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ABSTRACT

Wegeneralize the Bernstein-Yang (BY) algorithm [BY19] for constant-
time modular inversion to compute the Kronecker symbol, of which
the Jacobi and Legendre symbols are special cases. We first de-
velop a basic and easy-to-implement algorithm, defined with full-
precision division steps. We then describe an optimized version
due to Hamburg [Ham21] over word-sized inputs, and formally
verify its correctness. Along the way, we introduce a number of op-
timizations for implementing both versions in constant time. The
resulting algorithms are particularly suitable for computing the
Legendre symbol with dense prime 𝑝 , where no efficient addition
chain is known for exponentiating to 𝑝−1

2 , as it is often the case
in pairing-friendly elliptic curves. Our high-speed implementation
for a range of parameters shows that the new algorithm is up to 40
times faster than exponentiation, and up to 25.7% faster than the
previous state of the art. We illustrate our techniques with hashing
to elliptic curves using the SwiftEC algorithm [CRT22], with sav-
ings of 14.7% – 48.1%, and to accelerating the CTIDH isogeny-based
key exchange [BBC+21], with savings of 3.5 – 13.5%.

CCS CONCEPTS

• Security and privacy→ Public key (asymmetric) techniques.

KEYWORDS

Kronecker/Jacobi/Legendre Symbol • Division step • Constant-time
software implementation • Formal verification.

1 INTRODUCTION

Many algorithms of cryptographic interest in Number Theory can
be expressed as variants of the Euclidean algorithm. Natural exam-
ples employed inmany cryptosystems are algorithms for computing
modular inversion and testing if integers have a square root with
respect to a modulus (quadratic residuosity). Respectively, these
algorithms are used to generate keys in factorization-based cryp-
tosystems, such as RSA and Paillier, or to convert elliptic curve
points from projective to affine coordinates; and for testing validity
of the 𝑥-coordinate of an elliptic curve point when hashing.

In its original form, the Euclidean algorithm executes a variable
number of iterations computed over monotonically decreasing in-
puts until a certain condition is met. This aspect of the algorithm,
however, poses a challenge for its implementation in cryptographic

contexts, when both security and performance matter. This is true
under a threat model where the adversary is capable of measuring
characteristics of the running implementation, such as execution
time or power consumption, mounting a so-called side-channel at-
tack. In such a setting, an adversary can observe irregular patterns in
the implementation and collect leakage that reveals sensitive infor-
mation, for example bits of private inputs [ASS17, AGTB19, AGB20].
A particular class of side-channel attacks that is considered easier
to exploit consists of timing attacks, in which an adversary collects
leakage by measuring timing differences locally or remotely. Com-
mon countermeasures against such attacks are employing constant-
time implementation or employing additional randomness to make
input values or execution time less predictable.

The literature has many hardened variations of Euclidean algo-
rithms that behave in a more regular way and reduce the amount
of leakage. The simplest approach is to evaluate the functions com-
puted by these algorithms using one or more exponentiations by
a fixed power depending on the modulus, for example (𝑝 − 2) for
inversion modulo a prime 𝑝 . When parameters permit, this can be
evaluated efficiently in constant-time using a short addition chain.
Alternatively, a branchless implementation could evaluate all tar-
gets of branches and conditionally select only the correct one at
each iteration [Bos14]. This would effectively eliminate timing at-
tacks based on branch prediction, but at high performance penalty.
Another common trick is to introduce a blinding factor that ran-
domizes the execution, which might keep the algorithm in variable-
time but decorrelates the leakage from the actual inputs [ASS17].
In many cases, these protections impose a non-trivial performance
penalty that greatly reduce the efficiency of implementations in
comparison to the unprotected versions; or improve security at
most heuristically by modestly increasing attack complexity, while
not addressing the root causes for side-channel leakage.

Related work. The Bernstein-Yang (BY) algorithm for modular
inversion [BY19] is a recent development that elegantly improved
solutions available to this problem. It consists of a fast algorithm
that can be implemented in constant time, since it is formulated in
terms of division steps that can be efficiently evaluated in a regular
manner. The algorithm is quite flexible, and can be generalized for
polynomial arithmetic or other problems related to the Euclidean
algorithm. Recent work by Hvass et al. [HAS23] has formally veri-
fied the theory underlying the BY algorithm using a foundational
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approach, and synthesized efficient and formally verified implemen-
tations for inclusion in the Fiat-Crypto framework [EPG+19]. An
improvement called the half-delta optimization [WMO21] reduces
the number of iterations by approximately 18% on average.

In a recent independent preprint [Ham21], Hamburg contin-
ues this line of work and proposes a variation of the algorithm to
compute the Jacobi symbol

(𝑎
𝑏

)
in constant time, for integers 𝑎, 𝑏

with odd positive 𝑏. The Jacobi symbol is a generalization of the
Legendre symbol and, from its definition, can be computed by fac-

toring 𝑏 =
∏
𝑖 𝑝
𝑒𝑖
𝑖
and multiplying the Legendre symbols

(
𝑎

𝑝𝑖

)𝑒𝑖
for

each prime 𝑝𝑖 > 2 and multiplicity 𝑒𝑖 . In turn, the Legendre symbol
represents the quadratic residuosity of 𝑎 modulo 𝑝𝑖 and can be com-

puted as
(
𝑎

𝑝𝑖

)
≡ 𝑎

𝑝𝑖−1
2 (mod 𝑝𝑖 ). There are Euclidean algorithms

to evaluate both symbols faster than computing exponentiations,
but they are hard to implement efficiently in constant-time.

From another angle, Pornin recently introduced a new algorithm
to compute modular inversion in constant time by unrolling the
inner loop in a variation of the binary Euclidean algorithm [Por20b].
He later adapted it for the Legendre symbol as well, and presented
timings for an implementation targeting ARM Cortex-M0 micro-
controllers [Por20a]. This work represents the current state of the
art, and will server as the reference point for comparison.

Contributions. In this paper, we generalize the full-precision
version of the BY algorithm to compute the Kronecker symbol,
which generalizes both the aforementioned Legendre and Jacobi
symbols. We note that the Legendre and Jacobi symbols arise more
frequently in practice, and that the Legendre symbol with respect
to a fixed second argument (prime modulus) is the case of higher
interest to cryptography. This case arises when testing the quadratic
residuosity of a private numerator against a public prime modulus.

When restricted to the Legendre case, we obtain a significant
speedup over the exponentiation approach for dense prime mod-
uli, where a short addition chain to exponentiate by 𝑝−1

2 is not
known and modular multiplication is more expensive due to Mont-
gomery arithmetic. The case of dense prime moduli frequently
occur in pairing-based cryptography, where the finite fields are
defined in terms of prime numbers parameterized by polynomials,
that quickly grow in density when evaluated over sparse integers.
Moreover, we optimize Hamburg’s faster word-sized version of the
algorithm [Ham21] and obtain a further speedup over the exponen-
tiation approach. The correctness of our algorithms is backed by a
formal verification of the underlying theory using the framework
developed in [HAS23], so it also implies correctness of [Ham21].

Our experimental treatment focuses on applications to cryp-
tography, so we evaluate the Legendre symbol in constant time
with respect to multiple choices of prime modulus. Our efficient
implementation and experiments point out that the basic and faster
versions of the algorithm are up to 7 and 40 times faster than the
exponentiation approach when implemented in constant time for
several prime moduli underlying popular elliptic curves, and up to
25.7% over the previous state of the art established in [Por20a]. We
also explore an application of the algorithm for testing quadratic
residuosity within the SwiftEC approach to hash arbitrary strings

to points on an elliptic curve, obtaining an approximate speedup
ranging from 14.7% to 48.1% depending on the curve.

Another application is to constant-time variants of the quantum-
safe CSIDH isogeny-based key agreement scheme [CLM+18], such
as CTIDH [BBC+21] and SQALE [CCJR22]. Current implementa-
tions use the exponentiation approach with a dense prime modulus,
so they should benefit. When our techniques are applied to CTIDH,
observed savings amount to 3.5–13.5%.

