zp′ , where p′ is determined by the application.
However, so far the lattice PRF outputs a vector in Zl

p, where
p is a power of 2.

Adapt message space. As we would like to obtain PRF out-
puts in Zp′ , for some prime p′, we will choose Zp′ as the native
message space of computation, which is also compatible with
many MPC protocols. State-of-the-art MPC protocols allow
for non-interactive addition and one-round multiplication over
Zp′ .

Compose outputs. To convert a vector of random elements
over Zp into a single random value over Zp′ , we use the
following map MCOMP,

MCOMP : Zl
p→ Zp′ ;x 7→

l

∑
i=1

xi · pi−1 .

We denote the composed PRF by

FCOMP : Zm
q ×{0,1}∗→ Z′p;(k,x) 7→MCOMP(FRO(k,x)) .

Security. The security of the PRF FCOMP follows from the
security of FRO (Theorem 3.1) and a bound on the statistical
distance between the distribution of MCOMP over uniform-
random inputs and the uniform distribution over Zp′ (Theo-
rem 2.1).

Theorem 3.2. FCOMP satisfies Definition 2.2.

Proof. By a corollary of Theorem 2.1, we have that

∆

(
MCOMP(U(Zl

p)),U(Zp′)
)
≤ p′/pl .

Moreover, by Theorem 3.1 we know that FRO is computa-
tionally indistinguishable from U(Zl

p). It follows from hy-
bridizing the above statements that FCOMP is computation-
ally indistinguishable from U

(
Zp′

)
, and that the advantage

AdvPRF[FCOMP,A] is negligible for all polynomially-bounded
A .

4 Enhanced constructions

In this section, we show how to build an optimized version
of our PRF. We gain (sometimes substantial) performance
improvements at the cost of provable security. In particu-
lar, we conjecture new circular security assumptions around
LWE/LWR, prove that assumptions that are “very close” are
secure under the standard LWE assumption, and show how
we gain performance. Due to space constraints, we are unfor-
tunately unable to include all of our proofs in this section. For
readability, we have included this full section in the appendix.

4.1 Overview of core ideas
The basic idea of our construction is to combine LWR out-
puts together to create some value that is computationally
indistinguishable from uniform modulo some large prime p.
Consider some number p0. If we have LWR instances t1, ...tℓ
that give us some uniform value over Zp0 , then we compute
the sum ∑

ℓ
i=1 pi−1

0 ti. If pt
0 − p is superpolynomially large,

then we have constructed a uniformly random value mod p
assuming that the LWR assumption is true.

In some sense, this seems a little bit wasteful: for instance,
what happens if we do not compute the rounding operation
of the higher-order terms (those that are multiplied by some
pi

0 for i > 1 in the above exposition)? If we are rounding
away k bits, we could instead not round away the low order
bits when computing t2 and multiply this version of t2, for
instance, by p0

2k . This way t1 would “hide” the noise bits of t2
that we haven’t rounded away and hopefully we could still
have security.

A concrete example. Consider two integers p1 and p2. We
set P1 = 2p1 and P2 = 2p2 and then q = P2

1 P2. We also set
P = P3

1 P2
2 , ignoring for a brief moment that we would even-

tually like P to be prime. Suppose we let a ∈ Zn
q be sampled

6

uniformly at random for some integer n and also let s1,s2 ∈Zn
q

be sampled such that each entry is random in [0, ...,P1]. We
could compute t1 =

⌊
aT s1

⌋
p2 p1

and t2 = aT s2 and then set
t = t1 +P1P2t2.

What is going on here? the highest order bits of t1–P1 of
them, in fact–mask the lowest P1 bits of t2 that we would
normally round away. It perhaps surprisingly turns out that,
assuming P1 and P2 are large enough, we can actually prove
that t is pseudorandom mod P assuming LWE holds. The
proof follows from a relatively natural hybrid argument.

We can also extend this idea for higher values of ℓ: in
general, setting t1 =

⌊
aT s1

⌋
P2P1

, t2 = aT s2, ... , tℓ = aT sℓ and
combining in the same style as before still works in the sense
that we can prove security from LWE. This allows us to
reduce the work needed in our MPC.

Moving to circular security. However, the above approach
is a little bit unsatisfactory. No matter how we set ℓ, we still
have to compute t1 =

⌊
aT s1

⌋
P2P1

, which effectively lower
bounds the number of rounds needed in our MPC. Since
our MPC is over arithmetic circuits, there are two expensive
(because they are bitwise) operations here which must be
done: computing mod q, and rounding. We can try to improve
things in the following ways:

• First, suppose we sample the keys si from a slightly dif-
ferent distribution: uniform over [0, ...,P1/n] rather than
uniform over [0, ...,P1]. This would give us the property
that as1 < P1P2P2

1 , simplifying our argument.

• Then, in our computation, suppose we just compute t1 =⌊
aT s1 (Z)

⌋
P2P1

: where we compute aT s1 over Z. In other
words, we never compute a mod q operation, and instead
only round away the lowest-order p1 bits.

• Furthermore, suppose we restrict P2 ≥ P1.

We can now see how to argue that t1 +P1P2t2 is uniform
mod P. Note that we cannot reduce to standard LWE, but
must make a circular security-style of assumption:

• Normally, letting an adversary see t1 =
⌊
aT s1 (Z)

⌋
P2P1

instead of t1 =
⌊
aT s1

⌋
P2P1

where we compute mod q
would break security with enough samples. However, the
high-order bits in t1 that would be “eliminated” by the
mod q operation are going to correspond to the integer
representation between P1P2P2

1 and P1P2P2
1 P2: in other

words, where the “good bits” of t2 lie.

• The bits of t2 that we would usually round away still lie
within the “good bits” of t1 as before.

So, in this case, the “good” bits of each LWR instance ef-
fectively mask the “sensitive” bits of the other instance. While
we can’t prove that this construction holds under a standard
LWE assumption, we can conjecture that it stands a good

chance of being secure based on the previous intuition. How-
ever, such an assumption certainly would need more study
before being used in a practical system. We formalize this
later in this section as the “overlapping LWR assumption”.

Generalizing this intuition. As before, we can continue to
chain more and more terms together for larger values of P.
However, in this case we know far less about the security: it
could be the case, for instance, that our assumptions hold for a
constant ℓ but not if ℓ is larger. We leave a formal assessment
of the security of these assumptions to future work.

We also note that, in the above, we have technically not
defined what to do with the “middle” terms, i.e. t2 through
tℓ−1: do we need to still compute the mod q operation, or is
it OK if we just add them in directly, only computing the
rounding operation on t1 and the mod q operation on tℓ? We
do not know the answer to this for sure and thus define a
flexible assumption.

4.2 LWR with nonuniform key distributions
In our constructions below, we will need to use LWR with
a nonuniform key distribution. We note that [ACP+09b]
showed that LWE with key distribution drawn from the noise
distribution was (almost) exactly as hard as regular LWE for
certain moduli, and [BLP+13] refined this idea further, among
many other contributions. Although we cannot directly make
these proofs work with rounding, we can take their core ideas
and apply the standard rounding reduction of [BPR12] to
show that we can use LWR with a nonuniform (and even
non-Gaussian) key distribution. Below, we prove that LWR
with an appropriate nonuniform key distribution is as hard as
(relatively) standard LWE.

Theorem 4.1. Let n, p, and q′ < q be integers, and let χ be
any B-bounded distribution over Z such that, for security pa-
rameter λ, q = q(λ), p = p(λ), q > p ≥ 2, and q′ ≥ Bnω(1)

and q≥ pBnω(1). Let Ψ be the distribution over Zn
q that out-

puts each value in the vector uniformly at random between 0
and q′. It is the case that the (Zq,n, p,Ψ)-LWR problem is at
least as hard as solving the (Zq,n,χ)-LWE problem.

Proof intuition. We first show that LWE with the key drawn
from the noise distribution is as hard as standard LWE. This
is a result that has been shown numerous times in a number
of different contexts [ACP+09b, BLP+13], but we found it
easier to prove it directly here ourselves than to adapt these
other results to our context. We then show that LWE with a
key uniformly sampled over Zq′ is at least as hard as LWE
with key drawn from the noise distribution, similar to a result
of [BLP+13]. Finally, we apply techniques from [BPR12] to
show that our LWR assumption is at least as hard as this LWE
assumption with the key sampled uniformly over Zq′ . For the
full proof, please see Appendix B.

7

A corollary for uniform noise. With a very slight tweak,
we can extend our line of results above to handle uniformly
sampled noise instead of rounding. We state this below in the
following theorem.

Theorem 4.2. Let n and q′ < q be integers, and let χ be
any B-bounded distribution over Z such that, for security
parameter λ, q = q(λ), p = p(λ), q > p≥ 2, and q′ ≥ Bnω(1)

and q≥ pBnω(1). Let ψ be a distribution over Zq that outputs
a value uniformly at random between 0 and q′, and let Ψ be
the distribution over Zn

q that outputs each value in the vector
uniformly at random between 0 and q′. It is the case that the
(Zq,n,ψ,Ψ)-LWE problem is at least as hard as solving the
(Zq,n,χ)-LWE problem.

We prove this theorem in Appendix B.

4.3 Defining and proving the secure instance

We next define and prove secure the optimized instance for
which we have a security proof to standard lattice assumptions.
This is just a general and more formally defined version of
what we discussed above.

Construction. Our construction takes as setup parameters
a security parameter λ and some prime P, and then includes
other integer parameters n, p1, p2, ℓ, n, and E. We require the
following from these parameters:

• We set P1 = 2p1 and P2 = 2p2 .

• We set q = P1P2P1.

• Pℓ+1
1 Pℓ

2 ≥ PE.

• P1, P2, and E are superpolynomially large in λ.

• We set n as a lattice dimension dependent on λ.

We assume the existence of a hash function H : {0,1}k→
Zn

q. The secret key of our PRF FSEC is a matrix S ∈ Zn×ℓ
q

sampled so that each entry is uniform in [0, ...,P1].1 We denote
Si to be the ith column of S.

We formally define our PRF FSEC : {0,1}k×Zn×ℓ
q → Zp as

follows. On input x, we:

• Set ax ∈ Zn
q = H (x).

• Let cx,i ∈ Zq = aT
x Si.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

1We could set our keys here to be uniform over Zq, but we choose to
set them this way for efficiency reasons (i.e., lesser bitlength leads to fewer
preshared random bits consumed in MPC). As shown in [ACP+09b] and
myriad follow-ups, we lose little security for doing so.

