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Abstract. Much recent work has developed efficient protocols for thresh-
old signatures, where n parties share a signing key and some threshold t
of those parties must interact to produce a signature. Yet efficient thresh-
old signatures with post-quantum security have been elusive, with the
state-of-the-art being a two-round scheme by Damg̊ard et al. (PKC’21)
based on lattices that supports only the full threshold case (i.e., t = n).

We show here a two-round threshold signature scheme based on standard
lattice assumptions that supports arbitrary thresholds t ≤ n. Estimates
of our scheme’s performance at the 128-bit security level show that in
the 3-out-of-5 case, we obtain signatures of size 46.6 KB and public keys
of size 13.6 KB. We achieve ≈ 5× improved parameters if only a small
number of signatures are ever issued with the same key.

As an essential building block and independent contribution, we con-
struct an actively secure threshold (linearly) homomorphic encryption
scheme that supports arbitrary thresholds t ≤ n.

Keywords: Lattices · Threshold Signatures · Threshold Encryption

1 Introduction

In a t-out-of-n threshold signature scheme, a signing key is shared among n
parties such that any t of those parties can jointly issue a signature. In contrast,
an adversary corrupting strictly fewer than t of those parties cannot forge a
signature. The past few years have witnessed remarkable progress in developing
efficient protocols for threshold signatures. These efforts have been motivated
largely by applications to cryptocurrency, with most attention being focused on
threshold versions of ECDSA [GG18,LN18,DKLs19,CGG+20,CCL+20,DJN+20]
and Schnorr-like schemes [KG20,Lin24,CGRS23]. Based in part on this level of
interest, NIST has announced their intention [BP23] to standardize threshold
cryptosystems.
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Efficient threshold signatures based on post-quantum hardness assumptions—
and specifically lattice assumptions—have been elusive. While generic construc-
tions are possible, they have drawbacks and/or are not particularly efficient. (We
survey existing constructions in Section 1.3.) The state-of-the-art is a recent con-
struction by Damg̊ard et al. [DOTT21] based on standard lattice assumptions
that has a two-round signing protocol. Unfortunately, their solution only works
for the full-threshold (i.e., t = n) setting and does not extend to the case of
general thresholds t ≤ n. (We discuss the challenges in adapting their technique
to the case of general thresholds in Section 1.2.)

1.1 Our Contributions

We show a t-out-of-n threshold signature scheme based on standard lattice
assumptions (Ring-LWE/SIS) that supports arbitrary thresholds t ≤ n. Our
scheme features a two-round signing protocol and allows for efficient distributed
key generation. Estimates of our scheme’s performance at the 128-bit security
level show that in the 3-out-of-5 case, we obtain signatures of size 46.6 KB and
public keys of size 13.6 KB. We can also reduce the signature size by up to a
factor of 5× in settings where the number of signatures generated using a single
key is bounded in advance; we refer to Section 7 for further details.

Our scheme is based on a general framework for constructing threshold sig-
natures from a (linearly) homomorphic encryption scheme with threshold de-
cryption. Although the particular instantiation we propose is based on a variant
of the Dilithium signature scheme, our framework is general enough to be in-
stantiated using other schemes in the future.

As an essential building block of independent interest, we show a new and
actively secure t-out-of-n threshold (linearly) homomorphic encryption scheme.
Our construction is based on the BGV encryption scheme [BGV12] combined
with (verifiable) Shamir secret sharing and lattice-based zero-knowledge proofs.
In contrast to prior work of Boneh et al. [BGG+18], we make the standard
assumption that the set of users involved in decryption is known in advance;
this allows us to achieve better parameters than in their case.

1.2 Technical Overview

We begin with a high-level overview of the approach used by Damg̊ard et
al. [DOTT21] to construct n-out-of-n lattice-based threshold signatures, and
explain why their scheme does not generalize easily to the t-out-of-n case. We
then describe the key ideas underlying our scheme. Several technical details are
omitted since this is intended only to provide intuition.

We first describe a three-message identification scheme based on lattices in-
spired by the Schnorr identification scheme in the discrete-logarithm setting. Fix
a ring Rq. The prover’s private key is a short vector s ∈ Rℓ+k

q , and its public

key consists of a matrix Ā := [A | I ] ∈ R
k×(ℓ+k)
q (where A is uniform) and the

vector y := Ās. Execution of the protocol proceeds as follows:
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1. The prover samples a short vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a short challenge c ∈ Rq.
3. The prover responds with short vector z := c · s+ r.
4. The verifier accepts iff z is short and Āz = c · y +w.

Although this protocol can be shown to be sound, in general it is not honest-
verifier zero knowledge (HVZK). One way to address this is by allowing the
prover to abort [Lyu12]. Specifically, step 3 is modified so the prover only re-
sponds if a certain condition holds, but aborts (and returns to step 1) otherwise.
It can be shown that an execution of such a modified protocol is HVZK con-
ditioned on the event that an abort does not occur. While this is insufficient to
prove security of the above as an interactive protocol (since information may be
leaked in executions where the prover aborts), it suffices when the Fiat-Shamir
transform is applied to the above protocol1 to derive a signature scheme (since
the prover/signer will then never release transcripts from aborted executions).
We refer to the latter approach as Fiat-Shamir with aborts (FSwA).

Another way to make the protocol HVZK, without introducing aborts, is to
use noise drowning [GKPV10]. We use Rényi divergence [ASY22] to analyze the
extra noise needed for security based on the number of allowed signing queries.
When coupled with the Fiat-Shamir transform, this results in larger signatures
than the FSwA approach but can lead to better computational efficiency. It can
also benefit the threshold setting, where interaction is inherent.

Damg̊ard et al. propose a way to distribute the FSwA version of the above
scheme among n signers based on the following idea: the ith signer holds short
vector si and s =

∑
i∈[n] si is the private key. Then, the n signers can run a

distributed, two-round signing protocol as follows:

1. The ith signer chooses a short vector ri ∈ Rℓ+k
q and sends wi := Āri.

2. Each signer computes w :=
∑

i∈[n] wi followed by c := H(w). The ith signer
then sends zi := c · si + ri.

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

We stress that the above does not work directly since it does not consider the
possibility that one or more of the honest signers will need to abort. Moreover,
incorporating aborts in the trivial way (namely, by restarting the protocol if any
of the signers abort) may not be secure since the initial message wi of the ith
signer is revealed even if that signer later aborts and, as we have noted above,
aborted executions of the underlying identification protocol are not HVZK. To
address this, Damg̊ard et al. modify the above so that each signer sends a (trap-
door) homomorphic commitment towi in the first round; thus,wi is not revealed
if the ith signer aborts. We omit further details, as they are not necessary to
understand the difficulties in extending this approach to the t-out-of-n case.

A natural way to try to extend the approach of Damg̊ard et al. to the case
of general thresholds is to share the master secret s among the n parties in a

1 Applying the Fiat-Shamir transform means that the challenge c is computed as a
hash of the initial message w and possibly other information.
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t-out-of-n fashion using, e.g., Shamir secret sharing. The problem with this idea,
however, is that we need both the master secret s and each party’s share si to
be short, and it is not clear whether this can be achieved when using t-out-of-n
secret sharing. (In contrast, this is easy to achieve in the n-out-of-n case since
the sum of n short vectors is still short.) Note that the {si} need to be short
regardless of whether one uses the FSwA approach or noise flooding (without
aborts): in the former case, if any si is too large, the corresponding signer will
abort too often; in the latter case, achieving HVZK with a large si would require
parameters that are too large to be secure.

Here, we adopt an approach that relies on a threshold (linearly) homomorphic
encryption scheme with non-interactive decryption. We describe the idea based
on a generic scheme and show in Section 3 an instantiation based on standard
lattice assumptions. We build on a version of the identification protocol described
above that uses larger parameters and does not require aborts. The signing key s
and verification key (Ā,y := Ās) of the signature scheme will be as before.
Now, however, instead of sharing s itself, the signers each hold an encryption
ctxs = Enc(s) of s with respect to a known public encryption key pk, and share
the corresponding decryption key sk in a t-out-of-n fashion. Any set U ⊆ [n] of
t parties can generate a signature (in the semi-honest setting) as follows:

1. For i ∈ U , the ith signer chooses a bounded vector ri ∈ Rℓ+k
q and sends

wi := Āri. It also sends ctxri
, an encryption of ri.

2. Each signer in U locally computes w :=
∑

i∈U wi, c := H(w), and an “en-
crypted (partial) signature” ctxz := c ·ctxs+

∑
i∈U ctxri

. The ith signer then
sends its threshold decryption share of ctxz.

3. Given decryption shares from all parties in U , each signer can decrypt ctxz
to obtain z, and output the signature (c, z).

The key insight is that while we cannot use t-out-of-n secret sharing for the
signing key due to the required size bounds, we can use it for the threshold
decryption key since decryption shares can be large.

While the above is secure for semi-honest adversaries, additional work is
needed to handle malicious adversaries while achieving a two-round signing pro-
tocol. We refer to Section 5 for further details.

1.3 Related Work

Lattice-based threshold signature schemes. Bendlin et al. [BKP13] show
a threshold version of the (hash-and-sign based) GPV scheme [GPV08]. Their
protocol uses generic secure multiparty computation to distributively compute
the most expensive part of the scheme (namely, Gaussian sampling [Pei10]), and
seems unlikely to yield a practical solution; moreover, their scheme requires and
honest majority. Cozzo and Smart [CS19] and Tang et al. [TPCZ23] explored the
use of generic secure multiparty computation to construct threshold versions of
several signature schemes submitted to the NIST post-quantum standardization
process but concluded that this approach is unlikely to yield practical protocols.
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Boneh et al. [BGG+18] show a “universal thresholdizer” that can be used
to create a threshold version of any signature scheme. The basic idea behind
their framework is to encrypt the master private key of the underlying signa-
ture scheme using a threshold fully homomorphic encryption (FHE) scheme,
evaluate the underlying scheme homomorphically, and then use threshold de-
cryption to recover the signature. Agrawal et al. [ASY22] adapted this approach
to the specific signature scheme Dilithium-G [DKL+18] and showed how to toler-
ate adaptive corruptions. Our approach is similar in spirit to these approaches,
but by moving as many signature steps as possible outside the homomorphic
evaluation we can base our protocol on threshold linearly homomorphic—rather
than fully homomorphic—encryption; besides the efficiency advantages this con-
fers, this also allows us to distribute key generation (something not achieved
in [ASY22,BGG+18]).

We have already mentioned the work of Damg̊ard et al. [DOTT21] showing
an efficient n-out-of-n threshold scheme based on lattices, and explained why
it does not readily extend to give a t-out-of-n scheme. For completeness, we
remark that there has recently been extensive work on lattice-based multisigna-
tures [FH20,DOTT21,BTT22,FSZ22,Che23] which are related to—but distinct
from—n-out-of-n threshold signatures. The schemes of Boschini et al. [BTT22]
and Chen [Che23] can be turned into n-out-of-n threshold schemes. Unfortu-
nately, as with the scheme by Damg̊ard et al., it seems difficult to adapt their
schemes to support arbitrary thresholds.

Threshold homomorphic encryption. Bendlin and Damg̊ard [BD10] show
a threshold homomorphic encryption scheme with semi-honest security. The
scheme we construct is based on the work of Aranha et al. [ABGS23] and Hough
et al. [HSS23], which achieve malicious security for the Bendlin-Damg̊ard scheme.
Although the Bendlin-Damg̊ard scheme supports arbitrary thresholds, the sub-
sequent works only supports the full threshold case.