Organization. The paper is organized as follows. Section 2 gives
the mathematical background about the various symbols and the
original BY algorithm. Section 3 develops the new algorithms and
optimizations. Section 4 presents our benchmarking approach and
experimental results, and Section 5 concludes.

2 PRELIMINARIES

In this section, we review definitions for the Legendre, Jacobi and
Kronecker symbols and their main properties. These are functions
applied to integer parameters taken from increasingly larger sets.
In textbooks, all three symbols use the same notation

(𝑎
𝑏

)
, but

we will denote them with 𝐿, 𝐽 and 𝐾 subscripts to make explicit
what symbol we are referring to. We note that this does not change
their definitions in any way, but it will prove important later on
when we introduce the algorithmic parts and move across different
parameter ranges.

2.1 Basic definitions

The Legendre symbol of 𝑎 over 𝑝 , written as
(
𝑎

𝑝

)
𝐿

for integer 𝑎 and

odd prime 𝑝 , is defined as:(
𝑎

𝑝

)
𝐿

=


0 if 𝑎 ≡ 0 (mod 𝑝),
1 if 𝑎 . 0 (mod 𝑝) and ∃𝑥 ∈ Z : 𝑎 ≡ 𝑥2 (mod 𝑝),
−1 otherwise.

In other words, the Legendre symbol encodes the information about
𝑎 being a quadratic residue modulo 𝑝 , and thus can be evaluated

through Euler’s criterion by computing
(
𝑎

𝑝

)
𝐿

≡ 𝑎
𝑝−1
2 (mod 𝑝).

The Legendre symbol satisfies several properties:
• Periodicity in the first argument (numerator):

if 𝑎 ≡ 𝑏 (mod 𝑝) then
(
𝑎

𝑝

)
𝐿

=

(
𝑏

𝑝

)
𝐿

• Complete multiplicativity:
(
𝑎𝑏

𝑝

)
𝐿

=

(
𝑎

𝑝

)
𝐿

(
𝑏

𝑝

)
𝐿

.

In particular, it allows to state the law of quadratic reciprocity for
odd primes 𝑝 and 𝑞:(

𝑝

𝑞

)
𝐿

(
𝑞

𝑝

)
𝐿

= (−1)
𝑝−1
2

𝑞−1
2 ,

and its two supplements:(
−1
𝑝

)
𝐿

= (−1)
𝑝−1
2 =

{
1 if 𝑝 ≡ 1 (mod 4),
−1 if 𝑝 ≡ 3 (mod 4).(

2
𝑝

)
𝐿

= (−1)
𝑝2−1
8 =

{
1 if 𝑝 ≡ ±1 (mod 8),
−1 if 𝑝 ≡ ±3 (mod 8).
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The Jacobi symbol generalizes the Legendre symbol to odd posi-
tive integers 𝑏, given the factorization of 𝑏 =

∏
𝑖 𝑝
𝑒𝑖
𝑖

for 𝑝𝑖 > 2:(𝑎
𝑏

)
𝐽
=

∏
𝑖

(
𝑎

𝑝𝑖

)𝑒𝑖
𝐿

.

It also satisfies many of the same properties of the Legendre sym-
bol, for example periodicity of the first argument, and complete
multiplicativity in one argument when the other is fixed. Like the
Legendre symbol, if

(𝑎
𝑏

)
𝐽
= −1 then 𝑎 is a quadratic nonresidue

modulo 𝑏. The contrapositive
(𝑎
𝑏

)
𝐽
= 1 for quadratic residue 𝑎

modulo 𝑏 is only true if 𝑎 and 𝑏 are coprime. Hence it also satis-
fies a more general law of quadratic reciprocity with supplements,
expressed in the same way but for odd positive coprime integers.

The Kronecker symbol further generalizes the Jacobi symbol to
all remaining cases, where 𝑏 = 𝑢 · ∏𝑖 𝑝

𝑒𝑖
𝑖

for 𝑢 ∈ {−1, 0, 1} and
𝑝𝑖 ≥ 2, defined as:

(𝑎
0

)
𝐾
=

{
1 if 𝑎 = ±1,
−1 otherwise.

(𝑎
2

)
𝐾
=


0 if 𝑎 is even,
1 if 𝑎 ≡ ±1 (mod 8),
−1 otherwise.

( 𝑎
−1

)
𝐾
=

{
1 if 𝑎 ≥ 0,
−1 otherwise.(𝑎

𝑏

)
𝐾
=

(𝑎
𝑢

)
𝐾

∏
𝑖

(
𝑎

𝑝𝑖

)𝑒𝑖
𝐾

The Kronecker symbol shares many of the basic properties of the
Jacobi symbol, but under more restrictions, and does not have the
same connection to quadratic residuosity as the previous two. In this
work, we will consider the most general definition of the Kronecker
symbol, but note that some textbooks restrict the definition to 𝑏 > 0
for simplicity [Ros95].

2.2 The Bernstein-Yang algorithm

The BY algorithm for modular inversion relies on the definition of
a division step that updates the operands as the algorithm executes
for a fixed number of iterations [BY19]. A division step (divstep) is
defined for all integers 𝛿, 𝑔 and odd integers 𝑓 as:

divstep(𝛿, 𝑓 , 𝑔) =

(
1 − 𝛿, 𝑔, 𝑔−𝑓2

)
if 𝛿 > 0 and 𝑔 odd,(

1 + 𝛿, 𝑓 , 𝑔+(𝑔 mod 2) 𝑓
2

)
otherwise.

The algorithm also computes transition matrices:

T (𝛿, 𝑓 , 𝑔) =



(
0 2
−1 1

)
if 𝛿 > 0 and 𝑔 odd,(

2 0
𝑔 mod 2 1

)
otherwise.

Note that we use the definition of T from [HAS23] which differs
slightly from the presentation in [BY19]. For integers 𝛿, 𝑓 and 𝑔, we
write (𝛿𝑛, 𝑓𝑛, 𝑔𝑛) = divstep𝑛 (𝛿, 𝑓 , 𝑔) and T𝑛 = T (𝛿𝑛, 𝑓𝑛, 𝑔𝑛).

Algorithm 1 iterates the divstep function, computing and sequen-
tially multiplying the transition matrix of the resulting values. For a
constant-time implementation, the branch can be implemented by
just looking at individual bits of 𝛿 and 𝑔, the sign flips by converting
the corresponding variables in two’s-complement representation,

and the assignments by conditional swaps to exchange the values
when the branch is taken (lines 4-5 in the algorithm).

Algorithm 2 implements modular inversion using Divsteps by
computing the number of iterations required (lines 1-5), setting up
the constants (lines 6-7), iterating the division steps the required
number of times (line 8) and combining the results at the end (line 9).
In the algorithm, sgn(·) computes the sign of an integer. For a fixed
modulus 𝑓 and assuming 1 < 𝑔 < 𝑓 , the case commonly occurring
for modular arithmetic in cryptography, we can precompute the
values 𝑛 and 𝑒 in advance. The correctness of the algorithm is given
by the main theorem in [BY19], reproduced below.

Theorem 2.1 (Theorem 11.2 in [BY19]). Let 𝑓 and 𝑔 be integers
with 𝑓 odd. Let 𝑑 be a real number such that 𝑓 2 + 4𝑔2 ≤ 5 · 22𝑑 .
Let𝑚 be an integer such that𝑚 ≥ ⌊(49𝑑 + 80)/17⌋ if 𝑑 < 46 and
𝑚 ≥ ⌊(49𝑑 + 57)/17⌋ if 𝑑 ≥ 46.

