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Abstract. In this work, we examine widespread components of various Post-Quantum
Cryptography (PQC) schemes that exhibit disproportionately high overhead when
implemented in software in a side-channel secure manner: fixed-weight polynomial
sampling, Cumulative Distribution Table (CDT) sampling, and rotation of polyno-
mials by a secret offset. These components are deployed in a range of lattice-based
and code-based Key Encapsulation Mechanisms (KEMs) and signature schemes from
NIST’s fourth round of PQC standardization and the signature on-ramp. Masking –
to defend against power Side-Channel Analysis (SCA) – on top of required constant-
time methods, leads in some of these cases to impractical runtimes. To solve this
issue, we start by identifying a small set of core operations, which are crucial for
the performance of all three components. We accelerate these operations with an
Instruction Set Extension (ISE) featuring masked instructions, which are generic
and low-level and can be used in a wide range of cryptographic applications and
thereby tackle performance, microarchitectural power leakage, and cryptographic
agility, simultaneously. We implement dedicated masked instructions for our core
operations as an add-on to the RISC-V core by Gao et al. [GGM+21] which features
masked instructions for Boolean and arithmetic operations and evaluate several
algorithmic approaches in standard and bitsliced implementations on different ISE
constellations. Our instructions allow some masked components to run more than
one order of magnitude faster and are first-order power side-channel secure, which
our practical evaluation confirms.
Keywords: PQC, Fixed Weight Polynomial Sampling, SCA, Masking, RISC-V, BIKE,
Frodo, HQC

1 Introduction
Nowadays, embedded devices are interconnected via a broad variety of communication
channels. In case that sensitive data is transmitted via these channels, the communication
should be encrypted. However – although the chosen algorithms are considered secure
– implementations of cryptographic algorithms are generally vulnerable to side-channel
attacks on any platform. For example, an adversary can exploit secret-dependent runtime
differences of the algorithms caused by memory accesses, branching or instructions with
data-dependent runtime. Moreover, having physical access to the target device allows
the adversary to measure the device’s power consumption directly or indirectly via its
electromagnetic emission, thereby gaining information on secret key material. Especially
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power Side-Channel Analysis (SCA) recently became more and more accessible due to
simple and inexpensive measurement setups [Inc].

Researchers from academia and industry proposed many approaches to counteract
these attack vectors. In order to prevent timing attacks, the so-called constant-time
programming paradigm [Por] emerged as a generic defense mechanism. The most promising
countermeasure against SCA is masking [PR13], splitting sensitive data into secret shares.
Consequently, underlying operations have to be transformed in order to be able to perform
these operations on shares.

However, applying masking techniques to implementations of novel cryptographic
schemes can raise new challenges. This includes novel schemes that are designed to be
secure against attacks mounted on quantum computers.

A fact that rarely expressed explicitly is that a correctly masked implementation is
necessarily also secure against timing side-channels, because secret-dependent branches and
memory accesses cannot be masked and thus must be secured using constant-time methods.
Additionally, instructions with operand-dependent runtime can usually not be performed
with masked values. Protection against timing attacks with constant-time implementations
is often achieved by always executing with worst-case runtime and applying dummy
memory accesses to all possible locations instead of only accessing the secret-dependent
value. Secret-dependent memory accesses are relevant for timing side-channels because
the state of the cache can influence the runtime of the cryptographic implementation
or the runtime of an adversarial program which accesses a shared cache. In order to
achieve protection against power SCA, these extra operations need to be masked as well
introducing additional overhead.

For example, as shown by Krausz et al. [KLRBG23], protecting fixed-weight polynomial
samplers of common Post-Quantum Cryptography (PQC) schemes like BIKE, HQC, NTRU
and many others with masking introduces a huge overhead with respect to the runtime
and randomness requirements of the design. One reason for this huge overhead lies in the
simultaneous protection against timing and power side channels.

A second example can be found in the implementation techniques for the samplers
of FrodoKEM [BCD+16] and the recently presented schemes Hawk [DPPvW22] and
Haetae [CCD+23]. Here, the common approach to achieve constant-time implementations
is to compare a uniformly random bit string with entries in a Cumulative Distribution
Table (CDT). Again, adding protection mechanisms based on masking techniques on top
introduces a huge overhead.

Another scenario where protection is costly can be observed in the portable [DGK] and
optimized implementations [CCK21] of BIKE [ABB+22]. The decoding algorithm of BIKE
requires to rotate the syndrome based on the non-zero indices of the private key. Without
protection against timing and power side-channel attacks, an adversary can easily extract
information about the private key.

In this work we identify a small set of performance-critical core operations, relevant for
all three previously mentioned use-cases. These operations are the conditional move (cmov)
and integer comparisons (cmp), to be more precise: comparison for equality (cmpeq) and
greater-than comparison (cmpgt).

We accelerate these core operations in hardware to reach practical performance for
masked post-quantum cryptography in software. Note that these core operations are not
scheme specific, but relevant to a wide range of post-quantum digital signature procedures
and Key Encapsulation Mechanisms (KEMs). Our accelerated core operations are generic
enough to be found in many more applications within and outside the domain of post-
quantum cryptography. For example, the message-to-polynomial conversion in Kyber,
which has also been targeted by a SCA [WBD23] could also make use of our accelerators.
Therefore, in contrast to prior masked accelerators [FBR+22], our solution allows for more
crypto-agility.

Besides acceleration, masked hardware instructions also tackle the issue of microarchi-
tectural power leakage [MPW22], a problem of masked software implementations, which
can be secure from a source code perspective, but still exhibit side-channel leakage due
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to unforeseeable combinations of shares induced by microarchitectural behavior. In this
context, Gao et al. [GGM+21] presented a RISC-V Instruction Set Extension (ISE) with
masked Boolean and arithmetic instructions that tackles microarchitectural leakage and
performance overheads induced by masking. Furthermore, they evaluated its performance
impact on symmetric cryptography.

Our identified core operations can be performed efficiently with short instruction
sequences from that core. Additionally, because our selected core operations are very low
level, we decided to integrate them as additional masked instructions into their core to
allow for a direct comparison.