The threshold FHE scheme of Boneh et al. [BGG+18] lacks an efficient mech-
anism for proving correctness of partial decryptions, which is needed for handling
malicious behavior. Recent work by Boudgoust and Scholl [BS23] is similar to
our threshold encryption scheme but has the same drawback; moreover, their
scheme only achieves one-way security.

Chowdhury et al. [CSS+22] present a threshold fully homomorphic encryp-
tion scheme with trusted setup and semi-honest security; the size of their key
shares is exponential in the number of parties n. Devevey et al. [DLN+21] also
construct a lattice-based threshold encryption scheme, but this scheme also relies
on a trusted dealer. Rotaru et al. [RST+22] give an actively secure distributed
key-generation protocol for lattice-based threshold encryption, but only for the
full threshold case.

Dahl et al. [DDEK+23] present a actively secure threshold FHE scheme in the
honest majority setting, requiring generic MPC in the offline phase to prepare
noise drowning shares.

Concurrent work. Concurrent with or subsequent to our own work, several
other lattice-based threshold signature schemes supporting general thresholds

5



have been proposed [dPKM+24, EKT24, CATZ24]. None of these support dis-
tributed key generation.

2 Background

Let N be a power of 2, and let q = 1 mod 2N be prime. Define the rings R =
Z[X]/⟨XN + 1⟩ and Rq = Zq[X]/⟨XN + 1⟩. For f(X) =

∑N−1
i=0 αiX

i ∈ Rq,
we compute norms of f by viewing each αi ∈ Zq as an integer in the range{
− q−1

2 , . . . , q−1
2

}
and then viewing f as a vector over Z; thus,

∥f∥1 =

N−1∑
i=0

|αi|, ∥f∥2 =

(
N−1∑
i=0

α2
i

)1/2

, ∥f∥∞ = max
i∈{0,...,N−1}

{|αi|},

with αi ∈
{
− q−1

2 , . . . , q−1
2

}
. We define the norm of a vector f ∈ Rk

q to be the
largest norm of any of its elements, e.g., ∥f∥1 = max

i∈{1,...,k}
{∥fi∥1}. All vectors

are column vectors by default; thus, a row vector is written as the transpose
of a column vector. We use the standard definition of the discrete Gaussian
distribution Dv,σ̄ over the integer lattice Λ = Zk, with center v ∈ Rk and
standard deviation σ̄. If v = 0, we omit the first subscript.

Shamir secret sharing [Sha79] of elements in Rℓ
q can be done by indepen-

dently applying standard Shamir secret sharing (over the field Zq) to each of
the ℓ · q coefficients of the polynomials. We use {xi}i∈[n] ← Sharet,n(x) to de-
note t-out-of-n Shamir secret sharing of coefficients of an element x, and write
x := Rect,n({xi}i∈U ) for reconstruction (where U ⊆ [n] has size t).

2.1 Cryptographic Assumptions

We define the Ring Short Integer Solution [Mic02] and Ring Learning With
Errors [LPR10] problems as follows:

Definition 1 (R-SIS). The Ring Short Integer Solution problem R-SISk,N,q,β is
(t, ϵ)-hard if for any adversary A running in time at most t:

Pr

[
{ai}i∈[k] ← Rq;
{yi}i∈[k] ← A({ai})

:
0 < ∥y∥2 ≤ β ∧∑

i∈[k]

aiyi = 0 mod q

]
≤ ϵ.

Definition 2 (R-LWE). Let χ be a bounded distribution over Rq outputting el-
ement of maximum absolute norm β. The Ring Learning with Errors problem
R-LWEk,N,q,β is (t, ϵ)-hard if for any adversary A running in time at most t:∣∣Pr[{ai}i∈[k] ← Rq; s, {ei}i∈[k] ← χ : A({ai}, {ais+ ei}) = 1]

− Pr[{ai}i∈[k], {ui}i∈[k] ← Rq : A({ai}, {ui}) = 1]
∣∣ ≤ ϵ.

The above assumption also implies that distinguishing uniform u from ais+ pei
is also (t, ϵ)-hard if public p ∈ Zq is relatively prime to q [BGV12].
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2.2 Homomorphic Trapdoor Commitment Schemes

Let cpp denote fixed parameters implicit input to all algorithms. Following the
definition in [DOTT21], a trapdoor commitment scheme is a tuple of probabilistic
polynomial-time algorithms (CGen,Com,Open,TCGen,TCom,Eqv) where

– CGen outputs a commitment key ck.
– Com takes as input a message µ ∈ Rq, samples randomness ρ ∈ Sρ according

to distribution Dρ, and outputs a commitment com.
– Open takes as input a commitment com, message µ ∈ Rq, and randomness

ρ ∈ Sρ, and outputs 1 iff the opening is valid.
– TCGen outputs a trapdoor commitment key ck along with a trapdoor td.
– TCom takes as input a trapdoor td and outputs a commitment com.
– Eqv takes as input a trapdoor td, a commitment com, and a message µ, and

outputs randomness ρ ∈ Sρ.

The trapdoor commitment scheme is secure if it satisfies the following:

Correctness: The scheme is correct if for any µ ∈ Rq

Pr

[
ck← CGen;

ρ← Dρ; com← Com(µ; ρ)
: Open(com, µ, ρ) = 1

]
= 1.

Hiding: The scheme is (t, ϵ)-hiding if for any adversary A running in time at
most t:

Pr

[
ck← CGen; b← {0, 1}; ρ← Dρ;

(µ0, µ1)← A(cpp, ck); com← Com(µb; ρ)
: A(com) = b

]
≤ 1

2
+ ϵ.

Binding: The scheme is (t, ϵ)-binding if for any adversary A running in time
at most t:

Pr

 ck← CGen;
(com, µ0, ρ0, µ1, ρ1)← A(ck)

:
µ0 ̸= µ1

∧ Open(com, µ0, ρ0) = 1
∧ Open(com, µ1, ρ1) = 1

 ≤ ϵ.

Equivocality: The scheme is ϵ-equivocal if for any µ ∈ Rq, the statistical dif-
ference between the following distributions is at most ϵ:{

ck← CGen;
ρ← Dρ; com← Com(µ; ρ)

: (ck, µ, com, ρ)

}
{

(ck, td)← TCGen;
com← TCom(td); ρ← Eqv(td, com, µ)

: (ck, µ, com, ρ)

}
.

A trapdoor commitment scheme over polynomial rings can be constructed
based on R-SIS and R-LWE [DOTT21,GPV08,MP12].
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2.3 Non-Interactive Zero-Knowledge Proofs of Knowledge

We use standard definitions of non-interactive zero-knowledge proofs of knowl-
edge (NIZKPoKs). An NIZKPoK for an NP language L with associated relation
RL is a tuple of algorithms (Setup,SetupTD,Prove,Vrfy,Extract,Sim), where:

– Setup outputs a common reference string crs.
– SetupTD outputs a common reference string crs and a trapdoor td.
– Prove, on input crs and (x,w) ∈ RL, outputs a proof π.
– Vrfy, on input crs, x and π, outputs a result b ∈ {0, 1}.
– Extract, on input crs, td, x and π∗, outputs a witness w∗.
– Sim, on input crs, td and x, outputs a proof π∗.

A NIZKPoK is secure if the following properties hold:

Correctness: The scheme is correct if for all (x,w) ∈ RL we have

Pr

[
crs← Setup

π ← Prove(crs, x, w)
: Vrfy(crs, x, π) = 1

]
= 1.

Knowledge extraction: The scheme is (t, ϵ)-knowledge extractable if for all
malicious provers P∗ we have an extractor E that in time t can, except with
probability ϵ, extract a valid witness by running Extract:

Pr

 (crs, td)← SetupTD;
⊥ ≠ π∗ ← P∗(crs, x, w);

w∗ ← Extract(crs, td, x, π∗);
:
Vrfy(crs, x, π∗) = 1
∧ (x,w∗) ̸∈ RL

 ≤ ϵ.

Zero knowledge: The scheme is (t, ϵ)-(computational) zero-knowledge if there
exists a simulator Sim that in t time can simulate a proof by running Sim:

|Pr[crs← Setup;π ← Prove(crs, x, w) : A(crs, x, π) = 1]

− Pr[(crs, td)← SetupTD;π ← Sim(crs, td, x) : A(crs, x, π) = 1]| ≤ ϵ.

We will make use of the lattice-based zero-knowledge profs of linear re-
lations and shortness by Lyubashevsky et al. [BDL+18, BLNS21, LNP22] in
this paper, and, for concurrent security, we need zero-knowledge proofs with
straight-line extractability; this can be achieved using, e.g., the transform by
Katsumata [Kat21].

2.4 Threshold Signatures

A threshold signature scheme T S (adapting [Lin17, Section 4] and [DOTT21,
Definition 5]) consists of the following algorithms:

– KGenT S is an interactive protocol run by n users that takes as input n and
a threshold t. Each user either aborts or outputs a (common) public key pk,
(common) auxiliary data aux, and a secret key share ski.
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– SignT S is an interactive protocol run by a set U of t users. Each party begins
holding their secret key share, auxiliary data aux, and a message µ. Each
user either aborts or outputs a signature σ.

– VrfyT S takes as input the public key pk, a message µ, and a signature σ, and
outputs 1 iff the signature is valid.

Correctness is defined in the natural way. We can consider unforgeability
against either a passive (aka semi-honest) or an active (aka malicious) adversary.
In either case, we consider a static corruption model in which the adversary
A starts by corrupting a set C ⊂ [n] of up to t − 1 users. Let H = [n] \ C
denote the honest users. In the passive setting, the attacker is given the view of
the corrupted parties from the execution of the key-generation protocol; in the
malicious setting, the attacker runs an execution of the key-generation protocol
with the honest parties in which the corrupted parties can behave arbitrarily.
(Here and below, we assume a rushing adversary who can wait to receive honest
parties’ messages in any given round before sending any of the corrupted parties’
messages.) Following key generation, A can repeatedly make signing queries
in which it specifies a message µ and a set of t users U , and thereby initiate
an execution of the signing protocol with those users holding message µ. Let
CU = U ∩ C, and HU = U ∩ H. In the passive case, A is given the view of the
parties in CU ; in the malicious case, A runs an execution of the signing protocol
with the parties in HU in which parties in CU can behave arbitrarily.

At the end of the experiment, A outputs a message/signature pair (µ∗, σ∗).
The adversary succeeds if µ∗ was never used in one of A’s signing queries, and
σ∗ is a valid signature on µ∗ with respect to the common public key output by 2

the honest parties in the key-generation protocol. We let Advts-uf-cma
T S (A) denote

the probability with which adversary A succeeds when attacking T S.

3 Threshold Homomorphic Encryption

Our threshold signature scheme relies on an underlying threshold linearly homo-
morphic encryption scheme. We define the required security properties formally
and show how to instantiate a scheme based on BGV [BGV12]. We specialize
our definition for schemes with non-interactive decryption.

3.1 Definitions

A homomorphic encryption scheme E , given a set of possible circuits F , consists
of the following algorithms:

– KGenE is a probabilistic algorithm that outputs a public encryption key pkE
and a decryption key skE .

2 In particular, if all honest parties abort the key-generation protocol (in the malicious
setting) then there is no public key and, by definition, A cannot succeed.
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– Enc is a probabilistic algorithm that takes as input a public key pkE and a
plaintext ptx, and outputs a ciphertext ctx.

– Eval is a deterministic algorithm that takes as input a circuit F ∈ F and a
list of ciphertexts ctx1, . . . , ctxk, and outputs a ciphertext ctx∗.

– Dec is a deterministic algorithm that takes as input a decryption key skE
and a ciphertext ctx∗, and outputs a plaintext ptx.

