
Methods for Masking CRYSTALS-Kyber Against
Side-Channel Attacks

Sıla Özeren
Institute of Applied Mathematics
Middle East Technical University

Ankara, Turkey
sila.ozeren@metu.edu.tr

Oğuz Yayla
Institute of Applied Mathematics
Middle East Technical University

Ankara, Turkey
oguz@metu.edu.tr

0000-0001-8945-2780

Abstract—In the context of post-quantum secure algorithms
like CRYSTALS-Kyber, the importance of protecting sensitive
polynomial coefficients from side-channel attacks is increasingly
recognized. Our research introduces two alternative masking
methods to enhance the security of the compression function
in Kyber through masking. Prior to this, the topic had been
addressed by only one other research study. The ”Double and
Check” method integrates arithmetic sharing and symmetry
adjustments, introducing a layer of obfuscation by determining
coefficient values based on modular overflows. In contrast, the
Look-Up-Table (LUT) integration method employs arithmetic-
to-Boolean conversions, augmented by a pre-computed table
for efficient value verifications. Furthermore, by leveraging the
alternative prime 7681, we propose a novel masked compression
function. This prime, 7681, is also notable as the smallest prime
suitable for fast NTT multiplication. While both algorithms
prioritize data protection and streamlined processing, they also
underscore the inherent challenges of balancing computational
speed with the potential vulnerabilities to side-channel attacks.

Index Terms—Masking, CRYSTALS-Kyber, Post Quantum
Cryptography, Side Channel Attacks

I. INTRODUCTION

As we transition into the quantum computing era, the secu-
rity of many commonly used cryptographic algorithms faces a
significant challenge. Quantum computers have the capability
to solve complex mathematical problems that threaten the
safety of traditional cryptosystems such as RSA, DSA, and
elliptic curve cryptosystems. Recognizing this, NIST initiated
the Post-Quantum Cryptography (PQC) standardization pro-
cess [1]. Although Round 3 has recently concluded, many
studies regarding to side-channel attacks have emerged, tar-
geting Kyber’s implementation methods in both software and
hardware [2]–[4].

Drawing from the insights of foundational studies like [5]
and [6], which underscore the importance of masking against
side-channel attacks, researchers has integrated this protec-
tive measure across CRYSTALS-Kyber’s components. Prior
studies has already masked polynomial operations, especially
the NTT multiplication [7], along with basic operations like
addition and subtraction detailed in Alg. 5. Additionally,
symmetric operations, specifically the hash function G (See
Alg. 4 and PRF (See Alg. 5), have been enhanced with the
Keccak masking method as outlined in [8]. For sampling tasks
involving the central binomial distribution (CBDη) in Alg. 5,

the methodology from [9], which is further elaborated in [10],
is employed to ensure masking.

While many components of Kyber are masked, there had
been no effort to mask the compression function (see Eq.
3) used in the CPAPKE.Dec() algorithm of Kyber. This was
addressed in the work published by [10], which introduced
a bit-sliced binary search method on randomly generated
sharings of sensitive polynomial coefficients. Building upon
this study [10], we propose two alternative approaches for
masking the compression function in Kyber: the Double and
Check method, adding an additional obfuscation layer, and
the classic memory/time trade-off using Look-Up-Table (LUT)
integration.

In Section II, we provide essential information about Kyber
and masking that will be referenced throughout the paper. In
Section III, we discuss existing techniques related to masking
compression functions and highlight how conventional meth-
ods are ill-suited for Kyber due to its prime modulo design
choice. In Section IV, we present the Double and Check (See
Alg. 1) and Look-Up-Table integration (See Alg. 2) method
as alternatives to masking the compression function in Kyber.
Additionally, we demonstrate how choosing 7681 as a prime
provides a fast and masked compression function. And finally,
in Section V, we present the conclusion, with areas that may
rise concern or require further studies.

II. PRELIMINARIES

In this chapter, we are going to provide the notations and
definitions regarding to protection against side-channel attacks.