Contribution. To summarize the contributions of this work, we achieve for the first time
practical performance for constant-time and power side-channel resistant PQC components
by relying on a masked ISE for RISC-V. To motivate the necessity of a masked syndrome
rotation, we present a power SCA on BIKE, developed independently of the concurrent
work [CARG23]. Moreover, we identify core operations (cmov, cmp) required in multiple
critical PQC components across a wide range of PQC schemes. Additionally, we extend
the RISC-V core presented in [GGM+21] with masked instructions for these operations.
Besides the performance issue, we also address microarchitectural power leakage and
crypto-agility with our approach.

To evaluate the impact of accelerating the core operations, we extend the bitsliced
fixed-weight polynomial samplers from [KLRBG23] with non-bitsliced variants to allow
a fair and in-depth comparison. Additionally, we provide the first masked software
implementation for CDT samplers and syndrome rotation in BIKE. We confirm side-
channel security of our implementations by performing t-test evaluations on our additional
ISE and an exemplary sampling algorithm. We perform extensive benchmarks with multiple
parameters to demonstrate the performance impact of the accelerated core operations and
the newly introduced masked instructions. Our source code for software and hardware
will be publicly available at https://github.com/Chair-for-Security-Engineering/
pqc-masking-ise.

Related Work. Following [GGM+21], our masked accelerators so far only implement
first-order masking. Marshall et al. [MP21] investigate how higher masking orders can be
realized, utilizing RISC-Vs vector ISE. Note that the concepts for our masked instructions
are also suitable for higher-order masking. Cheng et al. [CP23] also work with an ISE to
address power side-channel leakage, but instead of accelerating instructions by computing
on multiple shares, they only focus on the microarchitectural leakage aspect.

Accelerators for masked PQC implementations have been presented by Fritzmann et
al. [FBR+22]. In contrast to our work, they mainly implement higher level functionalities,
nevertheless they include a masked adder for Boolean shared values, which is also featured
in the work we based on [GGM+21]. While Fritzmann et al. focus on improving the
execution time of the PQC schemes Kyber and Saber, their masked Keccak accelerator is
also highly relevant for a wide range of PQC schemes. For the signature generation in the
reference implementation of Haetae, reportedly around 60 percent of the computation time
is spent with Keccak. A comparison of their masked Keccak accelerator versus a masked
Keccak based on the low-level instruction that we use would be an interesting target for
future work. Currently, the different target processors prohibit a direct comparison.

2 Applications
In this work, we focus on three different PQC components: fixed-weight polynomial
sampling, CDT sampling and syndrome rotation. All three components have in common
that unprotected implementations are susceptible to SCA as shown in prior work and
demonstrated in this section. The next commonality is that masked software implemen-
tations for these algorithms unfortunately suffer from extraordinarily high performance
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overheads. Fortunately, they can all significantly be accelerated by the same small set of
core operations.

2.1 Fixed-Weight Polynomial Sampling
A wide range of PQC schemes requires fixed-weight polynomial samplers to randomly
generate a binary or ternary polynomial with a fixed length N and a fixed number of
non-zero coefficients (weight) W from a uniform distribution.

Algorithms. The known algorithms for this problem can be divided into three categories.
The index rejection method and its bounded variant [ND22] sample the non-zero coefficients
with rejection sampling. Another approach aims at generating random bitstrings, this
direction is followed by the Comparison method [KLRBG23]. Lastly, two algorithms start
with fixed polynomials with the correct length N and weight W and then apply shuffling
with a Fisher-Yates variant [Sen21] or sorting [Ber22]. Notably, these algorithms generate
polynomials in one of two possible representations: the index representation stores indices
to non-zero coefficients whereas the coefficient representations stores the plain coefficients.
The index representation allows for a denser representation of polynomials with a low W/N
ratio. Ultimately, the implementation of the operations on the polynomial following the
sampling determine which representation is required, usually the coefficient representation.
A conversion from index to coefficient representation and vice versa is straightforward but
costly, and mainly depends on a cmov operation.

Applications. Fixed-weight polynomial sampling is used in BIKE, HQC, McEliece, NTRU,
Streamlined NTRU Prime, and NTRU LPRrime well-known from NIST’s standardization
process and also SMAUG [CCHY23], which was recently submitted to the Korean Post-
Quantum Cryptography Competition. Moreover, we expect that several code-based
schemes for NIST’s signature on-ramp feature fixed-weight-sampling procedures. While
requirements and parameters slightly differ between the schemes, the sampling problem at
its heart is the same. Timing side-channel attacks on the samplers of BIKE and HQC have
already been demonstrated [KAA21,GHJ+22,Sen21] and without any dedicated protection,
similar attacks could be performed based on information gained from power side-channel
attacks.

Masking. A recent work [KLRBG23] compares the performance of all known fixed-weight
polynomial sampling algorithms as masked software implementations. The benchmarks
show that the performance of the algorithms clearly varies depending on the parameters
N and W , and the preference for different algorithms depends on the individual use
case. However, all reported runtimes are far from satisfying. The situation is worst for
BIKE and HQC, where the sampling is required during decapsulation. The most efficient
algorithms cannot be applied here for a side-channel secure implementation, because
they inherently leak the secret seed for the Pseudorandom Number Generator (PRNG)
via their timing behavior (cf. [GHJ+22]). For these cases, the most efficient algorithms
require millions to hundreds of million cycles on a Cortex-M4, depending on the polynomial
representation form. An efficient approach for a masked implementation has been presented
earlier [CGTZ23], but as [KLRBG23] already points out it is likely susceptible to a horizontal
SCA [BCPZ16].

The most performance critical operation for almost all sampling algorithms is either
a masked cmov, a masked cmpeq, or a masked cmpgt. In Section 3.1 we explain, why
exactly these operations are so crucial. Sometimes even more than one of these operations
is required in a nested loop. Accelerating these operations with dedicated hardware
instructions therefore can greatly improve the sampling performance and lead to practical
runtimes.
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2.2 Sampling from a Discrete Gaussian Distribution
As mentioned above, discrete Gaussian sampling is essential for many lattice-based crypto-
graphic schemes [DDLL13,BCD+16,GPV08]. Hence, efficient and secure implementations
of these sampling algorithms are important for reliable modern cryptography. In order
to discuss and highlight crucial parts, we denote the discrete Gaussian distribution with
variance σ2 as NZ(σ2). Then, N+

Z (σ2) is defined to have the same distribution as NZ(σ2)
for all samples in N, half the probability for sampling zero and probability zero for sampling
negative values.