For 𝑖 = 1, 2, . . . ,𝑚, let (𝛿𝑖 , 𝑓𝑖 , 𝑔𝑖 ) = divstep𝑖 (1, 𝑓 , 𝑔) and T𝑖 =

T (𝛿𝑖 , 𝑓𝑖 , 𝑔𝑖 ) and
(
𝑢𝑖 𝑣𝑖
𝑞𝑖 𝑟𝑖

)
= T𝑖−1T𝑖−2 · · · T0. Then 𝑔𝑚 = 0, 𝑓𝑚 =

± gcd(𝑓 , 𝑔) and 𝑣𝑚𝑔 = 2𝑚 𝑓𝑚 (mod 𝑓 ).

Since 𝑓 and 𝑔 are assumed to be coprime, the final values of 𝑓
and 𝑣 are respectively 𝑓𝑚 and 𝑣𝑚 , and 𝑝 is the inverse of 2𝑚 modulo
𝑓 , so the following holds:

𝑝 · 𝑣 · sgn(𝑓 ) · 𝑔 = (2−𝑚)𝑣 (±1)𝑔 = (±1) (±1) = 1 (mod 𝑓 ).

Againwe use the presentation from [HAS23]which differs slightly
from the one in [BY19] because of our definition of T .

Algorithm 1: Divsteps for inversion
Input : Integers 𝑛, 𝛿, 𝑓 and 𝑔 such that 𝑓 is odd
Output :The integers 𝛿𝑛, 𝑓𝑛 and 𝑔𝑛 and the matrix product

T𝑛T𝑛−1 · · · T0
1 𝑢 ← 1, 𝑣 ← 0, 𝑞 ← 0, 𝑟 ← 1
2 for 𝑖 ← 1 to 𝑛 do

3 if 0 < 𝛿 and 𝑔 odd then

4 𝛿 ← −𝛿 , 𝑓 ← 𝑔, 𝑔← −𝑓 ,
5 𝑢 ← 𝑞, 𝑣 ← 𝑟 , 𝑞 ← −𝑢, 𝑟 ← −𝑣
6 𝑔0 ← 𝑔 mod 2, 𝛿 ← 𝛿 + 1
7 𝑔← 𝑔+𝑔0 𝑓

2 , 𝑢 ← 2𝑢, 𝑣 ← 2𝑣
8 𝑞 ← 𝑞 + 𝑔0𝑢, 𝑟 ← 𝑟 + 𝑔0𝑣
9 return 𝛿, 𝑓 , 𝑔,

(𝑢 𝑣
𝑞 𝑟

)
3 ALGORITHMS FOR KRONECKER SYMBOL

We describe two versions of the algorithm: an easier-to-implement
full-precision version based on divstep, described in Section 3.1; and
a faster word-sized version described in Section 3.2. Like with mod-
ular inversion, we will assume that the first argument to Divsteps
is public. It corresponds to the prime modulus in inversion, and the
bottom argument in the Kronecker symbol. Hence the algorithms
can leak the values of specific bits of 𝑓 , and the lengths of both
arguments 𝑓 and 𝑔, since the number of iterations depend directly
on those. Since 𝑓 is known in advance and 0 ≤ 𝑔 < 𝑓 in the cases
of interest within cryptography, there is no impact on security.
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Algorithm 2: Bernstein-Yang modular inversion algorithm.
Input : Integers 𝑓 and 𝑔 such that 𝑓 is odd and

gcd(𝑓 , 𝑔) = 1
Output : Integer 𝑔−1 such that 𝑔𝑔−1 = 1 (mod 𝑓 )

1 𝑑 ← max(bits(𝑓 ), bits(𝑔))
2 if 𝑑 < 46 then
3 𝑛 ← ⌊(49𝑑 + 80)/17⌋
4 else

5 𝑛 ← ⌊(49𝑑 + 57)/17⌋
6 𝑒 ← ((𝑓 + 1)/2)𝑛 mod 𝑓
7 𝛿 ← 1
8 𝛿, 𝑓 , 𝑔,

(𝑢 𝑣
𝑞 𝑟

)
← Divsteps(𝑛, 𝛿, 𝑓 , 𝑔)

9 return 𝑒 · 𝑣 · sgn(𝑓 )

3.1 Full-precision Divsteps version

We start by defining a symbol that extends the Jacobi symbol to

include negative numbers in the denominator as
(𝑎
𝑏

)
B

(
𝑎

|𝑏 |

)
𝐽

, for

integers 𝑎, 𝑏. Even numbers are also handled by factoring out pow-

ers of
(𝑎
2

)
𝐾
=

(
2
𝑎

)
𝐾

under multiplicativity. This is well-defined, so

we have the following version of reciprocity for coprime 𝑎 and 𝑏:(𝑎
𝑏

) (
𝑏

𝑎

)
= Y (𝑎, 𝑏) (−1)

𝑎−1
2

𝑏−1
2 , (1)

where Y (𝑎, 𝑏) = −1 if both 𝑎 and 𝑏 are negative and 1 otherwise. All
other properties of the usual Jacobi symbol are preserved in this
extended symbol, such as multiplicativity in both arguments and
periodicity in the numerator.

Now we extend the divstep function to also record information
about the value of the Jacobi symbol. For 𝑘 ∈ {±1} we define:

divstep𝑘 (𝛿, 𝑓 , 𝑔, 𝑘) =
(
1 − 𝛿, 𝑔, 𝑔−𝑓2 , (−1)

𝑔2−1
8 Y (𝑔,−𝑓 ) (−1)

𝑔−1
2
−𝑓 −1
2 𝑘

)
if 𝛿 > 0 and 𝑔 odd,(

1 + 𝛿, 𝑓 , 𝑔+(𝑔 mod 2) 𝑓
2 , (−1)

𝑓 2−1
8 𝑘

)
otherwise.

In this first case, we swap (𝑓 , 𝑔) with (𝑔,−𝑓 ) and employ the
laws of quadratic reciprocity to handle even 𝑓 and multiplicatively
accumulate the result into the intermediate value 𝑘 . In the second
case, we apply the second supplement of the law of quadratic reci-
procity to handle even 𝑔 and accumulate the result. Now we can
prove that the recurrence computes the extended symbol correctly.

Lemma 3.1. For all𝑛 ∈ Nwrite (𝛿𝑛, 𝑓𝑛, 𝑔𝑛, 𝑘𝑛) = divstep𝑛
𝑘
(𝛿, 𝑓 , 𝑔, 𝑘).

If we take 𝑘 = 1 and assume that gcd(𝑓 , 𝑔) = 1, then we have

𝑘𝑛

(
𝑔𝑛

𝑓𝑛

)
=

(
𝑔

𝑓

)
.

In particular, if 𝑓𝑛 = ±1, then 𝑘𝑛 =

(
𝑔

𝑓

)
.

Proof. We proceed by induction in𝑛. By assumption𝑘0 = 𝑘 = 1,
so the formula is true when 𝑛 = 0.

If 𝛿𝑛+1 > 0 and 𝑔𝑛+1 is odd, then

𝑘𝑛+1

(
2𝑔𝑛+1
𝑓𝑛+1

)
= (−1)

𝑔2𝑛−1
8 Y (𝑔𝑛,−𝑓𝑛) (−1)

𝑔𝑛−1
2
−𝑓𝑛−1

2 𝑘𝑛

(
𝑔𝑛 − 𝑓𝑛
𝑔𝑛

)
=

(
2
𝑓𝑛+1

)
𝑘𝑛

(
𝑔𝑛

−𝑓𝑛

)
=

(
2
𝑓𝑛+1

) (
𝑔

𝑓

)
,

and the result follows by dividing by
(

2
𝑓𝑛+1

)
. Note that we use

that 𝑓𝑛+1 is odd and that 𝑓𝑛 and 𝑔𝑛 are coprime (since 𝑓 and 𝑔 are
assumed to be so).

