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Abstract. Liskov, Rivest and Wagner laid the theoretical foundations
for tweakable block ciphers (TBC). In a seminal paper, they proposed two
(up to) birthday-bound secure design strategies — LRW1 and LRW2 —
to convert any block cipher into a TBC. Several of the follow-up works
consider cascading of LRW-type TBCs to construct beyond-the-birthday
bound (BBB) secure TBCs. Landecker et al. demonstrated that just two-
round cascading of LRW2 can already give a BBB security. Bao et al.
undertook a similar exercise in context of LRW1 with TNT — a three-
round cascading of LRW1 — that has been shown to achieve BBB se-
curity as well. In this paper, we present a CCA distinguisher on TNT
that achieves a non-negligible advantage with O(2n/2) queries, directly
contradicting the security claims made by the designers. We provide a
rigorous and complete advantage calculation coupled with experimental
verification that further support our claim. Next, we provide new and
simple proofs of birthday-bound CCA security for both TNT and its
single-key variant, which confirm the tightness of our attack. Furthering
on to a more positive note, we show that adding just one more block
cipher call, referred as 4-LRW1, does not just re-establish the BBB se-
curity, but also amplifies it up to 23n/4 queries. As a side-effect of this
endeavour, we propose a new abstraction of the cascaded LRW-design
philosophy, referred to as the LRW+ paradigm, comprising two block ci-
pher calls sandwiched between a pair of tweakable universal hashes. This
helps us to provide a modular proof covering all cascaded LRW construc-
tions with at least 2 rounds, including 4-LRW1, and its more established
relative, the well-known CLRW2, or more aptly, 2-LRW2.
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1 Introduction

Tweakable Block Cipher or TBC is a highly versatile symmetric-key primitive
that has found applications in almost all verticals of modern information se-
curity, including encryption schemes [8], message authentication codes [21], au-
thenticated encryption [28,39], and even leakage resillience [43]. The popularity
of TBCs is largely credited to the simplicity of TBC-based constructions, and
more importantly, comparatively simpler proofs of beyond-the-birthday bound
(BBB) security.

In a seminal paper [31] at CRYPTO 2002, Liskov, Rivest, and Wagner (LRW)
formalized the notion of tweakable block ciphers (TBCs), although the high-level
idea already appeared in some AES candidates such as Hasty Pudding [42] and
Misty [13]. Over the years, the design landscape of TBCs has changed progres-
sively. The design of a TBC mainly falls into one of the two categories: ad hoc
designs based on well-established primitive design paradigms, or provably secure
designs based on block ciphers or cryptographic permutations. In recent years,
the popularity of ad-hoc designs has gained momentum with the advent of the
TWEAKEY framework [22], its chief example being Deoxys-TBC [23], Skinny [6]
and Qarma [2]. These designs are built from scratch, and their security mainly
depends on cryptanalysis. On the other hand, the security of provably secure
designs is directly linked to the security of the underlying primitives, such as a
block cipher, a permutation, or a pseudorandom function. Some prominent ex-
amples include LRW’s original constructions [31] LRW1 and LRW2, XEX [41] by
Rogaway, and its extensions by Chakraborty and Sarkar [9], Minematsu [35], and
Granger et al. [16]. Note that all these schemes are inherently birthday bound
secure due to detectable internal collisions.

Cascading LRW2: Landecker et al. were the first to notice [30] that a cascading
of two independent instances of LRW2 results in a BBB secure TBC construction.
They proved that 2-round cascaded LRW2 is secure up to approx. 22n/3 CCA
queries, where n denotes the block size in bits. The initial proof was flawed [40],
and superseded by a corrected proof by both Landecker et al. and Procter [40].
The construction was later found [33,25] to be tightly secure up to 23n/4 CCA
queries. For any arbitrary r ≥ 2-round independent cascading of LRW2, denoted
r-LRW2, Lampe and Seurin proved [29] CCA security up to approx. 2

rn
r+2 queries.

Cascading LRW1: The idea to cascade LRW1 came quite later in [4], where
Bao et al. showed that 3-round cascading of LRW1, referred as TNT, is CCA
secure up to 22n/3 queries. The design is highly appreciated in the community for
its simple design and high provable security guarantee. In fact, the CPA security
was later improved to 23n/4 queries, essentially matching the bound for 2-round
LRW2. Since this later result, it is widely believed that the CPA improvement
carries over to the CCA setting, as well. For the more general case of arbitrary
r ≥ 3, denoted r-LRW1, Zhang et al. proved [44] CCA security up to approx.

2
r−1
r+1n queries.
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We remark that the aforementioned LRW-based constructions are all studied
under the standard assumption on the pseudorandomness of the underlying block
ciphers. However, several good constructions are also based on cryptographic
permutations [11,12] and even rekeying1 of block ciphers [35,32,24]. We skip a
detailed discussion on these ideal model constructions since the focus here is
specific to the LRW design paradigm. We encourage the readers to see [33,25]
for a more inclusive discussion on ideal model constructions.

1.1 Motivation

The primary motivation behind this work is a peculiar non-random behavior
exhibited by TNT in the CCA setting.

Suppose πππ1,πππ2,πππ3 are three independent random permutations of {0, 1}n.
The TNT construction (see Fig. 1.1) based on πππ1,πππ2,πππ3 is a TBC with n-bit
tweak and n-bit block input, defined by the mapping

(t,m)
TNT7−−−→ πππ3(t⊕ πππ2(t⊕ πππ1(m))).

As can be noticed by the definition of TNT, it has a peculiar property, that

πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ3m ĉ
m̂ u û c

t

Fig. 1.1: The TNT construction [4].

we refer as the final-block cancellation property. Specifically, suppose we have a
triple (t,m, ĉ) such that TNT(t,m) = ĉ. Then, it is easy to see that any inverse
query of the form (t′, ĉ) would result in a cancellation of the call to πππ3, and this
is independent of the tweak values t and t′ = t⊕ δ. Essentially, the construction
boils down to the one in Fig. 1.2. Let’s call it TNTδ,m for some fixed δ ̸= 0n

and m ∈ {0, 1}n. For a fixed m, we have u1 ⊕ u2 = t1 ⊕ t2. Now, suppose the
adversary can find a pair of tweaks (t1, t2) such that there is a collision at the
output, i.e.,

(m′
1 = m′

2) ⇐⇒ (m̂′
1 = m̂′

2) ⇐⇒ (u′
1 ⊕ u′

2 = t1 ⊕ t2)

So, an output collision happens if and only if u′
1 ⊕ u′

2 = u1 ⊕ u2. Interestingly,
for TNTδ,m, we have the following property:

(û1 ⊕ û2 = δ) =⇒ (u′
1 ⊕ u′

2 = u1 ⊕ u2),

1 These constructions are generally analyzed in the ideal cipher model.
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πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ−1
2 ⊕⊕⊕ πππ−1

1
m m′m̂ u û û′ u′ m̂′

t δ t⊕ δ

Fig. 1.2: TNT with final-block cancellation.

which implies that there are two sources of collisions in TNTδ,m. A collision
happens whenever û1 ⊕ û2 = δ, or û1 ⊕ û2 ̸= δ and u′

1 ⊕ u′
2 = u1 ⊕ u2. This

indicates that one can expect more number of collisions (roughly double) in
TNTδ,m as compared to a random function.

1.2 Contributions

Our contributions are threefold:

1. Birthday-bound CCA Attack on TNT: In section 3, we start by for-
malizing the aforementioned non-random behavior of TNT. We show (see
section 3.1) that the expected number of output collisions for TNTδ,m is
approximately twice the expected number for π̃ππδ,m, where π̃ππ is an n-bit uni-
form random permutation with n-bit tweaks. Our analysis strongly indicates
a global non-random phenomenon that can be detected in roughly O(2n/2)
CCA queries. We establish this assertion by giving a fully scalable CCA
distinguisher. We provide a rigorous analysis for the query complexity and
advantage of our distinguisher, which shows that the distinguisher has an
advantage expression of 1−O(2n/q2), where q denotes the number of CCA
queries. We provide details (see section 3.3) for efficient implementation and
verification of our attacks, including results for an attack on TNT-GIFT-64,
the TNT instantiation using GIFT-64 block cipher.
Since the attack clearly contradicts the security claims of the designers of
TNT, we study their security proof in section 4 and identify a bug, where
a random variable is erroneously assumed to have a uniform distribution,
leading to an overestimation of the security.
See [27] and [26] for two alternative analyses of the attack. The former em-
ploys random permutations statistics to estimate the number of collisions
and the latter directly bounds the probability of collisions in the two worlds.
The analysis in this paper is more comprehensive and leads to a scalable
advantage, but all three analyses come to the same conclusion: TNT can be
broken in birthday bound queries!

2. Birthday-bound CCA Security of TNT: In section 5, we provide a
simple proof of birthday-bound CCA security for TNT. Note that the CCA
security bound also follows from the results in [44]. Nevertheless, given the
flaws in TNT’s original analysis, we believe that multiple security proofs
using different techniques will lead to greater confidence in the revised secu-
rity claim. In addition to the original TNT, we also analyze the single-keyed
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variant of TNT, and show that it retains the same level of CCA security as
well.

3. A Generalization of Cascaded LRW Paradigm: In a more abstract
direction, in section 6, we present a generalized view of the cascaded LRW
design strategy for any arbitrary number of rounds r ≥ 2, called the LRW+
construction. It consists of two block cipher calls sandwiched between a pair
of tweakable universal hashes. We show that as long as the tweakable hashes
are sufficiently2 universal, the LRW+ construction is CCA secure up to 23n/4

queries. Note that LRW+ encompasses both 2-LRW2 and 4-LRW1. Thus, as
a direct side-effect of our analysis, in section 6.2, we show that 2-LRW2 and
4-LRW1 are CCA secure up to 23n/4 queries. In case of 2-LRW2, our bound
matches the tight analysis in [25], and in case of 4-LRW1, our bound matches
a concurrent result [15] by Datta et al.

Table 1.1: Summary of security bounds for LRW-based construction. We have as-
sumed all hash functions to be 2−n-(XOR) universal. The bottom four rows present
our results. LRW+ generalizes both 2-LRW2 and 4-LRW1. So the bound on LRW+
implies similar bounds for 2-LRW2 and 4-LRW1.

Construction BC calls Hash calls Security bound Tightness

LRW1 [31] 1 0 2n/2 (CPA) [31]

LRW2 [31] 1 1 2n/2 [31]

3-LRW1 (TNT [18]) 3 0 22n/3 [18] (flawed)

4-LRW1 4 0 23n/4 [15] –

2-LRW2 (CLRW2 [30]) 2 2 23n/4 [25] [33]

r-LRW1
[44] r odd

0 2
r−1
r+1

n [44]
–

r even 2
r−2
r

n –

r-LRW2
[29] r odd

r 2
r−1
r+1

n [29]
–

r even 2
r

r+2
n

–

3-LRW1 (TNT) 3 0 2n/2

1k-TNT 3 0 2n/2

LRW+ 2 2 23n/4 –

4-LRW1 4 0 23n/4 –

Note that the result on LRW+ directly shows that r-LRW1 is at least 3n/4-
bit secure for any r ≥ 4, improving on the results for r ≤ 8. Similarly, for
r-LRW2 it shows at least 3n/4-bit security for any r ≥ 2, improving on the

2 Having approx. 2−n-AU bound.
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results for r ≤ 6. See Table 1.1 for a summary of the state-of-the-art on the
security of cascaded LRW constructions.

Comparison with [15]: Concurrently, Datta et al. also proposed [15] an
improved bound for 4-LRW1 that matches our 23n/4 bound. Both the proofs
follow the proof strategy [25] used for 2-LRW2 by Jha and Nandi, although
ours is in a more general form (analyzing LRW+) that applies to all the
cascaded LRW constructions with two or more block cipher calls.

1.3 Impact of Our Birthday-bound Attack

As mentioned before, the authors of [4] claimed the CCA security of TNT to
be 2n/3 bits. In Asiacrypt 2020, the authors of [18] conjectured that the CCA
security of TNT is probably 3n/4 bits. In [44], the authors have stated:

A natural open problem is the exact security of r-LRW1. Unlike r-LRW2, the
exact security of r-LRW1 for r = 3 already appears challenging, and might

require new proof approaches.

We believe this work answers a critical research question of both practical and
theoretical implications. On one hand, it studies the exact security of an efficient
construction that has several practical applications. On the other hand, it offers
another cautionary tale on how to use statistical proof techniques such as the
χ2 method.3

Additionally, the attack applies to practical instances of TNT: TNT-AES
in [4] and TNT-SM4-128 in [19]. The authors of [19] also introduced TNT-SM4-
32, where the tweak size is limited to 32 bits. Our distinguisher requires O(2n/2)
tweaks, where n = 128 in case of TNT-SM4. Hence, the distinguisher directly
applies to TNT-SM4-128, which has a tweak size of 128 bits. It does not directly
apply to TNT-SM4-32, since the tweak space is too small. However, since our
distinguisher breaks the BBB security proof in [4], the exact security of TNT-
SM4-32 and whether it has BBB security is an open question.

We note that in Eurocrypt 2023, a full-round distinguisher on TNT-AES
using truncated boomerang attacks was presented in [5]. However, the attack is
particular to TNT-AES and requires almost 2n queries. Our attack applied to
any 128-bit instantiation of TNT, including TNT-AES, requires ≤ 269 queries to
have an almost 100% success rate, making it the best-known distinguisher for
any 128-bit TNT variant, without relying on the properties of the underlying
block cipher. We sum up all known distinguishers on TNT-AES in Table 1.2,
which indicates that our distinguisher is not only theoretical but outperforms
all cryptanalytic efforts on TNT, so far.

2 Preliminaries

Notational Setup: For n ∈ N, [n] denotes the set {1, 2, . . . , n}, {0, 1}n de-
notes the set of bit strings of length n, and Perm(n) denotes the set of all per-

3 Refer to [7] for another example of erroneously estimated distributions.
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Table 1.2: Known distinguishers against TNT-AES. CCA stands for adaptive Chosen
Ciphertext Adversary. NCPA stands for Non-adaptive Chosen Plaintext Adversary.
Rounds is the number of AES rounds in πππ1, πππ2 and πππ3, respectively. ⋆ means any
number of rounds. Generic attacks do not rely on any AES properties and apply to
TNT instantiated with any 128-bit block cipher. 269 is the complexity for which our
attack is expected to have almost 100% success rate, while 268 is expected to have 99%
success rate.

Ref. Type Data Time Adversary Rounds

[4] Boomerang 2126 2126 CCA ⋆ − 5 − ⋆

[18] Impossible Differential 2113.6 2113.6 NCPA 5 − ⋆ − ⋆
[18] Generic 299.5 299.5 NCPA ⋆ − ⋆ − ⋆

[5] Truncated Boomerang 276 276 CCA ⋆ − 5 − ⋆
[5] Truncated Boomerang 287 287 CCA 5 − 5 − ⋆
[5] Truncated Boomerang 2127.8 2127.8 CCA ⋆ − 6 − ⋆

This paper Generic ≤ 269 ≤ 269 CCA ⋆ − ⋆ − ⋆

mutations over {0, 1}n. For τ, n ∈ N, P̃erm(τ, n) denotes the set of all families of

permutations πt := π(t, ·) ∈ Perm(n), indexed by t ∈ {0, 1}τ . Any π̃ ∈ P̃erm(τ, n)
is referred as a (τ, n)-tweakable permutation.

For n, r ∈ N, such that n ≥ r, we define the falling factorial (n)r := n!/(n−
r)! = n(n− 1) · · · (n− r + 1), and define (n)0 := 1.

For q ∈ N, xq denotes the q-tuple (x1, x2, . . . , xq), and in this context, M(xq)
and S(xq) respectively denote the multiset and set corresponding to {xi : i ∈ [q]}.
For a set I ⊆ [q] and a q-tuple xq, xI denotes the tuple (xi)i∈I . For a pair of
tuples xq and yq, (xq, yq) denotes the 2-ary q-tuple ((x1, y1), . . . , (xq, yq)). An
n-ary q-tuple is defined analogously. For q ∈ N, for any set X , (X )q denotes the
set of all q-tuples with distinct elements from X . For q ∈ N, a 2-ary tuple (xq, yq)
is called permutation compatible, denoted xq ↭ yq, if xi = xj ⇐⇒ yi = yj .
Extending notations, a 3-ary tuple (tq, xq, yq) is called tweakable permutation
compatible, denoted by (tq, xq) ↭ (tq, yq), if (ti, xi) = (tj , xj) ⇐⇒ (ti, yi) =
(tj , yj). For any tuple xq ∈ X q, and for any function f : X → Y, f(xq) denotes
the tuple (f(x1), . . . , f(xq)). We use shorthand notation ∃∗ to represent the
phrase “there exists distinct”.