Intuition of the construction. What is going on here? Each
of the “LWR” instances works mod q = P1P2P1 and overlaps
on the top and bottom (if applicable) by P1. So the top of each
fresh instance hides the “noise bits” of the instance above
it. This is the goal of the construction, and how we can gain
efficiency: we only have to compute one rounding operation
in entire computation of the PRF. This isn’t much if we are
directly computing the PRF, but may save us considerable
time if we compute the PRF in an MPC.

Proof of security. As we claimed earlier, we can in fact
prove the above construction secure under the standard
learning with rounding assumption. We note that, as shown
in [BPR12], this follows from the LWE assumption with
slightly superpolynomial (in the security parameter λ) modu-
lus.

Our core argument is relatively straightforward: we use a
hybrid argument, progressively randomizing the terms cx,i,
starting with i = 1 until all of the terms are random. Note
that the randomness of each cx,1 term immediately follows
from the LWR assumption. Once we “switch” the cx,1 terms
to random, then they mask the lowest p1 bits of the cx,2 terms,
meaning that we can once again apply LWR. We can then
continue this argument all the way up to the cx,ℓ terms. There
are some subtleties in the proof, particularly with how we deal
with “overflow” bits, but the overall idea is pretty straightfor-
ward.

We state this formally below with the following theorem:

Theorem 4.3. Let P, n, q, p1, P1, p2, P2, ℓ, n, and E be pa-
rameters as defined above. Let Ψ denote the distribution over
Zn defined by sampling each entry as an integer uniformly at
random in the range [0,P1] and ψ be the distribution over Z
defined by sampling an integer uniformly at random in the
range [0,P1] . Any adversary that can win the PRF security
game as defined in Definition 2.2 with non-negligible advan-
tage ε can be used to solve the (Zq,n, p1 p2,Ψ)-LWR problem
or the (Zq,n,ψ,Ψ)-LWE problem with advantage polynomial
in ε assuming that H is a random oracle.

We prove this theorem in Appendix B. We note that by
theorems B.1 and B.4 (proven in Appendix B), the assump-
tions used in this theorem are reducible from standard LWE.
So therefore the hardness of this PRF follows from standard
LWE. Also, the assumptions in this proof are not substan-
tially worse in terms of parameters than just regular LWR.
So it would not be irresponsible to use this scheme in a real
deployment.

4.4 Instances with only conjectured security
In this section, we discuss other PRF constructions for which
we cannot prove security from standard assumptions. While
the lack of security proofs is obviously big drawback of these
constructions, they do offer substantial efficiency advantages

8

compared to the provably secure PRFs, especially within the
context of MPC computations.

We start with a construction that is very close to our con-
struction with provable security.

A construction with almost a security proof. As before,
our construction takes as setup parameters a security param-
eter λ and some prime P, and then includes other integer
parameters n, p1, p2, ℓ, n, and E. We have the same require-
ments for these parameters as with FSEC with the additional
requirement that p2 ≥ p1.

We assume the existence of a hash function H : {0,1}k→
Zn

q. The secret key of our PRF FASEC is a matrix S ∈ Zn×ℓ
q

sampled so that each entry is uniform in [0, ...,P1/n] . We
denote Si to be the ith column of S.

We formally define our PRF FASEC : {0,1}k×Zn×ℓ
q → Zp

as follows:

• Set ax ∈ Zn
q = H (x).

• Set cx,1 = aT
x S1 over Z.

• For i≥ 1, let cx,i ∈ Zq = aT
x Si mod q.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

Intuition of the construction. What is going on here?
Changes from the secure instance are highlighted . Each
of the “LWE” instances works mod q = P1P2P1 and overlaps
on the top and bottom (if applicable) by P1. So the top of each
fresh instance hides the “noise bits” of the instance above it.
In addition, the “overlap” bits of the cx,1 terms are hidden by
the cx,2 term. So there is some kind of circular security-like
thing going on here. Unfortunately, we do not know how to
prove this from standard LWE, but we can make a relatively
simple and straightforward assumption from which we can
prove security (in conjunction with standard LWE). As before,
we could choose S to be from a larger space (i.e. uniform over
Zq), and our implementation even does this, but it would be
more difficult to reason about security since there would be
more “overlaps”.

The main advantage of this construction is it essentially
lets us halve the number of rounds needed from our secure
construction when we compute the PRF using MPC. For
every cx,i term we either need to round or compute a mod q
operation–but not both. Previously, we needed to do both
for the cx,1 term, which blew up the number of MPC rounds
required.

A security proof with a new assumption. We can actu-
ally prove this construction secure if we are willing to use
a non-standard assumption. We call this new problem the
Overlapping LWR problem.

Definition 4.4. Overlapping LWR. Consider parameters P1,
P2, and q, where we set P1 = 2p1 , P2 = 2p2 , and q = P1P2P1.
We also have a security parameter λ, a lattice dimension n
based on λ, and the requirement that P1 and P2 are superpoly-
nomially large in λ. Let Ψ be a distribution over Zn. The over-
lapping learning with rounding problem (q,n,m,P1,P2,Ψ)-
OLWR is to distinguish between the following pairs of distri-
butions:

{A,⌊As(Z)⌋p +P2 (As mod q) mod P2
1 P2

2 }

and {A,u},
where m = poly(n), A← Zn×m

q , s1,s2←Ψ, and u← Zm
P2

1 P2
2
.

Note that we are explicitly not computing mod q within the
rounding operation.

It turns out, if we assume the overlapping LWR problem to
be true, we can prove that our above construction is secure.
We state this with the theorem below:

Theorem 4.5. Let P, n, q, p1, P1, p2, P2, ℓ, n, and E be param-
eters as defined above. Let Ψ denote the distribution over Zn

defined by sampling each entry as an integer uniformly at ran-
dom in the range [0,P1] and ψ be the distribution over Z de-
fined by sampling an integer uniformly at random in the range
[0,P1] . Any adversary that can win the PRF security game
for FASEC as defined in Definition 2.2 with non-negligible ad-
vantage ε can be used to solve the (q,n,m,P1,P2,Ψ)-OLWR
problem or the (Zq,n,ψ,Ψ)-LWE problem with advantage
polynomial in ε assuming that H is a random oracle.

We sketch this proof in Appendix B. We believe that this
overlapping LWR assumption is quite interesting and merits
further study.

A construction far from a security proof. We next outline
a construction where we exploit overlapping over all of the
terms, not just the first two. As before, our construction takes
as setup parameters a security parameter λ and some prime P,
and then includes other integer parameters n, p1, p2, ℓ, n, and
E. We have the same parameter requirements (and needed
hash function) as our previous construction. The secret key
of our PRF FFSEC is a matrix S ∈ Zn×ℓ

q sampled so that each
entry is uniform in [0, ...,P1/n]. We denote Si to be the ith
column of S, and we again note that we could sample S from
a larger space, as before.

We formally define our PRF FFSEC : {0,1}k×Zn×ℓ
q → Zp

as follows:

• Set ax ∈ Zn
q = H (x).

• Set cx,1 = aT
x S1 over Z.

• For 1 < i < ℓ, let cx,i ∈ Z= aT
x Si over Z.

• Set cx,ℓ ∈ Zq = aT
x Si mod q.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

9

Construction explanation. Once again, we highlighted
changes from the previous construction. The basic idea here
is that we try to take our circular security idea to the extreme.
This construction is quite efficient when computed in MPC
since we only need to do one mod q operation and one round-
ing operation.

At first glance, this construction may seem similar to
“vanilla” LWR with a very high modulus to “noise” ratio,
which would obviously not be good. This is because we
can write the construction’s outputs as something very close
to ⌊ai (S1 +P2S2 + ...)⌋Pℓ−1

1 Pℓ
2

mod P. However, the fact that
we are computing a modq operation in the middle throws
chaos into this representation and makes it seemingly un-
likely that standard attacks on overstretched LWE will not
work here. Attacks on this aggressive construction may have
more in common with approaches that might be used to attack
the “dark matter” PRF in [BIP+18] than LWE itself.

Switching the role of the samples and key. In our construc-
tions in this section, we have used samples (i.e. the outputs of
the hash function) that are vectors and keys that are matrices.
This was done solely because we could prove security; we
know of no attacks if we use samples that are matrices and
keys that are vectors (i.e. switching from ai and S to Ai and
s). It is also possible that this could bring about efficiency
improvements since we would need to deal with fewer secret
bits.

5 Implementation and evaluation

In order to better understand the practical performance
of our lattice-based PRF constructions when evaluated
in MPC, we implemented and evaluated them using
the MP-SPDZ framework [Kel20], which is a frame-
work for evaluating MPC protocols that comes with
its own high-level programming language and supports
a variety of base MPC protocols. The source code
can be found at https://github.com/torusresearch/
MP-SPDZ/blob/lattice-prf/Programs/Source/ in files
lattice_prf*.mpc.

MPC setup. We configure MP-SPDZ to use mal-shamir
as the base MPC protocol, which is a maliciously secure MPC
protocol based on Shamir secret sharing that requires an hon-
est majority, and thereby satisfies our robustness requirement.
Moreover, it supports prime field message spaces, which suits
the message space of our PRF construction. We run our experi-
ments between 3 parties and with security against 1 corrupted
party, and we use a prime field Zp′ as the native message
space, where p′ is a 256-bit prime.

PRF parameters. We choose the lattice PRF parameters q
and p as powers of 2, with varying concrete values during the

experiments (e.g., q = 212 and p = 28). Furthermore, we set
l = ⌈(log2(p′)+∆s)/ log2(p)⌉, where ∆s = 40 controls the
statistical distance between FCOMP and FRO.

Key generation. For generating the master PRF key, the
parties need to sample secret shares of a uniformly random
k ∈ Zm

q . As there is no method for directly sampling secret-
shared values modulo q over the message space Zp′ , we rely
on random bit sampling [RW19]. Concretely, for each entry of
k, we sample log2 q shared random bits and then accumulate
them to obtain a shared random integer in Zq.

Computation modulo q. Evaluating the PRF in MPC re-
quires computing the matrix-vector product H(x) ·k modulo
q, where H(x) is a public matrix and k is a secret-shared
vector.