Notationally, we allow algorithms to take as inputs a list of plaintexts, cipher-
texts, or keys to denote that they are applied on each input individually. Correct-
ness and ciphertext indistinguishability (i.e., IND-CPA security) are standard,
and thus we omit the definitions here.

We now extend the above to accommodate E with distributed key generation
and (non-interactive) threshold decryption:

– DKGen is an interactive protocol run by n users, on common input a thresh-
old t. Either all honest users output ⊥, or they each output a decryption key
share ski and a (common) public key pkE .

– TDec is a probabilistic algorithm that takes as input a set U consisting of
t users, a decryption key share ski, and a ciphertext ctx∗, and outputs a
partial decryption share dsi.

– Comb is a deterministic algorithm that takes as input a set U consisting of t
users, a ciphertext ctx∗, and a set of decryption shares {dsi}i∈U , and outputs
a plaintext ptx.

We define security in the threshold setting as follows:

Indistinguishability. E is (t, ϵ)-threshold indistinguishable if the probability of
any adversary A running in time t succeeding in experiment ExpIND-CPA

E (A)
as depicted in Figure 1 is at most 1/2 + ϵ.

ExpIND-CPA
E (A)

1. A outputs a set of corrupted users C of size at most t−1. LetH := [n]\C.
2. A (controlling parties in C) runs DKGen with the parties in H. The view

of the honest parties defines a public key pkE as well as keys {ski}i∈H.
3. At any time during the experiment, A may make a “threshold decryp-

tion query” of the form (U , {ptxj , ρj}, F ∈ F), answered as follows:
– Compute ciphertexts ctxj := Enc(pkE , ptxj ; ρj) for all j.
– Evaluate the function F on {ctxj} to get ciphertext ctx∗.
– Let HU := H ∩ U . For i ∈ HU , compute dsi ← TDec(U , ski, ctx∗).
– Return decryption shares {dsi}i∈HU to A.

4. At some point, A outputs plaintexts ptx0 and ptx1. Sample b← {0, 1},
compute ctxb := Enc(pkE , ptxb), and give ctxb to A.

5. A outputs a bit b′ and succeeds if b = b′.

Fig. 1. Experiment ExpIND-CPA
E (A) implicitly parameterized by t and n.
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3.2 The BGV Encryption Scheme

Our threshold scheme is based on the BGV encryption scheme [BGV12], which
we review now. Let p ≪ q be prime, let Rq and Rp be as in Section 2 (for the
same dimension N), and let DKGen and DEnc be distributions over Rq such that
elements in their support have ℓ∞-norm bounded by BKGen and BEnc, respec-
tively. The BGV encryption scheme consists of the following algorithms:

– KGenBGV: Sample a uniform element aE ∈ Rq along with s, e ← DKGen, and
output public key pkE := (aE , bE) = (aE , aEs+ pe) and secret key skE := s.

– EncBGV: On input pkE and message ptx := m ∈ Rp, sample r, e′, e′′ ← DEnc

and output ciphertext ctx := (u, v) = (aEr + pe′, bEr + pe′′ +m).
– DecBGV: On input the secret key skE and ciphertext ctx, output the plaintext

message ptx := m = (v − su mod q) mod p.

Correctness and IND-CPA security follows from [BGV12,LPR13]:

Lemma 1 (Security). Let BDec = 2pBKGenBEnc + pBEnc be such that BDec <
⌊q/2⌋. Let (pkE , skE) be any key pair output from KGenBGV and let (u, v) be any
ciphertext output from EncBGV on input pkE and any message m. Then the BGV
encryption scheme is perfectly correct, that is, m = DecBGV(skE , (u, v)). Further-
more, it is IND-CPA secure if R-LWEN,q,BKGen

and R-LWEN,q,BDec
are hard.

3.3 Distributed Key Generation for BGV

We propose a t-out-of-n distributed key-generation protocol for the BGV en-
cryption scheme. For simplicity, we first describe a semi-honest version of the
protocol, and then discuss how to add appropriate zero-knowledge proofs to
ensure security against active adversaries.

In what follows, let χtern be the distribution over Rq where each coefficient a
is sampled independently from {−1, 0, 1} with Pr[a = 0] = 1/2 and Pr[a = 1] =
Pr[a = −1] = 1/4. We assume all parties Pi agree on a uniform ring element aE
which could be taken to be the output of a random oracle on some session ID
or nonce. The semi-honest key-generation protocol proceeds as follows:

1. Pi samples si, ei ← χtern, and computes bi := aEsi + pei. It then broadcasts
bi to all other parties.

2. Pi generates t-out-of-n Shamir secret shares {si,j}j∈[n] of si, and sends si,j
to Pj over a private channel as [si,j ].

3. Pi computes bE :=
∑

bj and outputs pk = (aE , bE) and ski =
∑

j sj,i.

If we let DKGen be the distribution over Rq obtained by summing n independent
samples from χtern, it is clear that the above generates BGV encryption keys
according to the distribution DKGen.

For security against a malicious adversary, we use a commit-and-open ap-
proach so corrupted parties cannot choose their contributions based on honest
parties’ contributions, and add ZK proofs of correctness. Let H : {0, 1}∗ →
{0, 1}ℓ be a hash function. The modified protocol proceeds as follows:
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1. Pi samples si, ei ← χtern, computes bi := aEsi + pei, and then computes
hi := H(i, bi). It broadcasts hi.

2. Pi broadcasts bi, generates t-out-of-n Shamir secret shares {si,j}j∈[n] (resp.,
{ei,j}j∈[n]) of si (resp., ei), and sets bi,j := aEsi,j + pei,j for j ∈ [n].

3. Pi samples a commitment randomness ρi,j ∈ Sρ and commits to si,j as
comi,j := Com(si,j ; ρi,j). It broadcasts {bi,j , comi,j}j∈[n] and sends to Pj

(over a private channel) the values [si,j , ei,j , ρi,j ]. Pi also gives an NIZK
proof of knowledge of values si, ei, {si,j , ei,j}j∈[n] such that (1) si, ei are
in the support of χtern, (2) the {si,j}j∈[n] (resp., {ei,j}j∈[n]) are a correct
t-out-of-n secret sharing of si (resp., ei), and (3) the broadcasted values are
consistent with a correct execution using si, ei, {si,j , ei,j}j∈[n] (see Section 6
details on the proofs).

4. Pi checks that the following hold for all j ̸= i (and aborts if not): (1) hj =
H(j, bj); (2) comj,i has a correct opening with respect to sj,i and ρi,j (3) the
NIZK proof given by Pj verifies; and (4) the {bj,k}k∈[n] are a correct secret
sharing of a value bj , and locally check the same for the sharings of sj and ej .
If not, Pi broadcasts abort and aborts. (All parties abort if any party broad-
casts abort.) Assuming that no party aborted, then Pi computes bE :=

∑
j bj ,

ski :=
∑

j sj,i, and ρi =
∑

j ρj,i. Pi then computes the public commitments

comj :=
∑

k∈[n] comj,k.
3 The final public key is pkE := (aE , bE , {comj}j∈n)

and secret key is then sk′i = (ski, ρi).

We remark that this protocol leads to the following equation for the dis-
tributed secret key:

∑
j∈U λjskj = sk, for Lagrange coefficients λj .

Remark 1. We note that while the adversary can bias the distribution of the
final key, the zero-knowledge proofs ensures that the noise values are properly
bounded, and the honest parties ensures that the final key pair has appropriately
entropy for a secure scheme.

3.4 Threshold Decryption for BGV

We now describe how threshold decryption is done. We begin by considering
the semi-honest setting, and then define appropriate zero-knowledge proofs to
defend against malicious behavior. For statistical security parameter sec and
noise bound BDec described in Section 3.2, we have:

TDec: On input a set of users U of size t, decryption key share ski, and ciphertext
ctx = (u, v), let λi be the Lagrange coefficient for party i with respect to
U . Sample noise Ei ← DTDec such that ∥Ei∥∞ ≤ BTDec = 2secBDec/tp and
output decryption share dsi := λiskiu+ pEi.

Comb: On input a ciphertext ctx = (u, v) and partial decryption shares {dsj}j∈U ,
output plaintext message ptx := (v −

∑
j∈U dj) mod q mod p.

3 By the homomorphic properties of the underlying commitment scheme these are
indeed commitments to sum of sj,k under the randomness of sum of ρj,k.
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DKGen(aE , t, n)

si, ei ← χtern, bi := aEsi + pei, hi := H(i, bi)

hi

{hj}j ̸=i

{si,j}j∈[n] ← Sharet,n(si), {ei,j}j∈[n] ← Sharet,n(ei)

∀j ∈ [n] : bi,j := aEsi,j + pei,j

∀j ∈ [n] : ρi,j ← Sρ, comi,j := Com(si,j ; ρi,j)

Compute NIZK πi of shortness and linear relations

bi, {bi,j , comi,j}j∈[n], πi, [si,j , ei,j , ρi,j ]j∈[n]

{
bj , {bj,k, comj,k}k∈[n], πj , [sj,i, ej,i, ρj,i]

}
j ̸=i

if any hj ̸= H(j, bj) : abort (j)

if any πj is invalid : abort (j)

if any 0 = Open(comj,i, sj,i, ρj,i) : abort (j)

bE :=
∑

j bj , ski :=
∑

j sj,i, ρi =
∑

j ρj,i

∀j ∈ [n] : comj :=
∑
k∈[n]

comj,k

return pkE := (aE , bE , {comj}j∈[n]), sk′i := (ski, ρi)

Fig. 2. Actively secure key-generation protocol, from the point of view of Pi. The
elements in square brackets with subscript j are sent to Pj over a private channel.

Let BDec + tpBTDec < ⌊q/2⌋. To show correctness, we note that

v −
∑
j∈U

dj = v −
∑
j∈U

(λjskju+ pEj) = v − sku− p
∑
j∈U

Ej .

Then, from the definition of the encryption algorithm and Lemma 1 we know
that ∥v − sku∥∞ ≤ BDec, and from the definition of the threshold decryption
algorithm we have that ∥Ei∥∞ ≤ BTDec. It follows that the total amount of
noise is bounded by ⌊q/2⌋, and the scheme is perfectly correct.

The threshold decryption includes the following and is depicted in Figure 3:

1. TDec produces a proof πds,i to show that partial decryption di is computed
correctly (see Section 6). dsi now also includes πds,i.

2. During Comb upon receiving dsj , it first verifies each proof πds,j and aborts
with output j if any of them fails. Otherwise, it outputs ptx as above.

3.5 Threshold Security

We now prove that the protocol is secure against an active adversary A corrupt-
ing at most t − 1 parties. We remark that we do not detail the running time
of the adversary here and the rest of the paper, but it is straightforward to see
that is tight with respect to the underlying assumptions.
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TDec(ctx∗ = (u, v), ski = (ski, ρi),U)

if ctx∗ = ⊥ : return ⊥
mi := λiskiu, Ei ← DTDec, di := mi + pEi

Compute NIZK πds,i of boundedness and linear relations

return dsi := (di, πds,i)

Comb(ctx∗, {dsj = (dj , πds,j)}j∈U )

if any πds,j is invalid : abort (j)

ptx := v −
∑
j∈U

dj mod p

return ptx

Fig. 3. Threshold decryption and share combination algorithms.

Theorem 1 (Indistinguishability). Let the R-LWEN,q,Btern and R-LWEN,q,BTDec

be ϵR-LWE- and ϵ′R-LWE-hard. We model the hash function H as a random oracle
and let QH be the number of queries made to H. Let the proof system Πx for
the relation Rx be (ϵZK,x, ϵextract,x)-secure and Com be ϵhiding secure. Let QTDec

be number of threshold decryption queries made. Finally, let the BGV scheme be
perfectly correct and ϵBGV-IND-CPA secure with respect to (N, q,BKGen, BDec).
Then, for any adversary A corrupting up to t− 1 parties:

ϵIND-CPA := AdvIND-CPA
E (A) ≤ |H| · (ϵZK,sk + |H| · ϵhiding) + |C| · ϵextract + ϵR-LWE

+
QH

2ℓ
+QTDec · (|HU | · (ϵ′R-LWE + ϵZK,ds)) + ϵBGV.