Unless stated otherwise, upper and lower case letters denote variables and
values, respectively, and Serif font letters are used to denote random variables.
For a finite set X , X←$ X denotes the uniform and random sampling of X from
X . We write Xq wor←− X to denote WOR (without replacement sampling) of a q-
tuple Xq from the set X , where |X | ≥ q is obvious. More precisely, Xq ←$ (X )q.

We will use the following proposition, which is a slight variation of [17,
Lemma 6].

Proposition 2.1. Let R0 and R1 be two random variables with variances σ2
0

and σ2
1, respectively, and suppose their expectations follow the relation Ex (R0) ≥
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µ0 ≥ µ1 ≥ Ex (R1), for some µ0 ≥ µ1 ≥ 0. Then, for µ = (µ0 + µ1)/2, we have

|Pr (R0 > µ)− Pr (R1 > µ)| ≥ 1− 4(σ2
0 + σ2

1)

(µ0 − µ1)2
.

When Ex (R0) = µ0 and Ex (R1) = µ1, we get back [17, Lemma 6]. A proof of this
proposition can be derived using a similar approach as used in the proof of [17,
Lemma 6]. We provide a short alternate proof in Supplementary Material A by
using the Bienaymé-Chebyshev inequality.

2.1 (Tweakable) Block Ciphers and Random Permutations

A (κ, n)-block cipher with key size κ and block size n is a family of permutations

E ∈ P̃erm(κ, n). For k ∈ {0, 1}κ, we denote Ek(·) := E(k, ·), and E−1
k (·) :=

E−1(k, ·). A (κ, τ, n)tweakable block cipher with key size κ, tweak size τ and

block size n is a family of permutations Ẽ ∈ P̃erm((κ, τ), n). For k ∈ {0, 1}κ
and t ∈ {0, 1}τ , we denote Ẽk(t, ·) := Ẽ(k, t, ·), and Ẽ−1

k (t, ·) := Ẽ−1(k, t, ·).
Throughout this paper, we fix κ, τ, n ∈ N as the key size, tweak size, and block
size, respectively, of the given (tweakable) block cipher.

We say that πππ is an (ideal) random permutation on block space {0, 1}n to
indicate that πππ ←$ Perm(n). Similarly, we say that π̃ππ is an (ideal) tweakable
random permutation on tweak space {0, 1}τ and block space {0, 1}n to indicate

that π̃ππ ←$ P̃erm(τ, n).

2.2 Security Definition

In this paper, we assume that the distinguisher is non-trivial, i.e. it never makes
a duplicate query, and it never makes a query for which the response is already
known due to some previous query. Let A(q, t) be the class of all non-trivial
distinguishers limited to q oracle queries, and t computations.

In our analyses, especially security proofs, it will be convenient to work in the
information-theoretic setting. Accordingly, we always skip the boilerplate hybrid
steps and often assume that the adversary is computationally unbounded, i.e.,
t =∞, and deterministic. A computational equivalent of all our security proofs
can be easily obtained by a simple hybrid argument.

IND-CCA Security: The IND-CCA advantage of distinguisher A against Ẽ
instantiated with a key K←$ {0, 1}κ is defined as

Advind-cca
Ẽ

(A) = AdvẼ±;π̃ππ±(A) :=
∣∣∣Pr (A(Ẽ±

K ) = 1
)
− Pr

(
A(π̃ππ

±
) = 1

)∣∣∣ . (1)

The IND-CCA security of Ẽ is defined as

Advind-cca
Ẽ

(q, t) := max
A∈A(q,t)

Advind-cca
Ẽ

(A).
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2.3 The Expectation Method

LetA be a computationally unbounded and deterministic distinguisher that tries
to distinguish between two oracles O0 and O1 via black box interaction with one
of them. We denote the query-response tuple of A’s interaction with its oracle
by a transcript ω. This may also include any additional information the oracle
chooses to reveal to the distinguisher at the end of the query-response phase
of the game. We denote by Θ1 (res. Θ0) the random transcript variable when
A interacts with O1 (res. O0). The probability of realizing a given transcript ω
in the security game with an oracle O is known as the interpolation probability
of ω with respect to O. Since A is deterministic, this probability depends only
on the oracle O and the transcript ω. A transcript ω is said to be attainable if
Pr (Θ0 = ω) > 0. The expectation method [20] (stated below) is a generaliza-
tion of Patarin’s H-coefficients technique [37], which is quite useful in obtaining
improved bounds in many cases [20,25].

Lemma 2.1 (Expectation Method [20]). Let Ω be the set of all transcripts.
For some ϵbad ≥ 0 and a non-negative function ϵratio : Ω → [0,∞), suppose there
is a set Ωbad ⊆ Ω satisfying the following:
• Pr (Θ0 ∈ Ωbad) ≤ ϵbad;

• For any ω /∈ Ωbad, ω is attainable and
Pr (Θ1 = ω)

Pr (Θ0 = ω)
≥ 1− ϵratio(ω).

Then for any distinguisher A trying to distinguish between O1 and O0, we have
the following bound on its distinguishing advantage:

AdvO1;O0(A) ≤ ϵbad + Ex (ϵratio(Θ0)) .

When ϵratio is a constant function, we get the H-coefficients technique.

3 Birthday-bound Attack on TNT

We consider the TNT construction in an information-theoretic setting. Accord-
ingly, we instantiate TNT based on three independent uniform random permu-
tations πππ1, πππ2, and πππ3 of {0, 1}n. Recall that, the TNT construction is defined
by the mapping

(t,m)
TNT7−−−→ πππ3(t⊕ πππ2(t⊕ πππ1(m))), (2)

For some non-zero δ ∈ {0, 1}n and m ∈ {0, 1}n, consider the function Oδ,m :
{0, 1}n → {0, 1}n, associated to each n-bit tweakable permutation O with n-bit
tweak, defined by the mapping

t
Oδ,m7−−−→ O−1(t⊕ δ, O(t, m)). (3)

We are only interested in π̃ππδ,m and TNTδ,m where π̃ππ is a tweakable uniform
random permutation of {0, 1}n with n-bit tweaks.

Suppose π̃ππδ,m is executed over q distinct inputs (t1, . . . , tq). Observe that,
for any valid choice of (t1, . . . , tq), π̃ππ is executed at most twice for any tweak ti.
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Thus, one can expect π̃ππδ,m(·) to be almost uniform and independent, and thus,
indistinguishable from a uniform random function ρρρ : {0, 1}n → {0, 1}n for a
large range of q. In fact, as long as

π̃ππ(ti,m) ̸= π̃ππ(tj ,m) for all i ̸= j such that tj = ti ⊕ δ,

π̃ππδ,m can be shown to be indistinguishable from ρρρ up to O(2n) queries. More
importantly, as we show in the following discussion, one can easily show that the
π̃ππδ,m is almost identical to ρρρ in terms of the number of output collisions.

TNTδ,m, on the other hand, exhibits a rather peculiar and interesting prop-
erty. Apparently, TNTδ,m is more prone to collisions as compared to π̃ππδ,m, which
results in a direct IND-CCA distinguisher for TNT. A formal distinguisher with
complete advantage calculation appears later in section 3.2. We first demonstrate
the biased behavior by comparing the number of output collisions for TNTδ,m

and π̃ππδ,m.

3.1 Comparing the Number of Collision Pairs in π̃ππδ,m and TNTδ,m

Fix some non-negative integer q ≤ 2n. Fix a set T = {t1, . . . , tq} ⊆ {0, 1}n
of size q, an m ∈ {0, 1}n, and a non-zero δ ∈ {0, 1}n. Let O be a tweakable
permutation (which is either π̃ππ in the ideal world or TNT in the real world).

We compute M′
i = Oδ,m(ti) by making a forward query O(ti,m) := Ĉi, followed

by a backward query M′
i = O−1(ti ⊕ δ, Ĉi). We write COLL(Oδ,m) to denote the

number of pairs (i, j), i < j such that M′
i = M′

j .

Analyzing collid := COLL(π̃ππδ,m): For any i ̸= j ∈ [q], let 1i,j denote the
indicator random variable corresponding to the event: M′

j = M′
i. Then, using

linearity of expectation, we have

Ex (collid) =
∑

i<j∈[q]

Ex (1i,j) =
∑

i<j∈[q]

Pr (1i,j) , (4)

where we abused the notation slightly to use 1i,j to denote the event 1i,j = 1.
Let ∼ be a relation on [q], such that for all i ̸= j ∈ [q], i ∼ j if and only if
ti = tj ⊕ δ. Note that ∼ is symmetric. Suppose there are ν pairs (ti, tj), i < j
such that ti ∼ tj . Clearly, ν ≤ q/2. Now, we can split the right-hand side of (4)
as follows: ∑

i<j∈[q]

Pr (1i,j) =
∑

i<j∈[q]
i∼j

Pr (1i,j) +
∑

i<j∈[q]
i ̸∼j

Pr (1i,j) (5)

Case i ̸∼ j: We must have {ti, tj} ∩ {ti ⊕ δ, tj ⊕ δ} = ∅. Thus, the two calls
to π̃ππδ,m corresponding to the i-th and j-th queries result in exactly 2 calls to π̃ππ

and 2 calls π̃ππ
−1

, each with a distinct tweak than others. Hence, the outputs of
π̃ππδ,m on inputs ti and tj are mutually independent and uniformly distributed in
{0, 1}n. Thus, for any i ̸∼ j, we have

Pr (1i,j) =
1

2n
, (6)

10



which results in ∑
i<j∈[q]
i ̸∼j

Pr (1i,j) =

((
q

2

)
− ν

)
1

2n
, (7)

Case i ∼ j: In this case we have ti = tj ⊕ δ. Let Fi,j be the event that
π̃ππ(ti,m) = π̃ππ(tj ,m). Then, we have M′

i = M′
j = m. Since, ti ̸= tj , Pr (Fi,j) = 2−n.

So, for any i ∼ j, we have

Pr (1i,j) = Pr (1i,j ∧ Fi,j) + Pr (1i,j ∧ ¬Fi,j)
= Pr (Fi,j) + Pr (1i,j ∧ ¬Fi,j)

=
1

2n
+ Pr (1i,j ∧ ¬Fi,j) ,

which immediately gives

1

2n
≤ Pr (1i,j) ≤

1

2n
+ Pr (1i,j | ¬Fi,j) ≤

1

2n
+

1

2n − 1
. (8)

Note that the last inequality follows from the observation that given ¬Fi,j , out-
puts of π̃ππ

−1
(ti⊕ δ) and π̃ππ

−1
(tj ⊕ δ) are sampled independently from a set of size

exactly 2n − 1. This further results in

ν

2n
≤

∑
i<j∈[q]
i∼j

Pr (1i,j) ≤ ν

(
1

2n
+

1

2n − 1

)
. (9)

Using (4), (5), (7), (9), and ν ≤ q/2 we have(
q

2

)
1

2n
≤ Ex (collid) ≤

(
q

2

)
1

2n
+

q

2n
. (10)

Analyzing collre := COLL(TNTδ,m): The analysis of COLL(TNTδ,m) is a bit
more subtle and interesting. Fig. 3.1 gives a pictorial view of the i-th execution
of TNTδ,m. Clearly, the respective calls to πππ3 and its inverse cancel out each

πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ3 πππ−1
3 ⊕⊕⊕ πππ−1

2 ⊕⊕⊕ πππ−1
1

m M′
i

M̂ Ui Ûi Ci Ĉi Ci Û′
i U′

i M̂′
i

ti ti ⊕ δ

Fig. 3.1: The execution trace for TNTδ,m on input ti.

other, resulting in the compressed view illustrated in Fig. 3.2.
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πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ−1
2 ⊕⊕⊕ πππ−1

1
m M′

i

M̂ Ui Ûi Û′
i U′

i M̂′
i

ti δ ti ⊕ δ

Fig. 3.2: The effective execution trace for TNTδ,m on input ti.

Note that for any i, j ∈ [q], Ui⊕Uj = ti⊕ tj . Now, fix a pair of inputs (ti, tj)
such that there is a collision at the output, i.e.,

(M′
i = M′

j) ⇐⇒ (M̂′
i = M̂′

j) ⇐⇒ (U′
i⊕U′

j = ti⊕ tj) ⇐⇒ (U′
i⊕U′

j = Ui⊕Uj),

and let 1i,j denote the corresponding indicator random variable. Observe that
TNTδ,m, has the following interesting property:

(Ûi ⊕ Ûj = δ) =⇒ (U′
i ⊕ U′

j = Ui ⊕ Uj = ti ⊕ tj),

which implies that there are two sources of collisions in TNTδ,m. A collision
happens whenever
1. Ûi ⊕ Ûj = δ, or

2. Ûi ⊕ Ûj ̸= δ and U′
i ⊕ U′

j = ti ⊕ tj .
From this one can easily get a good upper and lower bound on the expected
number of collisions in the real world. Using linearity of expectation, we have

Ex (collre) =
∑

i<j∈[q]

Ex (1i,j) =
∑

i<j∈[q]

Pr (1i,j) (11)

Further, from the above discussion, we have

Pr (1i,j) = Pr
(
1i,j ∧ Ûi ⊕ Ûj = δ

)
+ Pr

(
1i,j ∧ Ûi ⊕ Ûj ̸= δ

)
= Pr

(
Ûi ⊕ Ûj = δ

)
+ Pr

(
Ûi ⊕ Ûj ̸= δ

)
× Pr

(
U′
i ⊕ U′

j = ti ⊕ tj | Ûi ⊕ Ûj ̸= δ
)

=
1

2n − 1
+

(
1− 1

2n − 1

)
× Pr

(
U′
i ⊕ U′

j = ti ⊕ tj | Ûi ⊕ Ûj ̸= δ
)
, (12)

Note that Ûi⊕ Ûj ̸= δ implies that U′
i,U

′
j /∈ {Ui,Uj}. Now, fix a valid choice for

(Ui,Uj , Ûi, Ûj), say (ui, uj , ûi, ûj). Then, the number of valid choices for (U′
i,U

′
j)

that satisfy the equation U′
i⊕U′

j = ti⊕ tj , are all (x, x⊕ ti⊕ tj) pairs such that

x ∈ {0, 1}n \ ({ui, uj} ∪ {ui ⊕ ti ⊕ tj , uj ⊕ ti ⊕ tj})

But, observe that {ui, uj} = {ui⊕ ti⊕ tj , uj⊕ ti⊕ tj} by definition, for any valid
choice of (ui, uj). Therefore, the number of valid (x, x⊕ ti⊕ tj) is exactly 2n−2.
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Furthermore, this counting is independent of the choice of (ui, uj , ûi, ûj), whence
it holds unconditionally. Now, each such choice for (U′

i,U
′
j) occurs with at most

1/(2n − 2)(2n − 3) probability, as they are sampled from {0, 1}n \ {Ui,Uj} in a
WOR (without replacement) manner. Then, using (12), we have

Pr (1i,j) =
1

2n − 1
+

(
1− 1

2n − 1

)
× 1

2n − 3

=
1

2n − 1
+

1

2n − 3
− 1

(2n − 1)(2n − 3)

=
2

2n
+

1

2n(2n − 1)
+

3

2n(2n − 3)
− 1

(2n − 1)(2n − 3)

Using (11), we immediately have

Ex (collre) =

(
q

2

)(
1

2n − 1
+

1

2n − 3
− 1

(2n − 1)(2n − 3)

)
≥
(
q

2

)
2

2n
, (13)

and on comparing this with (10), we can conclude that

Ex (collre) ≈ 2Ex (collid) .

This clearly indicates that the occurrence of collisions in TNTδ,m is approxi-
mately twice that of π̃ππδ,m.

3.2 The Collision Counting Distinguisher

Based on the observations from the preceding section, we now present a formal
distinguisher, called A∗, in Algorithm 1.

Fix a message m ∈ {0, 1}n, a set T = {t1, . . . , tq} ⊆ {0, 1}n of size q, and
a δ ̸= 0n. Let θ(q, n) be some non-negative function of q and n, which will be
defined later in the course of analysis.

Let O± be the oracle A∗ is interacting with. Then, A∗ works by collecting
M′

i = Oδ,m(ti) for all ti ∈ T in a multisetM. As shown in the preceding section
and Algorithm 1, this can be easily done by a pair of encryption-decryption
queries for each i ∈ [q]. After this, A∗ counts the number of collisions in M
using the function collCount. If the number of collisions is greater than θ(q, n),
the distinguisher returns 1, otherwise, it returns 0.

