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Abstract. Recently, SIKE was broken by the Castryck-Decru attack in
polynomial time. To avoid this attack, Fouotsa proposed a SIDH-like
scheme called M-SIDH, which hides the information of auxiliary points.
The countermeasure also leads to huge parameter sizes, and correspond-
ingly the public key size is relatively large.
In this paper, we present several new techniques to compress the pub-
lic key of M-SIDH. Our method to compress the key is reminiscent of
public-key compression in SIDH/SIKE, including torsion basis genera-
tion, pairing computation and discrete logarithm computation. We also
prove that compressed M-SIDH is secure if M-SIDH is secure.
Experimental results showed that our approach fits well with compressed
M-SIDH. It should be noted that most techniques proposed in this paper
could be also utilized into other SIDH-like protocols.

Keywords: M-SIDH · Post-quantum Cryptography · Public-key Com-
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1 Introduction

Since supersingular isogeny Diffie-Hellman (SIDH) [20] was proposed by Jao
et al., isogeny-based cryptosystems are attractive in post-quantum cryptogra-
phy. As the NIST [1] round 4 finalist, supersingular isogeny key encapsulation
(SIKE) [4] is famous for its small public key size.

To make SIDH/SIKE more attractive, a large variety of works targets public-
key compression in SIDH/SIKE to reduce the public key size. Public-key com-
pression in SIDH was first proposed by Azarderakhsh et al. [5]. The key was
further compressed by Costello et al. [12]. There are three main procedures in
public-key compression in SIDH: torsion basis generation, pairing computation
and discrete logarithm computation. Zanon et al. [36] utilized several techniques
to accelerate the implementation significantly. Later, Naehrig et al. [26] adapted
the dual isogeny to speed up the performance of pairing computation, while
Pereira et al. [28] extended the work of [36] and gave a fast method to gen-
erate binary torsion basis. However, most of the techniques require large stor-
age for precomputation. An efficient method to compute discrete logarithms



with smaller lookup tables was proposed in [18]. Lin et al. [22] improved the
Miller evaluation, making the implementation faster with less storage. Several
works [23,27] also managed to compress the key using other approaches.

Recently, Castryck and Decru [8] proposed an efficient attack to break SIDH
and SIKE in polynomial time if the endomorphism ring of the starting curve is
known. Maino et al. [24] gave a subexponential algorithm to attack SIDH with
arbitrary starting curve. Inspired by these two works, Robert [31] presented a
deterministic polynomial time attack on SIDH in all cases. The attacks also
apply to Séta [13] and B-SIDH [11].

However, not all is lost. All the mentioned attacks entirely rely on the fol-
lowing information:

– the degree of the secret isogeny;
– the torsion point images.

Therefore, one could hide either of them to avoid the attack. Moriya managed
to hide the degree of the secret isogenies and proposed a new SIDH-like scheme,
while Fouosta proposed another scheme, called M-SIDH (Masked torsion points
SIDH), to avoid this attack by masking auxiliary points [25,14,15]. However, to
satisfy the desired security, both of SIDH-like schemes require relatively large
parameter sizes, resulting in larger public key size compared with that of SIDH.
To reduce the key size, a natural question is how to compress the public key in
SIDH-like protocols.

In this paper, we give an approach to overcome this problem and propose
several new techniques to compress the public key of M-SIDH, whose size is
6 log2 p bits. We summarize our work as follows:

– We prove that our approach to compress the public key with size ≈ 3.5 log2 p
bits does not affect the security of M-SIDH. Therefore, one does not need to
mask any auxiliary point by executing scalar multiplication in compressed
M-SIDH.

– To compress the public key of M-SIDH, we propose a new approach which is
reminiscent of public-key compression in SIDH/SIKE. Firstly, we proposed a
novel way to generate torsion basis. In particular, to determine whether two
points could form a torsion basis we utilized compressed pairings and Lucas
sequences. Secondly, we provide a new method for discrete logarithm com-
putation, which is to compute only three discrete logarithms efficiently, but
it may fail since the order of the cyclic group involved in discrete logarithms
has distinct prime factors, which is not the case in compressed SIDH/SIKE.
Finally, we provide another effective method to provide more stable perfor-
mance in discrete logarithm computation, although it is not as efficient as
the former one.