We first compute the matrix-vector product H(x) ·k over
the prime field Zp′ . Note that p′ must be large enough so that
the computation does not wrap. Per row of H(x), this involves
m cleartext-ciphertext multiplications and m−1 ciphertext-
ciphertext additions, which can all be done locally. Let y∈Zl

p′
denote the resulting vector.

Next, we compute each entry of y modulo q. Since q is a
power of 2, this can be done using algorithm sint.mod2m of
MP-SPDZ, which runs in 1+

⌈
log2

2(q)
⌉

online rounds and
makes use of pre-shared random bits.

Rounding operation. Given the vector y′ = H(x) · k
mod q, we next compute the rounding operation ⌊y′⌋p. Con-
cretely, this means we need to map each element y′i of y′ to
the largest integer j such that j ∗q/p≤ y′i. Since q and p are
powers of 2, this is equivalent to cutting off the log2(q/p)
lowest order bits of y′i. In MP-SPDZ this can be done using al-
gorithm sint.right_shift, which runs in 1+

⌈
log2

2(q/p)
⌉

online rounds and makes use of pre-shared random bits.

Composition. Finally, we compose the entries of the
rounded output vector ⌊y′⌋p into a single uniform random
value y′′ ∈ Zp′ by evaluating MCOMP. This involves plaintext-
ciphertext multiplications and ciphertext-ciphertext additions,
which can all be done locally.

Total round count. The total round count for computing
FCOMP(x) in MPC is 2+ log2

2(q)+ log2
2(q/p). For q = 212 and

p= 28, this results in a MPC PRF protocol running in 8 online
rounds, assuming sufficiently many shared random bits have
been generated during preprocessing.

5.1 Parameter selection
In the following, we describe the lattice parameters that we
use for our evaluation. As in all practical lattice-based cryp-
tosystems, parameters are derived from what we know about

10

https://github.com/torusresearch/MP-SPDZ/blob/lattice-prf/Programs/Source/
https://github.com/torusresearch/MP-SPDZ/blob/lattice-prf/Programs/Source/

best possible attacks rather than theoretical reductions, so
we do not carry over parameters from our theorems here. In-
stead, our parameter selection is inspired by the parameters
of Frodo [BCD+16] with 128 bit classical security, as this
scheme relies on a similar assumption. We emphasize that
Frodo was meant to be a very conservative construction as
well.

As the lattice dimension we choose a fixed value of
m = 512. We note that the lattice dimension does not af-
fect the complexity of the multi-party computation. This is
because only the size of the secret key k and the hash output
H(x) depend on m. However, as the vector product H(x) ·k
collapses these vector elements onto a single element, and this
is computed locally at the start of the protocol, the interactive
part of the protocol does not depend on m at all.

For the modulo parameter q and the rounding parameter p,
we use the two parameter sets (q, p) = (212,28) and (q, p) =
(232,224). Here, smaller values optimize for round complexity,
while larger values optimize for preprocessing complexity due
to the lower number of pre-shared random bits required. We
also distinguish between whether we use the regular PRF
construction FCOMP (cf. Section 3.3), the optimized secure
PRF construction FSEC (cf. Section 4.3), or the optimized
conjectured constructions FASEC and FFSEC (cf. Section 4.4).
We list all considered protocol instances in Table 1.

Instance Construction Param q Param p

REG12 FCOMP 212 28

REG32 FCOMP 232 224

OPT12 FSEC 212 28

OPT32 FSEC 232 224

CONASEC
12 FASEC 212 28

CONASEC
32 FASEC 232 224

CONFSEC
12 FFSEC 212 28

CONFSEC
32 FFSEC 232 224

Table 1: Parameterized instances of our PRF constructions
used for evaluation.

5.2 Evaluation

We measure the performance of our distributed PRF protocol
with respect to the different instances defined in Section 5.1
and also in comparison with other existing distributed PRF
protocols. We run our experiments on a single machine with
an M1 Pro CPU, 32GB RAM, and with local communication
(e.g., without network latency) and mostly focus on measuring
performance of the online phase without preprocessing if not
stated otherwise.

Comparison between instances. We first measure and
compare the performance of the different protocol instances
defined in Section 5.1. The results are shown in Table 2. We
observe that larger values for q and p lead to less preprocess-
ing at the cost of a higher online round count. Furthermore,
the optimized variant further reduces the preprocessing and
communication cost, at the expense of more computation due
to the larger secret key.

Protocol Time Data (MB) Rounds Bits
(ms) Online / Total

Provable security

REG12 11.34 0.41 / 6.01 8 4625
REG32 8.06 0.43 / 3.85 10 2405
OPT12 24.79 0.33 / 3.85 8 2753
OPT32 12.86 0.36 / 2.79 10 1541

Conjectured security

CONASEC
12 24.49 0.32 / 3.73 5 2680

CONASEC
32 12.20 0.34 / 2.56 6 1428

CONFSEC
12 22.89 0.01 / 0.31 5 125

CONFSEC
32 11.47 0.03 / 0.33 6 185

Table 2: Measurements for running one evaluation of each
of our PRF protocol instances. Time is the time required to
run the protocol on a single machine without network latency.
Data is the global amount of data sent between all parties in
the online phase and including preprocessing, respectively.
Rounds is the number of online communication rounds. Bits
is the number of pre-shared random bits consumed.

Comparison with other protocols. We compare our prov-
ably secure distributed PRF protocols with existing con-
structions in Table 3, relying on the implementations from
[GØS+23]. Most of the other protocols are designed for pro-
ducing multiple field elements per protocol evaluation, and
for some protocols producing 2 elements is the minimum.
Therefore, we compare the different protocols for the case of
producing 2 field elements, which results in a doubling of the
communication data size of our protocol.

Overall, our protocol compares favorably in terms of run-
ning time and round complexity. However, we note that due to
the large number of random bits consumed by our protocol, it
requires significantly more communication, especially during
the preprocessing phase.

6 Application to Distributed Key Management

In the following we propose a model for our application of
distributed key management in the Universal Composabil-
ity Framework [Can00]. We first introduce an abstract MPC
functionality FMPC that our protocols will depend on. Then,

11

Protocol Time Data Rounds Time with network latency
(ms) (MB) (in seconds, extrapolated)

Ciminion [DGG+21] 31.93 0.28 283 28.33
GMiMC [AGP+19] 59.04 0.28 670 67.06
HadesMiMC [GLR+20] 47.81 0.19 466 46.65
Hydra [GØS+23] 21.42 0.07 140 14.02
MiMC [AGR+16] 33.18 0.25 331 33.13
Rescue [AABS+20] 26.35 0.28 124 12.43

Our protocol REG12 17.94 0.82 8 0.82
Our protocol REG32 11.52 0.86 10 1.01
Our protocol OPT12 48.58 0.66 8 0.85
Our protocol OPT32 23.39 0.73 10 1.02

Table 3: Comparison of existing distributed PRF protocols with our provably-secure protocols when generating 2 field elements.
Time with network latency estimates the execution time with an assumed round trip time of 100 milliseconds.

we model the ideal functionality of DKM with an arbitrary
key distribution K , define a real protocol based on a PRF F ,
and show that the real protocol realizes the ideal function-
ality in the FMPC-hybrid model if the key distribution K is
indistinguishable from the output distribution of the PRF F .
Finally, as an example instantiation, we show that the pro-
posed DKM protocol instantiated with one of our distributed
PRF protocols efficiently realizes distributed key management
for ECDSA signing.

We work in the universal composability framework
[Can00] and assume authenticated private channels between
parties. Furthermore, we assume access to the following
ideal MPC functionality, FMPC, which abstractly represents
an MPC protocol library such as MP-SPDZ [Kel20].

Functionality 6.1 (FMPC(P, t), Multi-party computation).
This functionality is parametrized by the set of servers P
and the corruption threshold t. The simulator S may statically
corrupt up to t parties in P, which it announces at the start of
the protocol. We denote by [x] the identifier of a stored secret
value x.

Evaluate: On message (eval,sid, f , [k],x) from all par-
ties in P, compute y ← f (k,x), store y, and send
(result,sid, [y]) to all parties in P.

Open: On message (open,sid, [x],u) from all parties in P,
send (value,sid,x) to party u.

6.1 Ideal functionality
In the following, we first define an ideal functionality for Dis-
tributed Key Management, which is a functionality involving
a set of servers and some users, where the servers create and
manage secret keys on behalf of the users. The users can ask
the servers to evaluate a fixed set of algorithms, FEval, on their
secret keys, where FEval depends on the application and may,

for example, allow the users to create digital signatures using
the managed secret keys as input.

Functionality 6.2 (FDKM(P, t,U,K ,FEval), Distributed Key
Management). This functionality is parametrized by the set
of servers P, the corruption threshold t, the set of users U , the
key distribution K , and the set of supported key-dependent
algorithms FEval. The simulator S may statically corrupt up
to t parties in P and any subset of parties of U , which it
announces at the start of the protocol.

Setup: On receiving (init) from all parties in P, store
(ready), and send (ready) to all parties in P.

Eval: On receiving (eval,sid, f ,x) from party u ∈U , assert
that (ready) is stored and f ∈ FEval. If this is the case,
do the following.

1. Check if there is a storage entry (key,u,k), for
some key k. If there is no such entry, sample k←K ,
and store (key,u,k).

2. Call k← Key(u), compute y← f (k,x) and all par-
ties in U , and send (result,sid,y) to u.

6.2 Real protocol
The real protocol is defined in the FMPC-hybrid model and
defines a simple interactions between the users U and the
servers P where the user instructs the servers which algorithm
f ∈ FEval to evaluate and the servers use the FMPC to run the
key derivation and the algorithm evaluation.

Protocol 6.3 (πDKM(P, t,U,F,FEval)). This protocol is
parametrized by the set of servers P, the corruption thresold
t, the set of users U , the PRF F , and the set of supported
key-dependent algorithms FEval. It makes use of functionality
FMPC(P, t).

12

Setup:

1. On message (init,sid) from the environment
Z, each party Pi ∈ P checks whether there is
an entry (prfkey, ·) in memory. If not, Pi sends
(eval,sid,F.KeyGen) to functionality FMPC.

2. On message (result,sid,k) from FMPC, Pi stores
(prfkey,k).

Eval:

1. On message (eval,sid, f ,x) from the environment
Z, a user u∈U sends (eval,sid, f ,x) to each party
in Pi ∈ P.

2. On message (eval,sid, f ,x) from a user u ∈ U ,
each party Pi ∈ P asserts that there is an entry
(prfkey,k) in memory, for some k, and that f ∈
FEval. It then sends (eval,sid,g,k,u,x) to FMPC,
where g(k,u,x) = f (F.Eval(k,u),x).

