
Post-Quantum Asynchronous Remote Key Generation for FIDO2
Account Recovery

Jacqueline Brendel

Technical University Darmstadt

jacqueline.brendel@tu-darmstadt.de

Sebastian Clermont

Technical University Darmstadt

sebastian.clermont@tu-darmstadt.de

Marc Fischlin

Technical University Darmstadt

marc.fischlin@tu-darmstadt.de

ABSTRACT
The Fast IDentity Online (FIDO) Alliance develops open standards

to replace password-based authentication methods by token-based

solutions. The latest protocol suite FIDO2 provides such a promising

alternative which many key players have already adopted or are

willing to. The central authentication mechanism WebAuthn uses

cryptographic keys stored on the device to authenticate clients to a

relying party via a challenge-response protocol. Yet, this approach

leaves several open issues about post-quantum secure instantiations

and methods for recovery of credentials.

Recently Frymann et al. (CCS 2020, ACNS 2023, EuroS&P 2023)

made significant progress to advance the security of FIDO2 sys-

tems. Following a suggestion by device manufacturer Yubico, they

considered a WebAuthn-compliant mechanism to store recovery

information at the relying party. If required, the client can recover

essential data with the help of a backup authenticator device. They

analyzed the Diffie-Hellman based scheme, showing that it provides

basic authentication and privacy features. One of their solutions

also provides a post-quantum secure variant, but only for a weaker

version of authentication security.

Our starting point is to note that the security definitions of Fry-

mann et al., especially the privacy notion, do not seem to capture

real threats appropriately. We thus strengthen the notions. De-

spite this strengthening, we show a generic construction based

on (anonymous) KEMs and signature schemes. It follows that, us-

ing post-quantum secure instances, like Kyber and Dilitihium, one

immediately obtains a post-quantum and strongly secure solution.

KEYWORDS
FIDO2, Webauthn, post-quantum, account recovery, multifactor

authentication

1 INTRODUCTION
FIDO2 encompasses a set of pioneering industry standards for pass-

wordless authentication on the web [4, 15]. The approach replaces

passwords by a sophisticated combination of public-key cryptogra-

phy and so-called authenticators (e.g., smart phones or dedicated

security keys). The authenticator is the (hardware) device holding

the secret key material used for authentication. The client is the

device which a user is using to authenticate themselves towards a

service, and the relying party is the service which wants to confirm

the user’s identity. For example, if a user is logging into its Google

Account using its computer with a Yubico FIDO2 key, then the

Yubico FIDO2 key is the authenticator, its computer is the client,

and Google is the relying party.

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

In a FIDO2 authentication ceremony, users authenticate them-

selves by proving that they control the key of a previously-registered

public key credentials. This is done by having the authenticator

produce a valid cryptographic signature on a challenge and asso-

ciated data, issued by the relying party. The set of cryptographic

information required by a user is referred to as FIDO2 credential or

as a passkey [23].

Post-Quantum Efforts. Migrating the FIDO2 set of standards to

a post-quantum setting is an ongoing effort. The latest protocol

suite FIDO2 was recently analyzed cryptographically [1] and with

formal methods in [12], with extensions of the results in terms of

capturing other protocol versions and modes, as well as advanced

security features, in [3, 13]. In particular, [13] discusses privacy

features and a protocol modification via blockchains to achieve re-

vocation. The work by Bindel et al. [3] analyzes a full post-quantum

instantiation of the latest iteration of the FIDO2 standards CTAP 2.1

and WebAuthn 2. While requiring minor extensions to the protocol,

the instantiation provided is provably secure. This shows that the

functionality of the FIDO2 protocol family can be achieved securely

without any classical hardness assumptions. The post-quantum

security of the underlying protocol provides the foundation for our

extension to include backup mechanisms withstanding quantum

adversaries, too.

Recent work by Frymann et al. [8] provides an alternative generic

instantiation of ARKG which also achieves post-quantum security.

Their core building block are split-KEMs, first introduced by Bren-

del et al. in [5]. Unfortunately, the instantiation of such split-KEMs

from lattice primitives is not well researched yet. While the original

authors, as well as Frymann et al., provide instantiations based on

Kyber and Frodo, they only achieve the weakest security notion

for split-KEMs, nn-IND-CCA. This does not allow for ARKG in-

stantiations achieving resilience against adaptive attackers. Our

solution uses only well-established building blocks while achieving

all relevant security goals.

1.1 Authentication Recovery
Involving authentication on a device such as a smart phone imper-

atively requires to consider the possibility to transfer or recover

login credentials.

For the secure recovery of symmetric secrets, mechanisms such

as Signal’s Secure Value Recovery or Apple’s Secure iCloud Key-
chain Recovery. These protocols rely on a low-entropy recovery PIN

created by a user which encrypts a high-entropy key stored on a

distributed HSM. This high-entropy key is used for the encryption

of the users secrets. Recovery of the high-entropy key is governed

by the HSM, which only allows for a limited amount of retries to

prevent brute-force attacks. This approach is unsatisfactory, as the

entire security relies on a low-entropy PIN chosen by a users and

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

requires trust in cloud vendors to handle the encryption secrets as

promised.

Dedicated hardware authenticators, such as FIDO2 devices, usu-

ally generate their cryptographic secrets locally and do not allow for

their extraction from the device. This renders the aforementioned

approach unusable.

There are two scenarios for thee migration of hardware authen-

ticators. One is the graceful transition from an old device to a new

one, when the previous authentication data is still accessible. The

other, more challenging situation occurs in case of lost, stolen, or

broken authenticators when the original credentials are no longer

available.

A hardware-based solution to the loss of devices is to use multi-

device credentials, as suggested for instance by the FIDO2 Alliance

[23]. Multi-device credentials are not constrained to the physical

authenticator they were generated on, but can be copied across a

user’s devices to ensure a consistent login experience. This straight-

forwardly solves the recovery problem, as a user can have multiple,

functionally identical authenticators. In case one of them is lost, a

new authenticator can be acquired and the multi-device credentials

can be synchronized to this new authenticator. While this is an

easy-to-use approach, it does come with numerous security draw-

backs. First of all, revocation of a lost authenticator is not possible,

as all authenticators behave identically. Then, a user can never be

certain of being sole owner of their private key, as it might have

been copied to a different device without his knowledge or con-

sent, since hardware binding is impossible in this setting. Lastly,

for some high-security use cases, the relying party may insist on

single-device passkeys.

As a manufacturer of hardware security devices, Yubico takes the

stance that allowing secret material to leave the security devices is

an inherent weakness to the system and should be avoided [14]. As

a result, Yubico does not support the creation of multi-device FIDO2

passkeys and strictly follows a one-device one-credential approach.

Hence, in order to deal with lost or broken devices, Yubico suggests

an alternative approach with so-called backup authenticators. Ba-

sically, such a backup authenticator is a hardware device which

is initialized once (creating a cryptographic key pair), but then

goes offline and is disconnected from any subsequent interactions,

similar to a cold wallet. The (single-device) authenticator uses the

backup authenticator’s public key to store some protected recovery

information at the relying party when registering. Only if recovery

should take place, the secret key of backup authenticator can be

used to extract the authentication data from the externally stored

recovery information. Note that, unlike Google’s Authenticator, the

externally stored recovery information does not grant the relying

party access to the secrets; this is only possible when holding the

backup authenticator.

Yubico proposed a Diffie-Hellman based protocol for backup

authenticators. The proposal has been analyzed by Frymann et

al. [6] under the term asynchronous remote key generation (ARKG).

Frymann et al. also gave alternative protocols based on pairings

[10] and a proposal how one could achieve a post-quantum secure

version [9] based on split KEMs [5]. These works are the starting

point of our approach.

1.2 Security Notions for Backup Authenticators
The idea of backup authenticators as proposed in combination with

the ARKG protocol is not part of the FIDO2 standard at this time and

as such has no established security definitions. Frymann et al. [6] de-

fine two security notions for ARKG protocols. One is authentication

security, called secret-key security or simply key security, which

says that the adversary cannot get hold of the secret key of honest

users. This notion comes in slightly different flavors, depending on

whether the adversary can communicate with the backup authenti-

cator or not (strong vs. weak), and whether the adversary needs to

attack a given public key or can attempt to fool the relying party

with a chosen public key (honest vs. malicious). The other property

is public-key unlinkability which should prevent relying parties to

link users via the backup authenticator’s public keys. This is cap-

tured by an indistinguishability notion where one learns a backup

authenticator’s long-term public key and either receives derived

keys under the long-term public key or independently generated

keys. The definitions in [6, 9, 10] all coincide.

Our first observation is that both security definitions are too

restrictive from our point of view to adequately capture threats.

Key security, as defined in [6], requires the adversary to find the

user’s secret key for a successful attack. However, authentication

in FIDO2 would already be broken if the adversary is able to forge

a signature under the user’s public key. This is similar to security

of signature schemes where the notion of existential unforgeability

is paramount, while the stronger requirement of key recovery is

often not considered.

As in the case of key security, the privacy definition of [6] gives

the adversary not enough power. The definition only gives the

adversary access to the backup authenticator’s public key in or-

der to distinguish. But relying parties, aiming to link users via the

the backup authenticator data, also store the recovery information.

Individual relying parties, and even more so colluding relying par-

ties, could potentially use the recovery data to identify users. Such

attacks are currently not captured in the public-key unlinkability

model in [6].
1

1.3 Protocols for Backup Authenticators
Yubico’s orginal Diffie-Hellman based protocol [17] roughly lets the

backup authenticator and the primary authenticator each generate

the public part of a DH share. The primary authenticator stores its

public DH part as recovery information at the relying party. In case

of a recovery request the backup authenticator can compute the

joint DH key with the help of its secret DH part and the primary

authenticator’s externally stored recovery information. Note that

the primary authenticator also registers a separate key pair for

authentication.

The original Yubico proposal attached a message authentication

code (MAC) to the recovery information. This MAC allows to iden-

tify the relevant recovery credentials in case of a backup recovery,

so rather works as a checksum. In particular, the MAC does not

enter the security statements for key security nor for privacy. Nor

does it seem to give protection against malicious behavior, since the

1
For instance, in Google’s Authenticator case where the backup authenticator’s secret

is available to Google, it is very easy to distinguish different public keys, while given

only the public key as in the suggested experiment, it remains hard.