Proof. We prove security through a series of experiments:

Experiment G0. The first experiment corresponds to the threshold ciphertext
indistinguishability experiment shown in Figure 1.

Experiment G1. We change how proofs during partial decryption are com-
puted for honest parties j ∈ HU . The proofs πds,j are now computed by the
simulator Simds of Πds. The rest of the experiment remains the same. G1 is
indistinguishable from G0 by the zero-knowledge property of Πds and the distin-
guishing advantage of A per partial decryption query is |HU | · ϵZK,ds ≤ t · ϵZK,ds
by a hybrid argument.

Experiment G2. During DKGen, we use the knowledge extractor to obtain
{sk,j}j∈[n] for each corrupted party Pk. (We abort the experiment if such ex-
traction fails.) Then derive skk for k ∈ C. The rest of the experiment remains
the same. G2 is then indistinguishable from G1 by the knowledge extraction
property of Πsk. The distinguishing advantage of A is the cumulative bound on
independent extraction failure properties, which is |C| · ϵextract,sk.
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Experiment G3. We replace how partial decryptions are computed for one of
the honest parties. Let m = ptx be the message in a decryption query, and let
(u, v) be the (honestly generated) encryption of m. Fix an index i ∈ HU and
compute dj for j ̸= i ∈ HU as in the previous experiment. Then set the ith
partial decryption share equal to d′i := v −m−

∑
j∈U,j ̸=i λjuskj + pE′

i mod q.
The rest of the experiment is the same.

In G2 the partial decryption share di is computed as di := λiuski + pEi,
whereas here

d′i = v −m−
∑

j∈U,j ̸=i

λjuskj + pE′
i = v −m− (usk− λiuski) + pE′

i

= v − usk−m+ λiuski + pE′
i.

The statistical distance between di and d′i is thus the distance between pEi and
v − usk −m + pE′

i. First note that, Ei and E′
i are bounded uniforms from the

same distribution, and ∥v − usk∥∞ ≤ BDec and ∥m∥∞ ≤ p. We also can rewrite
v−usk−m+pE′

i as p((v−usk−m)/p+E′
i). The distinguishing probability between

two distributions using a statistical argument is then how well the distribution
of Ei and E′

i “smudges” the difference term (v − usk−m)/p:

∥(v − usk−m)/p∥∞
∥E′

i∥∞
≤ (BDec + p)/p

(2secBDec/tp)
≈ t · 2−sec.

G2 and G3 are thus statistically indistinguishable.

Experiment G4. We replace the rest of the honest shares, i.e., all but the
special party i. Instead of honestly computing dj for j ∈ HU , j ̸= i, the sim-
ulator samples a uniform dj ∈ Rq. In addition, d′i is now replaced with as
d′′i := v − m −

∑
j∈CU

λjuskj −
∑

j∈HU ,j ̸=i dj mod p + pE′
i mod q. The rest

is the same as G3. We need to show both d′′i and {dj}j∈HU ,j ̸=i are indistin-
guishable from their counterparts in G3. We first show the former assuming
the latter. In G3, d

′
i is computed as v − m −

∑
j∈U,j ̸=i λjuskj + pE′

i whereas
d′′i = v−m−

∑
j∈CU

λjuskj−
∑

j∈HU ,j ̸=i dj mod p+pE′
i mod q. If {dj}j∈HU ,j ̸=i

sampled uniformly is indistinguishable from {dj}j∈HU ,j ̸=i computed as dj =
λjuskj + pEj , then the distributions of

∑
j∈HU ,j ̸=i dj mod p are indistinguish-

able from
∑

j∈HU ,j ̸=i λjuskj mod p since dj mod p = λjuskj + pEj mod p =
λjuskj mod p. Then if

∑
j∈HU ,j ̸=i dj mod p and

∑
j∈HU ,j ̸=i uskj are indistin-

guishable, so are d′i and d′′i .
All it remains to show that λjuskj + pEj is indistinguishable from uniform.

Since λj are invertible in Zq, if we can argue λas+pe ≈ as+λ−1pe = as+p′e ≈
as+e for uniform a and s, invertible p′, and relatively short e then we can argue
λas+ pe is indistinguishable from uniform.

We first argue that A distinguishing uskj + λ−1
j pEj from uniform dj can be

used to break R-LWE: The R-LWE distinguisher interacts with A and uses its
replies in G4 to answer R-LWE challenges. The distinguisher obtains an R-LWE
challenge (ai, ui), for each partial decryption query and sets partial ciphertext
u = ai and partial decryption share dj = ui. During each query, if A behaves
noticeably different than G3, the R-LWE distinguisher replies that ui is uniform.
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Since λj is invertible and p is a prime, λ−1
j exists and λ−1p is relatively

prime with q. Hence, if u is an R-LWE instance, then there is no reason for
the adversary to behave different than G3 since aiskj + ei is indistinguishable

from aiskj + λ−1
j pei for λ

−1
j p relatively prime with q [BGV12]. If ui is uniform,

any significant advantage A has is R-LWE distinguisher advantage. Hence we
conclude uskj + λ−1

j pEj is indistinguishable from uniform dj .

If uskj+λ−1
j pEj is indistinguishable from uniform dj then λj(uskj+λ−1

j pEj) =
λjuskj + pEj is indistinguishable from λjdj . Since dj is uniform in Rq, so is
λjdj . Thus we conclude that λjuskj + pEj is indistinguishable from uniform dj
by R-LWEN,q,BTDec

assumption.

Experiment G5. Now that partial decryption does not rely on skE , we start to
modify DKGen. Here we modify G4 by simulating πi sent during key generation
for all honest parties. It follows immediately from the zero-knowledge property
of the proof system that G4 and G5 are indistinguishable.

Experiment G6. For all honest parties, we now replace the unopened commit-
ments to {si,j}. After deriving bE , each honest party commits to a random ring
element instead. Since the commitments for the shares between honest parties
are not opened, G6 is indistinguishable from G5 as long as the hiding property
of the underlying commitment holds.

Experiment G7. For i we now replace the public key share bi. Sample a random
bi and t-out-of-n secret share it into {bi,j}j∈[n]. Then derive si,j ,ei.j from bi,j .
The rest of the experiment remains the same.

We again show that A distinguishing between G6 and G7 can be used to
break R-LWE assumption. We initiate the challenger for R-LWEN,q,Btern with aE
being the uniform element. We then forward the answer of the challenger as bi.
If the A behaves significantly differently than G5 we reply the challenger as the
sample being uniform.

We have that bi = aEsi + pei is an R-LWE sample, hence if the challenger
returns an R-LWE sample, A has no reason to behave differently. If the chal-
lenger returns a uniform sample, however, any non-negligible advantage A has
is non-negligible advantage in answering challenger’s queries since any behav-
ioral difference is forwarded directly. Since bi is t-out-of-n secret shared, each
bi,j is uniform in Rq. This is statistically indistinguishable from the real execu-
tion where si and ei are t-out-of-n shared therefore si,j , ei,j and consequently
bi = aEsi+pei is uniform in Rq. G6 is then indistinguishable from G5 by R-LWE
assumption and A’s distinguishing advantage can be bounded by ϵR-LWE.

Experiment G8. We now derive bi a posteriori. Before step 1 of DKGen, B
receives a BGV key pair (aE , bE). In step 1 samples a random hi ← {0, 1}ℓ. After
receiving hk for k ∈ C from A finds bk such that hk = H(k, bk). Then derive
bi := bE −

∑
j ̸=i∈[n]

bj and program H such that H(i, bi) = hbi . If programming

fails, abort. The rest of the experiment is the same as before.
The distribution of hi is statistically indistinguishable from the output of H

by the random oracle model. By the R-LWE assumption, bE is indistinguishable
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from uniform. Then,G6 andG7 are indistinguishable as long as the programming
does not fail. The advantage ofA is the probability of programming failing, which
by a standard argument can be bounded by QDKGen

2ℓ
.

We now show that if A wins G8, then A can be used to break the IND-CPA
security of BGV scheme. B interacts with the challenger to IND-CPA security of
BGV and obtains aE , bE which then are used during DKGen. Whenever A sends
the challenge plaintexts ptx0 and ptx1 B forwards them to the BGV challenger
and obtains the ciphertext ctx∗. B sends ctx∗ along with its simulated proof to
A. When A replies with 0 or 1, B forwards the response to BGV challenger.

The public key A generates as part of DKGen contains the same (aE , bE) as
B received from the BGV oracle as a challenge. Hence ctx∗ received by B and
consequently A is a BGV ciphertext encrypted under aE , bE which indistinguish-
able from ctx derived as part of the protocol execution. Then, a correct answer
given by A is also a correct answer for B for the encryption oracle.

This concludes the proof. ⊓⊔

4 Passively Secure t-out-of-n Threshold Signatures

We give a passively secure version of our t-out-of-n threshold signature proto-
col T S. For brevity, we omit the exact bounds and parameters as this section
serves mainly as a warm-up. Let E = (DKGen,Enc,Eval,Dec,TDec,Comb) be a
threshold (linearly) homomorphic encryption scheme.

4.1 Dilithium without Aborts

We use a ring version of Dilithium without rejection sampling as the underlying
signature scheme, extending [ASY22]. The underlying signature scheme is also
similar to Raccoon [dPEK+23] (which was developed in concurrent work). We
define the challenge set Cν = {c ∈ Rq : ∥c∥∞ = 1, ∥c∥1 = ν} ⊂ Rq to be the set
of polynomials with coefficients in {−1, 0, 1} and exactly ν non-zero coefficients.
We also let C̄ν = {c− c′ : c, c′ ∈ Cν , c ̸= c′}.

KGenL Samples a uniform a ∈ Rq , then set a :=
[
a 1
]
. Samples bounded

uniform short secret key s1, s2 with ∥s1∥∞ = ∥s2∥∞ ≤ η then set s :=[
s1 s2

]
. Finally, computes y := ⟨a, s⟩ and outputs sk = s and pk = (a, y).

SignL Takes as input (sk, pk, µ), samples r1, r2 ← Dσ from a Gaussian distribu-
tion with standard deviation σ, and set r :=

[
r1 r2

]
. Computes w := ⟨a, r⟩,

derive challenge c := H(w, pk, µ) ∈ Cν , and outputs signature (c, z := cs+r).
VrfyL Takes as input (pk, (z, c), µ) and checks that ∥z∥2 ≤ B and c = H0(⟨a, z⟩−

cy, pk, µ) and then outputs 1, otherwise outputs 0.

Agrawal et al. [ASY22, Section 4] prove the correctness and security of this
scheme:

Lemma 2. Let γ = λ + (N log2 q)/(log2(2η + 1)), and furthermore set β =
2B + 2 · η · ν · √γ and σ ≥ ν · η ·

√
γ ·Q, where Q is the maximum number
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KGenT S(crs = (aT S , aE), t, n)

DKGen(crs = aE , t, n)

return pkE , ski

si,1, si,2 ← D, si :=
[
si,1 si,2

]
yi := ⟨aT S , si⟩, ctxs,i ← Enc(pkE , si)

yi, ctxs,i

{(yj , ctxs,j)}j ̸=i

y :=
∑
j∈[n]

yj , ctxs :=
∑
j∈[n]

ctxs,j

return pkT S := (aT S , y), ski, auxT S := (pkE , ctxs)

Fig. 4. Passively secure key-generation protocol for signer Si.

of signing queries an adversary can make, and let H be modeled as a random
oracle. If the R-SISN,q,β problem is hard, then the signature scheme above is
uf-cma-secure.

