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Abstract

In this work, we show that general non-interactive quantum commitments (allowing quan-
tum computation and communication) to classical messages are compatible with current-known
quantum-rewinding techniques. Specifically, we first propose a definition of collapse-binding
of quantum commitments which generalizes from its post-quantum counterpart and is shown
to work well with quantum rewinding. Then we show that thus defined collapse-binding is
equivalent to the conceivably minimal unique-message-binding. This in particular implies that
canonical quantum bit commitments are collapse-binding and can be used to instantiate many
cryptographic applications.

Additionally, we rephrase the flavor conversion of canonical quantum bit commitments as
a hardness conversion, which then can be used to establish a stronger quantum indistinguisha-
bility that works well with quantum rewinding just like in the post-quantum setting. Such
indistinguishability allows us to establish the security of the Goldreich-Kahan construction of
constant-round zero-knowledge proofs for NP instantiated with canonical quantum bit commit-
ments. We thus for the first time construct a constant-round (actually, four-round) quantum
computational zero-knowledge proof for NP based on the minimum complexity assumption that
is needed for the complexity-based quantum cryptography.
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1 Introduction

Commitment is an important primitive in cryptography [Blu83, Gol01]. Intuitively, one can view
the commitment as an electronic realization of an opaque box that can be locked with a key. A
commitment scheme prescribes two stages of the commitment, a commit stage and a reveal stage.
The commit stage corresponds to the sender sending an opaque box with the message to commit
locked in to the receiver, while the reveal stage corresponds to the sender sending the key to the
receiver to open the box and reveal the committed message. The scheme is hiding if any malicious
receiver cannot guess the committed message correctly with advantage significantly larger than a
random guess during the commit stage; this corresponds to that the box is opaque. The scheme
is binding if any malicious sender cannot open the commitment as two different messages in the
reveal stage; this corresponds to that the box is out of the sender’s reach (who thus cannot change
the message locked inside the box after it is sent).

Numerous cryptographic applications, notably zero-knowledge [Blu86, GMW91], can be based
on commitments. Unfortunately, unconditional commitments do not exist; as a compromise, we
can introduce computational complexity assumptions, studying computational commitments. In
complexity-based cryptography, commitments can be constructed from the minimum assumption,
i.e. one-way functions [IL89].

Turning to the quantum world, one natually tends to study quantum commitments, i.e. the
quantum realization (allowing both quantum computation and communication, which in particular
includes the classical realization as a special case) of commitments to classical messages secure
against quantum attacks.1 Unconditional quantum commitments are impossible either [May97,
LC98]; we can similarly study computational quantum commitments. One of the original motivation
for studying computational quantum commitment lies in its non-interactivity (i.e. just a single
message in both the commit and the reveal stage) [DMS00, KO09, KO11, YWLQ15, Yan22, BB21,
MY21, HMY22b], which is preferred in cryptography to reduce the round complexity [YWLQ15,
FUYZ22, Yan21].

Apart from its cryptographic applications, recent studies suggest that quantum commitment is
perhaps an even more fundamental notion than what one can see in the first place. Specifically, Yan
[Yan22] discovers that (canonical) quantum bit commitment (QBC) can be reformulated as two
equivalent quantum complexity-theoretic objects, EFI (named after [BCQ22]) and Uhlmann, which
may serve as the minimum assumption (rather than quantum-secure one-way functions [Kre21,
KQST22]) of the complexity-based quantum cryptography [Yan22, BCQ22]. Seeing from this,
QBC/EFI/Uhlmann may play an important role in MiniQCrypt [GLSV21] (the quantum analog of
Minicrypt in classical cryptography [Imp95]), as important as one-way functions in Minicrypt. The
relationship between QBC/EFI/Uhlmann and other candidate complexity assumptions proposed for
MiniQCrypt is studied in [MY22]. More interestingly, EFI is also found useful and important in
studying cosmology [Aar16, Bra22], and Uhlmann in quantum complexity theory [Aar16, MY23,
BEM+23].

In this work, we focus on cryptography. Seeing from the above, to explore MiniQCrypt, we
would like to base more cryptographic applications on quantum commitments. However, previous
studies indicate that this is not an easy job; simply using quantum commitments as the drop-in
replacement of classical commitments in existing cryptographic constructions does not imply their
quantum security immediately. Generally speaking, the difficulty of the quantum security analysis is

1Commitments to quantum states [GJMZ22], which are also of great interest, is not studied in this paper. We
will briefly discuss the relation between [GJMZ22] and this work in “Related work” subsequently, and then in greater
detail in Subsection 2.7.
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rooted in the adversary’s possible superposition attacks, which prevent us from extending classical
rewinding techniques to the quantum setting in a straightforward way [vdG97, Wat09, Unr12,
ARU14]. The similar difficulty even appears in the post-quantum security analysis (where post-
quantum commitments, i.e. classical commitments secure against quantum attacks, are used).

Fortunately, we still can devise several quantum rewinding techniques to prove the security of
many well-known constructions (or their variants) with post-quantum and even quantum commit-
ments plugged in, respectively [Wat09, Unr12, FUYZ22, CMSZ21, LMS21]. Before comparing the
corresponding post-quantum and quantum analysis and motivating this work, we point out that
many previous studies of quantum commitments in cryptographic applications focus on canonical
quantum bit commitments [YWLQ15, FUYZ22, Yan21], which does not lose much generality. This
is because canonical quantum bit commitments can be viewed as complete for quantum bit com-
mitments [YWLQ15, Yan22] and are easier to work with, just like the complexity class NP is often
studied through the lens of its complete language SAT.

Post-quantum vs. quantum analysis. Generally speaking, techniques for the post-quantum
and quantum analysis are very similar; most techniques devised for the former (often earlier) extend
to that of the latter. For example, Watrous’s quantum rewinding lemma for proving post-quantum
statistical/computational zero-knowledge [Wat09] and Unruh’s quantum rewinding lemma (Lemma
5) [Unr12, Unr16b] for proving post-quantum proof/argument-of-knowledge extend to the quantum
security analysis straightforwardly [YWLQ15, FUYZ22, Yan21] (and refer to Section 10.3 of this
paper). Though using similar techniques, however, post-quantum analysis often does not extend
to quantum analysis directly; the latter is usually harder and needs more care.

In particular, consider the security analysis based on the binding of post-quantum and quantum
commitments, respectively:

1. Statistical post-quantum analysis does not extend to quantum analysis straightforwardly
[YWLQ15, FUYZ22]. A framework for such an extension is provided in [FUYZ22, AQY21,
Yan22], also associated with several generic techniques to support this framework. Hence, the
question on how to do the quantum statistical analysis based on quantum statistical binding
is essentially settled.

2. Many computational post-quantum analysis (e.g. [Unr16b, CMSZ21, LMS21]) rely heavily
on a seemingly strong yet strange computational binding property known as collapse-binding
[Unr16b], which works well with several quantum-rewinding techniques and enables extrac-
tions. However, the straightforward generalization of collapse-binding to quantum commit-
ments [DS23, GJMZ22] (which will be referred to as single-opening collapse-binding in this pa-
per (Definition 7)) alone seems not so useful as its post-quantum counterpart in cryptographic
applications; reasons are referred to Section 2.1.2 Moreover, somewhat surprisingly, earlier
study [Yan21, Yan22, BCQ22] indicates that Blum’s zero-knowledge protocol [Blu86] and
some variants of the well-known quantum oblivious transfer protocol [CK88, BBCS91, Cré94]
instantiated with canonical computationally-binding quantum bit commitments can be proved
computationally secure, where the security is based on the honest-binding (a security only
against the semi-honest sender) of canonical quantum bit commitments. Hence, it is un-
clear what binding property of general quantum commitments is needed in cryptographic
applications, and what is the relationship between it and other binding properties.

2But combined with an abstract technical lemma in [GJMZ22], it could be useful in the quantum security analysis
[LMS23]. However, this point is not mentioned in [GJMZ22] and not obvious (in our opinion) seeing from there,
where only applications of commitments to more general quantum states are studied. More details are referred to
Section 2.7.
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The motivation of this work. Seeing from the above, we naturally ask the following question
that motivates the study in this work:

Can we identify any computational collapse binding property (or any other fancier bind-
ing properties) of (general) quantum commitments that is compatible with (currently-
known) quantum rewinding techniques and as useful as the collapse-binding of post-
quantum commitments in cryptographic applications?

If the answer to the motivating question above is affirmative, then we expect that the security
analysis based on the computational binding of quantum commitments can be done in a more
modular way than the one in [Yan21] (which seems ad hoc); we even expect that the security of
more well-known constructions instantiated with quantum computationally-binding commitments
can be established (e.g. [FS90, GK96]), answering an open questions raised in [Yan21].

We also hope that the complexity assumption for the construction of quantum computationally-
binding commitments can be as weak as possible, preferably no need of any structure (in contrast to
[Unr16a, Zha22]). In particular, w.r.t. canonical quantum bit commitments, does honest-binding
imply such (computational) binding property? If this is true, then it would be wonderful: quantum
commitments that are useful in applications and achieve the optimal round complexity (i.e. non-
interactive) can be based on the minimum complexity assumption for quantum cryptography!

Collapse-binding and the idea of collapsing. Intuitively, collapse-binding states that attack-
ing the sender of commitments by committing to a superposition only gains negligible advantage
over the attack by committing to the message that is distributed according to the probability distri-
bution obtained by collapsing this superposition.3 Collapse-binding is an extremely useful property
in post-quantum security analysis: it works well with quantum rewinding and enables extractions
[Unr16b, CMSZ21, LMS21]. Even for the quantum security analysis where collapse binding is
not explicitly mentioned, after a closer look, one can find that the analysis indeed involve the
idea of collapsing [Unr22]. For example, the commitment-measurement technique explicitly intro-
duces (hypothetical) collapses in the security analysis based on quantum perfect/statistical binding
[FUYZ22]; regarding the computation tree constructed in [Yan21], its root corresponds to the
committed superposition, while all its leaves correspond to strings distributed according to the
probability distribution obtained by collapsing this superposition.

Earlier study of (post-)quantum collapse-binding suggests that it seems to be stronger than
sum-binding [Unr16b] and collision-resistance (w.r.t. hash-based commitments) [ARU14]. And
constructions of post-quantum (computationally) collapse-binding commitments rely either on the
random oracle [Unr16b] or complexity assumptions with structures [Unr16b, Zha22].

Very recent study of collapse-binding shows that it is equivalent to a seemingly weaker binding
property [DS23]; in particular, w.r.t. post-quantum or quantum bit commitments, it is actually
equivalent to sum-binding [DS23, GJMZ22].

1.1 Our contribution

In this work, we answer the motivating question mentioned above affirmatively. In particular,
we identify a (computational) collapse-binding property of quantum commitments that extends
the (single-opening) collapse-binding [DS23, GJMZ22] and can be used similarly as that of post-
quantum commitments in the security analysis of cryptographic applications. What is more, we can

3When an arbitrary normalized superposition (or a unit vector) of the form
∑

s∈{0,1}n αs |s〉 is measured in the

computational basis, it will collapse to the state |s〉 with probability |αs|2.
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show that canonical quantum bit commitments already satisfy this desired collapse-binding prop-
erty. This implies that non-interactive quantum (computationally) collapse-binding commitments
can be based on the minimum complexity assumption for quantum cryptography.

Formally, we prove a more general equivalence theorem as stated below, which will imply what
we just mentioned above immediately.

Theorem 1 A general (non-interactive) quantum commitment scheme (with polynomial bounded
message space, or equivalently, logarithmic message length) is collapse binding if and only if it is
unique-message binding.

Our definition of collapse-binding and the proof of the equivalence theorem above build on many
ideas and techniques in the existing literature studying quantum and post-quantum commitments
and zero-knowledge, including but not limited to [Unr16b, FUYZ22, Yan21, CMSZ21, LMS21,
GJMZ22, DS23]. More detail is referred to “Technical overview”.

Now let us give some explanation to the unique-message binding mentioned in our equivalence
theorem. This binding property is firstly introduced in [LMS21];4 informally speaking, it guarantees
that any malicious sender cannot open the same commitment as two different messages sequentially.
Compared with collapse-binding, unique-message-binding (Definition 3) is closer to the intuitive
binding (i.e. the classical-style binding); it is conceivably the minimum binding property that any
useful quantum commitment should satisfy.

Implications on quantum (computational) binding. Since single-opening collapse-binding
is equivalent to sum-binding w.r.t. non-interactive quantum bit commitments [DS23, GJMZ22],
combined with our equivalence theorem, it follows that unique-message-binding, sum-binding, and
collapse-binding are all equivalent. (This holds even for interactive post-quantum bit commit-
ments; refer to “Generalization” subsequently.) In particular, restricting to canonical quantum
bit commitments, we observe that unique-message-binding is equivalent to honest-binding; hence,
honest-binding is equivalent to collapse-binding! This improves various known equivalences among
honest-binding, sum-binding, and single-opening collapse-binding [Yan22, DS23, GJMZ22].

Benefits. The benefit of our equivalence theorem is two-fold:

1. In constructing (non-interactive) quantum commitments (even interactive post-quantum com-
mitments), the equivalence theorem allows us to focus on the minimal unique-message-binding
(instead of collapse-binding) in the security analysis, which will greatly simplify the task both
conceptually and technically. Additionally, when specifying a (non-interactive) quantum com-
mitment scheme, we also only need to specify its unique-message-binding error (Definition
2); virtually all other binding (e.g. collapse-binding, sum-binding, and so on) errors can be
derived from the unique-message-binding error. And in the security analysis of cryptographic
applications, we will express the advantage achieved by the malicious sender of commitments
in terms of this binding error.

2. It guarantees that any (non-interactive) quantum commitment is collapse-binding. W.r.t.
cryptographic applications, this collapse-binding property enables quantum rewinding with
extractions. Combined with the unique-message binding, it allows us to use (non-interactive)
quantum commitments as the drop-in replacement of post-quantum commitments in crypto-
graphic applications, where the post-quantum security can be lifted to the quantum security

4They introduce unique-message binding w.r.t. post-quantum commitments; but their definition extends to general
quantum commitments straightforwardly (Definition 3).
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immediately. Actually, for this purpose, we prove a parallel composition lemma (Lemma 12),
a sequential composition lemma (Lemma 13), and culminate in proving a theorem (Theorem
4) that can be viewed as providing a general template for the security analysis based on the
binding of quantum commitments; refer to Section 10 and Appendix C for some examples.
Recall that using (non-interactive) quantum commitments can potentially reduce the round
complexity while weakening the complexity assumption simultaneously [FUYZ22, Yan21].

A comment on the message space. We note that though the message space is restricted to be
polynomially bounded in our equivalence theorem, in cryptographic applications, one can compose
the corresponding quantum commitment scheme in parallel to commit any messages whose length
is polynomially bounded (Lemma 12). However, this weakness of our equivalence theorem makes
it does not apply to succinct commitments [Unr16b, GJMZ22].

Generalization. Though our equivalence theorem is stated w.r.t. non-interactive quantum com-
mitments, it trivially extends to post-quantum commitments whose commit stage could even be
interactive but the reveal stage remains non-interactive (Theorem 3). Unfortunately, in a try to
extend it to general interactive quantum commitments, we will encounter a new difficulty. Refer to
“Technical overview” (Section 2) for more information about the generalization of our equivalence
theorem.

Constant-round quantum zero-knowledge proofs for NP. We rephrase the flavor-conversion
theorem for canonical quantum bit commitments [HMY22b, Yam22] as a hardness-conversion the-
orem (Theorem 8). Besides its independent interest in quantum complexity theory, it also finds an
interesting cryptographic application.

Specifically, combining the hardness-conversion theorem with the useless oracle lemma (Lemma
6) that was once used in proving our equivalence theorem, we can prove a stronger quantum indis-
tinguishability that is compatible with the new quantum rewinding technique [MW05, CMSZ21,
LMS21]. In turn, we show that the post-quantum security analysis for the Goldreich-Kahan con-
struction [LMS21] can be adapted to give a quantum security analysis. In particular, we prove the
following theorem:

Theorem 2 The Goldreich-Kahan construction [GK96] instantiated with canonical quantum bit
commitments is statistically sound and quantum computational zero-knowledge. Hence, assum-
ing the existence of canonical quantum bit commitments/EFI/Uhlmann, all NP languages have a
quantum computational zero-knowledge proof with just four rounds.

Note that the classical Goldreich-Kahan construction based on one-way functions is unlikely to
be of constant rounds; this is because classical constructions of statistically-hiding, computationally-
binding bit commitments seem need polynomial number of rounds [NOVY98, HNO+09, HHRS07].
Theorem 2 once again proves that with quantum constructions, we may reduce the round complexity
while weakening the complexity assumption simultaneously!

1.2 Related work

There are two recent works that are closely related to this one.

Comparison to [GJMZ22]. In [GJMZ22], commitments to more general quantum states are
studied, where a binding property called swap-binding is introduced there and proved useful in
cryptographic applications. One can view our study of collapse-binding as a special case of theirs:
we encounter similar difficulties, and to overcome which we use similar techniques; even some of our
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results can be derived from theirs [LMS23] (though in different ways). However, this does not mean
that our study is just a trivial specialization of theirs. Indeed, inspired by cryptographic applications
of quantum commitments, we come up with new definitions (e.g. Definition 8) that we believe are
useful; we also discover something new and exciting (Theorem 1) that can hardly be seen from
the more general study in [GJMZ22]. Moreover, in cryptographic applications where commitments
to classical messages (rather than quantum states) are sufficient, our study of collapse-binding
formalizes a template (Theorem 4) for the security analysis that will come in handy in the future.
A more detailed comparison between this work and [GJMZ22] is referred to Subsection 2.7 after
we give a technical overview of this work.

Comparison to [DS23]. It is shown in [DS23] that collapse-binding is equivalent to the so-called
chosen-bit-binding w.r.t. post-quantum commitments. This equivalence also extends to quantum
commitments, but only w.r.t. single-opening collapse-binding (Definition 7) that cannot be used in
cryptographic applications straightforwardly. Compared with our equivalence theorem (Theorem
1), for establishing equivalences, both of us use similar techniques, in particular Lemma 9. An
advantage of their equivalence than ours lies in that there is no restriction on the dimension of
the message space of commitment schemes. However, in our opinion, the main advantage of our
equivalence than theirs is that the unique-message binding is a more intuitive and important (its
importance in cryptographic applications is briefly discussed in Subsection 2.5) binding property
than the chosen-bit binding. Finally, we believe that there is a more direct way (not via collapse-
binding) to establish the equivalence between unique-message-binding and chosen-bit-binding when
the message space (of the commitment scheme) is polynomially bounded.

Organization

The remainder of this paper is organized as follows. In Section 2, we give a technical overview of
new definitions introduced in this work, as well as proofs of our main results. Section 3 provides
some preliminaries. In Section 4, we generalize unique-message binding to allow interactions be-
tween the malicious sender of commitments and the challenger in the corresponding experiments,
where in Section 5 we show that this generalization does not make the life significantly easier for
the malicious sender to win the experiment. Next in Section 6, we give a definition of collapse
binding of quantum commitments that is compatible with quantum rewinding, and we show that
it is equivalent to the unique-message binding in the Section 7. In Section 8 and 9, we prove
that thus defined collapse binding enjoys very nice composition properties. In Section 10, we es-
tablish the security of Blum’s zero-knowledge protocol and its variants instantiated with general
(non-interactive) quantum bit commitments. Later in Section 11, we prove a stronger quantum
indistinguishability that is compatible with quantum rewinding, and using which we establish the
security of the Goldreich-Kahan construction of zero-knowledge proofs for NP instantiated with
canonical quantum bit commitments. Finally, we conclude with Section 12.

2 Technical overview

2.1 The pursuit for a good definition of collapse-binding

Good definitions are important in cryptography. For post-quantum commitments, collapse-binding
is crucial in the security analysis of cryptographic applications [Unr16b, CMSZ21, LMS21]. How-
ever, its generalization to general quantum commitments is not straightforward. As noted in
[YWLQ15, FUYZ22, Yan21] and recent in [GJMZ22], the major difference between post-quantum
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and (general) quantum commitments lies in that the opening of the former is via some correlation
between the commitment and the decommitment, i.e. a check of some classical predicate; this can
be seen from the opening of any post-quantum commitment schemes, e.g. hash-based commit-
ment schemes [Unr16b]. In contrast, the opening of quantum commitments is via the entanglement
between the commitment and the decommitment; e.g., consider the reveal stage of canonical quan-
tum bit commitments [Yan22]. For this reason, the sender of post-quantum commitments can do
the commitment check by itself with just the decommitment after the commit stage.5 In con-
trast, the sender of quantum commitments cannot do the commitment check by itself with just the
decommitment simply because the commitment register has been sent out (thus out of its reach).

A naive try of generalizing collapse binding to general quantum commitments is to allow the
malicious sender to have direct access of the commitment register even after commitments are
sent. After some thoughts, it turns out that canonical quantum bit commitments (Definition 4)
cannot satisfy thus defined collapse-binding. In greater detail, consider the following attack of an
arbitrary canonical quantum bit commitment scheme (Q0, Q1)

6: the cheating sender may prepare
the superposition

1√
2

(
|0〉M ⊗Q0 |0〉CR + |1〉M ⊗Q1 |0〉CR

)
,

and then sends the commitment register C to the challenger. Later, the sender sends registers
(M,R) to the challenger to open the commitment; clearly, the challenger will accept with certainty.
But the two quantum states of registers (C,R,M) corresponding to whether the message register

M is measured or not by the challenger, i.e. 1/2
(
|0〉 〈0| ⊗Q0 |0〉 〈0|Q†0 + |1〉 〈1| ⊗Q1 |0〉 〈0|Q†1

)
and

1/
√

2
(
|0〉Q0 |0〉+|1〉Q1 |0〉

)
, respectively, are distinguishable. (Note that now the sender can access

the commitment register C directly.) Indeed, to distinguish them, the sender can first uncompute

the register pair (C,R) by performing Q†b controlled by the value b stored in the registerM, which
will disentangle the register pair (C,R) from the register M. Next, the sender can perform the
measurement which distinguishes quantum states 1/2(|0〉 〈0|+ |1〉 〈1|) and 1/

√
2(|0〉+ |1〉) to finish

the job. Actually, in earlier versions of [Yan22] where Yan informally argues that canonical quantum
bit commitments cannot be collapse binding, it is this naive definition of collapse binding that is
used.

However, after a closer look at the cryptographic applications where commitments are used (e.g.
[Yan21, CMSZ21, LMS21]), one will find that it would be sufficient to prove the security against
malicious senders of commitments who only have a very limited oracle access to the commitment
register [GJMZ22]; in particular, malicious senders can only access the commitment register by
performing verifications (i.e. binary measurements) that involve the check of opening commitments.
After restricting the malicious sender’s behavior, it is still possible that quantum commitments may
satisfy some collapse-binding property that could be useful in security analysis like its post-quantum
counterpart.

Actually, Gunn, Ju, Ma and Zhandry [GJMZ22] and independently Dall’Agnol and Spooner
[DS23] have already defined a collapse-binding property for quantum commitments. However, their
definition generalizes from Unruh’s post-quantum collapse-binding [Unr16b] in a straightforward
way without taking into account its direct cryptographic applications. Hence, this definition of
collapse-binding is not so useful in cryptographic applications as its post-quantum counterpart. In
this paper, we will refer to their definition of collapse-binding as single-opening collapse-binding
(Definition 7).

5The malicious sender will save classical messages exchanged during the commit stage.
6Here, we drop the security parameter for simplicity.
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In this work, based on the previous study, we propose a new definition of collapse-binding w.r.t.
quantum commitments, which seems the “right” one; we hope that it can play the similar role
as collapse-binding for post-quantum commitments. Specifically, our definition of collapse-binding
can be viewed as an extension of single-opening collapse-binding in two ways:

1. It allows the sender to access the commitment register via the challenger’s verification multiple
times in the experiment that defines collapse-binding. This can also be viewed as allowing the
sender to access the commitment register via some verification oracle, which is in the same
spirit as introducing a (unitary) oracle to swap-binding, obtaining the so-called oracle swap-
binding [GJMZ22]. Moreover, in our definition we explicitly quantify how many verifications
the challenger performs, in contrast to oracle swap-binding. This is very important, because
in the security analysis of cryptographic applications, the advantage achieved by the malicious
sender of commitments will depend on this quantity (Theorem 4).

2. The verifier’s verification is more general than just the commitment check. In greater detail,
following [FUYZ22, Yan21], the verification will be the “and” of the commitment check and an
additional predicate check. This will capture most verifications in applications, in particular
those in commit-and-open protocols.