3. On message (result,sid,y) from FMPC, Pi sends
(open,sid,y,u) to FMPC.

4. On message (value,sid,y) from FMPC, u outputs
(result,y).

6.3 Security proof
The following thereom establishes that protocol πDKM with
key distribution K realizes functionality FDKM with PRF F ,
for any fixed set of algorithms FEval, if the key distribution K
is indistinguishable from the output distribution of F .

Theorem 6.4. Let P and U be sets of parties, and t be a
corruption threshold. Let F be a PRF and K be a key dis-
tribution such that the output distribution of F is indistigu-
ishable from K . Let FEval be a set of polynomial-time al-
gorithms. Then, protocol πDKM(P, t,U,F,FEval) UC-realizes
functionality FDKM(P, t,U,K ,FEval) in the FMPC(P, t)-hybrid
model against a malicious adversary that statically corrupts
up to t parties of P and any subset of parties of U.

The proof follows immediately from the definition of the
protocol, the security of the MPC functionality, and the in-
distiguishability of the key distribution K and the output
distribution of the PRF F . A more explicit version of the
proof can be found in appendix A.2.

6.4 Example application: Scalable distributed
key management for ECDSA signing using
our distributed PRF protocol

In the following, we show, as an example, that our distributed
PRF protocol in combination with a realization of FMPC can
be used to efficiently realize a distributed key management
for ECDSA signing.

Ideal functionality F ECDSA
DKM . We first define the ideal func-

tionality of a distributed key management system for ECDSA.
Let ECDSA denote the ECDSA signature scheme over group
G with generator G and prime order p. Define the following
algorithms.

PubKey: On input (k,x), parse k as (sk, pk), and return pk.

PrivKey: On input (k,x), parse k as (sk, pk), and return sk.

Sign: On input (k,x), parse k as (sk, pk), compute σ ←
ECDSA.Sign(sk,x), and return σ.

Let FECDSA = {PubKey,PrivKey,Sign}. The ideal function-
ality of a distributed key management system for ECDSA is
defined as

F ECDSA
DKM (P, t,U) = FDKM(P, t,U,ECDSA.KeyGen,FECDSA) .

Real protocol πECDSA
DKM . Let LPRF denote our lattice-based

PRF instantiated over Zp. Define Derive as an algorithm that
takes as input a PRF key k and a user identifier u, and out-
puts an ECDSA keypair (sk, pk), as follows. First, compute
sk = LPRF.Eval(k,u). Then compute pk = sk ·G. Output
(sk, pk). Define FECDSA = (LPRF.KeyGen,Derive). Now, the
real protocol for ECDSA DKM is defined as

π
ECDSA
DKM (P, t,U) = πDKM(P, t,U,FECDSA,FECDSA) .

Security proof. By Thereom 3.2, we know that the output
distribution of LPRF is indistiguishable from a uniform ran-
dom distribution over Zp. This, however, is exactly the secret
key distribution of ECDSA over G . It follows that the output
distribution of FECDSA is indistiguishable from the distribution
of ECDSA.KeyGen and, hence, by Thereom 6.4 we have that
πECDSA

DKM (P, t,U) realizes F ECDSA
DKM (P, t,U).

Remarks. To fully realize F ECDSA
DKM one will also need to in-

stantiate FMPC with a real world MPC framework such as MP-
SPDZ [Kel20]. Furthermore, existing optimized MPC-based
ECDSA signing protocols [DKL+19, DKL+23, DKO+19,
HLN+18, CGG+21] should be considered for efficient re-
alization of ECDSA signing in MPC.

References

[AABS+20] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe,
and A. Szepieniec. Design of symmetric-key
primitives for advanced cryptographic protocols.
IACR Transactions on Symmetric Cryptology,
2020(3):1–45, Sep. 2020.

[ACP+09a] B. Applebaum, D. Cash, C. Peikert, and A. Sa-
hai. Fast cryptographic primitives and circular-
secure encryption based on hard learning prob-
lems. In CRYPTO, pages 595–618, 2009.

13

[ACP+09b] B. Applebaum, D. Cash, C. Peikert, and A. Sa-
hai. Fast cryptographic primitives and circular-
secure encryption based on hard learning prob-
lems. In S. Halevi, editor, Advances in Cryp-
tology - CRYPTO 2009, 29th Annual Interna-
tional Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings, vol-
ume 5677 of Lecture Notes in Computer Sci-
ence, pages 595–618. Springer, 2009.

[ADD+23] M. R. Albrecht, A. Davidson, A. Deo, and
D. Gardham. Crypto dark matter on the torus:
Oblivious prfs from shallow prfs and fhe. Cryp-
tology ePrint Archive, Paper 2023/232, 2023.
https://eprint.iacr.org/2023/232.

[AGP+19] M. R. Albrecht, L. Grassi, L. Perrin, S. Ra-
macher, C. Rechberger, D. Rotaru, A. Roy, and
M. Schofnegger. Feistel structures for mpc, and
more. In K. Sako, S. Schneider, and P. Y. A.
Ryan, editors, Computer Security – ESORICS
2019, pages 151–171, Cham, 2019. Springer
International Publishing.

[AGR+16] M. Albrecht, L. Grassi, C. Rechberger, A. Roy,
and T. Tiessen. Mimc: Efficient encryption and
cryptographic hashing with minimal multiplica-
tive complexity. In J. H. Cheon and T. Takagi,
editors, Advances in Cryptology – ASIACRYPT
2016, pages 191–219, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[ARS+15] M. R. Albrecht, C. Rechberger, T. Schneider,
T. Tiessen, and M. Zohner. Ciphers for mpc
and fhe. In E. Oswald and M. Fischlin, edi-
tors, Advances in Cryptology – EUROCRYPT
2015, pages 430–454, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[BBU+19] W. Beullens, T. Beyne, A. Udovenko, and
G. Vitto. Cryptanalysis of the legendre PRF and
generalizations. IACR Cryptol. ePrint Arch.,
page 1357, 2019.

[BCD+16] J. Bos, C. Costello, L. Ducas, I. Mironov,
M. Naehrig, V. Nikolaenko, A. Raghunathan,
and D. Stebila. Frodo: Take off the ring! practi-
cal, quantum-secure key exchange from lwe.
Cryptology ePrint Archive, Paper 2016/659,
2016. https://eprint.iacr.org/2016/
659.

[BDH+17] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters,
G. V. Assche, and R. V. Keer. Farfalle: parallel
permutation-based cryptography. IACR Trans.
Symmetric Cryptol., 2017(4):1–38, 2017.

[BIP+18] D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and
D. J. Wu. Exploring crypto dark matter:. In
A. Beimel and S. Dziembowski, editors, Theory
of Cryptography, pages 699–729, Cham, 2018.
Springer International Publishing.

[BLM+13] D. Boneh, K. Lewi, H. W. Montgomery, and
A. Raghunathan. Key homomorphic prfs and
their applications. In R. Canetti and J. A. Garay,
editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture
Notes in Computer Science, pages 410–428.
Springer, 2013.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev,
and D. Stehlé. Classical hardness of learning
with errors. In STOC’13, pages 575–584, 2013.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudo-
random functions and lattices. In D. Pointcheval
and T. Johansson, editors, Advances in Cryptol-
ogy - EUROCRYPT 2012 - 31st Annual Interna-
tional Conference on the Theory and Applica-
tions of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, volume
7237 of Lecture Notes in Computer Science,
pages 719–737. Springer, 2012.

[BR93] M. Bellare and P. Rogaway. Random oracle are
practical: A paradigm for designing efficient
protocols. In Proceedings of the First ACM
Conference on Computer and Communications
Security, pages 62–73, 1993.

[Can00] R. Canetti. Universally composable security:
A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Paper 2000/067,
2000. https://eprint.iacr.org/2000/
067.

[CDI05] R. Cramer, I. Damgård, and Y. Ishai. Share
conversion, pseudorandom secret-sharing and
applications to secure computation. In J. Kilian,
editor, Theory of Cryptography, pages 342–362,
Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[CDN15] R. Cramer, I. Damgård, and J. B. Nielsen. Se-
cure Multiparty Computation and Secret Shar-
ing. Cambridge University Press, 2015.

[CGG+21] R. Canetti, R. Gennaro, S. Goldfeder,
N. Makriyannis, and U. Peled. Uc non-
interactive, proactive, threshold ecdsa
with identifiable aborts. Cryptology

14

https://eprint.iacr.org/2023/232
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067

ePrint Archive, Paper 2021/060, 2021.
https://eprint.iacr.org/2021/060.

[DBN+01] M. Dworkin, E. Barker, J. Nechvatal, J. Foti,
L. Bassham, E. Roback, and J. Dray. Advanced
encryption standard (aes), 2001-11-26 2001.

[Dfn23] Dfns. Dfns web page. https://www.dfns.co,
July 2023.

[DGG+21] C. Dobraunig, L. Grassi, A. Guinet, and D. Kui-
jsters. Ciminion: Symmetric encryption based
on toffoli-gates over large finite fields. In
A. Canteaut and F. Standaert, editors, Advances
in Cryptology - EUROCRYPT 2021 - 40th An-
nual International Conference on the Theory
and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17-21, 2021, Proceed-
ings, Part II, volume 12697 of Lecture Notes in
Computer Science, pages 3–34. Springer, 2021.

[DKL+19] J. Doerner, Y. Kondi, E. Lee, and A. Shelat.
Threshold ecdsa from ecdsa assumptions: The
multiparty case. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1051–1066,
2019.

[DKL+23] J. Doerner, Y. Kondi, E. Lee, and abhi shelat.
Threshold ecdsa in three rounds. Cryptology
ePrint Archive, Paper 2023/765, 2023. https:
//eprint.iacr.org/2023/765.

[DKO+19] A. Dalskov, M. Keller, C. Orlandi, K. Shrishak,
and H. Shulman. Securing dnssec keys via
threshold ecdsa from generic mpc. Cryptology
ePrint Archive, Paper 2019/889, 2019. https:
//eprint.iacr.org/2019/889.

[Dwo15] M. Dworkin. Sha-3 standard: Permutation-
based hash and extendable-output functions,
2015-08-04 2015.