4.2 Threshold Key Generation and Signing Protocols

We describe the underlying protocols of T S from the viewpoint of a single
signer Si with i ∈ [n] (for DKGen) and i ∈ U ⊂ [n], |U| = t (for Sign). We once
again assume access to a crs consisting of a uniform ring element aT S ∈ Rq. The
key generation protocol is depicted in Figure 4.

The key generation KGenT S goes as follows:

1. The parties begin by invoking the passively secure distributed key genera-
tion protocol DKGen of the underlying threshold homomorphic encryption
scheme with inputs t,n for all circuits consisting of one multiplication with
an element from Cν and t additions and all circuits consisting of n additions.
Si learns the public encryption key pkE and its decryption key share ski.

2. The parties are given aT S =
[
aT S 1

]
as the common reference string. Then

Si samples short si,1, si,2 and sets si =
[
si,1 si,2

]
and yi := ⟨aT S , si⟩. It

computes the ciphertext ctxs,i := Enc(pkE , si) and broadcasts it with yi.
3. The parties compute ctx :=

∑
ctxs,j = Enc(pkE , s) and y :=

∑
yj = ⟨aT S , s⟩,

where s =
∑

sj , and define the public verification key to be pkT S :=
(aT S , y). The secret key of Si consists of its decryption key share ski, and
the auxiliary information aux := (pkE , ctxs). The signing share si is deleted.

The signing protocol depicted in Figure 5 SignT S goes as follows:
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SignT S(ski, auxT S ,U , µ)

ri,1 ri,2 ← Dr, ri :=
[
ri,1 ri,2

]
wi := ⟨aT S , ri⟩, ctxr,i := Enc(pkE , ri)

wi, ctxr,i

{(wj , ctxr,j)}j∈U\{i}

w :=
∑
j∈U

wj , c := H(w, pkT S , µ)

ctxz := c · ctxs +
∑
j∈U

ctxr,j

dsi := TDec(ctxz, ski,U)

dsi

{dsj}j∈U\{i}

z := Comb(ctxz, {dsj}j∈U )

return σ := (c,z)

Fig. 5. Passively secure t-out-of-n threshold signing protocol for signer Si.

1. To sign a message µ, party Si first samples short ring elements ri,1,ri,2 and
defines vector ri :=

[
ri,1 ri,2

]
. Signer Si then computes wi := ⟨aT S , ri⟩ and

generates the ciphertext ctxr,i := Enc(pkE , ri) and broadcasts that cipher-
text and wi to the other signers in U .

2. The signers compute w :=
∑

j∈U wj and c := H(w, pkT S , µ) ∈ Cν , followed
by the ciphertext ctxz := c · ctxs +

∑
j∈U ctxr,j . Party Si then computes a

decryption share dsi := TDec(ski, ctxz,U) and sends it to the other signers.
The signers decrypt ctxz to obtain z, and output the signature (c, z).

VrfyT S : A signature (c, z) on a message µ is valid with respect to the public
key pkT S = (aT S , y) if (1) z is short and (2) H(⟨aT S , z⟩ − cy, pkT S , µ) = c.

For a signature (c, z) output by the signing protocol on a message µ and a set
of users |U| ≥ t, we have z = c · s+

∑
j∈U rj by the linearity of the encryption

scheme (assuming parameters are set so that decryption errors never occurs).
Since c ∈ Cν and s, {rj} are short, then z is short as well. Moreover, we have

⟨aT S , z⟩ − cy = c⟨aT S , s⟩+ ⟨aT S ,
∑
j∈U

rj⟩ − c⟨aT S , s⟩ = w;

thus, H(⟨aT S , z⟩ − cy, pkT S , µ) = H(w, pkT S , µ) = c and verification succeeds.
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4.3 Proof of Security

Theorem 2 (Informal). The threshold signature scheme T S is threshold ex-
istentially unforgeable under chosen message attacks (ts-uf-cma) in the random
oracle model (ROM) if the underlying signature scheme is existentially unforge-
able under chosen message attacks in the ROM, the threshold homomorphic en-
cryption scheme E is indistinguishable, and the LWE assumption is secure.

We prove the security of the scheme via a sequence of hybrid experiments.
Starting from the threshold unforgeability experiment, we gradually define a
simulator B interacting with the passive adversary A. B has access to a chal-
lenger D to the unforgeability of Dilithium scheme without aborts as described
in Section 4.1 and can query the challenger for a signature σ = (c, z) on input
of a message µ or the public key pkT S = (aT S , y). We show that if A can forge
a signature, it can be used by B as an answer to D.

G0. The first experiment corresponds to a passive adversary A corrupting par-
ties in C ⊂ [n] such that |C| < t and attacking the threshold signature scheme
T S in the real world. Consider the view of A during this experiment. During
key generation, A’s view is generated as follows:

1. DKGen is run with t, n, d, and A is given the collective view viewC of the
parties in C that, in particular, includes a public key pkE and key shares
{skj}j∈C . This process defines secret key shares {skj}j∈H (not given to A).

2. For j ∈ [n], sample sj,1, sj,2 ← D and compute sj := [sj,1 sj2 ], yj :=
⟨aT S , sj⟩, and ctxs,j := Enc(pkE , sj); give {sj}j∈C , {(yj , ctxs,j)}j∈H to A.
Set y :=

∑
j∈[n] yi and ctxs :=

∑
j∈[n] ctxs,j .

A repeatedly invokes the signing protocol (possibly concurrently) by speci-
fying a message µ and a set of parties U . Whenever A queries the random oracle
on (w, pkT S , µ) then B forwards the query to D, records the response in a table
HT , and forwards the response to A. Letting HU = U ∩H and CU = U ∩ C, the
view of A is generated as follows:

1. For j ∈ U , sample rj,1, rj2 ← Dr and compute rj := [rj,1 rj,2], wj :=
⟨aT S , rj⟩ and ctxr,j := Enc(pkE , rj). A gets {rj}j∈CU and {(wj , ctxr,j)}j∈U .
Set w :=

∑
j∈U wj , c := H(w, pkT S , µ), and compute ctxz := c · ctxs +∑

j∈U ctxr,j .

2. For j ∈ U , set dsj := TDec(skj , ctxz,U) and give {dsj}j∈U to A.

At the end of the experiment, A outputs a message/signature pair (µ∗, σ∗ :=
(c∗, z∗)). If µ∗ was never previously queried and the signature is valid with
respect to y, then A succeeds. We have that

Pr[G0] = Advts-uf-cma
T S (A).
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G1: This experiment is identical toG1 except how the ciphertexts are computed.
Note that the decryption procedure is independent of the encrypted randomness
ri. During key generation, B computes ctxs,i := Enc(pkE , 0) for i ∈ H, and in
step 1 of SignT S B computes ctxr,i := Enc(pkE , 0) for i ∈ HU . The rest of the
execution is the same as G1.

If A can distinguish between G0 and G1, then it is possible to use A to
break indistinguishability of E . When interacting with the challenger to IND-
CPA of E , B submits (0, s, i) for i ∈ H during key generation and (0, ri) for
i ∈ HU during signing to the challenger to obtain ctxs,i and ctxr,i respectively.
If A behaves noticeably different in any of these stages, B forwards 0 to the
challenger, indicating the plaintext was 0.

If the IND-CPA challenger has originally given ciphertexts corresponding to
si and ri to B, then G1 is exactly the same as G0, therefore there is no reason
for A to have noticeable behavior difference. If the challenger has encrypted 0
at one stage however, B can use A to have noticeable advantage in IND-CPA
game of E . Note that this is possible since the views given to A are generated by
B therefore B knows plaintext corresponding to each partial decryption query.
Thus we conclude that G0 and G1 are indistinguishable as long as IND-CPA
security of E holds:

|Pr[G1]− Pr[G0]| ≤ ϵIND-CPA.

G2: In this experiment, B removes the dependence on the signing key s.

B first changes the key generation step for one honest party. At the start
of key generation, B receives the public key from D where D is initialized with
the parameters for the combined signature (we detail these in the active version
of the proof). Let i be some index in H and HU . During step 2, everything is
computed in the same was as in G2 except for yi where si,1 and si,2 are never
sampled and yi := y −

∑
j∈[n],j ̸=i yj .

Whenever µ is to be signed, B queries D to obtain a signature (c, z). During
the first step of signing for j ∈ CU , sample rj,1, rj,2 ← Dr and set rj := [rj,1 rj,2]
and wi := ⟨aT S , rj⟩ as before. Letting i denote some index in HU , sample
wj ← Rq uniformly for j ∈ HU \ {i}, and set wi := w−

∑
j∈U\{i} wj , where w is

computed from (c, z) as w := ⟨aT S , z⟩− cy. B encrypts the received z to obtain
ctxz = Enc(pkE , z). The rest of the experiment is as before.

D is initialized with the parameters for the combined signature. Hence,
y = ⟨aT S , s

′⟩ for an unknown s′ with ∥s′∥ ≤ tB. Consequently yi := y −∑
j∈[n]\{i} yj = ⟨aT S , s

′
i⟩ by the linearity of the operations for an unknown

s′i with ∥s′i∥ ≤ B, which is the same distribution for the honest si.

w is obtained fromD, which is ar′1+r′2 for unknown r′1, r
′
2 and hence an R-LWE

sample from combined parameters. Since {wj}j∈CU are computed according to
the protocol, then {wj}j∈HU is computationally indistinguishable from uniform
by the same R-LWE assumption. If A can distinguish between G2 and G3 then
since aT S , y, yi are distributed in the same way as in G2, A can also distinguish
{wi}i∈HU in games G1 and G2.

21



If A can distinguish wi then it can be used to solve R-LWE. After B initializes
the challenger for R-LWE for parameters of combined r, B computes wj for
j ̸= i ∈ U according to the protocol and derives wi := w −

∑
j∈U\{i} and sends

{wj}j∈U to A. If A acts with noticeable difference, B answer the challenger that
u was uniform.

If the challenger returned an R-LWE sample for u, the derived wi will have
the same distribution as an honestly computed wi in G2 therefore there is no
reason for A to have a noticeable behavior difference. If the challenger sent a
uniform u however, wi should be computationally indistinguishable from uniform
by R-LWE assumption hence if A can act with noticeable difference then R-LWE
assumption should not hold and B can answer challenger’s query with noticeable
advantage using A. Thus we conclude that G1 and G2 are indistinguishable as
long as R-LWE holds:

|Pr[G2]− Pr[G1]| ≤ ϵR-LWE +
QH

2ℓ
.

We remark that the combined signature in G2 now has the same distribution
for (aT S , y, c, z) as the underlying signature for combined parameters, since
(aT S , y, c, z) are received from D. If A is able to produce a forgery (µ∗, σ∗)
now, this forgery is also against the underlying signature scheme, and hence,
the adversary can be used to break the uf-cma security. Whenever A submits a
forgery (µ∗, σ∗), B can submit the said forgery to D, which would have noticeable
probability of winning as long as A has noticeable advantage. Thus we have:

Pr[G2] = Advuf-cma(A).

This concludes the proof. ⊓⊔
Since we remove the reliance on aborts, each signature may leak information

about the secret key as discussed by Lyubashevsky [Lyu12]. Exact parameters
rely on either limiting the number of signatures issued or on noise drowning.
Parameters for active security are analyzed in detail in Section 7.