Algorithm. There are multiple well-studied algorithms to perform sampling from discrete
Gaussian distribution [DN12,BCG+14,DDLL13]. The most common approach is CDT
sampling [Pei10], where a uniform random bit string is compared with the entries in a
pre-computed Cumulative Distribution Table. This CDT approximates N+

Z (σ2) for a
given precision and σ2. For a random bit string r, the output sample is the index i in the
table T , for which Ti < r ≥ Ti+1. The optimal way to achieve this in terms of memory
access and number of comparisons is an adapted binary search that takes into account the
distribution itself. Unfortunately, this opens a (cache-)timing side channel, because the
memory access pattern would depend on the sampled value. Thus, to avoid branches and
secret-depending memory accesses, the random bit string must be compared against each
entry in the table. Then, the comparison result bits are accumulated to obtain the sample,
which is mapped to NZ(σ2) by conditional negation with another random bit.

Applications. The most notable application of CDT sampling is FrodoKEM, where it is
used for sampling error terms during key generation, encapsulation and decapsulation.
In particular, the procedure is performed deterministically during decapsulation in the
re-encryption step, because of the Fujisaki-Okamoto transform. Obtaining (side-channel)
information about these errors may result in a recovery of the shared secret or the private
key. Notably, a practical attack on FrodoKEM was shown recently [MKK+23]. Thus, the
sampling operation requires masking to comprehensively secure FrodoKEM.

Another important example is Hawk [DPPvW22], a PQC signature scheme based on the
newly proposed lattice isomorphism problem. In contrast to prior work, it does not require
floating-point arithmetic which would prohibit a masked implementation. Furthermore,
the authors claim that the only missing part to enable a fully masked implementation is
sampling discrete Gaussian variates from a CDT.

Finally, the recently presented scheme Haetae [CCD+23], which is similar to Dilithium,
samples the signature nonce y from a Gaussian distribution. Again, CDT sampling is
deployed for that purpose. For a high-assurance version of its deterministic variant, this
sampler must be protected accordingly using masking countermeasures.

Masking. The basic operation within the sampler is the comparison of a secret bit string
with a public constant. A standard software approach to achieve this is bitslicing the inputs
and then using the optimized comparison as described in [KLRBG23]. However, bitslicing
transformations also cause an overhead and may lead to additional microarchitectural
leakage.

A non-bitsliced implementation with hardened instructions may yield better overall
results. For a masked comparison, masked subtraction and shift operations as provided
by [GGM+21] are sufficient. However, a dedicated masked greater-than comparison
instruction could further improve the performance while inducing only a miniscule area
overhead in the core.

2.3 BIKE Syndrome Rotation
For our third example, we investigate the side-channel resistance of BIKE which is one
of the three remaining KEM candidates in NISTS’s PQC standardization process. In
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Algorithm 1 Word-unit rotation used in BIKE’s decapsulation.
1: Data: Vector v = {s, s, s} holding three consecutive copies of s, secret index δ
2: Result: Rotated syndrome s

3: function word_unit_rotation(v, δ)
4: i← log(r/32/2)
5: while i ≥ 1 do
6: if δ > i then
7: m← 0xFFFFFFFF
8: else
9: m← 0x00000000

10: end if
11: δ ← δ − (i & m)
12: for j = 0 to r/32 + i do
13: v[j]← (v[j] & ∼ m) | (v[j + i] & m)
14: end for
15: i← i >> 1
16: end while
17: return Lower r bits of v
18: end function

contrast to the numerous lattice-based schemes, BIKE’s security foundation relies on linear
error-correcting codes. Independently of concurrent work [CARG23], we developed a power
side-channel attack on the syndrome rotation of BIKE. In this section, we show that the
conditional move operations in BIKE’s portable C implementation [DGK] allow to perform
a Simple Power Analysis (SPA) leading to a partial secret key recovery even for ephemeral
keys. Hence, this attack highlights the requirement for efficient masking techniques for
conditional move instructions (cmov).

Algorithm. In the decapsulation of BIKE, the error polynomials, which are intentionally
added to the encrypted message in the encapsulation are iteratively decoded by the Black-
Grey-Flip (BGF) decoder [DGK20]. In this decoding step, the syndrome s is rotated by
the secret indices of the private key (similar to the multiplication presented in [Cho16]).
More precisely, these indices are represented by ⌈log r⌉ bits where r denotes the size of the
polynomials used in BIKE. On a 32-bit architecture, the vector storing the syndrome s is
divided into ⌈r/32⌉ chunks. Hence, applying a rotation by k bits (i.e., a secret index of
the private key), can be accomplished by performing a word-unit rotation by the upper
⌈log r⌉ − 5 bits of k (denoted by δ in the following) and a subsequent bit-unit rotation by
the lower five bits of k. However, in the presented attack, we only measure the power
consumption of the word-unit rotation (i.e., rotation by δ) as differences in the power
consumption depending on the applied private key can already be distinguished by using
just one single trace.

An implementation of the word-unit rotation, that is not timing side-channel secure,
could simply change the pointer to the syndrome, but then subsequent operations on the
syndrome would leak the rotation value via their memory access pattern. To this end,
we show the constant-time implementation of the word-unit rotation in Algorithm 1. For
each bit δi in δ, the algorithm computes a mask m which is set to 0xFFFFFFFF in case the
bit is one or to 0x00000000 in case the bit is zero. Afterwards, the implementation loops
over the whole syndrome, loads the shifted and the unshifted value and selects on of them
based on m. This procedure ensures that both – the rotated and unrotated values are
loaded from the memory – and no timing differences with respect to the secret index (i.e.,
δ) can be observed.
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(a) Calculation of the mask m (cf. Algorithm 1,
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in two subsequent iterations. Visual differences are
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Figure 1: Ten raw power traces (500MS/s) of the word-unit rotation from different secret
key indices δ at bit position i = 13. The power traces are measured on an ARM Cortex-M4
processor of the FRDM-K22F development board (rev.D) and clocked with 120 MHz. The C code
is compiled with arm-none-eabi-gcc compiler (v9.2.1) and optimization level -O3.