2

Post-Quantum Asynchronous Remote Key Generation for FIDO2 Account Recovery Conference’17, July 2017, Washington, DC, USA

MAC key is derived from the joint DH key, and can thus be easily

derived by an adversary injecting its DH share. The MAC appears

in all protocol versions, the initial discrete-log based solution [6],

the pairing based solution [10], as well as in the post-quantum

based approach [9].

The post-quantum ARKG protocol in [9] is based on the split key

encapsulation mechanism (KEM) approach in [5], and specifically

also on the LWE problem. Besides the aforementioned deficiency

with respect to the security model, the solution in the malicious key

security case is currently not substantiated by concrete schemes.

While the honest key security case only requires an IND-CPA secure

split KEM —which we know how to build— the malicious case

demands an IND-CCA secure split KEM —for which we currently

do not have promising candidates, as pointed out in [5]. Hence, it

remains unclear if one can actually derive post-quantum ARKG

protocols with regards to appropriate security models.

1.4 Our Contributions
We set off by giving stronger security notions for key security and

public-key unlinkability. For security we now only demand that

the adversary cannot produce signature forgeries under backup

keys and thus cannot register new keys on behalf of the user. For

public-key unlinkability we follow a left-or-right approach where

the adversary cannot decide to which of two backup keys generated

public keys and recovery information belong to. This extends the

previous definition to now also include the recovery data. In the

course of this we slightly adapt the names of the security properties

to authentication security and unlinkability, since the first property

does not protect the secret key anymore but prevents forgeries, and

the privacy property now also takes other available data beyond

the public key into account.

We then propose a protocol based on (ordinary) KEMs and signa-

ture schemes. The idea is to let the authenticator generate the key

pair of a signature scheme, encapsulate the key-generating random-

ness under the backup authenticator’s public key, and to store this

ciphertext externally at the relying party. In case of recovery, the

backup authenticator can retrieve the randomness and re-generate

the signing key.

As for our strongest notion of authentication security we need

IND-CCA security of the KEM and EUF-CMA of the signature

scheme (and pseudorandomness of an intermediate key deriviation

function for generating the key generation randomness from the

encapsulated KEM key). Note that these are standard properties

of schemes. In particular, we do not rely on split KEMs. Due to

the recent PQC standardization effort of NIST, appropriate can-

didates like Kyber [22] for the KEM and Dilithium [18], Falcon

[21], or SPHINCS+ [16] for the signature scheme exist. They are all

proven to satisfy the required security properties under reasonable

assumptions.

For our stronger notion of unlinkability we also draw on a prop-

erty called IND-CCA anonymity of the KEM scheme, meaning that

one cannot distinguish ciphertexts created under one public key

from ones created under another public key. This notions has re-

cently been considered in more detail for the case of post-quantum

schemes [11, 24]. Fortunately, the aforementioned Kyber KEM also

supports this property [20].

2 ASYNCHRONOUS REMOTE KEY
GENERATION

The primitive of Asynchronous Remote Key Generation (ARKG)

was first proposed by Frymann et al. in [6] in the context of Yubico’s

proposal to enable recovery of accounts protected by FIDO2 authen-

ticators in case of authenticator loss. Their initial instantiation in [6]

was based on elliptic curves, but since then a construction based

on pairings [9] and a post-quantum version based on lattices [10]

have been introduced.

2.1 Notation
We write 𝑦 ← Alg(𝑥) and 𝑦 ←$ Alg(𝑥) for the deterministic, resp.

probabilistic execution of an algorithm Alg on input 𝑥 with output𝑦.

We write prefix(𝑥) = 𝑦 to indicate that 𝑦 is a prefix of 𝑥 . We usually

assume classical algorithms for implementing schemes, with the

usual notion of efficiency if the algorithms run in polynomial-time

in the length of the security parameter 𝜆. Explicit randomness is

indicated in an algorithm’s input using a semicolon. For instance,

Sign(sk,𝑚; 𝑟) denotes the execution and outcome of the signing

algorithm with secret key sk on𝑚 when run with randomness 𝑟 .

We assume quantum polynomial-time (QPT) adversaries A and

say that the adversary is efficient if it runs in QPT in the security

parameter 𝜆. Since the honest parties use classical algorithms the

adversary can only interact classically with honest parties (Q1

setting). We write AO to denote that the adversary A has access

to the oracle O. We use the dot notation, denoted by ·, to represent

required input to an algorithm. For example, O(·, ·) denotes that
the algorithm O takes two input parameters.

We further use 𝑦 ← 𝑥 to denote the assignment of a value 𝑥

to a variable 𝑦. In security games we use ⟦expression⟧ to denote

boolean evaluation of an expression expression. The special symbol

⊥ shall denote rejection or an error, usually output by an algorithm;

in particular ⊥ ∉ {0, 1}∗.

2.2 Terminology
In the FIDO2 context, services are referred to as relying parties
(RP) to which users can authenticate via so-called authenticators.
For our analysis here, we identify a user with its authenticator(s)

and abstract away the client that sits between the authenticator

and the relying party. When ARKG is employed, authenticators are

split into two different classes: backup authenticators (BA), which
hold the long-term secrets (pkBA, skBA) and are used for account

recovery, and primary authenticators (PA) which derive (public)

keys pk′ and recovery information rec from the long-term public

key and are used to authenticate the user to relying parties.

2.3 Syntax
We now recall the notion of asynchronous remote key generation

schemes as introduced by Frymann et al. [6] but slightly change

notation of the involved algorithms to make it more aligned with

the intended purpose. We also consider ARKG schemes in the set-

ting of common parameters pp generated by the Setup algorithm.

We assume that the backup authenticator generates a key pair

(pkBA, skBA) via algorithm KGen. Key pairs for the authenticator

are denoted as (pk, sk) and are generated together with recovery in-
formation rec via algorithm DerivePK in such a way that allows the

3

Conference’17, July 2017, Washington, DC, USA Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

backup authenticator to recover the secret key with the help of skBA
via algorithm DeriveSK. The former algorithm has been denoted

as DerivePK in [6] and the latter DeriveSK. Both algorithms were

linked through an algorithm Check to identify matching public

and secret keys. We omit the latter here and assume that DeriveSK

re-establishes the correct secret key. Instead of calling the recovery

information a credential denoted by cred as in [6] we call it recov-

ery information, or rec, for short, resembling the externally stored

session resumption data in TLS.

Definition 2.1 (ARKG). A scheme for asynchronous remote key

generation, or ARKG for short, consists of four algorithms (Setup,
KGen,DerivePK,DeriveSK,Check) such that

Setup takes as input the security parameter 𝜆 in unary and outputs

the public parameters, i.e., pp← Setup(1𝜆).
KGen takes as input the public parameters pp and output a pub-

lic/secret key pair (pkBA, skBA) ←$ KGen(pp) for the backup
authenticator.

DerivePK takes as input the public parameters pp, a public key
pkBA and auxiliary information aux2 and outputs a derived

public key pk′ and associated credential information rec, i.e.,
(pk′, rec) ←$ DerivePK(pp, pkBA, aux) .

DeriveSK takes as input the public parameters pp, a secret key

skBA and recovery information rec. It outputs either a secret key
sk′, i.e., sk′ ← DeriveSK(pp, skBA, rec), or the dedicated sym-

bol ⊥, in case no valid sk′ can be computed for pk′ associated
with rec.

Check takes as input a public-secret key pair (pk, sk) and returns 1
if (pk, sk) forms a valid public/secret key pair, and 0 otherwise.

We say that an asynchronous remote key generation schemeARKG =

(Setup,KGen,DerivePK,DeriveSK,Check) is 𝜖-correct, if for all 𝜆
and pp ← Setup(1𝜆) and (pkBA, skBA) ←$ KGen(pp), and auxil-

iary information aux we have Pr [Check(pk′, sk′) = 0] ≤ 𝜖 where

we have (pk′, rec) ←$ DerivePK(pp, pkBA, aux) as well as sk′ ←
DeriveSK(pp, skBA, rec).

If the scheme is 𝜖-correct for 𝜖 = 0 then we say that the scheme

is (perfectly) correct.

Frymann et al. include the algorithm Check(pk, sk) as part of
their ARKG syntax, which is necessary to define correctness in the

ARKG setting. In public-key cryptography, you can always leverage

the randomness that went into key generation to implement such

a check. That is, we define the secret key to be the randomness

during key generation and, if required, reconstruct the actual secret

key by re-running key generation. Then one can easily check that

the public key matches given the randomness as secret key. Indeed,

our generic construction follows this approach, such that we do

not give a concrete instantiation of Check.
We defer the discussion of security properties of ARKG schemes

to Section 3.

Pairing

BA PA

pp← Setup(1𝜆)
(pkBA, skBA) ←$ KGen(pp) pkBA

Store(pkBA)

Registration

PA RP

Registration of WebAuthn credentials

ch←$ {0, 1}𝜆
ch

(pkauth, skauth) ←$ WebAuthn.KGen(𝜆)
(pkrec, rec) ←$ DerivePK(pp, pkBA, aux)
no signature on ch and pks since attestation type = none

pkauth, pkrec, rec

Store(pkauth, pkrec, rec)

Recovery

BA RP
Registration of WebAuthn credentials with Recovery extension

ch←$ {0, 1}𝜆ch, rec

skrec ← DeriveSK(pp, skBA, rec)
(pknew, sknew) ←$ WebAuthn.KGen(𝜆)
𝜎 ←$ Sign(skrec, ch∥pknew)

pknew, 𝜎

Vf (pkrec, 𝜎, ch∥pknew)
if verifies: revoke pkauth, pkrec

Figure 1: Simplified illustration how ARKG integrates into
WebAuthn registration flows

2.4 ARKG in the Context of FIDO2
As also mentioned by Frymann et al., the primitive of asynchronous

remote key generation may be applicable to use cases outside of ac-

count recovery for FIDO2. Most notably, privacy-preserving proxy

signatures with unlinkable warrants can be generically constructed

from ARKG [7]. For this paper, we focus on account recovery via

ARKG in the context of FIDO2 to allow for a meaningful analysis.

To substantiate our choice of security notions for ARKG, which

we will present in detail in the following Section 3, we briefly

describe how web authentication via WebAuthn in FIDO2 works

[15] and how ARKG fits into this flow. On a high level, the role of

the ARKG primitive within the context of FIDO2 account recovery

is two-fold:

(1) On the PA: To create a signature key pair and recovery informa-

tion from the BA’s long-term public key to register with relying

parties such that no interaction with the BA is necessary to do

so.