The actively secure version of our protocol is more involved since we assume
a rushing and active adversary, and hence, we need parties to commit to specific
values, provide zero-knowledge proofs, and conduct consistency checks to ensure
the privacy and correctness of the protocol.

5 Actively Secure t-out-of-n Threshold Signatures

We now describe our main contribution: an actively secure threshold signature
scheme, constructed by bootstrapping the passively secure protocol described in
Section 4. The key generation and signing protocols are depicted in Figure 6 and
Figure 7, respectively. We extend the previous section by giving concrete bounds
and dimensions for the protocol, discussing the communication efficiency in each
round, and giving a detailed security proof.

We start by modifying the underlying signature protocol. Instead of using w
directly as part of the oracle input for challenge derivation, we use a commitment
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com to w instead. This is the same approach taken by Damg̊ard et al. [DOTT21]
on Dilithium-G [DKL+18] and does not have any important security implications
on the signatures as long as the underlying commitment scheme is secure.

5.1 Key Generation and Signing Protocols

We retain our notation and viewpoint from the passive protocol and introduce
homomorphic commitments and non-interactive zero-knowledge proofs. Note
that we change the signatures so that the challenge is computed as the hash
of the sum of commitments to the values wj instead of the values themselves,
and openings are published afterward as a part of the signature.

KGenT S(crs = (aT S , aE), t, n)

DKGen(crs = aE , t, n)

return ski = skE,i, pkE , auxE

si,1, si,2 ← Ds, si := [si,1 si,2]

yi = ⟨aT S , si⟩, hy,i := H0(i, yi)

hy,i

{hy,j}j ̸=i

ctxs,i := Enc(pkE , si)

Compute NIZK πs,i of ctxs,i (yi, ctxs,i, πs,i)

{(yj , ctxs,j , πs,j)}j ̸=i

if any hy,j ̸= H0(j, yj) : abort (j)

if any πs,j is invalid : abort (j)

y :=
∑
j∈[n]

yj , ctxs :=
∑
j∈[n]

ctxs,j

return pkT S := (aT S , y), ski,

and auxT S := (auxE , pkE , ctxs)

Fig. 6. Actively secure key generation protocol for signer Si.

KGenT S works as follows:
1. Si starts by invoking the distributed key generation DKGen of the un-

derlying encryption scheme E with inputs t and n as in the passive case
and obtains the public encryption key pkE , its threshold decryption key
share ski and any auxiliary information auxE associated with E .
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2. Si then samples short signing key si,1, si,2 sets si := [si,1 si,2], yi :=
⟨aT S , si⟩, hash hy,i := H0(i, yi) as a commitment to yi, and broad-
casts hy,i. Upon receiving hy,j for all j ̸= i, Si encrypts si as ctxs,i :=
Enc(pkE , si) and computes a NIZK proof πs,i to prove that the correct si
was used for yi and ctxs,i (see Section 6), then broadcasts (yi, ctxs,i, πs,i).

3. Finally, upon receiving ctxs,j , πs,j and yj from each j ̸= i, Si verifies that
hy,j = H0(j, yj) and that πs,j is valid with respect to ctxs,j and yj , and
aborts with output j if any of them fails. If all checks succeed, it defines
the public key pkT S = (aT S , y), secret key ski, and auxiliary information
auxT S = (auxE , pkE , ctxs) where y :=

∑
yj = ⟨aT S , s⟩, ctxs :=

∑
ctxs,j .

SignT S works as follows:
1. Let Si be one out of t signers in the set U . Upon receiving the message µ

to be signed, Si samples per signatures randomness ri,1, ri,2 ← Dσ and
commitment randomness ρi ← χ, derives per message commitment key
ck = H1(pkT S , µ), set ri := [ri,1 ri,2], and computes wi := ⟨aT S , ri⟩ and
commitment comi := Comck(wi, ρi). Si then encrypts the randomness ri
with the encryption key pkE as ctxr,i := Enc(pkE , ri), and computes a
NIZK proof πr,i to prove that ri was used for both comi and ctxr,i (see
Section 6). Si then sends ctxr,i, comi and πr,i to all j ∈ U \ {i}.

2. Upon receiving ctxr,j , comj and πr,j for each j ∈ U \ {i}, Si aborts
with output j if πr,j does not verify with respect to ctxr,j and comj .
Otherwise it computes com :=

∑
comj for all j ∈ U and derives the

challenge c := H2(com, pkT S , µ). It then computes the encryption of
the signature as ctxz := c · ctxs +

∑
j∈U ctxr,j (that is, computing Eval

on the ciphertexts where F is the function taking an element from Cν ,
multiplying it with ctxs, and adding t ciphertexts ctxr,j to the result)
and decrypts its share as dsi := TDec(ctxz, ski,U) and sends the partial
decryption dsi along with opening wi and commitment randomness ρi
to the signers in U .

3. Upon receiving dsj , wj , and ρj for all j ∈ U \ {i}, Si aborts with out-
put j if Open(comj , wj , ρj) = 0 for any j. Then tries to combine the
decryptions as z := Comb(ctxz, {dsj}j∈U ) and aborts with output j if
z = ⊥ and Comb aborts with output j. Si finally outputs the signature
σ := (c, z, ρ) where ρ :=

∑
ρj for all j ∈ U .

VrfyT S : Upon receiving σ := (c, z, ρ) and µ, checks that ∥z∥ ≤ Bz and ∥ρ∥ ≤
Bρ, computes w∗ := ⟨aT S , z⟩ − cy, derives c∗ := H2(Com(w∗; ρ), pkT S , µ),
then finally outputs 1 if and only if checks hold and c = c∗, and 0 otherwise.

5.2 Correctness, Bounds, and Sizes

We proved the correctness of the passively secure signature scheme in Section 4.2,
and as the commitment scheme and the zero-knowledge schemes are complete,
then it follows that the actively secure signature scheme is correct. Furthermore,
the bounds in the protocol depend on the distributions we sample from. If we sum
t samples from a uniform distribution over the values [−B,B], the sum will be
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SignT S(pkT S , ski, auxT S ,U , µ)

ck := H1(pkT S , µ), ri,1, ri,2 ← Dσ

ri := [ri,1 ri,2], ρi ← χ,wi := ⟨aT S , ri⟩
comi := Comck(wi, ρi), ctxr,i ← Enc(pkE , ri)

Compute NIZK proof πr,i of correct encryption (ctxr,i, comi, πr,i)

{(ctxr,j , comj , πr,j)}j∈U\{i}

if any πr,j is invalid : abort (j)

com :=
∑
j∈U

comj , c := H2(com, pkT S , µ)

ctxz := c · ctxs +
∑
j∈U

ctxr,j

dsi := TDec(ctxz, ski,U)

(wi, ρi, dsi)

{(wj , ρj , dsj)}j∈U\{i}

if any Open(comj , wj , ρj) = 0: abort (j)

z := Comb(ctxz, {dsj}j∈U ), ρ :=
∑
j∈U

ρj

if z = ⊥ with abort (j) : abort (j)

return σ := (c,z, ρ)

Fig. 7. Actively secure 2-round t-out-of-n threshold signature protocol for signer Si.

in the interval [−tB, tB]. However, suppose we sample from a discrete Gaussian
distribution of standard deviation σ. In that case, each sample is with a high
probability of 2-norm less than 2σ

√
2N for an integer vector of length 2N , and

the sum is bounded by 2σ
√
2tN . Hence, the bounds Bz and Bρ must be decided

based on the distribution of choice, and the concrete choice of parameters and
distribution impacts the security and efficiency overall.

When rejection sampling is removed, the signatures might leak information
about the secret key, but this can be prevented by increasing the per-signature
randomness r or limiting the number of signatures performed by the same key.
We get optimal parameters if the key is used only once, as the key has high
entropy and only leaks a few bits of information per signature. A recent analysis
by Agrawal et al. [ASY22] using Rényi divergence shows that leakage scales with√
Q where Q is the number of signatures, and hence, we can keep the bounds

on r small when limiting the number of signatures.
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Looking at the key generation, each signer first executes the interactive key
generation for the underlying encryption scheme, which has communication size
|DKGen|. Each signer sends a ring element of size N log2 q bits. Each partial
signing public key is of size N log2 q bits. It also sends the ciphertext and a zero-
knowledge proof, which we denote the sizes by |ctx| and |πs| bits, respectively.

In the signature protocol, each party sends a ciphertext and a commitment
of size |ctx| and |com|, respectively, in addition to a zero-knowledge proof of size
|πr|. They furthermore send values wi of size N log2 q, opening randomness ρi
of size |ρ| and partial decryptions dsi of size N log2 q.

5.3 Security Proof

Similar to the case with a passive adversary, we now prove the security of our
protocol by constructing an algorithm B interacting with an active adversary A.
Unlike the passive case, however, we assume a rushing adversary where honest
users always publish their messages first. If honest parties publish decryption
shares, then we say that the message is signed.

Theorem 3. Let R-LWEN,q,Br be ϵR-LWE-hard. Let QS, QH denote the number
of signing queries and the total queries made to H0, H1, and H2 respectively. Let
ℓ be the bit-length of the output of H0. Let E be ϵIND-CPA secure. Finally, let proof
systems Πx for the relations Rx be ϵZK,x, and ϵextract,x-secure. Then, the actively
secure t-out-of-n threshold signature scheme T S, described in Section 5 and
depicted in Figure 7, is ts-uf-cma secure when H0 is modeled as a programmable
random oracle and H1 and H2 are modeled as random oracles. The advantage
of adversary A is:

Advts-uf-cma
T S (A) ≤ e(QH +QS + 1)

(
|H| · ϵZK,s + |HU | · ϵZK,r + |C| · ϵextract,s

+ |CU | · ϵZK,r +
|C|(QH +QS)

2ℓ
+ (QH +QS) · ϵtd

+ 2 · ϵIND-CPA + ϵR-LWE + Advuf-cma(A)
)
.

Proof. We prove this through a series of hybrids written out in full detail. The
simulator B is communicating with a challenger D, and we show that a forgery
by A can be used by B to answer D. This time, however, D targets a variant
of the signature scheme described in Section 4.1 where c is derived using the
commitment to w. Hence when queried for a message, D outputs σ = (c, z, ρ).

G0: The first game corresponds to the real world. Specifically, B follows the
protocol according to the description, and A interacts with B arbitrarily. The
oracles H0,H1, and H2 are simulated using tables HT 0, HT 1, and HT 2. Since
we assume a rushing adversary, B sends its messages first.

When A outputs a forgery (σ∗ = (c∗, z∗, ρ∗), µ∗), B aborts if µ∗ ∈M. If not,
B derives the commitment key ck∗ := H1(pkT S , µ

∗), computes w∗ := ⟨aT S , z
∗⟩−

c∗y and com∗ := comck∗(w
∗; ρ∗). If the challenge c∗ ̸= H2(com

∗, pkT S , µ
∗), B

aborts, otherwise halts with output (σ∗, µ∗) and A succeeds.
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If the real world is indistinguishable from the programmable random oracle
model, then the random oracle simulation is perfect, B’s behavior is exactly the
same as in the unforgeability experiment, and we get that

Pr[G0] = Advts-uf-cma
T S (A).

G1: In this game B changes how non-interactive zero-knowledge proofs are an-
swered for honest parties. B executes the protocol the same as G0, but in-
stead of honestly generating πs,i for i ∈ H, πr,i for i ∈ HU , B uses the cor-
responding honest-verifier zero-knowledge simulators, Sims and Simr for rela-
tions Rs and Rr respectively where πs,i := Sim(aT S , yi, pkE , ctxs,i, Bs) and
πr,i := Sim(aT S , comi, pkE , ctxr,i, Br). B follows the remaining parts of the pro-
tocol honestly. G0 and G1 is indistinguishable by HVZK of the NIZKs:

Pr[G1]− Pr[G0] ≤ |H| · ϵZK,s + |HU | · ϵZK,r.