Note that the exact implementation of collCount is not relevant for the
forthcoming advantage calculation. So, we postpone a discussion on its imple-
mentation and resulting time and space complexity analysis to section 3.3, where
we also provide experimental verification for A∗.

However, it is amply evident that the space complexity of the attack is O(q),
i.e., dominated by the query complexity. Further, looking ahead momentarily,
one can implement collCount in such a way that it runs in time O(q log2 q).
Other than this, A∗ only makes 2q calls to O, thus the overall time complexity
is also in O(q log2 q).
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Algorithm 1 Algorithmic description of A∗(O±). Note that collCount is an
abstract function that counts the number of collisions in a multiset.
1: m← 0n ▷ m can be initialized to any constant
2: δ ← 1n ▷ δ can be initialized to any non-zero constant
3: T ← {t1, . . . , tq} ▷ a set of q fixed but distinct tweaks
4: M← ∅ ▷ an empty multiset
5: for i = 1 . . . q do
6: Ĉi ← O(ti,m)

7: M′
i ← O−1(ti ⊕ δ, Ĉi) ▷ ln. 6 and 7 together give Oδ,m(ti)

8: M←M∪ {M′
i}

9: COLL(Oδ,m)← collCount(M)
10: if COLL(Oδ,m) > θ(q, n) then
11: return 1
12: else
13: return 0

Define

µre :=

(
q

2

)
2

2n
µid :=

(
q

2

)
1

2n
+

q

2n
.

Then, from (10) and (13), we have that Ex (COLL(TNTδ,m)) ≥ µre ≥ µid ≥
Ex (COLL(π̃ππδ,m)), whenever q ≥ 3.

Theorem 3.1. For n ≥ 4, 10 ≤ q ≤ 2n, and θ(q, n) = (µre + µid)/2, we have

Advind-cca
TNT (A∗) ≥ 1− 371

2n

q2
.

Specifically, for q ≥ 28× 2
n
2 , Advind-cca

TNT (A∗) ≥ 0.5.

Proof. Recall that collid = COLL(π̃ππδ,m) and collre = COLL(π̃ππδ,m). Let σ2
s :=

Var (colls), for all s ∈ {id, re}. In addition, whenever necessary, we also reuse the
notations and definitions from the expectation calculation given in section 3.1.
Now, we have

Advind-cca
TNT (A∗) = |Pr (A∗(TNTδ,m) = 1)− Pr (A∗(π̃ππδ,m) = 1)|

= |Pr (collre > θ(q, n))− Pr (collid > θ(q, n))|

≥ 1− 4(σ2
re + σ2

id)

(µre − µid)2
. (14)

where the last inequality follows from Proposition 2.1. We make the following
claim on σ2

re and σ2
id.

Claim 3.1. For n ≥ 4, 10 ≤ q ≤ 2n, we have

σ2
id ≤

4q2

2n
σ2
re ≤

11q2

2n

14



A proof of this claim is available in Supplementary Material C. Next, from (10)
and (13), we have

(µre − µid)
2 ≥

((
q

2

)
2

2n
−
(
q

2

)
1

2n
− q

2n

)2

≥
(
q

2

)2
1

22n

(
1− 1

q

)2

≥ 0.162
q4

22n
(15)

where the last inequality follows from q ≥ 10. The result then follows from (14),
Claim 3.1, and (15). ⊓⊔

Remark 3.1. Note that the constant in Theorem 3.1 is a bit loose for the sake
of simplicity. It is likely that this constant can be improved by a more tighter
estimation or a more sophisticated concentration inequality. Indeed, in the next
section, we show that in practical applications the advantage might already be
close to 0.8 when the number of queries is close to 4× 2

n
2 .

With that being said, it’s important to highlight that our attack demonstrates
full scalability. In other words, as the value of q approaches 2n, the advantage
becomes close to 1.

3.3 Experimental Verification

We have implemented the collision counting Algorithm 1 for different values for
n. We have implemented two variants of the collCount function of the algo-
rithm, which include various optimizations to make the attack practical. The
first variant is an adversary without space complexity and with time complexity
O(q), and is given in Algorithm 2. The second is for a space-optimized adver-
sary, with space complexity O(q) and time complexity O(q log2(q)), described
in Algorithm 3. For the underlying random permutations, we used generated
using Python NumPy’s shuffle and argsort functions, to generate and invert
a permutation, respectively. We generated permutations of sizes 16, 20, 24, 28
and 32 bits and performed the distinguishing attack on each generated permuta-
tion. Results where taken over an average of 1, 000 ∼ 10, 000 random generations
(each consisting of 3 independent permutations). In the ideal world, random val-
ues are sampled, since the tweaks are never repeated and lazy sampling can be
used. Table 3.1 includes the average number of collisions for n = 16 and n = 20.
The distinguisher reaches 16 expected collisions in the real world 4× faster than
the distinguisher in [18] for n = 16 and 16× faster for n = 20.

Algorithm 1 is expected to have twice as many collisions in the real world as
in the ideal world. θ(q, n) is set to:

θ(q, n) = 22d−1 + 22d−2

when q = 2n/2+d, which is roughly 1.5 times the expected number of collisions
in the ideal case.
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Algorithm 2 An implementation
of collCount(M) from Algorithm 1
with no memory limitations. Here,
M (the multiset of outputs) is as-
sumed to be an array of size q.

1: for x ∈ {0, 1}n do
2: L[x]← 0

3: coll← 0
4: for i ∈ {1, . . . , q − 1} do
5: x←M[i]
6: coll← coll+ L[x]
7: L[x]← L[x] + 1

Algorithm 3 An implementation
of collCount(M) from Algorithm 1
with memory limited to O(q). Here,
M (the multiset of outputs) is as-
sumed to be an array of size q.

1: M← sort(M)
2: rep← 1
3: coll← 0
4: x←M[1]
5: for i ∈ {2, . . . , q} do
6: if x =M[i] then
7: coll← coll+ rep
8: rep← rep+ 1
9: else

10: rep← 1
11: x←M[i]

Table 3.1: Average number of collisions using random permutations.

n 16

log2(q) 6 7 8 9 10 11

real 0.06 0.27 0.96 3.72 15.62 63.59
ideal 0.023 0.12 0.48 1.98 7.91 31.17

n 20

log2(q) 8 9 10 11 12 13

real 0.073 0.203 1.02 4.01 15.69 63.63
ideal 0.023 0.11 0.47 1.94 7.92 32.57

We also calculated the success rate, which is the number of successful dis-
tinguishing attempts over the total number of attempts, for different values of q
and θ(q, n). This is equivalent to the advantage in Theorem 3.1. Table 3.2 shows
the success rate for the different parameters. The distinguisher reaches ≥ 85%
with q = 2n/2+2 and 99% success rate with q = 2n/2+3. The attack complexities
are 2n/2+3 and 2n/2+4, respectively, since each iteration includes two queries to
the construction. For large n, the factors 23 and 24 are small. With complexity
2n/2+5, we get a success rate of almost 100%, and an attack that breaks the
security claim for In practice, n ≥ 64. The complexity of the distinguisher is
compared to known TNT distinguishers with n = 128 in Table 1.2.

Note that our experimental estimations closely match the advantage curve
obtained through theoretical analysis, up to a change in constant. In fact, we get
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a more optimistic constant in experimental results. In particular, we estimate
that the advantage is around

1− 2
2n

q2
,

but the discrepancy is expected since the theoretical advantage is more conser-
vative and bound to be a bit loose for the sake of simplicity.

We also calculated the success rate, which is the number of successful distin-
guishing attempts over the total number of attempts, for different values of q and
θ(q, n). Table 3.2 shows the success rate for the different parameters. The distin-
guisher reaches ≥ 85% with q = 2n/2+2 and 99% success rate with q = 2n/2+3.
The attack complexities are 2n/2+3 and 2n/2+4, respectively, since each iteration
includes two queries to the construction. For large n, the factors 23 and 24 are
small. With complexity 2n/2+5, we get a success rate of almost 100%, and an
attack that breaks the security claim for In practice, n ≥ 64. The complexity
of the distinguisher is compared to known TNT distinguishers with n = 128 in
Table 1.2.

Table 3.2: The success rate achieved for different values of n and q.

n q θ(q, n) Success Rate q θ(q, n) Success Rate

16 10 12 87.2% 11 48 99%
20 12 12 86.6% 13 48 99%
24 14 12 90% 15 48 99%
28 16 12 85% 17 48 99%
32 18 12 87.5% 19 48 99%

On the Time-Memory Trade-off. Algorithm 2 runs in time O(q), with space
complexity O(2n). This is sufficient and provides optimal time complexity for
information-theoretic (unbounded) adversaries. On the other hand, Algorithm 3
is more geared towards linear space complexity. Its time complexity is dominated
by the sort function, which can be executed with time complexity O(q log2(q))
using merge-sort. The space complexity is dominated by the size of the list L
which is O(q).

In practice, while we assume that the cost of applying encryption is constant,
executing q encryptions are decryptions is more costly than sort a list with q
entries. However, the adversary will not actually execute the encryptions and
decryptions themselves, but will request them from the challenger, and in that
case, the time complexity of Algorithm 2 is indeed superior to that of Algo-
rithm 3, since the former will be able to terminate shortly after all the queries
are executed, while the later needs to execute the costly sorting operation. How-
ever, the exponential space complexity of Algorithm 2 makes it unsuitable for
attacking practical instances of TNT. In Table 1.2, we provide the parameters
for attacking TNT-AES using Algorithm 3, bounding both time and memory
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Table 3.3: Results for an attack on TNT-GIFT-64.

n 64
log2(q) 32 33 34 35

Average Number of Collisions 1 4 16 61
Time 3 hrs 3 hrs 40 mins 12 hrs 15 mins 20 hrs

CPU Time 5 hrs 10 hrs 28 hr 15 mins 72 hrs
Number of Cores 2 4 8 16

RAM 96 GB 192 GB 128 GB 192 GB
Disk Space 73 GB 146 GB 292 GB 583 GB

by 2n/2+5 = 269. We ignore the log2 term in the time complexity since this is
concerning the practical and not asymptotic performance, which is dominated
by the encryptions and decryptions.

Attacking TNT-GIFT-64. We have implemented this variant to attack TNT
instantiated with GIFT-64 [3]. We used the implementation of GIFT-64 described
in [1] which can encrypt 2 blocks at the same time. We implemented the attack
over 16 cores on an Intel Xeon E5-2630 CPU, each doing 231 encryption calls and
231 decryption calls (230 calls × 2 blocks), generating 235 blocks in total. This
process took two hours (32 core-hours). In practice, the adversary is unlikely to
be able to parallelize the queries, since that depends on the challenger.

Counting the collisions cannot be parallelized. It requires 40 minutes to count
collisions in a set of 232 blocks and 1 hour, 20 minutes in a set of 233 blocks,
generating on average 1 collision and 4 collisions, respectively. These results are
reported in details in Table 3.3. We note that for q ≥ 234, the attack uses less
memory and significantly more time than the other cases. This is due to memory
limitations, since the platform is limited by 256 GB, so the collision counting
phase had to be optimized towards memory consumption, leading to a significant
slow down. The time in Table 3.3 seems (at first glance) dominated by collision
counting, which is contradictory to the statement we made earlier. However,
it is to be noted that the collision counting part is serial in nature, while the
TNT queries have been parallelized. For instance, performing the attack with
235 complexity needs 68 core-hour, while counting needs 36 core-hour on a
limited memory machine, but can be faster on a machine with more memory. In
particular, we estimate that with memory of about 384 GB and 768 GB, we can
run the attacks with 234 and 235 complexities in slightly more than 20 and 40
core-hours, respectively.

4 Spotting the Flaw in the BBB Security Proof of TNT

In [4], Bao et al. presented an IND-CCA security proof for TNT that contradicts
our attack. This proof employs the χ2 technique [14] — a relatively new proof
technique — due to Dai et al.
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In this section, we carefully revisit the security proof with the distinguisher
A∗, and identify an issue that involves a subtle, yet fundamental, case analysis.
We temporarily switch to the notation of [4] to follow their proof approach.
Namely, the random variable corresponding to plaintext is referred to as X. the
random variable corresponding to ciphertext is referred to as Y and the random
variable corresponding to the tweak is referred to as T. The rest of the random
variables are related to the internal values of TNT and relate to the first three
variables as: S = πππ1(M), U = T⊕ S, V = πππ2(U), W = T⊕V and Y = πππ3(W). For
the lth query to the construction, we define a set Ql as the set of the first l queries
{(T1,X1,Y1), . . . , (Tl,Xl,Yl)}. We follow a slight abuse of notation utilized in [4]:
we say X ∈ Ql to mean ∃(T,X,Y) ∈ Ql, and similarly for Y. We define a random
variable Inter as the vector of internal values in the first l − 1 queries:

((S1, . . . ,Sl−1), (U1, . . . ,Ul−1), (V1, . . . ,Vl−1), (W1, . . . ,Wl−1)) .

The main technique of the proof, from a high level point of view, works as
follows:

• A deterministic distinguisher observes the first l − 1 queries and selects
whether the next query is a forward or inverse query as well as the tweak
Tl and the plaintext Xl or ciphertext Yl (Ml and Cl using our notations,
respectively).

• Find the probability distribution of all the internal values of the construction
given the first l− 1 query. We call a set of possible vectors of internal values
Inter.
• For each possible Inter, estimate the probability distribution of each possible
response to query l.

The authors then analyze different possible cases and apply the χ2 method on
the resulting distribution.

In order to better understand the issue, we analyze our distinguisher in the
flow of the security proof. Our distinguisher works as follows:

• If l is odd, it makes a forward query (X0,Tl−2 + 1).

• If l is even, it makes a backward query (Yl−1,Tl−1 ⊕ δ).

Let (So,Uo,Vo) are the output of πππ1, input of πππ2 and output of πππ2 in the last
(odd) query l − 1, and we estimate the probability, for a given Xi ∈ Ql where i
is even, Pr[Xl = Xi].

Let (Si,Ui,Vi) and (Se,Ue,Ve) are the corresponding internal values of Xi

and Xl, respectively. Then, we know that Vo ⊕ Ve = δ and

Pr[Xl = Xi] = Pr[Se = Si] = Pr[Ue ⊕ Tl−1 ⊕ δ = Ui ⊕ Ti−1 ⊕ δ]

= Pr[Ue ⊕ Ui = Tl−1 ⊕ Ti−1]

Since X0 is fixed for all odd queries, so is So. Thus, Uo ⊕ Tl−1 = Ui−1 ⊕ Ti−1.
Therefore,

Pr[Ue ⊕ Ui = Tl−1 ⊕ Ti−1] = Pr[Ue ⊕ Uo = Ui ⊕ Ui−1] ≈
c

2n
,
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where c is a small positive integer constant. The security proof considers two pos-
sible cases such collisions may occur. The first is when Ue has appeared before in
one of the previous queries, and the second is when it has never appeared before.
They dubbed these two cases as class A and class B respectively. The collision
can occur in either class A or class B, which the proof bounds the probability of
their probability for the lth query by 4l/22n and 1/(2n − l), respectively. Thus,
our analysis deviates from the distribution assumed in [4]. In terms of the proof
presented in [4], the event we are discussing belongs to case 5 (case 1 if we swap
all the forward and backward queries). In this case, the authors claim [4, (9)]).

Pr[Xl = Xi] ≤
4l

22n
+

1

2n − l

We argue that the distribution assumed for case 5/case 1 - class A erroneously
underestimates the probability of certain bad events, and by changing the dis-
tribution to account for these bad events, the proof argumentation falls apart.
Besides, it is not clear how to do so in the existing proof framework using the
χ2 method.

In particular, we look at the term 4l/22n. The term stems from the following
argument in [4]:

It remains to bound Pr[Inter ∈ A|Ql−1]. For this, note that once the
values in Inter except for (Sl,Wl) have been fixed, the number of choices
for (Sl,Wl) is at least (2n − α(Ql−1))(2

n − γ(Ql−1)) ≥ 22n/4, where
α(Ql−1) ≥ q ≥ 2n/2 and γ(Ql−1) ≥ q ≥ 2n/2 are the number of distinct
values in (S1, . . .Sl−1) and (W1, . . .Wl−1). Out of these ≥ 22n/4 choices,
the number of choices that ensure the desired property TNT (Tl,Xl) = Yl

is at most l − 1, which results from the following selection process: we
first pick a pair of input-output (Ui,Vi) with i ≤ l − 1, and then set
Sl = Tl ⊕ Ui and Wl = Tl ⊕ Vi. Therefore, Pr[Inter ∈ A|Ql−1] ≤ 4l/22n,
and thus the upper bound in this case is

4l

22n
+

1

2n − l
.