Formally, our new definition of collapse binding is referred to Definition 8.
We note that in our try of formalizing collapse-binding above, we mainly focus on its crypto-

graphic applications. The remaining question is: do such quantum collapse-binding commitments
really exist based on plausible complexity assumptions? Of course, we hope that the underlying
assumption used is as weak as possible, and preferably the minimum one [Yan22, BCQ22].

2.2 An equivalence between collapse-binding and unique-message-binding

Our equivalence theorem (Theorem 1) answers the remaining question raised at the end of last
subsection affirmatively and almost optimally.

Our proof for the equivalence combines several previous results and techniques. Specifically,
from collapse-binding to unique-message-binding, we adapt the proof in the post-quantum setting
[LMS21] in a straightforward way; in particular, we show that single-opening collapse-binding
implies unique-message-binding (Lemma 8).

For the other direction, i.e. from unique-message-binding to collapse-binding, we use a technique
(Lemma 9) recently developed in [Zha22, CX22, DS23]. We actually prove that reversible multi-
verification unique-message-binding (Definition 6) implies collapse-binding (Lemma 10), where in
the experiment that defines the former the malicious sender of the commitment is allowed to access
the commitment register multiple times via the challenger’s verification that is similar to the one
introduced in the experiment that defines collapse-binding. The word “reversible” means that the
sender is also able to reverse its previous computation. We comment that the “polynomial message
space” restriction in our equivalence theorem (Theorem 1) comes from the proof of this direction.

Since collapse-binding implies single-opening collapse-binding trivially by definition, for the
equivalence we are left to show that the seemingly weaker unique-message-binding implies the
reversible multi-verification unique-message-binding, i.e. rounds collapse w.r.t. the unique-message
binding (Lemma 7). To this end, we extend a technical lemma proved in [GJMZ22, Lemma 6.8] to
our setting, which will be referred to as the useless oracle lemma. Basically, this lemma enables us
to show that allowing the sender to access the commitment register via any verification oracle will
not make the transforming task (i.e. breaking the unique-message binding) significantly easier.
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In summary, for our equivalence theorem we prove the following chain of implications: single-
opening collapse-binding implies unique-message-binding (Lemma 8), which in turn implies re-
versible multi-verification unique-message-binding (Lemma 7), which in turn implies collapse-
binding (Lemma 8), and which in turn implies single-opening collapse-binding (by definition).

2.3 Generalization

Note that another restriction (besides the polynomial message space) of our equivalence theorem
(Theorem 1) is that it only holds w.r.t. non-interactive quantum commitments. Though any
(interactive) quantum bit commitment scheme can be compiled into a non-interactive one of the
canonical form [Yan22], it might be still preferred to use the original scheme in settings where some
nice properties would have lost after the compilation. So it would be good if we can extend our
equivalence theorem to more general interactive quantum commitments.7

However, after a careful examination of our proof, it turns out that we will encounter a new
difficulty for a straightforward extension. In more detail, with non-interactive quantum commit-
ments, the sender can do the commitment check by itself before sending the commitment register
to the receiver. But for interactive quantum commitments, this becomes generally impossible. It is
this difference that prevents us from extending proofs of Lemma 7 and 8 to the interactive setting.

In spite of the above, it is very interesting to note that our equivalence theorem extends to
interactive post-quantum commitments (also with non-interactive reveal stage) trivially (Theo-
rem 3), by recalling that the sender of the commitment can do the commitment check by itself
(without interacting with the challenger) w.r.t. general (interactive) post-quantum commitments.
As an immediate corollary, the security analysis of many previous constructions of post-quantum
collapse-binding commitments (e.g. [Unr16b, Unr16a, Zha22]) can get simplified by just showing
unique-message binding with our equivalence theorem (as long as the message space is polynomially
bounded).

2.4 Composition

The actual collapse binding property that is really useful in quantum cryptographic applications
(Section 10 and Appendix C) is the one that is obtained from our definition by composing it first in
parallel (Lemma 12) and then in sequence (Lemma 13). Intuitively, the parallel composition allows
us to first commit to a long message (as long as of polynomial length) and later partially open the
commitments; the sequential composition allows us to extract information polynomial number of
times in the security analysis. Our sequential composition lemma can be viewed as an abstraction
of the security analysis where the hybrid argument is applied to handle multiple extractions (e.g.
[CMSZ21, LMS21]).

In the post-quantum setting, for the purpose of proving a parallel composition theorem w.r.t.
collapse binding, Unruh imposes an additional requirement on the atomic commitment scheme
[Unr16b].8 In contrast, by the virtue of the introduction of the predicate check to the definition of
collapse binding (Definition 8), this requirement is not necessary in our setting.

7Here, by “interactive” quantum commitments we mean those whose commit stage is interactive, whereas the
reveal stage is still non-interactive. Note that most commitment schemes in cryptography have non-interactive reveal
stage.

8Specifically, this additional requirement states that it is possible to find an accepting triple (c,m, u), where c is
the commitment, m the message, and u the opening/decommitment.
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2.5 Application

We first highlight that both collapse-binding and unique-message-binding of quantum commitments
are indispensable in security analysis of cryptographic constructions: the former enables quantum
rewinding with extractions, while the latter ensures the binding in the common sense, i.e. multiple
openings of the same commitment should reveal the identical message. Our analysis template (The-
orem 4) formalizes these two guarantees in a quantitative way that turns out to be really useful in
security analysis. Specifically, it gives a bound on the advantage that can be achieved by the ma-
licious sender of commitments in terms of the unique-message binding error of the atomic scheme,
the number of repetitions that the atomic scheme is composed in parallel, as well as the number of
verifications performed by the challenger (or equivalently, rounds of the interaction) in the corre-
sponding experiment. It in particular implies that the post-quantum security of commit-and-open
protocols can be lifted to the quantum security immediately when one uses (non-interactive) quan-
tum commitments as the drop-in replacement of post-quantum commitments within constructions.

Now let us briefly mention our applications. Combining collapse-binding with the quantum
rewinding lemma in [FUYZ22] (Lemma 4), we can prove the computational soundness of Blum’s
atomic zero-knowledge protocol for the NP-complete language Hamiltonian Cycle [Blu86] instanti-
ated with non-interactive quantum bit commitments (Section 10.1); we can even prove argument-
of-knowledge (w.r.t. Unruh’s definition [Unr12, Unr16b]) for almost the same protocol with a
slight modification (Section 10.2). The similar technique can also be used to show argument-
of-knowledge of the GMW atomic zero-knowledge protocol for the NP-complete language Graph
3-Coloring [GMW91] (Appendix C).

Combining collapse-binding with Unruh’s quantum rewinding lemma [Unr12] (Lemma 5), we
can show that the parallel composition of yet another variant of Blum’s atomic protocol can reduce
the knowledge error (w.r.t. Unruh’s definition) to be negligible (Section 10.3). Even more, using the
recent new quantum rewinding technique (a.k.a. alternative projection) [MW05, CMSZ21, LMS21],
the same protocol can also be shown argument-of-knowledge with guaranteed extraction (Section
10.4) (whose definition extends from its classical counterpart in a straightforward way [Gol01,
Section 4.6]). Unfortunately, it seems that even this argument-of-knowledge (with guaranteed ex-
traction) is still insufficient for the purpose of establishing the quantum security of the Fiat-Shamir
construction of constant-round zero-knowledge arguments [FS90]: the trick to handle possibly mul-
tiple witnesses in the post-quantum setting [LMS21] does not extend here. We can only prove its
quantum security for UP (rather than NP).

2.6 Constant-round quantum zero-knowledge proofs for NP

Our goal is to show the quantum security of the Goldreich-Kahan construction [GK96] instantiated
with canonical quantum bit commitments. Our analysis will be almost the same as its post-
quantum counterpart [LMS21], except that now we need to prove a technical lemma (Lemma 14)
whose post-quantum counterpart [LMS21, Lemma 13.1] does not extend here in an obvious way.

At a high level, we need to show that quantum indistinguishability is preserved even when
the distinghuisher is allowed to access a purification of the quantum state to distinghuish in a
limited way. Specifically, the distinguisher’s access will be given by an oracle which realizes the
binary measurement induced by the projection on this purification. The reason why we need such
a technical lemma is like that in the post-quantum analysis: it will enable us to apply the new
quantum rewinding technique [MW05, CMSZ21, LMS21].

However, we will prove this technical lemma in a completely different approach than its post-
quantum counterpart. Our proof is inspired by the hardness-conversion theorem (Theorem 8),
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which can be viewed as an reformulation and extension of the flavor conversion of canonical quan-
tum bit commitments [HMY22b, Yam22, HMY22a]. In more detail, we observe that the useless
oracle lemma (Lemma 6) already implies that the oracle access mentioned in the paragraph above
does not make the task of transforming significantly easier. Then we apply the hardness-conversion
theorem to convert the hardness of transforming to that of distinguishing.

For the hardness-conversion theorem itself (Theorem 8), in fact, the flavor-conversion in [HMY22b,
Theorem 6.1] already implies one of its direction; the other direction can be proved similarly without
much difficulty.

We expect that the hardness-conversion theorem may find more applications in both quantum
cryptography and quantum complexity theory in the future.

2.7 A more detailed comparison to [GJMZ22]

Basically, our study of collapse-binding is inspired by that of swap-binding: we encounter similar
difficulties in cryptographic applications of quantum commitments, and to overcome which we use
similar techniques. This is not a surprise: after all, commitments to classical messages can be
viewed as a special case of commitments to quantum states. In the following, let us compare our
work with the work [GJMZ22] in more technical detail.

Comparison to their definitions. Recall that for the purpose of allowing the malicious sender
to access the commitment in a limited way (which is necessary in the security analysis), our def-
inition of collapse-binding (Definition 8) extends single-opening collapse-binding (Definition 7) by
introducing additional interactions between the sender and the challenger in the corresponding
experiment; in particular, each round of the interaction consists of a challenger’s verification that
is the “and” of a predicate check and a check of opening the commitment.

One can compare this verification with the oracle introduced in [GJMZ22] to extend swap-
binding, obtaining oracle swap-binding ; then one can think this verification as a special verification
oracle. Though a binding property associated with a more general oracle is stronger than that asso-
ciated with a verification oracle of some specific form, our definition of collapse-binding is sufficient
for many cryptographic applications, in particular commit-and-open protocols. Actually, even in
[GJMZ22], only security analysis of commit-and-open protocols are studied; we still do not know
any cryptographic application for whose security analysis more general oracles (than verification
oracles) are needed. We believe that our definition of collapse-binding is more understandable by
cryptographers than that if the verification is replaced with a more general yet abstract oracle (as
done in [GJMZ22] for oracle swap-binding).

Another major difference between our definition of collapse-binding and their oracle swap-
binding is that in our definition, as aforementioned, we explicitly quantify how many verifications
will be performed by the challenger in the corresponding experiment. This quantity is very im-
portant in the security analysis. Incorporating it in the definition of collapse-binding will ease
cryptographers’ job when they try to analyze the security of new commit-and-open protocols where
quantum commitments to classical messages are used (as will be explained soon). The counterpart
of this quantity in the study of (oracle) swap-binding is the number of queries made to the oracle,
which, in contrast, is hidden inside the proof of the equivalence between swap-binding and oracle
swap-binding [GJMZ22].

Yet another difference is that our definition is w.r.t. general (non-interactive) quantum com-
mitments, whereas theirs restrict to quantum commitments of the “canonical” form that is similar
to [Yan22].

Comparison in cryptographic applications. For cryptographic applications showcased in this
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work (Section 10 and Appendix C), similar results can also be derived from results in [GJMZ22] in
two different ways (though both of which are not mentioned there).

The first way is to instantiate corresponding commit-and-open protocols with more general
(computationally) swap-binding commitments to quantum states and analyze their security (based
on swap-binding) in a similar way as that in [GJMZ22]. Such commitments can be based on
canonical quantum bit commitments by a folklore construction [GJMZ22]. However, this way is
no so appealing since it is an overkill: not only constructions of swap-binding commitments to
quantum states are often more complex than those of collapse-binding commitments to classical
messages,9 but also the security analysis based on swap-binding [GJMZ22] is more complex than
that based on collapse-binding.

The second and more efficient way, as communicated by [LMS23], is to instantiate corresponding
commit-and-open protocols with quantum (computationally) single-opening collapse-binding com-
mitments, e.g. canonical quantum bit commitments [DS23, GJMZ22]. For their security, one can
prove by using a technical lemma called admissible oracle lemma (which will be discussed shortly)
in [GJMZ22]. In greater detail, one can similarly introduce a notion called oracle collapse-binding
that is similar to oracle swap-binding. Then the proof of swap-binding implying oracle swap-binding
in [GJMZ22] can be slightly adapted to show that single-opening collapse-binding (Definition 7)
implies oracle collapse-binding. Next, one can instantiate the oracle with the verification of the
specific form as ours, which just recovers our definition of collapse-binding (Definition 8) that will
be really used for the security analysis.

Seeing from above, our definition of collapse-binding is more ready to use (than both single-
opening collapse-binding and oracle collapse-binding) by cryptographers in applications. In particu-
lar, since we explicitly quantify how many verifications the challenger will perform in the experiment
that defines our collapse-binding, it allows us to formalize an analysis template (presented in the
form of Theorem 4) for the security analysis of different cryptographic applications. This template
can be instantiated directly without calling any additional abstract technical lemma (such as the
admissible oracle lemma). We believe that this will further ease cryptographers’ jobs in analyzing
new commit-and-open protocols where quantum commitments to classical messages are used in the
future.

Comparison to their admissible oracle lemma. In [GJMZ22], an important so-called “admis-
sible oracle lemma” is proved. We would like to compare it with our equivalence theorem (Theorem
1).

For their statements, as aforementioned, the admissible oracle lemma implies an equivalence
between single-opening collapse-binding and oracle collapse-binding. Similarly, our equivalence
theorem also implies an equivalence between single-opening collapse-binding and collapse-binding;
recall the implication chain mentioned in Subsection 2.2.

Comparing the proof of the admissible oracle lemma with our proof of Theorem 1, though
looking quite different in many places, their underlying ideas are essentially the same. Specifically,
both proofs roughly go in two steps (as presented in [GJMZ22]):

1. The distinghuishing task in equivalent to the transforming (or mapping in [GJMZ22]) task;

2. W.r.t. the transforming task, the very limited oracle access to the commitment register cannot
help much.

For the proof of Step 1, they prove Lemma 6.6 in [GJMZ22], whereas we prove Lemma 8 and
10; both proofs use similar previous techniques (e.g. [Unr16b, LMS21, Zha22, CX22, DS23]).

9Canonical quantum bit commitment itself is already collapse binding w.r.t. Definition 8.
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For the proof of Step 2, they prove a key technical lemma, i.e. Lemma 6.8 in [GJMZ22]. Our
proof of Step 2, namely, the round-collapse of the unique-message binding (Lemma 7), also relies
heavily on a slightly stronger version of their Lemma 6.8, i.e. the useless oracle lemma (Lemma 6).

Despite similarities mentioned above, however, the equivalence revealed in Theorem 1 is not
obvious given just the admissible oracle lemma, as far as we can see.

3 Preliminaries

Notation. Given a binary string d ∈ {0, 1}l, we also abuse the notation to use d to denote the
subset of {1, 2, . . . , l} that consists of indices i’s such that di = 1. Given a binary string m ∈ {0, 1}l,
we use m[d] to denote the substring obtained from m by projecting it on indices in the subset d.

We will write names of algorithms in sans serif font, e.g. A,D,T, which could be either classical
or quantum, either ordinary algorithms or interactive ones (used in an interactive protocol).

A predicate P over {0, 1}l induces a subset of l-bit strings satisfying this predicate; abusing the
notation, we also denote this subset by P .

3.1 Quantum preliminaries and notation

Quantum computational model. In this work, we focus on the unitary quantum circuit model
(refer to textbooks such as [NC00, KSV02]) without loss of generality. Then efficiently realizable
unitary transformations, or quantum polynomial-time (QPT) algorithms, can formalized by a family
of quantum circuits {Qλ}λ≥1 such that:

1. The size of the quantum circuit Qλ is bounded by some fixed polynomial of λ.

2. This quantum circuit family can be uniformly generated, i.e. there exists a polynomial-time
classical algorithm which on input 1λ, outputs the (classical) description of the quantum
circuit Qλ.

Since any projective measurement can be realized by a unitary transformation followed by
a measurement in the computational basis, we say that a projective measurement is efficiently
realizable if its corresponding unitary transformation is efficiently realizable. We say that a projector
is efficient realizable if its induced binary projective measurement is efficiently realizable.

We will use non-uniform QPT algorithms to refer to QPT algorithms that may take quantum
advice (as an extra input). Basically, quantum advice is a quantum state (which can be thought of
pure without loss of generality) that only depend on the parameter λ.

Quantum notation. We use uppercase letters in calligraphic font, such as A,B,X , to denote
quantum registers. Abusing the notation, we will also use the same notation to denote Hilbert
spaces induced by quantum registers; for example, we also use the notation A,B,X to denote the
Hilbert spaces induced by quantum registers A,B,X , respectively.

We often write quantum registers as the superscript of a quantum state or a quantum operation
to indicate where this quantum state is stored or on which quantum registers this quantum operation
acts, respectively.

When a quantum register X is composed of multiple (say l) copies of some particular register
A, we will write X = A⊗l. Given a subset I ⊆ {1, 2, . . . , l}, we will also use X [I], or A⊗I , to denote
the system composed of copies of the register A with indices in the subset I; in particular, the i-th
copy of the register A will be denoted by Ai.
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We use Dirac notation |·〉 such as |τ〉 to denote a pure quantum state vector, while just τ to
denote a mixed quantum state (or equivalently, density matrix).

We use sub-normalized quantum states frequently. Then the squared vector norm of a state
vector or the trace of a density matrix can be viewed as giving the success probability of preparing
the corresponding quantum states; this turns out to be more convenient to work with in our security
analysis.

We write quantum operators in italic font, such as A,D, T . Quantum operators X,Y, Z will
be reserved to denote corresponding Pauli matrices. An arbitrary projector Π induces a binary
projective measurement {Π,1−Π}, where Π is associated with the outcome 1, and 1−Π associated
with the outcome 0. We often use a projector and its induced binary projective measurement
interchangeably.

We write such as A(x,Y,Z) to indicate that the algorithm A performs on the classical input x
and quantum registers Y,Z.

A quantum algorithm A is associated with a unitary operator denoted by A; we often use them
interchangeably. A distinguisher is an algorithm which outputs a single classical bit. For a quantum
distinguisher D, it induces a unitary operator D followed by a measurement of its output qubit B
in the computational basis; the whole operation induces a projector given by ΠD = D(|1〉 〈1|)BD†.

The distance/closeness between two quantum states. Given two mixed quantum states (or
density operators) ρ and σ, their fidelity and trace distance are denoted by F(ρ, σ) and TD(ρ, σ),

respectively, where F(ρ, σ)
def
=
∥∥√ρ√σ∥∥

1
and TD(ρ, σ)

def
= 1/2 ‖ρ− σ‖1. Fidelity and trace distance

are two commonly used measures of the closeness/distance between two quantum states. Several
facts about them that will be used in this paper (often without explicit reference) are listed as
below, all of which can be found in standard textbook (e.g. [NC00, Wat18]).

Fact 1 (Uhlmann’s Theorem) Let ρ, σ be two density matrices of a Hilbert space X . Then

F(ρ, σ) = max {|〈ψ|φ〉| : unit vectors |ψ〉 , |φ〉 ∈ X ⊗ Y s.t. TrY(|ψ〉 〈ψ|) = ρ, TrY(|φ〉 〈φ|) = σ} .

Fact 2 (Fuchs-van de Graaf inequalities) Let ρ, σ be two density matrices of a Hilbert space
X . Then

1− TD(ρ, σ) ≤ F(ρ, σ) ≤
√

1− TD(ρ, σ)2.

Fact 3 Tracing out a subsystem will only decrease the trace distance.

Quantum (in)distinguishability.

Definition 1 (Statistically/computationally indistinguishable) Let {ρ0(λ)}λ and {ρ1(λ)}λ
be two quantum state ensembles. Consider the following experiment between a non-uniform quan-
tum distinghuisher D and a challenger:

1. The challenger chooses b
$← {0, 1} uniformly random, and sends the quantum state ρb to the

distinghuisher.

2. Upon receiving the quantum state from the challenger, the distinghuisher performs a quantum
operation and outputs a guess b′ ∈ {0, 1}.
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We say that the distinghuisher wins the experiment if b′ = b. The advantage (than a random guess)
achieved by the distinghuisher is given by10∣∣∣ Pr

b
$←{0,1}

[D(ρb) = b]− 1

2

∣∣∣.
We say that these two quantum state ensembles are quantum statistically (resp. computa-

tionally) indistinguishable if any non-uniform QPT distinghuisher D can only win the experiment
with negligible advantage. Quantitatively, we say that these two quantum state ensembles are
quantum statistically (resp. computationally) ε-indistinguishable if for any non-uniform resp. QPT
distinghuisher D:

Pr
b

$←{0,1}
[D(ρb) = b] <

1

2
+ ε.

Two quantum rewinding lemmas. We state two simple quantum rewinding lemmas as below,
one is suitable for GMW-type zero-knowledge protocols while the other is suitable for Σ-protocols.

The first quantum rewinding lemma is taken from [YWLQ15, FUYZ22].

Lemma 4 (Quantum rewinding w.r.t. GMW-type protocols) Let X and Y be two Hilbert
spaces. Unit vector |ψ〉 ∈ X ⊗ Y. Efficiently realizable projectors Γ1, . . . ,Γk perform on the space
X ⊗ Y, and efficiently realizable unitary transformations U1, . . . , Uk perform on the space Y. If
1/k ·

∑k
i=1

∥∥Γi(Ui ⊗ 1X ) |ψ〉
∥∥2 ≥ 1− η, where 0 ≤ η ≤ 1, then∥∥∥(U †k ⊗ 1

X )Γk(Uk ⊗ 1X ) · · · (U †1 ⊗ 1
X )Γ1(U1 ⊗ 1X ) |ψ〉

∥∥∥ ≥ 1−
√
kη. (1)

The second quantum rewinding lemma is taken from [Unr12]

Lemma 5 (Quantum rewinding w.r.t. Σ-protocols) Let C be a set with |C| = c. Let (Γi)i∈C

be orthogonal projectors on a Hilbert space X . Let |ψ〉 ∈ X be a unit vector. Let V
def
= 1/c ·∑

i∈C ‖Γi |ψ〉‖
2 and E

def
= 1/c2 ·

∑
i,j∈C,i6=j ‖ΓiΓj |ψ〉‖

2. Then, if V ≥ 1/
√
c, we have E ≥ V (V 2 −

1/c).

3.2 Non-interactive quantum commitments to classical messages

Definition 2 (Non-interactive quantum commitments) A generic non-interactive quantum
commitment scheme Com = (Commit,Verify) consists of two QPT algorithms. The QPT algorithm
Commit describes the sender’s operations to generate the commitment in the commit stage. The
QPT algorithm Verify is run by the receiver to open the commitment later in the reveal stage.

In greater detail, to commit a classical message m ∈ {0, 1}`, the sender first chooses a proper
security parameter λ and then runs the QPT algorithm Commit(1λ,m), which outputs a quantum
register pair (C,R). It then sends the commitment register C to the receiver as the commitment.
Later, to open the commitment, the sender sends the classical message m stored in the message
register M, together with the decommitment register R to the receiver. Upon receiving them, the

10This definition of advantage differs from the one used in [AAS20, HMY22b] that is given by |Pr[D(ρ0) = 1] −
Pr[D(ρ1) = 1]| up to a multiplicative factor two. This constant factor is not important in security analysis. Here, we
just fix a definition of the distinguishing advantage for a precise statement of lemmas and theorems that will be proved
later in this paper. Hence, our statements might differ from the those of similar theorems in [AAS20, HMY22b] up
to a multiplicative constant factor.
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receiver will run the QPT algorithm Verify(1λ,m, C,R), outputting a single bit indicating whether
to accept or not.

The verification algorithm Verify naturally induces a projector Vcom corresponding to the com-
mitment check of the following form:

Vcom =
∑

m∈{0,1}`
|m〉 〈m|M ⊗ΠCRm , (2)

where Πm is also a projector (that is determined by the revealed message m).
We say that the scheme Com is statistically (resp. computationally) hiding if for any messages

m 6= m′ and computationally unbounded (resp. polynomial-time) non-uniform distinguisher D, the
difference∣∣Pr[D(1λ, C) = 1 : (C,R)← Commit(1λ,m)]−Pr[D(1λ, C) = 1 : (C,R)← Commit(1λ,m′)]

∣∣ < negl(λ).