A. Ring of Polynomials
CRYSTALS-Kyber is a post-quantum key encapsulation

mechanism (KEM) that works in the ring of polynomials over
the finite field Zq . This ring is denoted by Rq = Zq[x]/⟨xn+
1⟩. As given in the Table I, Kyber uses a prime module
q = 3329, causing a non-negligible performance overhead
compared to modulo 2k as studied in [11], and n = 256,
meaning that Kyber works with polynomials that have 256
coefficients, each of them taken from the finite field Z3329.

B. Compression and Decompression in Kyber
In CCA-secure CRYSTALS-Kyber, a compression function

is defined [12], which takes an element x ∈ Zq as input and

Fig. 1. Two Disjoint Interval to Compress a Polynomial Coefficient into a
Single Bit [14]

returns an integer within the range {0, . . . , 2d − 1}, where
d < ⌈log2(q)⌉.

Compressq(x, d) = ⌈(2d/q) · x⌋ mod+ 2d (1)

The core motivation behind this function, as the name gives a
hint, is to omit the low-order bits of ciphertext (i.e., shortening
the ciphertext) that do not significantly affect the decryption
failure. Additionally, it leverages the LWE error correction
advantages during both encryption and decryption [13].

Authors [12] also define a decompressing function such that

x′ = Decompressq(Compressq(x, d), d), (2)

where x′ is an element in close proximity to x, more specifi-
cally, |x′ − x mod±q| ≤ B := ⌈ q

2d+1 ⌋.
In the case of d = 1, the Compressq(x, d = 1) function

takes an element x ∈ Zq as input and maps it to an integer
within the range {0, . . . , 2d=1 − 1}, which is simply the set
{0, 1}. Therefore, result of the Compressq(x, 1) function can
be either 0 or 1.

The Compressq function works by taking the domain of
each polynomial coefficient, which is the set of all integers
between 0 and q (i.e, [0, q−1]), and splitting it into two disjoint
intervals (See Eq. 3).

Compressq(x, 1) = ⌈(2/q) · x⌋mod 2 =

{
1, if q

4 < x < 3q
4 ,

0, otherwise.
(3)

The function then assigns a value to each coefficient,
depending on which interval it falls into. For coefficients in
the interval of [q4 ,

3q
4] (the area coloured in pink in Fig. 1), the

compression function assigns the value 1. For coefficients in
the second interval [0, q

4] and [3q4 , q] (blue area in the Fig. 1),
the compression function assigns the value 0.

C. Kyber Public Key Encryption

Kyber is a module-Learning-with-Error (LWE) scheme [15],
which can be parameterized with a given security parameter
k (see Table I). When the security parameter k is set to 2 or
3, we are dealing with a module-LWE problem (See the Lines
4-8 in Alg. 5). In other words, the notation k > 1 refers to
the number of rings used in the module-LWE setting. Thus,
when k = 1, it indicates that there is one ring, and it becomes
a ring-LWE problem.

Security of Kyber depends on the difficulty of distinguishing
between pairs, (ai, bi) ∈ Rk

q × Rq . While some of the pairs
are uniformly sampled from the ring of polynomials Rq ,
others are constructed such that ai selected from a uniform

TABLE I
PARAMETERS OF KYBER WITH THREE LEVELS OF SECURITY, k.

n k q η1 η2 (du, dv) δ
KYBER512 256 2 3329 3 2 (10,4) 2−139

KYBER768 256 3 3329 2 2 (10,4) 2−164

KYBER1024 256 4 3329 2 2 (11,5) 2−174

distribution and the secret vector s is taken from a central
binomial distribution (CBD) with given η (See Table I) [10],
s ∈ βk

η , and some noise with small coefficients ei ∈ βη such
that bi = aTi s + ei.