If 𝛿𝑛+1 ≤ 0 or 𝑔𝑛+1 is even, then

𝑘𝑛+1

(
2𝑔𝑛+1
𝑓𝑛+1

)
= (−1)

𝑓 2𝑛 −1
8 𝑘𝑛

(
𝑔𝑛 + (𝑔𝑛 mod 2) 𝑓𝑛

𝑓𝑛

)
=

(
2
𝑓𝑛+1

)
𝑘𝑛

(
𝑔𝑛

𝑓𝑛

)
=

(
2
𝑓𝑛+1

) (
𝑔

𝑓

)
.

and the result follows as before. □

By themain theorem of [BY19], there is an𝑚 such that (𝑓𝑚, 𝑔𝑚) =
(± gcd(𝑓 , 𝑔), 0) so we get the following corollary.

Lemma 3.2. Let 𝑓 and 𝑔 be integers with 𝑓 odd. We have that(
𝑔

𝑓

)
=

{
𝑘𝑚 if 𝑓𝑚 = ±1
0 otherwise.

This means that if we iterate divstep𝑘 as many times as is needed
for divstep to converge, thenwe also get an algorithm for computing

the extended symbol
(
𝑔

𝑓

)
defined previously.

For simplicity, we will split the resulting algorithm for arbitrary
integers 𝑓 , 𝑔 into two different subroutines, hereby referred to as in-
ner and outer. The inner routine will evaluate the extended symbol(
𝑔

|𝑓 |

)
by iterating divstep𝑘 the required number of times. Algo-

rithm 3 does exactly that, but it also computes the full transition
matrix as a side-effect. Algorithm 4 is a modification to evaluate
the branches in constant time explicitly, and to avoid computing
the transition matrix that is not needed for the actual evaluation
of the symbol. We define an operator msb(·) to evaluate the most-
significant bit in two’s complement representation that coincides
exactly with the sign evaluation.

The other general cases corresponding to the Kronecker symbol
will be handled in the outer Algorithm 5. Assuming that 𝑓 is a public
parameter, the algorithm can be trivially modified to be executed in
constant-time with respect to the value of 𝑔, the parameter assumed
to be private. We handle the case 𝑓 = 0 right after counting the
number of iterations, and use a temporary variable 𝑢 to correct
the sign when both 𝑓 and 𝑔 are negative and when 𝑓 is even. We
argue that Algorithm 5 does not leak information about 𝑔 when the
branches are evaluated in constant time, other than its length when
iterating Divsteps𝑘 for the corresponding number of iterations. In
the cases of interest to cryptography, 𝑔 is assumed to be reduced
modulo 𝑓 , so the number of iterations is determined by 𝑓 alone and
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does not leak information about𝑔. We can furthermodify Algorithm
5 to run in constant-time when both 𝑓 and 𝑔 are private and non-
trivial at some performance loss by adding dummy iterations of the
loop (line 14), given an upper bound on the power of 2 dividing 𝑓 .

Algorithm 3: Divsteps𝑘 for Kronecker symbol
Input : Integers 𝑛, 𝛿, 𝑓 and 𝑔 such that 𝑓 is odd
Output :The integers 𝛿𝑛, 𝑓𝑛, 𝑔𝑛 and 𝑘𝑛

1 𝑘 ← 0, 𝑢 ← 1, 𝑣 ← 0, 𝑞 ← 0, 𝑟 ← 1
2 for 𝑖 ← 1 to 𝑛 do

3 if 𝛿 > 0 and 𝑔 odd then

4 𝛿 ← −𝛿 , 𝑓 ← 𝑔, 𝑔← −𝑓
5 𝑘 ← 𝑘 + ((⌊ 𝑓2 ⌋ mod 2) · (⌊ 𝑔2 ⌋ mod 2) + 1) mod 2
6 if 𝑓 < 0 ∧ 𝑔 < 0 then
7 𝑘 ← 𝑘 + 1 mod 2

8 𝑔0 ← 𝑔 mod 2, 𝛿 ← 𝛿 + 1
9 𝑘 ← 𝑘 + ((⌊ 𝑓2 ⌋ mod 2) · (⌊ 𝑓4 ⌋ mod 2)) mod 2

10 𝑔← 𝑔+𝑔0 𝑓
2 𝑢 ← 2𝑢, 𝑣 ← 2𝑣

11 𝑞 ← 𝑞 + 𝑔0𝑢, 𝑟 ← 𝑟 + 𝑔0𝑣
12 return 𝛿, 𝑓 , 𝑔, 𝑘,

(𝑢 𝑣
𝑞 𝑟

)
Algorithm 4: Optimized OptDivsteps𝑘 in constant time
Input : Integers 𝑛, 𝛿, 𝑓 and 𝑔 such that 𝑓 is odd
Output :The integers 𝛿𝑛, 𝑓𝑛, 𝑔𝑛 and 𝑘𝑛
Note :All conditional copies and swap (↔) must be

implemented in constant time with bit operations.
1 𝑘 ← 0
2 for 𝑖 ← 1 to 𝑛 do

3 𝑑0 ← (𝛿 > 0) ∧ (𝑔 mod 2)
4 𝛿 ← −𝛿 if (𝑑0 > 0)
5 𝑓 ↔ 𝑔 if (𝑑0 > 0)
6 𝑔← −𝑔 if (𝑑0 > 0)
7 𝑘 ← 𝑘 ⊕ (((𝑓 ∧ 𝑔) ≫ 1) ⊕ (msb(𝑓 ) ∧msb(𝑔)) ∧ 𝑑0)
8 𝑔0 ← 𝑔 mod 2, 𝛿 ← 𝛿 + 1
9 𝑘 ← 𝑘 ⊕ ((𝑓 ≫ 1) mod 2) ∧ ((𝑓 ≫ 2) mod 2)

10 𝑔← (𝑔 + 𝑔0 𝑓 ) ≫ 1
11 𝑡 ← (2𝑘 mod 4) // adjust output for Jacobi symbol

12 return 𝛿, 𝑓 , 𝑔, 1 − 𝑡

3.2 Word-oriented JumpDivsteps version

Algorithm 1 can be optimized by observing that computing the ℓ
first iterations of Divsteps only depends on the ℓ first bits in 𝑓 and
𝑔. This allows working on smaller numbers and “jumping” through
the iterations of Divsteps in larger steps (see Section 10 in [BY19]).

This optimization, however, can unfortunately not be naively
applied to Algorithm 4. The issue is that going to a lower bit length
by truncating, one loses information about the most significant bits
of 𝑓 and 𝑔. Fortunately, a trick discovered by Hamburg in [Ham21]
can be used to circumvent this issue: in order to compute the con-
tribution of (msb(𝑓 ) ∧ msb(𝑔)) to 𝑘 output by Algorithm 4, one

Algorithm 5: Kronecker symbol based on Divsteps
Input : Integers 𝑓 and 𝑔

Output :Kronecker symbol
(
𝑔

𝑓

)
𝐾

1 𝑑 ← max(bits(𝑓 ), bits(𝑔))
2 if 𝑑 < 46 then
3 𝑛 ← ⌊(49𝑑 + 80)/17⌋
4 else

5 𝑛 ← ⌊(49𝑑 + 57)/17⌋
6 if 𝑓 = 0 then
7 if 𝑔 = ±1 then
8 return 1
9 else

10 return 0

11 𝑢 ← 1
12 if (𝑓 < 0) and (𝑔 < 0) then
13 𝑢 ← −1 // handle negative operands

14 while 𝑓 mod 2 = 0 do
15 𝑓 = 𝑓 /2
16 if 𝑔 mod 2 = 0 then
17 𝑢 ← 0 // return 0 no matter k below

18 if 𝑔 mod 8 = ±3 then
19 𝑢 ← −𝑢 // factor out (g|2) and flip u

20 𝛿 ← 1
21 𝛿 ′, 𝑓 ′, 𝑔′, 𝑘 ← OptDivsteps𝑘 (𝑛, 𝛿, |𝑓 |, 𝑔)
22 if |𝑓 ′ | ≠ 1 then
23 return 0
24 else

25 return 𝑢 · 𝑘

only needs to compute the amount of times 𝑓 changes sign. Now
this in itself is still not enough, since 𝑓 is truncated. Instead it turns
out that counting the amount of times the value 𝑞 changes sign
in Algorithm 3 is sufficient for computing the contribution of sign
changes from 𝑓 .