We say that the scheme Com is statistically (resp. computationally) binding if it satisfies the
unique-message binding property as defined in Definition 3 shortly below.

Remark. Hereafter, when we refer to hiding/binding of commitments without explicitly mention-
ing it is computational or statistical hiding/binding, one can safely understand it as the computa-
tional hiding/binding without loss of generality. This is because proofs in the computational setting
also apply to the statistical setting.11

The definition of unique-message binding stated as below is adapted from [LMS21].

Definition 3 (Unique-message binding) Let Com = (Commit,Verify) be a generic non-interactive
quantum commitment scheme (Definition 2). For a malicious sender S∗ = (|τ〉 ,T)12 and a security
parameter λ, the unique-message-binding experiment UniqBindExptS∗(λ) proceeds as follows.13

UniqBindExptS∗(λ):

1. S∗ receives/prepares a composite system (C,R,M) in the quantum state |τ〉,14 and sends this
system to the challenger.

2. The challenger performs the binary projective measurement {Vcom,1− Vcom} on the system
(C,R,M), where the projector Vcom is given by Eq. (2). If the outcome is 0, then it aborts
and the experiment outputs 0. Otherwise, the challenger returns registers (R,M) (without
the commitment register C) to the sender S∗.

3. S∗ measures the message register M in the computational basis, obtaining the first message
m1.

4. Now S∗ will try to open the commitment as another message other than m1 by running a
transformer T, which is a QPT algorithm that can be represented by a unitary T , on its own
system. Then it sends registers (R,M) to the challenger.

11Actually, proofs in the statistical setting are usually much simpler than those in the computational setting, where
information-theoretic tools can be used [FUYZ22, AQY21].

12Recall that by |τ〉 we refer to a pure quantum state, or a state vector. Though a mixed quantum state is more
general, in which case we will denote just by τ , restricting to pure states do not lose any generality (by purification).
This convention also applies to defining attacks subsequently.

13To simplify the notation, we will drop the security parameter λ in the description of the experiment. We will
follow this convention in subsequent definitions in this paper.

14The sender may also use an additional system as its private workspace; we suppress it here for simplicity.
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5. The challenger performs (again) the binary projective measurement {Vcom,1− Vcom}. If the
outcome is 0, then it aborts and the experiment outputs 0. Otherwise, the challenger sends
registers (R,M) back to the sender S∗.

6. S∗ measures the message register M to obtain the second message m2: If m2 = m1, then it
aborts and the experiment outputs 0; otherwise, the experiment outputs 1.

We say that the quantum commitment scheme Com is unique-message binding if for any non-
uniform QPT sender S∗,

Pr[UniqBindExptS∗(λ) = 1] < negl(λ).

Quantitatively, we say that the quantum commitment scheme Com is ε-unique-message binding if
for any non-uniform QPT malicious sender S∗,

Pr[UniqBindExptS∗(λ) = 1] ≤ ε(λ).

Remark. Compared with the definition of unique-message binding in the post-quantum setting
[LMS21], here we let the sender, as opposed to the challenger, measure the message registerM. This
is because in a try to generalize it to the case where multiple verifications are allowed (Definition
6) later, the challenger does not know when the sender will stop and measure the register M to
obtain another message m2.

The definition of canonical quantum bit commitments below is taken from [Yan22]. It clearly
satisfies the syntax of Definition 2.

Definition 4 (Canonical quantum bit commitment) A canonical (non-interactive) quantum
bit commitment scheme is represented by an ensemble of polynomial-time uniformly-generated
quantum circuit pair {(Q0(λ), Q1(λ))}λ and proceeds as follows:

• In the commit stage, to commit a bit b ∈ {0, 1}, the sender performs the quantum circuit Qb
on the quantum register pair15 (C,R) initialized in all |0〉’s state. Then the sender sends the
commitment register C to the receiver, whose state at this moment is denoted by ρb.

• In the subsequent (canonical) reveal stage, the sender announces the bit b, and sends the

decommitment register R to the receiver. The receiver will first perform Q†b on the quan-
tum register pair (C,R), and then measure each qubit of (C,R) in the computational basis,
accepting if measurement outcomes are all 0’s.

The hiding (or concealing) and the honest-binding properties of the scheme are defined in the
below:

• ε-hiding. We say that the scheme is statistically (resp. computationally) ε-hiding if quantum
states ρ0 and ρ1 are statistically (resp. computationally) ε-indistinguishable (w.r.t. Definition
1).

• ε-honest-binding. First prepare the quantum register pair (C,R) in the state Q0 |0〉.16 We
say that the scheme is statistically (resp. computationally) ε-binding if for any state |ψ〉 of an

15Their size will depend on the security parameter λ.
16Here the notation |0〉 should be understood as multiple |0〉’s, the number of which depends on the security

parameter; we just write a single |0〉 to simplify the notation. We will follow this convention throughout this paper.
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auxiliary register Z, and any time-unbounded (resp. QPT) realizable unitary transformation
T performing on registers (R,Z),∥∥∥(Q1 |0〉 〈0|Q†1

)CR
TRZ

(
(Q0 |0〉)CR |τ〉Z

)∥∥∥ < ε. (3)

By the reversibility of quantum computation, this binding property can be equivalently de-
fined by swapping the roles of Q0 and Q1, in which case Inequality (3) becomes∥∥∥(Q0 |0〉 〈0|Q†0

)CR
TRZ

(
(Q1 |0〉)CR |τ〉Z

)∥∥∥ < ε. (4)

As typical in cryptography, We just say that the scheme is statistically (resp. computationally)
hiding (resp. binding), i.e. without referring to the parameter ε, when the function ε(·) in the
definition of hiding (resp. binding) above is a negligible function (of the security parameter λ).

Remark. It is easy to see that the honest-binding property of canonical quantum bit commitments
implies the unique-message binding property (Definition 3). In particular, if a canonical quantum
bit commitment scheme is ε-honest-binding, then it is ε2-unique-message-binding.

3.3 Verifications involving opening quantum commitments

When quantum commitments are used in cryptographic applications, notably quantum zero-knowledge
and quantum oblivious transfer, there are usually verifications involving opening quantum commit-
ments within larger protocols. Now let us formalize these verifications for a general study of
quantum commitments in applications.

Following [FUYZ22], a general (polynomial-time) verification involving opening quantum com-
mitments includes two checks: a commitment check and a predicate check. It induces a projector
as follows:

Π =
(
|0〉 〈0|A ⊗ 1CRMD + |1〉 〈1|A ⊗ V CRMcom

)
· PMAD, (5)

where the projector Vcom is given by Eq. (2) and P is induced by a classical predicate that can be
checked in polynomial time with the form

P =
∑

(m,a,d)∈P

|m, a, d〉 〈m, a, d| . (6)

Note that projectors P and Vcom commute. Hence, the projector Π is well-defined; that is, it is
indeed a projector.

Intuitively, the register D holds some classical information that will be checked by the predicate
P , and the qubit A indicates whether the commitment will be opened or not. The importance
of introducing the qubit A can be seen when the commitment scheme are composed in parallel
in applications, where not all commitments will be opened each time;17 this will become clear in
Section 8.

4 Unique-message binding that admits multiple verifications

In this section, we generalize the definition of unique-message binding (Definition 3) in such a way
that the malicious sender and the challenger can exchange multiple messages in the corresponding

17Which commitments will be opened depend on the execution of the larger protocol.
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experiment. It turns out that this generalization is not only necessary for establishing the security
of cryptographic constructions using quantum commitments, but also crucial in establishing the
equivalence between unique-message binding and collapse binding.

Specifically, we will define two versions of multi-verification unique-message binding, where the
second version additionally allows the reversible computation compared with the first one. Though
the second definition is (literally) stronger than the first one,18 it seems no more useful than the first
one in applications. Actually, the reversible version will only be used in establishing the equivalence
between unique-message binding and collapse binding later in this paper (Section 7).

The first definition of multi-verification unique-message binding is given as below, which is
inspired by [FUYZ22].

Definition 5 (Multi-verification unique-message binding) Let Com = (Commit,Verify) be a
non-interactive quantum commitment scheme w.r.t. Definition 2. Let λ be the security parameter.
For a malicious t(λ)-verification sender S∗ = (|τ〉 , P,T) of commitments who may interact with the
challenger for the verification given by Eq. (5) at most t(λ) times,19 the multi-verification unique-
message-binding experiment MV-UniqBindExptS∗(λ) between S∗ and the challenger is defined as
follows.

MV-UniqBindExptS∗(λ):

1. The malicious sender S∗ receives/prepares a joint system (C,R,M,A,D) in the quantum
state |τ〉. It then measures the qubit A in the computational basis: if the qubit A contains 0,
then it aborts and the experiment outputs 0. Otherwise, it sends the system (C,R,M,A,D),
together with the description of the predicate P , to the challenger.

2. The challenger performs the binary projective measurement {Π,1−Π} where the projector Π
is given by Eq. (5) with the predicate P plugged in. If the outcome is 0, i.e. the verification
fails, then the challenger aborts and the experiment outputs 0. Otherwise, the challenger
returns registers (R,M,A,D) (but without the commitment register C) to the sender S∗.

3. The sender S∗ measures the message register M in the computational basis, obtaining the
first message m1.

4. Now the sender S∗ will try to open the commitment as another message other than m1 by
running an interactive QPT transformer T, which may interact with the challenger at most
t rounds.20 Specifically, each round of the interaction between the transformer T and the
challenger will take the following form:

(a) The transformer T performs a unitary T on its system, and sends registers (R,M,A,D)
to the challenger.

(b) The challenger performs the binary projective measurement {Π,1−Π} as in Step 2,
and then sends registers (R,M,A,D) together with the measurement outcome back to
the transformer.

18They turn out to be actually equivalent, as established later in this paper.
19In subsequent security analysis, we will assume that the function t(·) = ω(1) without loss of generality to simplify

the asymptotic analysis.
20Here, by one round we mean the exchange of two (quantum) messages: one from the sender (who plays the role

of the transformer) to the challenger, followed by another message of the opposite direction.
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5. If the verification in the last round of Step 4 fails, then S∗ aborts and the experiment outputs 0;
otherwise, S∗ measures the qubit A. If the outcome is 0, then S∗ aborts and the experiment
outputs 0; otherwise, S∗ further measures the message register M to obtain the second
message m2. If m2 = m1, then S∗ aborts and the experiment outputs 0; otherwise, the
experiment outputs 1.

We say that the quantum commitment scheme Com is multi-verification unique-message binding
if for any non-uniform QPT sender S∗,

Pr[MV-UniqBindExptS∗(λ) = 1] = negl(λ).

Quantitatively, we say that the quantum commitment scheme Com is t(λ)-verification ε(λ)-unique-
message-binding if for any t(λ)-verification non-uniform QPT sender S∗,

Pr[MV-UniqBindExptS∗(λ) = 1] ≤ ε(λ).

Remark. Note that in Step 4 of the multi-verification unique-message binding experiment, we
restrict the sender to use the same unitary T (as induced by the transformer T) and the predicate
P in each round; this will simplify the proof of our round-collapse lemma for unique-message binding
(Lemma 7). However, one should note that this is actually not a restriction because if in each round
i, a different unitary Ti and a different predicate Pi are used, then we can incorporate all Ti’s and
Pi’s into a single unitary T and a single predicate P that additionally depend on a clock register
(which counts how many rounds that have passed), respectively. This argument also applies to
various definitions of quantum binding properties that allow multiple verifications subsequent in
this paper (i.e. Definition 6, 8, 9 and 10). This also justifies that in the subsequent security proofs
of cryptographic constructions (Section 10 and Appendix C), we may construct round-dependent
unitaries Ti’s and predicates Pi’s.

Note that in the multi-verification unique-message binding experiment as defined above, the
challenger’s verifications in Step 4 is not reversible. Next, we are going to define a variant of
the multi-verification unique-message binding which in particular allows the malicious sender to
reverse verifications in Step 4 of the corresponding experiment. In greater detail, compared with
the multi-verification unique-message binding experiment, in the experiment of this variant the
challenger will simulate its verification unitarily and send the qubit containing the outcome back
to the sender in each round of Step 4. Clearly, this variant is stronger than the multi-verification
unique-message binding by definition.

Definition 6 (Reversible multi-verification unique-message binding) Let Com = (Commit,Verify)
be a non-interactive quantum commitment scheme w.r.t. Definition 2. Let λ be the security pa-
rameter. For a malicious t(λ)-verification sender S∗ = (|τ〉 , P,T) of commitments who may in-
teract with the challenger for the verification given by Eq. (5) at most t(λ) times, the reversible
multi-verification unique-message-binding experiment RMV-UniqBindExptS∗(λ) between S∗ and the
challenger is defined as follows.

RMV-UniqBindExptS∗(λ):

1. The malicious sender S∗ receives/prepares a joint system (C,R,M,A,D) in the quantum
state |τ〉. It then measures the qubit A in the computational basis: if the outcome is 0, then
S∗ aborts and the experiment outputs 0. Otherwise, it uses a fresh qubit E initialized in
the state |0〉, and sends the system (C,R,M,A,D, E), together with the description of the
predicate P , to the challenger.
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2. The challenger simulates the binary projective measurement {Π,1−Π} using the qubit E
in the standard way (i.e. controlled by the measurement outcome, it flips the value of the
qubit E), where the projector Π is given by Eq. (5) with the predicate P plugged in. Then
the challenger measures the qubit E in the computational basis. If the outcome is 0, i.e. the
verification fails, then the challenger aborts and the experiment outputs 0; otherwise, the
challenger returns registers (R,M,A,D, E) (but without the commitment register C) to the
sender S∗.

3. The sender S∗ measures the message register M in the computational basis, obtaining the
first message m1.

4. Now the sender S∗ will try to open the commitment as another message other than m1 by
running an interactive QPT transformer T, which may interact with the challenger at most
t− 1 rounds.21 Each round of the interaction between the transformer T and the challenger
will take the following form:

(a) The transformer T performs a unitary T on its system, and then sends registers (R,M,A,D, E)
to the challenger.

(b) The challenger first simulates the binary projective measurement {Π,1−Π} as in Step
2 (but never measures the qubit E), and then sends registers (R,M,A,D, E) back to
the transformer.

5. The transformer T performs the unitary T on its system once more, and re-initializes the
qubit E in the state |0〉. Then it sends registers (R,M,A,D, E) to the challenger.

6. The challenger first simulates the binary projective measurement {Π,1−Π} as in Step 2 (but
no longer measures the qubit E), and then sends registers (R,M,A,D, E) back to the sender
S∗.

7. The sender S∗ measures the qubit E . If it is 0, then S∗ aborts and the experiment outputs
0; otherwise, S∗ measures the qubit A. If the qubit A contains 0, then S∗ aborts and the
experiment outputs 0; otherwise, S∗ further measures the message register M to obtain the
second message m2. If m2 = m1, then S∗ aborts and the experiment outputs 0; otherwise,
the experiment outputs 1.

We say that the quantum commitment scheme Com is reversible multi-verification unique-
message binding if for any non-uniform QPT sender S∗,

Pr[RMV-UniqBindExptS∗(λ) = 1] = negl(λ).

Quantitatively, we say that the quantum commitment scheme Com is reversible t(λ)-verification
ε-unique-message-binding if for any t(λ)-verification non-uniform QPT malicious sender S∗,

Pr[RMV-UniqBindExptS∗(λ) = 1] ≤ ε(λ).

Remark. Several remarks about the definition above are in order:

21Added with another round consisting of Step 5 and 6 later, there are t rounds in total at most. Refer to the
second remark immediately after the definition for some explanation about why the last round is singled out from
Step 4 compared with the multi-verification unique-message binding experiment (Definition 5).
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1. Similar to Definition 5 (refer to the remark immediately after it), we can assume that the
transformer T induces a unitary T that is identical for each round in Step 4 as well as Step
5 of the experiment RMV-UniqBindExptS∗(λ).

2. Step 5 and 6 of the reversible multi-verification unique-message binding experiment can also
be viewed as the last round of Step 4 (like the multi-verification unique-message binding ex-
periment), except that reversing any previous verification is explicitly prohibited by requiring
use a fresh new qubit E in the state |0〉. This guarantees that the message m2 obtained in
Step 7 is indeed a message that is successfully opened by S∗. In comparison, note that in
Step 4(a) the qubit E may not be in the state |0〉 when it is sent to the challenger.

3. Note that the sender in the reversible multi-verification unique-message binding experiment
can swap out the content of the qubit E for a later use upon receiving registers (R,M,A,D, E)
back from the challenger in Step 4(b).

5 A round collapse of unique-message binding

In this section, we prove a round collapse of unique-message binding. Specifically, we show that the
unique-message binding (Definition 3) implies the seemingly stronger reversible multi-verification
unique-message binding (Definition 6).

Our proof relies heavily on a technical lemma as below, which is an extension and a slight
refinement of [GJMZ22, Lemma 6.8] in that the subspace Π1 now is not necessarily the orthogonal
complement of the subspace Π0 w.r.t. the larger space Π. Its proof is also adapted from the proof
in [GJMZ22], which is moved to Appendix A.

Lemma 6 (Useless oracle lemma) Fix a unitary U , a state |τ〉, and three orthogonal projectors
Π0, Π1, Π2. Let Π = Π0+Π1+Π2. Let G be a unitary of the form G = Π0G0+Π1G1+Π2G2+(1−Π),
where G0, G1, G2 are unitaries that commute with Π0,Π1,Π2, respectively. Define G̃0 = Π0G0 +
Π2G2 + (1−Π0 −Π2) and

ε(t)
def
= max

r∈{0,1},
0≤q,s≤t

‖Π1(U(Π2G2 + 1−Π2))
q ·Π0(G̃0)

r(UG̃0)
sΠ0 |τ〉 ‖

for all integers t ≥ 0. Then for all integers t ≥ 0,

‖Π1(UG)tΠ0 |τ〉 ‖ ≤ 4t2 · ε(t).

The round collapse of unique-message binding is formally stated as the following lemma.

Lemma 7 Let Com = (Commit,Verify) be a non-interactive quantum commitment scheme w.r.t.
Definition 2. Then its unique-message binding property (Definition 3) is equivalent to the reversible
multi-verification unique-message binding property (Definition 6).

In particular, given a malicious t(λ)-verification sender S∗ who can win the reversible multi-
verification unique-message binding experiment RMV-UniqBindExptS∗(λ) with advantage ε, there
exists another sender S′ who can win the unique-message binding experiment UniqBindExptS′(λ)
with advantage at least ε/(50t6).

Proof: By definition, the reversible multi-verification unique-message binding (Definition 6) triv-
ially implies the unique-message binding (Definition 3). We only need to show that the seemingly
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weaker unique-message binding conversely also implies the reversible multi-verification unique-
message binding.

According to Definition 6, suppose that S∗ = (|τ〉 , P,T) is a malicious t(λ)-verification sender
against the reversible multi-verification unique-message binding property of the quantum com-
mitment scheme Com = (Commit,Verify) with advantage ε(λ). Our goal is to construct another
sender S′ who breaks the unique-message binding property (Definition 3) of the scheme Com with
advantage ε/(50t6).

First consider a running of the experiment RMV-UniqBindExptS∗(λ). We inherit all notations
introduced in the experiment RMV-UniqBindExptS∗(λ) within Definition 6. We can assume without
loss of generality that exact t rounds are executed in Step 4.22 Suppose that a message m1 is
revealed in Step 3. Let pm1 denote the probability that the experiment RMV-UniqBindExptS∗(λ)
outputs 1. Introduce projectors:

W0 = (|m1〉 〈m1|)M ⊗ (|1〉 〈1|)A,
W1 =

∑
m2 6=m1

(|m1〉 〈m1|)M ⊗ (|1〉 〈1|)A,

W2 = 1−W0 −W1 = (|0〉 〈0|)A.

Note that both projectors W0 and W1 commute with the projector Π (given by Eq. (5)):

W0Π = ΠW0 = (|1〉 〈1|A ⊗ V CRMcom ) ·
∑

(m1,1,d)∈P

|m1, 1, d〉 〈m1, 1, d|MAD ,

W1Π = ΠW1 = (|1〉 〈1|A ⊗ V CRMcom ) ·
∑

m2 6=m1,
(m2,1,d)∈P

|m2, 1, d〉 〈m2, 1, d|MAD .

Thus, we can introduce more projectors (which are well-defined):

Π0 = W0Π, Π1 = W1Π, Π2 = W2Π = |0〉 〈0|A · PMAD. (7)

Note that Π = Π0 + Π1 + Π2. The challenger’s operation in each round of Step 4 of the experiment
RMV-UniqBindExptS∗(λ) can be represented by the unitary G as follows:

G = ΠCRMAD ⊗XE + 1−ΠCRMAD. (8)

Since the operation Pauli-X performs on a different register (i.e. the qubit E) than Π and
W0,W1,W2, it follows that G commutes with all Π0,Π1,Π2.

With our notations, we have

pm1 = ‖Π1GT (GT )t−1Π0G |τ〉 ‖2 = ‖(Π1 ⊗X)(TG)tΠ0 |τ〉 ‖2 = ‖Π1(TG)tΠ0 |τ〉 ‖2,

where in the second “=” above we use equalities Π0G = GΠ0 and Π1G = GΠ1. Next, we invoke
Lemma 6 in the contrapositive way by doing the following replacements:

• Replace projectors Π and Π0,Π1,Π2 in the statement of Lemma 6 with projectors Π and
Π0,Π1,Π2 here given by Eq. (5) and Eq. (7), respectively.

22This is because if the interaction stops before t rounds, then we can let the transformer T continue interacting
with the challenger while performing the identity (i.e. Ti = 1) on its system in subsequent rounds until t rounds are
reached.
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• Replace G0, G1, G2 in the statement of Lemma 6 with Pauli-X performing on the qubit E ;
thus, the unitary G is given by Eq. (8).

• Replace the unitary U in the statement of Lemma 6 with the unitary T that is induced by
the transformer T.

Then one can conclude from Lemma 6 that for some r ∈ {0, 1} and 0 ≤ q, s ≤ t,

‖Π1(T (Π2G+ 1−Π2))
q ·Π0(G̃0)

r(TG̃0)
sΠ0 |τ〉

∥∥2 ≥ pm1

17t4
. (9)

Inequality (9) inspires us to construct such a malicious sender S′ = (τ ′,T′) against the unique-
message binding property (Definition 3) that the experiment UniqBindExptS′(λ) proceeds as follows:

1. This step is further divided into several steps:

(a) Using the quantum state |τ〉 as used by S∗, S′ internally simulates the experiment
RMV-UniqBindExptS∗(λ) until Step 3 is finished: if S∗ aborts before Step 3, then S′

also aborts and the experiment outputs 0; otherwise, let m1 be the message obtained in
Step 3.

(b) S′ chooses r
$← {0, 1} and q, s

$← {0, 1, . . . , t} uniformly random.

(c) S′ performs the operation Π0(G̃0)
r(TG̃0)

s, where the projector Π0 represents the opera-
tion that performs the binary projective measurement {Π0,1−Π0}, and simply aborts
when the outcome is 0 (in which case the experiment outputs 0). If S′ does not abort,
then denote the residual (sub-normalized) state of the whole system by

∣∣τ ′m1

〉
; that is,

|τ ′m1
〉 = Π0(G̃0)

r(TG̃0)
sΠ0 |τ〉 . (10)

Note the expression of the state
∣∣τ ′m1

〉
is just a sub-expression of the expression on the

l.h.s. of “≥” in Inequality (9). Let τ ′ =
∑

m1
|τ ′m1
〉〈τ ′m1

|.
(d) S′ sends registers (C,R,M) to the challenger.

2. The challenger performs the binary projective measurement {Vcom,1− Vcom} on the system
(C,R,M), where the projector Vcom is given by Eq. (2). If the outcome is 0, then it aborts
and the experiment outputs 0. Otherwise, the challenger returns registers (R,M) (without
the commitment register C) to the sender S′.

3. S′ measures the message register M in the computational basis, obtaining the message m1

(again).

4. Let the transformer T′ be the QPT algorithm which realizes the unitary T ′ = ((Π2G + 1 −
Π2)T )q. S′ runs T′. Note that the operation Π2G+1−Π2 is just a unitary simulation of the
binary projective measurement {Π2,1−Π2}, where the expression of Π2 is given in Eq. (7);
it can be performed without interacting with the challenger. Then S′ sends registers (R,M)
to the challenger.