Consider the first case of the collision in Figure 4.1. We note that if the triplet
(α,So,Uo) is known, then the collision happens with probability 1, which puts it
in class A. Then, what remains is to calculate what is the probability that the
adversary can force this collision, i.e.,

Pr[Inter ∈ A|Ql−1] = Pr[Ue ⊕ Uo = Tl−1 ⊕ Ti−1|Ql−1],

where Tl−1 = tl/2 and Ti−1 = ti/2 are determined by the adversary during
previous queries. This means than once Uo and all other values of U except Ue

in Inter are fixed (both Uo and Ue belong to queries i, j < l), Ue has at most
2n−α(Ql−1) choices where α(Ql−1) ≤ q ≤ 2n−1 is the number of distinct values
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in {U1, . . .Ul}\{Ue}, and at most 1 of them (Ue = Uo⊕α) enforces the collision.
In other words,

Pr[Inter ∈ A|Ql−1] = Pr[Ue ⊕ Uo = Tl−1 ⊕ Ti−1|Ql−1] ≥
1

2n − α(Ql−1)

≥ 1

2n
≫ 4l

22n
,

when l≪ q, contradicting [4, (9)]. This reflects in the final analysis of case 1 as
follows: In [4, (11)], we take the maximum of two expressions. One is on the form
al/22n for a small constant a, and one is on the form 4l/22n + O(l/22n). The
term 4l/22n comes from [4, (9)]. However, if the term is on the form O(1/2n)
instead of 4l/22n, as suggested by our attack, then the maximum function in [4,
(11)] would return O(1/2n)+O(l/22n). Thus, the squared difference used in the
χ2 statistic becomes one the form(

1

2n − α(Ql−1)
− 1

2n − µl
+

1

2n − l

)2

or (
A2n +B22n

23n

)2

for some constants A and B. Note that α(Ql−1) is based on the probabilistic
behaviour of the transcript, while µl is fully controlled by the adversary, and
we cannot ensure that µl = α(Ql−1). Thus, the squared difference cannot be
bounded tighter than O(1/22n). Besides,

1

2n − α(Ql−1)

is a lower bound. The χ2 statistic then becomes on the form∑ O(1/22n)

O(1/2n)
≈
∑

O(1/2n) ≈ 2nȮ(1/2n) ≈ O(1)

not leading to any meaningful security.
Note that the values of Vi and Wi for i < l did not affect the behaviour of the

collision or the probability that Inter is in class A. It seems the ambiguity may
stem from applying the χ2 method to a primitive with two dependent functions
(π̃ and its inverse). By cascading forward and backward queries, we managed
to eliminate Wi for all 1 ≤ i ≤ q and the values of Wl do not matter for the
attack. Similarly, by fixing the difference between Vo and Ve to a constant δ, we
minimize the effect of their exact values on the attack.

5 Birthday-bound Security of TNT and Its Variant

In light of the above discussion, it is clear that the security of TNT is in limbo.
One can rely on the IND-CCA bound by Zhang et al. to demonstrate the tight-
ness of the proposed attacks. However, we observe that the generic bound in [44]
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πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ−1
2 ⊕⊕⊕ πππ−1

1X0 Xi

So Uo Vo Ve Ue Se

Uo ⊕ Ue = α

Ti−1 δ Ti−1 ⊕ δ

Ti−1 ⊕ Tl−1 = α

πππ1 ⊕⊕⊕ πππ2 ⊕⊕⊕ πππ−1
2 ⊕⊕⊕ πππ−1

1X0 Xl

So Ue Ve Vo Uo Se

Tl−1 δ Tl−1 ⊕ δ

Fig. 4.1: A class A collision occurring in Algorithm 1. If the collision occurs, then
permutation calls with the same color compute the same permutation point. Curved
arrows represent difference relations (if the collision occurs with these internal values,
each two connected nodes differ by α).

introduces some constant factors, and in general, an independent security proof,
using a different proof technique, will instill greater confidence in the revised
security claims of TNT.

Theorem 5.1. Let πππ1, πππ2, and πππ3 be three independent random permutations
of {0, 1}n. Then, for all q ≥ 1, we have

Advind-cca
TNT (q) ≤ q2

2n
.

In fact, we intend to prove a stronger version of Theorem 5.1, as stated in Theo-
rem 5.2 below. Particularly, we show that even the single-keyed TNT, which we
denote as 1k-TNT, is sufficient to achieve birthday-bound security. A proof of
Theorem 5.1 is available in Supplementary Material F, for the sake of complete-
ness.

Theorem 5.2. Let πππ1 = πππ2 = πππ3 = πππ, where πππ is a uniform random permuta-
tion of {0, 1}n. Then, for all q ≥ 1, we have

Advind-cca
1k-TNT(q) ≤

8q2

2n
.

Proof. The statement is vacuously true for q ≥ 2n/2. We will use the Expectation
method (see Lemma 2.1) to prove the statement for 1 ≤ q < 2n/2.

Let O1 and O0 be the oracles corresponding to 1k-TNT and a tweakable
random permutation π̃ππ, respectively. If (Ti,Mi) is the encryption query with a
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tweak Ti we write the response as Ĉi. Similarly, if (Ti, Ĉi) is the decryption query
with a tweak Ti we write the response as Mi. After all queries have been made,
the two oracles release some additional data to the adversary, who is obviously
free to ignore this additional information, M̂q and Cq.

In the real world, M̂q and Cq correspond to the output of the first permutation
and input of the third permutation, respectively, and thus they are well defined
from the definition of 1k-TNT. The real-world transcript is thus defined as the
tuple

Θ1 := (Tq,Mq, Ĉq, M̂q,Cq).

In the ideal system π̃ππ, we sample M̂q,Cq as follows: For every i ∈ [q],

1. M̂i = M̂j whenever Mi = Mj for j < i. Otherwise (for all j < i, Mj ̸= Mi),
we sample

M̂i ←$ {0, 1}n \ S(M̂[i−1]).

2. Ci = Cj whenever Ĉj = Ĉi for j < i. Otherwise (for all j < i, Ĉj ̸= Ĉi), we
sample

Ci ←$ {0, 1}n \ S(C[i−1]).

The ideal world transcript is defined as

Θ0 := (Tq,Mq, Ĉq, M̂q,Cq).

Note that we use the same notation to denote the random variables in both
worlds. However, their probability distributions will be unambiguously deter-
mined at the time of probability computations.

Bad Transcript and Its Analysis: Let uq := m̂q ⊕ tq, and ûq := cq ⊕ tq. A
transcript (tq,mq, ĉq, m̂q, cq) is called bad if and only if any of the following bad
events occur:
bad1a: ∃i ̸= j ∈ [q] such that m̂i = ĉj .
bad1b: ∃i ̸= j ∈ [q] such that ci = mj .
bad2a: ∃i < j ∈ [q] such that ui = uj .
bad2b: ∃i < j ∈ [q] such that ûi = ûj .
bad3a: ∃i ̸= j ∈ [q] such that ui = mj .
bad3b: ∃i ̸= j ∈ [q] such that ûi = ĉj .
bad4a: ∃i ̸= j ∈ [q] such that ui = cj .
bad4b: ∃i ̸= j ∈ [q] such that ûi = m̂j .
Let Ωbad denote the set of all bad transcripts. Then, using union bound, we have

Pr (Θ0 ∈ Ωbad) ≤
∑
i∈[4]

s∈{a,b}

Pr (badis) (16)

On the right-hand side, we bound the probability for badia for all i ∈ [4]. The
s = b cases can be bounded analogously.

• Pr (bad1a) ≤ q2

2n . This follows from union bound: For a fixed choice of i and
j, bad1a happens with 2−n probability, and there are q2 such (i, j) pairs.
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• Pr (bad2a) ≤
∑

i<j Pr
(
M̂i + Ti = M̂j + Tj

)
≤ q2/2n. This can be argued as

follows: For fixed i and j, Pr
(
M̂i + Ti = M̂j + Tj

)
≤ 1/2n−1 ≤ 21−n, and

there are
(
q
2

)
such (i, j) pairs.

• Pr (bad3a) ≤ q2

2n . The argumentation is similar to the one for bad1a.

• Pr (bad4a) ≤ q2

2n . This can be argued as follows: For any fixed i and j, bad4a
happens with at most 2−n probability, and there are at most q2 such (i, j)
pairs.

Thus, on combining everything in (16), we have

Pr (Θ0 ∈ Ωbad) ≤
8q2

2n
.

Analysis of Good Transcripts: For a good transcript τ =
(tq,mq, ĉq, m̂q, cq), we know that (mq, m̂q), (cq, ĉq), and (uq, ûq) are permuta-
tion consistent non-overlapping input-output pairs and hence for the real world
we have

Pr (Θ1 = ω) = Pr (πππ(mq) = m̂q)× Pr (πππ(uq) = ûq)× Pr (πππ(cq) = ĉq)

=
1

(2n)r+q+s

where r and s denote the size of S(mq) and S(ĉq) respectively. In the ideal world,
we have,

Pr (Θ0 = ω) = Pr (π̃ππ(tq,mq) = ĉq)× 1

(2n)r
× 1

(2n)s
≤ 1

(2n)q
× 1

(2n)r
× 1

(2n)s
,

where the final inequality follows from the fact that Pr (π̃ππ(tq,mq) = ĉq) maxi-
mizes when ti = tj for all 1 ≤ i < j ≤ q. Thus

Pr (Θ1 = ω)

Pr (Θ0 = ω)
≥ (2n)q × (2n)r × (2n)s

(2n)q+r+s
≥ 1

Now the result follows from the Expectation method by setting ϵratio to be a zero
function.

6 The Generalized LRW Paradigm

In this section, we propose a generalized view of the cascaded LRW design that
encompasses both cascaded LRW1 and cascaded LRW2 constructions. In addi-
tion, we identify some necessary properties to guarantee IND-CCA security up
to 23n/4 queries.

Almost XOR Universal Hash Function: A (τ, n)-hash function family H,
is a family of functions {h : {0, 1}τ → {0, 1}n}, keyed implicitly by the choice
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of h. A (τ, n)-hash function family H is called an ϵ-almost XOR universal hash
family (AXUHF) if for all t ̸= t′ ∈ {0, 1}τ , and δ ∈ {0, 1}n, we have

Pr (H←$H : H(t)⊕ H(t′) = δ) ≤ ϵ. (17)

For the special case of δ = 0n, H is referred as an ϵ-AUHF.

The LRW+ Construction: Let H̃ be a family of (τ, n)-tweakable permuta-

tions, and H be a (τ, n)-hash function family. Let Ĥ = (H̃2 ×H), (H̃HH1, H̃HH2,HHH)←
KG
(
Ĥ
)
, and (πππ1,πππ2) ←$ Perm(n), where KG

(
Ĥ
)

is an efficient probabilistic

algorithm that returns a random triple from Ĥ.
The LRW+ construction is a (τ, n)- tweakable permutation family, defined

by the following mapping (see Figure 6.1 for an illustration):

(t,m) 7→ H̃HH
−1

2

(
t,πππ2

(
HHH(t)⊕ πππ1

(
H̃HH1 (t,m)

)))
. (18)

H̃HH1
πππ1 ⊕⊕⊕ πππ2 H̃HH

−1

2
M C

X Y V U

HHH

T

∆

Fig. 6.1: The LRW+ construction.

6.1 Security of LRW+

We say that KG
(
Ĥ
)
is a pairwise independent sampling mechanism or PISM,

if (H̃HH1, H̃HH2,HHH)← KG
(
Ĥ
)
is a pairwise independent tuple.

We say that H̃ is an ϵ-almost universal tweakable permutation family
(AUTPF) if and only if for all distinct (t,m), (t′,m′) ∈ {0, 1}τ × {0, 1}n,

Pr
(
H̃HH←$ H̃ : H̃HH(t,m) = H̃HH(t′,m′)

)
≤ ϵ.

Theorem 6.1. Let τ, n ∈ N, and ϵ1, ϵ2 ∈ [0, 1]. If H̃ and H are respectively

ϵ1-AUTPF and ϵ2-AUHF, and KG
(
Ĥ
)
is a PISM, then, for q ≤ 2n−2, we have

Advind-cca
LRW+ (q) ≤ ϵ(q, n),

where

ϵ(q, n) = 2q2ϵ1.51 +
4q4ϵ21
2n

+
32q4ϵ1
22n

+
13q4

23n
+ q2ϵ21 + q2ϵ1ϵ2 +

2q2

22n
. (19)
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A proof of this theorem follows from a simple generalization of Jha and Nandi’s
(JN) proof [25] for 2-LRW2. In particular, the exact same strategy of using
the expectation method with the JN adaptation of mirror theory [38,10] in the
tweakable permutation settings works here as well. For the sake of completeness,
we give the complete proof in Supplementary Material G.

Remark 6.1. The proof presented in [25] appears to have overlooked the analysis
of a specific subset of transcripts, which in hindsight of our generalized analysis
seems to be a minor issue. Indeed, our proof demonstrates that this omission
does not impact the overall bound significantly, with any potential effects being
limited to a small constant factor.

6.2 Instantiating LRW+

We show that any cascaded LRW construction with r ≥ 2 rounds can be viewed
as an instance of LRW+. Thus, they can be proven secure up to 23n/4 queries
provided the derived hash functions are close to 2−n-universal. Note that it would

be sufficient to define H̃HH1, H̃HH2,HHH, πππ1 and πππ2 for each construction. In the following
discussion, let πππ′r ←$ Perm(n) and HHH′r ←$Hr, where H is an ϵ-AXUHF.

Cascaded LRW1. For r ≥ 2, the r-LRW1[πππr] construction takes as input
(t,m) ∈ {0, 1}n × {0, 1}n and returns c ∈ {0, 1}n, which is defined as follows:
Let y0 = t⊕m and for all i ∈ [r]:

xi := t⊕ yi−1 and yi := πππ′
i(xi),

and finally c := yr. The inverse of r-LRW1 is analogously defined.

Cascaded LRW1 as an Instance of LRW+: For some r ≥ 2, r′ := ⌊r/2⌋,
and any (t,m) such that r-LRW1(t,m) = c, define H̃HH1(t,m) := xr′ , HHH(t) := t,

H̃HH2(t, c) := yr′+1, πππ1 := πππ′
r′ , and πππ2 := πππ′−1

r′+1.
Clearly, the LRW+ instance so defined is same as r-LRW1. We have the

following corollary on the security of cascaded LRW1.

Corollary 6.1. For r ≥ 4, we have

Advind-cca
r-LRW1(q) ≤

2q2

(2n − 1)1.5n
+

49q4

(2n − 1)3
+

3q2

(2n − 1)2
.

In particular, for r = 4, we have proved CCA security for 4-LRW1 up to 23n/4

queries. A proof of this corollary is available in Supplementary Material H.1.

Cascaded LRW2. For r ≥ 1, the r-LRW2[πππr,HHH′r] construction takes as input
(t,m) ∈ {0, 1}τ × {0, 1}n and returns c ∈ {0, 1}n, which is defined as follows:
Let y0 = m, HHH′

0 be a constant function that returns 0n, and for all i ∈ [r]:

xi := HHH′
i−1(t)⊕HHH′

i(t)⊕ yi−1 and yi := πππ′
i(xi),
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and finally c := HHH′
r(t)⊕ yr. The inverse of r-LRW2 is analogously defined.

Cascaded LRW2 as an Instance of LRW+: For some r ≥ 2, r′ = ⌊r/2⌋,
and any (t, k,m) such that r-LRW2(t,m) = c, define H̃HH1(t,m) := xr′ , HHH(t) :=

HHH′
r′(t)⊕HHH′

r′+1(t), H̃HH2(t, c) := yr′+1, πππ1 := πππ′
r′ , πππ2 := πππ′−1

r′+1.
Clearly, the LRW+ instance so defined is same as r-LRW2. We have the

following corollary on the security of cascaded LRW2.

Corollary 6.2. For r ≥ 2, we have

Advind-cca
r-LRW2(q) ≤ 2q2ϵ1.5 +

4q4ϵ2

2n
+

32q4ϵ

22n
+

13q4

23n
+ 2q2ϵ2 +

2q2

22n
.