D. Masking as a Side-Channel Attack Countermeasure

At its core, masking involves randomly splitting a secret
value into multiple shares. These shares are processed inde-
pendently throughout the algorithm’s steps, and the results are
then recombined to produce the desired outcome. Working
within the masking domain prevents information leakage from
a sensitive variable a since it is never used directly. Instead,
side-channel leakage arises only from calculations involving
a1 or a2 [16]. Given that both arithmetic and Boolean shares
of a are randomly defined each time, any leakage from a1 and
a2 doesn’t expose a to attackers even if the attacker runs the
algorithm multiple times. As highlighted before, there are two
types of masking: Boolean and arithmetic.

Consider a sensitive value a ∈ Zq . Arithmetical masking
randomly splits this sensitive value into n arithmetic shares,
which can be denoted as ns. The defining characteristic is that
the summation of these shares results in the original value a,
situated within the set of integers modulo q [10]. For i ∈
{0, 1 · · · ns − 1}, a(i) denotes the specific share indicated by
the number i.

a ≡ a(0)A + a(1)A + · · ·+ a(ns−1)A mod q

When the sensitive value Zq is split into ns shares, we can
represent a as ns tuple. This tuple is given by a(·)A =
(a(0)A , · · · a(ns−1)A). In the Boolean masking case,

a = a(0)B
⊕

a(1)B
⊕
· · ·

⊕
a(ns−1)B

the ns-tuple representation of a secret coefficient a ∈ Z2
q can

be denoted as a(·)B = (a(0)B , · · · a(ns−1)B), which comprises
ns arithmetic shares a(i)B with 0 ≤ i < ns.

III. EXISTING METHODS FOR MASKED COMPRESSION

In this section, we discuss the reasons why the compression
function introduced in Algorithm 3 in Kyber (Refer to Line
4) requires masking. We will also delve into the workings of
the Most Significant Bit (MSB) approach. Furthermore, we’ll
explore how Kyber’s choice of a prime modulo design restricts
us from employing this approach to mask the compression
function, as illustrated in Eq. 3. Finally, we will introduce a
novel bit-sliced binary search method, as proposed by [10].

Fig. 2. 1-Bit Conversion for Polynomial Coefficient in Kyber, Updated from
[10]

Fig. 3. Shifting the Polynomial Coefficient with Certain Offset to Mask It.

A. Need for a Masked Compression Algorithm in Kyber

To achieve the CCA2 security, CRYSTALS-Kyber [12]
algorithm leverages the Fujisaki-Okamoto (FO) transformation
[17], [18]. It first performs CPA decryption on the ciphertext
(See Line 4 in Alg. 4). Then, the message is ”re-encrypted” by
CPA encryption (See Line 6 in Alg. 4), resulting in ciphertext
c′. Finally, the algorithm checks whether the public ciphertext
c equals c′. If c = c′, the algorithm turns True, and False
otherwise. Depending on the Boolean result, the session key
K is generated (See Lines 7-10 in Alg. 4). The FO-transform
is done to see if an adversary performs any alteration during
the process.

Any steps that directly processes the secret vector s ∈ Rk
q

should be masked against side-channel attacks. Thus, the steps
that are coloured grey in the Fig. 2 should be masked. Up until
the study done by [10], there was no research that proposed a
masking for the compression function in Kyber.

Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) (4)

As it is seen in the Eq. 4, the Alg. 3 directly processed the
secret key s ∈ Rk

q . As the vector u ∈ Rk
q and polynomial

v ∈ Rq is publicly known, adversaries can easily do reverse-
engineering to find the secret vector s. Therefore, the com-
pression function needs to be masked [10].

B. The Most Significant Bit (MSB) Method

In the most trivial approach for masking in modulo q = 2k,
the coefficient domain is shifted by a specific offset to form a
new interval composed of two equal sub-intervals. This is done
by adding ⌊ q4⌋ in mod q to each coefficient share. Once each
interval has been shifted by, ⌊ q4⌋, a symmetry is established
around ⌊ q2⌋ as illustrated in Fig. 3. The new Compressq(x, 1)
function can be seen in the Eq. 5.

Compresssq(x) :=

{
0, if x < q

2 ,

1, otherwise.