Hamburg defines a 2 by 2 integer matrix to be ratchet, if it has
strictly positive determinant and its second row is positive, and
then proceeds to prove two theorems.

Theorem 3.3 (Theorem 1, [Ham21]). Let 𝑀𝑖 be a sequence of

ratchet matrices and let 𝑇𝑖 =

(
𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

)
be the sequence of matrices

recursively defined by 𝑇0 = 𝐼 and 𝑇𝑖 = 𝑀𝑖 · 𝑇𝑖−1. Let 𝑓 , 𝑔 ∈ Z with

either 𝑓 ≠ 0 or 𝑔 > 0 and write
(
𝑓𝑖
𝑔𝑖

)
= 𝑇𝑖 ·

(
𝑓
𝑔

)
. If 𝑡 𝑗 , 𝑢 𝑗 denote the

number of times that 𝑓𝑖 , 𝑐𝑖 change signs for 𝑖 ≤ 𝑗 , respectively, then
𝑡 𝑗 − 𝑢 𝑗 ∈ {0, 1}.

Theorem 3.4. For all 𝑛 ∈ N, T𝑛 is ratchet.

Using these two theorems, one can apply the jumpdivstep opti-
mization to Algorithm 3 to define a variant of Algorithm 4 which
does not use the most significant bits of 𝑓 or 𝑔, but rather counts
the sign changes of 𝑞 to compute the same contribution. Let us refer
to this algorithm as JumpDivsteps𝑘 , corresponding to the extended
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Jacobi symbol computation introduced in [Ham21]. Our version,
optimized for constant-time execution, in depicted in Algorithm 6.
For a processor with word size𝑤 , an optimal value for ℓ would be
the largest integer smaller than (𝑤 − 2) that divides the required
number of iterations, but approximations are also possible.

Algorithm 6: JumpDivsteps𝑘 for Kronecker symbol
Input : Integers 𝑛, ℓ,𝑤, 𝛿, 𝑓 and 𝑔 such that 𝑓 is odd and

positive, and ℓ ≤ (𝑤 − 2)
Output :The integers 𝛿𝑛, 𝑓𝑛, 𝑔𝑛 and 𝑘𝑛
Note :All branches, conditional copies and selects must

be implemented in constant time.
1 𝑡 ← 0
2 for 𝑖 ← 1 to ⌈𝑛/ℓ⌉ do
3 𝑓 ′ ← 𝑓 mod 2𝑤 , 𝑔′ ← 𝑔 mod 2𝑤
4 𝑢 ← 0
5

(
𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

)
←

( 1 0
0 1

)
6 for 𝑗 ← 1 to ℓ do
7 𝑦 ← 𝑓 ′, 𝑑0 ← (𝛿 ≥ 0),𝑚1 ← (𝑔′ mod 2)
8 𝑚0 ← 𝑑0 ∧𝑚1
9 𝑡0 ← 𝑓 ′, 𝑡1 ← 𝑐𝑖 , 𝑡2 ← 𝑑𝑖

10 if (𝑑0 > 0) then
11 𝑡0 ← −𝑡0, 𝑡1 ← −𝑡1, 𝑡2 ← −𝑡2
12 𝑔′ ← 𝑔′ + 𝑡0 if (𝑚1 > 0)
13 𝑎𝑖 ← 𝑎𝑖 + 𝑡1 if (𝑚1 > 0)
14 𝑏𝑖 ← 𝑏𝑖 + 𝑡2 if (𝑚1 > 0)
15 𝑓 ′ ← 𝑓 ′ + 𝑔′ if (𝑚0 > 0)
16 𝑐𝑖 ← 𝑐𝑖 + 𝑎𝑖 if (𝑚0 > 0)
17 𝑑𝑖 ← 𝑑𝑖 + 𝑏𝑖 if (𝑚0 > 0)
18 𝑔′ ← 𝑔′ ≫ 1, 𝑐𝑖 ← 2𝑐𝑖 , 𝑑𝑖 ← 2𝑑𝑖
19 𝛿 ← −𝛿 if (𝑚0 > 0) or 𝛿 + 1 if (𝑚0 = 0)
20 𝑢 ← 𝑢 + ((𝑦 ∧ 𝑓 ′) ⊕ (𝑓 ′ ≫ 1)) ∧ 2
21 𝑢 ← 𝑢 + ((𝑢 ∧ 1) ⊕ msb(𝑐𝑖 ))

22

(
𝑔

𝑓

)
←

(
𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

)
·
(
𝑔

𝑓

)
/2ℓ

23 𝑡 ← (𝑡 + 𝑢) mod 4
24 𝑡 ← 𝑡 + ((𝑡 mod 2) ⊕ msb(𝑓 )) mod 4
25 𝑡 ← (𝑡 + (𝑡 mod 2)) mod 4
26 return 𝛿, 𝑓 , 𝑔, 1 − 𝑡

Now we are in position to define Algorithm 7 as an adaptation of
Algorithm 5 that uses the modified JumpDivsteps𝑘 . It computes the
number of iterations using the half-delta optimization [WMO21],
that reduces the number of iterations by approximately 18% on
average, then handles the corner cases just like Algorithm 5. It
finishes by invoking JumpDivsteps𝑘 as a subroutine.

Formal Verification of Hamburg’s Paper. At the time of writing,
Hamburg’s result [Ham21] has not been formally peer-reviewed yet.
Thus, we formalize his work as a public attestation of its correctness.
To do so, we build on top of the certified proof of the correctness
of the BY inversion algorithm in the Coq Proof Assistant [HAS23].
To be precise, we formalize the results which are necessary for the

Algorithm 7: Kronecker symbol based on JumpDivsteps
Input : Integers 𝑓 and 𝑔, word size𝑤

Output :Kronecker symbol
(
𝑔

𝑓

)
𝐾

1 𝑑 ← max(bits(𝑓 ), bits(𝑔))
2 𝑛 = ⌊(45907𝑑 + 26313)/19929⌋
3 if 𝑓 = 0 then
4 if 𝑔 = ±1 then
5 return 1
6 else

7 return 0

8 𝑢 ← 1
9 if (𝑓 < 0) and (𝑔 < 0) then
10 𝑢 ← −1 // handle negative operands

11 while 𝑓 mod 2 = 0 do
12 𝑓 = 𝑓 /2
13 if 𝑔 mod 2 = 0 then
14 𝑢 ← 0 // return 0 no matter k below

15 if 𝑔 mod 8 = ±3 then
16 𝑢 ← −𝑢 // factor out (g|2) and flip u

17 𝛿 ← 0, ℓ ← 𝑤 − 2
18 𝛿 ′, 𝑓 ′, 𝑔′, 𝑘 ← JumpDivsteps𝑘 (𝑛, ℓ,𝑤, 𝛿, |𝑓 |, 𝑔)
19 if |𝑓 ′ | ≠ 1 then
20 return 0
21 else

22 return 𝑢 · 𝑘

correctness of the JumpDivsteps implementation of the Kronecker
computation.

To formalize Theorem 3.3 we need some auxiliary functions. We
define ` : Z × Z → {0, 1} by ` (𝑎, 𝑏) = 1 if 𝑎 and 𝑏 have different
signs and 0 otherwise; this is used to count sign changes. We also
define Y as in section 3.1. Using these we can rephrase Theorem 3.3
as follows.

Theorem 3.5. Let 𝑖 ∈ N and 𝑐 𝑗 and 𝑓𝑗 be defined as in Theorem 3.3
for all 𝑗 ∈ {0, . . . , 𝑖}. Then
𝑖−1∑︁
𝑗=0

` (𝑓𝑗+1, 𝑓𝑗 ) =
𝑖−1∑︁
𝑗=0

` (𝑐 𝑗+1, 𝑐 𝑗 ) + (` (𝑓𝑖 , 𝑓0) + ` (𝑐𝑖 , 𝑐0) mod 2) .