5. The challenger performs the binary projective measurement {Vcom,1− Vcom}. If the outcome
is 0, then it aborts and the experiment outputs 0. Otherwise, the challenger sends registers
(R,M) back to the sender S′.
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6. S′ measures the message register M to obtain the second message m2: If m2 = m1, then it
aborts and the experiment outputs 0; otherwise, the experiment outputs 1.

Now we estimate the probability that the experiment UniqBindExptS′(λ) outputs 1. Consider a
running of the experiment UniqBindExptS′(λ). If S′ succeeds in preparing the sub-normalized state∣∣τ ′m1

〉
(given in Eq. (10)), then the commitment check {Vcom,1− Vcom} by the challenger in Step

2 will pass with certainty, the message m1 obtained in Step 3 will be identical to the one obtained
in Step 1(a). Moreover, the whole system will remain in the state

∣∣τ ′m1

〉
at the end of Step 3.

Motivated by Inequality (9), we call the state
∣∣τ ′m1

〉
“good” if

‖Π1(T (Π2G+ 1−Π2))
q|τ ′m1

〉
∥∥2 ≥ pm1

17t4
.

Since the triple (q, r, s) is chosen uniformly random, with probability at least 1/(2(t+1)2) the state∣∣τ ′m1

〉
will be good. Then it follows that

Pr[UniqBindExptS′(λ) = 1 ∧m1 is revealed in Step 3]

≥ Pr[UniqBindExptS′(λ) = 1 ∧m1 is revealed in Step 3 | |τ ′m1
〉 is good] · Pr[|τ ′m1

〉 is good]

≥ Pr[UniqBindExptS′(λ) = 1 ∧m1 is revealed in Step 3 | |τ ′m1
〉 is good] · 1

2(t+ 1)2

≥ ‖Π1(T (Π2G+ 1−Π2))
q|τ ′m1

〉
∥∥2 · 1

2(t+ 1)2

≥ pm1

50t6
.

The third “≥” in the above is due to that in the experiment UniqBindExptS′(λ), the challenger will
only do the commitment check; it will neither do the predicate check nor check whether the qubit
A contains 1 (both of which will be checked by the projector Π1).

Summing over all possible message m1’s gives

Pr[UniqBindExptS′(λ) = 1] ≥ ε

50t6
,

which is also non-negligible when ε is.
This finishes the proof of the lemma. �

6 Collapse binding that admits multiple verifications

In this section, we first adapt existing definitions of collapse binding to be suitable for (non-
interactive) quantum commitments w.r.t. Definition 2 in a straightforward way. However, this
definition is not so useful as its post-quantum counterpart [Unr16b, Unr16a] in cryptographic
applications. To remedy this, we propose a second seemingly stronger definition of collapse binding
that is more ready to use in applications. In the next section, we will show that these two definitions
are actually equivalent.

The first definition is adapted from [Unr16b, Unr16a, GJMZ22].

Definition 7 (Single-opening collapse binding) Let Com = (Commit,Verify) be a non-interactive
quantum commitment scheme w.r.t. Definition 2 and λ the security parameter. For a malicious
sender S∗ = (|τ〉 ,D) of commitments and a challenge bit b ∈ {0, 1}, the single-opening collapse-
binding experiment SO-ColBindExptS∗,b(λ) proceeds as follows.

SO-ColBindExptS∗,b(λ):
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1. The malicious sender S∗ receives/prepares a joint system (C,R,M) in the quantum state |τ〉,
and sends it to the challenger.

2. The challenger performs the binary projective measurement {Vcom,1− Vcom}, where the pro-
jector Vcom is given by Eq. (2). If the measurement outcome is 0, then the challenger aborts
and the experiment outputs a uniformly random bit b′. Otherwise, i.e. the outcome is 1, if fur-
ther b = 1, then the challenger measures the register M in the computational basis; if b = 0,
then it does nothing. Return registers (R,M) to the sender S∗ (without the commitment
register C).

3. Now the sender S∗ will try to guess the challenge bit b by running a distinguisher D. The
measurement (in the computational basis) of a designated qubit gives a bit b′ that will be
treated as the output of the whole experiment.

We say that the quantum commitment scheme Com is single-opening collapse binding if for all
non-uniform QPT sender S∗,

Pr
b

$←{0,1}
[SO-ColBindExptS∗,b(λ) = b] ≤ 1

2
+ negl(λ).

Quantitatively, we say that the quantum commitment scheme Com is single-opening ε-collapse-
binding if for any non-uniform QPT malicious sender S∗,

Pr
b

$←{0,1}
[SO-ColBindExptS∗,b(λ) = b] ≤ 1

2
+ ε(λ).

The second definition of collapse binding which allows multiple verifications is inspired by
[FUYZ22]. It turns out to be more ready to use in applications.

Definition 8 (Collapse binding) Let Com = (Commit,Verify) be a non-interactive quantum
commitment scheme w.r.t. Definition 2 and λ the security parameter. For a malicious t(λ)-
verification sender S∗ = (|τ〉 , P,D) of commitments and a challenge bit b ∈ {0, 1}, where the sender
may interact with the challenger at most t(λ) rounds, consider the collapse-binding experiment
ColBindExptS∗,b(λ) as follows.

ColBindExptS∗,b(λ):

1. The malicious sender S∗ receives/prepares a joint system (C,R,M,A,D) in the state |τ〉, and
measures the qubit A in the computational basis: if the outcome is 0, then S∗ aborts and the
experiment outputs a uniformly random bit b′; otherwise, it sends the system (C,R,M,A,D),
together with the description of the predicate P , to the challenger.

2. The challenger performs the binary projective measurement {Π,1−Π}, where the expression
of the projector Π is given by Eq. (5). If the measurement outcome is 0, then the challenger
aborts and the experiment outputs a uniformly random bit b′. Otherwise, i.e. the outcome is
1, if further b = 1, then the challenger measures the register M in the computational basis;
if b = 0, then it does nothing. The challenger returns registers (R,M,A,D) to the sender S∗

(without the commitment register C).
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3. Now the sender S∗ will try to guess the challenge bit b by running the distinguisher D, which
may interact with the challenger at most t(λ) rounds before outputting a guess b′ ∈ {0, 1}.
In particular, each round of the interaction between the distinguisher D and the challenger
will take the following form:

(a) The distinguisher D performs the induced unitary D on its system, and sends registers
(R,M,A,D) to the challenger.

(b) The challenger performs the binary projective measurement {Π,1−Π} that is the same
as the one in Step 2, and sends registers (R,M,A,D) together with the measurement
outcome back to the distinguisher.

4. The distinguisher D performs the unitary D on its system once more and then measures
a designated qubit, with the outcome b′ that will be treated as the output of the whole
experiment.

We say that the quantum commitment scheme Com is collapse binding if for all non-uniform
QPT sender S∗,

Pr
b

$←{0,1}
[ColBindExptS∗,b(λ) = b] ≤ 1

2
+ negl(λ).

Quantitatively, we say that the quantum commitment scheme Com is t(λ)-verification ε(λ)-collapse-
binding if for any t(λ)-verification non-uniform QPT malicious sender S∗,

Pr
b

$←{0,1}
[ColBindExptS∗,b(λ) = b] ≤ 1

2
+ ε(λ).

Remark. Two remarks on the definition above are in order:

1. We highlight that Step 2 and Step 3(b) are almost the identical, except that in Step 2 the
message register M will be measured in case b = 1.

2. For the same reason as mentioned in the remark immediately following the definition of
reversible multi-verification unique-message binding (Definition 6), we can also assume that
here the same unitary D and predicate P are used in each round of Step 3 without any loss
of generality.

7 Collapse binding and unique-message binding are equivalent

In this section, we prove that various definitions of collapse binding (Definition 7, 8) and those of
unique-message binding (Definition 3, 5, 6) are actually equivalent. This will prove the informal
Theorem 1.

Specifically, we will prove that

1. Single-opening collapse binding (Definition 7) implies unique-message binding (Definition 3)
(Lemma 8).

2. Reversible multi-verification unique-message binding (Definition 6) implies collapse binding
(Definition 8) (Lemma 10).

This will be sufficient for our purpose because:
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• Collapse binding (Definition 8) implies single-opening collapse binding (Definition 7) by def-
inition;

• Unique-message binding (Definition 3) is equivalent to reversible multi-verification unique-
message binding (Definition 6) (Lemma 7), in turn multi-verification unique message binding
(Definition 5) by definition.

7.1 Collapse binding implies unique-message binding

The proof of this lemma is adapted from the one in [LMS21].

Lemma 8 Let Com = (Commit,Verify) be a non-interactive quantum commitment scheme (Defi-
nition 2). If the scheme is single-opening collapse binding (Definition 7), then it is also unique-
message binding (Definition 3).

In particular, given a malicious sender S∗ who can win the unique-message binding experiment
UniqBindExptS∗(λ) with advantage ε, there exists another sender S′ who can win the single-opening
collapse-binding experiment SO-ColBindExptS′,b(λ) for a uniformly random bit b with advantage at
least ε/4.

Proof: Suppose that there is a malicious sender S∗ = (|τ〉 ,T) who can win the unique-message
binding experiment UniqBindExptS∗(λ) with advantage at least ε(λ); that is,

Pr[UniqBindExptS∗(λ) = 1] = ε(λ).

We will construct another sender S′ who can win the single-opening collapse binding experiment
SO-ColBindExptS′,b(λ) (Definition 7) for a uniformly random challenge bit b ∈ {0, 1} with advantage
ε/4.

Specifically, we construct S′ = (|τ ′〉 ,D) such that the experiment SO-ColBindExptS′,b(λ) proceeds
as follows:

1. This step is further divided into several steps:

(a) S′ performs the binary projective measurement {Vcom,1− Vcom} (Eq. (2)) on the sys-
tem (C,R,M) initialized in the state |τ〉 to verify the opening of the commitment. If
the opening succeeds, then measure the message register M to obtain a message m1;
otherwise, it aborts and the experiment outputs a uniformly random bit b′.

(b) S′ appends a fresh qubit B in the state |+〉 = 1/
√

2(|0〉+ |1〉) to its system.

(c) Controlled by the qubit B, S′ performs the unitary T induced by the transformer T.
That is, it performs the controlled unitary

ctrl-T = |0〉 〈0|B ⊗ 1RM + |1〉 〈1|B ⊗ TRM. (11)

(d) Controlled by the qubit B, S′ performs the binary projective measurement {Pm1 ,1− Pm1}
to verify whether the commitment is opened as some message other than m1 successfully,
where the projector

Pm1 = |0〉 〈0|B ⊗ 1CRM + |1〉 〈1|B ⊗ V CRMcom

∑
m2 6=m1

|m2〉 〈m2|M .

If yes, then the (sub-normalized) quantum state at this moment will be treated as the
state |τ ′〉. Otherwise, S′ aborts and the experiment outputs a uniformly random bit b′.
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(e) S′ sends the system (C,R,M) to the challenger.

2. The challenger performs the binary projective measurement {Vcom,1− Vcom}. If the outcome
is 0, then it aborts and the experiment outputs a uniformly random bit b′. Otherwise, i.e.
the outcome is 1, then measure the register M in the computational basis if b = 1. Return
registers (R,M) to the sender S′ (without the commitment register C).

3. After receiving registers (R,M) back from the challenger, the sender S′ calls the distinguisher
D which proceeds in two steps:

(a) Perform the unitary ctrl-T †, the inverse of the unitary ctrl-T given by Eq. (11);

(b) Perform the binary projective measurement {|+〉 〈+| ,1− |+〉 〈+|} on the qubit B. Its
output b′ will be treated as the output of the experiment.

Now let us calculate the probability

Pr[SO-ColBindExptS′,b(λ) = 1 ∧ S′ does not abort prematurely]

for both b = 0 and b = 1.
Denote the (sub-normalized) quantum state of the whole system at the end of Step 1(a) by

|τm1〉 (if S′ does not abort); note that the quantum state |τm1〉 after the renormalization will result
in the opening of the commitment as m1 succeeding with certainty.

The (sub-normalized) quantum state at the end of Step 1(d) (when S′ does not abort) is given
by

1√
2
|0〉B |τm1〉

CRM +
1√
2
|1〉B Pm1T |τm1〉

CRM . (12)

For convenience, we introduce shorthands:

γm1

def
=
∥∥ |τm1〉

∥∥2, γ
def
=
∑
m1

γm1 ,

and
εm1

def
=
∥∥Pm1T |τm1〉

∥∥2.
By the assumption of S∗, we have

∑
m1
εm1 = ε, i.e. the advantage that S∗ can win the unique-

message binding experiment UniqBindExptS∗(λ) is ε.
We first calculate Pr[SO-ColBindExptS′,1(λ) = 1 ∧ S′ does not abort prematurely]. In a running

of the experiment SO-ColBindExptS′,1(λ), the challenger will measure the message register M in
Step 2 once the opening of the commitment succeeds. Note that in the superposition (12), the
register M could be an arbitrary superposition of all possible m2’s other than m1 associated with
the state |1〉 of the qubit B. So the measurement of the register M by the challenger will collapse
the superposition (12). But either collapsed to the (sub-normalized) quantum states with 0 or 1 in
the qubit B, the measurement of the qubit B in the Hadamard basis {|+〉 〈+| ,1− |+〉 〈+|} on the
qubit B will output 1 with probability exactly 1/2. Thus,

Pr[SO-ColBindExptS′,1(λ) = 1 ∧ S′ does not abort prematurely] =
1

2

∑
m1

γm1 + εm1

2
=
γ + ε

4
.

We next calculate Pr[SO-ColBindExptS′,0(λ) = 1 ∧ S′ does not abort prematurely]. In the
experiment SO-ColBindExptS′,0(λ), the message register M will not be measured by the challenger
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in Step 2 even the opening of the commitment succeeds. Then the state of the whole system before
performing the binary projective measurement {|+〉 〈+| ,1− |+〉 〈+|} by the distinguisher D (in
Step 3(b)) is

1√
2
|0〉B |τm1〉

CRM +
1√
2
|1〉B T †Pm1T |τm1〉

CRM ,

which can be rewritten as:

1√
2

|+〉+ |−〉√
2

|τm1〉+
1√
2

|+〉 − |−〉√
2

T †Pm1T |τm1〉

=
1

2

(
|+〉

(
|τm1〉+ T †Pm1T |τm1〉

)
+ |−〉

(
|τm1〉 − T †Pm1T |τm1〉

))
.

Thus, the binary projective measurement {|+〉 〈+| ,1− |+〉 〈+|} by the distinguisher D in Step 3(b)
will output 1 with probability

1

4

∥∥ |τm1〉+ T †Pm1T |τm1〉
∥∥2 =

‖|τ1〉‖2 + 3 ‖Pm1T |τm1〉‖
2

4
=
γm1 + 3εm1

4
.

Summing over all m1 gives

Pr[SO-ColBindExptS′,0(λ) = 1 ∧ S′ does not abort prematurely] =
γ + 3ε

4
.

Since when S′ aborts prematurely, both experiments SO-ColBindExptS′,0(λ) and SO-ColBindExptS′,1(λ)
will output a uniformly random bit b′. It follows that

Pr[SO-ColBindExptS′,0(λ) = 1]− Pr[SO-ColBindExptS′,1(λ) = 1] =
γ + 3ε

4
− γ + ε

4
=
ε

2
.

This means that the malicious sender S′ can achieve the advantage ε/4, which is also non-negligible
when ε is. But this contradicts the single-opening collapse-binding property of the scheme Com.

This finishes the proof of the lemma. �

7.2 Unique-message binding implies collapse binding

Our proof will rely on the following technical lemma, which is taken from [DS23, Claim 3.5]; similar
technical lemmas were proved even earlier [CX22, Zha22].

Lemma 9 Let ΠD be the projector corresponding to a distinguisher D, M = (Πi)i∈[N ] be a projective
submeasurement (meaning Πi’s are projectors and

∑
i Πi ≤ 1) and ρ be a (possibly sub-normalized)

quantum state such that
∑

i Tr(Πiρ) = Tr(ρ). Then

∑
j

∑
i 6=j

Tr(ΠiΠDΠjρΠjΠD) ≥ Tr(ΠD(ρ−M(ρ)))2

N · Tr(ρ)
.

Remark. In order that the r.h.s. of the inequality above is non-negligible, N has to be polynomially
bounded. The requirement in Lemma 10 and Theorem 1 that the dimension of the message space
has to be polynomially bounded is rooted in this restriction of the technical lemma above.
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Lemma 10 Let Com = (Commit,Verify) be a non-interactive quantum commitment scheme (Def-
inition 2) with the dimension of the message space N that is bounded by some polynomial of the
security parameter λ. If the scheme Com is reversible multi-verification unique-message binding
(Definition 6), then it is also collapse binding (Definition 8).

In particular, given a t(λ)-verification malicious sender S∗ who can win the collapse-binding
experiment ColBindExptS∗,b(λ) for a uniformly random bit b with advantage ε, then there exists
another (2t(λ) + 1)-verification malicious sender S′ who can win the reversible multi-verification
unique-message binding experiment RMV-UniqBindExptS′(λ) with advantage 8ε2/N .

Proof: Suppose that S∗ = (|τ〉 , P,D) is a t-verification malicious sender who can win the collapse-
binding experiment (Definition 8) with advantage ε; that is,

Pr
b

$←{0,1}
[ColBindExptS∗,b(λ) = b] ≥ 1

2
+ ε(λ).

We can assume without loss of generality that in the experiment ColBindExptS∗,b, for both b = 0
and 1, S∗ interacts with the challenger in exactly t rounds. Given access to S∗, we will construct
another sender S′ = (τ ′, P,T) who (using the same predicate P as S∗) can win the reversible
multi-verification unique-message binding experiment RMV-UniqBindExptS∗(λ) (Definition 6) with
advantage Ω(ε2/N);23 that is,

Pr[RMV-UniqBindExptS′(λ) = 1] ≥ 8ε2

N
.

Specifically, we construct the malicious sender S′ = (τ ′, P,T) such that the experiment RMV-UniqBindExptS′(λ)
proceeds as follows:

1. This step is further divided into two steps:

(a) S′ internally simulates the collapse-binding experiment ColBindExptS∗,0(λ) until the end
of Step 2, using the same auxiliary input quantum state |τ〉 and the predicate P as used
by S∗: If either S∗ aborts in Step 1 or the challenger aborts in Step 2, then S′ aborts and
the experiment outputs 0. Otherwise, the resulting (sub-normalized) mixed quantum
state will be treated as the auxiliary input quantum state τ ′ used by the attack S′.

(b) S′ proceeds as described by Step 1 of reversible multi-verification unique-message-binding
experiments (Definition 6). Namely, it uses a fresh qubit E initialized in the state |0〉,
and sends the system (C,R,M,A,D, E), together with the description of the predicate
P , to the challenger.24

2. The challenger proceeds as described by Step 2 of reversible multi-verification unique-message-
binding experiments. Namely, the challenger simulates the binary projective measurement
{Π,1−Π} using the qubit E in the standard way, where the projector Π is given by Eq. (5)
with the predicate P plugged in. If the outcome is 0, i.e. the verification fails, then it aborts
and the experiment outputs 0; otherwise, the challenger returns registers (R,M,A,D, E) (but
without the commitment register C) to the sender S′.

23Here, we use the notation τ ′ rather than |τ ′〉 to indicate that it could be a mixed quantum state.
24By the construction of the (sub-normalized) quantum state τ ′, now there is actually no need for the sender S′ to

measure the qubit A and check the opening of the commitment.
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3. The sender S′ measures the message register M in the computational basis, obtaining the
first message m1.

4. This step is further divided into three steps:

(a) S′ interacts with the challenger to simulate the interaction between S∗ and the corre-
sponding challenger as described in Step 3 of the collapse-binding experiment ColBindExptS∗,0(λ).
That is, the unitary T performed in each round induced by the transformer T is just the
unitary D induced by the distinguisher D used by the sender S∗ in the collapse-binding
experiment ColBindExptS∗,0(λ), with the only difference that now the sender S′ and the
challenger will simulate the challenger’s verification in the experiment ColBindExptS∗,0(λ)
unitarily in the standard way using additional qubits Ei’s and the qubit E . Detail follows.

Specifically, for the simulation in each round, a fresh new qubit initialized in the state |0〉
will be used to record the challenger’s verification outcome; in the i-th round (1 ≤ i ≤ t),
the qubit used will be denoted by Ei. After applying the unitary D, the sender S′ will
swap the content of the qubit Ei and E before sending registers (R,M,A,D, E) to the
challenger. Then the challenger will first simulate the binary projective measurement
{Π,1−Π} as in Step 2, and then send registers (R,M,A,D, E) back to the sender S′.
Upon receiving registers back from the challenger, the sender S′ will swap the content
of the qubit Ei and E once more.

(b) The transformer T simulates Step 4 of the experiment ColBindExptS∗,0(λ) unitarily, i.e.
first performs the unitary D and then simulate measuring a designated output qubit
unitarily.

(c) S′ first performs the unitary D† to reverse part of the computation as described in Step
4(b); measuring the designated qubit will not be reversed. Then it reverses the whole
computation as described in Step 4(a).

5. The transformer T’s operation in this step will be the identity. Then it re-initializes the qubit
E in the state |0〉, and sends registers (R,M,A,D, E) to the challenger.

6. The challenger first simulates the binary projective measurement {Π,1−Π} as in Step 2,
and then sends registers (R,M,A,D, E) back to the sender S′.

7. S′ proceeds as described in Step 7 of reversible multi-verification unique-message-binding
experiments. That is, it measures qubits A, E , and measures the message register M to
obtain the second message m2: If either of qubits A or E contain 0, or m2 = m1, then S′

aborts and the experiment outputs 0; otherwise, the experiment outputs 1.

In the experiment above, since both Step 4(a) and 4(c) take t rounds, plus an additional round
taking in Step 5 and 6, the malicious sender S′ interacts with the challenger 2t+ 1 rounds in total.
We are next to prove that the malicious sender S′ can win the experiment RMV-UniqBindExptS′(λ)
with advantage at least 8ε2/N .

By our construction of S′, the system (C,R,M,A,D) will remain in the (sub-normalized) mixed
quantum state τ ′ at the end of Step 2 of the experiment RMV-UniqBindExptS′(λ). Step 4 of the
experiment actually implements the binary projective measurement {ΠD,1−ΠD} that is induced
by the distinguisher D. Let M denote the submeasurement {Πm}m∈{1,2,...,N}, where the projector

Πm = Π · |m〉 〈m|M · |1〉 〈1|A . (13)
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By the assumption that the malicious sender S∗ can win the collapse-binding experiment ColBindExptS∗,b(λ)

where b
$← {0, 1} with advantage ε, we have:

|Tr(ΠD(τ ′ −M(τ ′)))| ≥ 2ε, |Tr((1−ΠD)(τ ′ −M(τ ′)))| ≥ 2ε.

This is because conditioned on the experiment ColBindExptS∗,b(λ) aborting prematurely in Step 1
or 2, the distinghuishing advantage will be 0. Since

∑
m Tr(Πmτ

′) = Tr(τ ′), it follows from Lemma
9 that ∑

m1

∑
m2 6=m1

Tr(Πm2ΠDΠm1τ
′Πm1ΠD) ≥ Tr(ΠD(τ ′ −M(τ ′)))2

N · Tr(τ ′)
≥ 4ε2

N
.

We can prove a similar inequality as above if we replace the projector ΠD with 1 − ΠD. Note
that the probability that the experiment RMV-UniqBindExptS′(λ) outputting 1 is exactly given by∑

m1

∑
m2 6=m1

Tr(Πm2ΠDΠm1τ
′Πm1ΠD) +

∑
m1

∑
m2 6=m1

Tr(Πm2(1−ΠD)Πm1τ
′Πm1(1−ΠD)).

This implies that S′ can win the experiment RMV-UniqBindExptS′(λ) with advantage at least 8ε2/N ,
which is non-negligible when N = O(poly(λ)). But this breaks the reversible multi-verification
unique-message binding property (Definition 6) of the scheme Com.

This finishes the proof of the lemma. �

7.3 Extension to interactive post-quantum commitments

In this subsection, we informally argue that our equivalence theorem (Theorem 1) extends to
interactive post-quantum commitments (whose reveal stage remain non-interactive).