(2) On the BA: Use the long-term secret and the recovery informa-

tion from relying parties to derive a signing key to authenticate

to the respective relying party and recover account access.

2
We assume that in the context of FIDO2 account recovery as treated in this paper,

aux contains at least a unique identifier rpID that uniquely identifies for which relying

party the public key and credential are derived

4

Post-Quantum Asynchronous Remote Key Generation for FIDO2 Account Recovery Conference’17, July 2017, Washington, DC, USA

A simplified illustration of this is given in Figure 1, which we will

elaborate on briefly:

2.4.1 Pairing. At the beginning, asynchronous remote key genera-

tion requires that the backup authenticator is paired with a primary

authenticator.
3
During the pairing process, the long-term public

key pkBA of the backup authenticator is transferred to the primary

authenticator which stores it to derive keys from.

2.4.2 Registration. At some point, the primary authenticator then

begins to register credentials with relying parties. This registration

happens inside a secure channels since the user has logged into

the relying party via another authentication method, typically with

user name and password and has established a TLS connection to

the server of the RP.

In a “normal” WebAuthn registration, the relying party sends

a challenge value to the authenticator and the authenticator then

derives a key pair (pkauth, skauth) and sends pkauth to the relying

party. Depending on the chosen attestation type, the authenticator’s

response may also include a signature on a message with contains

(among other information) the challenge ch and the new public key

pkauth). The signature is established with the long-term secret key

that is embedded in the authenticator at production time. Since no

attestation is the proposed default, we choose to omit this signature

from our simplified illustration.

When the recovery extension is present, the primary authenti-

cator will also derive a recovery public key pkrec and recovery

information rec from pkBA via the ARKG algorithm DerivePK.

(pkrec, rec) are then also transmitted to the relying party.

WebAuthn authentication. From then on, the user can use its

primary authenticator with the secret skauth to sign WebAuthn

authentication challenges in a passwordless manner. ARKG is not

involved in this phase, thus we did not include it in the figure. As

usual, this happens via a challenge-response protocol in which the

relying party sends a challenge value to the user, and the user then

signs the challenge with the secret key stored on the authenticator.

The RP then verifies the signature with respect to the public key it

had received during registration. If the signature verifies, the user

is authenticated and is logged onto the service.

2.4.3 Recovery. While the primary authenticator acts as the “stan-

dard” authenticator of the user when signing in to services, the

backup authenticator comes into play should the user lose access

to its PA. Until that point the BA can be stored offline.

Note that the recovery process is a regular WebAuthn registra-

tion ceremony with the recovery extension. Thus, the flow is again

as in 2.4.2. When the recovery is triggered by the BA, the relying
party sends out a challenge ch to the authenticator along with re-

covery information rec for the user in question. The BA then uses

its long-term secret skBA to recover the derived secret key skrec
associated with rec. It then generates a new key pair (pknew, sknew)
to replace the lost (pkauth, skauth) and signs (among other infor-

mation) the new public key pknew and the challenge provided by

rec. It sends the new public key and the signature to the relying

party. The RP then verifies the signature with respect to its stored

3
We note that it is possible to pair any primary authenticator with multiple backup

authenticators, and vice versa. However, for ease of presentation we focus on the case

where a single PA is paired with a single BA.

information and if it verifies store the new public key and should

revoke the old credentials for authentication and recovery.

3 SECURITY OF ARKG SCHEMES
In this section we discuss the security properties of asynchronous

remote key generation schemes. When introducing the ARKG prim-

itive and in later works, Frymann et al. [6, 9, 10] described security

of ARKG schemes in terms of an adversary’s inability to recover a

derived secret key in various adversarial settings (honest/malicious,

weak/strong) and the unlinkability of derived public keys. The for-

mer aims to guarantee that an adversary is not able to successfully

complete the account recovery process without access to the secret

keys stored on the backup authenticator, whereas public-key un-

linkability shall ensure that users cannot be tracked across services

via their registered public-key credentials.

As explained in the introduction we choose to assume different

security properties which, we believe, capture the real-world setting

for ARKG usage in FIDO2 account recovery more adequately than

the ones in the original work. The formal definitions by Frymann

et al. [6] and a more in-depth comparison with our security notions

can be found in Appendix A.

In particular, we deem their key security notions to be too re-

strictive and switch to a notion based on the adversary’s (in)ability

to successfully authenticate to relying parties during the account

recovery process instead of the adversary’s (in)ability to recover

an entire secret key.

With regards to public-key unlinkability, we note that the def-

inition by Frymann et al., which states that derived keys are in-

distinguishable from randomly sampled keys, does not take the

adversary’s actual view during the execution of the protocol into

account. This omission gives a false sense of security: As we explain

in Appendix A, one can have ARKG schemes that provide public-

key unlinkability wrt. Frymann et al.’s definition that trivially link

derived public keys when employed in the envisioned setting.

But before we formally define our security properties for ARKG

schemes, we first state our basic assumptions on the adversary’s

power and capabilities.

3.1 Adversarial model
Recall that we assume a quantum polynomial-time (QPT) adver-

sary since our ARKG construction aims to provide post-quantum

security, interacting classically with the honest parties. Thus, we

cannot rely on classical hardness assumptions, however due to the

nature of the presented protocol, the QPT adversary does not get

to query any of the oracles in superposition.

We generally assume that authenticators are tamper-proof, i.e.,

they do not leak information on the secret keys stored on them,

even if they are in possession of the adversary. This assumption

was also made for the FIDO2 analysis by Barbosa et al. [1] and is

intuitively reasonable in our setting where we assume the primary

authenticator has been lost, i.e., may be in the hands of the adver-

sary. If (primary) authenticators leaked secret keys, the adversary

could immediately log into services and reset credentials such that

account recovery would not be possible anymore.

Frymann et al. [6, 9, 10] implicitly make this assumption in the

weak form of their key-security property of ARKG, where they do

5

Conference’17, July 2017, Washington, DC, USA Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

not provide the adversary with an oracle that outputs derived secret

keys for previously generated derived public keys. Nevertheless, we

do (optionally) provide the adversary with oracles that leak derived

secret keys to achieve stronger notions of security, analogous to

the strong version of Frymann et al.

We assume that the initial pairing between the backup authen-

ticator and the primary authenticator(s) is in a trusted stage such

that an adversary is not able to inject its own long-term public key

to the user’s primary authenticator. This is a reasonable assumption

since this pairing only happens once, is of short duration, and is

executed locally at the user with no information going over public

network channels.

Backup authenticators are typically offline and should only come

online during account recovery. Since we cannot rule out that an

adversary intercepts the user’s account recovery attempts, we do

nevertheless grant the adversary access to a signing oracle where

the BA’s long-term secrets are employed.

We assume that WebAuthn registrations (with extensions) are

secure against active adversaries [2]. In the context of ARKG this

is especially important for the registration procedure, where the

derived public keys and recovery information for account recovery

are transmitted from the PA to the relying party. If the adversary

were able to inject its own account recovery credentials here, all

is lost. It is reasonable to assume this interaction to happen over a

secure channel. Typically, upon registration of FIDO2 credentials,

a user has previously logged in to the service using other means of

authentication, e.g., with username and password and has estab-

lished an authenticated connection [1]. Thus, we assume that the

adversary remains passive during the registration of credentials

with a relying party. During the account recovery process, however,

the user is not authenticated to the relying party and no secure

channel exists. Thus, we allow the adversary to actively interfere,

i.e., it may drop, modify, or inject messages.

As usual for reliable authentication, we assume that public keys

are globally unique. This can be accomplished by including the rely-

ing party’s identity rpid and a unique user identifier (or pseudonym)

uid in the public key.

3.2 Authentication Security
Viewed merely from the cryptographic primitive level, the main

functionality of ARKG schemes is to derive public-secret key pairs

(pk′, sk′) along with additional recovery information rec from a

long-term public key pkBA such that sk′ can only be recovered with

knowledge of the long-term secret skBA. Frymann et al. [6] thus

describe the main security property of ARKG schemes as one where

an adversary may not be able to derive valid public-secret key pairs

(and recovery information) without knowledge of the long-term

secret key.

As elaborated in Section 2.4, ARKG schemes were originally

introduced to support account recovery in case of primary authen-

ticator loss in FIDO2 authentication procedures, i.e., in a challenge-

response-based protocol using digital signatures. Viewed in this

context, the main security goal of ARKG schemes should be the

adversary’s inability to create a valid response, i.e., a valid signature

on a given challenge value (and new public key credential) during

an account recovery procedure.

This paper defines a post-quantum instantiation of ARKG for

the explicit purpose of account recovery in FIDO2. We thus decide

to forgo Frymann et al.’s more general definition of security with

respect to key recovery and introduce a more tailored notion of

authentication security, or auth security, for short. We discuss the

differences between this notion, and the one given by Frymann et

al. in more detail in Appendix A.