– We give the first instantiation of compressed M-SIDH in SageMath. Exper-
imental results verify the validity of our algorithms.

The rest of this paper is as follows. In Section 2 we recall the reduced Tate
pairing, compressed pairings, Lucas sequences, M-SIDH and public-key compres-
sion in SIDH/SIKE. Section 3 sketches our approach to compress the public key
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of M-SIDH. In Section 4 we present several techniques to compress the public key
of M-SIDH. Section 5 reports our implementation and we conclude in Section 6.

2 Preliminaries

In this section, we first introduce the reduced Tate pairings, compressed pair-
ings and Lucas sequences. Next, we recall M-SIDH. Finally, we review several
techniques used in public-key compression in SIDH/SIKE.

2.1 Reduced Tate pairings

Let E be an elliptic curve over the finite field Fq, where q is a power of a prime
p. Denote µn to be the cyclic group of order n in F∗

q , and fn,R to be a rational
function on E satisfying div(fn,R) = n(R) − n(O), where R is a point of order
n. The reduced Tate pairing [16] is defined as:

en : E[n]× E(Fq)/nE(Fq) → µn,

(R,S) 7→ fn,R(S)
q−1
n .

Similar with the Tate pairing [34], the reduced Tate pairing has the following
properties:

– Bilinearity: ∀R,R1, R2 ∈ E[n], ∀S, S1, S2 ∈ E(Fq)/nE(Fq),

en(R,S1 + S2) = en(R,S1) · en(R,S2),

en(R1 +R2, S) = en(R1, S) · en(R2, S);

– Non-degeneracy: If en(R,S) = 1 for all S ∈ E(Fq)/nE(Fq) then R = O, and
if en(R,S) = 1 for all R ∈ E[n] then S ∈ nE(Fq).

– Compatibility with isogenies: Assume ϕ : E → E′ is a non-zero isogeny of
degree m defined over Fq. For R ∈ E[n], S ∈ E(Fq)/nE(Fq), R′ ∈ E′[n],

en(ϕ(R), ϕ(S)) = en(R,S)m,

en(R
′, ϕ(S)) = en(ϕ̂(R

′), S).

2.2 Compressed pairings and Lucas sequences

Compressed pairings were first introduced by Scott et al. [32]. This kind of
pairings reduces to the bandwidth of pairing values by taking the trace map.
Assume that the elliptic curve is supersingular and it is defined over Fp2

3. In this
case, computing the trace of the pairing value is more efficient than computing
the pairing value itself.
3 Indeed, the techniques proposed in this section also works when the elliptic curve is

defined over Fq2 , where q is a prime power.
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The final exponentiation of pairings consists of a raising to the power of
p − 1 and a raising to the power of (p + 1)/n. The former one is an easy part,
but the latter requires relatively large computational resources. Thanks to Lu-
cas sequences [30, Section 3.6.3], one could efficiently obtain trFp2/Fp

(γz) from
trFp2/Fp

(γ) for any γ ∈ µp+1 and z = (z0z1 · · · zt)2 ∈ N, as shown in Algorithm 1.
Therefore, this technique can improve the costly part of the final exponentiation.

Algorithm 1 LS: Lucas sequences
Require: trF

p2
/Fp(γ) with γ ∈ µp+1, z = (z0z1 · · · zt)2 ∈ N;

Ensure: trF
p2

/Fp(γ
z).

1: v0 ← 2, v1 ← trF
p2

/Fp(γ), tmp← v1;
2: for each j ∈ {0, 1, · · · , t} do
3: if zj = 1 then
4: v0 ← v0 · v1, v0 ← v0 − tmp, v1 ← v21 , v1 ← v1 − 2;
5: else
6: v0 ← v20 , v0 ← v0 − 2, v1 ← v0 · v1, v1 ← v1 − tmp;
7: end if
8: end for
9: return v0.