Specifically, a generic interactive post-quantum commitment scheme Com = (Commit,Verify)
consists of two QPT algorithms: the interactive QPT algorithm Commit prescribes the sender and
the receiver’s operations in each round during the commit stage. On input a (classical) message m,
let c denote the receiver’s view of the commit stage, and u the corresponding (classical) opening
(or decommitment) output by the algorithm Commit. To open the commitment, the receiver will
run the QPT algorithm Verify on the input (c,m, u) to check whether it outputs 1.

We can adapt various binding properties defined w.r.t. non-interactive quantum commitment
schemes in this paper to interactive post-quantum commitment schemes as follows:

Unique-message binding It is adapted from Definition 3 straightforwardly, which just recovers
the original definition of unique-message binding proposed in [LMS21].

Predicate unique-message binding Compared with Definition 5, it replaces the interaction
between the sender and the challenger in Step 4 of the corresponding experiment with a single
unitary performed by the sender on its own system. It can also be viewed as an extension of
the unique-message binding above by introducing a predicate check. Moreover, we note that
now there is no need of defining the reversible version of predicate unique-message binding
like Definition 6; this is because now the unitary in Step 4 of its corresponding experiment is
already reversible.

Collapse binding It is adapted from Definition 7 (not Definition 8) straightforwardly, which just
recovers Unruh’s original definition of collapse binding [Unr16b].

36



Predicate collapse binding Compared with Definition 8, it replaces the interaction between the
sender and the challenger in Step 3 of the corresponding experiment with a single unitary
performed by the sender on its own system. It can also be viewed as an extension of the
collapse binding defined above by introducing a predicate check.

The lemma below is obvious.

Lemma 11 An interactive post-quantum commitment scheme Com = (Commit,Verify) is ε-unique-
message binding if and only if it is ε-predicate unique-message binding; it is ε-collapse binding if
and only if it is ε-predicate collapse binding.

The proof of our equivalence theorem (Theorem 1) can be adapted to prove the following
theorem:

Theorem 3 An interactive post-quantum commitment scheme Com = (Commit,Verify) is unique-
message binding if and only if it is (predicate) collapse binding. In particular:

• If the scheme is ε/4-(predicate-)collapse binding, then it is also ε-unqiue-message binding.

• If the scheme is 8ε2/N -unique-message binding, then it is also ε-(predicate-)collapse binding.

Proof Sketch: The first item is previously proved in [LMS21] (and extending which we prove
Lemma 8). For the second item, the proof of Lemma 10 extends here straightforwardly (and which
can only be simpler because the sender can do the commitment check by itself in the post-quantum
setting). �

Jumping ahead, one can also show that the predicate-collapse-binding of interactive post-
quantum commitments composes first in parallel and then in sequence, like what we will prove
for non-interactive quantum commitments later (i.e. Lemma 12 and 13). With these nice composi-
tion properties, one can also do the post-quantum analysis using almost the same template as the
one provided by Theorem 4 (with the only difference in the security loss, which can only decrease).

8 The parallel composition of collapse binding

In applications, we often compose a commitment scheme in parallel to commit a long message.
In this section, we show that parallelized non-interactive quantum commitment schemes satisfy a
collapse binding property that extends naturally from that of the atomic scheme.

Definition 9 (Parallel collapse-binding) Let Com = (Commit,Verify) be a non-interactive quan-
tum commitment scheme w.r.t. Definition 2. Consider the parallel collapse-binding experiment
P-ColBindExptS∗,b(λ) defined as below, where the challenge bit b ∈ {0, 1} and the malicious sender
S∗ = (|τ〉 , P,D) is a non-uniform QPT interactive algorithm. We say that the sender S∗ is l(λ)-
fold,25 t(λ)-verification, if it attacks l folds of the scheme Com running in parallel by interacting
with the challenger at most t(λ) rounds.

P-ColBindExptS∗,b(λ):

25In subsequent security analysis, we will assume that the function l(·) = ω(1) without loss of generality to simplify
the asymptotic analysis.
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1. The malicious sender S∗ receives/prepares a joint system (C⊗l,R⊗l,M⊗l,A⊗l,D) in the state
|τ〉, and sends the system (C⊗l,R⊗l,M⊗l,A⊗l,D), together with the description of the pred-
icate P to the challenger.

2. The challenger performs the binary projective measurement {Πpar,1−Πpar}, with

Πpar
def
=
(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗l · PM⊗lA⊗lD, (14)

where the projector Vcom is given by Eq. (2). If the measurement outcome is 0, then the
challenger aborts and the experiment outputs a uniformly random bit b′. Otherwise, if the
outcome is 1 and b = 1, then the challenger first measures all l copies of the qubit A in the
computational basis. Let I ⊆ {1, 2, . . . , l} be the subset consisting of all indices i’s such that
the measurement outcomes of the qubit Ai is 1.

Two restrictions on the state of qubits A⊗l:26 First, we require that the value of
qubits A⊗l is deterministic; that is, measuring qubits A⊗l will cause no collapse
of the quantum state. We point out that this restriction can be circumvented in
many interesting scenarios, as remarked subsequent to the definition. Second, we
additionally require that |I| is efficiently computable and at least 1 (i.e. the subset
I is non-empty).27 We also point out that this condition is often automatically
satisfied in applications.

The challenger then measures message registers Mi’s in the computational basis if the qubit
Ai contains 1. It returns registers (R⊗l,M⊗l,A⊗l,D) to the sender S∗ (without commitment
registers C⊗l).

3. Now the sender S∗ will try to guess the challenge bit b by running the distinguisher D, which
may interact with the challenger at most t(λ) rounds before outputting a guess b′ ∈ {0, 1}.
In particular, each round of the interaction between the distinguisher D and the challenger
will take the following form:

(a) The distinguisher D performs a unitaryD on its system, and sends registers (R⊗l,M⊗l,A⊗l,D)
to the challenger.

(b) The challenger performs the binary projective measurement {Πpar,1−Πpar} that is the
same as the one in Step 2, and sends registers (R⊗l,M⊗l,A⊗l,D) together with the
measurement outcome back to the distinguisher.

4. The distinguisher D performs the unitary D on its system once more and then measures
a designated qubit, with the outcome b′ that will be treated as the output of the whole
experiment.

We say that the quantum commitment scheme Com is parallel collapse-binding if for all non-
uniform QPT sender S∗,

Pr
b

$←{0,1}
[P-ColBindExptS∗,b(λ) = b] ≤ 1

2
+ negl(λ).

26These restrictions are imposed for a technical reason: it will be crucial for proving our parallel and sequential
composition lemmas (Lemma 12, 13) later.

27Alternatively, this restriction can be incorporated into the predicate P : if the size of the subset I is not equal to
some efficiently computable value, then the challenger will abort.
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Quantitatively, we say that the quantum commitment scheme Com is l(λ)-fold, t(λ)-verification,
ε(λ)-parallel-collapse-binding if for any l(λ)-fold, t(λ)-verification non-uniform QPT malicious sender
S∗,

Pr
b

$←{0,1}
[P-ColBindExptS∗,b(λ) = b] ≤ 1

2
+ ε(λ).

Remark. We have two remarks on the first restriction on the state of qubits A⊗l in the definition
above.

1. A typical scenario in cryptographic applications where this restriction is satisfied is that all
commitments will be opened. This is exactly the case where the parallel composition of
collapse binding is studied in previous literature [Unr16b, GJMZ22].

2. This restriction can be circumvented by a simple trick following Unruh [Unr12, Unr16b].
Specifically, we can let the sender of commitments additionally commit to the value of qubits
A⊗l. Then conditioned on tis commitment is opened successfully (whose check can be incor-
porated in to Πpar), whether the challenger measuring qubits A⊗l or not will be undetectable
seeing from the viewpoint of the sender (by the virtue of the collapse-binding property of the
commitment). And this will be sufficient for proving the parallel composition lemma (Lemma
12); refer to the remark subsequent to the proof of this lemma.

Lemma 12 (Parallel composition) Let Com = (Commit,Verify) be a non-interactive quantum
commitment scheme w.r.t. Definition 2. If this scheme is collapse binding w.r.t. Definition 8, then
it is also parallel collapse-binding w.r.t. Definition 9.

In particular, if there is a malicious l(λ)-fold, t(λ)-verification sender S∗ who can win the parallel
collapse-binding experiment P-ColBindExptS∗,b(λ) (for a uniformly random bit b) with advantage
ε(λ), then there exists another malicious t(λ)-verification sender S′ who can win the collapse-binding
experiment ColBindExptS′,b(λ) (for a uniformly random bit b) with advantage at least ε/l.

Proof: Suppose that S∗ = (|τ〉 , P,D) is a malicious l(λ)-fold, t(λ)-verification sender who can
win the parallel collapse-binding experiment P-ColBindExptS∗,b(λ) (for a uniformly random bit b)
with advantage ε(λ). Let P-ColBindExptS∗,1/2(λ) denote the experiment that is almost identical to

the experiment P-ColBindExptS∗,0(λ), except that the challenger also measures qubits A⊗l (but not

M⊗l as opposed to the experiment P-ColBindExptS∗,1(λ); this is why we use the subscript 1/2 for
its notation) in Step 2.

Without loss of generality, assume that S∗ will always cause the challenger to accept for its
verification {Πpar,1−Πpar} in Step 2 of the experiment P-ColBindExptS∗,b(λ) (for both b = 0 and
1). This is because S∗ can do this verification by itself in Step 1; we can let it simply abort (and
output a uniformly random bit b′) without affecting its distinghuishing advantage.

Due to the restriction on the state of qubits A⊗l (recall Definition 9), it follows that the ex-
periment P-ColBindExptS∗,0(λ) and the experiment P-ColBindExptS∗,1/2(λ) are equivalent. Thus, the
sender S∗ can distinghuish the experiment P-ColBindExptS∗,1/2(λ) and the experiment P-ColBindExptS∗,1(λ)
with advantage at least ε.

Now we construct another malicious t(λ)-verification sender S′ = (τ ′, P ′,D′) such that the
collapse-binding experiment ColBindExptS′,b(λ) proceeds as follows:

1. This step is further divided into several steps:
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(a) The malicious sender S′ simulates S∗ to receive a joint system (C⊗l,R⊗l,M⊗l,A⊗l,D) in
the state |τ〉, and measures all l copies of the qubit A in the computational basis. Denote
by I the subset of {1, 2, . . . , l} consisting of all indices i’s such that the measurement
outcome of the qubit Ai is 1.

(b) S′ chooses an index i
$← I.

(c) S′ performs the binary projective measurement
{

Π′par,1−Π′par
}

, where the projector
Π′par corresponds to the verification of the opening of commitments with indices in I\ {i}.
That is,

Π′par
def
=
(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗(l−1)
. (15)

The measurement outcome will be recorded in a fresh qubit F .

(d) If the qubit F contains 0, then S′ aborts and the experiment outputs a uniformly random
bit b′. Otherwise, S′ measures copies of the message register M with indices in I and
whose values are less than i. The resulting (sub-normalized) quantum state of the whole
system will be denoted by τ ′.

(e) S′ sets the predicate P ′ to be equal to the predicate P anded with the value stored in
the qubit F .

(f) S′ sends registers (Ci,Ri,Mi,Ai), registers (D,F), together with the description of the
predicate P ′ to the challenger.

2. The challenger performs the binary projective measurement {Π,1−Π} on the system (Ci,Ri,Mi,Ai,D,F),
where the expression of the projector Π is given by Eq. (5), with the predicate P ′ plugged
in and the composite system (D,F) here identified as the register D in Eq. (5). If the mea-
surement outcome is 0, then the challenger aborts and the experiment outputs a uniformly
random bit b′. Otherwise, if the outcome is 1 and b = 1, then the challenger measures the
register Mi in the computational basis. It then returns registers (Ri,Mi,Ai,D,F) to the
sender S′ (without the commitment register Ci), who will flip the value of the qubit F to set
it back to the state |0〉.28

3. Now the sender S′ will try to guess the challenge bit b by running the distinguisher D used
by the sender S∗ as a subroutine, which may interact with the challenger at most t(λ) rounds
before outputting a guess b′ ∈ {0, 1}. In particular, each round of the interaction between
the distinguisher D′ and the challenger will take the following form:

(a) The distinguisher D′ first performs the unitary D induced by the distinguisher D on its
system, and then simulates the binary projective measurement

{
Π′par,1−Π′par

}
unitarily

in the standard way, using the qubit F to record the measurement outcome. It sends
registers (Ri,Mi,Ai,D,F) to the challenger.

(b) The challenger performs the binary projective measurement {Π,1−Π} that is the same
as the one in Step 2, and sends registers (Ri,Mi,Ai,D,F) together with the measure-
ment outcome back to the distinguisher. Upon receiving them, the distinghuisher will
uncompute the qubit F , i.e. performing the inverse of the unitary simulation of the
binary projective measurement

{
Π′par,1−Π′par

}
as done in Step 3(a).29

28To satisfy the syntax of collapse-binding experiments, this flip operation can be moved to the beginning of Step
3.

29To satisfy the syntax of collapse-binding experiments, this uncomputing operation of S′ can be moved to Step
3(a) of the next round.
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4. The distinguisher D′ performs the unitary D on its system once more and then measures
a designated qubit, with the outcome b′ that will be treated as the output of the whole
experiment.

Next, we will use a standard hybrid argument to show that the malicious sender S′ can win
the collapse-binding experiment ColBindExptS′,b(λ), for a uniformly chosen bit b, with advantage at
least ε/l.

Consider the parallel collapse-binding experiment P-ColBindExptS∗,0(λ) when an arbitrary sub-
set I of {1, 2, . . . , l} is obtained in Step 1, which consists of all indices with which the measurement
outcome of corresponding copies of the qubit A is 1. Denote by |τ ′I〉 the corresponding (sub-
normalized) quantum state at the end of Step 1, with the corresponding malicious sender denoted
by S′I ; thus, τ ′ =

∑
I |τ ′I〉 〈τ ′I |.30

Order indices in I in the increasing order. We construct the i-th hybrid Hi(λ), for i =
0, 1, . . . |I|, by modifying the experiment P-ColBindExptS∗I ,1/2(λ) in the following way: if the verifica-

tion {Π,1−Π} succeeds in Step 2, then the challenger will measure the first i copies of the message
registerM with indices in I. Henceforth, H0(λ) is just the experiment P-ColBindExptS∗I ,1/2(λ), and

H|I|(λ) is just the experiment P-ColBindExptS∗I ,1(λ). Let

εI
def
=

1

2
(Pr[H0(λ) = 1]− Pr[H|I|(λ) = 1]);

we have
∑

I |εI | ≥ ε.
Now consider the experiment ColBindExptS′,b(λ). For each index i ∈ I, let ord(i) denote the

order of i in the subset I; that is, there are exactly ord(i) indices in I that are less than or equal
to i. A key observation is that experiments ColBindExptS′I ,0(λ) and ColBindExptS′I ,1(λ) conditioned

on an index i is chosen in Step 1(b) are identical to Hord(i)−1 and Hord(i), respectively. Thus,

Pr[ColBindExptS′I ,0(λ) = 1]− Pr[ColBindExptS′I ,1(λ) = 1]

=
1

|I|
∑
i∈I

(
Pr[ColBindExptS′I ,0(λ) = 1 | i is chosen is Step 1(b)]

−Pr[ColBindExptS′I ,1(λ) = 1 | i is chosen is Step 1(b)]
)

=
1

|I|
∑
i∈I

(
Pr[Hord(i)−1(λ) = 1]− Pr[Hord(i)(λ) = 1]

)
=

1

|I|
(
Pr[H0(λ) = 1]− Pr[H|I|(λ) = 1]

)
=

2εI
|I|

.

30With the restriction on qubits A⊗l presented within Definition 9, the subset I here will be some deterministic
subset. In spite of this, in the analysis below we still treat I as a more general random subset. This is because then
our analysis below extends to the case where the trick mentioned in the remark subsequent to Definition 9 is applied
(to circumvent the restriction). Refer to the remark subsequent to our proof of this lemma for a greater detail.
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It follows that

|Pr[ColBindExptS′,0(λ) = 1]− Pr[ColBindExptS′,1(λ) = 1]|

=
∣∣∣∑

I

Pr[ColBindExptS′I ,0(λ) = 1]−
∑
I

Pr[ColBindExptS′I ,1(λ) = 1]
∣∣∣

=
∣∣∣∑

I

(Pr[ColBindExptS′I ,0(λ) = 1]− Pr[ColBindExptS′I ,1(λ)] = 1)
∣∣∣

=
2
∣∣∑

I εI
∣∣

|I|

≥ 2ε

l
.

Hence, the sender S′ breaks the collapse-binding property of the scheme Com with advantage at
least ε/l. �

Remark. We note that the parallel composition lemma above still holds when the trick men-
tioned in the remark subsequent to Definition 9 is applied (to circumvent the restriction on
qubits A⊗l). To see this, note that now the experiment P-ColBindExptS∗,0(λ) and the experi-
ment P-ColBindExptS∗,1/2(λ) are indistinguishable (instead of identical in the proof above with

restrictions on A⊗l).

9 A useful (parallel-and-sequential) collapse-binding property in
applications

In the security analysis of cryptographic applications which use quantum commitments, some com-
mitments may be opened multiple times due to the quantum rewinding; in turn, the corresponding
message registers might be measured multiple times (conditioned on the openings succeeding),
too. To formalize this scenario, we modify the definition of the parallel collapse-binding property
by introducing an indicator qubit O, giving rise to a definition of parallel-and-sequential collapse
binding; this will be the actual collapse binding property that is really useful in cryptographic
applications. Moreover, this introduction of the indicator O even allows us to absorb Step 2 of
parallel collapse-binding into its Step 3, giving the following cleaner definition:

Definition 10 (Parallel-and-sequential collapse-binding) Let Com = (Commit,Verify) be a
non-interactive quantum commitment scheme w.r.t. Definition 2. Consider the parallel-and-
sequential collapse-binding experiment PS-ColBindExptS∗,b(λ) defined as below, where the challenge
bit b ∈ {0, 1} and the malicious sender S∗ = (|τ〉 , P,D) is a non-uniform QPT interactive algo-
rithm. We say that the sender S∗ is l(λ)-fold, t(λ)-verification, if it attacks l folds of the scheme
Com running in parallel and may interact with the challenger at most t(λ) rounds.

PS-ColBindExptS∗,b(λ):

1. The malicious sender S∗ receives/prepares a joint system (C⊗l,R⊗l,M⊗l,A⊗l,D,O) in the
state |τ〉. Then it sends the commitment register C⊗l, together with the description of the
predicate P to the challenger.

2. Now the sender S∗ will try to guess the challenge bit b by running the distinguisher D, which
may interact with the challenger at most t(λ) rounds before outputting a guess b′ ∈ {0, 1}.
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In particular, each round of the interaction between the distinguisher D and the challenger
will take the following form:

(a) The distinguisher D performs a unitaryD on its system, and sends registers (R⊗l,M⊗l,A⊗l,D,O)
to the challenger.

(b) The challenger performs the binary projective measurement {Πpar,1−Πpar}, where the
expression of the projector Πpar is given by Eq. (14). If the measurement outcome is 1
and b = 1, then measure the qubit O: if the outcome is 1, then further measure qubits
A⊗l and registers Mi’s such that the qubit Ai contains 1.

Restrictions on the state of qubits A⊗l:31 the same as those introduced in the
definition of parallel collapse-binding (Definition 9).

The challenger sends registers (R⊗l,M⊗l,A⊗l,D,O) together with the outcome of the
binary measurement {Πpar,1−Πpar} back to the distinguisher.

3. The distinguisher D performs the unitary D on its system once more and then measures
a designated qubit, with the outcome b′ that will be treated as the output of the whole
experiment.

We say that the quantum commitment scheme Com is parallel-and-sequential collapse-binding
if for all non-uniform QPT sender S∗,

Pr
b

$←{0,1}
[PS-ColBindExptS∗,b(λ) = b] ≤ 1

2
+ negl(λ).

Quantitatively, we say that the quantum commitment scheme Com is l(λ)-fold, t(λ)-verification
ε(λ)-parallel-and-sequential collapse-binding if for any l(λ)-fold, t(λ)-verification non-uniform QPT
malicious sender S∗,

Pr
b

$←{0,1}
[PS-ColBindExptS∗,0(λ) = b] ≤ 1

2
+ ε(λ).

Remark. Restrictions on qubitsA⊗l can also be circumvented by the same trick as mentioned in the
remark subsequent to Definition 9 for the purpose of proving the following sequential composition
lemma.

Now we are ready to prove the sequential composition lemma as below, which has two items.
We highlight that the second item is typically needed to ensure that the extraction (say, by the
special soundness) be correct in applications.

Lemma 13 (Sequential composition) Let Com = (Commit,Verify) be a non-interactive quan-
tum commitment scheme w.r.t. Definition 2.

1. If the scheme is parallel collapse-binding w.r.t. Definition 9, then it is also parallel-and-
sequential collapse binding w.r.t. Definition 10.

In particular, if there is a malicious l(λ)-fold, t(λ)-verification sender S∗ who can win the
parallel-and-sequential collapse-binding experiment PS-ColBindExptS∗,b(λ) (for a uniformly

31Note that in the case where the measurement outcome of the qubit O is 0, qubits A⊗l and registers Mi’s will
not be measured. Then the restrictions on the state of qubits A⊗l can be removed. This will be very important for
applications.
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random bit b) with advantage ε(λ), then there exists another malicious l(λ)-fold, (t(λ) − 1)-
verification sender S′ who can win the parallel collapse-binding experiment P-ColBindExptS′,b(λ)
(for a uniformly random bit b) with advantage at least ε/t.

2. For any copy of the message registerM that is measured multiple times during the experiment
PS-ColBindExptS∗,1(λ), all outcomes will be identical except for a negligible probability.

In particular, if for some l(λ)-fold, t(λ)-verification malicious sender S∗, the probability is at
least ε(λ) that there are two measurements of some copy of the message register M whose
outcomes are different in the experiment PS-ColBindExptS∗,1(λ), then there exists another
l(λ)-fold, (t(λ)−1)-verification malicious sender S′ who can win the multi-verification unique-
message binding experiment MV-UniqBindExptS′(λ) with advantage at least ε/(lt).

Proof: We prove Item 1 first.
Given a malicious l-fold, t-verification sender S∗ = (|τ〉 , P,D) who can win the parallel-and-

sequential collapse-binding experiment PS-ColBindExptS∗,b(λ) (for a uniformly random bit b) with
advantage ε, we will construct another malicious l-fold, (t − 1)-verification sender S′ who can win
the parallel collapse-binding experiment P-ColBindExptS′,b(λ) (also for a uniformly random bit b)
with advantage ε/t.

Basically, the sender S′ will simulate S∗ in the parallel collapse-binding experiment P-ColBindExptS′,b(λ)
(for a uniformly random bit b), except that now S′, as opposed to the challenger in the experiment
PS-ColBindExptS∗,b(λ), will measure the qubit O in each round. In greater detail, the parallel
collapse-binding experiment P-ColBindExptS′,b(λ) proceeds as follows:

1. This step is further divided into several steps:

(a) S′ chooses i
$← {1, 2, . . . , t} uniformly random.

(b) S′ internally simulates from the beginning the interaction between S∗ and the chal-
lenger in the experiment PS-ColBindExptS∗,1(λ), until the i-th time when the qubit O is

measured with the outcome 1, but qubits A⊗l and the corresponding message registers
Mi’s have not yet been measured by the challenger. If this does not happen before the
experiment PS-ColBindExptS∗,1(λ) ends, then the experiment will output whatever the
experiment PS-ColBindExptS∗,1(λ) outputs.

(c) S′ sends the system (C⊗l,R⊗l,M⊗l,A⊗l,D) (while keeping the qubit O), together with
the description of the predicate P , to the challenger.

2. The challenger performs the binary projective measurement {Πpar,1−Πpar}, where the ex-
pression of the projector Πpar is given by Eq. (14). If the measurement outcome is 132

and b = 1, then the challenger measures qubits A⊗l in the computational basis to obtain a
subset I which consists of all indices with the corresponding qubit A containing 1. It then
measures register Mi’s with the index i ∈ I in the computational basis. It returns registers
(R⊗l,M⊗l,A⊗l,D) to the sender S′ (without the commitment register C⊗l).

3. Now the sender S′ will try to guess the challenge bit b by running almost the same distinguisher
D as used by the sender S∗ (except for the measurements of the qubit O), which may interact
with the challenger at most t− i rounds before outputting a guess b′ ∈ {0, 1}. In particular,
each round of the interaction between the distinguisher D and the challenger will take the
following form:

32The measurement outcome cannot be 0 by our construction of S′.
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(a) The distinguisher D performs the unitaryD on its system, and sends registers (R⊗l,M⊗l,A⊗l,D)
to the challenger.