Power Consumption Leakage. While the constant-time implementation protects the
rotation against timing attacks, it unfortunately introduces two attack surfaces for side-
channel adversaries exploiting the power consumption of the device. First, the computation
of the mask m in Lines 6-10 in Algorithm 1 causes variations in the power consumption
due to the huge difference of the Hamming weight which is directly connected to the i-th
bit of the secret index δ. Second, m is used again in Line 13 to decide whether the rotated
or unrotated value of the syndrome is used to update it. Again, due to the huge difference
of the Hamming weight of m, it is expected to observe corresponding variations in the
power consumption of the target device.

Attacker Model. Since we perform a power side-channel attack on the word-unit rota-
tion, we assume an attacker with physical access to the device. Furthermore, we assume
an instantiation of BIKE that works with ephemeral keys as suggested in the specifica-
tion [ABB+22]. Hence, a side-channel adversary can only acquire the power consumption
of one secret key used in the decoding process.

Side-Channel Attack. In our side-channel attack, we first record a power trace of the
decoding step of BIKE’s decapsulation. Since the BGF decoder always performs seven
iterations, each secret index of the private key is used exactly seven times to execute the
rotation described in Algorithm 1. In order to achieve cleaner traces, we compute the mean
of these seven sub-traces. Now, we select Points of Interest (PoI) by visually inspecting
our preprocessed power traces, i.e., the points in the power traces where the mask m is
computed or used. The selection of the PoIs is done for each bit position i separately
since minor differences can occur in the power traces (e.g., in the horizontal appearance).
To recover all W secret indices of one private key at the same time, we apply a k-means
clustering of all power traces processing the i-th bit of the indices.

Practical Results. We perform the described attack on BIKE’s security level λ = 1
parameter set utilizing only W = 142 rotations. As target device, we use an ARM Cortex-
M4 processor supplied with a 120 MHz clock. The measurement results for the most
significant bit for ten different secret indices δ are shown in Figure 1. The differences
between a one and a zero can clearly be distinguished without any further postprocessing
of the traces. Repeating the same experiment for the remaining bits of δ would result in
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Table 1: Algorithms implemented in this work. The adapted implementations are based
on [KLRBG23].

Application Algorithm Representation
standard bitsliced

Fixed-Weight Poly. Sampling

Fisher-Yates this work adapted
Sorting this work adapted

Rejection this work adapted
Comparison this work adapted

I2C Conversion this work adapted
FrodoKEM Gaussian Sampling CDT Sampling this work this work
BIKE Rotation Barrel-Shifter this work not applicable

recovering the upper bits of a secret index k of BIKE’s private key. The remaining lower
five bits could be recovered by solving linear equation systems.

To demonstrate that our attack works reliably, we measure the power consumption
of the word-unit rotation of 1 000 different secret keys. We are able to recover 98.40 % of
the partial secret keys without erroneous bits. In general, 99.99 % of all upper secret bits
(8 · 142 · 103) could be recovered correctly.

Moreover, we want to stress the fact that improvements to the clustering algorithm
and feasible template attacks can increase the success rate further, as we only presented
a straightforward approach in this section (cf. [CARG23]). Optimized versions [CCK21,
CGKT22] of BIKE significantly reduce the Hamming weight, but the attack is still possible
in a similar fashion as recently demonstrated in [CARG23].

Masking. Based on a constant-time implementation, the rotation is straightforward to
mask, the crucial operation, which generates the leakage is the cmov. First-order masking
of the syndrome doubles its memory footprint and thus doubles the cost for loads and
store for this already memory instruction intense operation. A masked implementation
should therefore be even more focused to be efficient in this regard.

3 Software Implementation
We developed efficient C code for all three applications to evaluate our hardware accelerators.
Table 1 provides an overview of the algorithms implemented in this work. We implement
four different fixed-weight polynomial sampling algorithms and one conversion algorithm,
adapt existing bitsliced variants, and develop a secure CDT sampler for FrodoKEM and
a rotation function for BIKE. Our code works for arbitrary masking orders, the masked
instructions on the core, however, only support first-order masking.

Bitslicing. For highspeed symmetric cryptographic software implementations, bitslic-
ing [Bih97] has been an important technique for many years. The general idea is to
reach better resource utilization by useing the full register width although operating on
values bounded by fewer bits – in particular when operating on single bits. Therefore,
data has to be transformed to the bitsliced representation. This operation corresponds
to a matrix transposition. For example, given a register width of 32 bit, in a bitsliced
implementation 32 10-bit values are not stored in 32 registers, instead the i-th bit of each
value is aggregated in one register. Therefore, the values are stored in ten registers in total.
Operations can then be done with 32 values in parallel, always using the full register width.
In theory, a speedup of a factor equal to the register width can be achieved for operations
on single-digit values, whenever parallelization is possible. However, transformations from
and to the bitsliced representation and sometimes padding introduce overhead.



Krausz, Land, Stolz, Naujoks, Richter-Brockmann, Güneysu, Kogelheide 9

Bitslicing is very efficient for masked software implementations, in particular because
it can reduce the number of costly nonlinear operations [BC22,KLRBG23]. However, for
hardware accelerators that execute a masked instruction in a single or only few cycles,
the overhead induced by bitslicing can be unprofitable in some cases. To allow a fair
comparison, we provide standard (non-bitsliced) and bitsliced implementations for all
algorithms if applicable.

Masked Instructions. We implement wrapper functions with inline assembly utilizing
the masked instructions. Via preprocessor directives, we are able to determine whether
our code is compiled without any masked instructions, with the Boolean and arithmetic,
masked instructions developed by Gao et al. [GGM+21] or additionally with our masked
cmov and cmp instructions. From the masked instructions by Gao et al., only a subset is
used in our code, always operating on Boolean shares: mask, unmask, not, and, or, xor, slli,
srli, add and sub. The rest of the instructions – e.g., instructions to switch from Boolean to
arithmetic masking domain and vice versa – do not apply. Without masked instructions,
all masked operations are realized by secure gadgets presented by [BC22, KLRBG23],
which rely on unmasked instructions. When evaluating the masked instructions by Gao et
al., most operations are realized by their respective instructions, and additionally, these
instructions are used for building the higher-level gadgets as the cmov for example, where
e.g., a masked and and xor is required.