In particular, for r = 2, assuming ϵ = O (2−n), we have reproved4 the CCA
security for 2-LRW2 up to 23n/4 queries. A proof of this corollary is available in
Supplementary Material H.2.

7 Conclusion and Future Directions

In this paper, we gave a birthday-bound CCA distinguisher on TNT, thereby
completely invalidating its beyond-the-birthday bound security claims. Further,
we showed that our attack is tight by reestablishing a birthday bound security
for TNT and its single-keyed variant.

In addition, we showed that by adding just one more block cipher call, the
security can be amplified to 3n/4-bit even in the CCA setting. We note that
our generalization of the cascaded LRW constructions could be of independent
interest.

Open Problems: This work opens several new research avenues in (block
cipher-based) TBC constructions. Some prominent problems that are worth ex-
ploring include:

1. Optimal LRW Construction for BBB Security: 4-LRW1 employs 4
calls of block cipher. Similarly, 2-LRW2 with block cipher based hash func-
tions also requires 4 calls. This raises a natural question regarding their
optimality. In other words, are 4 block cipher calls necessary for BBB secu-
rity?

2. Reduced-key Version of 4-LRW1: 4-LRW1 needs 4 independent keys. Is
it possible to reduce the number of keys from 4 to 3, or 2?

3. Exact Security of 4-LRW1: We do not have an attack against
4-LRW1. Neither Mennink’s O(

√
n23n/4)-distinguisher, nor any variant of

our O(2n/2)-distinguisher seem to work. The additional permutation calls
seem to help in avoiding these attack strategies. It would be interesting to
see if there exists an attack that matches our bound, or if the construction
is beyond 3n/4-bit secure?

4 The proof in [25] also has a minor issue, that leads to a slightly worse constant.
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4. Security of short-tweak TNT: Our attack requires a tweak space of
size roughly 2n/2. So it is natural to ask if TNT is still BBB secure when the
tweak space size is much less than 2n/2?

5. Security of Longer Cascades of LRW: This is a long standing problem
even for the more analyzed case of r-LRW2, for r ≥ 3. The best bounds [11,44]
that we have in this case are coupling-based. It is clear from our bound for
LRW+ that these bounds are rather loose. It would be interesting to explore
the possibility of better security bounds for the general case with a dedicated
and more tighter analysis.

Acknowledgments: The authors would like to thank Chun Guo for his com-
ments on the attacks presented on TNT. Ashwin Jha carried out this work under
the framework of the French-German-Center for Cybersecurity, a collaboration
of CISPA and LORIA. Mustafa Khairallah performed this work as part of the
Seagate Research Group.
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Supplementary Materials

A Proof of Proposition 2.1

Let µ := (µ0 − µ1)/2. Then, we have

µ = µ0 − µ = µ+ µ1.
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Using Bienaymé-Chebyshev inequality, we have

Pr (R0 > µ) = 1− Pr (R0 ≤ µ)

≥ 1− Pr (R0 − µ0 ≤ −µ)
≥ 1− Pr (R0 − Ex (R0) ≤ −µ)

≥ 1− Pr (|R0 − Ex (R0)| ≥ µ) ≥ 1− σ2
0

µ2 (20)

and

Pr (R1 > µ) ≤ Pr (R1 ≥ µ)

≤ Pr (R1 − µ1 ≥ µ)

≤ Pr (R1 − Ex (R1) ≥ µ)

≤ Pr (|R1 − Ex (R1)| ≥ µ) ≤ σ2
1

µ2 (21)

The result then follows by subtracting (21) from (20). ⊓⊔

B Two Useful Inequalities From JN20

Definition B.1 ([25]). For r ≥ s, let a = (ai)i∈[r] and b = (bj)j∈[s] be two
sequences over N. We say that a compresses to b, if there exists a partition P
of [r] such that P contains exactly s cells, say P1, . . . ,Ps, and ∀i ∈ [s], bi =∑

j∈Pi
aj.

Proposition B.1 ([25]). For r ≥ s, let a = (ai)i∈[r] and b = (bj)j∈[s] be
sequences over N, such that a compresses to b. Then for any n ∈ N, such that
2n ≥

∑r
i=1 ai, we have

∏r
i=1(2

n)ai
≥
∏s

j=1(2
n)bj .

Proposition B.2 ([25]). For r ≥ 2, let c = (ci)i∈[r] and d = (di)i∈[r] be two
sequences over N. Let a1, a2, b1, b2 ∈ N, such that ci ≤ aj, ci + di ≤ aj + bj for
all i ∈ [r] and j ∈ [2], and

∑r
i=1 di = b1 + b2. Then, for any n ∈ N, such that

aj + bj ≤ 2n for j ∈ [2], we have
∏r

i=1(2
n − ci)di

≥ (2n − a1)b1(2
n − a2)b2 .

C Proof of Claim 3.1

Preliminaries on Variance and Covariance: Recall that for any two indi-
cator random variables 1 and 1′, the variance Var (1) and covariance Cov (1,1′)
are defined as:

Var (1) = Pr (1)− Pr (1)2 , Cov (1,1′) = Pr (1 · 1′)− Pr (1) · Pr (1′) ,

and for any random variable X that can be be written as a sum of indicator
random variables

∑
i 1i, we have

Var (X) =
∑
i

Var (1i) +
∑
i ̸=j

Cov (1i,1j) .
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C.1 Upper Bounding Var (collid)

Using the fact that collid =
∑

i<j 1i,j , we have

Var (collid) =
∑
i<j

Var (1i,j) +
∑
i<j
k<ℓ

{i,j}̸={k,ℓ}

Cov (1i,j ,1k,ℓ) (22)

Suppose there are ν pairs i < j satisfying i ∼ j, where we recall that i ∼ j if
and only if ti = tj ⊕ δ.

Computing Var (1i,j). Recall that Var (1i,j) = Pr (1i,j) − Pr (1i,j)
2
. We can

have two cases, depending upon i ∼ j, or not:
A. i ̸∼ j: In this case, using (6), we have

Var (1i,j) =
1

2n
− 1

22n
.

B. i ∼ j: In this case, using (8), we have

Var (1i,j) ≤
1

2n
+

1

2n − 1
− 1

22n
.

By combining the two cases, we have∑
i<j

Var (1i,j) ≤
(
q

2

)
1

2n
+

q

2n
−
(
q

2

)
1

22n
(23)

Computing Cov (1i,j, 1k,ℓ). Recall that Cov (1i,j ,1k,ℓ) = Pr (1i,j · 1k,ℓ) −
Pr (1i,j) · Pr (1k,ℓ). We can have two cases, depending upon the size of |{i, j} ∩
{k, ℓ}|:
A. |{i, j} ∩ {k, ℓ}| = 1: Without loss of generality assume j = k, and consider

the following subcases:
1. ∃ i′1, i′2 ∈ {i, j, ℓ} such that i′1 ∼ i′2: Note that there can be only one

such (i′1, i
′
2) pair. We consider the case i ∼ ℓ, as the other two cases are

relatively simpler (due to the independence of 1i,j and 1j,ℓ). Note that
the event 1i,j · 1j,ℓ is equivalent to 1j,i · 1i,ℓ, where of course we have
abused the definition a bit as j > i. However, the meaning is still clear
from the context. Now the events 1j,i and 1i,ℓ are independent, since the
j-th query uses distinct tweaks (tj , tj + δ). Thus, using (6) and (8), we
have

Cov (1i,j ,1j,ℓ) ≤
1

2n(2n − 1)
.

2. ∀i′1, i′2 ∈ {i, j, k}, i′1 ̸∼ i′2: The two events are independent and iden-
tically distributed, as all six tweaks are different. Thus, using (6), we
have

Cov (1i,j ,1j,ℓ) ≤ 0.
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Now, there are at most ν(q − 2) ≤ q2/2 triples (i, j, ℓ) that can satisfy
case A.1.. Thus, we have

∑
i<j
k<ℓ

|{i,j}∩{k,ℓ}|=1

Cov (1i,j ,1k,ℓ) ≤
q2

22n
(24)

B. |{i, j} ∩ {k, ℓ}| = 0: We handle this case depending upon the number of
(i′1, i

′
2) ∈ {i, j, k, ℓ} such that i′1 ∼ i′2. Let r be the number of such pairs.

Note that r cannot be greater than 2. Thus, we have the following subcases:
1. r = 0: In this case, the two events are independent and identically dis-

tributed, as all eight tweaks are distinct. Thus, using (6), we have

Cov (1i,j ,1k,ℓ) ≤ 0.

2. r = 1: First, suppose (i′1, i
′
2) ∈ {(i, j), (k, ℓ)}. Without loss of generality

let (i′1, i
′
2) = (i, j). Since {tk, tℓ, tk ⊕ δ, tℓ ⊕ δ} ∩ {ti, tj} = ∅ and k ̸∼ ℓ,

using (6) and (8), we get

Cov (1i,j ,1k,ℓ) ≤
1

2n(2n − 1)
≤ 2

22n
.

Next, suppose (i′1, i
′
2) /∈ {(i, j), (k, ℓ)}. Without loss of generality, let

(i′1, i
′
2) = (i, k). Note that {tj , tℓ, tj ⊕ δ, tℓ ⊕ δ} ∩ {ti, tk} = ∅. Then, by

conditioning on the value of (M′
i,M

′
k), the event 1i,j · 1k,ℓ holds with

probability 2−2n, whence using (6), we get

Cov (1i,j ,1k,ℓ) ≤ 0.

3. r = 2: Since there are at most ν2 ≤ q2/4 choices for such quadruples,
even a loose bound on the probability of Pr (1i,j · 1k,ℓ) will suffice. In
particular, we simply use Pr (1i,j). Using (8), we have

Cov (1i,j ,1k,ℓ) ≤
1

2n
+

1

2n − 1
− 1

22n
.

Finally, since there are νq2 ≤ q3/2 quadruples that satisfy B.2. and
ν2 ≤ q2/4 quadruples that satisfy B.3., we get

∑
i<j
k<ℓ

|{i,j}∩{k,ℓ}|=0

Cov (1i,j ,1k,ℓ) ≤
3q2

2n+2
+

q3

22n
− q2

22n+2
(25)

From (22)-(25) and 2 ≤ q ≤ 2n, we have

Var (collid) ≤
4q2

2n
. (26)
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C.2 Upper Bounding Var (collre)

The internal variables arising in the execution of TNTδ,m are represented by

the notations from Fig. 3.2. In particular, we have M̂ = πππ1(m), Ui′ = M̂ ⊕ ti′ ,

Ûi′ = πππ2(Ui′), Û
′
i′ = Ûi′⊕δ, U′

i′ = πππ−1
2 (Û′

i′), M̂
′
i′ = U′

i′⊕ ti′ , and M′
i′ = πππ−1

1 (M̂′
i′),

for all i′ ∈ [q].
We have collre =

∑
i<j∈[q] 1i,j , where 1i,j is the indicator random variable

corresponding to the event M′
i = M′

j in the real world. Recall that, for any
i ̸= j ∈ [q], we have

Pr (1i,j) =
1

2n − 1
+

1

2n − 3
− 1

(2n − 1)(2n − 3)

=
2

2n
− 1

2n(2n − 1)
− 3

2n(2n − 3)
− 1

(2n − 1)(2n − 3)

For simplicity we write p := Pr (1i,j). We will often employ the following in-
equalities

2

2n
≤ p ≤ 2

2n
+

7

22n
. (27)

Now, we have

Var (collre) =
∑
i<j

Var (1i,j) +
∑
i<j
k<ℓ

{i,j}̸={k,ℓ}

Cov (1i,j ,1k,ℓ) (28)

Computing Var (1i,j). By definition, we have Var (1i,j) = p − p2, for any
i < j ∈ [q]. Thus, using (27), we have

∑
i<j

Var (1i,j) ≤
q2

2n
+

2q2

22n
(29)

Computing Cov (1i,j, 1k,ℓ). We have

Cov (1i,j ,1k,ℓ) = Pr (1i,j · 1k,ℓ)− Pr (1i,j) · Pr (1k,ℓ)

= Pr (1i,j · 1k,ℓ)− p2 ≤ Pr (1i,j · 1k,ℓ)−
4

22n
(30)

where the last inequality follows from (27). So, from now on, we only have to
handle the joint event 1i,j,k,ℓ = 1i,j · 1k,ℓ.

For the sake of simplicity, we perform the analysis, by conditioning on some
arbitrary value of πππ1(m), say m̂. Looking ahead, the final bounds will be inde-
pendent of this choice, so the bounds hold unconditionally, and we take this fact
for granted. Let ui′ = m̂⊕ ti′ , for all i

′ ∈ [q]. Then, Ui′ = ui′ .
As has been established before, the event 1i,j occurs, if and only if:

Ei,j : Ûi ⊕ Ûj = δ, or
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Fi,j : Ûi ⊕ Ûj ̸= δ and U′
i ⊕ U′

j = ti ⊕ tj .

Let E2i,j,k,ℓ, EFi,j,k,ℓ, FEi,j,k,ℓ, and F2i,j,k,ℓ denote the joint events (Ei,j ∩ Ek,ℓ),
(Ei,j ∩ Fk,ℓ), (Fi,j ∩ Ek,ℓ), and (Fi,j ∩ Fk,ℓ), respectively. Then, it is clear that
1i,j,k,ℓ is a union of these four events.

The way we move forward is to count the number of all valid
choices (or assignments), denoted by (ûi, ûj , ûk, ûℓ, u

′
i, u

′
j , u

′
k, u

′
ℓ) for

(Ûi, Ûj , Ûk, Ûℓ,U
′
i,U

′
j ,U

′
k,U

′
ℓ) that satisfy the event in focus. Then, the

probability of the event is simply this count times 1/(2n)α, where α will denote
a lower bound on the number of distinct elements in {ui, uj , uk, uℓ, u

′
i, u

′
j , u

′
k, u

′
ℓ}

for the event in focus.

Now, we can have two cases depending upon r := |{i, j} ∩ {k, ℓ}|:
A. r = 1: Without loss of generality assume j = k. Then,

Pr (1i,j,j,ℓ) = Pr
(
E2i,j,j,ℓ ∪ EFi,j,j,ℓ ∪ FEi,j,j,ℓ ∪ F2i,j,j,ℓ

)
≤ Pr

(
E2i,j,j,ℓ

)
+ Pr (EFi,j,j,ℓ) + Pr (FEi,j,j,ℓ) + Pr

(
F2i,j,j,ℓ

)
= Pr (EFi,j,j,ℓ) + Pr (FEi,j,j,ℓ) + Pr

(
F2i,j,j,ℓ

)
(31)

where the last equality follows from the fact that ti ⊕ δ = tj = tℓ ⊕ δ if and
only if ti = tℓ, which is impossible. We handle the three summands one by
one:
1. Probability of EFi,j,j,ℓ: Any valid choice (ûi, ûj , ûj , ûℓ, u

′
i, u

′
j , u

′
j , u

′
ℓ) must

satisfy
• (ûi, ûj , ûℓ) is pairwise distinct,
• ûi ⊕ ûj = δ and ûℓ /∈ {ûi, ûj},
• (u′

i, u
′
j) = (uj , ui),

• u′
ℓ = u′

j ⊕ tj ⊕ tℓ /∈ {u′
i, u

′
j , uℓ} = {ui, uj , uℓ},

• (u′
i, u

′
j , u

′
ℓ) is pairwise distinct.

The first three conditions are obvious. In the fourth condition, u′
ℓ ̸= uℓ

follows from δ ̸= 0n. Now, ûi has 2
n choices, ûj = ûi⊕δ, and ûℓ /∈ {ûi, ûj}

has obviously (2n− 2) choices. Once we fix (ûi, ûj , ûℓ), u
′
ℓ is fixed. Thus,

there are at most 2n(2n− 2) choices. Further, from condition 3, we have
|{ui, uj , uℓ, u

′
ℓ}| = 4. Thus, each valid choice occurs with at most 1/(2n)4

probability, as at least 4 variables are sampled in a WOR manner from
{0, 1}n. Thus, we have

Pr (EFi,j,j,ℓ) ≤
1

(2n − 1)(2n − 3)

≤ 1

22n

(
1 +

1

2n − 1

)(
1 +

3

2n − 3

)
≤ 1

22n
+

8

23n
+

12

24n
(32)

2. Probability of FEi,j,j,ℓ: By symmetry, we have

Pr (FEi,j,j,ℓ) ≤
1

22n
+

8

23n
+

12

24n
(33)
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3. Probability of F2i,j,j,ℓ: Any valid choice (ûi, ûj , ûj , ûℓ, u
′
i, u

′
j , u

′
j , u

′
ℓ) must

satisfy
• (ûi, ûj , ûℓ) is pairwise distinct,
• ûi ⊕ ûj ̸= δ and ûj ⊕ ûℓ ̸= δ,
• u′

i = u′
j ⊕ ti ⊕ tj /∈ {ui, uj},

• u′
ℓ = u′

j ⊕ tj ⊕ tℓ /∈ {uj , uℓ},
• (u′

i, u
′
j , u

′
ℓ) is pairwise distinct.