The formalization of this proposition in Coq is the following:
Definition ratchet_spec M i :=
^ M i =

(^' M i) + ((` (f M i) (f M 0)) + (` (c M i) (c M 0))) mod 2.

where ^ and ^' correspond to the sums in Theorem 3.5.
The proof proceeds much like in [Ham21]. We split each matrix

𝑀𝑖 into a product of three matrices, each of which are either upper
triangular or rotation matrices.

We implement the decomposition as a map 𝑡 from sequences of
matrices to sequences of matrices, defined in Coq as
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Definition t (M : nat -> mat Q) :=
fun (i : nat) =>
let '(a, b, c, d) := M (i / 3)%nat in
if (decide (b ≡ 0))
then match mod3dec i with

| inright _ => I
| inleft pf => match pf with

| right _ => I
| left _ => (a, b, c, d)
end

end
else match mod3dec i with

| inright _ => (b, 0, d, 1)
| inleft pf => match pf with

| right _ => (0, 1, -1, 0)
| left _ => (a * d / b - c, 0, a / b, 1)
end

end.

where mod3dec decides whether a number is 0, 1 or 2 modulo 3.
Note that all the matrices in the sequence 𝑡 (𝑀) are either upper
triangular or rotation matrices. In Coq we have that:

Lemma t_lt_or_rot M : forall i, lt_or_rot (t M i).

We prove that the sequence 𝑡 (𝑀) actually decomposes the sequence
𝑀 , such that multiplying three consecutive matrices in 𝑡 (𝑀) (start-
ing at a multiple of 3) gives a corresponding matrix in𝑀 :

(𝑡 (𝑀))3·𝑖+2 · (𝑡 (𝑀))3·𝑖+1 · (𝑡 (𝑀))3·𝑖 = 𝑀𝑖 .

We then prove that Theorem 3.5 is satisfied if 𝑀 is a sequence of
matrices which all are upper triangular or rotation matrices. This
is the theorem below in Coq:

Theorem aux M :
f0 . 0 \/ g0 > 0 ->
(forall i, ratchet (M i)) ->
(forall i, lt_or_rot (M i)) ->
(forall i, ratchet_spec M i).

By applying the decomposition function 𝑡 , we get Theorem 3.5:

Theorem thm M :
f0 . 0 \/ g0 > 0 ->
(forall i, ratchet (M i)) ->
(forall i, ratchet_spec M i).

4 IMPLEMENTATION AND EXPERIMENTAL

RESULTS

Our collection of experimental results is split in two parts. In the
first subsection we study the performance of the Kronecker symbol
in isolation, by benchmarking the Legendre symbol across multi-
ple parameters from curve-based cryptography. In the second, we
observe the performance of the algorithm in the context of elliptic
curve hashing.

4.1 Legendre symbol

For benchmarking, we specialize to the Legendre symbol, which is
the most interesting case of cryptographic interest. We have imple-
mented our algorithms for a range of parameters commonly used in
both elliptic curve cryptography (ECC) and pairing-based cryptog-
raphy (PBC) settings. For the elliptic curve cryptography setting,
we chose the 256-bit primes 2255 − 19 and 2256 − 232 − 29 − 28 − 27 −
26 − 24 − 1 labeled by their respective named curves Curve25519,
and secp256k1 at the 128-bit security level. We note however that
the specific prime shape does not affect the performance of our

algorithms. For pairing-based cryptography, we selected three dif-
ferent primes to define the base field for Barreto-Lynn-Scott (BLS)
curves [BLS02] at multiple security levels. In particular, those are
respectively the prime moduli underlying the BLS curves with
embedding degree 12 undergoing standardization at 128-bit secu-
rity [MSS16], the 509-bit prime for BLS curves with embedding
degree 24 proposed for 192-bit security [AFK+12, BD19], and the
575-bit prime for BLS curves with embedding degree 48 proposed
for 256-bit security [MAF20]. We select a final larger parameter
corresponding to the CTIDH 1024-bit prime modulus [BBC+21].

The code was developed in the RELIC toolkit [AGM+] with
the C programming language, due to its strong support for curve-
based cryptography. For reference, RELIC has a number of pairing-
friendly curves implemented efficiently, having set multiple speed
records for their computation. There is support for advanced elliptic
curve hashing algorithms [WB19] and handwritten Assembly accel-
eration for the field arithmetic. This approach allowed comparisons
between our algorithms for Legendre symbol computation and the
other algorithms already implemented in the library.

In the implementation, we followed the library standard and im-
plemented arithmetic using saturated arithmetic, with 64-bit limbs.
We also implemented support for Pornin’s algorithm [Por20a]
by incorporating it from the optimized implementation found in
the blst [Sup] multi-lingual library implementing Boneh-Lynn-
Shacham short signatures [BLS04] over the BLS12-381 elliptic curve.
For fairness of comparison, we performed minor tweaks in this im-
plementation to enjoy the same low-level field arithmetic primitives
from RELIC as our algorithms.

Benchmarking measurements were taken by computing the av-
erage latency of running the code for 104 consecutive executions
on an Intel Kaby Lake Core i7-7700 CPU at 3.60GHz. The compilers
used were GCC version 12.2.1 and clang 15.0.7, with optimiza-
tion flags -O3 -funroll-loops -march=native -mtune=native.
Following benchmarking conventions 1, TurboBoost and Hyper-
Threading were disabled for higher stability.

Our first set of results are presented in Table 1. In the table,
the first part sets the baseline for comparison. We included the
highly-optimized variable-time implementation of the Jacobi sym-
bol [Möl19] from the GNU MP library version 6.2.1 [Gt20], and
the exponentiation approach by Euler’s criterion using a generic
constant-time algorithm. The particular choice configured for the
latter was a sliding-window exponentiation with precomputation
table of 32 elements, as per the default RELIC configuration. These
two algorithms represent the conventional approaches for variable-
time and constant-time implementation, and respectively set both
a lower bound for aggressively optimized variable-time code, and
an upper bound for generic constant-time approach. The next part
brings what is arguably the current state-of-the-art-algorithms for
computing the Legendre symbol in constant time. The first line for
related work labeled with (C+ASM) contains timings for Pornin’s
algorithm [Por20a] using RELIC’s Assembly acceleration for the
various fields. The line labeled with (pure ASM) constains pure As-
sembly implementations for Pornin’s algorithm found in the blst
library for BLS12-381, or an implementation that we built ourselves.

1https://bench.cr.yp.to/supercop.html
7
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In the case of Curve25519 and secp256k1, the pure ASM implementa-
tion was built by computing addition chains for 𝑝−12 using [McL21],
combinedwithASM code for squarings/multiplications from [NS22].
In the case of CTIDH-1024, an addition chain for computing square
roots was already found in the original code base. The last part of
the table shows the performance of our algorithms, both the basic
Divstep approach and the JumpDivstep optimization.

From the baseline entries in the first part of the table, we can
observe the massive difference in performance between the two
approaches, a factor ranging from 12 to 255. These illustrate how
poorly the generic exponentiation-based approach performs across
the various parameters. It is at best competitive with the basic
Divsteps implementation, but only for the shorter parameters.
Starting with the ECC parameters, the sparse primes benefits a
lot both the variable-time GMP implementation and the addition-
chain based exponentiation approach, exactly as expected. For the
constant-time implementations, the related work in pure ASM is
the fastest, with a 11% speedup over our JumpDivstep algorithm
(8,846 instead of 9,891 cycles, respectively). When we increase the
prime length by 1 bit but move to the secp256k1 field, where the
modulus is not as sparse and arithmetic is not as efficient, the
addition-chain approach is penalized and the numbers are reversed:
now JumpDivsteps becomes 11% faster (9,756 instead of 10,971
cycles, respectively). Now moving to the dense pairing-friendly and
CTIDH primes, the generic constant-time exponentiation based
approach does not scale well and cannot be easily optimized with
shorter addition chains, so the basic Divsteps approach becomes
competitive by providing a speedup between 1.5 and 7.1 in total.