Furthermore, we implement some inner loops with inline assembly to have more control
over the memory and register usage. This allows us to use the benefit of reduced register
pressure, which comes with the masked instructions leading to fewer memory loads and
stores. Nevertheless, the parametrizability of our high-level C code (arbitrary masking
order, parameters N and W and different ISEs) leads to some unnecessary memory accesses,
which can be avoided with implementations for a specific parameter set.

cmpeq. For the base Instruction Set Architecture (ISA), we use the operation sequence
depicted in Algorithm 2, to express a cmpeq. As can be seen there, the performance will
be dominated by the five secure or operations. In contrast to this, we use a dedicated
operation sequence whenever masked, Boolean instructions are available. In this case, we
compute the first operand minus the second one and vice versa, combining the two results
with a secure or, which is shown in Algorithm 3. When our masked cmpeq is enabled, we
naturally utilize this instruction.

Algorithm 2 cmpeq with base ISA. All
Boolean operations are performed with
secure gadgets.

Input: Boolean-shared values a, b
Output: Boolean-shared res, 1 if a and
b are equal
res := a⊕ b
res := res ∨ (res≫ 16)
res := res ∨ (res≫ 8)
res := res ∨ (res≫ 4)
res := res ∨ (res≫ 2)
return (res ∨ (res≫ 1))⊕ 1

Algorithm 3 cmpeq with ISE by Gao
et al. All arithmetic operations are per-
formed with the Boolean-masked instruc-
tions.

Input: Boolean-shared values a, b
Output: Boolean-shared res, 1 if a and
b are equal
tmp0 := a− b
tmp1 := b− a
res := tmp0 ∨ tmp1
return (res≫ 31)⊕ 1

cmpgt. We apply a similar handling for the cmpgt operation. For the base ISA, we adapt
the optimized comparison from [KLRBG23] to the standard representation. However, this
is very slow and usually yields impractical results, which is why a bitsliced implementation
is preferable when no ISE is available. For the evaluation case in which a dedicated masked
cmpgt instruction is not available, but masked subtraction and shift instructions are, we
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can express the comparison efficiently with a subtraction followed by a shift to the right to
get the most significant bit. This is only correct when both operands can be represented
with at most 31 bit, or in other words, when the most significant bit of both operands is
zero. Due to the possible parameter ranges for N and W , this is always the case in our
applications.

3.1 Masked Fixed-Weight Polynomial Sampling
We adapt the bitsliced implementations from [KLRBG23] so that they can be compiled with
masked instructions. To enable a fair comparison, we additionally implement non-bitsliced
variants of the sampling algorithms. In the following, we briefly summarize the algorithms
presented in [KLRBG23] and discuss their key instructions.

Fisher-Yates. The side-channel secure Fisher-Yates method has a quadratic runtime in
the weight W . In the inner loop, a masked cmov based on the result of a masked cmpeq
is executed. Nevertheless, for the standard implementation, we use bitslicing for another
single loop, because it requires a 48-bit transformation from the Boolean to the arithmetic
domain and vice versa. Although the core by Gao et al. has dedicated instructions for
these conversions, they only work for 32-bit operands. In contrast, the gadget implemented
by Bronchain and Cassiers [BC22] allows (with minor modifications) efficient bitsliced
conversions for this size, and thus the costs are amortized.

Sorting. Constant-time sorting can be done with sorting networks. The bitsliced sorting
algorithm in [KLRBG23] is based on Batchers’s Bitonic mergesort, which is easy to
parallelize. For the standard implementation, we opted for djb-sort [BCLv17] instead.
Both sorting algorithms have an asymptotic runtime of O(N log2(N)), where N in our case
is the polynomial length, but djb-sort is capable of reaching a slightly lower constant factor.
The fundamental operation in a sorting network is a cmpgt followed by a conditional
swap (i.e., two cmov). Although the values to be swapped during sorting cover the full
32-bit registers, only the upper 30 bits consist of the random values that are compared.
By shifting the values to the right before the cmpgt, we can use the optimized operation
sequence based on subtraction.

Rejection Sampling. Rejection sampling requires a cmpgt to verify whether a sampled
bitstring represents a valid index below N . Additionally, a loop over the already sampled
indices checks for collisions using cmpeq. We did not implement and evaluate the bounded
rejection sampling method, because the Fisher-Yates approach is strictly superior as already
pointed out by Krausz et al. [KLRBG23].

Comparison Sampling. Comparison sampling sets each coefficient bit individually with
probability p = W/N . This is implemented by comparing a random l-bit string with the
constant ⌊2lp⌉ and setting the coefficient to one if the random value is below the threshold.
This obviously heavily relies on a cmpgt operation.

I2C Conversion. Both the Fisher-Yates shuffle and rejection sampling generate polyno-
mials in the index representations. In most cases, however, the coefficient representation
is required. The conversion is straightforward: We start from a polynomial in coefficient
representation where all coefficients are set to zero. Then, a public counter i runs from 0
to N − 1 and in each iteration, we check whether i is equal to each coefficient in the list of
indices. Depending on this cmpeq result, we cmov a one into the position i in the result
polynomial. Thus, the conversion performs exactly N ·W cmpeq and cmov.
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3.2 Masked FrodoKEM CDT Sampler
To the best of our knowledge, we are the first to report a masked CDT sampler. The most
important masked operations are integer greater-than comparison and bit accumulation.
For our bitsliced variant, we implement the optimized comparison with a public constant t
from [KLRBG23], which only uses ⌈log2 t⌉ secure and operations. Bit accumulation can
be performed with half adders, adapting the masked implementation from Bronchain and
Cassiers [BC22]. This requires up to ⌈log2 |T |⌉ secure and operations, where |T | is the
number of entries in the CDT.

Our non-bitsliced implementation varies depending on the masked instructions available.
Similar to our fixed-weight polynomial sampling algorithms, the operands for the greater-
than comparison are bounded (15 bit in this case), which allows us to use different optimal
operation sequences. The comparison results are accumulated with a masked addition,
thus both operations are executed |T | times for each sample and dominate the computation
time.