(b) The challenger performs the binary projective measurement {Πpar,1−Πpar}, and then
sends registers (R⊗l,M⊗l,A⊗l,D) together with the measurement outcome back to the
distinghuisher D.

(c) If the challenger’s measurement outcome is 1, then the distinguisher D will measure the
qubit O in the computational basis.33 (If the outcome is 0, then the qubit O will not be
measured.)

4. The distinguisher D performs the unitary D on its system once more and then measures
a designated qubit, with the outcome b′ that will be treated as the output of the whole
experiment.

We prove by a hybrid argument that the sender S′ can win the parallel collapse-binding ex-
periment P-ColBindExptS′,b(λ) (for a uniformly random bit b) with advantage ε/t. Specifically,
for i = 1, . . . , t, the i-th hybrid Hi(λ) is defined as the experiment P-ColBindExptS′,1(λ) condi-
tioned on the index i is chosen in Step 1(a). It is easy to see that Ht(λ) is just the experiment
PS-ColBindExptS∗,1(λ). We define H0(λ) as the experiment PS-ColBindExptS∗,0(λ). Thus,

|Pr[H0(λ) = 1]− Pr[Ht(λ) = 1]| > 2ε.

Also observe that the experiment P-ColBindExptS′,0(λ) conditioned on an index i (1 ≤ i ≤ t) chosen
in Step 1(a) is just the hybrid Hi−1(λ). It follows that

|Pr[P-ColBindExptS′,0(λ) = 1]− Pr[P-ColBindExptS′,1(λ) = 1]|

=
1

t

∣∣ t∑
i=1

(
Pr[P-ColBindExptS′,0(λ) = 1 | i is chosen in Step 1(a)]

−Pr[P-ColBindExptS′,1(λ) = 1 | i is chosen in Step 1(a)]
)∣∣

=
1

t

∣∣ t∑
i=1

(
Pr[Hi−1(λ) = 1]− Pr[Hi(λ) = 1]

)∣∣
=

1

t
|Pr[H0(λ) = 1]− Pr[Hn(λ) = 1]|

>
2ε

t
.

But this breaks the parallel collapse-binding property of the commitment scheme.
This finishes the proof of Item 1.

We next prove Item 2.
Given a malicious l-fold, t-verification sender S∗ = (|τ〉 , P,D), we construct another malicious

(t−1)-verification sender S′ = (τ ′, P ′,T′) such that the multiple-verification unique-message binding
experiment (Definition 5) MV-UniqBindExptS′(λ) proceeds as follows:

1. This step is further divided into several steps:

33This step can be absorbed into Step 3(a) of the next round to satisfy the syntax of the parallel collapse-binding
experiment.
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(a) S′ chooses r
$← {1, 2, . . . , t− 1}.

(b) S′ internally simulates the interaction between S∗ and the challenger in the experi-
ment PS-ColBindExptS∗,1(λ) from the beginning, until the end of the round in which
the r-th time when the qubit O is measured with the outcome 1: if the experiment
PS-ColBindExptS∗,1(λ) ends before this happening, or any inconsistency (of the measure-
ment outcomes of copies of the registerM) occurs during the simulation, then S′ aborts
and the experiment outputs 0. The resulting (sub-normalized) quantum state of the
whole system will be denoted by τ ′.

(c) S′ initializes a fresh qubit F in the state |1〉. Denote by I1 the subset of {1, 2, . . . , l}
consisting of all indices with which the measurement outcomes of corresponding copies

of the qubit A are 1’s. Choose i
$← I1.

(d) S′ sets the predicate P ′ to be equal to the value of the qubit F .

(e) S′ sends the i-th copy of registers (Ci,Ri,Mi,Ai,F), together with the description of
the predicate P ′ to the challenger.

2. The challenger performs the binary projective measurement {Π,1−Π} where the projector Π
is given by Eq. (5) with the predicate P ′ plugged in. If the outcome is 0, i.e. the verification
fails, then the challenger aborts and the experiment outputs 0; otherwise, the challenger
returns registers (Ri,Mi,Ai,F) to the sender S′ (without the commitment register Ci), who
will flip the value of the qubit F to set it back to 0.

3. The sender S′ measures the message register Mi in the computational basis, obtaining the
first message m1.

4. Now the sender S′ will try to open the i-th commitment as another message m2 6= m1 by
running the distinguisher D used by the sender S∗ as a subroutine, which may interact with
the challenger at most t− 1 rounds. In particular, each round of the interaction between the
transformer T′ and the challenger will take the following form:

(a) The transformer T′ first performs the unitary D induced by the distinguisher D on its sys-
tem, and then simulates the binary projective measurement

{
Π′par,1−Π′par

}
(Eq. (15))

unitarily in the standard way, using the qubit F to record the measurement outcome.
It then sends registers (Ri,Mi,Ai,F) to the challenger.

(b) The challenger performs the binary projective measurement {Π,1−Π} that is the same
as the one in Step 2, and sends registers (Ri,Mi,Ai,F), together with the measure-
ment outcome, back to the transformer, who will then uncomputes the qubit F , i.e.
performing the inverse of the unitary simulation of the binary projective measurement{

Π′par,1−Π′par
}

that is done in Step 3(a).

(c) If the challenger’s verification succeeds, then the transformer T′ measures the qubit O. If
the outcome is 1, then further measures qubits A⊗l to obtain a subset I2, and measures
copies of the message registers M with indices in I2. If i ∈ I2, jump to Step 5.

5. If the verification in the last round of Step 4 fails, then S′ aborts and the experiment outputs
0. Otherwise, S′ measures the qubit Ai, as well as the message registers Mi to obtain the
second message m2: If either the qubit Ai contains 0, or m2 = m1, then S′ aborts and the
experiment outputs 0; otherwise, the experiment outputs 1.
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Now we estimate the advantage achieved by the malicious sender S′ in the multi-verification
unique-message binding experiment MV-UniqBindExptS′(λ). In a running of the experiment PS-ColBindExptS∗,1(λ),
we call that an inconsistency (i∗, r∗1, r

∗
2) occurs if the message register Mi∗ is measured in both

rounds r∗1 and r∗2, but not in the between; moreover, the corresponding two measurement outcomes
are different.

Consider the moment when the first time an inconsistency (i∗, r∗1, r
∗
2) occurs in a running of

the experiment PS-ColBindExptS∗,1(λ).34 In Step 1(a) of the experiment MV-UniqBindExptS′(λ),
the chosen index pair (i, r) will hit (i∗, r∗1) with probability at least 1/lt. And conditioned on this
event happening, the experiment MV-UniqBindExptS′(λ) will be just a simulation of the experiment
PS-ColBindExptS∗,1(λ) from the beginning to the moment when the first time an inconsistency
occurs.

Since the probability that an inconsistency occurs in the experiment PS-ColBindExptS∗,1(λ) is
at least ε, it follows that S′ can win the experiment PS-ColBindExptS∗,1(λ) with advantage at least
ε/(lt).

This proves Item 2. �

Remark. We note that the proofs above (for both items) really do not use the restrictions on
qubits A⊗ that are presented within Definition 10 (or Definition 9). Henceforth, the sequential
composition lemma holds in both the case where the restrictions are imposed on qubits A⊗ and the
case where the trick to circumvent the first restriction (refer to the remark subsequent to Definition
9) is applied.

The following theorem is an immediate corollary of many lemmas established before; it connects
the unique-message binding error of non-interactive quantum commitments in constructions with
the sequential-and-parallel collapse-binding error in cryptographic applications in a quantitative
way.

Theorem 4 Let Com = (Commit,Verify) be a non-interactive quantum commitment scheme (Def-
inition 2) that is ε-unique-message binding (Definition 3). Then for the parallel-and-sequential
collapse-binding experiment PS-ColBindExptS∗,b(λ) w.r.t. any l-fold, t-verification sender S∗ and a
uniformly random bit b:

1. S∗ can only win the experiment with advantage at most O(
√
εN · lt4);

2. The probability of any inconsistency of measurement outcomes occurring in the experiment
PS-ColBindExptS∗,1(λ) is at most O(εlt7).

Proof: We first prove Item 1. For contradiction, suppose that there is an l-fold, t-verification
sender S∗ who can win the parallel-and-sequential collapse-binding experiment PS-ColBindExptS∗,b(λ),

for a uniformly random bit b, with advantage, say 100
√
εN · lt4.

By Item 1 of Lemma 13, there exists another l-fold, t-verification sender S′1 who can win the
corresponding parallel collapse-binding experiment P-ColBindExptS1′,b(λ) (for a uniformly random

bit b) with advantage at least 100
√
εN · lt3.

Then by Lemma 12, there exists another malicious t-verification sender S′2 who can win the
collapse-binding experiment ColBindExptS′2,b(λ) (for a uniformly random bit b) with advantage at

least 100
√
εN · t3.

34This occurs in the round r∗2 ; if there are multiple inconsistencies occur simultaneously, then just choose an
arbitrary one.
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Then by Lemma 10, there exists another 2t-verification malicious sender S′3 who can win the
reversible multi-verification unique-message binding experiment RMV-UniqBindExptS′3(λ) with ad-

vantage 80000εt6.
Finally by Lemma 7, there exists yet another sender S′4 who can win the unique-message binding

experiment UniqBindExptS′4(λ) with advantage at least 2ε. But this breaks the ε-unique-message
binding property of the scheme Com. This proves Item 1.

We next prove Item 2.
For contradiction, suppose that there exists an l-fold, t-verification sender S∗ such that in

the parallel-and-sequential collapse-binding experiment PS-ColBindExptS∗,1(λ), inconsistencies oc-
cur with probability at least, say, 100εlt7. By Item 2 of Lemma 13, there exists another l-fold,
t-verification malicious sender S′1 who can win the multi-verification unique-message binding exper-
iment MV-UniqBindExptS′1(λ) with advantage at least 100εt6. Since each multi-verification unique-
message binding experiment can be simulated by a reversible one in the standard way, it follows
that there exists another l-fold, t-verification malicious sender S′2 who can win the reversible multi-
verification unique-message binding experiment RMV-UniqBindExptS′2(λ) with advantage at least

100εt6.
Then by Lemma 7, there exists yet another sender S′3 who can win the unique-message binding

experiment UniqBindExptS′3(λ) with advantage at least 2ε. But this breaks the ε-unique-message
binding property of the scheme Com. This proves Item 2. �

Remark. One may use the trick mentioned in the remark subsequent to Definition 9 to circumvent
the restriction on qubits A⊗l. However, this will only introduce a constant factor to estimations in
the two items of the theorem above.

10 Application: the security against the prover in Blum’s protocol
for Hamiltonian Cycle and its variants

In this section, we plug a generic non-interactive quantum bit commitment scheme w.r.t. Definition
2 in Blum’s protocol for Hamiltonian Cycle and its variants, showing how to base the computational
soundness or argument-of-knowledge of resulting protocols on its computational binding property.

Similar techniques can also be used to cope with the GMW zero-knowledge protocol for Graph
3-Coloring; refer to Appendix C for the detail.

10.1 Soundness

In this subsection, we show that the original Blum’s protocol with a generic non-interactive quantum
bit commitment scheme plugged in is sound against any non-uniform QPT prover. This improves
one of the main result in [Yan21].

We first recap Blum’s protocol.

Blum’s protocol. Suppose that the common input graph G has n vertices, which can be rep-
resented by an n × n adjacency matrix. Informally, Blum’s protocol instantiated with a generic
quantum bit commitment scheme proceeds as follows:

P1 The prover chooses a random permutation π over the set {1, 2, . . . , n}, and commits to the
permuated graph π(G) in a bitwise fashion using a generic non-interactive quantum bit com-
mitment scheme.
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V1 The verifier chooses a challenge bit b ∈ {0, 1} uniformly random.

P2 If b = 0, then the prover sends π, together with the decommitments for all (quantum) bit
commitments to the verifier. Otherwise, i.e. if b = 1, then the prover sends the location
of a Hamiltonian cycle of the graph π(G), together with the decommitments for the n bit
commitments to the n edges of the Hamiltonian cycle.

V2 If b = 0, then the verifier checks that all n2 bit commitments are opened as π(G) successfully.
If b = 1, then the verifier checks that the n edges indeed form a Hamiltonian cycle, and all
corresponding n bit commitments are opened as 1 successfully.

We formalize an arbitrary attack (|τ〉 , U) of the prover in Blum’s protocol as follows, where
registers for the prover’s workspace are suppressed to simplify the notation:

• In Step P1, the prover prepares/receives a system (C⊗n2
,R⊗n2

,M⊗n2
,A⊗n2

,D) in the state
|τ〉, sending the commitment registers C⊗n2

to the verifier.

• In Step P2, if b = 0, then the prover does nothing; otherwise, if b = 1, then it performs the
unitary U on its system. It then sends the system (R⊗n2

,M⊗n2
,A⊗n2

,D) to the verifier.

The verifier’s verifications corresponding to b = 0 and b = 1 will be of the form given by Eq.
(14), with different predicates plugged in. Specifically, the predicate corresponding to b = 0 induces
the following projector:

P0
def
=
∑
π

|π〉 〈π|D ⊗ |π(G)〉 〈π(G)|M
⊗n2

⊗ |1n2〉〈1n2 |A⊗n2

. (16)

In turn, the corresponding verification induces the projector:

V0
def
=
(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗n2

· P0. (17)

The predicate corresponding to b = 1 induces the following projector:

P1
def
=
∑
H

|H〉 〈H|D ⊗ |1n〉 〈1n|M
⊗H

⊗ |H〉 〈H|A
⊗n2

, (18)

where H denotes the adjacency matrix representation of the Hamiltonian cycle H, and the register
M⊗H denotes copies of the register M (in total n) with indices corresponding to 1-entries (i.e.
edges) of H. In turn, the corresponding verification induces the projector:

V1
def
=
(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗n2

· P1. (19)

Theorem 5 Using non-interactive statistically-hiding, computationally-binding quantum bit com-
mitments (Definition 2) in Blum’s protocol gives rise to a three-round, quantum statistical zero-
knowledge argument for the NP-complete language Hamiltonian Cycle with perfect completeness and
soundness error 1/2.

Proof: Suppose that the (unique-message) binding error of the quantum bit commitment scheme
used is bounded by ε, which is negligible. Suppose that the common input graph G with n vertices
does not have a Hamiltonian cycle.
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For contradiction, suppose that there exists an attack P ∗ = (|τ〉 , U) of the prover which can

convince the verifier to accept with probability 1/2+1/p, where p(·) is a polynomial of n
def
= |V (G)|

(i.e. the number of vertices of the common input graph G). That is,

1

2

(
‖V0 |τ〉‖2 + ‖V1(U ⊗ 1C

⊗n2

) |τ〉 ‖2
)

=
1

2
+

1

p
.

Applying the quantum rewinding lemma (Lemma 4), we have:

‖V1(U ⊗ 1C
⊗n2

)V0 |τ〉 ‖ ≥ 1−
√

2
(1

2
− 1

p

)
≥ 1

p
.

Consider the parallel-and-sequential collapse-binding experiment (Definition 9) PS-ColBindExptS∗,b(n)
w.r.t. the n2-fold, 2-verification malicious sender S∗ = (|τ〉 , (P0, P1), U) and a uniformly random
bit b as follows:

1. S∗ receives/prepares a system (C⊗n2
,R⊗n2

,M⊗n2
,A⊗n2

,D,O) in the state |τ〉 |1〉O. Then it
sends the commitment registers C⊗n2

, together with the descriptions of predicates35 (P0, P1)
to the verifier.

2. S∗ does nothing and sends registers (R⊗n2
,M⊗n2

,A⊗n2
,D,O) to the challenger.

3. The challenger performs the binary projective measurement {V0,1− V0}. If the measurement
outcome is 1, then it measures the qubit O: if the outcome is 1, then it further measures
qubits A⊗n2

. If the measurement of the qubit O outputs 1 and b = 1, then it measures
the copies of the register M with the corresponding qubit A containing 1, i.e. all copies of
the register M. The challenger returns registers (R⊗n2

,M⊗n2
,A⊗n2

,D,O) to the sender S∗

(without the commitment register C⊗n2
).

4. If the challenger’s verification fails, then S∗ aborts and the experiment outputs 0.36 Otherwise,
S∗ performs the unitary U on its system other than O, and flips the value of O (i.e. performs
the Pauli-X on O). Then it sends registers (R⊗n2

,M⊗n2
,A⊗n2

,D,O) to the challenger.

5. The challenger performs the binary projective measurement {V1,1− V1}. If the measurement
outcome is 1, then it measures the qubit O: if the outcome is 1, then it further measures
qubits A⊗n2

. If the measurement of the qubit O outputs 1 and b = 1, then it measures the
copies of the registerM with the corresponding qubit A containing 1. The challenger returns
registers (R⊗n2

,M⊗n2
,A⊗n2

,D,O) to the sender S∗.

6. If the challenger’s verification fails, then the experiment outputs 0. Otherwise, the experiment
outputs 1.

It is easy to check that

Pr[PS-ColBindExptS∗,0(n) = 1] = ‖V1(U ⊗ 1C
⊗n2

)V0 |τ〉 ‖2 ≥
1

p2
.

The experiment PS-ColBindExptS∗,1(n) differs from the experiment PS-ColBindExptS∗,0(n) in that
conditioned on the challenger’s verification passes in Step 3, the challenger will measure registers

35They can be viewed as a single predicate that depends on the counting of rounds of the interaction between the
sender and the challenger; refer to the remark immediately following Definition 5

36To satisfy the syntax of parallel-and-sequential collapse-binding experiments given in Definition 10, this can be
viewed as S∗ proceeding arbitrarily subsequently until the end of the experiment when the bit 0 is output.
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M⊗n2
to obtain a graph that is isomorphic to the graph G. By Item 1 of Theorem 4 where we

plug in l = n2, t = 2 and N = 2, it follows that

Pr[PS-ColBindExptS∗,1(n) = 1] ≥ 1

p2
−O(

√
εn2).

Now let us modify S∗ slightly: it no longer flips the qubit O in Step 4; we call the re-
sulting sender S′. Then the experiment PS-ColBindExptS′,1(n) only differs from the experiment
PS-ColBindExptS∗,1(n) in that conditioned on the challenger’s verification passing in Step 5, the
challenge will further measure to obtain a Hamiltonian cycle. Since this (conditional) measurement
will not affect the probability that the experiment outputting 1, we have

Pr[PS-ColBindExptS′,1(n) = 1] = Pr[PS-ColBindExptS∗,1(n) = 1] ≥ 1

p2
−O(

√
εn2). (20)

Moreover, by Item 2 of Theorem 4 where we plug in l = n2, t = 2 and N = 2, the probability
that a graph obtained in Step 3 and a Hamiltonian cycle obtained in Step 5 is inconsistent in the
experiment PS-ColBindExptS′,1(n) is at most O(εn2). Combined with Inequality (20), it follows
that in the experiment PS-ColBindExptS′,1(n), with probability at least 1/p2 − O(

√
εn2) − O(εn2)

(which is positive), the graph obtained in Step 3 is isomorphic to the the original graph G and the
Hamiltonian cycle obtained in Step 5 is consistent with this graph. This implies that there is a
Hamiltonian cycle in the original graph G, contradicting to that G is not Hamiltonian.

This finishes the proof of the theorem. �

10.2 Argument-of-knowledge

In this subsection, we will use the definition of quantum argument-of-knowledge [Unr16b] that is
similar to quantum proof-of-knowledge defined by Unruh [Unr12], with the only difference that now
the malicious prover is modelled by a non-uniform QPT (as opposed to computationally unbounded)
algorithm.37 Informally speaking, for quantum argument-of-knowledge, we require that there exists
a knowledg error k such that for any non-uniform QPT sender who can convince the verifier to
accept with probability p, there exists another non-uniform QPT extraction algorithm that can
output the witness with probability at least (p− k)d/q for some polynomial q and constant d.

To obtain quantum argument-of-knowledge, we need to modify the original Blum’s protocol
slightly by letting the prover additionally commit to its responses corresponding to the challenge bit
0 in its firstmessage. Technically, this is because generally measuring the message registerM does
not uniquely determine the measurement outcome of the register D, which stores the permutation
used by the prover: it is possible that a superposition of several different permutations is stored
in the register D such that all these permutations will mapy the input graph to the same graph!
Intuitively, the collapse of the quantum state caused by the measurement of the register D may
perturb the state significantly, deteriorating the success probability of quantum rewinding.

A variant of Blum’s protocol. This first variant38 does the following modification to Blum’s
original protocol: in addition to commit to the graph π(G) in its first message, the prover also

37Strictly speaking, the definition of quantum argument-of-knowledge used here is also slightly different from Un-
ruh’s [Unr12, Unr16b]. Specifically, Unruh actually defines post-quantum proof/argument-of-knowledge (i.e. protocols
are restricted to be classical), whereas here both quantum computation and communication are allowed. In spite of
this, extending the definition from the post-quantum to the quantum setting is straightforward, as previously studied
in [FUYZ22].

38In the next subsection, we will present another variant for a slightly different purpose.
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commits to the random permutation π. Correspondingly, when the verifier’s challenge bit is 0, the
prover will additionally open the commitment to the random permutation π.

Specifically, the permutation π can be represented by its corresponding n × n permutation
matrix. Thus, the whole system becomes (C⊗2n2

,R⊗2n2
,M⊗2n2

,A⊗2n2
,D).

The predicate P0 corresponding to the challenge bit 0 becomes

P ′0
def
=
∑
π

|π〉 〈π|D ⊗ |π, π(G)〉 〈π, π(G)|M
⊗2n2

⊗ |12n2〉〈12n2 |A⊗2n2

, (21)

and the corresponding verification

V ′0
def
=
(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗2n2

· P ′0. (22)

Expressions for the predicate P1 and the verification V1 corresponding to the challenge bit
1 remain almost the same as those introduced in soundness analysis before, except that now H
denotes the concatenation of the string 0n

2
and the encoding of the adjacency matrix representation

of the Hamiltonian cycle H.39 Specifically,

P ′1
def
=

∑
H

|H〉 〈H|D ⊗ |1n〉 〈1n|M
⊗H

⊗ |H〉 〈H|A
⊗2n2

, (23)

V ′1
def
=

(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗2n2

· P ′1. (24)

Theorem 6 Using non-interactive statistically-hiding, computationally-binding quantum bit com-
mitments (Definition 2) in the first variant of Blum’s protocol as above gives rise to a quantum
statistical zero-knowledge argument-of-knowledge for the NP-complete language Hamiltonian Cycle
with perfect completeness and knowledge error 1/2.

Proof: We just sketch how to modify our proof for the soundness above (i.e. Theorem 5) to that
for the argument-of-knowledge here.

The knowledge extractor we construct essentially follows the experiment PS-ColBindExptS′,1(n)
constructed in the soundness analysis in the previous subsection. Specifically, the knowledge ex-
tractor proceeds as follows:

1. Receive/prepare a system (C⊗2n2
,R⊗2n2

,M⊗2n2
,A⊗2n2

,D) in the state |τ〉, as P ∗ does.

2. Perform the binary projective measurement {V ′0 ,1− V ′0}, where V ′0 is given by the expression
(22). If the measurement outcome is 1, then measure the register D to obtain a permutation
π; otherwise, abort.

3. Perform the unitary U on the system other than C⊗2n2
.

4. Perform the binary projective measurement {V ′1 ,1− V ′1}, where V ′1 is given by the expression
(24). If the measurement outcome is 1, then measure the register D to obtain a Hamiltonian
cycle H; otherwise, abort.

5. Check if the graph π(G) and the Hamiltonian cycle H are consistent. If yes, then output
π−1(H); otherwise, abort.

39The string 0n2

indicates that the commitments to the permutation π will not be opened.
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To see why the knowledge extractor works, a key observation is that in its Step 2, the measure-
ment of the register D can be replaced with that of registers M⊗2n2

: the outcome of the former
will uniquely determine that of the latter, and vice versa. After this replacement, one can check
that the knowledge extractor is essentially the experiment PS-ColBindExptS′,1(n) constructed in the
proof of soundness before (except that predicates P0, P1 and verifications V0, V1 will be replaced
with P ′0, P

′
1 and V ′0 , V

′
1 , respectively). �

10.3 Reducing the knowledge error by parallel composition

The knowledge error of the first variant of Blum’s protocol given above is 1/2, which is too large
for applications. One would like to reduce it to be negligible. A possible way to achieve this is by
parallel composition, which preserves the round complexity. However, for the purpose of extraction,
we need to compose yet another variant of Blum’s original protocol given as below.