Now, ûi ⊕ ûℓ = δ (which is possible) a valid assignment would have
(u′

i, u
′
ℓ) = (uℓ, ui). But, this implies that this assignment also satisfies

Ei,ℓ. Accordingly, we refine the objective as

Pr
(
F2i,j,j,ℓ

)
≤ Pr

(
F2i,j,j,ℓ ∩ Ei,ℓ

)
+ Pr

(
F2i,j,j,ℓ | ¬Ei,ℓ

)
For the first summand we have at most 2n(2n−2) valid assignments, each
occurring with at most 1/(2n)4 probability, and for the second summand
we have at most 2n(2n − 1)(2n − 3)(2n − 4) valid assignments, each
occurring with at most 1/(2n)6 probability. Thus, we have

Pr
(
F2i,j,j,ℓ

)
≤ 2

22n
+

26

23n
+

92

24n
(34)

On combining (30)-(34), we get∑
i<j
k<ℓ
r=1

Cov (1i,j ,1k,ℓ) ≤
7q3

23n
+

20q3

24n
(35)

B. r = 0: In this case we have

Pr (1i,j,k,ℓ) = Pr
(
E2i,j,k,ℓ ∪ EFi,j,k,ℓ ∪ FEi,j,k,ℓ ∪ F2i,j,k,ℓ

)
≤ Pr

(
E2i,j,k,ℓ

)
+ Pr (EFi,j,k,ℓ) + Pr (FEi,j,k,ℓ) + Pr

(
F2i,j,k,ℓ

)
(36)

We handle the four summands one by one:
1. Probability of E2i,j,k,ℓ: Any valid choice (ûi, ûj , ûk, ûℓ, u

′
i, u

′
j , u

′
k, u

′
ℓ) must

satisfy
• (ûi, ûj , ûk, ûℓ) is pairwise distinct,
• ûi ⊕ ûj = δ and ûk ⊕ ûℓ = δ,
• (u′

i, u
′
j , u

′
k, u

′
ℓ) = (uj , ui, uℓ, uk),

Now, (ûi, ûj , ûk, ûℓ) can be fixed in at most 2n(2n− 2) ways, as fixing ûi

fixes ûj , and fixing (ûi, ûj) leaves (2n − 2) choices for ûk and this fixes
ûℓ. With this the full assignment is fixed. Further, each such assignment
holds with at most 1/(2n)4 probability. Thus, we have

Pr
(
E2i,j,k,ℓ

)
≤ 1

22n
+

8

23n
+

12

24n
(37)

2. Probability of EFi,j,k,ℓ: Any valid choice (ûi, ûj , ûk, ûℓ, u
′
i, u

′
j , u

′
k, u

′
ℓ)

must satisfy
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• (ûi, ûj , ûk, ûℓ) is pairwise distinct,
• ûi ⊕ ûj = δ and ûk ⊕ ûℓ ̸= δ,
• (u′

i, u
′
j) = (uj , ui),

• u′
ℓ = u′

k ⊕ tk ⊕ tℓ /∈ {ui, uj , uk, uℓ},
• u′

k /∈ {ui, uj , uk, uℓ},
• (u′

i, u
′
j , u

′
k, u

′
ℓ) is pairwise distinct.

The fourth condition follows from δ ̸= 0n, ûℓ ̸= δ ⊕ ûk, and the fact
that u′

ℓ = uj (res. u′
ℓ = ui) would imply ûℓ ⊕ δ = ûj = ûi ⊕ δ (res.

ûℓ ⊕ δ = ûi = ûj ⊕ δ), which is impossible. Similar argument holds for
condition 5. Thus, in this case, 6 distinct values are sampled in a WOR
manner from {0, 1}n. There are at most 2n(2n− 2)(2n− 3)(2n− 4) valid
choices, each holding with at most 1/(2n)6 probability. Thus, we have

Pr (EFi,j,k,ℓ) ≤
1

22n
+

12

23n
+

20

24n
(38)

3. Probability of FEi,j,k,ℓ: By symmetry, we have

Pr (FEi,j,k,ℓ) ≤
1

22n
+

12

23n
+

20

24n
(39)

4. Probability of F2i,j,k,ℓ: Any valid choice (ûi, ûj , ûj , ûℓ, u
′
i, u

′
j , u

′
j , u

′
ℓ) must

satisfy
• (ûi, ûj , ûk, ûℓ) is pairwise distinct,
• ûi ⊕ ûj ̸= δ and ûk ⊕ ûℓ ̸= δ,
• u′

i = u′
j ⊕ ti ⊕ tj /∈ {ui, uj},

• u′
j /∈ {ui, uj},

• u′
ℓ = u′

j ⊕ tj ⊕ tℓ /∈ {uj , uℓ},
• u′

k /∈ {uk, uℓ},
• (u′

i, u
′
j , u

′
k, u

′
ℓ) is pairwise distinct.

Further, a valid choice also satisfies one of the following seven conditions:
i. ûi ⊕ δ = ûk, ûj ⊕ δ = ûℓ,
ii. ûi ⊕ δ = ûℓ, ûj ⊕ δ = ûk,
iii. ûi ⊕ δ = ûk, ûj ⊕ δ ̸= ûℓ,
iv. ûi ⊕ δ ̸= ûk, ûj ⊕ δ = ûℓ,
v. ûi ⊕ δ = ûℓ, ûj ⊕ δ ̸= ûk,
vi. ûi ⊕ δ ̸= ûℓ, ûj ⊕ δ = ûk,
vii. {ûi ⊕ δ, ûj ⊕ δ} ∩ {ûk, ûℓ}.
Now, we can have one of the two subcases based on whether λ := ti ⊕
tj ⊕ tk ⊕ tℓ = 0n, or not:
a. λ = 0n: Observe that, in this case, conditions iii-vi are not satisfi-

able. For instance, suppose ûi ⊕ δ = ûk. Then, u
′
j = u′

i ⊕ ti ⊕ tj =
uk ⊕ tk ⊕ tℓ = uℓ which implies ûj ⊕ δ = ûℓ. Thus, only condi-
tions i, ii, and vii are possible. Now, if condition i (res. condition
ii) satisfies then we must have u′

i = uk (res. u′
i = uℓ), u′

j = uℓ

(res. u′
j = uk). Thus, in both the cases fixing (ûi, ûj , ûk, ûℓ) fixes the

whole assignment. Further, (ûi, ûj , ûk, ûℓ) can be fixed in at most

37



2n(2n−2) ways, and each such assignment holds with at most 1/(2n)4
probability. On the other hand, if condition vii satisfies then fixing
(ûi, ûj , ûk, ûℓ, u

′
i, u

′
k) fixes the full assignment. So, in this case we

have at most (2n)6 choices, and each such choice holds with at most
1/(2n)8 probability. Thus, when ti ⊕ tj = tk ⊕ tℓ, we have

Pr
(
F2i,j,k,ℓ

)
≤ 12

22n
(40)

b. λ ̸= 0n: Contrary to case a., it can be easily verified that condition
i and ii are not satisfiable in this case. Now, if condition iii-vi is
satisfied, then there are at most 2n(2n − 2)(2n − 3) valid choices,
each holding with at most 1/(2n)6 probability. On the other hand, if
condition vii is satisfied, then there are at most (2n)6 valid choices
and each choice occurs with 1/(2n)8 probability. Thus, when ti⊕tj ̸=
tk ⊕ tℓ, we have

Pr
(
F2i,j,k,ℓ

)
≤ 1

22n
+

58

23n
+

168

24n
(41)

To summarize the above computations, we have∑
i<j
k<ℓ
r=0

Cov (1i,j ,1k,ℓ) =
∑
i<j
k<ℓ
r=0
λ=0

Cov (1i,j ,1k,ℓ) +
∑
i<j
k<ℓ
r=0
λ̸=0

Cov (1i,j ,1k,ℓ) (42)

Using (30), (36)-(39), and (40), we have

∑
i<j
k<ℓ
r=0
λ=0

Cov (1i,j ,1k,ℓ) ≤
2q3

22n
+

6q3

23n
+

9q3

24n
(43)

and using (30), (36)-(39) and (41), we have

∑
i<j
k<ℓ
r=0
λ̸=0

Cov (1i,j ,1k,ℓ) ≤
4q4

23n
+

10q4

24n
(44)

On combining (28), (29), (35), and (42)-(44), we have

Var (collre) ≤
q2

2n
+

2q2

22n
+

13q3

23n
+

29q3

24n
+

2q3

22n
+

4q4

23n
+

10q4

24n
(45)

The result follows from q ≤ 2n, and n ≥ 4. ⊓⊔

38



D Some Results From JN20 on Hash Functions

Throughout this section, we fix tq = (t1, . . . , tq) ∈ (T )q. Let H be a (τ, n)-hash
function family with ϵ-AUHF property. A pair of distinct elements ti, tj ∈ S(tq)
is said to be colliding for a function h ∈ H, if h(ti) = h(tj). Then, for a randomly
chosen hash function H ←$ H, the probability of having at least one colliding
pair in tq is at most

(
q
2

)
· ϵ. This is straightforward from the union bound.

Lemma D.1 (Alternating Collisions Lemma [25]). Suppose H1,H2 are two
uniformly and independently drawn functions from an ϵ-AUHF H and tq ∈ (T )q.
Then,

Pr (∃∗i, j, k, l ∈ [q],H1(ti) = H1(tj) ∧ H1(tk) = H1(tl) ∧ H2(tj) = H2(tk)) ≤ q2ϵ1.5.

Lemma D.2 (Alternating Events Lemma [25]). Let Xq = (X1, . . . ,Xq) be a
q-tuple of random variables. Suppose for all i < j ∈ [q], Ei,j are events associated
with Xi and Xj, possibly dependent. Each event holds with probability at most
ϵ. Moreover, for any distinct i, j, k, l ∈ [q], Fi,j,k,l are events associated with Xi,
Xj, Xk and Xl, which holds with probability at most ϵ′. Moreover, the collection
of events (Fi,j,k,l)i,j,k,l is independent with the collection of event (Ei,j)i,j. Then,

Pr (∃∗i, j, k, l ∈ [q], Ei,j ∧ Ek,l ∧ Fi,j,k,l) ≤ q2 · ϵ ·
√
ϵ′

Let Xq = H(tq). We define an equivalence relation ∼ on [q] as: α ∼ β if and only
if Xα = Xβ (i.e. ∼ is simply the multicollision relation). Let P1,P2, . . . ,Pr denote
those equivalence classes of [q] corresponding to ∼, such that νi = |Pi| ≥ 2 for
all i ∈ [r].

Lemma D.3 ([25]). Let C denote the number of colliding pairs in Xq. Then,
we have

Ex

(
r∑

i=1

νi
2

)
≤ 2q2ϵ.

Corollary D.1 ([36,25]). Let νmax = max{νi : i ∈ [r]}. Then, for some a ≥ 2,
we have

Pr (νmax ≥ a) ≤ 2q2ϵ

a2
.

E Extension of Patarin’s Mirror Theory From JN20

We will use the Mennink and Neves interpretation [34] of mirror theory. Let
q ≥ 1 and let L be the system of linear equations

{e1 : Y1 ⊕ V1 = δ1, e2 : Y2 ⊕ V2 = δ2, . . . , eq : Yq ⊕ Vq = δq}

where Y q and V q are unknowns, and δq ∈ ({0, 1}n)q are constants. In addition
there are (in)equality restrictions on Y q and V q, which uniquely determine SY q

39



and SV q. We assume that S(Y q) and S(V q), are indexed in an arbitrary order by
the index sets [qY ] and [qV ], where qY = |S(Y q)| and qV = |S(V q)|. This assump-
tion is without any loss of generality as this does not affect the system L. Given
such an ordering, we can view S(Y q) and S(V q) as ordered sets {Y ′

1 , . . . , Y
′
qY }

and {V ′
1 , . . . , V

′
qV }, respectively. We define two surjective index mappings:

φY :

{
[q]→ [qY ]

i 7→ j if and only if Yi = Y ′
j .

φV :

{
[q]→ [qV ]

i 7→ k if and only if Vi = V ′
k.

It is easy to verify that L is uniquely determined by (φY , φV , δ
q), and vice-

versa. Consider a labeled bipartite graph G(L) = ([qY ], [qV ], E) associated with
L, where E = {(φY (i), φV (i), δi) : i ∈ [q]}, δi being the label of edge. Clearly,
each equation in L corresponds to a unique labeled edge (assuming no duplicate
equations). We give three definitions with respect to the system L using G(L).

Definition E.1 (cycle-freeness). L is said to be cycle-free if and only if G(L)
is acyclic.

Definition E.2 (ξmax-component). Two distinct equations (or unknowns) in
L are said to be in the same component if and only if the corresponding edges
(res. vertices) in G(L) are in the same component. The size of any component C
in L, denoted ξ(C), is the number of vertices in the corresponding component of
G(L), and the maximum component size is denoted by ξmax(L) (or simply ξmax).

Definition E.3 (non-degeneracy). L is said to be non-degenerate if and only
if there does not exist a path of even length at least 2 in G(L) such that the labels
along the edges on this path sum up to zero.

Isolated and Star Components: In an edge-labeled bipartite graph G =
(Y,V, E), an edge (y, v, δ) is called isolated edge if both y and v have degree 1.
A component S of G is called star, if ξ(S) ≥ 3 and there exists a unique vertex
v in S with degree ξ(S)− 1. We call v the center of S. Further, we call S a Y-⋆
(res. V-⋆) component if its center lies in Y (res. V).

Mirror Theory for Tweakable Permutation Setting. Consider a system
of equation L

{e1 : Y1 ⊕ V1 = δ1, e2 : Y2 ⊕ V2 = δ2, . . . , eq : Yq ⊕ Vq = δq},

such that each component in G(L) is either an isolated edge or a star. Let c1,
c2, and c3 denote the number of components of isolated, Y-⋆, and V-⋆ types,
respectively. Let q1, q2, and q3 denote the number of equations of isolated, Y-⋆,
and V-⋆ types, respectively. Therefore, c1 = q1. Note that the equations in L can
be arranged in any arbitrary order without affecting the number of solutions. For
the sake of simplicity, we fix the ordering in such a way that all isolated edges
occur first, followed by the star components. Let (δ′1, δ

′
2, · · · , δ′s) be an arbitrary
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ordering of S(δq), and for all i ∈ [s], let νi denote the multiplicity of δ′i in the
multiset M(δq), i.e., s ≤ q and

∑s
i=1 νi = q.

In [25], Jha and Nandi proved the following result.

Theorem E.1 ([25]). Let L be the system of linear equations as described
above with q < 2n−2 and ξmaxq ≤ 2n−1. Then, the number of tuples
(y1, . . . , yqY , v1, . . . , vqV ) that satisfy L, denoted hq, such that yi ̸= yj and
vi ̸= vj, for all i ̸= j, satisfies:

hq ≥

(
1− 13q4

23n
− 2q2

22n
−

(
c2+c3∑
i=1

η2c1+i

)
4q2

22n

)
× (2n)q1+c2+q3(2

n)q1+q2+c3∏
i∈[s](2

n)νi

,

where ηj = ξj − 1 and ξj denotes the size (number of vertices) of the j-th com-
ponent, for all j ∈ [c1 + c2 + c3].

F Proof of Theorem 5.1

The statement is vacuously true for q ≥ 2n/2. We will use the Expectation
method (see Lemma 2.1) to prove the statement for 1 ≤ q < 2n/2.

Let O0 and O1 be the oracles corresponding to TNT and a tweakable random
permutation π̃ππ, respectively. If (Ti,Mi) is the encryption query with a tweak Ti

we write the response as Ĉi. Similarly, if (Ti, Ĉi) is the decryption query with
a tweak Ti we write the response as Mi. After all queries have been made, the
two oracles release some additional data to the adversary, who is obviously free
to ignore this additional information, M̂q and Cq.

In the real world, M̂q and Cq correspond to the output of πππ1 and input of
πππ3, respectively, and thus they are well defined from the definition of TNT. The
real world transcript is thus defined as the tuple

Θ1 := (Tq,Mq, Ĉq, M̂q,Cq).