3.3 Masked BIKE Rotation
A naïve implementation of the polynomial rotation with word granularity in BIKE could be
structured very similarly to Algorithm 1. However, this would lead to many unnecessary
loads and stores. For example, when the array is rotated by one, the naïve implementation
would begin by loading the first and second entries, conditionally move the second to
the first and then store both entries back. Then the same procedure is done with the
second and third entries, therefore most entries are loaded and stored two times. Following
the optimized, unmasked BIKE implementation for the Cortex-M4 [CCK21], the memory
accesses can be reduced to one per entry by operating on chains of values and thus keeping
an entry in the registers during the cmov to the next entry and the cmov from the previous
entry. The rotation obviously relies heavily on the masked cmov.

Bitslicing is not applicable here, because the conditional move already operates on the
full register width. Our implementation expects a pointer to three consecutive instances
of the masked polynomial. Three instances are required because the number of registers
for one polynomial, which is the maximum secret rotation amount r, is not a power of
two. As the side-channel secure rotation works bitwise, it covers rotation amounts up to
2⌈log2 r⌉ − 1 > r, and thus, extends over the second copy. Apart from ⌈log2 r⌉ masked shift
operations that are required to select the desired bit for each round, the rotation mainly
consists of ⌈log2 r⌉r masked cmov operations.

4 Hardware Implementation
We base our hardware implementation on the SCARV CPU†, an embedded class processor
implementing the RISC-V 32-bit base ISA, as well as the multiply and compressed
instruction set extensions. Internally, it employs a 5-stage pipeline with forwarding paths
to improve performance, but does not feature more advanced features such as branch
prediction or a cache subsystem. The design has previously been extended by Marshall
et al. [MNP+21] to prototype scalar cryptography extensions, by Gao et al. [GGM+21]
enabling first-order masking via a dedicated ISE and by Marshall et al. [MP21], who
implement arbitrary-order masking using a separate hardware accelerator.

Because we can express our core operations very efficiently with the given masked
operations and to enable a direct comparison with dedicated instructions, we chose to
extend the core of Gao et al.. Their work is tightly integrated into the core without the
need to manage separate register banks, but at the cost of additional engineering effort
on the hardware level. They provide Boolean (and, or, ...) and arithmetic (add, sub,
...) instructions for operands masked in the Boolean (a = a0 ⊕ a1, where ⊕ represents

†https://github.com/scarv

https://github.com/scarv
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Algorithm 4 cmov Implementation
Data: masked 32-bit values dest, new, cond
Result: new is moved into dest if the least significant bit in cond is 1

function cmov(dest,new,cond)
a← dest⊕ new ▷ share-wise
b← a ∧ cond ▷ using secure and
return b⊕ dest ▷ share-wise

end function

the bitwise addition mod2) and arithmetic domain (a = a0 + a1 mod 232) as well as
conversion between the two domains. The Arithmetic Logic Unit (ALU) is extended with
a masked ALU module, which implements all necessary primitives. The shares are stored
in the general-purpose registers, allowing seamless integration into existing RISC-V code.
However, to enable the CPU to load both shares during the register fetch phase, they
must be stored in adjacent registers. Additional data paths and logic were added to the
forwarding and hazard unit to account for the shares. Furthermore, one of the shares is
stored in bit-reversed form preventing accidental combination in other pipeline stages. The
original representation is only restored inside the masked ALU.

We add three new instructions for the dedicated acceleration of our core operations.
This requires us to modify the masked ALU as well as the data paths inside the processor.
In the following, we detail our changes. Each paragraph focuses on a specific part of the
processor.

General Architecture. RISC-V instructions support up to two source operands and one
destination operand. In the SCARV CPU, the destination operand only acts as a pointer
to a register which is utilized in the writeback stage. However, we require three operands
to implement the cmov instruction. More specifically, we have to use the value of the
destination register as a third input to be able to hide the condition. Thus, we have
to change the register module to allow the transfer of three operands in their shared
representation during the decode and register fetch phase. The decoder will fetch the
destination register’s value whenever a cmov instruction is detected. We modify the
forwarding and hazard unit to account for a third operand and extend the data path to the
CPU, however, the third operand is only routed into the masked ALU. Accidental share
combinations are again prevented by loading and storing a bit-reversed representation.

Masked ALU. Our new instructions cmov and cmpeq are implemented as additional units,
while cmpgt is an extension to an existing unit inside the masked ALU. The cmov module
receives three input operands in their shared representation: the destination register’s
contents, a value and a 1-bit condition, which decides whether the value is moved into
the destination register or not. Internally, the 1-bit condition is expanded to 32-bits. The
result is computed according to Algorithm 4.

Notably, the cmov operation completes within a single clock cycle, as we reuse the
Domain-Oriented Masking (DOM) and gadget provided by Gao et al., which latches its
input on the positive edge and adds randomness on the negative edge.

The cmpeq instruction generates a 1-bit condition based on the equality of two input
operands and is implemented as its own subunit inside the masked ALU. It checks for
equality by first xoring both operands and afterwards, the result is propagated through
an or-tree, which at each stage computes the inclusive or of adjacent bits within the
intermediate result. Thus, each stage compresses the input by half of its bit length.
Therefore, a 32-bit input will be compressed to just a single bit after five stages. If the
inputs are equal, the input to the or-tree will be zero and the final output will be zero.
Vice versa, if they are unequal, the input will at least contain one digit which is not zero
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Result

Figure 2: Simplified diagram for a 4-bit cmpeq as included in the extended core.

and the final output will be one. A simplified, non-masked, example of this scheme can be
seen in Figure 2. We again reuse the DOM and gadget to build the required inclusive or
gate. Because the protected and gate can compute its result in just one cycle, the overall
latency of this instruction is five cycles.

Table 2: Encoding for the additional, masked instructions.
31 - 25 24 - 20 19 - 15 14 - 12 11 - 7 6 - 0 Instruction
0x7c rs2 (condition) rs1 0x0 rd 0x5b mask.b.cmov
0x7c rs2 rs1 0x1 rd 0x5b mask.b.cmpeq
0x7c rs2 rs1 0x2 rd 0x5b mask.b.cmpgt

Lastly, the cmpgt operation compares two input values and sets a 1-bit condition based
on which of the two inputs was greater. Unlike the previous instructions, this operation is
implemented as a minor extension to the existing bit arithmetic module, which provides
masked addition as well as subtraction over Boolean shares. When subtracting a larger
value from a smaller value, a carry bit is generated, which is currently unused and not
extracted from the Kogge-Stone adder present in the design. Therefore, we modify the
adder to output the carry bit in its shared representation, which acts as our 1-bit condition.
The adder computes the result of a 32-bit subtraction within 6 cycles, thus cmpgt exhibits
the same performance overhead.