Lucas sequences have potential to improve the exponentiation in the group
µp+1 as well. According to the observation in [32], for any element γ = γ1+γ2 ·i ∈
µp+1 and z ∈ N,

(γ1 + γ2 · i)z =
LS(γ, z)

2
+

γ1 · LS(γ, z)− LS(γ, z − 1)

2γ2
1 − 2

· γ2 · i.

Note that when computing LS(γ,z − 1), the explicit value of LS(γ,z) is also ob-
tained. When the inverse operation is not costly (for instance one can adapt the
the binary GCD algorithm) and z is large, utilizing Lucas sequences will improve
the performance significantly. The main idea is summarized in Algorithm 2.

Algorithm 2 ELS: Exponentiation using Lucas sequences
Require: γ = γ1 + γ2 · i ∈ µp+1, z ∈ N;
Ensure: γz.
1: tmp1 ← LS(γ, z), tmp1 ← LS(γ, z − 1);

//when computing LS(γ,z − 1), LS(γ,z) is also obtained
2: tmp1 ← tmp1/2, tmp2 ← tmp2/2;
3: tmp2 ← γ1 · tmp1 − tmp2, tmp2 ← tmp2/(γ

2
1 − 1), tmp2 ← tmp2 · γ2;

4: return tmp1 + tmp2 · i.
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2.3 M-SIDH

Let p = 4 · f · ℓ1 · ℓ2 · · · ℓt − 1, where the primes ℓ1, ℓ2, · · · , ℓt are the first t
odd primes and f is a small cofactor such that p is a prime. Denote ℓ0 = 2,
NA = ℓ0 · ℓ2 · · · ℓt−1 and NB = ℓ1 · ℓ3 · · · ℓt. Define E0 to be a supersingular curve
over Fp2 together with E0[NA] = 〈PA, QA〉 and E0[NB ] = 〈PB , QB〉. Similar to
the SIDH protocol, M-SIDH proceeds as follows:

– Key Generation: Alice chooses a random integer sA ∈ ZNA
as her secret

key. She computes the point PA + [sA]QA and constructs the NA-isogeny
ϕA with kernel 〈PA + [sA]QA〉. Then she evaluates two torsion point images
ϕA(PB), ϕA(QB) and the image curve EA. Finally, she transmits the tuple
(EA, [a]ϕA(PB), [a]ϕA(QB)) to Bob, where a ∈ Z/NBZ∗. Similar to Alice,
Bob selects a random integer sB ∈ ZNB

to compute PB+[sB ]QB as the kernel
generator of the NB-isogeny ϕB . His public key is (EB , [b]ϕB(PA), [b]ϕB(QA))
with b ∈ Z/NAZ∗.

– Key Agreement: Alice begins her key agreement phase after receiving Bob’s
public key. She first checks the existence of U s.t. eNA

(ϕB(PA), ϕB(QA)) =
eNA

(PA, QA)
U and U/NB(modNA) is a square, if not she aborts. Then she

computes ϕB(PA)+[sA]ϕB(QA) to construct the NA-isogeny ϕ′
A and regards

the j-invariant of the image curve jEBA
as her shared key. Analogously, Bob

checks the existence of V such that eNB
(ϕA(PB), ϕA(QB)) = eNB

(PB , QB)
V

and V/NA(modNB) is a square, if not he aborts. He computes the image
curve EAB of the NB-isogeny ϕ′

B and the shared key j(EAB).

2.4 Public-key compression in SIDH/SIKE

In this subsection, we briefly review the main techniques utilized in public-key
compression in SIDH/SIKE. For simplicity, we only consider how to compress
the key (EB , ϕB(PA), ϕB(QA)).

The main idea of public-key compression is to implement a deterministic
pseudorandom number generator to generate a basis of the NA-torsion group,
and use this basis to linearly represent ϕB(PA) and ϕB(QA), i.e.,[

ϕB (PA)
ϕB (QA)

]
=

[
a0 b0
a1 b1

] [
UA

VA

]
. (1)

After revealing a0, a1, b0 and b1, Bob checks whether a0 is invertible in Z∗
NA

. If so,
Bob sends (EB , 0, a

−1
0 b0, a

−1
0 a1, a

−1
0 b1) to Alice. Otherwise, the element b0 must

be invertible in Z∗
NA

and Bob transmits (EB , 1, b
−1
0 a0, b

−1
0 a1, b

−1
0 b1) instead.