Exp
s −auth

ARKG (A) :

1 pp← Setup(1𝜆)
2 Lkeys, Lch, Lsk′ , L𝜎 ← ∅;
3 (pkBA, skBA) ←$ KGen(pp)

4 (pk★, rec★, aux★,𝑚★, 𝜎★) ←$ ADerivePK,Chall-auth,Sign, LeakSK (pp, pkBA)
5 return ⟦(pk★, rec★, aux★) ∈ Lkeys ∧ ∃(ch, aux★) ∈ Lch : prefix(𝑚★) = ch ∧
Vrfy(pk★, 𝜎★,𝑚★) ∧ (rec★,𝑚★) ∉ L𝜎 ∧rec★ ∉ Lsk′ ⟧

DerivePK(pp, pkBA, ·) on input aux:

6 (pk′, rec) ←$ DerivePK(pp, pkBA, aux)
7 Lkeys ← Lkeys ∪ { (pk′, rec, aux) }
8 return (pk′, rec)

Chall-auth(·) on input aux:

9 ch←$ {0, 1}𝜆
10 Lch ← Lch ∪ { (ch, aux) }
11 return ch

Sign(·, ·) on input (rec,𝑚) :

12 sk′ ← DeriveSK(pp, skBA, rec)
13 if sk′ = ⊥: abort
14 𝜎 ←$ Sign(sk′,𝑚)
15 L𝜎 ← L𝜎 ∪ { (rec,𝑚) }
16 return 𝜎

LeakSK(·) on input rec:

17 sk′ ← DeriveSK(pp, skBA, rec)
18 Lsk′ ← Lsk′ ∪ {rec}
19 return sk′

ExpunlARKG (A) :

1 pp← Setup(1𝜆)
2 𝑏 ←$ {0, 1}
3 (pk0BA, sk

0

BA) ←$ KGen(pp)
4 (pk1BA, sk

1

BA) ←$ KGen(pp)
5 𝑏′ ←$ A1-Chall-u,LeakSK-u (pk0BA, pk

1

BA)
6 return ⟦𝑏 = 𝑏′⟧

1-Chall-u(·) on input aux:

7 (pk′, rec) ← DerivePK(pp, pk𝑏BA, aux)
8 sk′ ←$ DeriveSK(pp, sk𝑏BA, rec)
9 return (pk′, sk′, rec)

LeakSK-u(·) on input (𝛽, rec) :

10 if rec′ = rec: abort
11 sk′ ← DeriveSK(pp, sk𝛽BA, rec

′)
12 return sk′

Figure 2: Our security definitions for authentication (top)
and unlinkability (bottom) of ARKG schemes. The oracle

LeakSK in the experiment Exps−authARKG (A) (highlighted in gray)
gives a stronger form of authentication security in the

presence of secret key leakage.

Game description. The formal description of the authentication

game ExpauthARKG (A) can be found in the upper part of Figure 2. The

adversary A gets as input the public parameters pp and the long-

term public key pkBA from the backup authenticator BA. A then

has access to the oracles DerivePK, Chall-auth, and Sign, and

optionally, in the strong variant LeakSK.

The oracle DerivePK takes as input auxiliary data aux and de-

rives a public key pk′ and recovery information rec for the relying
party specified in aux from the long-term public key pkBA. This
simulates the honest generation of derived public keys and recov-

ery information on the primary authenticator PA when registering

with relying parties specified in the auxiliary data aux.
As they are by default not authenticated, account recovery pro-

cesses may be triggered by the adversary. Thus, A gets access to

6

Post-Quantum Asynchronous Remote Key Generation for FIDO2 Account Recovery Conference’17, July 2017, Washington, DC, USA

the challenge oracle Chall-auth, which takes as input auxiliary

data aux and outputs a uniformly random challenge value ch. This
challenge value corresponds to the challenges sent out by relying

parties specified via aux in the account recovery process. The ad-

versary eventually has to create a valid signature on a message

containing one of these challenges, more specifically on a message

𝑚 that starts with a challenge value and has not been queried to

Sign with respect to the secret key.

When it receives credential information rec, the backup authen-

ticator BA has no means to distinguish between credential informa-

tion that had been honestly generated by a primary authenticator

and credential information that the adversary sends to it. The BA
will simply use its long-term secret skBA to derive the secret key

sk′ and sign the response with it. Thus, we grant A access to an

oracle Sign which takes as input recovery information rec and a

message𝑚. The oracle then tries to derive a secret key sk′, and if it
fails will abort. If an sk′ was derived, it will then use it to generate

a signature on the provided message𝑚 and return the signature 𝜎 .

The optional LeakSK oracle models the leakage of derived secret

keys. The adversary may provide recovery information rec and the

oracle will return the output of DeriveSK, which is either ⊥ if the

derivation failed or the derived secret key sk′.
The adversary outputs (pk★, rec★, aux★,𝑚★, 𝜎★) wins the game

ExpauthARKG (A), or Exp
s−auth
ARKG (A), if LeakSK is present, if it is able to

produce a valid signature on a message containing the challenge

posed by a relying party. Valid here means:

• (pk★, rec★) was honestly generated for the relying party speci-

fied in aux★,
• there exists an honestly generated challenge ch for aux★ such

that ch is a prefix of𝑚★
,

• 𝜎★ is a valid signature on𝑚★
with respect to pk★,

• the adversary has not received a signature on𝑚★
with respect

to the secret key associated with rec★,
• and, if LeakSK is present, the secret key associated with rec★

has not been given to the adversary.

More formally,

Definition 3.1. Let ARKG = (Setup,KGen,DerivePK,DeriveSK)
be an asynchronous remote key generation scheme. We say that

ARKG is auth-secure, if for every QPT adversary A the advantage

in winning the game ExpauthARKG (A) described in the top of Figure 2,

defined as

AdvauthARKG,A (𝜆) :=
��� Pr [ExpauthARKG (A) = 1

] ���,
is negligible in the security parameter 𝜆.When replacing ExpauthARKG (A)
with Exps−authARKG (A), we say that ARKG = (Setup,KGen,DerivePK,
DeriveSK) is strongly auth-secure.

3.3 Unlinkability
Unlinkability aims to provide the requirement in the WebAuthn

standard [15] which recommends authenticators ensure that the

credential IDs and credential public keys of different public-key cre-

dentials cannot be correlated as belonging to the same user. We note

that this is a non-normative requirement, i.e., WebAuthn implemen-

tations that do not provide this unlinkability are still considered

as conforming to the standard. As mentioned in the beginning, we

also deviate from Frymann et al.’s definition for public-key unlink-

ability, which was based on the adversary’s inability to distinguish

derived from randomly sampled key pairs. In Appendix A.2, we

elaborate on the issue with their definition, as it allows to prove

ARKG schemes public-key unlinkable although they trivially link

public-key credentials when employed in account recovery.

In our definition, two long-term key pairs (pk0BA, sk
0

BA) and
(pk1BA, sk

1

BA) are generated and the public keys are given to the

adversary. A bit 𝑏 ←$ {0, 1} is sampled uniformly at random. The

adversary may once query auxiliary information of its choice to

the oracle 1-Chall-u. The oracle then derives public key pk′ and
credential information rec either from pk0BA (if 𝑏 = 0), or pk1BA (if

𝑏 = 1). It then derives the corresponding secret key sk′ and outputs
(pk′, sk′, rec) as challenge to the adversary. Note that with a stan-

dard hybrid argument one may lift this definition to a setting with

multiple challenges. Additionally, the adversary may learn derived

secret keys sk′ for credential information of its choice, where it can

also specify via a bit 𝛽 which of the long-term secrets sk𝛽BA shall

be used in the oracle’s internal DeriveSK call. Note that if secret

key derivation fails, DeriveSK outputs ⊥ and this is then returned

to the adversary as sk′. Of course, the adversary may not query its

challenge recovery information to the oracle LeakSK-u.

In the end, the adversary will output a bit 𝑏′, guessing whether

the challenge was derived from pk0BA or pk1BA. The adversary wins

if this guess is correct. More formally,

Definition 3.2. Let ARKG = (Setup,KGen,DerivePK,DeriveSK)
be an asynchronous remote key generation scheme. We say that

ARKG provides unlinkability, or isUNL-secure, for short, if for every
QPT adversaryA, the advantage inwinning the game ExpunlARKG (A)
described in the bottom of Figure 2, defined as

AdvunlARKG,A (𝜆) :=
��� Pr [ExpunlARKG (A) = 1

]
− 1

2

���,
is negligible in the security parameter 𝜆.

Note that Frymann et al. [6] in their (public-key) unlinkability

game compare genuinely generated public keys against indepen-

dently sampled ones. This requires to define a distribution on public

keys. We have opted here for the common left-or-right notion. In

principle we could also cover such real-or-random scenarios and for

the post-quantum KEM Kyber one could also achieve this notion.

The reason is that Kyber provides strong pseudorandomness under
CCA [24], as shown in [19]. A more detailled comparison between

the two different security models is provided in A.

4 POST-QUANTUM ASYNCHRONOUS
REMOTE KEY GENERATION

This section will introduce our instantiation for PQ-ARKG, built
from generic primitives and provide security proofs in the setting

discussed in Section 3. Choosing generic primitives for the instanti-

ation allows us to provide a general security proof independent of

the actual instantiation of the primitives. The result ensures ARKG
is secure within the specified scenario, as long as the underlying

primitives achieve the respective security properties.

7

Conference’17, July 2017, Washington, DC, USA Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

4.1 The PQ-ARKG scheme
In Figure 3 we provide the generic instantiation for all algorithms

required for an ARKG scheme. The key building blocks of the pro-

posed ARKG instantiation are key encapsulation mechanisms, digi-

tal signatures and key derivation functions, all of which allow for

multiple concrete instantiations believed to be resistant to a QPT
attacker with high confidence [16, 18, 21, 22].

Conceptually, the interactions that make up a full ARKG protocol

execution work as follows: During pairing, the BA generates a KEM
key pair, denoted as (pkBA, skBA), and transfers pkBA to the PA.

Pairing

BA PA

Setup (1
𝜆
)

return pp = (KEM,KDF, Sig)

KGen (pp)

(pkBA, skBA) ←$ KEM.KGen(pp)
pkBA

Registration

PA RP

DerivePK(pp, pkBA, aux) :
(𝑐, 𝐾) ←$ KEM. Encaps(pkBA)
𝑟 ← KDF(𝐾, aux)
(pk′, sk′) ← Sig.KGen(pp; 𝑟)
rec← (𝑐, aux) pk′, rec

Recovery

BA RP

WebAuthn registration with "recover" extension

rec
DeriveSK(pp, skBA, rec) :
(𝑐, aux) ← rec
𝐾 ← KEM.Decaps(skBA, 𝑐)
𝑟 ← KDF(𝐾, aux)
(pk′, sk′) ← Sig.KGen(pp; 𝑟)

Figure 3: Our PQ-ARKG instantiation from KEMs,
Signatures and KDFs

During registration, which is exclusively done by the PA, an en-

capsulation operation is performed under pkBA to obtain a random

key, which is then input to a KDF which outputs a random seed in

the desired format. This seed is then used to deterministically gen-

erate a new signature key pair (pk′, sk′). The ciphertext resulting
from the encapsulation operation is sent to the relying party for

safekeeping along with the newly derived public key pk′.
During recovery, the BA retrieves the ciphertext from the relying

party and performs a decapsulation operation to obtain the key used

as input to the KDF. By executing the PRF it obtains the seed used

for the key generation. This allows BA to regenerate the original

signature key pair, which critically includes the secret key sk′. As
a result, BA now has access to the same signing key pair as PA had

during the registration, without any direct communication from

PA to BA.
In short, we use KEM ciphertexts stored at the relying parties

to securely relay seeds for the creation of recovery credentials

between PA and BA.
A minor difference between the instantiation proposed in [6] and

in this work is the fact that the primary authenticator temporarily

has access to the full recovery key pair (pk′, sk′). Nonetheless, the
secret key material is immediately discarded by the primary authen-

ticator after the generation of pk′. This does not pose a security risk,
as the primary authenticator is also in possession of the primary

credentials used during regular FIDO2 sessions. Consequently, an

attacker with access to the primary authenticator’s internal secrets

could authenticate himself using a regular FIDO2 interaction while

completely disregarding the recovery extension.