Toolchain. We use the modified GCC toolchain from the SCARV project, which adds
assembler support for their masking extension. Thus, their instructions can be manually
inserted into inline assembly code, but the GCC compiler cannot automatically emit
them for high-level code. Our work uses the same opcode space as the original masking
extension, however, as it uses all funct3 values available, we choose a new funct7 code
in order to create space for our new instructions. cmov, cmpeq and cmpgt are encoded
as RISC-V 32-bit R-Type instructions as shown in Table 2. cmpeq and cmpgt perform
their comparison on the rs registers and store their result in rd. cmov uses rs2 as the
condition whereas rs1 represents the value, which is potentially moved into rd.

5 Evaluation
We evaluate our modified SCARV Core using the ChipWhisperer CW305 FPGA board,
which features an Artix xc7a100tftg256 FPGA as well as connections to supply power
from a separate power supply and to read out the power consumption. Furthermore, we
use the SCARV SoC project to connect the Central Processing Unit (CPU) to an Advanced
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extensible Interface (AXI) providing access to memory, peripherals such as serial and
General Purpose Input/Output (GPIO), thus allowing us to send inputs to the system as
well as setting up precise triggers for our measurements. The CPU has access to 256 kB of
shared RAM/ROM and runs at 25 MHz. In the following, we present our results regarding
hardware overhead, software performance and side-channel measurements.

Table 3: Field-Programmable Gate Array (FPGA) performance results
Area Max. Freq.

[LUTs] [FFs] [Slices] [MHz]

Bool.,arith. 7203 2670 2324 29.29
cmov 128 64 52

Masked cmpeq 127 116 81
ISE cmpgt 64 8 35

other 655 64 137
combined 8177 2922 2629 26.93
Overhead 13.5 % 9.4 % 13.1 % -8.1 %

5.1 Hardware
Table 3 shows that the hardware overhead of the adapted instructions is moderate. Overall,
there is an increase of approximately 13 % in combinatorial logic and 10 % in registers.
For the maximum frequencies, we note that we did not perform iterative synthesizing to
optimize the frequency, but rather set the target to 25 MHz. The maximum frequency
from Table 3 is then computed from the reported worst negative slack.

We note that SCARV is a very simple core, without a cache subsystem or floating point
unit. Gao et al. report a frequency drop of 5 MHz as well as a 80 % LUT and a 25 % FF
overhead for their masked ISE. Thus, when adding our extension on top of their modified
core, the overhead is overall moderate.

The area costs in Table 3 that are not directly associated with one of our three
instructions, but rather introduced as other, mainly come from the extended data path for
a third operand, which is necessary for our cmov instruction.

5.2 Software
Figures 4, 5 and 6 show our software benchmark results for the three different applications.
Note that for each use case, the generation of input randomness is not benchmarked, and
may take another significant part of the cycle counts. This is especially the case if a
masked Keccak is used (e.g., as Extendable-output Function (XOF)).

Fix-weight Sampling. Table 4 shows our benchmark results for all fix-weight sampling
algorithms applied to a representative selection of parameter sets. For the BIKE decapsula-
tion, the last parameter set, only Fisher-Yates and sorting are secure algorithms, because
their runtime is independent of the randomness, which is extended from a secret value
in this case. In general, our results show that bitslicing improves the performance for all
algorithms, when no accelerators are available.

Fisher-Yates and rejection sampling generate polynomials in index representation,
sorting and the comparison method generate polynomials in coefficient representation.
In most applications, subsequent operations on the polynomials require the coefficient
representation. For these applications, comparison sampling is superior, when implementing
for the base ISA, confirming the results from Krausz et al. [KLRBG23]. When index
representation is required, rejection sampling is clearly faster. For the fourth use case,
where N is 12323, rejection sampling combined with the conversion is even faster than the
comparison method.
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Table 4: Fixed-Weight polynomial sampling performance with different parameters and ISEs
in kilo cycles. For each parameter set, we underline the cycle count – for base ISA and masked
ISA separately – of the fastest algorithm with output in coefficient representation, taking the
index-to-coefficient (I2C) conversion into account for Fisher-Yates and Rejection sampling. Sorting
requires too much memory with the BIKE decapsulation parameters on our evaluation platform.

Parameter set Algorithm Repr. Base ISA Masked ISE
Bool., arith. all

Fisher-Yates std. 44 729 2 059 1 674
bs. 6 876 6 455 6 455

Sorting std. 25 017 944 850
bs. 13 678 4 569 4 569

NTRU key gen. Rejection std. 4 144 156 138
N = 677, W = 254 bs. 1 214 909 909

Comparison std. 73 289 1 137 1 105
bs. 2 243 1 010 1 010

I2C Conversion std. 236 071 9 312 5 871
bs. 5 605 4 273 4 273

Fisher-Yates std. 108 352 4 490 3 551
bs. 12 112 11 108 11 108

Sorting std. 38 289 1 433 1 288
bs. 19 687 6 509 6 509

sNTRU Prime key gen. Rejection std. 6 741 247 231
N = 953, W = 396 bs. 2 660 1 927 1 926