[EKR18] D. Evans, V. Kolesnikov, and M. Rosulek. A
pragmatic introduction to secure multi-party
computation. Foundations and Trends® in Pri-
vacy and Security, 2(2-3):70–246, 2018.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali.
How to construct random functions. J. ACM,
34(4):792–807, 1986.

[GLR+20] L. Grassi, R. Lüftenegger, C. Rechberger, D. Ro-
taru, and M. Schofnegger. On a generaliza-
tion of substitution-permutation networks: The
hades design strategy. In A. Canteaut and
Y. Ishai, editors, Advances in Cryptology – EU-
ROCRYPT 2020, pages 674–704, Cham, 2020.
Springer International Publishing.

[GØS+23] L. Grassi, M. Øygarden, M. Schofnegger, and
R. Walch. From farfalle to megafono via ci-
minion: The PRF hydra for MPC applications.
In C. Hazay and M. Stam, editors, Advances
in Cryptology - EUROCRYPT 2023 - 42nd An-
nual International Conference on the Theory
and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings,
Part IV, volume 14007 of Lecture Notes in Com-
puter Science, pages 255–286. Springer, 2023.

[GRR+16] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl,
and N. P. Smart. Mpc-friendly symmetric key
primitives. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Commu-
nications Security, CCS ’16, pages 430–443,
New York, NY, USA, 2016. Association for
Computing Machinery.

[HJK+95] A. Herzberg, S. Jarecki, H. Krawczyk, and
M. Yung. Proactive secret sharing or: How to
cope with perpetual leakage. In D. Coppersmith,
editor, Advances in Cryptology — CRYPT0’
95, pages 339–352, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[HLN+18] I. Haitner, Y. Lindell, A. Nof, and S. Ranel-
lucci. Fast secure multiparty ecdsa with prac-
tical distributed key generation and applica-
tions to cryptocurrency custody. Cryptology
ePrint Archive, Paper 2018/987, 2018. https:
//eprint.iacr.org/2018/987.

[Kel20] M. Keller. MP-SPDZ: A versatile framework
for multi-party computation. In Proceedings
of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, 2020.

[KG21] C. Komlo and I. Goldberg. Frost: Flexible
round-optimized schnorr threshold signatures.
In O. Dunkelman, M. J. Jacobson, Jr., and
C. O’Flynn, editors, Selected Areas in Cryp-
tography, pages 34–65, Cham, 2021. Springer
International Publishing.

[Lit23] Lit Protocol. Lit protocol web page. https:
//litprotocol.com, July 2023.

[MK23] E. V. Mangipudi and A. P. Kate. D-kode: Dis-
tributed mechanism to manage a billion discrete-
log keys. In Proceedings of the 4th ACM Con-
ference on Advances in Financial Technologies,
AFT ’22, page 308–325, New York, NY, USA,
2023. Association for Computing Machinery.

[MP13] D. Micciancio and C. Peikert. Hardness of SIS
and LWE with small parameters. IACR Cryp-
tology ePrint Archive, 2013.

15

https://eprint.iacr.org/2021/060
https://www.dfns.co
https://eprint.iacr.org/2023/765
https://eprint.iacr.org/2023/765
https://eprint.iacr.org/2019/889
https://eprint.iacr.org/2019/889
https://eprint.iacr.org/2018/987
https://eprint.iacr.org/2018/987
https://litprotocol.com
https://litprotocol.com

[NR97] M. Naor and O. Reingold. Number-theoretic
constructions of efficient pseudo-random func-
tions. In 38th Annual Symposium on Foun-
dations of Computer Science, FOCS ’97, Mi-
ami Beach, Florida, USA, October 19-22, 1997,
pages 458–467. IEEE Computer Society, 1997.

[Pei09] C. Peikert. Public-key cryptosystems from the
worst-case shortest vector problem: extended
abstract. In 41st Annual ACM Symposium on
Theory of Computing — STOC ’09, pages 333–
342. ACM, 2009.

[Reg05] O. Regev. On lattices, learning with errors, ran-
dom linear codes, and cryptography. In STOC

’05, pages 84–93. ACM, 2005.

[RW19] D. Rotaru and T. Wood. Marbled circuits: Mix-
ing arithmetic and boolean circuits with active
security. In F. Hao, S. Ruj, and S. Sen Gupta,
editors, Progress in Cryptology – INDOCRYPT
2019, pages 227–249, Cham, 2019. Springer
International Publishing.

[Sha79] A. Shamir. How to share a secret. Commun.
ACM, 22(11):612–613, nov 1979.

[Web23] Web3Auth. Web3Auth web page. https://
web3auth.io, July 2023.

A Proof of Theorems 2.1 and 6.4

A.1 Proof of Theorem 2.1
Proof. Let m,n∈N, X =U(Zm), and Y =U(Zn) mod m. By
the definition of the statistical distance, we have

∆(X ,Y) =
1
2 ∑

a∈Zm

|Pr[X = a]−Pr[Y = a]|

=
1
2 ∑

a∈Zm

|1/m−Pr[Y = a]| .
(1)

For a ∈ Zm, define Da = {x ∈ Zn : x mod m = a}. We have

Pr[Y = a] = ∑
b∈Da

Pr[U(Zn) = b] = |Da|/n , (2)

where

|Da|=

{
⌈n/m⌉ if a < n mod m,
⌊n/m⌋ else.

(3)

Next, we determine an upper bound on |1/m−Pr[Y = a]| by
writing out the equation using (2) and (3). For a < n mod m,
we have∣∣∣∣ 1
m
−Pr[Y = a]

∣∣∣∣= ∣∣∣∣ 1
m
− ⌈n/m⌉

n

∣∣∣∣= ∣∣∣∣ 1
m
− n+m−n mod m

mn

∣∣∣∣≤ 1
n

,

(4)

and for a≥ n mod m,∣∣∣∣ 1
m
−Pr[Y = a]

∣∣∣∣= ∣∣∣∣ 1
m
− ⌊n/m⌋

n

∣∣∣∣= ∣∣∣∣ 1
m
− n−n mod m

mn

∣∣∣∣≤ 1
n

.

(5)
Finally, by combining (1), (4), and (5), we obtain an upper
bound on the statistical distance of X and Y ,

∆(X ,Y)≤ 1
2 ∑

a∈Zm

1/n≤ m/n .

A.2 Proof of Thereom 6.4
Proof. We have to show that for every adversary A , there
exists a simulator S , such that for every environment Z, the
environment Z cannot distinguish a real execution of protocol
πDKM(P, t,U,F,FEval) with adversary A from an ideal execu-
tion of functionality FDKM(P, t,U,K ,FEval) with simulator
S .

Let A be such an adversary that controls up to t corrupted
parties of P and any subset of parties of U in the real protocol
execution. We define S as a simulator that simulates A in the
ideal execution, as follows.

Setup: Whenever the simulator obtains an input (init,sid)
on behalf of a corrupted server P , the simulator for-
wards this message to A . If A behaves according to
the protocol and sends (eval,sid,F.KeyGen) to func-
tionality FMPC, the simulator sends (init) to FDKM

on behalf of P . If FDKM responds with (ready),
S sends (eval,sid,F.KeyGen) to functionality FMPC

on behalf of all parties in P, and forwards the re-
sponse (result,sid,k) to the adversary A and stores
(prfkey,k).

Eval: Whenever the simulator obtains an input
(eval,sid, f ,x) on behalf of a corrupted user u,
the simulator forwards this message to A . The simulator
then emulates an execution of the Eval protocol, where
it plays the role of the honest parties and the adversary
A plays the role of the corrupted parties. Here, the
simulator makes use of functionality FMPC and the
stored PRF key reference k. If this interaction goes
according to the protocol and the user u receives
(value,sid,y) from FMPC, then the simulator sends
(eval,sid, f ,x) to FDKM on behalf of party u and waits
for response (result,sid,y).

We observe that the execution of the real protocol with A and
the ideal functionality with S looks almost identical to E , with
the exception that in the real execution the key k comes from
the output distribution of F while in the ideal execution k
comes from the key distribution K . However, since we chose
F and K such that their distributions are indistiguishable, the
environment cannot distinguish the real execution from the
ideal execution.

16

https://web3auth.io
https://web3auth.io

B Enhanced constructions

This is the full version of Section 4. We reproduce most of the
content in that section for the sake of readability. In this sec-
tion, we show how to build an optimized version of our PRF.
We gain (sometimes substantial) performance improvements
at the cost of provable security. In particular, we conjecture
new circular security assumptions around LWE/LWR, prove
that assumptions that are “very close” are secure under the
standard LWE assumption, and show how we gain perfor-
mance.

B.1 Overview of core ideas
The basic idea of our construction is to combine LWR out-
puts together to create some value that is computationally
indistinguishable from uniform modulo some large prime p.
Consider some number p0. If we have LWR instances t1, ...tℓ
that give us some uniform value over Zp0 , then we compute
the sum ∑

ℓ
i=1 pi−1

0 ti. If pt
0 − p is superpolynomially large,

then we have constructed a uniformly random value mod p
assuming that the LWR assumption is true.

In some sense, this seems a little bit wasteful: for instance,
what happens if we do not compute the rounding operation
of the higher-order terms (those that are multiplied by some
pi

0 for i > 1 in the above exposition)? If we are rounding
away k bits, we could instead not round away the low order
bits when computing t2 and multiply this version of t2, for
instance, by p0

2k . This way t1 would “hide” the noise bits of t2
that we haven’t rounded away and hopefully we could still
have security.

A concrete example. Consider two integers p1 and p2. We
set P1 = 2p1 and P2 = 2p2 and then q = P2

1 P2. We also set
P = P3

1 P2
2 , ignoring for a brief moment that we would even-

tually like P to be prime. Suppose we let a ∈ Zn
q be sampled

uniformly at random for some integer n and also let s1,s2 ∈Zn
q

be sampled such that each entry is random in [0, ...,P1]. We
could compute t1 =

⌊
aT s1

⌋
p2 p1

and t2 = aT s2 and then set
t = t1 +P1P2t2.

What is going on here? the highest order bits of t1–P1 of
them, in fact–mask the lowest P1 bits of t2 that we would
normally round away. It perhaps surprisingly turns out that,
assuming P1 and P2 are large enough, we can actually prove
that t is pseudorandom mod P assuming LWE holds. The
proof follows from a relatively natural hybrid argument.