The fact that recovery credentials are generated by the primary

authenticator but only ever used by the backup authenticator there-

fore also holds for our instantiation.

4.2 Security Analysis
We will now show that our instantiation achieves the two security

properties authentication security and unlinkability, which are

required from an ARKG instantiation.

4.2.1 Authentication Security. We first show security in the au-

thentication case where the adversary does not have access to the

LeakSK oracle to learn other derived keys. In this case IND-CPA

security of the KEM scheme suffices:

Theorem 1. Let ARKG be the generic instantiation of ARKG as

given in Figure 3, KEM be an IND-CPA secure KEM scheme, Sig
be an EUF-CMA secure signature scheme and KDF a secure key

derivation function modeled as a PRF. Then ARKG provides au-

thentication security as defined in Definition 3.1. More precisely,

for any QPT adversaryA against auth, there exist QPT algorithms

B1,B2 and B3 with approximately the same running time as A
such that

AdvauthARKG,A (𝜆) ≤ 𝑞 ·
(
AdvIND-CPAKEM,B1 (𝜆)

+ AdvPRFKDF,B2 (𝜆) + Adv
EUF-CMA

Sig,B3 (𝜆)
)

where 𝑞 is the maximum number of calls to the DerivePK oracle.

Proof. We will prove Theorem 1 using game hopping. We de-

note by AdvGamei
ARKG,A (𝜆) the advantage of the adversary in the cor-

responding game.

Game1 (𝜆): The original auth security game ExpauthARKG (A).
Game2 (𝜆): In this game we guess for which call of DerivePK the

adversary will output the forgery (pk★, rec★, aux★,𝑚★, 𝜎★) for
the key pk★ output by DerivePK. Note that, by definition, the

adversary must succeed for one of the keys in L
keys

. We denote

the number of oracle calls of A to DerivePK with 𝑞. Conse-

quently, the correct oracle call is guessed with a probability of

1

𝑞 and hence it follows that

AdvGame1
ARKG,A (𝜆) ≤ 𝑞 · AdvGame2

ARKG,A (𝜆) .
8

Post-Quantum Asynchronous Remote Key Generation for FIDO2 Account Recovery Conference’17, July 2017, Washington, DC, USA

Game3 (𝜆): In this game we modify the behavior of the DerivePK

algorithm for the execution guessed during the previous game:

The input to the KDF, which previously was a KEM ciphertext,

is replaced with a random value. This substitution takes place

in line 2 of the DerivePK algorithm (cf. Figure 3).

We show that any efficient adversaryA, which can distinguish

betweenGame2 andGame3 implies the existence of an efficient

adversary against the IND-CPA security of KEM. The reduc-

tion B1 receives the KEM challenge (pk∗, 𝑘∗, 𝑐∗) and initializes

ExpauthARKG (A) with pk∗ as pkBA.
During the execution of DerivePK that has been guessed in

Game2, algorithm B1 modifies the behavior of the algorithm

by plugging in its own challenge: In line 1 the challenge pk∗ is
used for encapsulation and the challenge key 𝑘∗ is used as input
to the KDF in line 3. The ciphertext output as a component of

rec is replaced with the ciphertext 𝑐∗ from the KEM challenge.

To simulate the SignOracle, the reduction keeps a list of derived

secret keys, which are also generated as part of the DerivePK

algorithm, but discarded during normal operation.Chall-auth

can be trivially simulated, as it has no secret inputs. Finally,

A terminates and outputs a guess b, which the reduction B1
outputs as its own answer to the KEM challenger.

Clearly, B1 perfectly simulates Game2 when the KEM chal-

lenge is real and Game3 when the KEM challenge is random.

Consequently, we obtain the following bound:

AdvGame2
ARKG,A (𝜆) ≤ AdvIND-CPAKEM,B1 (𝜆) + Adv

Game3
ARKG,A (𝜆) .

Game4 (𝜆): In this game the execution of the DerivePK algorithm is

further modified. The variable 𝑟 , which was previously assigned

the output of a KDF, is now sampled uniformly at random.

Any efficient adversaryA, able to distinguishGame3 andGame4
can be used to construct an efficient adversary B2 against the
security of the underlying KDF, whose security we model as

a PRF. The construction works similarly as in the previous

game hop. B2 initializes ExpauthARKG (A) for A as specified, but

modifies the behavior of the KDF used as part of the DerivePK

algorithm in line 2 (cf. Figure 3). Instead of directly invoking

the key derivation function, B2 forwards the input to the PRF
oracle provided by the PRF challenger.

The simulation of the other oracles works identically as in the

previous hop. Finally, A terminates and outputs a bit 𝑏, to

indicate whether it is playing against Game3 or Game4. B2
forwards this as its own output to the PRF challenger.

Clearly, B2 perfectly simulates Game3 if the oracle is an actual

KDF, and Game4 if the oracle is a random function. Thus, we

get the following advantage:

AdvGame3
ARKG,A (𝜆) ≤ AdvPRFKDF,B2 (𝜆) + Adv

Game4
ARKG,A (𝜆) .

Now we bound the last term on the right hand side. For this we

can construct a reduction B3, which uses an efficient adversary A
against Game4 as a subroutine and can efficiently win against any

EUF-CMA challenger with non-negligible probability. This allows

us to bound the advantage of any QPT adversary against Game4
by the EUF-CMA security of the underlying signature scheme.

The reduction B3 receives a challenge public key pk∗ and a sign-
ing oracle Sign from the EUF-CMA challenger. It then initializes

the game Game4 as specified, in particular it holds the backup au-

thenticator’s key pair (pkBA, skBA). During the query guessed in

the first game hop, it replaces the public key output by DerivePK

with the challenge public key pk★ = pk∗. Note that this also means

that this choice also determines the recovery information rec★. Re-
placing the public key by pk∗ is possible, as in Game4 the output
of DerivePK is completely independent of both the key derivation

function and the initial public key pkBA.
Queries by A to the Sign Oracle of the auth game for the value

rec★ can be forwarded to the outer Sign Oracle of the EUF-CMA

game by the reduction B3. Since DeriveSK is deterministic, the

signature oracle in the attack would recover exactly the secret key
to pk∗, such that using the external signing oracle is valid. Note

that signature queries for any other rec value can be answered with

the help of skBA, first recovering the derived key and then signing

the input message𝑚.

Ultimately, the inner adversary A terminates and outputs val-

ues (pk★, rec★, aux★,𝑚★, 𝜎★), where 𝜎★ is a valid signature under

the challenge public key pk∗ and an arbitrary message 𝑚★
. The

reduction can then output the message-signature pair (𝑚★, 𝜎★) as
its forgery. Per construction, this constitutes a valid forgery: The

only queries forwarded to B3’s external signing oracle are the ones
for rec★. Since the adversaryA can only win if (rec★,𝑚★) is not in
the list of signed pairs L𝜎 , it follows that𝑚★

must not have been

signed before in B3’s attack.
Consequently, the success probabilities of A and B3 are equal.

Thus we can conclude that

AdvGame4
ARKG,A (𝜆) ≤ AdvEUF-CMA

Sig,A (𝜆) .

To conclude the proof, we sum up the advantages:

AdvauthARKG,A (𝜆) ≤ 𝑞 ·
(
AdvIND-CPAKEM,B1 (𝜆)

+ AdvPRFKDF,B2 (𝜆) + Adv
EUF-CMA

Sig,B3 (𝜆)
)
.

□

Note that in the proof we have not used the requirement that

the forgery needs to be for a random challenge and for the right

format. The reason is that we presume existential unforgeability

of the signature scheme, such that even forgeries for arbitrary

messages should be infeasible. For practical purposes we would

only require the relaxed unforgeability notion but do not explore

this here further.

We next extend the proof to strong authentication security,

where the availability of the LeakSK oracle requires IND-CCA

security of the KEM:

Theorem 2. Let ARKG be the generic instantiation of ARKG as

given in Figure 3, KEM be an IND-CCA secure KEM scheme, Sig
be an EUF-CMA secure signature scheme and KDF a secure key

derivation function modeled as a PRF. Then ARKG provides strong

authentication security as defined in Definition 3.1. More precisely,

for any QPT adversaryA against auth, there exist QPT algorithms

B1,B2 and B3 with approximately the same running time as A
9

Conference’17, July 2017, Washington, DC, USA Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

such that

Advs−authARKG,A (𝜆) ≤ 𝑞 ·
(
AdvIND-CCAKEM,B1 (𝜆)

+ AdvPRFKDF,B2 (𝜆) + Adv
EUF-CMA

Sig,B3 (𝜆)
)

where 𝑞 is the maximum number of calls to the DerivePK oracle.

Proof. The proof is almost identical to the one for the IND-CPA

case. We only need to adapt the game hop to Game3, based on the

IND-CPA security of the KEM. Since adversary A now has access

to oracle LeakSK our reduction B1 needs to answer queries rec
to LeakSK without knowing the decryption key skBA of the KEM.

But since the adversary can only win if the forgery attempt rec★

does not lie in Lsk′ , reduction B1 can use the decryption oracle of

the IND-CCA security game of the KEM to answer these different

requests. The rest of the proofs remains unchanged. □

4.2.2 Unlinkability. We next discuss unlinkability of our scheme.

This follows from the fact that the KEM scheme is anonymous.

Theorem 3. Let ARKG be the instantiation of ARKG as given in

Figure 3 and KEM be an ANON-CCA secure KEM scheme. Then

ARKG provides unlinkability security as described in Definition 3.2.

More precisely, for any QPT adversaryA against unl there exists a
QPT algorithm B with approximately the same running time asA,

such that

AdvunlARKG,A (𝜆) ≤ AdvANON-CCAKEM,B (𝜆) .