Assume that a0 ∈ Z∗
NA

, while the other case is similar. After receiving Bob’s
public key, Alice could compute the kernel of the isogeny ϕ′

A [12]:

〈ϕB(PA) + [sA]ϕB(QA)〉 = 〈[a0]UA + [b0]VA + [sAa1]UA + [sAb0]VA〉
= 〈UA + [a−1

0 b0]VA + [sAa
−1
0 a1]UA + [sAa

−1
0 b0]VA〉

= 〈[1 + sA(a
−1
0 a1)]UA + [(a−1

0 b0) + sA(a
−1
0 b0)]VA〉.
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Therefore, Alice could complete the key agreement phase, although she does not
recover ϕA(PB) and ϕA(QB).

It remains how to obtain a−1
0 b0, a−1

0 a1 and a−1
0 b1. Zanon et al. [36] proposed

a new technique to speed up the performance. Since ϕB(PA) and ϕB(QA) also
form a basis of EB [NA], they can also linearly represent UA and VA, i.e.,[

UA

VA

]
=

[
c0 d0
c1 d1

] [
ϕB (PA)
ϕB (QA)

]
. (2)

It is easy to verify that (a−1
0 b0, a

−1
0 a1, a

−1
0 b1) = (−d−1

1 d0,−d−1
1 c1, d

−1
1 c0).

With the help of bilinear pairings,

h0 = eNA
(ϕB (PA) , ϕB (QA)) = eNA

(PA, QA)
NB ,

h1 = eNA
(ϕB (PA) , UA) = eNA

(ϕB (PA) , c0ϕB (PA) + d0ϕB (QA)) = hd0
0 ,

h2 = eNA
(ϕB (PA) , VA) = eNA

(ϕB (PA) , c1ϕB (PA) + d1ϕB (QA)) = hd1
0 ,

h3 = eNA
(ϕB (QA) , UA) = eNA

(ϕB (QA) , c0ϕB (PA) + d0ϕB (QA)) = h−c0
0 ,

h4 = eNA
(ϕB (QA) , VA) = eNA

(ϕB (QA) , c1ϕB (PA) + d1ϕB (QA)) = h−c1
0 .

(3)
Note that h0 only depends on public parameters. Therefore, one can recover c0,
c1, d0, d1 by computing 4 discrete logarithms of h1, h2, h3, h4 to the base h0

efficiently with precomputed lookup tables [36,18,26,22]. Another approach is to
compute only 3 discrete logarithms of h1, h3, h4 (resp. h2, h3, h4) to the base
h2 (resp. h1) without precomputation for h2 (resp. h1) could not be computed
in advance [23].

3 Public-key Compression in M-SIDH

In this section, we sketch our approach to compress the public key of M-SIDH
and give Proposition 2 to show that compressed M-SIDH is secure if M-SIDH is
secure.

3.1 Our approach to compress the key

Our approach to compress the public key of M-SIDH is reminiscent of public-
key compression in SIDH/SIKE. Given a secret NB-isogeny from E0 to EB , the
main procedures are as follows:

1. Torsion basis generation: Generate {UA, VA} such that 〈UA, VA〉 = EB [NA];
2. Pairing computation: Compute the following four pairings:

h1 = eNA
(ϕB(PA), UA) , h2 =eNA

(ϕB(PA), VA) ,

h3 = eNA
(ϕB(QA), UA) , h4 = eNA

(ϕB(QA), VA) ;
(4)

6



3. Discrete logarithm computation: Check whether each hi, i = 1, 2, 3, 4 could
be a generator of the multiplicative group µNA

. If there exists an element of
order NA, set it as the base and compute discrete logarithms of other three
elements to the base. Otherwise, select another secret key skA and repeat
the key generation phase and public-key compression step.

The public key is (B, s1, s2, s3, label), where B is the image curve coefficient
of the isogeny ϕB , s1, s2 and s3 are the solutions of three discrete logarithms
in Procedure 3, and label is used to mark which one is the base of discrete
logarithms. Similar to public-key compression in SIDH, it is easy to see that our
method to compress the key is valid.