Compressq(x, 1) = Compresssq(x+ ⌊q
4
⌋ mod q) (5)

Fig. 4. Saber (q = 2k), Shifted Compresssq Function.

Fig. 5. Offset Between the Most Significant Bit (MSB) and ⌊ q
2
⌋

Unlike CRYSTAL-Kyber, many other post quantum (PQC)
algorithms like Saber uses a modulo q such that q = 2k. And
for algorithms like Saber, this trivial shifting method can be
efficiently implemented. This is because, the most significant
bit of a sensitive coefficient x will be a great indicator to
tell whether the coefficient will fall into the first half of a
coefficient domain, such as MSB(x) = 0 in the case where
x < ⌊ q2⌋. Given that modulo q = 2k, its most significant bit
(MSB) will have a value of 2⌈log2(q)⌉−1 = 2k−1. Moreover,
q
2 = 2k

2 = 2k−1. As a result, the ability of the interval to
be divided into two disjoint intervals of equal spacing by the
MSB helps us determine whether a share x ∈ Zq is greater
than or equal to ⌊ q2⌋.

Unfortunately, in Kyber, where the module is prime q =
3329, the interval space is not equally divided by specific bits
as in Saber. The MSB in Kyber has a specific offset (348)
over ⌊ q2⌋ as it is given Fig. 5. Thus, the most significant bit
(MSB) approach does not work for the Kyber. The offset arises
because CRYSTAL-Kyber employs a prime number q = 3329.
In this context, the value of the MSB (211) equates to ”2048”
in the coefficient domain, which can be seen in the following:
2⌈log2(q)⌉−1 = 2⌈log2(3329)⌉−1 = 2⌈11.7⌉−1 = 212−1 = 211 =
2048. As ⌊q/2⌋ = ⌊3329/2⌋ = ⌊1664.5⌋ = 1664, the offset is
2048 − 1664 = 832. Because the interval is not divided into
equal parts as in Saber, the MSB approach cannot be directly
applied to CRYSTALS-Kyber and thus necessitates an update.

C. Bit-Sliced Binary Search Method

An eye opening study regarding to masking the compression
function in Kyber is done by [10], implementing a bit-sliced
binary search over the 12-bits length Boolean version of an
arithmetically shifted (⌊ q4⌋) share to decide whether the share
is greater than equal to ⌊ q2⌋. The algorithm is provided to be
t−SNI secure with ns = t+ 1 shares [10].

This algorithm takes each 256 coefficient of a polynomial
a ∈ Zq[X] and splits each coefficient into its ns shares. Each
share is shifted by ⌊ q4⌋ to make the interval symmetric around

⌊ q2⌋ (See Fig. 3), making the decision of whether a share
is greater than equal to ⌊ q2⌋ much more easier. Then, each
share is cast to its 12-bit Boolean version. k = ⌈log2(q)⌉ =
⌈log2(3329)⌉ ≈ ⌈11.7067⌉ = 12

Now that we have the Boolean-shares, the algorithm per-
forms a Bitslicing on the ns-tuple of a Boolean-shared a

(·)B
i

bits. In other words, since a
(·)B
i consists of 12-bit length

ns shares, the algorithm slices a
(·)B
i into 12 bits. Then, the

algorithm uses the following bit-wise Compresssq(x) function
to decide whether the share is greater than equal to ⌊ q2⌋.

Compresssq(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7)))
(6)

If x11 = 1, then 211 = 2048 > 1664, and the coefficient
should be compressed to 1. If x11 = 0, we need to consider
the remaining bits. If x10 = 1 and x9 = 1, then the share
is in the range [1536, 2048). Further analysis of x8 and x7

is required. If x8 = 1, the coefficient is in the range [1664,
2048) and should be compressed to 1, regardless of the value
of x7. If x8 = 0 and x7 = 1, the coefficient is exactly 1664,
and it should be compressed to 1. In all other cases (where
x10 = 0, x9 = 0), the coefficient is less than 1664, and it
should be compressed to 0. The output of this algorithm looks
like a vector depending on the number of shares, and is used
by other masked components in Kyber.