Proof. We prove Theorem 3 using a direct reduction to the

ANON-CCA security of the underlying KEM. Let A be a QPT ad-

versary against unlinkability. We use A to construct an efficient

reduction, B, that uses A as a subroutine to win with against

ANON-CCA with non-negligible probability.

First, B receives the challenge set (pk
0
, pk

1
, 𝑐∗, 𝑘∗) as per the

ANON-CCA security definition (cf. Figure 7). Then, B forwards

(pk
0
, pk

1
) to the inner adversary A as (pk0BA, pk

1

BA). Next, A out-

puts aux to query the 1-Chall-u oracle. The reduction simulates

the behavior of 1-Chall-u as follows: During the execution of the

algorithm DerivePK (cf. Figure 3), the challenge key 𝑘∗ is used
as input to the KDF in combination with aux provided by the in-

ner adversary A. During the subsequent execution of Sig.KGen,
the reduction obtains the tuple (pk′, sk′). Lastly, it creates rec as
rec← (𝑐∗, aux). Then it returns (pk′, sk′, rec) to the inner adver-

sary. Queries to the LeakSK-u oracle can be answered byB with the

help of its own decapsulation oracle provided by the ANON-CCA

challenger; any query about the challenge value is immediately

rejected.

Finally, A outputs a bit 𝑏, which the reduction forwards as its

guess to the ANON-CCA challenger. Depending on the bit 𝑏 of the

ANON-CCA game, this perfectly simulates either the case where

the challenge bit of unl is sampled as 0 or 1.

We have constructed B in such a way, that it perfectly simulates

the unl game for A and its view depends only on the random bit 𝑏

chosen by the challenger. Consequently, the success probability of

the reduction is equal to that of the inner adversary, which yields

the following result:

AdvunlARKG,A (𝜆) ≤ AdvANON-CCAKEM,B (𝜆) .
□

4.3 Performance
Implementing ARKG in practice requires additional computational

capabilites and storage at both the relying party and the authentica-

tor itself. The overhead is completely dependent on the choices of

the underlying primitives. Figure 1 illustrates those requirements:

Additional storage is required at the authenticator to store the

backup authenticator’s public key and at the relying party which

has to store the public key of the recovery credential as well as

recovery information rec. Each regular registration of a FIDO2 au-

thenticator also requires an additional computational step, where

one KEM encapsulation and one KEM key generation is performed.

Pairing and recovery, which do not happen during regular opera-

tion, require a single KEM key generation and one decapsulation,

one KEM key generation and one sign operation, respectively. The

regular authentication routine is completely unaffected by the mod-

ification and should see no changes in performance.

With some viable options available for both KEMs and digital

signatures, several choices could be viable. For example, SPHINCS+

could be a viable signature choice due to its small key sizes, which

would be beneficial for the storage overhead at the relying parties,

however the recovery would take longer than with other options.

We leave the ideal tradeoff between storage and computational

costs as an open question for future work.

5 CONCLUSION
As elaborated before, asynchronous remote key generation is the

preferable approach for account recovery in comparison to multi-

device passkeys, especially in security-sensitive settings.

Using hardware authenticators comes with many security up-

sides, which are partially invalidated by opting for the simpler, but

less secure multi-device passkeys. In particular, an ARKG-based

solution is compatible with hardware-binding of secret key mate-

rial, such that full control over the authentication information is

retained at all time.

The primitive of asynchronous remote key generation as intro-

duced by Frymann et al. [6] proves useful to provide a mechanism

within FIDO2 to support account recovery in case of authenticator

less. While their original construction was based on the discrete-

logarithm assumption, further works [9, 10] have introduced in-

stantiations from lattices and pairings, respectively. In this work,

we have introduced a generic instantiation using key encapsulation

mechanisms and digital signatures, which is especially relevant for

the post-quantum setting and have proven it secure.

We have refined the security properties required of ARKG schemes

when employed in FIDO2 flows to capture real-world adversarial

capabilities. In particular, we fixed a shortcoming in Frymann et

al.’s definition of public-key unlinkability that falsely categorizes

schemes to be public-key unlinkable although they trivially link

keys. Furthermore, we no longer use a key security notion which

requires the adversary to output a full secret key to a notion of exis-

tential unforgeability of signatures. It is quite uncommon to require

the adversary to be able to recover entire secret keys in order to win

the games and, indeed, the challenge-response based FIDO2-setting

would already fail if an adversary were able to existentially forge a

signature.

10

Post-Quantum Asynchronous Remote Key Generation for FIDO2 Account Recovery Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. 2021.

Provable Security Analysis of FIDO2. In CRYPTO 2021, Part III (LNCS), Tal Malkin

and Chris Peikert (Eds.), Vol. 12827. Springer, Heidelberg, Virtual Event, 125–156.

https://doi.org/10.1007/978-3-030-84252-9_5

[2] Nina Bindel, Cas Cremers, andMang Zhao. 2022. FIDO2, CTAP 2.1, andWebAuthn

2: Provable Security and Post-Quantum Instantiation. (2022). Report Number:

1029, https://eprint.iacr.org/2022/1029.pdf.

[3] Nina Bindel, Cas Cremers, andMang Zhao. 2023. FIDO2, CTAP 2.1, andWebAuthn

2: Provable Security and Post-Quantum Instantiation. In IEEE Symposium on
Security and Privacy (SP). 674–693.

[4] John Bradley, Jeff Hodges, Michael B. Jones, Akshay Kumar, Rolf Lindemann,

Johan Verrept, Matthieu Antoine, Vijay Bharadwaj, Arnar Birgisson, Christiaan

Brand, Alexei Czeskis, Thomas Duboucher, Jakob Ehrensvärd, Mirko J. Ploch,

Adam Powers, Chad Armstrong, Konstantinos Georgantas, Fabian Kaczmar-

czyck, Nina Satragno, and Nuno Sung. 2022. Client to Authenticator Protocol

(CTAP). (June 2022). https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-

client-to-authenticator-protocol-v2.1-ps-errata-20220621.html.

[5] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas

Stebila. 2020. Towards Post-Quantum Security for Signal’s X3DH Handshake.

In SAC 2020 (LNCS), Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn

(Eds.), Vol. 12804. Springer, Heidelberg, 404–430. https://doi.org/10.1007/978-3-

030-81652-0_16

[6] Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg, MarkManulis,

and Dain Nilsson. 2020. Asynchronous Remote Key Generation: An Analysis of

Yubico’s Proposal for W3C WebAuthn. In ACM CCS 2020, Jay Ligatti, Xinming

Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, 939–954. https:

//doi.org/10.1145/3372297.3417292

[7] Nick Frymann, Daniel Gardham, and Mark Manulis. 2022. Unlinkable Delega-

tion of WebAuthn Credentials. In ESORICS 2022, Part III (LNCS), Vijayalakshmi

Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng (Eds.),

Vol. 13556. Springer, Heidelberg, 125–144. https://doi.org/10.1007/978-3-031-

17143-7_7

[8] Nick Frymann, Daniel Gardham, and Mark Manulis. 2023. Asynchronous Remote

Key Generation for Post-Quantum Cryptosystems from Lattices. Cryptology

ePrint Archive, Paper 2023/419. (2023). https://eprint.iacr.org/2023/419 https:

//eprint.iacr.org/2023/419.

[9] Nick Frymann, Daniel Gardham, and Mark Manulis. 2023. Asynchronous Remote

Key Generation for Post-Quantum Cryptosystems from Lattices. Cryptology

ePrint Archive, Paper 2023/419. (2023). https://eprint.iacr.org/2023/419, to appear

at EuroS&P 2023.

[10] Nick Frymann, Daniel Gardham, Mark Manulis, and Hugo Nartz. 2023. Gener-

alised Asynchronous Remote Key Generation for Pairing-based Cryptosystems.

Cryptology ePrint Archive, Paper 2023/456. (2023). https://eprint.iacr.org/2023/4

56, to appear at ACNS 2023.

[11] Paul Grubbs, Varun Maram, and Kenneth G. Paterson. 2022. Anonymous, Robust

Post-quantum Public Key Encryption. In EUROCRYPT 2022, Part III (LNCS), Orr
Dunkelman and Stefan Dziembowski (Eds.), Vol. 13277. Springer, Heidelberg,

402–432. https://doi.org/10.1007/978-3-031-07082-2_15

[12] Jingjing Guan, Hui Li, Haisong Ye, and Ziming Zhao. 2022. A Formal Anal-

ysis of the FIDO2 Protocols. In ESORICS 2022, Part III (LNCS), Vijayalakshmi

Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng (Eds.),

Vol. 13556. Springer, Heidelberg, 3–21. https://doi.org/10.1007/978-3-031-17143-

7_1

[13] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. 2022. Token meets Wallet:

Formalizing Privacy and Revocation for FIDO2. Cryptology ePrint Archive,

Report 2022/084. (2022). https://eprint.iacr.org/2022/084.

[14] Christopher Harell. 2022. YubiKeys, passkeys and the future of modern authenti-

cation. (03 2022). https://www.yubico.com/blog/passkeys-and-the-future-of-

modern-authentication/.

[15] Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay Kumar, Emil Lundberg, John

Bradley, Christiaan Brand, Adam Langley, Giridhar Mandyam, Nina Satragno,

Nick Steele, Jiewen Tan, Shane Weeden, Mike West, and Jeffrey Yasskin. 2021.

Web Authentication: An API for accessing Public Key Credentials - Level 3. (April

2021). https://www.w3.org/TR/webauthn-3.

[16] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,

Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja Lange,

Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,

Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and

Ward Beullens. 2022. SPHINCS+ . Technical Report. National Institute of Standards
and Technology. available at https://csrc.nist.gov/Projects/post-quantum-

cryptography/selected-algorithms-2022.

[17] Emil Lundberg and Dain Nielsson. 2019. WebAuthn Recovery Extension. (2019).

https://github.com/Yubico/webauthn-recovery-extension.

[18] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,

Gregor Seiler, Damien Stehlé, and Shi Bai. 2022. CRYSTALS-DILITHIUM. Technical

Report. National Institute of Standards and Technology. available at https://csrc

.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

[19] Varun Maram and Keita Xagawa. 2022. Post-Quantum Anonymity of Kyber.

Cryptology ePrint Archive, Report 2022/1696. (2022). https://eprint.iacr.org/2022

/1696.