We can also extend this idea for higher values of ℓ: in
general, setting t1 =

⌊
aT s1

⌋
P2P1

, t2 = aT s2, ... , tℓ = aT sℓ and
combining in the same style as before still works in the sense
that we can prove security from LWE. This allows us to
reduce the work needed in our MPC.

Moving to circular security. However, the above approach
is a little bit unsatisfactory. No matter how we set ℓ, we still

have to compute t1 =
⌊
aT s1

⌋
P2P1

, which effectively lower
bounds the number of rounds needed in our MPC. Since
our MPC is over arithmetic circuits, there are two expensive
(because they are bitwise) operations here which must be
done: computing mod q, and rounding. We can try to improve
things in the following ways:

• First, suppose we sample the keys si from a slightly dif-
ferent distribution: uniform over [0, ...,P1/n] rather than
uniform over [0, ...,P1]. This would give us the property
that as1 < P1P2P2

1 , simplifying our argument.

• Then, in our computation, suppose we just compute t1 =⌊
aT s1 (Z)

⌋
P2P1

: where we compute aT s1 over Z. In other
words, we never compute a mod q operation, and instead
only round away the lowest-order p1 bits.

• Furthermore, suppose we restrict P2 ≥ P1.

We can now see how to argue that t1 +P1P2t2 is uniform
mod P. Note that we cannot reduce to standard LWE, but
must make a circular security-style of assumption:

• Normally, letting an adversary see t1 =
⌊
aT s1 (Z)

⌋
P2P1

instead of t1 =
⌊
aT s1

⌋
P2P1

where we compute mod q
would break security with enough samples. However, the
high-order bits in t1 that would be “eliminated” by the
mod q operation are going to correspond to the integer
representation between P1P2P2

1 and P1P2P2
1 P2: in other

words, where the “good bits” of t2 lie.

• The bits of t2 that we would usually round away still lie
within the “good bits” of t1 as before.

So, in this case, the “good” bits of each LWR instance ef-
fectively mask the “sensitive” bits of the other instance. While
we can’t prove that this construction holds under a standard
LWE assumption, we can conjecture that it stands a good
chance of being secure based on the previous intuition. How-
ever, such an assumption certainly would need more study
before being used in a practical system. We formalize this
later in this section as the “overlapping LWR assumption”.

Generalizing this intuition. As before, we can continue to
chain more and more terms together for larger values of P.
However, in this case we know far less about the security: it
could be the case, for instance, that our assumptions hold for a
constant ℓ but not if ℓ is larger. We leave a formal assessment
of the security of these assumptions to future work.

We also note that, in the above, we have technically not
defined what to do with the “middle” terms, i.e. t2 through
tℓ−1: do we need to still compute the mod q operation, or is
it OK if we just add them in directly, only computing the
rounding operation on t1 and the mod q operation on tℓ? We
do not know the answer to this for sure and thus define a
flexible assumption.

17

B.2 LWR with nonuniform key distributions
In our constructions below, we will need to use LWR with
a nonuniform key distribution. We note that [ACP+09b]
showed that LWE with key distribution drawn from the noise
distribution was (almost) exactly as hard as regular LWE for
certain moduli, and [BLP+13] refined this idea further, among
many other contributions. Although we cannot directly make
these proofs work with rounding, we can take their core ideas
and apply the standard rounding reduction of [BPR12] to
show that we can use LWR with a nonuniform (and even
non-Gaussian) key distribution. Below, we prove that LWR
with an appropriate nonuniform key distribution is as hard as
(relatively) standard LWE.

Theorem B.1. Let n, p, and q′ < q be integers, and let χ

be any B-bounded distribution over Z such that, for security
parameter λ, q = q(λ), p = p(λ), q > p≥ 2, and q′ ≥ Bnω(1)

and q≥ pBnω(1). Let Ψ be the distribution over Zn
q that out-

puts each value in the vector uniformly at random between 0
and q′. It is the case that the (Zq,n, p,Ψ)-LWR problem is at
least as hard as solving the (Zq,n,χ)-LWE problem.

Proof intuition. We first show that LWE with the key drawn
from the noise distribution is as hard as standard LWE. This
is a result that has been shown numerous times in a number
of different contexts [ACP+09b, BLP+13], but we found it
easier to prove it directly here ourselves than to adapt these
other results to our context. We then show that LWE with a
key uniformly sampled over Zq′ is at least as hard as LWE
with key drawn from the noise distribution, similar to a result
of [BLP+13]. Finally, we apply techniques from [BPR12] to
show that our LWR assumption is at least as hard as this LWE
assumption with the key sampled uniformly over Zq′ .

Lemma B.2. Let n and p be integers, and let χ be any B-
bounded distribution over Z. We denote χn to be the distribu-
tion over Zn defined by sampling χ n times and concatenating
the results into a vector. Any adversary A that can solve
(Zq,n,χ,χn)-LWE with advantage ε can be used to solve the(
Zq,n,χ,Zn

q
)
-LWE (i.e. standard LWE) with advantage ε.

Proof. Suppose we are given an oracle for (Zq,n,χ,χn)-LWE
that outputs either samples of the form (ai,ais+ e) or (ai,r),
where ai and s are sampled uniformly, e is sampled from χ,
and r is a uniformly random value. Given such an oracle, we
will show how to generate samples of the form (ai,ais′+ e)
or (ai,r), where s′ is drawn from χn, such that if we received
samples of the one kind from the oracle, we generate sam-
ples of the same kind. Doing this allows us to complete an
advantage-preserving reduction as we claim.

Suppose we query our oracle n times and concatenate them
vertically into a matrix, getting

(
Ai, ti ∈ Zn

q
)
, where ti = Ais+

e or t = r, respectively. If Ai is not invertible, which happens
with at most constant probability for any q, we discard the
samples and continue querying the oracle. We then repeat

this process a polynomial number of times, dependent on how
many samples we need to generate.

Suppose we take our first sample, which we will denote
(A0, t0) and then compute A−1

0 t0. Note that we can do this
because A0 is invertible. We can then do this for other sam-
ples as well, getting A−1

i ti. To create samples of the desired
output distribution, for i≥ 1, we will output the first row of
the matrices of tuples

(
AiA−1

0 ,Ai
(
A−1

0 t0−A−1
i ti

))
.

We must now argue that this procedure creates appropri-
ately sampled tuples. First, note that the first row of AiA−1

0
is distributed statistically close to uniform. If Ai were not
required to be invertible, the first row would be exactly uni-
form. However, all vectors that are not contained in a (one-
dimensional) sublattice of Zq are equally likely to be the first
row of an invertible matrix since there is an invertible matrix
that transforms one into the other. So, the only difference
between the uniform distribution and our method for creating
a row is that the uniform distribution might output vectors
where the greatest common divisor between all coefficients is
not one (thus creating a sublattice), and our “first row” will
never do this. However, this case happens with negligible
probability.

Next we consider the case where the ti terms are random.
In this case, note that Ai

(
A−1

0 t0−A−1
i ti

)
is distributed uni-

formly at random since ti is sampled uniformly at random
and is independent from all other terms.

Finally, let’s consider the case where the ti terms are “real”
LWE samples. In this case, we have

Ai
(
A−1

0 t0−A−1
i ti

)
= Ai

(
A−1

0 (A0s+ e0)−A−1
i (Ais+ ei)

)
= AiA−1

0 e0 + ei

Note that these terms are distributed correctly and thus we
can complete the proof.

We next continue the overall proof by arguing that we can
change the key distribution to something that looks uniform
over some fixed range (provided the range is big enough)
in the variant of LWE with the noise drawn from the key
distribution we have generated above.

Lemma B.3. Let n, p, and q′< q be integers, and let χ be any
B-bounded distribution over Z. Let Ψ be the distribution over
Zn

q generated by sampling each entry uniformly at random
from Zq′ . We require that q′ ≥ Bnω(1). We denote χn to be
the distribution over Zn defined by sampling χ n times and
concatenating the results into a vector. Any adversary A that
can solve (Zq,n,χ,Ψ)-LWE with advantage ε can be used to
solve the (Zq,n,χ,χn)-LWE with negligible advantage.

Proof. Once again, we are given samples from the
(Zq,n,χ,χn)-LWE oracle and must generate appropriately
distributed samples of a (Zq,n,χ,Ψ)-LWE oracle. This is ac-
tually quite straightforward: given a sample (ai, ti) from our
provided LWE oracle, we sample a random vector u ∈ Zn

q

18

where each entry is sampled randomly from Zq′ and output a
sample of the form

(
ai, ti +aT

i u
)
.

We claim that these samples are distributed appropriately.
Note that if ti is uniformly random, then ti +aT

i u is also dis-
tributed uniformly randomly, since the terms are indepen-
dent. If ti = aT

i s+ ei, then the new samples have the form
t ′i = aT

i (s+u)+ ei.
Recall that s is drawn from χn and u is drawn from Ψ.

Since q′ is superpolynomially larger than B (the maximum
size of χ with high probability), adding s to u negligibly
affects the distribution, so our key distribution is correct, and
thus our samples have the correct distribution and the proof
follows.

Finally, we take the LWE distribution from our last lemma
and show that we can use rounding instead of Gaussian noise.
Our proof follows a similar strategy as most rounding PRF
proofs [BPR12].

Proof. Proof of Theorem B.1 We first apply lemmas B.2
and B.3 to show that (Zq,n,χ,Ψ)-LWE is at least as hard as
(Zq,n,χ)-LWE for appropriate parameter choices.

First, we claim that taking the (Zq,n,χ,Ψ)-LWE samples
and rounding the second value of the tuple is indistinguishable
from random. More precisely, we argue that samples of the
form

(
ai,

⌊
aT

i s+ ei
⌋

p

)
are indistinguishable from random.

This follows immediately from the fact that (Zq,n,χ,Ψ)-
LWE is hard.

Finally, we argue that terms of the form
(

ai,
⌊
aT

i s+ ei
⌋

p

)
are indistinguishable from the desired final output tuples,
which are of the form

(
ai,

⌊
aT

i s
⌋

p

)
. These sets of tuples are

perfectly indistinguishable as long as, for each ai, the inner
product ais is at least B-far away from a rounding boundary
(a multiple of q

p). Since ais is distributed uniformly at random
with all but negligible probability in the choice of s, and q

p is
superpolynomially large, we know that this happens with all
but negligible probability, completing the proof.