IV. CONTRIBUTION

In this section, we are going to present two alternative
algorithms to masking the compression function in Kyber:
Double and Check (See Alg. 1) and Integration of Look-Up-
Table (LUT).

A. Double and Check Algorithm

The Double and Check algorithm provides a method to
handle arithmetic shares, introducing a level of obfuscation.
In this approach, everything up to and including the shifting
procedure aligns with [10]. Each coefficient of a polynomial
in Zq[X] is divided into several ”shares”, with the property
that the sum of the shares modulo q equals the original value.
Each share is then shifted by adding ⌊q/4⌋, which makes the
interval symmetric around ⌊q/2⌋ (See Fig. 3). Retaining the
symmetric interval property of the coefficient domain ensures
consistent overflow behavior beyond q = 3329. This allows the
algorithm to yield a Boolean output, indicating if the original
share exceeded ⌊q/2⌋.

After the symmetry is achieved, the algorithm doubles each
shifted share. This doubling acts as an obfuscated method for
indirectly gauging if the shifted share, when multiplied by two,
surpasses the modulo q. If it does, it implies that the original
share was greater than ⌊q/2⌋. This overflow, or surpassing
of the modulo, is detected by checking if the doubled share
after taking modulo q is different from the raw doubled share
(before taking modulo). If these two values are not the same,
an overflow has occurred.

Hence, the ”Check” in Double and Check (See Alg. 1) is
the procedure of observing whether this overflow took place.

Algorithm 1 Double and Check algorithm

Require: An arithmetic sharing a(·)A of a polynomial a ∈
Zq[X], with each coefficient is masked by ns shares such
that a(·)Ai = a

(0)A
i + a

(1)A
i + · · ·+ a

(ns−1)A
i mod q.

Ensure: A Boolean sharing m′(·)B indicating if each share is
greater than q/2 with m′ = Compressq(a, 1) ∈ Z2256 .

1: for i = 0 to 255 do
2: for k = 0 to ns − 1 do
3: a

(k)A
i ← a

(k)A
i + ⌊ q4⌋ mod q ▷

Shift each share by round.down(q4) to make the domain
interval ([0, q − 1]) symmetric around q

2 .

4: raw double share← 2 ∗ a(k)Ai ▷ Calculate the
doubled share without modulo q once

5: double share← raw double share mod q
6: m

(k)B
i ← double share ̸= raw double share ▷

Check if doubling the shifted share overflows q
7: end for
8: end for
9: return m(·)B

When overflow is detected, the algorithm outputs True with
value 1, indicating the original share was above the midpoint
⌊q/2⌋. If no overflow occurred, the output is False with value
0. The result will be an array of ns bits for each coefficient.

B. Integration of Look-Up-Table (LUT)

In this section, we are going to introduce a Look-Up-Table
(LUT) integration, which represents a classic trade-off be-
tween time (computational speed) and space (memory/storage).
In many scenarios, especially in cryptography, where speed
is paramount, this trade-off is acceptable. The LUT-based
method uses one Arithmetic-to-Boolean conversion per each
share (See Alg. 2).

The algorithm takes each sensitive coefficient of a poly-
nomial x ∈ Z3329[X] as input and splits it into ns shares.
Each share is shifted by ⌊ q4⌋ = 832. This is again done to
my the interval symmetric around ⌊ q2⌋ = 1664. Subsequently,
every share is converted into its 12-bit Boolean representation
(Arithmetic-to-Boolean). This representation is then used to
determine if the share is greater than or equal to 1664, a
decision facilitated by a Look-Up-Table (LUT).

Therefore, since only the 5 most significant bits of a number
are needed to check whether it is greater than or equal to
⌊ q2⌋ = 166410 = (011010000000)2, the algorithm requires
25 = 32 entities (See Table II).