[20] Varun Maram and Keita Xagawa. 2023. Post-quantum Anonymity of Kyber. In

PKC 2023, Part I (LNCS), Alexandra Boldyreva and Vladimir Kolesnikov (Eds.),

Vol. 13940. Springer, Heidelberg, 3–35. https://doi.org/10.1007/978-3-031-31368-

4_1

[21] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-

shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and

Zhenfei Zhang. 2022. FALCON. Technical Report. National Institute of Standards
and Technology. available at https://csrc.nist.gov/Projects/post-quantum-

cryptography/selected-algorithms-2022.

[22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède

Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,

and Jintai Ding. 2022. CRYSTALS-KYBER. Technical Report. National Institute
of Standards and Technology. available at https://csrc.nist.gov/Projects/post-

quantum-cryptography/selected-algorithms-2022.

[23] Andrew Shikiar. 2022. Charting an Accelerated Path Forward for Passwordless

Authentication Adoption. (03 2022). https://fidoalliance.org/charting-an-

accelerated-path-forward-for-passwordless-authentication-adoption/.

[24] Keita Xagawa. 2022. Anonymity of NIST PQCRound 3 KEMs. In EUROCRYPT 2022,
Part III (LNCS), Orr Dunkelman and Stefan Dziembowski (Eds.), Vol. 13277.

Springer, Heidelberg, 551–581. https://doi.org/10.1007/978-3-031-07082-2_20

A COMPARISON TO THE ORIGINAL
SECURITY DEFINITIONS

In the following, we review the security definitions of ARKG schemes

as proposed by Frymann et al. [6, 9, 10].

A.1 Key Security
Their notions for key security are based on the adversary’s inability

to output an entire valid secret key sk★ needed for account recovery.

We have depicted the strong and weak game description for SK-

security of [6] in the honest setting in Figure 4.

Exp𝑘𝑠ARKG,A (𝜆) :

1 pp← Setup(1𝜆)
2 Lkeys, Lsk′ ← ∅
3 (pk

0
, sk

0
) ←$ KGen(pp)

4 (pk★, sk★, rec★) ←$ A
Opk′ , Osk′ (pp, pk

0
)

5 sk′ ← DeriveSK(pp, sk
0
, rec★)

6 return ⟦(pk★, rec★) ∈ Lkeys ∧ Check(pk★, sk★) = 1 ∧ Check(pk★, sk′) =
1 ∧ rec★ ∉ Lsk′ ⟧

Opk′ (pp, pk0, ·) on input aux:

7 (pk′, rec) ←$ DerivePK(pp, pk
0
, aux)

8 Lkeys ← Lkeys ∪ (pk′, rec)
9 return (pk′, rec)

Osk′ (·) on input rec:

10 sk′ ← DeriveSK(pp, sk
0
, rec)

11 Lsk′ ← Lsk′ ∪ rec
12 if (·, rec) ∉ Lkeys : abort

13 return sk′

Figure 4: SK-Security as defined in [6] (honest variants).4

Honest vs. malicious security. For this security definition, the

term honest refers to the first requirement in Line 6 in Figure 4,

which enforces that (pk★, rec★) must be in L
keys

, i.e., that the tuple

was honestly generated via DerivePK. This same requirement is

mirrored in our check that (pk′, aux) ∈ L
keys

in Line 5 in Figure 2.

In the malicious setting, this requirement is dropped, thus giving

the adversary more leeway. However, Frymann et al. themselves

4
We note that the pseudocode descriptions of Opk′ and Osk′ have not been given

before and thus corresponds merely to our interpretation of the prose description. [6].

11

https://doi.org/10.1007/978-3-030-84252-9_5
https://eprint.iacr.org/2022/1029.pdf
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1145/3372297.3417292
https://doi.org/10.1145/3372297.3417292
https://doi.org/10.1007/978-3-031-17143-7_7
https://doi.org/10.1007/978-3-031-17143-7_7
https://eprint.iacr.org/2023/419
https://eprint.iacr.org/2023/419
https://eprint.iacr.org/2023/419
https://eprint.iacr.org/2023/419
https://eprint.iacr.org/2023/456
https://eprint.iacr.org/2023/456
https://doi.org/10.1007/978-3-031-07082-2_15
https://doi.org/10.1007/978-3-031-17143-7_1
https://doi.org/10.1007/978-3-031-17143-7_1
https://eprint.iacr.org/2022/084
https://www.yubico.com/blog/passkeys-and-the-future-of-modern-authentication/
https://www.yubico.com/blog/passkeys-and-the-future-of-modern-authentication/
https://www.w3.org/TR/webauthn-3
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://github.com/Yubico/webauthn-recovery-extension
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2022/1696
https://eprint.iacr.org/2022/1696
https://doi.org/10.1007/978-3-031-31368-4_1
https://doi.org/10.1007/978-3-031-31368-4_1
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://fidoalliance.org/charting-an-accelerated-path-forward-for-passwordless-authentication-adoption/
https://fidoalliance.org/charting-an-accelerated-path-forward-for-passwordless-authentication-adoption/
https://doi.org/10.1007/978-3-031-07082-2_20

Conference’17, July 2017, Washington, DC, USA Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

note in [9], that this may be “too strong for many applications”. In

particular, it is inadequate in the context of ARKG within FIDO2.

An adversary that can output a derived secret key to a public key

and credential that are not actually registered with any relying

party cannot successfully complete account recovery.

Weak vs. strong security. Frymann et al. have another dimension

of security in their definition, which they term weak and strong
security, respectively. The distinction is made along the presence of

the highlighted oracle Osk′ in Line 4 and the highlighted condition

rec★ ∉ Lsk′ in Line 6 in Figure 4. If it is present (the strong setting),

the adversary is required to output a valid secret key sk★ for a

pk′, rec★ for which it has not already learned a secret key via a

query to Osk′ . In the weak setting, the adversary may not learn

derived secret keys.

Delineation. We find that this notion of security does not capture

the real-world setting, where an adversary is already successful, if

it can forge a signature during the recovery process and thus gain

access to the user’s account. Our (strong) auth-security notion does

not require the adversary to output a valid secret key to win, it only

requires that the adversary can sign the challenge provided by the

relying party during the recovery mechanism. Analogously to the

relevant security results by Frymann et al., our definition aligns

with the honest setting, since an adversary can only be considered

successful in account recovery if it can convince a relying party

to successfully verify the signature with respect to the honestly

generated public key it has stored as recovery credential for the

user. With regards to the strong vs. weak setting of Frymann et al.

our auth definition operates in the middle grounds. In this version,

we do not provide an oracle that can leak derived secret keys to the

adversary. This is both due to the fact that FIDO2 authenticators are

considered to be tamper-proof,and that the backup authenticator

that is able to derive the secret keys never actually comes online

unless an account recovery is triggered. However, we do provide

the adversary with an interface to the secret-key operations on the

backup authenticator, i.e., a signing oracle. In the strong version of

our auth security, we provide the adversary with an LeakSK oracle

that leaks derived secret keys. But of course the adversary must

then forge with respect to a recovery for which the secret key was

not leaked.

A.2 Public-Key Unlinkability
Figure 5 gives a complete pseudocode description of the so-called

public-key unlinkability as proposed by Frymann et al. [6]. Essen-

tially, the adversary is given the long-term public key pkBA of a

backup authenticator and may then receive key pairs, which, de-

pending on a hidden bit 𝑏, are either derived from this long-term

public key or sampled independently from the key-pair distribution

D.

Issue with this definition. On its own, the above definition makes

sense to formalize that derived public keys do not leak from which

long-term public key they were derived. However, one can show

5
We note that the pseudocode description of O𝑏pk′ has not been given before and thus

corresponds merely to our interpretation of the prose description. [6]. In particular, it

is underspecified how aux in Line 7 is chosen. We would allow the adversary to give

aux as input to the oracle, but refrain from specifying this here.

Exp𝑝𝑘𝑢ARKG (A) :

1 pp← Setup(1𝜆)
2 (pk

0
, sk

0
) ←$ KGen(pp)

3 𝑏 ←$ {0, 1}

4 𝑏′ ←$ A
O𝑏
pk′ (pp, pk

0
)

5 return ⟦𝑏 = 𝑏′⟧

O𝑏pk′ (𝑏, pkBA, skBA) with no input:

6 if 𝑏 = 0

7 (pk′, rec) ←$ DerivePK(pkBA, aux)
8 sk′ ← DeriveSK(skBA, rec)
9 else

10 (pk′, sk′) ←$ D
11 return (pk′, sk′)

Figure 5: Public-key unlinkability as defined in [6].5

that an ARKG scheme that satisfies public-key unlinkability in

accordance with Frymann et al.’s definition, can output trivially

linkable keys. This is due to the fact that the definition above does

not take into account the actual information an adversary has as

its disposal.

During registration of derived public keys pk′, not only is pk′

sent over the wire, but also the credential information rec, which
the relying party also sends back over an insecure channel when

account recovery is triggered. This rec may contain pkBA: there
is nothing in the construction per se that forbids this. But then

public keys derived from this pkBA are all trivially linkable by the

adversary.

We want to stress that the linkability is not always as easy to spot

(or prevent) as in this example. Especially in the (post-quantum)

KEM setting it is not always guaranteed that schemes that provide

standard indistinguishably of ciphertexts do not leak information

on the public key for which the encapsulation took place. As we

show in our results, only KEMs that satisfy ANON-CCA security

do provide this guarantee and thus any KEM-based ARKG schemes

must ensure this property to provide unlinkability of derived public

keys in the presence of recovery information, which we term simply

unlinkability.

Delineation. We thus opted to define unlinkability as a game

where the adversary gets to see two long-term public keys pk0BA
and pk1BA and can as a challenge derive a public key and recov-

ery information with auxiliary information of its choice. Multiple

queries would also be easily supported due to a hybrid argument.

Furthermore, the adversary may query recovery information of its

choice (not the challenge) and let the oracle derive the secret key

either from sk0BA or sk1BA.

B DEFINITIONS
This appendixwill introduce definitions for common building blocks

used throughout this work.