Yet another variant of Blum’s protocol. Briefly, compared with the first variant given
in the previous subsection, in this second variant we let the prover additionally commit to its
response corresponding to the challenge 1. In greater detail, now the whole system becomes
(C⊗3n2

,R⊗3n2
,M⊗3n2

,A⊗3n2
,D). There are in total 3n2 quantum bit commitments, n2 of which

are commitments to the permutated graph π(G), the permutation π, and the Hamiltonian cycle
H, respectively.

Now the predicate corresponding to the challenge 0 becomes

P ′′0
def
=
∑
π

|π〉 〈π|D ⊗ |π, π(G)〉 〈π, π(G)|M
⊗2n2

⊗ |0n2
12n

2〉〈0n2
12n

2 |A⊗3n2

, (25)

where the string 0n
2
12n

2
stored in the registers A⊗3n2

indicates that all but commitments to the
Hamiltonian cycle H will be opened. The corresponding verification

V ′′0
def
=
(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗3n2

· P ′0. (26)

The predicate and the verification corresponding to the challenge 1 are given by

P ′′1
def
=

∑
H

|H〉 〈H|D ⊗ |H〉 〈H|M
⊗n2

⊗ |1n〉 〈1n|M
⊗H

⊗ |1n2
0n

2
H〉〈1n2

0n
2
H|A⊗3n2

, (27)

V ′′1
def
=

(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗3n2

· P ′1, (28)

where the string 1n
2
0n

2
H stored in the registers A⊗3n2

indicates that commitments to the Hamil-
tonian cycle H and those to entries of π(G) corresponding to edges of H will be opened.

Theorem 7 The parallel composition of the second variant of Blum’s protocol given above with
non-interactive statistically-hiding, computationally-binding quantum bit commitments (Definition
2) plugged in gives rise to a quantum argument-of-knowledge for the NP-complete language Hamil-
tonian Cycle with perfect completeness and negligible knowledge error.

Proof: When l copies of the atomic protocol are composed, the size of the verifier’s challenge space
becomes 2l. For an arbitrary challenge r ∈ {0, 1}l, the verifier’s verification induces the projector

V ′′r
def
=

l⊗
i=1

V ′′ri ,
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where V ′′0 and V ′′1 are given by expressions (26) and (28), respectively.
Given an attack P ∗ = (|τ〉 , U) of the prover of the parallelized protocol, we sketch the knowledge

extractor as below:

1. Receive/prepare a system (C⊗3n2
,R⊗3n2

,M⊗3n2
,A⊗3n2

,D)⊗l in the state |τ〉, as P ∗ does.

2. Choose r
$← {0, 1}l

3. Perform the unitary Ur, the unitary U with r as part of the input, on the system other than
commitment registers C⊗3n2l.

4. Perform the binary projective measurement {V ′′r ,1− V ′′r }
′. If the measurement outcome is

1, then measure registers D⊗l; otherwise, abort. For each i ∈ {1, . . . , l}, if ri = 0, then the
measurement of the corresponding copy of the register D will output a permutation πi; if
ri = 1, then the measurement will output a Hamiltonian cycle Hi.

5. Perform the unitary U †r .

6. Choose r′
$← {0, 1}l. If r′ = r, abort.

7. Perform the unitary Ur′ on the system other than C⊗3n2l.

8. Perform the binary projective measurement
{
V ′′r′ ,1− V ′′r′

}
. If the measurement outcome is

1, then measure registers D⊗l; otherwise, abort. For each i ∈ {1, . . . , l}, if r′i = 0, then the
measurement of the corresponding copy of the register D will output a permutation πi; if
r′i = 1, then the measurement will output a Hamiltonian cycle Hi.

9. Let i be any position such that ri 6= r′i. Check if the graph πi(G) and the Hamiltonian cycle
Hi are consistent. If yes, then output π−1i (Hi); otherwise, abort.

We next sketch the proof that the extractor constructed above indeed works. Suppose that
the (unique-message) binding error of the quantum bit commitment scheme used is bounded by ε
(which is negligible).

As long as we compose the atomic protocol super-logarithmic number of times, i.e. l = ω(log n),
then the size of the challenge space C (with the size 2l) is super-polynomial. Suppose that the prover
P ∗ can convince the verifier to accept with some non-negligible probability 1/p (for some polynomial
p) in the parallelized protocol. Now invoking the quantum rewinding lemma w.r.t. Σ-protocols
(Lemma 5) with the super-polynomial |C| = 2l and the non-negligible V = 1/p, it follows that the
knowledge extractor without measurements of registers D⊗l (in both Step 4 and 8) will not abort
before Step 8 with probability at least V (V 2 − 1/2l), which is at least 1/(2p3).

Note that for each fold i, regardless of the value of ri, the measurement of the register Di
within the extractor is equivalent to that of corresponding copies of the message register M. (The
argument here is similar to the analysis of the argument-of-knowledge in the previous subsection.)
Thus, the knowledge extractor can be equivalently modified to be the same construction but with
the measurement of the register D⊗l replaced with that of corresponding message registers. We
refer to this latter construction as the modified knowledge extractor.

Now we are ready to apply Theorem 4 with N = 2, t = 2, and l polynomially bounded.
By its Item 1, the probability that the modified knowledge extractor will not abort before Step
8 differs from that of the same construction but without measurements of message registers up
to an additive factor O(

√
εl). Hence, the modified knowledge extractor will not abort before
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Step 8 with probability at least 1/(2p3) − O(
√
εl). Further, by Item 2, the modified knowledge

extractor will not abort in Step 8 with probability at most O(εl). Putting it together, the modified
knowledge extractor, in turn the (original) knowledge extractor, will output a Hamiltonian cycle
with probability at least 1/(2p3)−O(

√
εl)−O(εl) ≥ 1/(3p3). �

10.4 Guaranteed extraction via a new quantum rewinding technique

In cryptographic applications, proof/argument-of-knowledge is often used as a building block of
larger protocols, e.g. [FS90], where the guaranteed extraction is desired. However, the success prob-
ability of the knowledge extraction that we obtained is only guaranteed non-negligible (Theorem
7), which is insufficient. We note that in the classical setting, two definitions of proof/argument-
of-knowledge, i.e. the one which we extend (following [Unr12, Unr16b]) to the quantum setting at
the beginning of Subsection 10.2 and the one with guaranteed extraction, are actually equivalent
[Gol01, Section 4.7]. However, the classical proof for the former definition implying the latter does
not extend to the quantum setting straightforwardly; this is due to the general impossibility of
quantum rewinding.

In spite of this, we believe that the new quantum rewinding technique recently developed
[CMSZ21, LMS21], which builds on [MW05], can be used here to achieve the guaranteed extraction.
In particular, the second variant of Blum’s protocol present in the previous subsection can be shown
argument-of-knowledge with negligible knowledge error, in that given any prover who can convince
the verifier to accept with non-negligible probability, there exists a knowledge extractor running in
the coherent-runtime expected polynomial time (in the sense given in [LMS21], i.e. EQPTc) that
can output a witness (i.e. a Hamiltonian cycle) almost sure.

To see this, the construction of the knowledge extractor will be almost the same as that in the
post-quantum setting [LMS21] with k = 2,40 except that now non-interactive quantum commit-
ments will be used as the drop-in replacement of post-quantum collapse-binding commitments. The
analysis will also be almost the same as the post-quantum analysis, except that now we can apply
the parallel-and-sequential collapse binding property (Definition 10) directly: the hybrid argument
for applying the collapse-binding property multiple times in the post-quantum security analysis
will be hidden in our proof of Theorem 4. As a result, now the failure probability of the extraction
will be expressed in terms of the unique-message binding (as opposed to the collapse-binding) er-
ror of commitments;41 in particular, performing measurements (for the purpose of the extraction)
will only introduce an additive error that is the unique-message-binding error multiplied by some
polynomial of constant degree (Theorem 4), which is still negligible.

However, even with guaranteed extraction, it is still unknown whether the Feige-Shamir con-
struction [FS90] instantiated with a generic non-interactive quantum bit commitment scheme can
be proven quantum zero-knowledge. The difficulty was firstly observed in the post-quantum setting
[LMS21] that also extends to the quantum setting: the verifier (who plays the role of the prover
in argument-of-knowledge) may use different witness in different folds of the parallel repetition
of the atomic (variant of) Blum’s protocol. Hence, the measurement of the witness may collapse
the quantum state noticeably. For the purpose of state-preserving extraction, authors of [LMS21]

40The parallelization of (variants of) Blum’s protocol satisies the 2-special soundness property as introduced in
[LMS21].

41For post-quantum commitments, the collapse-binding error can be computed directly from the unique-message-
binding error (Theorem 3). However, w.r.t. general (non-interactive) quantum commitments, the collapse-binding
error will depend on how many rounds the malicious sender interacts with the challenger; recall Theorem 4.
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tweaks the argument-of-knowledge construction, but at the cost of introducing super-polynomial
complexity assumptions. Unfortunately, this tweak fails completely for quantum commitments.

Anyway, for languages in UP, one still can follow the template as given in [LMS21] to obtain a
state-preserving extraction from the guaranteed extraction when quantum commitments are used.
And with this state-preserving extraction, the Feige-Shamir construction instantiated with non-
interactive quantum commitments can be shown secure.

11 A stronger quantum indistinguishability compatible with quan-
tum rewinding

The typical indistinguishability of two quantum states is against adversaries who do not have access
to the rest system which may be entangled with the quantum state to distinghuish. However, it
turns out that in some applications, e.g. the Goldreich-Kahan construction of constant-round
zero-knowledge proofs [GK96] instiantiated with quantum commitments, this indistinguishability
is not sufficient for establishing the security. Instead, we need to establish a stronger quantum
indistinguishability against adversaries who are even given oracle access to the binary measurement
induced by the projection onto an arbitrary purification of the given quantum state to distinguish.

In this section, for our cryptographic purpose we prove the following lemma, which can be
viewed as the extension of a similar result in the post-quantum setting [LMS21]. However, our
proof will use a completely different strategy than that in the post-quantum analysis. In greater
detail, our proofs combine a hardness-conversion theorem (Theorem 8, as stated immediately after
Lemma 14) with the useless oracle lemma (Lemma 6) established before.

Lemma 14 Let |φ0〉 and |φ1〉 be two arbitrary (not necessarily efficiently preparable) unit vectors
of the Hilbert space induced by a joint quantum system (X ,Y). The unitary operation Gb (b = 0, 1)
performs on registers (X ,Y) and a qubit E such that

Gb
def
= |φb〉 〈φb|XY ⊗XE + (1− |φb〉 〈φb|XY)⊗ 1E ,

where XE denotes the Pauli-X operator performed on the qubit E. If there exists a non-uniform
QPT oracle distinguisher DGb achieving the advantage ε and such that:

1. It uses some quantum advice |τ〉 and calls the oracle Gb at most t times;

2. It has direct access to the register X and the qubit E, but only oracle access (through G0 or
G1) to the register Y.

That is, ∣∣∣Pr[DG0(|φ0〉XY |0〉E |τ〉Z) = 1]− Pr[DG1(|φ1〉XY |0〉E |τ〉Z) = 1]
∣∣∣ > 2ε.

Then there exists another non-uniform QPT distinguisher D′ with just the direct access to the
register X such that∣∣Pr[D′(TrY(|φ0〉 〈φ0|)⊗ |τ ′〉〈τ ′|) = 1]− Pr[D′(TrY(|φ1〉 〈φ1|)⊗ |τ ′〉〈τ ′|) = 1]

∣∣ > ε2/(32t4),

where the quantum advice |τ ′〉 may correlate with |τ〉 , |φ0〉 and |φ1〉.

The theorem below can be viewed as rephrasing an extension of the flavor-conversion of canonical
quantum bit commitments [HMY22b].
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Theorem 8 (Hardness conversion) Given a pair of quantum states (|0〉B |φ0〉XY , |1〉B |φ1〉XY)
of a joint quantum system (B,X ,Y), where B is a single qubit and quantum states |φ0〉 and |φ1〉
may be neither orthogonal nor efficiently preparable, its dual pair42 is given by (|ψ0〉 , |ψ1〉) such
that

|ψ0〉
def
=

1√
2

(
|0〉B |φ0〉XY + |1〉B |φ1〉XY

)
, |ψ1〉

def
=

1√
2

(
|0〉B |φ0〉XY − |1〉B |φ1〉XY

)
.

We have:

1. If there exists a QPT transformer T, possibly using some quantum advice |τ〉 that is stored in
the register Z, who performs on registers (X ,Z) and achieves∥∥(|ψ1〉 〈ψ1|)BXYTXZ

(
|ψ0〉BXY |τ〉Z

)∥∥ ≥ ε,
then there exists another QPT distinguisher D who uses the same quantum state |τ〉, together
with another state stored in the register Z ′ that is disentangled from but correlated with |τ〉
as advice, performs on registers (X ,Z,Z ′), and makes a single oracle access to both the
unitary transformation ctrl-ctrl-T and its inverse ctrl-ctrl-T †, such that it can distinguish
TrY(|φ0〉 〈φ0|) and TrY(|φ1〉 〈φ1|) with advantage at least ε2/8.

2. Conversely, if there exists a QPT distinguisher D, possibly using some quantum advice |τ〉
that is stored in the register Z, who can distinguish TrY(|φ0〉 〈φ0|) and TrY(|φ1〉 〈φ1|) with
advantage η, then there exists another QPT transformer T who uses a quantum advice |τ ′〉
with the same size as |τ〉 that is stored in the register Z, performs on registers (X ,Z), makes
a single oracle access to both D (i.e. the unitary operator induced by the unitary part of the
distinguisher D) and its inverse D†, such that∥∥(|ψ1〉 〈ψ1|)BXYTXZ

(
|ψ0〉BXY

∣∣τ ′〉Z )∥∥ ≥ 2η.

Note that

|0〉 |φ0〉 =
1√
2

(
|ψ0〉BXY + |ψ1〉BXY

)
, |1〉 |φ1〉 =

1√
2

(
|ψ0〉BXY − |ψ1〉BXY

)
.

The two items above also hold if we exchange the role of (|0〉 |φ0〉 , |1〉 |φ1〉) and (|ψ0〉 , |ψ1〉), and
that of registers X and (B,Y).

The proof of the hardness-conversion theorem above is moved to Appendix B. Now we are ready
to prove Lemma 14 using this theorem.

Proof: Define the projector

Π = (|0〉 〈0|)B ⊗ |φ0〉 〈φ0|XY + (|1〉 〈1|)B ⊗ |φ1〉 〈φ1|XY . (29)

Introduce the unitary

G = (|0〉 〈0|)B ⊗GXYE0 + (|1〉 〈1|)B ⊗GXYE1 = ΠBXY ⊗XE + (1−Π)BXY ⊗ 1E .

Now we use the oracle G to replace oracles G0, G1 used in the assumption of the lemma, obtaining∣∣∣Pr[DG(|0〉B |φ0〉XY |0〉E |τ〉Z) = 1]− Pr[DG(|1〉B |φ1〉XY |0〉E |τ〉Z) = 1]
∣∣∣ > 2ε.

42We call it “dual pair” is seeing from the hiding-binding duality observed in [GJMZ22].
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That is, the distinghuisher D, with oracle access to G but without direct access to registers (B,Y),
can distinguish quantum states TrY(|φ0〉 〈φ0|) and TrY(|φ1〉 〈φ1|) with advantage at least ε.

Now we are ready to apply Item 2 of Theorem 8. Specifically, by replacing |φ0〉, |φ1〉, and |τ〉
in Theorem 8 with |φ0〉, |φ1〉 and |τ〉 here, respectively, it follows that there exists a non-uniform
QPT transformer T that does not have direct access to registers (B,Y) and uses some quantum
advice |τ1〉 such that

‖(|ψ1〉 〈ψ1|)BXY(TG)XZ(|ψ0〉BXY |0〉E |τ1〉Z)‖ > ε, (30)

where

|ψ0〉
def
=

1√
2

(
|0〉B |φ0〉XY + |1〉B |φ1〉XY

)
,

|ψ1〉
def
=

1√
2

(
|0〉B |φ0〉XY − |1〉B |φ1〉XY

)
.

Moreover, note that the transformer T calls the oracle G at most 2t times: it makes a single oracle
access to the unitary D that is the unitary part of the distinghuisher and that to its inverse D†,
which calls G and G† at most t times, respectively. But note that G = G†, the transformer T calls
the oracle G at most 2t times.

Now we introduce two more projectors to simplify the notation:

Π0
def
= |ψ0〉 〈ψ0| , Π1

def
= |ψ1〉 〈ψ1| .

It is easy to check that Π = Π0 + Π1, where the expression of Π is given in Eq. (29). Moreover,
the unitary TG can be written in the form (UG)2t for some QPT unitary U performing on registers
(X ,Z, E). Hence, Inequality (30) can be rewritten as

‖Π1(UG)2tΠ0(|ψ0〉 |0〉 |τ1〉)‖ > 2ε.

Now we are ready to apply Lemma 6. Specifically, replacing Π0, Π1, Π2, G0, and G1 in Lemma
6 with Π0, Π1, 0, X and X here, respectively, where X performs on the qubit E , we have

‖Π1U
qΠ0|τ2〉BXYEZ‖ >

ε

2t2

for some 0 ≤ q ≤ 2t and sub-normalized vector |τ2〉 (which is correlated with |τ1〉). Rewriting
Π0 |τ2〉 as |ψ0〉 |τ3〉, it becomes

‖(|ψ1〉 〈ψ1|)BXY(UXZE)q(|ψ0〉BXY |τ3〉EZ)‖ > ε

2t2
.

Now apply Item 1 of Theorem 8, there exists a non-uniform QPT distinguisher who uses some
quantum advice |τ ′〉 that is correlated with |τ3〉, |ψ0〉 and |ψ1〉, in turn |τ〉, |φ0〉 and |φ1〉, and can
distinguish quantum states TrY(|φ0〉 〈φ0|) and TrY(|φ1〉 〈φ1|) with advantage at least ε2/(32t4). �

11.1 Application in quantum security analysis of the Goldreich-Kahan con-
struction

In this subsection, we sketch how to prove that the Goldreich-Kahan construction of constant-
round quantum computational zero-knowledge proofs for NP [GK96] instantiated with canonical
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quantum bit commitments is secure.43 In particular, we will show how to adapt the security analysis
for post-quantum zero-knowledge in [LMS21] to that in the quantum setting by using Lemma 14.

We first sketch the Goldreich-Kahan protocol that is adapted from [LMS21]. Suppose that L is
an NP language and x ∈ L is a common input to both the prover and the verifier; w is a witness
for x ∈ L that is given to the prover as a private input. Let ΣL be a quantum Σ-protocol for the
language L,44 whose three messages can be described by a triple (A, r,Z), where registers A and
Z contain the prover’s first and second (quantum) messages, respectively. For example, ΣL could
be the parallelized Blum’s protocol instantiated with statistically-binding canonical quantum bit
commitments.45 The Goldreich-Kahan protocol proceeds as follows:

V1 The verifier commits to a uniformly random string r using statistically-hiding canonical quan-
tum bit commitments in a bitwise fashion.

P1 The prover sends the register A to the verifier.

V2 The verifier opens its commitments as r that will be treated as the challenge to the prover.

P2 The prover sends the register Z to the verifier as the response to (A, r).

V3 The verifier checks that the triple (A, r,Z) will convince the verifier of the protocol ΣL to
accept.

The (statistical) soundness of the Goldreich-Kahan protocol is easy: the verifier’s commitments
(sent in Step V1) are statistically hiding, which only leak negligible information about its challenge
r. Then using the analysis framework in [FUYZ22], one can lift the statistical soundness when
post-quantum statistically-binding quantum bit commitments are used to the current quantum
setting.

In the remainder of this subsection, we focus on how to prove quantum zero-knowledge. In
particular, we show how to modify the post-quantum analysis elaborated in [LMS21, Section 2.4]
to the quantum setting. We recommend readers to first read their exposition to get a general idea
of the analysis; our presentation below will be based on their exposition and also inherit notations
introduced there.

The simulator we construct here will be almost identical to the one in [LMS21], except that it
will be modified correspondingly to satisfy the syntax of canonical quantum bit commitments. To
prove the correctness of the simulator, we will also introduce the same two hybrids as in [LMS21].

To show that the original simulator is indistinguishable from the first hybird, we need to prove
that quantum states |Sim0〉 and |P 〉 remain indistinguishable given just the reduced quantum
states of the sub-register A (i.e. the register containing the prover’s first message in Step P1 of
the protocol), even after operations taken within Step 4∗(a). Here, |Sim0〉 denotes the quantum

43We point out that general non-interactive quantum bit commitments (Definition 2) work equally well here, like
in Section 10 and Appendix C. Here, we restrict to consider canonical quantum bit commitments for two reasons:
First, in the statement of Theorem 2, we want to highlight that the security of the Goldreich-Kahan construction can
be based on the minimum complexity assumption for computational quantum cryptography. Second, the statistical
soundness of the construction will become straightforward using the analysis framework in [FUYZ22] when canonical
statistically-binding quantum bit commitments are used (by the prover).

44Quantum Σ-protocols generalize Σ-protocols (in the common sense) by allowing the prover’s two messages to be
quantum.

45Actually, to use Blum’s protocol, in the first place we have to reduce the language L to the NP-complete language
Hamiltonian Cycle using some witness-preserving Karp-reduction [Gol01]. Moreover, for the purpose of just proving
the statistical soundness, there is no need to use the extraction property (or strict soundness) of general Σ protocols.
Thus, using Blum’s original atomic protocol (as opposed to variants introduced in Section 10) will be sufficient here.
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state generated by running the honest-verifier simulator of the protocol ΣL w.r.t. the challenge
all 0’s, and |P 〉 denotes the quantum state generated by running the honest prover. However,
the desired indistinguishability does not follow immediately from that quantum states |Sim0〉 and
|P 〉 are indistinguishable (in the common sense) w.r.t. the sub-register A at the beginning. This
is because operations in Step 4∗(a) include (the unitary simulation of) the binary measurement
induced by projections (hidden in the corresponding big unitary U) on |Sim0〉 (for the simulator)
or |P 〉 (for the first hybrid) that are introduced by quantum rewinding. Note that these two
projections allow the distinghuisher to access registers beyond the sub-register A (but in a very
restricted way).

Hence, we need to prove that quantum states |Sim0〉 and |P 〉 are indistinguishable w.r.t. the sub-
register A even the distinghuisher is allowed to access binary measurements induced by projections
on |Sim0〉 and |P 〉, respectively. This is where our Lemma 14 comes in. In greater detail, to
apply Lemma 14, we just replace quantum states |φ0〉 , |φ1〉 in the lemma with |Sim0〉 and |P 〉 here,
respectively; replace the register X in the lemma with the register A, and the register Y there
with the rest of the system; correspondingly, G0, G1 in the lemma will be replaced with the unitary
simulation of binary measurements induced by projections on |Sim0〉 and |P 〉, respectively.

We point out that there is a subtlety here in applying Lemma 14: there are multiple binary
measurements within the big unitary U (i.e. the operation taken in Step 4∗(a)); and all their
outcomes are needed to be recorded. However, in the statement of Lemma 14, there is only a
single qubit E provided to record the measurement outcome. Actually, this is not a big issue: after
each measurement, the outcome stored in the qubit E can be swapped out for a possible later use;
and this swap operation can be incorporated into the unitary U . (Note that this situation is very
similar to that is considered in defining reversible multi-verification unique-message binding. Refer
to remarks immediately after Definition 6.)

Showing that the first hybrid and the second hybrid are indistinguishable is similar, only this
time we need to show that quantum states |Simr′〉 and |Pr′〉 are indistinguishable w.r.t. the sub-
registers (A,Z) even the distinghuisher is allowed to access binary measurements induced by pro-
jections on |Simr′〉 and |Pr′〉, respectively. Here, |Simr′〉 denotes the quantum state generated by
running the honest-verifier simulator of the protocol ΣL w.r.t. the challenge r′, and |Pr′〉 denotes
the quantum state generated by running the honest prover with its response to the challenge r′

contained in the register Z. This will guarantee that even after operations taken within Step 4∗(c)
(in which projections on |Simr′〉 or |Pr′〉 are hidden inside the big unitary U †), quantum states
|Simr′〉 and |Pr′〉 remain indistinguishable w.r.t. the sub-registers (A,Z) (i.e. registers containing
prover’s two messages sent in Step P1 and Step P2 of the protocol, respectively). To this end, we
can apply Lemma 14 in a similar way as discussed above. In greater detail, we just replace quantum
states |φ0〉 , |φ1〉 in Lemma 14 with |Simr′〉 and |Pr′〉 here, respectively; replace the register X in the
lemma with registers (A,Z), and the register Y there with the rest of the system; correspondingly,
G0, G1 in the lemma will be replaced with the unitary simulation of binary measurements induced
by projections on |Simr′〉 and |Pr′〉, respectively.