To illustrate the process, consider a coefficient share 2035 ∈
Z3329, which is already shifted by ⌊ q4⌋ in mod q = 3329.
First, we convert 2035 into its binary representation, resulting
in (01111111011)2. From this binary form, we extract its 5
most significant bits, which are 01111 (equivalent to 15 in
decimal notation). Then, by checking the value in the Look-
Up-Table at index 15, we find it’s 1. Consequently, the Boolean
representation for the share 2035 is determined to be 1.

TABLE II
BIT REPRESENTATION, INDEX, AND VALUES.

5-bit Index Value
00000 0 0
00001 1 0

. . .
01100 12 0
01101 13 1

. . .
11110 30 1
11111 31 1

Algorithm 2 LUT-based Compression Algorithm

Require: An arithmetic sharing a(·)A of a polynomial a ∈
Zq[X], a(·)Ai = a

(0)A
i + a

(1)A
i + · · ·+ a

(ns−1)A
i mod q.

Ensure: A Boolean sharing m(·)B indicating if each offset
share is greater than q/2.

1: Pre-compute LUT for indices 0-31, each being a binary
representation of an integer i with bits x11, x10, x9, x8, x7.

2: for i = 0 to 255 do ▷ Loop through all 256 coefficients
3: for k = 0 to ns − 1 do ▷ Loop through all shares for

each coefficient
4: a

(k)A
i ← (a

(k)A
i + ⌊ q4⌋) mod q

5: a
(k)B
i ← A2B(a(k)Ai)

6: Extract a 5-bit index from the most significant bits
of a(k)Bi

7: m
(k)B
i ← LUT[index]

8: end for
9: end for

10: return m(·)B

C. Alternative Prime Number for Fast Compression Function

In this session, we examined the case where the prime
number used in Kyber is set to 7681, instead of 3329. If
we consider the scenario with q = 3329, we observe that
it utilizes the 5 most significant bits of ⌊ 33292 ⌋ with 4 AND, 2
NEG, and 1 XOR operations. However, when q = 7681, the
new masked compression function (See Eq. (7)) becomes 1
NEG and 1 XOR operation less expensive than the function
in Eq. (6), which can be seen from the Table III.

⌊7681
2
⌋ = 3840

3840 = (0111100000000)2
Compresssq(x) : = x13 ⊕ (¬x13 · x12 · x11 · x10 · x9) (7)

In fact, the prime 7681 is the smallest prime that satisfies
q ≡ 1 (mod 2n) such that n = 256. Polynomial multipli-
cation is one of the most computationally intensive parts of
lattice-based cryptographic schemes. The NTT algorithm relies
on the existence of a 2n-th primitive root of unity in the finite
field of integers modulo q. Hence, the prime number 7681 is
not only suitable for fast NTT multiplication but also provides
a fast masked compression function.

TABLE III
ANALYSIS FOR THE PRIME NUMBER 7681

Attribute Value
Number 7681
k 14
⌊ q
2
⌋ 3840.5 ≃ 3840

Binary representation of 3840 (0111100000000)2
Compresssq(x) x13 ⊕ (¬x13 · x12 · x11 · x10 · x9)

Number of XOR operations 1
Number of AND operations 4
Number of NEG operations 1

V. CONCLUSION

In conclusion, our study delves into alternative methods
for ensuring the security of polynomial coefficients during
compression in CRYSTALS-Kyber, focusing on safeguarding
against side-channel attacks.

The presented ”Double and Check” algorithm, along with
the LUT-based method, provide effective means of coefficient
masking, each with its distinct advantages and disadvantages.
Additionally, we have proposed a fast masked compression
function for the CPAPKE.Dec() algorithm using the prime
number 7681, which also facilitates fast NTT multiplication.

While the Double and Check method preserves integrity and
promotes computational efficiency, it does necessitate modular
addition, which is more computationally intensive than a bit-
wise operation proposed in [10]. But more efficient algorithms
exist (like Barrett reduction [19]) that can reduce this com-
plexity. However, these reductions may present additional risk
for side-channel leakage, as shown in the work [20].