In the ideal system π̃ππ, we sample M̂q,Cq as follows for all i ∈ [q]:

1. M̂i = M̂j whenever Mi = Mj for j < i. Otherwise (for all j < i, Mj ̸= Mi),
we sample

M̂i ←$ {0, 1}n \ S(M̂[i−1]).

2. Ci = Cj whenever Ĉj = Ĉi for j < i. Otherwise (for all j < i, Ĉj ̸= Ĉi), we
sample

Ci ←$ {0, 1}n \ S(C[i−1]).

The ideal world transcript is defined as

Θ0 := (Tq,Mq, Ĉq, M̂q,Cq).

Note that we use the same notation to denote the random variables in both the
worlds. However, their probability distributions will be unambiguously deter-
mined at the time of probability computations.

Bad Transcript and Its Analysis: Let uq := m̂q ⊕ tq, and ûq := cq ⊕ tq.
A transcript (tq,mq, ĉq, m̂q, cq) is called bad if and only if
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• ∃i < j ∈ [q] such that ui = uj ; or
• ∃i < j ∈ [q] such that ûi = ûj ;

Let Ωbad denote the set of all bad transcripts. Now, Θ0 ∈ Ωbad if either for some
i < j, M̂i + Ti = M̂j + Tj or Ci + Ti = Cj + Tj . It is easy to see that for any

fixed i < j, Pr
(
M̂i + Ti = M̂j + Tj

)
≤ (2n − 1)−1 and similarly for the other

case. So, by using the union bound,

Pr (∈ Ωbad) ≤
q(q − 1)

2n − 1
≤ q2

2n
.

Analysis of Good Transcripts: For a good transcript τ =
(tq,mq, ĉq, m̂q, cq), we know that (mq, m̂q), (cq, ĉq), and (uq, ûq) are permuta-
tion consistent and hence for the real world we have

Pr (Θ1 = ω) = Pr (πππ1(m
q) = m̂q)× Pr (πππ2(u

q) = ûq)× Pr (πππ3(c
q) = ĉq)

=
1

(2n)r
× 1

(2n)q
× 1

(2n)s

where r and s denote the size of S(mq) and S(ĉq) respectively. In the ideal world,
we have,

Pr (Θ0 = ω) = Pr (π̃ππ(tq,mq) = ĉq)× 1

(2n)r
× 1

(2n)s

≤ 1

(2n)q
× 1

(2n)r
× 1

(2n)s
,

where the final inequality follows from the fact that Pr (π̃ππ(tq,mq) = ĉq) maxi-
mizes when ti = tj for all 1 ≤ i < j ≤ q. The result follows from the Expectation
method by setting ϵratio to be a zero function.

G Proof of Theorem 6.1

Note that we are in the information-theoretic setting. In other words, we con-
sider computationally unbounded distinguisher A. Without loss of generality,
we assume that A is deterministic and non-trivial.

G.1 Oracle Description

The two oracles of interest are: O1, the real oracle, that implements LRW+;

and, O0, the ideal oracle, that implements π̃ππ ←$ P̃erm(τ, n). We consider an
extended version of these oracles, the one in which they release some additional
information. We use notations analogously as given in Figure 6.1 to describe the
transcript generated by A’s interaction with its oracle.
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Description of the real oracle, O1: The real oracle O1 faithfully runs
glrw. We denote the transcript random variable generated by A’s interaction
with O1 by the usual notation Θ1, which is an 11-ary q-tuple

(Tq,Mq,Cq,Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH),

defined as follows: The initial transcript consists of (Tq,Mq,Cq), where for all
i ∈ [q]:

Ti : i-th tweak value Mi : i-th plaintext value Ci : i-th ciphertext value,

where, Cq = LRW+(Tq,Mq). At the end of the query-response phase O1 releases

some additional information (Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH), such that for all i ∈
[q]:
• (Xi,Yi): i-th input-output pair for πππ1,
• (Vi,Ui): i-th input-output pair for πππ2,

• ∆i: i-th internal masking, H̃HH1, H̃HH2,HHH: are the hash keys.

Note that Xq, Uq, and ∆q are completely determined by the hash keys H̃HH1, H̃HH2,HHH,
and the initial transcript (Tq,Mq,Cq). We include them anyhow for the sake of
convenience.

Description of the ideal oracle, O0: The ideal oracle O0 has access to π̃ππ.
Since O1 releases some additional information, O0 must generate these values as
well. The ideal transcript random variable Θ0 is also an 11-ary q-tuple

(Tq,Mq,Cq,Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH),

defined below. The initial transcript consists of (Tq,Mq,Cq), where for all i ∈ [q]:

Ti : i-th tweak value Mi : i-th plaintext value Ci : i-th ciphertext value,

where Cq = π̃ππ(Tq,Mq). Once the query-response phase is over O0 first samples

(H̃HH1, H̃HH2,HHH)←$ KG
(
Ĥ
)
, and then computes (Xq,Uq,∆q), as follows:

Xq := H̃HH1(T
q,Mq) Uq := H̃HH2(T

q,Cq) ∆q := HHH(Tq).

Note that the conditional distributions of (Xq,Uq,∆q, H̃HH1, H̃HH2,HHH), given
(Tq,Mq,Cq) is identical in both the worlds. This means that Xq, Uq, and ∆q

are defined honestly.

Given the partial transcript Θ′
0 := (Tq,Mq,Cq,Xq,Uq,∆q, H̃HH1, H̃HH2,HHH) we wish

to characterize the hash key Ĥ̂ĤH := (H̃HH1, H̃HH2,HHH) as good or bad. We write Ĥbad

for the set of bad hash keys, and Ĥgood := Ĥ \ Ĥbad. We say that the hash key

Ĥ̂ĤH ∈ Ĥbad (or Ĥ̂ĤH is bad) if and only if one of the following predicates is true:

1. H1: ∃∗i, j ∈ [q] such that Xi = Xj ∧ Ui = Uj .

2. H2: ∃∗i, j ∈ [q] such that Xi = Xj ∧∆i = ∆j .
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3. H3: ∃∗i, j ∈ [q] such that Ui = Uj ∧∆i = ∆j .

4. H4: ∃∗i, j, k, ℓ ∈ [q] such that Xi = Xj ∧ Uj = Uk ∧ Xk = Xℓ.

5. H5: ∃∗i, j, k, ℓ ∈ [q] such that Ui = Uj ∧ Xj = Xk ∧ Uk = Uℓ.

6. H6: ∃k ≥ 2n/2q,∃∗i1, i2, . . . , ik ∈ [q] such that Xi1 = · · · = Xik .

7. H7: ∃k ≥ 2n/2q,∃∗i1, i2, . . . , ik ∈ [q] such that Ui1 = · · · = Uik .

Case 1. Ĥ̂ĤH is bad: If the hash key Ĥ̂ĤH is bad, then Yq and Vq values are sampled
degenerately as Yi = Vi = 0 for all i ∈ [q]. It means that we sample without
maintaining any specific conditions, which will almost certainly lead to inconsis-
tencies.

Case 2. Ĥ̂ĤH is good: To characterize the transcript corresponding to a good
hash key, it will be useful to study a random bipartite edge-labeled graph asso-
ciated with (Xq,Uq,∆q).

Definition G.1 (Transcript Graph). A transcript graph G = (X ,U , E) asso-
ciated with (Xq,Uq,∆q), denoted G(Xq,Uq,∆q), is an undirected bipartite graph,
where X := {(Xi, 0) : i ∈ [q]} and U := {(Ui, 1) : i ∈ [q]} are the two partitions
of the vertex-set, and E := {((Xi, 0), (Ui, 1)) : i ∈ [q]} denotes the edge-set. We
also associate the label ∆i with edge ((Xi, 0), (Ui, 1)) ∈ E.

For all practical purposes we may drop the partition markers 0 and 1, for each
vertex (Xi, 0) ∈ X and (Ui, 1) ∈ U , as they can be easily distinguished from
the context and notations. Note that the event Xi = Xj and Ui = Uj , although
extremely unlikely, will result in a parallel edge in G. Finally, each edge (Xi,Ui) ∈
E corresponds to a query index i ∈ [q], so we can equivalently view (and call)
the edge (Xi,Ui) as index (or query) i.

Consider the random transcript graph G(Xq,Uq) arising due to Ĥ̂ĤH ∈ Ĥgood.
Lemma G.1 and Figure G.1 characterizes the different types of possible compo-
nents in G(Xq,Uq).

type-1

. . .. . .. . .

type-2

. . .. . .. . .

type-3

. . .. . .. . .

. . .. . .. . .

type-4

Fig.G.1: Enumerating all possible types of components of a transcript graph corre-
sponding to a good hash key: type-1 is the only possible component of size = 1 edge;
type-2 and type-3 are star components with center in X and U , respectively; type-4 is
the only possible component that is not isolated or star (can have degree 2 vertices in
both X and U). Note that the vertex-coloring is only for illustration purposes.

Lemma G.1. The transcript graph G(Xq,Uq,∆q) generated by a good hash key

Ĥ̂ĤH has the following properties:
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1. G is simple, acyclic and has no isolated vertices.
2. G has no two adjacent edges i and j such that ∆i ⊕∆j = 0.
3. G has no component of size ≥ 2n/2q edges.
4. G has no component such that it has 2 distinct degree 2 vertices in X or U .
In fact the all possible types of components in G are enumerated in Figure G.1.

The proof of Lemma G.1 is elementary and left as an exercise for the reader.
It should be noted that in [25], the authors do not explicitly address type-4

graphs. Instead, they focus on two specific subclasses, namely, type-4 and type-5
graphs [25]. Fortunately, this omission does not significantly impact either the
security bound or the subsequent analysis.

In what follows, we describe the sampling of Yq and Vq conditioned on the

fact that Ĥ̂ĤH ∈ Ĥgood. We collect the indices i ∈ [q] corresponding to the edges in
all type-1, type-2, type-3, and type-4 components, in the index sets I1, I2, I3,
and I4, respectively. Clearly, the five sets are disjoint, and [q] = I1⊔I2⊔I3⊔I4.
Let I = I1 ⊔ I2 ⊔ I3. Consider a constrained system of equations

L = {Yi ⊕ Vi = ∆i : i ∈ I},

with the constraint
ϕ : Xq ↭ Y q ∧ Uq ↭ V q.

The solution space for L, satisfying the constraint ϕ, is precisely the set

S = {(yI , vI) : yI ↭ XI ∧ vI ↭ UI ∧ yI ⊕ vI = ∆I}.

Given these definitions, the ideal oracle O0 samples (Yq,Vq) as follows:
• (YI ,VI)←$ S, i.e., O0 uniformly samples one valid assignment from the set
of all valid assignments for YI and VI .

• Let G \ CI denote the subgraph of G after the removal of all type-1, type-2,
and type-3 components. For each component C of G \ CI :
• Suppose (Xi,Ui) ∈ C corresponds to an edge in C, where both Xi and Ui

have degree ≥ 2. Then, Yi ←$ {0, 1}n and Vi = Yi ⊕∆i.

• For each edge (Xi′ ,Ui′) ̸= (Xi,Ui) ∈ C, either Xi′ = Xi or Ui′ = Ui.
Suppose, Xi′ = Xi. Then, Yi′ = Yi and Vi′ = Yi′ ⊕ ∆i′ . Now, suppose
Ui′ = Ui. Then, Vi′ = Vi and Yi′ = Vi′ ⊕∆i′ .

At this point, Θ0 = (Tq,Mq,Cq,Xq,Yq,Vq,Uq,∆q, H̃HH1, H̃HH2,HHH) is completely de-
fined. In this way we maintain both the consistency of equations of the form
Yi ⊕ Vi = ∆i (as in the case of real world), and the permutation consistency

within each component, given that Ĥ̂ĤH ∈ Ĥgood. However, there might be collisions
among Y or V values from different components.

G.2 Definition and Analysis of Bad Transcripts

Given the description of the transcript random variable corresponding to the
ideal oracle we can define the set of transcripts Ω as the set of all tuples
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ω = (tq,mq, cq, xq, yq, vq, uq, δq, h̃1, h̃2, h), where tq ∈ ({0, 1}τ )q; mq, cq, yq, vq ∈
({0, 1}n)q; ĥ = (h̃1, h̃2, h) ∈ Ĥ; xq = h̃1(t

q,mq); uq = h̃2(t
q, cq); δq = h(tq); and

(tq,mq) ↭ (tq, cq).

Our bad transcript definition is inspired by two requirements:

1. Eliminate all xq, uq, and δq tuples such that both yq and vq are trivially
restricted by way of linear dependence. For example, consider the condition
H2. This leads to yi = yj , which would imply vi = yi ⊕ δi = yj ⊕ δj = vj .
Assuming i > j, vi is trivially restricted (= vj) by way of linear dependence.
This may lead to uq ↭̸ vq as ui may not be equal to uj .

2. Eliminate all xq, uq, yq, vq tuples such that xq ↭̸ yq or uq ↭̸ vq.

Among the two, requirement 2 is trivial as xq ↭ yq and uq ↭ vq is always true
for real world transcript. Requirement 1 is more of a technical one that helps in
the ideal world sampling of yq and vq.

Bad Transcript Definition: Throughout the discussion, we consider the
transcript

ω = (tq,mq, cq, xq, yq, vq, uq, δq, ĥ)

to characterize the bad transcripts.
We first designate certain transcripts as bad depending upon the character-

ization of hash keys. Inspired by the ideal world description, we say that a hash
key ĥ ∈ Ĥbad (or ĥ is bad) if and only if the following predicate is true:

H1 ∨ H2 ∨ H3 ∨ H4 ∨ H5 ∨ H6 ∨ H7.

We say that ω is hash-induced bad transcript, if ĥ ∈ Hbad. We write this event
as BAD1, and by a slight abuse of notations,5 we have

BAD1 =

7⋃
i=1

Hi. (46)

This takes care of the first requirement. For the second one we have to enumerate
all the conditions which might lead to xq ↭̸ yq or uq ↭̸ vq. Since we sample
degenerately when the hash key is bad, the transcript is trivially inconsistent
in this case. For good hash keys, if xi = xj (or ui = uj) then we always have
yi = yj (res. vi = vj); hence the inconsistency won’t arise. So, given that the
hash key is good, we say that ω is sampling-induced bad transcript, if one of the
following conditions is true:
for some α ∈ [4] and β ∈ {α, . . . , 4}, we have

• Ycollαβ : ∃i ∈ Iα, j ∈ Iβ , such that xi ̸= xj ∧ yi = yj , and

• Vcollαβ : ∃i ∈ Iα, j ∈ Iβ , such that ui ̸= uj ∧ vi = vj ,

where Ii is defined as before in section G.1. By varying α and β over all possible
values, we get all 30 conditions which might lead to xq ↭̸ yq or uq ↭̸ vq. Here
we remark that some of these 30 conditions are never satisfied due to the sam-
pling mechanism prescribed in section G.1. These are Ycoll11, Ycoll12, Ycoll13,

5 We use the notation Hi to denote the event that the predicate Hi is true.
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Ycoll22, Ycoll23, Ycoll33, Vcoll11, Vcoll12, Vcoll13, Vcoll22, Vcoll23, and
Vcoll33. We listed them here only for the sake of completeness. We write the
combined event that one of the 30 conditions hold as BAD2. Again by an abuse
of notations, we have

BAD2 =
⋃

α∈[4],β∈{α,...,4}

(Ycollαβ ∪ Vcollαβ) . (47)

Finally, a transcript ω is called bad, i.e. ω ∈ Ωbad, if it is either a hash-induced
or a sampling-induced bad transcript. All other transcripts are called good. It
is easy to see that all good transcripts are attainable (as required in the H-
coefficient technique or the expectation method).

Bad Transcript Analysis: We analyze the probability of realizing a bad
transcript in the ideal world. By definition, this is possible if and only if one of
BAD1 or BAD2 occurs. So, we have

ϵbad = Pr (Θ0 ∈ Ωbad) = PrΘ0 (BAD1 ∪ BAD2)
≤ PrΘ0 (BAD1)︸ ︷︷ ︸

ϵh

+PrΘ0
(BAD2)︸ ︷︷ ︸
ϵs

. (48)

Lemma G.2 upper bounds ϵh to q2ϵ21 + q2ϵ1ϵ2 + 2q2ϵ1.51 + 16q4ϵ12
−2n and

Lemma G.3 upper bounds ϵs to 4q4ϵ212
−n. Substituting these values in (48),

we get

ϵbad ≤ q2ϵ21 + q2ϵ1ϵ2 + 2q2ϵ1.51 +
16q4ϵ1
22n

+
4q4ϵ21
2n

. (49)

Lemma G.2. ϵh ≤ q2ϵ21 + q2ϵ1ϵ2 + 2q2ϵ1.51 +
16q4ϵ1
22n

.