The real competition is between Pornin’s algorithm in (C+ASM)
versus JumpDivsteps, in which we obtain a consistent improvement
of 17.8-25.7% across all fields. In the particular case of the BLS12-381
prime which is heavily optimized in blst, the fully unrolled pure
ASM implementation of the same algorithm gives a substantial 42%
improvement over the (C+ASM) version, and becomes 23% faster
than our JumpDivsteps approach. However, we believe that com-
parison is not entirely fair and our JumpDivsteps approach would
benefit similarly from the same-level of optimization, to the point
of providing a similar improvement we obtained in comparison to
the (C+ASM) version.

In terms of implementation security, we validated that our com-
piled code in C+ASM runs in constant-time after compilation by
using the dudect tool to perform statistical testing of execution
time, given random inputs for a fixed prime modulus [RBV17].

4.2 Application to elliptic curve hashing

Hashing arbitrary strings to elliptic curve points is a fundamental
operation in many cryptographic protocols, for example the BLS
pairing-based short signature scheme [BLS04]. As mentioned in the
main standardization effort collecting hash-to-curve constructions,
other applications include Password Authenticated Key Exchange
(PAKE) protocols, oblivious pseudorandom Functions (OPRFs) and
identity-based encryption [FHSS+21].

Various techniques have been proposed to perform hashing effi-
ciently to an elliptic curve in short Weierstrass form 𝐸 (F𝑝 ) : 𝑦2 =
𝑥3 +𝑎𝑥 +𝑏 over a field of large prime characteristic 𝑝 , starting from
the basic try-and-increment. With this approach, a cryptographic

hash function is used to hash the string to the 𝑥-coordinate of a
point, and then the value 𝑧 = 𝑥3 + 𝑎𝑥 + 𝑏 is tested for quadratic
residuosity. In the positive case, the 𝑦-coordinate is computed as√
𝑧 in F𝑝 ; otherwise 𝑥 is incremented and another quadratic resid-

uosity test performed. However, there are several problems with
this approach: the distribution of outputs is uncertain; and the algo-
rithm is intrinsically variable-time, which might leak information
about the string being hashed. For illustration, timing attacks were
recently mounted against variable-time hash-to-curve in the WPA3
protocol [VR20], so efficient constant-time hashing is desirable for
real-world applications.

A more principled alternative approach was proposed by Brier
et al. [BCI+10]. This approach is composed in two stages, first the
message𝑚 ∈ {0, 1}∗ is hashed to a field element in F𝑝 , and then the
Shallue-van de Woestijne-Ulas (SWU) encoding 𝑓 : F𝑝 → 𝐸 (F𝑝 )
is used to map the hash output to a point in the elliptic curve.
Given two cryptographic hash functions ℎ1 and ℎ2 mapping from
arbitrary strings to F𝑝 , the complete process constructs the elliptic
curve hash function 𝐻 : {0, 1}∗ → 𝐸 (F𝑝 ) as simply evaluating
𝐻 (𝑚) = 𝑓 (ℎ1 (𝑚)) + 𝑓 (ℎ2 (𝑚)), and then multiplying the result by a
cofactor to obtain a point in the right prime-order subgroup. From
the security point of view, it is known that the map 𝐻 will satisfy
the standard security notion of random oracle indifferentiability
when both ℎ1 and ℎ2 are indifferentiable from random oracles as
well. Unfortunately, this approach is quite expensive in which it
needs two evaluations of the encoding map 𝑓 (plus a minor elliptic
curve point addition) to perform its role. Most follow-up work has
focused on specializing and optimizing this approach to different
classes of elliptic curves, for example BLS12 [WB19], by accelerating
the computation of the map 𝑓 and proposing variants easier to
implement in constant time.

The performance drawback of previous approaches was recently
improved in the research literature with the SwiftEC [CRT22]
algorithm. In this new work, Chávez-Saab et al. reformulate the
encoding map 𝑓 as a parameterized family of functions, such that
𝑓ℎ2 (𝑚) (ℎ1 (𝑚)) is indifferentiable from a random oracle if ℎ1 and
ℎ2 are indifferentiable as well. The algorithm constructs a conic 𝑆
admitting a two-parameterization over F𝑝 , and uses it to obtain
three candidate coordinates 𝑥1, 𝑥2, 𝑥3 for the 𝑥-coordinate of a point
in 𝐸, such that at least one of them will be such that (𝑥3

𝑖
+𝑎𝑥𝑖 +𝑏) is

a square. The latter will be exactly the 𝑥-coordinate, and a matching
𝑦-coordinate is computed by taking a square-root and choosing the
sign based on an additional bit. This idea saves the evaluation of one
encoding function, which in turn saves on square-root extractions
and quadratic residuosity tests. The algorithm is also considerably
easier to implement in constant-time than previous work, providing
additional benefits beyond just the performance improvement.

In the set of pairing-based cryptography, we are actually inter-
ested in hashing to two different groups. Let 𝑒 : G1 × G2 → G𝑇
be an asymmetric (or Type-3) pairing defined over three groups of
prime order 𝑟 in which the discrete logarithm is hard to compute. It
is well known that we can represent G1,G2,G𝑇 with subgroups of
order 𝑟 of respectively 𝐸 (F𝑝 ), 𝐸 (F𝑝𝑘 ) and F∗𝑝𝑘 . Moreover, it is also
well-known that we can representG2 by an isomorphic subgroup of
the same order in the 𝑑-degree twist 𝐸 ′(F𝑝𝑘/𝑑 ) for a more compact
and efficient representation. Luckily, it is also simple to instantiate
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Table 1: Benchmarks of different approaches for Legendre computation over different fields. Numbers in bold are the fastest

for group of implementations in this work or related work among the different compilers for a certain choice of prime. With

exception of variable-time GMP, all implementations run in constant time.

Curve25519 secp256k1 BLS12-381 BLS24-509 BLS48-575 CTIDH-1024
gcc clang gcc clang gcc clang gcc clang gcc clang gcc clang

Variable-time GMP 2,702 2,692 2,812 2,788 4,297 4,281 6,007 5,995 6,806 6,817 12,961 12,963
Generic constant-time exp. 37,200 36,778 34,264 34,779 87,798 86,502 228,315 226,817 305,544 308,035 1,956,753 2,011,781
Related work (C+ASM) 11,336 11,322 11,271 11,217 17,323 17,460 24,357 24,046 27,565 27,419 62,633 65,875
Related work (pure ASM) 8,847 8,846 10,971 10,979 10,000 10,003 – – – – 1,320,345 1,320,358
This work (Divsteps) 35,727 50,321 35,773 49,631 69,164 73,148 88,873 105,857 129,074 129,060 274,551 300,490
This work (JumpDivsteps) 9,891 10,277 9,756 10,182 13,044 14,074 17,865 19,101 22,643 23,760 49,182 50,611

the SwiftEC techniques in curves defined over extension fields, by
simply doing the same operations over the larger field instead. We
implement the quadratic residuosity test by following the work of
Adj and Rodríguez-Henríquez [AR14], which reduces the test in the
field F𝑝𝑘/𝑑 to a test in the base field F𝑝 at the cost of 𝑘/𝑑 additional
cheap multiplications and applications of the Frobenius map.

We implemented the SwiftEC construction for a subset of com-
patible parameters in Table 1. We restricted the implementation
for the cases where the JumpDivsteps approach for computing the
Legendre symbol improved on the previous state-of-the-art, which
means all primes except Curve25519. Coincidentally, those were
the exact parameters where the corresponding elliptic curve was
such that 𝑎 = 0, which represents a simpler and faster special case
of SwiftEC. Algorithm 8 presents the algorithm, which executes
one inversion, two Legendre symbol computations, one square root
and other minor operations in the finite field (additions, squar-
ings and multiplications). For a fully constant-time implementation,
we would need to remove the branch to handle the case in line
8, which occurs with at most negligible probability. This can be
easily handled by setting 𝑃 to the point at infinity, conditionally
randomizing𝑤 and making the assignment in line 22 conditional
as well. We omit these details to simplify the description, with a
remark that most protocols would reject the point at infinity as an
output anyways, requiring another hashing attempt.