A corollary for uniform noise. With a very slight tweak,
we can extend our line of results above to handle uniformly
sampled noise instead of rounding. We state this below in the
following theorem.

Theorem B.4. Let n and q′ < q be integers, and let χ be
any B-bounded distribution over Z such that, for security
parameter λ, q = q(λ), p = p(λ), q > p≥ 2, and q′ ≥ Bnω(1)

and q≥ pBnω(1). Let ψ be a distribution over Zq that outputs
a value uniformly at random between 0 and q′, and let Ψ be
the distribution over Zn

q that outputs each value in the vector
uniformly at random between 0 and q′. It is the case that the
(Zq,n,ψ,Ψ)-LWE problem is at least as hard as solving the
(Zq,n,χ)-LWE problem.

Proof. Our proof follows almost immediately from our logic
in the proof of theorem B.1. We first apply lemmas B.2
and B.3 to show that (Zq,n,χ,Ψ)-LWE is at least as hard
as (Zq,n,χ)-LWE for appropriate parameter choices.

Suppose we take each (Zq,n,χ,Ψ)-LWE sample from our
oracle and add a value sampled from ψ to he second term
in the tuple. If the second terms in the tuples were uniform
to begin with, then they remain uniform. If they were “real”,
then the noise is now distributed according to χ+ψ, which
is statistically close to ψ since ψ is superpolynomially larger
than B, which bounds χ.

B.3 Defining and proving the secure instance
We next define and prove secure the optimized instance for
which we have a security proof to standard lattice assumptions.
This is just a general and more formally defined version of
what we discussed above.

Construction. Our construction takes as setup parameters
a security parameter λ and some prime P, and then includes
other integer parameters n, p1, p2, ℓ, n, and E. We require the
following from these parameters:

• We set P1 = 2p1 and P2 = 2p2 .

• We set q = P1P2P1.

• Pℓ+1
1 Pℓ

2 ≥ PE.

• P1, P2, and E are superpolynomially large in λ.

• We set n as a lattice dimension dependent on λ.

We assume the existence of a hash function H : {0,1}k→
Zn

q. The secret key of our PRF FSEC is a matrix S ∈ Zn×ℓ
q

sampled so that each entry is uniform in [0, ...,P1]. 2 We
denote Si to be the ith column of S.

We formally define our PRF FSEC : {0,1}k×Zn×ℓ
q → Zp as

follows. On input x, we:

• Set ax ∈ Zn
q = H (x).

• Let cx,i ∈ Zq = aT
x Si mod q.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

Intuition of the construction. What is going on here? Each
of the “LWR” instances works mod q = P1P2P1 and overlaps
on the top and bottom (if applicable) by P1. So the top of each
fresh instance hides the “noise bits” of the instance above
it. This is the goal of the construction, and how we can gain

2We could set our keys here to be uniform over Zq, but we choose to set
them this way for efficiency reasons. As shown in [ACP+09b] and myriad
follow-ups, we lose little security for doing so.

19

efficiency: we only have to compute one rounding operation
in entire computation of the PRF. This isn’t much if we are
directly computing the PRF, but may save us considerable
time if we compute the PRF in an MPC.

Proof of security. As we claimed earlier, we can in fact
prove the above construction secure under the standard learn-
ing with rounding assumption and a similar LWE assumption.
We note that, as shown in [BPR12], this follows from the
LWE assumption with slightly superpolynomial (in the secu-
rity parameter λ) modulus.

Our core argument is relatively straightforward: we use a
hybrid argument, progressively randomizing the terms cx,i,
starting with i = 1 until all of the terms are random. Note
that the randomness of each cx,1 term immediately follows
from the LWR assumption. Once we “switch” the cx,1 terms
to random, then they mask the lowest p1 bits of the cx,2 terms,
meaning that we can once again apply LWR. We can then
continue this argument all the way up to the cx,ℓ terms. There
are some subtleties in the proof, particularly with how we deal
with “overflow” bits, but the overall idea is pretty straightfor-
ward.

We state this formally below with the following theorem:

Theorem B.5. Let P, n, q, p1, P1, p2, P2, ℓ, n, and E be pa-
rameters as defined above. Let Ψ denote the distribution over
Zn defined by sampling each entry as an integer uniformly at
random in the range [0,P1] and ψ be the distribution over Z
defined by sampling an integer uniformly at random in the
range [0,P1] . Any adversary that can win the PRF security
game as defined in Definition 2.2 with non-negligible advan-
tage ε can be used to solve the (Zq,n, p1 p2,Ψ)-LWR problem
or the (Zq,n,ψ,Ψ)-LWE problem with advantage polynomial
in ε assuming that H is a random oracle.

To prove this theorem, we use a standard hybrid argument,
as we outlined above.

A hybrid argument. We now define our sequence of hy-
brids. Suppose we set F0 (x) = F (x), and, for i ∈ [1, ℓ], we
define Fi (x) in the following way:

Fi (x) = c′x,1 +P1P2c′x,2 +P2
1 P2

2 c′x,3 ++Pi−2
1 Pi−2

2 c′x,i−1

+Pi−2
1 Pi−1

2 cx,i + ...+Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P

where we set c′x,i ∈ ZP1P2 , uniformly at random for all x, and
cx,i is defined as before. Note that these c′x,i terms are uni-
formly random and that we have changed the exponent of
p1 on c′x,i so that there is no overlap between any of the c′x, j
terms.

We finally define Fℓ+1 (x) to be a random function with
output space ZP.

We then claim that, for all i in the appropriate range, Fi−1 is
indistinguishable from Fi. We start by proving the first hybrid,
which is the simplest case.

Lemma B.6. Hybrid F0 is indistinguishable from hybrid F1
assuming the hardness of the (Zq,n,P1P2,Ψ)-LWR problem
and that H is a random oracle.

Proof. This is a very straightforward proof. We begin
by instantiating some standard random oracle machinery:
We create a database D consisting of tuples of the form
(x,H(x),F(x)). On a query x to either h or F , we check to see
if x is in the database. If so, we return the appropriate value.

If not, we must use our LWR oracle. Given a
(Zq,n,P1P2,Ψ)-LWR oracle, which outputs terms of the form
(boldai, ti), we relabel the ti term from this oracle as c′x,1 and
simulate all of the higher-order terms of F (x). We add the
tuple (x,ai,F(x)) to our database and return the appropriate
query (either H (x) or F (x)) to the adversary.

Note that if the LWR oracle outputs “real” terms, then
we simulate F0 exactly, and if it outputs “random” terms,
we simulate F1 exactly. Thus, a distinguisher for F0 and F1
can be immediately used to solve the (Zq,n,P1P2,Ψ)-LWR
problem.

The general hybrid. We next move to the more general
hybrid case. We offer some intuition about why this is true
using F1 and F2 before we dive in to the full, formal hybrid.
Note that, in this case, we have

F1 (x) = c′x,1 +P2cx,2 +P1P2
2 cx,3 ++Pℓ−2

1 Pℓ−1
2 cx,ℓ

and

F2 (x) = c′x,1 +P1P2c′x,2 +P1P2
2 cx,3 ++Pℓ−2

1 Pℓ−1
2 cx,ℓ

Since all of the higher-order terms are independent of S1 and
S2–the only non-independent term going into the cx,i values
is the value of H (x), which is public–we can just simulate
them by sampling random S2, ...,Sn (while still keeping S1
and S2 secret) and only focus on the lower-order terms. This
gives us the following:

F ′1 (x) = c′x,1 +P2cx,2

and
F ′2 (x) = c′x,1 +P1P2c′x,2

Let’s rewrite these. In both cases, we know that c′x,1 is
uniformly random in ZP1P2 . Suppose we then set F ′′1 =
F ′1−F1 mod P2

P2
and do the same for F ′′2 –essentially, just getting

rid of the bottom p2 bits. Note that we are working in the
opposite direction that a full, formal proof would, but hope-
fully it should be apparent that the simulation works in the
opposite direction as well.

This gives us the following:

F ′′1 = cx,2 + e

F ′′2 = c′x,2 + e

20

for some value e ∈ ZP1 sampled uniformly at random. Note
that F ′′2 is uniformly random by definition.

At first glance, this appears to be exactly the LWE assump-
tion with uniformly random noise. However, we are comput-
ing the addition over ZP and not Zq, which could be prob-
lematic if adding e caused the sum to wrap around mod q but
not mod P. However, if we choose P2 to be big enough (i.e.
superpolynomially large) then the chance of this happening
is negligbile and we can complete the hybrid argument, since,
in this case cx,2 + e mod q = cx,2 + e mod P.

Again, note that a formal would actually take the reverse
direction: we would need to start with LWE and work our
way upwards through this logic. This is exactly what we do
in the lemma below:

Lemma B.7. For i ∈ [1, ℓ−1] Hybrid Fi is indistinguishable
from hybrid Fi+1 assuming the hardness of the (Zq,n,ψ,Ψ)-
LWE problem and that H is a random oracle..

Proof. We are given an oracle for the (Zq,n,ψ,Ψ)-LWE prob-
lem and need to simulate Fi and Fi+1 (for appropriate choice
of i) in our hybrids, depending on whether or not the LWE
oracle outputs “real” or “random” data.

Once again, we begin by instantiating some standard ran-
dom oracle machinery: We create a database D consisting of
tuples of the form (x,H(x),F(x)). On a query x to either h or
F , we check to see if x is in the database. If so, we return the
appropriate value.

If not, we must use our LWE oracle. We query the oracle,
getting a tuple of the form (a j, t j). Note that t j ∈ Zq. We
sample a random value v j ∈ ZPi−3

1 Pi−2
2

. We also sample a
matrix S according to our key distribution, and, for k > i, set
dx,i = aT

j Sk.
We then set F (x) = v j + Pi−2

1 Pi−1
2 t j + Pi−1

1 Pi
2dx,i+1 +

Pi
1Pi+1

2 dx,i+2 + ... + Pℓ−2
1 Pℓ−1

2 dx,ℓ. We add the tuple
(x,a j,F(x)) to our database and return the appropriate query
(either H (x) or F (x)) to the adversary.