G2: G2 is the same as G1 except B uses the extractability properties of the
NIZKs to learn the signing key shares and the signature randomness encrypted
by parties in C. During key generation, after receiving πs,j for j ∈ C, B calls the
extractor sj := Extracts(πs,j ;a, yj , pkE , ctxs,j , Bs). Similarly, during signing after
receiving πr,i, B computes ri := Extractr(πr,i;aT S , comi, pkE , ctxr,i, Br). If any
of the extractions fails, B aborts.

By assumption, the extractor Extractx for Rx is efficiently computable. If B
does not abort due to a failed extraction, G2 and G3 is indistinguishable for A.
A’s advantage in G3 is bounded by the sum of independent extraction failures:

Pr[G2]− Pr[G1] ≤ |C| · ϵextract,s + |CU | · ϵextract,r.

G3: G3 is exactly the same as G2 except B embeds a trapdoor to the com-
mitment key ck with high probability. Then the forgery by A must be for an
honestly generated commitment key ck.
B initially generates only a single commitment key ck ← Sck. B keeps a

trapdoor table T DT similarly to other random oracles throughout the protocol.
When there is a query for H1 for a new message-public key pair, with probability
ϕ, B samples a trapdoor (ck, td) by invoking TCGen, updates the corresponding
entry in T DT to td and updates the corresponding entry inHT 2 to ck. Otherwise
B uses a freshly sampled ck← Sck.

When A queries H1, B sets the flag bad and aborts if T DT [pkT S , µ] = ⊥.
Otherwise, B obtains the trapdoor td. Then, for j ∈ HU , B samples rj,1, rj,2
and computes rj ,wj according to SignT S . Furthermore, B samples commit-
ments comj by invoking TCom on input td. The rest of the first round con-
tinues as in G2. When B has received messages from all users, it checks if
the proofs for rj verify and computes the challenge and derives randomness
ρj ← Eqvck(td, comj , wj) for each j ∈ HU . It then continues with the rest as
before. When A sends a forgery (σ∗ := (c∗, z∗, ρ∗), µ∗), then B repeats the steps
of G2. At the final step, if T DT [pkT S , µ

∗] ̸= ⊥, B aborts.
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If B does not abort, then ck∗ = H1(pkT S , µ
∗) and the simulated πr,j must

verify for each honest part j ∈ HU . This follows from the fact that the simulation
is only successful if the oracle uses the trapdoor commitment for all but one query
to H1 and uses the predefined ck for the one associated with forgery, i.e., bad is
not set. The trapdoor commitment scheme ensures that:

Pr[G3] ≥ ϕQH+QS · (1− ϕ) · Pr[G2]− (QH +QS) · ϵtd.

By setting ϕ = (QH +QS)/(QH +QS + 1) we get

Pr[G3] ≥
Pr[G2]

e(QH +QS + 1)
− (QH +QS) · ϵtd,

where (1/(1 + 1/(QH +QS)))
QH+QS ≥ 1/e when QH +QS ≥ 0.

G4: In this hybrid B changes how ciphertexts are computed similar to G1 in
the passive case. B fixes some index i′ ∈ H which is also in HU . B computes
ctxs,i′ := Enc(pkE , 0) during key generation and ctxr,i′ := Enc(pkE , 0) during
signing. The rest of the game is as it is in G4. Since rj and sj for j ∈ CU are
extracted in G2, B can compute z = c

∑
i∈U si+

∑
i∈U ri, which is the combined

signature hence the threshold decryption can be simulated. Similar to the G1 in
the passive case, we can now reduce to the indistinguishability of E :

|Pr[G4]− Pr[G3]| ≤ 2 · ϵIND-CPA.

G5: In this hybrid B changes how hy,i′ is computed. B sends a random hy,i′ ∈
{0, 1}ℓ1 as the commitment yi′ then programs H0 such that H0(i

′, yi′) = hy,i′ .
If programming fails, B aborts. Then the only difference in A′s view is how hy,i′

is computed. By the oracle assumption, the distributions are indistinguishable
between these two games hence from the view of the adversary A, G4 and G5

are indistinguishable as long as B does not abort during programming. Thus
we can bound the advantage of A in distinguishing G4 and G5 by the failure
probability of programming of H0:

|Pr[G5]− Pr[G4]| ≤
|C|(QH +QS)

2ℓ1
.

G6: Now, B removes its reliance on the secret key s for signing similar to G3

in the passive case. During key generation, B initializes the signing challenger D
with the parameters of the combined signature and queries the oracle to obtain
public keys, then sets crs = aT S . Instead of honestly computing yi′ , B derives
yi′ = y −

∑
j∈[n]\{i′}

yj where y is received from D and continues the rest of key

generation as in G5.
For i ∈ HU \ {i′}, signing starts as G5. When a signing query for µ comes,

B commits to a random wi′ as part of the first message then forwards µ to D to
obtain (c, z, ρ). B then computes w := ⟨aT S , z⟩ − cy and uses z for simulation
to obtain dsi. For j ∈ U \ {i′}, wj is computed the same. B then derives wi′ =
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w−
∑

j∈U\{i′} wj and equivocates the commitment to get the randomness ρi′ :=

Eqv(td, comi′ , wi′) using trapdoor td. Otherwise, signing proceeds as G5.

Since aT S , y received from D is a valid R-LWE instance, the distribution of
aT S therefore yi′ in G6 is same as G5 by linearity of operations the derived
yi′ = ⟨aT S , s

′
i′⟩ for an unknown s′i′ .

B now has to fix the signature and its shares in a way consistent with the
first round of communication in signing. Since D uses the variant that derives c
based on a commitment to w, it is possible to obtain consistent (c, z) such that
w := ⟨aT S , z⟩ − cy. The remaining difference in A’s view is the wi′ , which is
indistinguishable from uniform the way it is computed. Using the same argument
in G3 of passive, an adversary distinguishing between wi′ in G5 and G6 can be
used as a distinguisher for R-LWE. We then have:

|Pr[G6]− Pr[G5]| ≤ ϵR-LWE.

The signatures in G7 are independent of secret key material defined as part of
the protocol and solely depend on the signature received from the challenger
D. A forgery against the T S scheme is then a forgery against the underlying
signature scheme. If A outputs a forgery (c∗, z∗, ρ∗), µ∗, B can submit the same
forgery to D as a valid forgery for the underlying signature. Hence if A can
output a forgery at the end of G7, it can be used to break the uf-cma security
of the underlying scheme, the advantage if A can then be bounded as:

|Pr[G6]| ≤ Advuf-cma(A).

This concludes the proof. ⊓⊔

6 Instantiating the NIZKPoKs

There are four main relations of the signature protocol (including the homomor-
phic encryption subprotocols) to be proven in zero-knowledge. Here we define
the exact relations that have to be proven and show how we can instantiate cor-
responding zero-knowledge proofs using proofs of shortness and linear relations.

– The relationRsk during KGenE defines the correctness of partial key shares as
part of the key generation. For fixed public parameters Btern and p, the com-
mon reference string crs = aE , public bi, {bi,j}i∈[n], and public commitments
to secret short si, ei and secret si,j , ei,j the relation shows (1) bi = aEsi+pei;
(2) comi, com

′
i are commitments to si, ei; and (3) {comi,j}i∈[n],

{com′
i,j}i∈[n] are commitments to {si,j}i∈[n], {ei,j}i∈[n] such that {si,j}i∈[n],

{ei,j}i∈[n] are valid t-of-n secret sharings of si and ei; (4) {si,j}j∈[n] are cor-
rect t-out-of-n shares of si; (5) {ei,j}j∈[n] are correct t-out-of-n shares of ei;
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(6) {bi,j}j∈[n] is correctly computed from si.j and ei,j . More formally:

Rsk :=


(x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x := (bi, {bi,j}, comi, com
′
i, {comi,j}i∈[n], {com′

i,j}i∈[n]) ∧
w := (si, ρi, ei, ρ

′
i, {si,j}j∈[n], {ρi,j}j∈[n], {ei,j}j∈[n], {ρi,j}j∈[n]) :

∥si∥, ∥ei∥ ≤ Btern ∧ bi = aEsi + pei ∧ ∀j bi,j = aEsi,j + pei,j
∧ bj = Rect,n({bi,j}) ∧ si = Rect,n({si,j}) ∧ ei = Rect,n({ei,j})

∧ Open(comi, si, ρi) ∧ Open(com′
i, ei, ρ

′
i) ∧

∀i Open(comi,j , si,j , ρi,j) ∧ ∀j Open(com′
i,j , ei,j , ρ

′
i,j)


.

The knowledge of si and ei, and consequently si,j and ei,j can be proven
based on bi and bi,j using proofs of linearity and shortness once commitments
to si, ei, and ei,j are available. For which we modify the distributed key
generation algorithm given in Figure 2 as follows: Party Pi as part of πi

commits to these secret values and broadcasts them as part of the proof. For
partial shares that are sent through private channels, Pi also sends opening
i.e. randomness ρ′i,j corresponding to the commitment to ei,j as well.
It is also possible to show si and ei are correctly secret shared. Once knowl-
edge of si, ei, si,j and ei,j is proven, since bi and bi,j is public, it is possible
to check if every subset of size t of bi,j can be used to reconstruct bi.

– The relation Rds during TDec defines the correctness of the partial decryp-
tions where the correct secret key share ski was used to generate the public
decryption share di for a given ciphertext ctx = (u, v). For fixed parameters
λi, p, BTDec, common reference string crs = (aE , bE) and public commitments
to secret ski, Ei the relation shows: (1) The secret error Ei has norm smaller
than BTDec, (2) di is correctly computed with respect to λi, ski, u, p, Ei:

Rds :=

(x,w)

∣∣∣∣∣∣
x := (di, ctx, comsk,i, comE,i) ∧ w := (ski, ρsk,i, Ei, ρE,i) :

∥Ei∥∞ ≤ BTDec ∧ di = λiskiu+ pEi ∧
Open(comsk,i, ski, ρsk,i) ∧ Open(comE,i, Ei, ρE,i)

 .

Since the commitment to the secret key shares are also included as part of
the distributed key generation, it is trivial to prove the above statements
using the proof of linear relations as before, once the commitments to Ei

are available. For which we instantiate the proof πds,i as a proof of linear
relation to show d is correctly computed alongside a commitment to Ei.

– The relation Rs for KGenT S proves that the short si was both used to com-
pute the public key share yi and was encrypted in ctxs,i. For a publicly fixed
parameter Bs, the common reference string crs = (aT S , pkE) and public yi
and the commitment to the secret si, the relation Rs shows:(1) secret si has
norm smaller than Bs (2) si is the same si used for the calculation of yi (3)
ctxs,i is the encryption of the si using pkE .

Rs :=

{
(x,w)

∣∣∣∣ x := (aT S , yi, pkE , ctxs,i, Bs) ∧ w := si ∧
∥si∥ ≤ Bs ∧ yi = ⟨aT S , si⟩ ∧ ctxs,i = Enc(pkE , si)

}
.

Since si is boundend, the relation above is once again a linear relation with
respect to a. yi and si. Only non-trivial part is to show the knowledge of
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si as plaintext, which we discuss at the end of this section. So πs,i includes
commitment to si and proof linear relation and plaintext knowledge for si.

– The relation Rr for SignT S proves that a bounded signature randomness
ri was both committed to in comi and encrypted in ctxr,i. For a publicly
fixed parameter Br, the common reference string crs = (aT S , pkE), public
comi,ctxr,i for secret wi,ri, ρi the relation Rr shows: (1) randomness ri has
a norm smaller than Br (2) ri is the same ri used for wi and therefore the
commitment comi using randomness ρi (3) ctxr,i is the encryption of the ri.