Proof. Using (46) and (48), we have

ϵh = Pr (H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 ∪ H6 ∪ H7) ≤
7∑

i=1

Pr (Hi) .

H1 is true if for some distinct i, j both Xi = Xj , and Ui = Uj . Now Ti = Tj =⇒
Mi ̸= Mj . Hence Xi ̸= Xj (since H̃HH1 is a tweakable permutation) and H1 is not

true. So suppose Ti ̸= Tj . Then, using the fact that H̃ is an ϵ-AUHF and KG is
a PISM, for a fixed i, j we get an upper bound of ϵ21. Furthermore, we have at
most

(
q
2

)
pairs of (i, j). Thus, Pr (H1) ≤

(
q
2

)
ϵ21.

Following a similar line of argument one can bound Pr (H2) ≤
(
q
2

)
ϵ1ϵ2 and

Pr (H3) ≤
(
q
2

)
ϵ1ϵ2.

In the remaining, we bound the probability of H4 and H6, while the probability
of H5 and H7 can be bounded analogously. Now, H4 is true if for some pairwise
distinct i, j, k, ℓ,

H̃HH1(Ti,Mi) = H̃HH1(Tj ,Mj)H̃HH2(Tj ,Cj) = H̃HH2(Tk,Ck)H̃HH1(Tk,Mk) = H̃HH1(Tℓ,Mℓ).
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Again, using the fact that KG is a PISM, we have that the second equation is
independent of the other two equations. Using Lemma D.1, we have

Pr (H4) ≤ q2ϵ1.51 .

For H6, for some i1, . . . , ik, we have

Xi1 = Xi2 = · · · = Xik ,

where k ≥ 2n/2q. Since, (tij ,mij ) ̸= (til ,mil) for all j ̸= l, we can apply Corol-
lary D.1 to get

Pr (H6) ≤
8q4ϵ1
22n

.

Lemma G.3. ϵs ≤
4q4ϵ21
2n

.

Proof. Using (47) and (48), we have

ϵs = Pr

 ⋃
α∈[4],β∈{α,...,4}

(Ycollαβ ∪ Vcollαβ)


≤
∑
α∈[4]

∑
β∈{α,...,4}

(Pr (Ycollαβ) + Pr (Vcollαβ)) .

We bound the probabilities of the events on the right hand side in groups as
given below:

1. Bounding
∑

α∈[3],β∈{α,...,3} Pr (Ycollαβ) + Pr (Vcollαβ): Recall that the

sampling of Y and V values is always done consistently for indices belonging
to I = I1 ⊔ I2 ⊔ I3. Hence,∑

α∈[3],β∈{α,...,3}

Pr (Ycollαβ) + Pr (Vcollαβ) = 0, (50)

2. Bounding
∑

α∈[3] Pr (Ycollα4) + Pr (Vcollα4): Let’s consider the event

Ycoll14, which translates to there exist indices i ∈ I1 and j ∈ I4 such that
Xi ̸= Xj ∧ Yi = Yj . Since j ∈ I4, there must exist k, ℓ ∈ I4 \ {j}, such that one
of the following happens

Xj = Xk ∧ Uk = Uℓ

Uj = Uk ∧ Xk = Xℓ

Xj = Xk ∧ Uj = Uℓ.

We analyze the first case, while the other two cases can be similarly bounded.
To bound the probability of Ycoll14, we can look at the joint event

E : ∃i ∈ I1,∃∗j, k, ℓ ∈ I4, such that Yi = Yj ∧ Xj = Xk ∧ Uk = Uℓ.
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Note that the event Yi = Yj occurs with exactly 2−n probability conditioned on
the event Xj = Xk ∧ Uk = Uℓ. Thus, we get

Pr (E) = Pr (∃i ∈ I1,∃∗j, k, ℓ ∈ I4, such that Yi = Yj ∧ Xj = Xk ∧ Uk = Uℓ)

≤
∑
i∈I1

∑
j<k<ℓ∈I4

Pr (Xj = Xk ∧ Uk = Uℓ)× Pr (Yi = Yj | Xj = Xk ∧ Uk = Uℓ)

≤ q

(
q

3

)
ϵ21
2n

,

where the last inequality follows from the AUHF property of H̃, the PISM prop-
erty of KG, and the uniform randomness of Yj . The probability of the other two
cases are identically bounded, whence we get

Pr (Ycoll14) ≤ 3q

(
q

3

)
ϵ21
2n

.

We can bound the probabilities of Ycoll24, Ycoll34, and Vcollα4 for all α ∈
[3] in a similar manner. So, we skip the argumentation for these cases, and
summarize the probability for this group as

∑
α∈[3]

Pr (Ycollα4) + Pr (Vcollα4) ≤
3q4ϵ21
2n

. (51)

3. Bounding Pr (Ycoll44) + Pr (Vcoll44): Consider the event Ycoll44, which
translates to there exists distinct indices i, j ∈ I4 such that Xi ̸= Xj ∧ Yi = Yj .
Here as i, j ∈ I4, there must exist k, ℓ ∈ I4 \ {j} such that one of the following
happens

Xj = Xk ∧ Uk = Uℓ

Uj = Uk ∧ Xk = Xℓ

Xj = Xk ∧ Uj = Uℓ.

The analysis of these cases is similar to 2 above. So, we skip it and provide the
final bound

Pr (Ycoll44) ≤ 3q

(
q

3

)
ϵ21
2n

.

The probability of Vcoll44 can be bounded in a similar fashion.

Pr (Ycoll44) + Pr (Vcoll44) ≤
q4ϵ21
2n

. (52)

The result follows by combining (50)-(52), followed by some simplifications. ⊓⊔
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G.3 Good Transcript Analysis

From section G.1, we know the types of components present in the transcript
graph corresponding to a good transcript ω are exactly as in Figure G.1. Let
ω = (tq,mq, cq, xq, yq, vq, uq, δq, h̃1, h̃2, h) be the good transcript at hand. From
the bad transcript description of section G.2, we know that for a good transcript
(tq,mq) ↭ (tq, cq), xq ↭ yq, vq ↭ uq, and yq ⊕ vq = δq.

First, we add some new parameters with respect to ω to aid the remaining
analysis.

For i ∈ [4], let ci(ω) and qi(ω) respectively denote the number of components
and number of indices (corresponding to the edges) of type-i in ω. Further, let
z1i (ω) and z2i (ω) respectively denote the number of vertices from X and U in
type-i components. Note that
• z11(ω) = z21(ω) = q1(ω) = c1(ω);
• z12(ω) = c2(ω), and z22(ω) = q2(ω) ≥ 2c2(ω);
• z23(ω) = c3(ω), and z13(ω) = q3(ω) ≥ 2c3(ω); and
• zb4(ω) ≥ 2c4(ω), for b ∈ {1, 2}, and z14 + z24 = q4 − c4.

In addition, for a good transcript q =
∑5

i=1 qi(ω). For notational convenience,
let p1 := z11 + z12 + z13 = q1 + c2 + q3 and p2 := z21 + z22 + z23 = q1 + q2 + c3.

Let (t′1, t
′
2, · · · , t′r) be an arbitrary ordering of S(tq), and for all i ∈ [r], let µi

denote the multiplicity of t′i in the multiset M(tq), i.e., r ≤ q and
∑r

i=1 µi = q. In
addition, let µ′

i denote the multiplicity of t′i in the multiset M(tI), i.e.,
∑r

i=1 µ
′
i =

|I|.
Let (δ′1, δ

′
2, · · · , δ′s) be an arbitrary ordering of S(δI), and for all i ∈ [s], let νi

denote the multiplicity of δ′i in the multiset M(δI), i.e., s ≤ |I| and
∑s

i=1 νi = |I|.
For all these parameters, we will drop the ω qualification whenever it is

understood from the context.

Interpolation probability for the real oracle: In the real oracle, Ĥ̂ĤH←
KG
(
Ĥ
)
, πππ1 is called exactly p1+z14 times and πππ2 is called exactly p2+z24 times.

Thus, we have

Pr (Θ1 = ω) = PrKG
(
Ĥ̂ĤH = ĥ

)
× 1

(2n)p1+z1
4

× 1

(2n)p2+z2
4

. (53)

Interpolation probability for the ideal oracle: In the ideal oracle,
the sampling is done in parts:

I. π̃ππ sampling : We have

Pr (π̃ππ(tq,mq) = cq) ≤ 1∏r
i=1(2

n)µi

.

II. Hash key sampling : This is identical to the real world, and simply given by

PrKG
(
Ĥ̂ĤH = ĥ

)
.

III. Internal variables sampling : The internal variables Yq and Vq are sampled
in two stages.
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(A). type-1, type-2 and type-3 sampling : Recall the sets I1, I2, and I3, from
section G.2. Consider the system of equation

L = {Yi ⊕ Vi = δi : i ∈ I}.

From Figure G.1 we know that L is cycle-free and non-degenerate. Fur-
ther, ξmax(L) ≤ 2n/2q, since the transcript is good. So, we can apply
Theorem E.1 to get a lower bound on the the number of valid solutions,
|S(L)| for L. Using the fact that (YI ,VI) ←$ S(L), and Theorem E.1,
we have

Pr
(
(YI ,VI) = (yI , vI)

)
≤

∏s
i=1(2

n)νi

ζ(ω)(2n)p1(2
n)p2

,

where

ζ(ω) ≥

(
1− 13q4

23n
− 2q2

22n
−

(
c2+c3∑
i=1

η2c1+i

)
4q2

22n

)
,

and ηi denotes the number of edges in the i-th component for all i ∈
[c1 + c2 + c3].

(B). type-4 sampling : For the remaining indices, one value is sampled uni-
formly for each of the components, i.e., we have

Pr
((

Y[q]\I ,V[q]\I
)
=
(
y[q]\I , v[q]\I

))
=

1

2nc4
.

By combining I, II, III, and rearranging the terms, we have

Pr (Θ0 = ω) ≤ PrKG
(
Ĥ̂ĤH = ĥ

)
× 1

ζ(ω)
×

∏s
i=1(2

n)νi∏r
i=1(2

n)µi
(2n)p1

(2n)p2
2nc4

. (54)

G.4 Ratio of Interpolation Probabilities

On dividing (53) by (54), and simplifying the expression, we get

Pr (Θ1 = ω)

Pr (Θ0 = ω)
≥ ζ(ω) ·

∏r
i=1(2

n)µi∏s
i=1(2

n)νi
(2n − p1 − c4)z1

4−c4(2
n − p2)z2

4

1
≥ ζ(ω) ·

∏r
i=1(2

n)µ′
i

∏r
i=1(2

n − µ′
i)µi−µ′

i∏s
i=1(2

n)νi
(2n − p1 − c4)z1

4−c4(2
n − p2)z2

4

2
≥ ζ(ω) ·

∏r
i=1(2

n − µ′
i)µi−µ′

i

(2n − p1 − c4)z1
4−c4(2

n − p2)z2
4

}
A

3
≥ ζ(ω). (55)

At inequality 1, we simply rewrite the numerator. Further, r ≥ s, as number of
distinct internal masking values is at most the number of distinct tweaks, and
S(tI) compresses to S(δI). So, using Proposition B.1, we can justify inequality
2. At inequality 2, for i ∈ {2, 3, 4}, ci(ω) > 0 if and only if r ≥ 2. Also, µ′

i ≤
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c1 + c2 + c3 ≤ p1 ≤ p1 + c4 and similarly µ′
i ≤ p2 for all i ∈ [r]. Furthermore,

µi ≤ c1+c2+c3+2c4 ≤ p1+z14 , and similarly µi ≤ p2+z24 . Also,
∑r

i=1 µi−µ′
i =

q4 = z14 + z24 − c4. Thus, A satisfies the conditions laid out in Proposition B.2,
and hence A ≥ 1. This justifies inequality 3.

We define ϵratio : Ω → [0,∞) by the mapping

ϵratio(ω) = 1− ζ(ω).

Clearly ϵratio is non-negative and the ratio of real to ideal interpolation proba-
bilities is at least 1 − ϵratio(ω) (using (55)). Thus, we can use the expectation
method to get

Advind-cca
LRW+(q) ≤

2q2

22n
+

13q4

23n
+

4q2

22n
Ex

(
c2+c3∑
i=1

η2c1+i

)
+ ϵbad. (56)

Let ∼1 (res. ∼2) be an equivalence relation over [q], such that α ∼1 β (res.
α ∼2 β) if and only if Xα = Xβ (res. Uα = Uβ). Now, each ηi random variable
denotes the cardinality of some non-singleton equivalence class of [q] with respect
to either ∼1 or ∼2. Let P1

1 , . . . ,P1
k and P2

1 , . . . ,P2
k′ denote the non-singleton

equivalence classes of [q] with respect to ∼1 and ∼2, respectively. Further, for
j ∈ [k] and j′ ∈ [k′], let nj = |P1

j | and mj′ = |P2
j′ |. Then, we have

Ex

(
c2+c3∑
i=1

η2c1+i

)
≤ Ex

 k∑
j=1

n2j

+ Ex

 k′∑
j′=1

m2
k′


≤ 4q2ϵ1. (57)

where the first inequality follows from linearity, and the second inequality follows
from Lemma D.3. Theorem 6.1 then follows from (49), (56), and (57). ⊓⊔

H Proofs Related to LRW+ Instances

H.1 Proof of Corollary 6.1

It is obvious that KG is a PISM and HHH is 0-AUHF. The result then follows from
Theorem 6.1, once we establish that H̃HH1 and H̃HH2 are (2n − 1)−1-AUTPFs. We

derive the AUTPF bound for H̃HH1, and the corresponding bound for H̃HH2 can be
derived analogously.

Fix two arbitrary distinct pairs (t,m) and (t′,m′) ∈ {0, 1}n × {0, 1}n, and
let X1 = m, X′

1 = m′, Yi−1 = πππ′
i−1(Xi−1), Xi = t ⊕ Yi−1, Y

′
i−1 = πππ′

i−1(X
′
i−1),

and X′
i = t′ ⊕ Y′

i−1, for 2 ≤ i ≤ r′ − 1.
Observe that, (t,m) ̸= (t′,m′) implies that (Xi,Xi+1) ̸= (X′

i,X
′
i+1), and t = t′

implies Xi ̸= X′
i, as i-LRW1 is a tweakable permutation, for all i ≤ [r′ − 1]. Let

δ = t⊕ t′. We have

Pr
(
H̃HH1(t,m) = H̃HH2(t

′,m′)
)
= Pr (Xr′ = X′

r′)
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1
≤ Pr

(
Xr′ = X′

r′ | Xr′−1 ̸= X′
r′−1

)
= Pr

(
Yr′−1 ⊕ Y′

r′−1 = δ | Xr′−1 ̸= X′
r′−1

)
2
≤ 1

2n − 1
,

where inequality 1 follows from the aforementioned observation, and inequality
2 follows from the fact that Yr′−1 is chosen uniform at random from a set of size
(2n − 1) conditioned on all other variables. ⊓⊔

H.2 Proof of Corollary 6.2

As in the case of r-LRW1, it is sufficient to show that H̃HH1 is an ϵ-AUHF. The
result then follows from Theorem 6.1.

Fix two arbitrary distinct pairs (t,m) and (t′,m′) ∈ {0, 1}τ × {0, 1}n, and
let X1 = m ⊕HHH′

1(t), X
′
1 = m′ ⊕HHH′

1(t
′), Xi = HHH′

i−1(t) ⊕HHH′
i(t) ⊕ πππ′

i−1(Xi−1), and

X′
i = HHH′

i−1(t
′)⊕HHH′

i(t
′)⊕ πππ′

i−1(X
′
i−1), for 2 ≤ i ≤ r′ − 1. Define

Z := HHH′
r′−1(t)⊕HHH′

r′−1(t
′)⊕ πππ′

r′−1(Xr′−1)⊕ πππ′
r′−1(X

′
r′−1)

Note that the two outputs collide only if t ̸= t′. Then, we have

Pr
(
H̃HH1(t,m) = H̃HH2(t

′,m′)
)
= Pr (Xr′ = X′

r′)

= Pr
(
HHH′

r′(t)⊕HHH′
r′(t

′) = Z
)
≤ ϵ,

where the inequality follows from the ϵ-AXUHF of HHH′
r′ once we condition on Z.

This completes the proof. ⊓⊔
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