Table 2 has the resulting timings for hashing to 𝐸 (F𝑝 ), using the
same benchmarking machine and iterations as described in the pre-
vious subsection. In the table, the first line represents the baseline
for comparison established by RELIC’s implementation of the SWU
approach [WB19] in constant-time to save square root computa-
tions. This implementation computes modular square roots using
exponentiation by 𝑝+1

4 , relying on the fact that all benchmarked
parameters have 𝑝 ≡ 3 (mod 4). In the second line, we have a naive
implementation of the SwiftEC algorithm using Legendre symbols
computed through Euler’s criterion implemented in constant time
using exponentiation. In the last line, we present numbers for the
same implementation, but now using our algorithm for faster evalu-
ation of the Legendre symbol using JumpDivsteps. In comparison to
the constant-time baseline in the first line, SwiftEC+JumpDivstep
improves timings for hashing by 51.2% to 72.4%, depending on the
parameter. In comparison to the SwiftEC algorithm implemented
with baseline Legendre symbols, the speedups are reduced to the
range between 34.1% and 48.1%.

Table 3 has the timings for the curves supporting efficient pairing
computation, now considering the cost of hashing to the twist
𝐸 ′(F𝑝𝑘/𝑑 ) that represents group G2 in the pairing setting. The first
line again represents the comparison baseline from RELIC, but we
note that the library did not implement efficient hashing for the
larger parameters. The bottom two lines present our timings, and
again we can observe that SwiftEC algorithm implemented with
our constant-time algorithm for the Legendre symbol improves on
the baseline implementation using exponentiation by 14.7% to 23.0%.
The speedup decreases with larger parameters because multiplying
by the corresponding larger cofactors dominate the total cost more
prominently with higher extensions.

As an illustration of performance improvement in BLS signa-
tures, hashing to the group G1 using SwiftEC+Exponentiation
takes approximately the same cost as a scalar multiplication in
constant time in the same group. Hence, the speedups for hashing
with SwiftEC+JumpDivsteps get halved when the whole signing
operation is considered. We empirically validated that observation
and benchmarked BLS signing within RELIC, with and without our
faster Legendre symbol evaluation. We saw that speedups ranged
from 17% to 20%, which is approximately half of the speedups ob-
served for hashing alone. The speedups for BLS verification are
less than 5%, given that the pairing computation dominates. While
hashing in constant time is not typically required for BLS signa-
tures, having an efficient constant-time function is desirable from
a defense-in-depth perspective [WB19].

We also integrated our JumpDivsteps implementations in the
CTIDH code base [BBC+21] as a prototype. CTIDH uses the Elliga-
tor encoding [BHKL13] to sample independent points on an elliptic
curve within each isogeny evaluation. We observed speedups in
this routine ranging from 4.5 to 46.5, for prime moduli ranging from
511 to 2048 bits, which is quite impressive. However, the speedup
was significantly reduced to only 3.5–13.5% in the overall protocol.

5 CONCLUSION

In this paper, we generalized the efficient and constant-time Bernstein-
Yang (BY) algorithm for modular inversion to compute the Kro-
necker symbol. We defined two versions of the algorithm, with
different trade-offs: a full-precision version that is easier to imple-
ment, and a faster word-oriented variant. After proving correctness
of the introduced algorithms using a formalization of the BY the-
ory within the Coq proof assistant, we produced an optimized
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Table 2: Benchmarks of different approaches for hashing to 𝐸 (F𝑝 ) for different choices of 𝑝. Numbers in bold are the fastest for

group of implementations in this work or related work among the different compilers for a certain choice of prime.

secp256k1 BLS12-381 BLS24-509 BLS48-575
gcc clang gcc clang gcc clang gcc clang

Constant-time SWU+Exp. 313,436 316,910 564,923 580,388 1,655,964 1,667,995 2,223,345 2,228,028
SwiftEC+Exponentiation 153,686 156,475 419,337 418,317 913,768 928,714 1,184,687 1,179,103
SwiftEC+JumpDivsteps 95,442 97,313 275,563 275,866 497,852 500,447 614,892 614,368

Table 3: Benchmarks of different approaches for hashing to 𝐸 ′(F𝑝𝑘/𝑑 ) for different choices of field. Numbers in bold are the

fastest for group of implementations in this work or related work among the different compilers for a certain choice of prime.

BLS12-381 BLS24-509 BLS48-575
gcc clang gcc clang gcc clang

Constant-time SWU+Exp. 1,673,040 1,734,385 - - - -
SwiftEC+Exponentiation 1,246,376 1,258,655 7,519,125 7,522,370 32,065,312 32,013,390
SwiftEC+JumpDivsteps 967,147 976,796 5,787,556 5,843,306 27,461,182 27,317,145

Algorithm 8: Special case of SwiftEC with 𝑎 = 0
Input :Elliptic curve 𝐸 (F𝑝 ) : 𝑦2 = 𝑥3 + 𝑏 with order

𝑛 = ℎ𝑟 , for prime 𝑟 and cofactor ℎ, integer _ such
that _2 ≡ −3 (mod 𝑝), hash functions
ℎ1, ℎ2 : {0, 1}∗ → F𝑝 , ℎ𝑠 : {0, 1}∗ → {0, 1}

Output :Point 𝑃 ∈ 𝐸 (F𝑝 ) of order 𝑟
Note :All conditional copies must be implemented in

constant time with bit operations.
1 𝑡 ← ℎ1 (𝑚), 𝑢 ← ℎ2 (𝑚), 𝑠 ← ℎ𝑠 (𝑚)
2 𝑥1 ← (𝑢3 + 𝑏 − 𝑡2)
3 𝑦1 ← 2𝑡2 + 𝑥1
4 𝑧1 ← 2𝑡𝑢_
5 𝑥1 ← 𝑢 · _ · 𝑥1
6 𝑣 ← 𝑧1 (𝑥1 − 𝑢𝑦1),𝑤 ← 2𝑦1𝑧1
7 if 𝑤 = 0 then
8 𝑃 ←∞ // point at infinity

9 else

10 𝑤 ← 𝑤−1

11 𝑥1 ← 𝑣𝑤

12 𝑥2 ← −(𝑢 + 𝑥1)
13 𝑥3 ← (4𝑦21𝑤)

2 + 𝑢
14 𝑦1 ← 𝑥31 + 𝑏, 𝑦2 ← 𝑥32 + 𝑏, 𝑦3 ← 𝑥33 + 𝑏

15 𝑐2 ←
(
𝑢

𝑝

)
𝐿

, 𝑐3 ←
(
𝑣

𝑝

)
𝐿

16 𝑥1 ← 𝑥2 if 𝑐2 = 1 // conditional copies

17 𝑦1 ← 𝑦2 if 𝑐2 = 1
18 𝑥1 ← 𝑥3 if 𝑐3 = 1
19 𝑦1 ← 𝑦3 if 𝑐3 = 1
20 𝑦1 ←

√
𝑦1

21 𝑦1 ↔ −𝑦1 if 𝑤 + 𝑠 mod 2 = 1 // choose y-coord

22 𝑃 ← ℎ · 𝐸 (𝑥1,𝑤) // multiply by cofactor

23 return 𝑃

implementation of the algorithms inside the RELIC library. Bench-
marking our implementation revealed that the new algorithm is up
to 40 times faster than the conventional exponentiation approach,
and 25.7% faster than the previous state of the art; and improved
a recent approach for hashing to elliptic curves by approximately
14.7% – 48.1%. These results show that our proposed algorithms
can substantially accelerate computations in curve-based cryptog-
raphy. While mapping to elliptic curves is used for illustration, any
other evaluation of the Legendre or Jacobi symbols involving a
secret numerator operand can perform more efficiently by using
our techniques.
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