Rr :=

(x,w)

∣∣∣∣∣∣
x = (aT S , comi, pkE , ctxr,i, Br) ∧ w = (wi, ri, ρi)

∧ ∥ri∥ ≤ Br ∧ ctxr,i = Enc(pkE , ri)
∧ wi = ⟨aT S , ri⟩ ∧ comi = Comck(wi, ρi)

 .

Rr is almost exactly the same as Rs with the exception of knowledge of
openings to trapdoor commitments. For which, we do the same treatment
to the protocol where πr,i includes a proof of linear relation with respect to
ri alongside a proof of plaintext knowledge which we will show next. Both
Rs and Rr rely on the availability of a proof of plaintext knowledge where
a given ciphertext corresponds to, for which, we introduce a final relation
REnc which also can be instantiated through proofs of linear relations since
we use BGV as our underlying encryption scheme.

– The REnc shows that, for fixed public parameters BEnc, p, and a common
reference string crs = (aE , bE) and a statement consisting of ciphertext ctx =
(u, v) and public commitments comr, come′ , come′′ , comm to short secrets
r, e′, e′′, m. Then the proof shows that (1) commitments open to suitably
short values r, e′, e′′,m, respectively, such that (2) u = aEr+pe′ and (3) v =
bEr + pe′′ +m:

REnc :=

(x,w)

∣∣∣∣∣∣∣∣
x := (ctx, comr, come′ , come′′ , comm) ∧ w := (r, e′, e′′,m, ρr, ρe′ , ρe′′ , ρm) :
∥r∥∞, ∥e′∥∞, ∥e′′∥∞ ≤ BEnc ∧ u = aEr + pe′ ∧ v = bEr + pe′′ +m ∧

Open(comr, r, ρr) ∧ Open(come′ , e
′, ρe′) ∧

Open(come′′ , e
′′, ρe′′) ∧ Open(comm,m, ρm) ∧ ∥m∥ ≤ p

 .

The proof of plaintext knowledge proofs in both Rs and Rr then can be
instantiated as a proof of linear relation where s = m and r = m with
different BEnc respectively. πs already includes a commitment to si, so we
can add commitments to remaining encryption randomnesses as well as a
linear relation proof for ctxs,i to complete. πr,i however is a bit non trivial
as commitments sent as part of the message are trapdoor commitments.

Trapdoor commitments and normal commitments can be instantiated using
the commitment scheme by Damg̊ard et al. [BDL+18,DOTT21], and the proofs
of linearity and exact proof of shortness can be instantiated using the zero-
knowledge protocols by Lyubashevsky et al. [BDL+18, BLNS21, LNP22] com-
bined with the Katsumata-transform [Kat21].
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7 Example Uses Cases and Performance

To estimate the practicality of our actively secure scheme we give example pa-
rameters for (3, 5)-threshold signatures in three different settings: (1) where a
signature is only produced once (1-SIG), (2) where at most β signatures are
produced (β-SIG), for some moderate β, and (3) where up to 264 signatures
is issued (∞-SIG), as per NIST recommendations. Schemes secure for issuing
one signature may be of interest for cryptocurrency applications, and there has
been ongoing discussion in the context of the NIST post-quantum cryptography
standardization effort4, especially with regard to SPHINCS+ [Kö22], about ap-
plications where the assumption of a bounded number of signatures might be
reasonable.

For simplicity, we let the distribution χtern be the uniform ternary distribution
in each of the three cases. We use the threshold scheme described in Section 3 as
the underlying additive homomorphic encryption scheme and the homomorphic
trapdoor commitment scheme by Damg̊ard et al. [DOTT21].

We emphasize that these are rough estimates, and a more careful analysis is
needed before this scheme is ready for real-world use. The main point of this exer-
cise is to showcase that we can achieve practical signatures and verification keys
using our techniques. We acknowledge that the total amount of communication
in the protocol is quite large, and we will provide more details on communica-
tion in the full version of the paper. Furthermore, this section assumes trusted
setup and only focuses on the signing protocol, not distributed key generation.
We summarize the results in Table 1.

Comm. 1-SIG 1-PK β-SIG β-PK ∞-SIG ∞-PK

Size 8.5 KB 2.6 KB 10.4 KB 3.1 KB 46.6 KB 13.6 KB

Table 1. Estimated sizes of (3, 5)-threshold signatures SIG and public keys PK for
settings: 1) where the signature is only produced once, 2) where a signature is produced
at most β = 365 times, and 3) where a signature can be produced∞ = 264 times. These
parameters achieve 128 bits R-SIS / R-LWE security using the lattice estimator [APS15].

7.1 One-Time Signatures

The simplest case is when each key is only used to create a single signature before
it is discarded and never used again. One such setting is Bitcoin transactions,
where some funds are tied to a specific public key. When a new transaction is
performed, the remaining funds are sent to a new address tied to a different public
key owned by the same user(s). The setup can be done in advance, independent of

4 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA.
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the blockchain and future transactions, and one key is used for each transaction.
This leads to smaller keys and signatures to minimize on-chain data.

With no rejection sampling, publishing a single signature leaks minimal in-
formation about the secret key. Agrawal et al. [ASY22] show that the leakage in
each signature grows linearly in the square root of the number of signatures pro-
duced, but since we only output a single signature, we can keep the parameters
identical to when rejection sampling is performed.

All signing key shares are ternary, which means that even secrets of absolute
norm 1 should ensure that the R-SIS and R-LWE problems are hard. The R-SIS
problem is hard when the logarithm of the ℓ2 norm of the secret is less than
2
√
N log2 q log2 δ, see [MR09], and we get more roughly 128 bits of security

when δ ≈ 1.005, and better when it is smaller. The ring dimension N must be
a power of two, so we set N = 1024. Then we let elements of r be sampled
from a Gaussian distribution Dσ with standard deviation σ = ν · √γ, where
γ = 128 + (N log2 q)/(log2(2η + 1)).

Each signer must prove in zero-knowledge that these bounds are satisfied
to ensure protocol correctness. The most efficient exact zero-knowledge proofs
used today are the proof systems by Lyubashevsky et al. [BLNS21, LNP22],
allowing us to prove the exact maximum norm of the secret values r. The latter
proof system is improved by Aranha et al. [ABGS23] and extended by Hough et
al. [HSS23] to large values using bit decomposition.

We let the ℓ2 norm of z be B = 2 · σ ·
√
2 · t ·N in our signature scheme. We

finally set ν = 16 (so that |C̄| > 2128) to get σ ≈ 210.9, Bz ≈ 218.1 and q ≈ 220.
This leads to more than 128 bits of R-SIS security when inserting the parameters
into the equation above and more than 128 bits of R-LWE security according to
the LWE-estimator [APS15] when revealing only one signature per key.

The absolute norm of each coefficient in z is with high probability bounded by
4·
√
t·σ, and this leads to z being approximately 2N log2(4·

√
t·σ) bits. Following

[ENS+23], the standard deviation to sample ρ should be roughly 1.17 · √q when
using NTRU trapdoors, which means that ρ is of size 3 ·N log2(4.68 ·

√
t · q) bits.

This leads to a signature 1-SIG of size 8.5 KB with the given parameters. The
verification key 1-PK is of size N log2 q bits (aT S can be generated by a random
oracle as in Dilithium [DKL+18]), resulting in a verification key of 2.6 KB.

The communication consists of commitments, ciphertexts, and NIZKs being
sent in the signing protocol. Similar to Damg̊ard et al. [DOTT21] we use the com-
mitment scheme by Baum et al. [BDL+18] but with NTRU trapdoors [ENS+23],
and instantiate this with module dimension one to match our security assump-
tions. We then need to increase the dimension and the moduli of the encryp-
tion scheme to be able to encrypt partial signatures, and use noise drowning to
achieve secure threshold decryption. This leads to communication of ≈ 750 KB
per party.

7.2 Bounded Number of Signatures

Another interesting setting is where a service is used at most once a day each
year, and a signature is required to use the service. An example is FIDO authen-
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tication5 where the signing key is secret shared over several devices to ensure
both that the user can log in despite lost devices and at the same time that no
one can impersonate the user even two devices are stolen. Hence, we must make
sure that the signing key does not leak when up to 365 signatures are produced.

Following a similar analysis as above, where we extend the standard deviation
to σ = ν ·

√
γ · 365 (see [ASY22, Theorem 4.1]) to ensure that the signature does

not leak too much information when producing at most 365 signatures. We keep
N = 1024, and get σ ≈ 215.2, B ≈ 222.5 and q ≈ 224 to ensure at least 128 bits
of security with respect to the hardness of R-SIS and R-LWE. The signatures are
of size 10.4 KB and the verification key is of size 3.1 KB.

Since q is similar in this setting as in the previous, the size of intermediate
communication within the signing protocol is essentially the same as above.

7.3 Unbounded Number of Signatures

In general, it is undesirable to upper-bound the number of signatures that can be
produced with a signing key before it is not secure to use it anymore. One reason
for this is that it is hard to keep a state over a longer time, and if the signing is
running in a virtual environment it might be re-booted from a backup with an
older state and a fresh counter, and hence, end up producing more signatures
than initially recommended. In practice, we often upper limit the number of
signatures by 264, or some other number that is close to the capacity of what
modern computers can compute when choosing concrete parameters for certain
security levels. Hence, we expand the number of signatures and use the square-
root bound as above to compute the parameters for general-use signatures.

This leads to σ = ν ·
√

γ · 264 ≈ 244 for ν = 14 when N = 2048 and get
B ≈ 251.9. Hence, we need to set q ≈ 253 to get correctness and 128 bits of
security. We get signatures of size 46.7 KB, and verification keys of 13.6 KB.

Since q is approximately twice the number of bits, the dimension of the
lattice needs to be doubled, and we estimate the intermediate communication to
be approximately four times larger compared to the previous settings, leading
to communication of ≈ 3 MB per party.

8 Extensions

There are several possible considerations for increased efficiency and security:

Compression. The most efficient lattice-based schemes in the literature use
compression techniques to reduce the size of communication. The compression
rate is chosen based on the hardness of the underlying assumptions so that
one gives an approximate relation instead with a fine-tuned reduction to a
problem of the appropriate hardness level, see for example Kyber [SAB+20]
or Dilithium [LDK+20] for details. These techniques can potentially reduce the
size of public keys and signatures in our case as well, in addition to reducing the

5 See https://fidoalliance.org for more details.
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communication on our protocol where the security is much higher to ensure the
correctness of the distributed decryption protocol.

Reducing communication via an optimistic approach. Assuming non-
malicious behavior we can omit sending wj and πds,j for j ∈ U , and send only
dsj and ρj for the second round of signing. If signature verification fails then
each signer sends wj and πds,j in a third round as proof of correct computation.
In an honest execution, this saves t · (|wj | + |πds,j |) bits per party, significantly
reducing the overall communication. For one-time signatures, roughly 400 KB
of 750 KB per party communication is due to πds, which then can be removed.

Removing trapdoor commitments for pre-processing. The pre-processing
in Boschini et al. [BTT22] to remove the trapdoor commitments is an immediate
extension to our protocol, as the committed values in both protocols are similar
to the ones in [DOTT21]. However, the application is a bit trickier and results
in an increase in communication. Unlike their work, the commitments in our
protocol are to the encryptions of per-signature randomness. This would require
each commitment to have an associated NIZK of correct encryption, increasing
the communication size for a set of commitments. This also raises the non-trivial
question of computing NIZKs for random linear combinations of bounded values,
which gives an extensive overhead to the protocol.
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