12 Conclusion and open problems

In this work, we propose a definition of collapse binding w.r.t. general non-interactive quantum
commitments (Definition 8), which is compatible with quantum rewinding and as useful as its
post-quantum counterpart in cryptographic applications (Section 10, Appendix C). This collapse
binding is provably equivalent to unique-message binding (Theorem 1), which in particular implies
that canonical quantum bit commitments are collapse binding.
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Additionally, we rephrase the flavor conversion of canonical quantum bit commitments as a
hardness conversion, which can be used to prove a stronger quantum indistinguishability that
is compatible with quantum rewinding (Lemma 14). This indistinguishability is found useful in
constructing constant-round quantum computational zero-knowledge proofs for NP (Theorem 2).

Two main questions left open by this work are on the extension of our equivalence theorem: can
it extend to more general interactive quantum commitments? Can the restriction on the message
space (i.e. polynomially bounded) in our equivalence theorem be removed?
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A A proof of Lemma 6

Our proof of is adapted from that of Lemma 6.8 in [GJMZ22] with minor modifications.

Lemma 15 (A restatement of Lemma 6) Fix a unitary U , a state |τ〉, and a triple of or-
thogonal projectors Π0,Π1,Π2. Let Π = Π0 + Π1 + Π2. Let G be a unitary of the form G =
Π0G0 + Π1G1 + Π2G2 + (1 − Π), where G0, G1, G2 are unitaries that commute with Π0,Π1,Π2,
respectively. Define G̃0 = Π0G0 + Π2G2 + (1−Π0 −Π2) and

ε(t)
def
= max

r∈{0,1},
0≤q,s≤t

‖Π1(U(Π2G2 + 1−Π2))
q ·Π0(G̃0)

r(UG̃0)
sΠ0 |τ〉 ‖

for all integers t ≥ 0. Then for all integers t ≥ 0,

‖Π1(UG)tΠ0 |τ〉 ‖ ≤ 4t2 · ε(t).

Proof: The lemma follows immediately from two claims that will be proved subsequently by a
simple triangle inequality:

‖Π1(UG)tΠ0 |τ〉 ‖ ≤ ‖Π1(UG̃0)
tΠ0 |τ〉 ‖+ 2t2ε(t) (Claim 17)

≤ 2t · ε(t) + 2t2ε(t) (Claim 16)

≤ 4t2 · ε(t).

�

Claim 16 ‖Π1(UG̃0)
tΠ0 |τ〉 ‖ ≤ 2t · ε(t).
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Proof: By the definition of G̃0, we have

UG̃0 = U(Π0G0 + Π2G2 + 1−Π0 −Π2)

= U(Π2G2 + 1−Π2) + UΠ0(G0 − 1).

Then Π1(UG̃0)
tΠ0 |τ〉 can be written in the form:

Π1(UG̃0)
tΠ0 |τ〉 =

t∑
i=0

Π1(U(Π2G2 + 1−Π2))
i · Ft−iΠ0 |τ〉 , (31)

where

Fi
def
=

{
1 i = 0,

UΠ0(G0 − 1)(UG̃0)
i−1, 1 ≤ i ≤ t.

To see this, note that (U(Π2G2 + 1 − Π2))
i · Ft−i is just the sum of the terms in the binomial

expansion of (U(Π2G2 + 1 − Π2) + UΠ0(G0 − 1))t that, when going from left to right, consist of
exactly i times of U(Π2G2 + 1−Π2)’s before the first UΠ0(G0 − 1).

We are next to bound the vector norm of each term in the summation on the right of Eq. (31);
in particular, we are going to show that for each 0 ≤ i ≤ t,∥∥Π1(U(Π2G2 + 1−Π2))

i · Ft−iΠ0 |τ〉
∥∥ ≤ 2ε(t).

For the i = t case, F0 = 1. We have∥∥Π1(U(Π2G2 + 1−Π2))
tΠ0 |τ〉

∥∥ ≤ ε(t)
by the definition of the ε(t).

For any i ≤ t− 1 case, plugging in the expression of Fi, we have:∥∥Π1(U(Π2G2 + 1−Π2))
i · Ft−iΠ0 |τ〉

∥∥
=

∥∥∥Π1(U(Π2G2 + 1−Π2))
iUΠ0G0(UG̃0)

t−i−1Π0 |τ〉 −Π1(U(Π2G2 + 1−Π2))
iUΠ0(UG̃0)

t−i−1Π0 |τ〉
∥∥∥

≤
∥∥∥Π1(U(Π2G2 + 1−Π2))

iUΠ0G0(UG̃0)
t−i−1Π0 |τ〉

∥∥∥+
∥∥∥Π1(U(Π2G2 + 1−Π2))

iUΠ0(UG̃0)
t−i−1Π0 |τ〉

∥∥∥
=

∥∥∥Π1(U(Π2G2 + 1−Π2))
i+1Π0G0(UG̃0)

t−i−1Π0 |τ〉
∥∥∥

+
∥∥∥Π1(U(Π2G2 + 1−Π2))

i+1Π0(UG̃0)
t−i−1Π0 |τ〉

∥∥∥ (using (Π2G2 + 1−Π2)Π0 = Π0 since Π0Π2 = 0)

≤
∥∥∥Π1(U(Π2G2 + 1−Π2))

i+1Π0G0(UG̃0)
t−i−1Π0 |τ〉

∥∥∥+ ε(t) (by the definition of ε(t))

=
∥∥∥Π1(U(Π2G2 + 1−Π2))

i+1Π0G̃0(UG̃0)
t−i−1Π0 |τ〉

∥∥∥+ ε(t) (using Π0G0 = Π0G̃0 since Π0Π2 = 0)

≤ 2ε(t). (by the definition of ε(t))

The claim follows immediately by the triangle inequality of the vector norm. �

Claim 17 ‖(UG)tΠ0 |τ〉 − (UG̃0)
tΠ0 |τ〉 ‖ ≤ 2t2 · ε(t).

Proof: We prove by induction on t. The case t = 0 is trivial.
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When t ≥ 1, we introduce the hybrid UG · (UG̃0)
t−1Π0 |τ〉. On one hand,∥∥∥(UG)tΠ0 |τ〉 − UG · (UG̃0)

t−1Π0 |τ〉
∥∥∥ =

∥∥∥(UG)t−1Π0 |τ〉 − (UG̃0)
t−1Π0 |τ〉

∥∥∥
≤ 2(t− 1)2 · ε(t− 1),

where we use the induction hypothesis. On the other hand,

∥∥∥UG · (UG̃0)
t−1Π0 |τ〉 − (UG̃0)

tΠ0 |τ〉
∥∥∥

=
∥∥∥(UG− UG̃0)(UG̃0)

t−1Π0 |τ〉
∥∥∥

=
∥∥∥(G1 − 1)Π1(UG̃0)

t−1Π0 |τ〉
∥∥∥

≤ 2
∥∥∥Π1(UG̃0)

t−1Π0 |τ〉
∥∥∥ (The triangle inequality w.r.t. the operator norm)

≤ 4(t− 1) · ε(t− 1). (Claim 16)

Using the triangle inequality,∥∥∥(UG)tΠ0 |τ〉 − (UG̃0)
tΠ0 |τ〉

∥∥∥
≤

∥∥∥(UG)tΠ0 |τ〉 − UG · (UG̃0)
t−1Π0 |τ〉

∥∥∥+
∥∥∥UG · (UG̃0)

t−1Π0 |τ〉 − (UG̃0)
tΠ0 |τ〉

∥∥∥
≤ 2(t− 1)2 · ε(t− 1) + 4(t− 1) · ε(t− 1)

≤ 2t2 · ε(t). (The function ε(·) is increasing)

This finishes the proof of the claim. �

B A proof of the hardness-conversion Theorem

Before stating and proving the hardness-conversion theorem (Theorem 8), we first state a refinement
of a technical lemma proved in [HMY22b] that can be viewed as an extension of the equivalence
between swapping and distinghuishing established in [AAS20].

Lemma 18 (A refinement of Lemma 5.1 in [HMY22b]) Let |x〉 , |y〉 be orthogonal n-qubit
states and |τ〉 be an m-qubit state. Let U be a polynomial-time computable unitary over (n+m)-qubit
states and define Γ as

Γ
def
= ‖(〈y| ⊗ 1⊗m)U |x〉 |τ〉+ (〈x| ⊗ 1⊗m)U |y〉 |τ〉 ‖.

Then, there exists a non-uniform QPT distinguisher A with advice |τ ′〉 def= |τ〉⊗(|x〉 |0〉+ |y〉 |1〉)/
√

2

that distinguishes |ψ〉 def= (|x〉+ |y〉)/
√

2 and |φ〉 def= (|x〉 − |y〉)/
√

2 with advantage Γ2/8. Moreover,
the distinghuisher A makes a single oracle access to both ctrl-U and ctrl-U †, and only acts on the
n-qubit state via the oracle access to ctrl-U . (The oracle access to ctrl-U † does not act on the n-quit
state.)

Conversely, let |ψ〉 , |φ〉 be orthogonal n-qubit states, and suppose that a non-uniform QPT
distinguisher A with an m-qubit advice |τ〉 distinguishes |ψ〉 and |φ〉 with advantage ∆ without
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using additional ancilla qubits besides |τ〉. Then, there exists a polynomial-time computable unitary
U over (n+m)-qubit states such that

| 〈y| 〈τ |U |x〉 |τ〉+ 〈x| 〈τ |U |y〉 |τ〉 | = 4∆,

where |x〉 def= (|ψ〉+ |φ〉)/
√

2 and |y〉 def= (|ψ〉 − |φ〉)/
√

2. Moreover, U makes a single oracle access
to both A and A† (where recall that A is the uniary induced by the distinghuisher A) that act on
the same quantum system, and U only acts on the n-qubit state via oracle accesses to A and A†.

Remark. We highlight that the definition of the distinguishing advantage we are using in this
paper (Definition 1) is half of the one used in [HMY22b, AAS20].

The hardness-conversion theorem extends the flavor-conversion of canonical quantum bit com-
mitments established in [HMY22b] and is rephrased in a way that is suitable for our application
(Section 11).

Theorem 9 (A restatement of Theorem 8) Given a pair of quantum states (|0〉B |φ0〉XY , |1〉B |φ1〉XY)
of a joint quantum system (B,X ,Y), where B is a single qubit and quantum states |φ0〉 and |φ1〉
may be neither orthogonal nor efficiently preparable, its dual pair46 is given by (|ψ0〉 , |ψ1〉) such
that

|ψ0〉
def
=

1√
2

(
|0〉B |φ0〉XY + |1〉B |φ1〉XY

)
, |ψ1〉

def
=

1√
2

(
|0〉B |φ0〉XY − |1〉B |φ1〉XY

)
.

We have:

1. If there exists a QPT transformer T, possibly using some quantum advice |τ〉 that is stored in
the register Z, who performs on registers (X ,Z) and achieves∥∥(|ψ1〉 〈ψ1|)BXYTXZ

(
|ψ0〉BXY |τ〉Z

)∥∥ ≥ ε,
then there exists another QPT distinguisher D who uses the same quantum state |τ〉, together
with another state stored in the register Z ′ that is disentangled from but correlated with |τ〉
as advice, performs on registers (X ,Z,Z ′), and makes a single oracle access to both the
unitary transformation ctrl-ctrl-T and its inverse ctrl-ctrl-T †, such that it can distinguish
TrY(|φ0〉 〈φ0|) and TrY(|φ1〉 〈φ1|) with advantage at least ε2/8.

2. Conversely, if there exists a QPT distinguisher D, possibly using some quantum advice |τ〉
that is stored in the register Z, who can distinguish TrY(|φ0〉 〈φ0|) and TrY(|φ1〉 〈φ1|) with
advantage η, then there exists another QPT transformer T who uses a quantum advice |τ ′〉
with the same size as |τ〉 that is stored in the register Z, performs on registers (X ,Z), makes
a single oracle access to both D (i.e. the unitary operator induced by the unitary part of the
distinguisher D) and its inverse D†, such that∥∥(|ψ1〉 〈ψ1|)BXYTXZ

(
|ψ0〉BXY

∣∣τ ′〉Z )∥∥ ≥ 2η.

Note that

|0〉 |φ0〉 =
1√
2

(
|ψ0〉BXY + |ψ1〉BXY

)
, |1〉 |φ1〉 =

1√
2

(
|ψ0〉BXY − |ψ1〉BXY

)
.

The two items above also hold if we exchange the role of (|0〉 |φ0〉 , |1〉 |φ1〉) and (|ψ0〉 , |ψ1〉), and
that of registers X and (B,Y).

46We call it “dual pair” is seeing from the hiding-binding duality observed in [GJMZ22].
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Proof: The two items in the statement of the theorem have already been proved in [HMY22b]
in terms of the flavor conversion of canonical quantum bit commitments. However, the same two
items but with the role of (|0〉 |φ0〉 , |1〉 |φ1〉) and (|ψ0〉 , |ψ1〉) exchanged are not proved in [HMY22b],
though they can be proved similarly as presented below.

For Item 1, for completeness we first sketch its proof in [HMY22b] and then specify how to
modify it to prove the same item but with the role of (|0〉 |φ0〉 , |1〉 |φ1〉) and (|ψ0〉 , |ψ1〉) exchanged.

It is noted in [HMY22b] that

〈ψ1|BXY TXZ
(
|ψ0〉BXY |τ〉Z

)
= 〈ψ0|BXY TXZ

(
|ψ1〉BXY |τ〉Z

)
=

1

2

(
〈0|B 〈φ0|XY

)
TXZ

(
|0〉B |φ0〉XY |τ〉Z

)
− 1

2

(
〈1|B 〈φ1|XY

)
TXZ

(
|1〉B |φ1〉XY |τ〉Z

)
.

Thus, from the assumption that the transforming advantage∥∥(|ψ1〉 〈ψ1|)BXYTXZ
(
|ψ0〉BXY |τ〉Z

)∥∥ ≥ ε,
it follows that the swapping advantage

‖ 〈ψ1|BXY TXZ
(
|ψ0〉BXY |τ〉Z

)
+ 〈ψ0|BXY TXZ

(
|ψ1〉BXY |τ〉Z

)
‖

= 2
∥∥(|ψ1〉 〈ψ1|)BXYTXZ

(
|ψ0〉BXY |τ〉Z

)∥∥
≥ 2ε.

Based on this T and applying the forward direction of Lemma 18, one can construct a distinghuisher
that distinghuishes |φ0〉 and |φ1〉 w.r.t. the register X with advantage ε2/2. Note that in this case,
a single oracle access to ctrl-T and that to ctrl-T † are sufficient.

In the case when the role of (|0〉 |φ0〉 , |1〉 |φ1〉) and (|ψ0〉 , |ψ1〉) are exchanged, the assumption
of Item 1 becomes ∥∥(|1〉 |φ1〉 〈1| 〈φ1|)BXYTBYZ

(
|0〉B |φ0〉XY |τ〉Z

)∥∥ ≥ ε.
Then consider the following unitary T ′ which uses an additional ancilla qubit B′ initialized in the
state |0〉:

T ′ = ctrl-TB
′BYZ ·XB′ · CNOTBB′ ,

where the gate CNOT uses the qubit B and the unitary ctrl-T uses the qubit B′ as the control,
respectively. It is easy to check that the swapping advantage

‖ 〈0| 〈φ0|T ′ |1〉 |φ1〉 |τ〉 |0〉B
′
+ 〈1| 〈φ1|T ′ |0〉 |φ0〉 |τ〉 |0〉B

′
‖ = ‖0 + 〈1| 〈φ1|T ′ |0〉 |φ0〉 |0〉B

′
‖ ≥ ε.

Then applying the forward direction of Lemma 18, there exists a distinghuisher who can dist-
inghuishes |ψ0〉 and |ψ1〉 w.r.t. registers (B,Y) with advantage at least ε2/8. Moreover, since the
distinghuisher will make a single query to both ctrl-T ′ and ctrl-(T ′)†, it will make a single query to
both ctrl-ctrl-T and ctrl-ctrl-T †.

The proof of Item 2 roughly proceeds as follows in [HMY22b]. That is, a lower bound of
the distinghuishing advantage implies a lower bound of the swapping advantage (by the backward
direction of Lemma 18), which in turn trivially implies a lower bound of the transforming advan-
tage. Its detail is omitted here; one can check the proof of the same item but with the role of
(|0〉 |φ0〉 , |1〉 |φ1〉) and (|ψ0〉 , |ψ1〉) exchanged below, which follows almost the same line as that for
Item 2.

Suppose that there exists a non-uniform QPT distinguisher D who can distinguish |ψ0〉 and |ψ1〉
w.r.t. registers (B,Y) with advantage η using a quantum advice |τ〉. Then applying the backward
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direction of Lemma 18, there exists a unitary T performing on registers (B,Y,Z) that achieves the
swapping advantage

| 〈1| 〈φ1| 〈τ |T |0〉 |φ0〉 |τ〉+ 〈0| 〈φ0| 〈τ |T |1〉 |φ1〉 |τ〉 | = 4η.

By the triangle inequality, either | 〈1| 〈φ1| 〈τ |T |0〉 |φ0〉 |τ〉 | or | 〈0| 〈φ0| 〈τ |T |1〉 |φ1〉 |τ〉 | are at least
2η. If the former happens, then we are done: the transforming advantage is at least 2η and
|τ ′〉 = |τ〉. Otherwise, if only the latter happens, applying Jordan’s lemma (e.g. refer to [Reg06])
we know that there exists a state |τ ′〉 with the same dimension as |τ〉 such that

‖(|1〉 〈1| ⊗ |φ1〉 〈φ1|)T † |0〉 |φ0〉
∣∣τ ′〉 ‖ ≥ 2η,

by considering projectors T †(|0〉 〈0| ⊗ |φ0〉 〈φ0|)T and |1〉 〈1| ⊗ |φ1〉 〈φ1|. �

C Application: the security against the prover in the GMW pro-
tocol for Graph 3-Coloring

In this section, we show that the GMW protocol for Graph 3-Coloring [GMW91] with a generic
non-interactive quantum computationally-binding bit commitment scheme (Definition 2) plugged
in is an argument-of-knowledge.

Informally, the GMW protocol proceeds as follows. On an input common graph G:

P1 The prover commits to the color of each vertex of the graph G.

V1 The verifier chooses an edge of the graph G uniformly random.

P2 The prover opens the commitments to the two vertices adjacent to the edge chosen by the
verifier.

V2 The verifier checks that the commitments are opened successfully and the two revealed colors
are different.

Now let us formalize an execution of the GMW protocol between a malicious prover P ∗ =
(|τ〉 , P, U) and the honest verifier V instantiated with a generic non-interactive quantum computationally-
binding bit commitment scheme as follows:

1. P ∗ receives/prepares the system (C⊗2n,R⊗2n,M⊗2n,A⊗2n,D) in the state |τ〉, and sends
the commitment registers C⊗2n (which are supposed to store commitments to colors of all
vertices) to the verifier. (Note that the color of each vertex can be encoded by two bits.)

2. V chooses a uniformly random edge e
$← {1, 2, . . . ,m} as the challenge, where m = O(n2) is

the number of edges of the graph G.

3. P ∗ performs the unitary Ue on the system (R⊗2n,M⊗2n,A⊗2n,D), where the unitary Ue is
the unitary U with e as the control.

4. Suppose that the edge e = (eu, ev), where eu, ev are the two vertices adjacent to the edge
e. The verifier V checks that commitments to colors of eu and ev are opened successfully,
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and that colors of eu and ev are different. Formally, the projector Pe corresponding to the
predicate check induced by the challenge e is given by

Pe
def
=

∑
c(eu) 6=c(ev)

|c(eu), c(ev)〉 〈c(eu), c(ev)|D ⊗ |c(eu), c(ev)〉 〈c(eu), c(ev)|M
⊗4

⊗ |e〉A
⊗2n

, (32)

where c(eu), c(ev) denote the color of vertices eu, ev, respectively; the register A⊗2n contains
a binary string, which is also denoted by e to overload notation for simplification, indicating
which four (out of 2n) bit commitments will be opened. Hence, the verifier’s verification
corresponding to the challenge e is given by the projector

Ve
def
=
(
|0〉 〈0|A ⊗ 1CRM + |1〉 〈1|A ⊗ V CRMcom

)⊗2n · Pe. (33)

We prove the following theorem.

Theorem 10 Using non-interactive statistically-hiding, computationally-binding quantum bit com-
mitments (Definition 2) in the GMW protocol gives rise to a three-round, quantum statistical zero-
knowledge argument-of-knowledge for the NP-complete language Graph 3-Coloring with perfect com-
pleteness and knowledge error noticeably less than 1.

Proof: Suppose that the input graph G has n vertices, m = O(n2) edges.
Given an arbitrary prover P ∗ = (|τ〉 , U), we construct a canonical knowledge extractor as

follows:

1. Receiver/prepare the system (C⊗2n,R⊗2n,M⊗2n,A⊗2n,D) in the state |τ〉, as P ∗ does.

2. For each edge e = 1, 2, . . . ,m:

(a) Perform Ue on the system (R⊗2n,M⊗2n,A⊗2n,D).

(b) Suppose that e = (eu, ev). Perform the binary measurement {Ve,1− Ve}, where the
projector Ve is given by Eq. (32). If the verification fails, then abort; otherwise, measure
the register D to obtain colors of eu and ev.

(c) Perform U †e .

3. Check that all colors obtained in Step 2 are consistent. If not, then abort; otherwise, output
colors for each vertex.

Now we prove that the canonical knowledge extractor constructed as above indeed works. Sup-
pose that the (unique-message) binding error of the quantum bit commitment scheme used is
ε. Suppose that the prover P ∗ can convince the verifier to accept with probability larger than
1− 1/m+ δ; that is,

1

m

∑
e

‖VeUe |τ〉 ‖2 ≥ 1− 1

m
+ δ.

Applying Lemma 4 with Γi, Ui (1 ≤ i ≤ k) replaced with Ve, Ue (e ∈ {1, 2, . . . ,m}) here, respectively,
it follows that∥∥∥(U †m ⊗ 1C

⊗2n
)Vm(Um ⊗ 1C

⊗2n
) · · · (U †1 ⊗ 1

C⊗2n
)V1(U1 ⊗ 1C

⊗2n
) |τ〉

∥∥∥ ≥ 1−

√
m

(
1

m
− δ
)
≥ mδ

2
.

(34)
By identifying the prover as the sender and the verifier as the challenger, we view the knowl-

edge extractor as inducing a parallel-and-sequential collapse-binding experiment (Definition 9)
PS-ColBindExptS∗,1(n), except that:
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1. Conditioned on the verification in Step 2(b) succeeding, the challenger will measure registers
M⊗4 (which four copies of the register M is determined by the edge e) rather than D.
But seeing from the expression of the predicate Pe (Eq. (32)), these two measurements are
equivalent.

2. The experiment excludes Step 3 of the knowledge extractor; instead, it will simply output 1
at the end if it does not abort previously.

It is easy to see that the probability that the experiment PS-ColBindExptS∗,1(n) outputting 1 is
equal to that of the knowledge extractor not aborting before Step 3.

The experiment PS-ColBindExptS∗,0(n) differs from PS-ColBindExptS∗,1(n) in that the challenger
will not measure registers M⊗4 when the verification induced by the projector Ve succeeds. One
can see that the probability of the experiment PS-ColBindExptS∗,0(n) outputting 1 is just given by
the square of the l.h.s. of Inequality (34), which is at least m2δ2/4.

Now we are ready to apply Theorem 4 with N = 2, l = 2n, t = m = O(n2). By its Item 1,
the probability that the experiment PS-ColBindExptS∗,1(n) outputs 1 is at least m2δ2/4−O(

√
εn9).

By Item 2, the probability that some commitment is opened as different values in the experiment
PS-ColBindExptS∗,1(n) is at most O(εn15). Thus, the probability that the knowledge extractor
aborts in Step 3 is at most O(εn15). Putting it together, the knowledge extractor will succeed with
probability at least m2δ2/4−O(

√
εn9)−O(εn15) = m2δ2/4−O(

√
εn9). �
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