Comparison std. 147 623 2 305 2 260
bs. 4 791 2 124 2 124

I2C Conversion std. 517 980 20 415 12 866
bs. 11 186 8 348 8 348

Fisher-Yates std. 11 474 680 583
bs. 3 244 3 082 3 082

Sorting std. 446 669 16 191 14 479
bs. 217 048 66 040 66 040

McEliece encaps. Rejection std. 2 073 77 70
N = 6688, W = 128 bs. 402 311 312

Comparison std. 661 901 10 426 10 223
bs. 24 173 9 705 9 732

I2C Conversion std. 1 175 949 46 506 29 353
bs. 27 020 18 765 18 765

Fisher-Yates std. 3 651 351 321
bs. 1 854 1 762 1 762

Sorting std. 941 111 33 854 30 231
bs. 460 872 136 838 136 838

BIKE key gen. Rejection std. 1 554 58 52
N = 12323, W = 71 bs. 187 152 152

Comparison std. 899 499 14 164 13 908
bs. 34 208 13 269 13 269

I2C Conversion std. 1 203 042 47 761 30 203
bs. 29 568 20 529 20 529

Fisher-Yates std. 27 594 1 431 1 195
bs. 5 990 5 518 5 518

BIKE decaps. Sorting std. — — —
N = 49318, W = 199 bs. — — —

I2C Conversion std. 13 475 741 532 081 335 510
bs. 360 683 243 527 243 527
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Because sorting requires more than the available 256 kB of RAM, for the BIKE decap-
sulation use case only Fisher-Yates remains as a suitable algorithm. To get the required
coefficient representation, the costs of the index-to-coefficient conversion lead to unpractical
cycle counts of over 360 million cycles.

The picture changes distinctly when we utilize masked instructions. With the ISE, the
non-bitsliced standard implementations are faster for Fisher-Yates, sorting and rejection
sampling, as they get accelerated in many cases by a factor of 30.

Due to the speed-up of more than an order of magnitude, sorting becomes fastest for
small N . With greater values for N , comparison sampling is again faster. For the index
representation, rejection sampling remains the preferable method. The advantage of the
complete set of masked instructions compared to reduced set is in the range of about 10
to 20 percent.

Although Fisher-Yates is more than five times faster with the ISE compared to the
bitsliced variant for the base ISA, the combined costs remain very high at more than
240 million cycles, when taking the conversion into account. With more RAM available to
be able to run the sorting method, it is expected to be faster than Fisher-Yates plus the
I2C conversion. Still, the estimated costs of more than 100 million cycles, would not be
practical.

Table 5: FrodoKEM CDT sampler performance in kilo cycles. N is contained in the parameter
set name.

Parameter set Repr. Base ISA Masked ISE
Bool., arith. all

FrodoKEM-640 std. 26 787 400 319
bs. 1 197 244 244

FrodoKEM-976 std. 34 858 530 433
bs. 1 578 323 323

FrodoKEM-1344 std. 31 499 511 426
bs. 1 376 272 272

CDT Sampling. Our results for the FrodoKEM CDT sampler can be found in Table 5.
Most importantly, the base ISA numbers indicate that side-channel resistant sampling from
a CDT is generally feasible, but costly for the FrodoKEM use-case. The bitsliced variants,
moreover, are constantly faster than the implementations on standard representation, albeit
the featured numbers do not include transformation into and from bitsliced representation.
Consequently, this application does not profit from a dedicated acceleration of the core
operations, but achieves a significant speed-up with the masked ISE of approximately
factor five, lowering the costs from 1197 to 244 thousand cycles for the smallest parameter
set.

Table 6: BIKE rotation in kilo cycles.

Parameter set N Base ISA Masked ISE
Bool., arith. all

BIKE-1 12323 283 100 72
BIKE-3 24659 620 217 157
BIKE-5 40973 1 146 340 244

Polynomial Rotation. Table 6 shows the speed-ups that can be achieved for rotation of
BIKE polynomials. Again, the base ISA numbers indicate that this operation is generally
feasible when implemented with side-channel countermeasures, with cycle counts ranging
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from 284 to 1146 thousand cycles. Still, the ISE brings a significant speed-up of about factor
three with only the Boolean and arithmetic, masked instructions. With the dedicated,
masked cmov instruction the rotation is even four times faster.
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Figure 3: Side-channel evaluation of our instruction set extension using a fixed vs. random t-test
with 100,000 measurements.

5.3 Side-Channel Security
We verify first-order power side channel resistance by creating microbenchmarks for each of
our new instructions and performing a fixed vs. random t-test with 100 000 measurements.
The setup consists of an external computer, which masks a fixed or random value based on
the result of a coin flip. The values are then transmitted to the SCARV core via a serial
connection. Before starting a measurement run, the CPU loads a program, which upon
receiving a command either stores transmitted values or runs a microbenchmark. Each
microbenchmark consists of an inlined assembly function, which first loads values from
memory, then sets a trigger to start the oscilloscope and finally executes a single instruction
and resets the trigger. Furthermore, some NOPs are inserted before and after setting the
trigger to clear the internal pipeline of any remnants. All measurements were performed
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Figure 4: Side-channel measurement setup verification by performing a fixed vs. random t-test
with 40,000 measurements of our cmov instruction with the internal randomness engine disabled,
causing significant leakage.

using a sample rate of 2.5 GS/s. The results are shown in Figure 3. We performed two
t-tests per instruction to ensure that the supplied or generated condition does not leak
any information. The results seen in Subfigures (a)-(f) show that our implementation is
first-order secure. Additionally, we verified our results by disabling the internal randomness
generator for the masked ALU. As seen in Figure 4, without any randomness, the cmov
instruction already shows strong signs of leakage after 40 000 measurements.

6 Conclusion

In our work, we show how low-level hardware acceleration for masking can be applied to
several subroutines that are highly relevant for a range of PQC schemes. For fixed-weight
sampling, this leads to speed-ups of more than an order of magnitude. However, further
research is required for sampling in the BIKE and HQC decapsulation, which is inefficient
even with the acceleration. Moreover, our work presents – to the best of our knowledge –
the first masked CDT sampler operating on Boolean shares and shows its general feasibility.
Low-level hardware acceleration decreases the cycle count by a factor of about five. Finally,
the polynomial rotation for BIKE benefits significantly from our new instructions. Most
of these algorithms we evaluated in this work are very memory intense. The additional
memory instructions that are required for masking (at least a factor of two for first-order
masking) cannot be accelerated with our ISE and lead to a memory bottleneck.

In addition to more efficient fixed-weight sampling methods that are suitable for BIKE
and HQC decapsulation, fully masked implementations of both algorithms would be an
important next step for research, especially in the light of a potential standardization of one
of the schemes. A fully masked implementation of FrodoKEM, which is still recommended
by the French ANSSI and the German BSI, is now feasible with the CDT sampler presented
in this work.
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