In terms of Look-Up-Table integration, which utilizes mod-
ular arithmetic and pre-computed tables, these methods not
only ensure enhanced data protection but also provide com-
putational efficiency. However, they do require a trade-off
between memory and computational efficiency. Even though
the table is quite small, in scenarios involving hardware im-
plementations with limited memory, this may pose a concern.

While both algorithms significantly enhance the security
paradigm, it’s crucial to weigh the potential trade-offs in
specific use-case scenarios. As we navigate an ever-evolving
landscape of cybersecurity threats, this research highlights the
pressing need for continuous innovation in data protection
techniques.

ACKNOWLEDGMENT

The first author gratefully acknowledges the support of
TÜBİTAK’s ”2210-A National MSc/MA Scholarship Pro-
gram.” We extend our heartfelt appreciation to TÜBİTAK for
their invaluable contribution to academic research.

REFERENCES

[1] N. I. of Standards and Technology, “Pqc standardization
process: Announcing four candidates to be standardized,
plus fourth round candidates,” 2022, information Technology
Laboratory, COMPUTER SECURITY RESOURCE CENTER.
[Online]. Available: https://csrc.nist.gov/News/2022/pqc-candidates-to-
be-standardized-and-round-4

[2] E. Dubrova, K. Ngo, J. Gärtner, and R. Wang, “Breaking a fifth-order
masked implementation of crystals-kyber by copy-paste,” in Proceedings
of the 10th ACM Asia Public-Key Cryptography Workshop, 2023, pp.
10–20.

[3] Z. Xu, O. Pemberton, S. S. Roy, D. Oswald, W. Yao, and Z. Zheng,
“Magnifying side-channel leakage of lattice-based cryptosystems with
chosen ciphertexts: The case study of kyber,” IEEE Transactions on
Computers, vol. 71, no. 9, pp. 2163–2176, 2021.

[4] Y. Ji, R. Wang, K. Ngo, E. Dubrova, and L. Backlund, “A side-channel
attack on a hardware implementation of crystals-kyber,” in 2023 IEEE
European Test Symposium (ETS). IEEE, 2023, pp. 1–5.

[5] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in Advances in Cryp-
tology—CRYPTO’99: 19th Annual International Cryptology Conference
Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19.
Springer, 1999, pp. 398–412.

[6] E. Prouff and M. Rivain, “Masking against side-channel attacks: A
formal security proof,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2013,
pp. 142–159.

[7] T. Fritzmann, M. Van Beirendonck, D. B. Roy, P. Karl, T. Schamberger,
I. Verbauwhede, and G. Sigl, “Masked accelerators and instruction set
extensions for post-quantum cryptography,” Cryptology ePrint Archive,
2021.

[8] G. Barthe, S. Belaı̈d, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-
Y. Strub, and R. Zucchini, “Strong non-interference and type-directed
higher-order masking,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 116–
129.

[9] T. Schneider, C. Paglialonga, T. Oder, and T. Güneysu, “Efficiently
masking binomial sampling at arbitrary orders for lattice-based crypto,”
in Public-Key Cryptography–PKC 2019: 22nd IACR International Con-
ference on Practice and Theory of Public-Key Cryptography, Beijing,
China, April 14-17, 2019, Proceedings, Part II 22. Springer, 2019, pp.
534–564.

[10] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. Van Vreden-
daal, “Masking kyber: First-and higher-order implementations,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
173–214, 2021.

[11] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, “Masking
dilithium: Efficient implementation and side-channel evaluation,” in
Applied Cryptography and Network Security: 17th International Con-
ference, ACNS 2019, Bogota, Colombia, June 5–7, 2019, Proceedings
17. Springer, 2019, pp. 344–362.

[12] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a cca-secure
module-lattice-based kem,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 2018, pp. 353–367.

[13] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber algorithm
specifications and supporting documentation,” NIST PQC Round, vol. 2,
no. 4, pp. 1–43, 2019.