B.1 Key Encapsulation Mechanisms
A KEM scheme is a public key based scheme to generate and com-

municate a shared secret over an unsecure channel. The primary

use case for KEMs is key establishment. KEMs are non-interactive,

meaning only one party can contribute randomness. The length of

the key as well as the ciphertext are dependent on the security pa-

rameter and can be expressed as Γ(𝜆) for the length of the key and

Θ(𝜆) for the length of the ciphertext. The receiving party cannot

influence on the key generation process and has to trust the generat-

ing party to use adequate randomness. A key encapsulation scheme

KEM consists of three algorithms KEM = (KGen, Encaps,Decaps).
12

Post-Quantum Asynchronous Remote Key Generation for FIDO2 Account Recovery Conference’17, July 2017, Washington, DC, USA

KGen is a probabilistic algorithm that takes the security param-

eter 𝜆 as input and probabilistically outputs a key pair (pk, sk).
Encaps is a probabilistic algorithm and takes as input a public key

pk, where pk ← KGen(1𝜆), and outputs a key 𝑘 as well as a ci-

phertext 𝑐 . The ciphertext 𝑐 encapsulates the key 𝑘 . Decaps is a

deterministic algorithm and takes a secret key sk and a ciphertext

𝑐 as input, outputting either a key 𝑘 or ⊥ to indicate failure.

Definition 1 (Correctness of KEM schemes). A key encapsula-

tion scheme KEM = (KGen, Encaps,Decaps) is 𝛿-correct, if for
all (sk, pk) key pairs output by the KGen algorithm the following

equation holds

Pr[Decaps(sk, 𝑐) = 𝑘 : (𝑐, 𝑘) ←$ Encaps(pk)] ≥ 1 − 𝛿
If 𝛿 = 0 holds, the scheme is called perfectly correct.

Security of a KEM scheme is defined over CPA indistinguisha-

bility of derived keys and random keys. A challenger is provided a

triple (pk, 𝑐, 𝑘𝑏), where 𝑐 is output by (𝑐, 𝑘) ← Encaps(pk) and 𝑘𝑏
is either sampled uniformly as {0, 1}Γ (𝜆) or the actual key, which
was output by the encapsulation algorithm. A challenger is suc-

cessful if it can decide whether the given 𝑘𝑏 is randomly sampled

or generated by the encapsulation algorithm with non-negligible

probability.

ExpIND-CPAKEM,A (𝜆) :

1 (pk, sk) ←$ KGen(1𝜆)
2 𝑘0 ←$ K
3 (𝑐, 𝑘1) ←$ Encaps(pk)
4 𝑏 ←$ {0, 1}
5 𝑏′ ←$ A(pk, 𝑐, 𝑘𝑏)
6 return ⟦𝑏′ = 𝑏⟧

ExpIND-CCAKEM,A (𝜆) :

1 (pk, sk) ←$ KGen(1𝜆)
2 𝑘0 ←$ K
3 (𝑐, 𝑘1) ←$ Encaps(pk)
4 𝑏 ←$ {0, 1}
5 𝑏′ ←$ AO𝐷𝑒𝑐 (·) (pk, 𝑐, 𝑘𝑏)
6 return ⟦𝑏′ = 𝑏⟧

O𝐷𝑒𝑐 (·) on input 𝑐 :

1 return Decaps(sk, 𝑐)

Figure 6: Game definition for IND-ATK security of Key
Encapsulation Mechanisms

Definition 2 (IND-ATK security of KEM schemes). Given the

security game in Figure 6, a key encapsulation scheme KEM =

(KGen, Encaps,Decaps) is IND-ATK secure for ATK ∈ {CPA,CCA},
if the advantage

AdvIND-ATKKEM,A (𝜆) := Pr

[
ExpIND-ATKKEM,A (𝜆) = 1

]
is negligible for any QPT adversary A

An additional property some Key Encapsulation Mechanism

(KEM) schemes achieve is anonymity. Intuitively, anonymity re-

quires that the ciphertext obtained during encapsulation does not

leak any information on the public key used during the encapsula-

tion operation.

Definition 3 (Anonymity of KEM Schemes). Given the security

game in Figure 7, a key encapsulation scheme KEM, is ANON-ATK

secure with ATK ∈ {CPA,CCA}, if the advantage

Advkem,A
ANON-ATK

(𝜆) :=
����Pr[ExpANON-ATKKEM,A (𝜆) = 1

]
− 1

2

����
is negligible for any QPT adversary A.

ExpANON-CCAKEM,A (𝜆) :

1 𝑏 ←$ {0, 1}
2 (pk

0
, sk

0
) ←$ KGen(1𝜆)

3 (pk
1
, sk

1
) ←$ KGen(1𝜆)

4 (𝑐∗, 𝑘∗) ←$ Encaps(pk𝑏)
5 𝑏′ ←$ AO𝐷𝑒𝑐 (pk

0
, pk

1
, 𝑐∗, 𝑘∗)

6 return ⟦𝑏 = 𝑏′⟧

O𝐷𝑒𝑐 (·, ·) on input 𝑖𝑑, 𝑐 :

1 if ⟦𝑐 = 𝑐∗⟧
2 return ⊥
3 𝑘 = Decaps(sk𝑖𝑑 , 𝑐)
4 return 𝑘

ExpANON-CPAKEM,A (𝜆) :

1 𝑏 ←$ {0, 1}
2 (pk

0
, sk

0
) ←$ KGen(1𝜆)

3 (pk
1
, sk

1
) ←$ KGen(1𝜆)

4 (𝑐∗, 𝑘∗) ←$ Encaps(pk𝑏)
5 𝑏′ ←$ A(pk

0
, pk

1
, 𝑐∗, 𝑘∗)

6 return ⟦𝑏 = 𝑏′⟧

Figure 7: Game definition for anonymity of key
encapsulation mechanisms

B.2 Digital Signatures
A digital signature scheme is a public-key scheme that can be used

to generate publicly verifiable signatures. It is defined as a triple of

PPT algorithms Sig = (KGen, Sign,Vrfy).
KGen takes as input the security parameter 𝜆 and outputs a key

pair (pk, sk). Sign takes as input a secret key sk and a message𝑚,

and computes a signature 𝜎 on the message𝑚. Vrfy is used to verify

signatures. It takes a input a public key 𝑝𝑘 , a signature 𝜎 and a

message𝑚. The output is 1, if 𝜎 is a valid signature for the message

𝑚 under the public key 𝑝𝑘 , otherwise it returns 0.

Definition 4. A digital signature scheme Sig = (KGen, Sign,Vrfy)
is correct, if

Pr

[
0← Vrfy(pk, 𝜎,𝑚) : (pk, sk) ←$ KGen(1𝜆), 𝜎 ←$ Sign(sk,𝑚)

]
is negligible in the security parameter 𝜆.

Security of signature schemes is defined over the notion of un-

forgeability. For the basic notion of existential unforgeability under

chosen message attack (EUF-CMA) we require an adversary with

access to a signing oracle to be unable to forge a signature for a mes-

sage not previously queried to the oracle. This notion is formalized

in the following definition

Definition 5 (EUF-CMA security of digital signature schemes).
Given the security game in Figure 8, a digital signature scheme

Sig = (KGen, Sign,Vrfy) is EUF-CMA secure, if

AdvEUF-CMA

Sig,A (𝜆) := Pr

[
ExpEUF-CMA

Sig,A (𝜆) = 1

]
is negligible for any QPT adversaries A.

ExpEUF-CMA

Sig,A (𝜆) :

1 (pk, sk) ←$ KGen(1𝜆)
2 L𝑚 ← ∅
3 (𝑚′, 𝜎 ′) ←$ AO𝑆𝑖𝑔𝑛 (sk,·) (pk)
4 return ⟦Vrfy(pk, 𝜎 ′,𝑚′) ∧𝑚′ ∉ L𝑚⟧

O𝑆𝑖𝑔𝑛 (sk, ·) on input𝑚:

1 𝜎 ←$ Sign(sk,𝑚)
2 L𝑚 ← L𝑚 ∪𝑚
3 return 𝜎

Figure 8: Game definition for EUF-CMA security of signature
schemes

13

Conference’17, July 2017, Washington, DC, USA Jacqueline Brendel, Sebastian Clermont, and Marc Fischlin

B.3 Key Derivation Function
A KDF is used to transform some non-uniformly distributed input

of arbitrary length into a fixed length key that can safely be used in

cryptographic schemes. We model its security as a PRF using the
following definition

ExpPRFKDF,A (𝜆) :

1 𝑏 ←$ {0, 1}
2 if 𝑏 = 1

3 𝑘 ←$ K, 𝑓 ← 𝐹 (𝑘, ·)
4 else
5 𝑓 ←$ { 𝑓 : {0, 1}𝜄 (𝜆) → {0, 1}𝜔 (𝜆) }
6 endif
7 𝑏′ ←$ AO(𝑓 ,·)

8 return ⟦𝑏′ = 𝑏⟧

O(𝑓 , ·) on input x:

1 return 𝑓 (𝑥)

Figure 9: Game definition for PRF security of KDFs

Definition 6 (PRF Security). Let 𝐹 : {0, 1}𝜅 (𝜆) × {0, 1}𝜄 (𝜆) →
{0, 1}𝜔 (𝜆) be an efficient keyed function with key length 𝜅 (𝜆),
input length 𝜄 (𝜆) and output length 𝜔 (𝜆). Given the security exper-

iment in Figure 9, a PRF is secure, if for all QPT adversaries A the

following holds

AdvPRF
F,A (𝜆) :=

����Pr[ExpPRFF,A (𝜆) = 1

]
− 1

2

����

14

	Abstract
	1 Introduction
	1.1 Authentication Recovery
	1.2 Security Notions for Backup Authenticators
	1.3 Protocols for Backup Authenticators
	1.4 Our Contributions

	2 Asynchronous Remote Key Generation
	2.1 Notation
	2.2 Terminology
	2.3 Syntax
	2.4 ARKG in the Context of FIDO2

	3 Security of ARKG Schemes
	3.1 Adversarial model
	3.2 Authentication Security
	3.3 Unlinkability

	4 Post-Quantum Asynchronous Remote Key Generation
	4.1 The PQ-ARKG scheme
	4.2 Security Analysis
	4.3 Performance

	5 Conclusion
	References
	A Comparison to the Original Security Definitions
	A.1 Key Security
	A.2 Public-Key Unlinkability

	B Definitions
	B.1 Key Encapsulation Mechanisms
	B.2 Digital Signatures
	B.3 Key Derivation Function