We next claim that we have correctly simulated Fi if we
have received “real” output from the LWE oracle and Fi+1 if
we have received “random” output. Let’s consider the “real”
case first. Suppose we have t j = aT

j Si + e j.
Note that, in the “real” case, v j + Pi−2

1 Pi−1
2 e j correctly

simulates the sum c′x,1 + P1P2c′x,2 + ...Pi−2
1 Pi−2

2 c′x,i−1 since
this sum is uniformly random over ZPi−2

1 Pi−2
2

. Furthermore,

Pi−2
1 Pi−1

2 (t j− e j) is distributed identically to Pi−2
1 Pi−1

2 ci,x. Fi-
nally, we can simulate all of the higher terms using a j and S,
which is exactly faithful to the simulation.

Note that in the “random case”, where t j is random mod q,
we have that v j + Pi−2

1 Pi−1
2 t j is uniformly random mod-

ulo Pi
1Pi

2, which is exactly how the sum c′x,1 + P1P2c′x,2 +
...Pℓ−2

1 Pℓ−2
2 c′x,i−1 + Pi−1

1 Pi−1
2 c′x,i is distributed. The higher-

order terms are distributed identically in both hybrids.

We finally argue the last hybrid.

Lemma B.8. Hybrid Fℓ is statistically indistinguishable from
hybrid Fℓ+1.

Proof. We note that there are no assumptions here because
this lemma follows information-theoretically. Note that

Fℓ (x) = c′x,1 + p1 p2c′x,2 + p2
1 p2

2c′x,3 ++ pℓ−1
1 pℓ−1

2 c′x,ℓ

which is uniformly random in
[
0,Pℓ

1Pℓ
2
]
. Note that because

we have Pℓ
1Pℓ

2 ≥ PE, we know that if we take a value that is
uniformly random in

[
0,Pℓ

1Pℓ
2
]

and take its value mod P, it
will be negligibly far from uniform mod P. This completes
the proof.

Proving theorem B.5 is now a simple matter of combining
lemmas in the hybrid arguments.

Proof. Proof of theorem B.5: Note that F0 is the real PRF,
and Fℓ+1 is truly random. From lemmas B.6, B.7, and B.8, we
know that these hybrids are indistinguishable by a standard
hybrid argument. This completes the proof.

Finally, we note that by theorems B.1 and B.4, the assump-
tions used in this theorem are reducible from standard LWE.
So therefore the hardness of this PRF follows from standard
LWE. Also, the assumptions in this proof are not substan-
tially worse in terms of parameters than just regular LWR.
So it would not be irresponsible to use this scheme in a real
deployment.

B.4 Instances with only conjectured security
In this section, we discuss other PRF constructions for which
we cannot prove security from standard assumptions. While
the lack of security proofs is obviously big drawback of these
constructions, they do offer substantial efficiency advantages
compared to the provably secure PRFs, especially within the
context of MPC computations.

We start with a construction that is very close to our con-
struction with provable security.

A construction with almost a security proof. As before,
our construction takes as setup parameters a security param-
eter λ and some prime P, and then includes other integer
parameters n, p1, p2, ℓ, n, and E. We require the following
from these parameters:

• We set P1 = 2p1 and P2 = 2p2 .

• We require p2 ≥ p1.

• We set q = P1P2P1.

• Pℓ+1
1 Pℓ

2 ≥ PE.

• P1, P2, and E are superpolynomially large in λ.

• We set n as a lattice dimension dependent on λ.

21

We assume the existence of a hash function H : {0,1}k→
Zn

q. The secret key of our PRF FASEC is a matrix S ∈ Zn×ℓ
q

sampled so that each entry is uniform in [0, ...,P1/n] . We
denote Si to be the ith column of S.

We formally define our PRF FASEC : {0,1}k×Zn×ℓ
q → Zp

as follows:

• Set ax ∈ Zn
q = H (x).

• Set cx,1 = aT
x S1 over Z.

• For i≥ 1, let cx,i ∈ Zq = aT
x Si.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

Intuition of the construction. What is going on here? We
have highlighted changes from the secure instance. Each of
the “LWE” instances works mod q = P1P2P1 and overlaps on
the top and bottom (if applicable) by P1. So the top of each
fresh instance hides the “noise bits” of the instance above it.
In addition, the “overlap” bits of the cx,1 terms are hidden by
the cx,2 term. So there is some kind of circular security-like
thing going on here. Unfortunately, we do not know how to
prove this from standard LWE, but we can make a relatively
simple and straightforward assumption from which we can
prove security (in conjunction with standard LWE). As before,
we could choose S to be from a larger space (i.e. uniform over
Zq), and our implementation even does this, but it would be
more difficult to reason about security since there would be
more “overlaps”.

The main advantage of this construction is it essentially
lets us halve the number of rounds needed from our secure
construction when we compute the PRF using MPC. For
every cx,i term we either need to round or compute a mod
q operation–but not both. Previously, we needed to do both
for the cx,1 term, which blew up the number of MPC rounds
required.

A security proof with a new assumption. We can actu-
ally prove this construction secure if we are willing to use
a non-standard assumption. We call this new problem the
Overlapping LWR problem.

Definition B.9. Overlapping LWR. Consider parameters P1,
P2, and q, where we set P1 = 2p1 , P2 = 2p2 , and q = P1P2P1.
We also have a security parameter λ, a lattice dimension n
based on λ, and the requirement that P1 and P2 are superpoly-
nomially large in λ. Let Ψ be a distribution over Zn. The over-
lapping learning with rounding problem (q,n,m,P1,P2,Ψ)-
OLWR is to distinguish between the following pairs of distri-
butions:

{A,
⌊
AT s(Z)

⌋
p +P2

(
AT s mod q

)
mod P2

1 P2
2}

and {A,u},

where m = poly(n), A← Zn×m
q , s1,s2←Ψ, and u← Zm

P2
1 P2

2
.

Note that we are explicitly not computing mod q in the round-
ing operation.

It turns out, if we assume the overlapping LWR problem to
be true, we can prove that our above construction is secure.
We state this with the theorem below:

Theorem B.10. Let P, n, q, p1, P1, p2, P2, ℓ, n, and E be
parameters as defined above. Let Ψ denote the distribution
over Zn defined by sampling each entry as an integer uni-
formly at random in the range [0,P1] and ψ be the distri-
bution over Z defined by sampling an integer uniformly at
random in the range [0,P1] . Any adversary that can win
the PRF security game for FASEC as defined in Definition 2.2
with non-negligible advantage ε can be used to solve the
(q,n,m,P1,P2,Ψ)-OLWR problem or the (Zq,n,ψ,Ψ)-LWE
problem with advantage polynomial in ε assuming that H is
a random oracle.

Proof. This proof follows in almost exactly the same manner
as the proof of theorem B.5, so we omit it here. The only
change is that we use the overlapping LWR hardness in the
first hybrid instead of the basic LWR assumption.

We believe that this overlapping LWR assumption is quite
interesting and merits further study.

A construction far from a security proof. We next outline
a construction where we exploit overlapping over all of the
terms, not just the first two. As before, our construction takes
as setup parameters a security parameter λ and some prime P,
and then includes other integer parameters n, p1, p2, ℓ, n, and
E. We require the following from these parameters:

• We set P1 = 2p1 and P2 = 2p2 .

• We require p2 ≥ p1.

• We set q = P1P2P1.

• Pℓ+1
1 Pℓ

2 ≥ PE.

• P1, P2, and E are superpolynomially large in λ.

• We set n as a lattice dimension dependent on λ.

We assume the existence of a hash function H : {0,1}k→
Zn

q. The secret key of our PRF FFSEC is a matrix S ∈ Zn×ℓ
q

sampled so that each entry is uniform in [0, ...,P1/n]. We
denote Si to be the ith column of S, and we again note that
we could sample S from a larger space, as before.

We formally define our PRF FFSEC : {0,1}k×Zn×ℓ
q → Zp

as follows:

• Set ax ∈ Zn
q = H (x).

22

• Set cx,1 = aT
x S1 over Z.

• For 1 < i < ℓ, let cx,i ∈ Zq = aT
x Si over Z.

• Set cx,ℓ ∈ Zq = aT
x Si mod q.

• Output the sum ⌊cx,1⌋P1P2
+ P2cx,2 + P1P2

2 cx,3 ++

Pℓ−2
1 Pℓ−1

2 cx,ℓ mod P.

Construction explanation. Once again, we highlighted
changes from the previous construction. The basic idea here
is that we try to take our circular security idea to the extreme.
This construction is quite efficient when computed in MPC
since we only need to do one mod q operation and one round-
ing operation.

At first glance, this construction may seem similar to
“vanilla” LWR with a very high modulus to “noise” ratio,
which would obviously not be good. This is because we
can write the construction’s outputs as something very close
to ⌊ai (S1 +P2S2 + ...)⌋Pℓ−1

1 Pℓ
2

mod P. However, the fact that
we are computing a mod q operation in the middle throws
chaos into this representation and makes it seemingly un-
likely that standard attacks on overstretched LWE will not
work here. Attacks on this aggressive construction may have
more in common with approaches that might be used to attack
the “dark matter” PRF in [BIP+18] than LWE itself.

Switching the role of the samples and key. In our construc-
tions in this section, we have used samples (i.e. the outputs of
the hash function) that are vectors and keys that are matrices.
This was done solely because we could prove security; we
know of no attacks if we use samples that are matrices and
keys that are vectors (i.e. switching from ai and S to Ai and
s). It is also possible that this could bring about efficiency
improvements since we would need to deal with fewer secret
bits.

23

	Introduction
	Distributed key management
	Key refresh and challenges to scalability
	Application requirements
	State of the art
	Our contributions
	Organization

	Preliminaries
	Pseudorandom Functions
	Lattice Preliminaries
	Lattice-Based PRF from DBLP:conf/crypto/BonehLMR13

	Adaptation to MPC
	Use a random oracle
	Adapt lattice parameters
	Adapt message space and compose outputs

	Enhanced constructions
	Overview of core ideas
	LWR with nonuniform key distributions
	Defining and proving the secure instance
	Instances with only conjectured security

	Implementation and evaluation
	Parameter selection
	Evaluation

	Application to Distributed Key Management
	Ideal functionality
	Real protocol
	Security proof
	Example application: Scalable distributed key management for ECDSA signing using our distributed PRF protocol

	Proof of Theorems 2.1 and 6.4
	Proof of Theorem 2.1
	Proof of Thereom 6.4

	Enhanced constructions
	Overview of core ideas
	LWR with nonuniform key distributions
	Defining and proving the secure instance
	Instances with only conjectured security