[14] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and
C. van Vredendaal, “Masking kyber: First- and higher-
order implementations,” YouTube video in TheIACR Conference
Recording, 2023, [Online; accessed 28-June-2023]. [Online]. Available:
https://www.youtube.com/watch?v=R6lNR3ihVuU&t=230s

[15] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[16] M. V. Beirendonck, J.-P. D’anvers, A. Karmakar, J. Balasch, and
I. Verbauwhede, “A side-channel-resistant implementation of saber,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 17, no. 2, pp. 1–26, 2021.

[17] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Annual international cryptology
conference. Springer, 1999, pp. 537–554.

[18] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the
fujisaki-okamoto transformation,” in Theory of Cryptography Confer-
ence. Springer, 2017, pp. 341–371.

[19] W. Hasenplaugh, G. Gaubatz, and V. Gopal, “Fast modular reduction,”
in 18th IEEE Symposium on Computer Arithmetic (ARITH’07). IEEE,
2007, pp. 225–229.

[20] B.-Y. Sim, A. Park, and D.-G. Han, “Chosen-ciphertext clustering attack
on crystals-kyber using the side-channel leakage of barrett reduction,”
IEEE Internet of Things Journal, vol. 9, no. 21, pp. 21 382–21 397, 2022.

VI. APPENDIX

Algorithm 3 Kyber.CPAPKE.Dec(c, sk): decryption [13]
Require: Secret key sk ∈ B12·k·n/8

Require: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Ensure: Message m ∈ B32

1: u← Decompressq(Decodedu (c), du)
2: v ← Decompressq(Decodedv (c+ du · k · n/8), dv)
3: ŝ← Decode12(sk)
4: m← Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) ▷

Final Result: m← Compressq(v − sTu, 1)
5: return m

Algorithm 4 Kyber.CCAKEM.Decaps(c, sk): decryption [13]
Require: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Require: Secret key sk ∈ B24·k·n/8+96

Ensure: Shared ephemeral key K ∈ B∗

1: pk ← sk + 12 · k · n/8
2: h← sk + 24 · k · n/8 + 32 ∈ B32

3: z ← sk + 24 · k · n/8 + 64
4: m′ ← Kyber.CPAPKE.Dec(s, (u, v))
5: (K

′
, r′)← G(m′||h)

6: c′ ← Kyber.CPAPKE.Enc(pk,m′, r′)
7: if c = c′ then
8: K ← KDF(K′||H(c))
9: else

10: K ← KDF(z||H(c))
11: end if
12: return K

Algorithm 5 Kyber.CPAPKE.Enc(pk,m, r): encryption [13]
Require: Public key pk ∈ B12·k·n/8+32

Require: Message m ∈ B32
Require: Random coins r ∈ B32
Ensure: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

1: N ← 0
2: t̂← Decode12(pk)
3: ρ← pk + 12 · k · (n/8)
4: for i from 0 to k − 1 do ▷ Generate the matrix AT ∈ Rk×k

q in NTT
domain

5: for j = 0 to k − 1 do
6: ÂT [i][j]← Parse(XOF(ρ, i, j))
7: end for
8: end for
9: for i = 0 to k − 1 do

10: r[i]← CBDη1 (PRF(r,N)) ▷ Sample r ∈ Rk
q from Bη1

11: N ← N + 1
12: end for
13: for i = 0 to k − 1 do
14: e1[i]← CBDη2 (PRF(r,N)) ▷ Generate the error vector e1 ∈ Rk

q
from Bη2

15: N ← N + 1
16: end for
17: e2 ← CBDη2 (PRF(r,N)) ▷ Generate the error polynomial e2 Rq

18: r̂← NTT(r) ▷ Perform NTT
19: u← NTT−1(ÂT ◦ r̂) + e1 ▷ u := AT · r+ e1
20: v ← NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1) ▷

v := tT · r+ e2 + Decompressq(m, 1)
21: c1 ← Encodedu (Compressq(u, du)) ▷ Compress u
22: c2 ← Encodedv (Compressq(v, dv)) ▷ Compress v
23: c← (c1 ∥ c2) ▷ Concatenate c1 and c2
24: return c ▷ c← (Compressq(u, du),Compressq(v, dv))