Proposition 1. One could compress the public key successfully by performing
the above procedures.

Remark 1. In the compressed SIDH protocol, it is impossible that none of hi is
a generator. However, it happens in compressed M-SIDH with small possibility.
For example, in Equation (2), ℓ0 may divide c0 and d1, while ℓ2 may divide
d0 and c1. To minimize the public key size, one can select another secret key.
Another alternative approach to overcome this issue is proposed in Section 4.3.

Remark 2. As mentioned in Section 2.4, one could utilize dual isogenies to opti-
mize pairing computation [26,22] in compressed SIDH. However, the dual isogeny
construction in compressed M-SIDH is much more costly compared to that of
compressed SIDH. According to our experiments, directly computing h1, h2, h3

and h4 in Equation (4) without the dual isogeny technique is more efficient. This
is the reason why we do not utilize the dual isogeny technique.

Now we prove that compressed M-SIDH is secure whenever M-SIDH is secure.

Proposition 2. Compressed M-SIDH is secure if M-SIDH is secure.

Proof. Without loss of generality, we only consider Bob’s case.
If Bob transmits (EB , ϕB(PA), ϕB(QA)) to Alice without compression, then

the adversary Eve could apply the Castryck-Decru attack to recover the se-
cret key. Therefore, M-SIDH requires masking auxiliary points by executing
two scalar multiplications. In compressed M-SIDH, Bob compresses the key and
transmits (EB , a

−1
0 b0, a

−1
0 a1, a

−1
0 b1, label) to Alice (assume that a0 ∈ Z∗

NA
). In

the following, we will prove that it is hard for Eve to recover ϕB as long as
M-SIDH is secure.

After generating UA and VA, Eve can compute

[a−1
0 ]ϕB(PA) = UA + [a−1

0 b0]QA,

[a−1
0 ]ϕB(QA) = [a−1

0 a1]UA + [a−1
0 b1]QA.

Hence,

eNA
([a−1

0 ]ϕB(PA), [a
−1
0 ]ϕB(QA)) = eNA

(PA, QA)
NBa−2

0 .
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To recover a−2
0 mod NA, Eve computes a discrete logarithm of eNA

(PA, QA)
NBa−2

0

to the base eNA
(PA, QA). Select a′0 such that (a′)

2 ≡ (a0)
2
mod NA. Set α =

a′a−1
0 ∈ µ2(NA), where

µ2(N) = {x ∈ Z/NZ|x2 ≡ 1 mod N}.

Therefore, Eve has the information that

[α]ϕB(PA) = [a′][a−1
0 ]ϕB(PA),

[α]ϕB(QA) = [a′][a−1
0 ]ϕB(QA).

However, as Fouotsa et al. claimed [15], in the M-SIDH setting, it is hard to
recover α, which is equivalent to recover a−1

0 . Therefore, if M-SIDH is secure,
compressed M-SIDH is also secure. This completes the proof. ■

4 Optimizations on Compressed M-SIDH

Proposition 2 induces that compressed M-SIDH saves two large scalar multipli-
cations of length ≈ √

p as M-SIDH does. However, it should be noted that the
performance of compressed M-SIDH is still not as efficient as that of M-SIDH
because of torsion basis generation, pairing computation and discrete logarithm
computation. In this section we will optimize the performance of key compres-
sion to close the gap. As before, we only handle Bob’s case and Alice could adapt
all the techniques to accelerate the performance.

4.1 Torsion basis generation

Since NA and NB are not the power of 2 and 3, the torsion basis generation of
compressed M-SIDH could not benefit from several techniques such as shared
Elligator [36] and 3-descent of elliptic curves [12]. In this subsection we propose
a new method to generate {UA, VA} such that 〈UA, VA〉 = EB [NA], while the
torsion basis generation of the NB-torsion group of EA is similar. For simplicity,
we abbreviate UA and VA to U and V , respectively.

Generating one of the torsion points is relatively easy: we can choose a point
of order NA and then set it as U . After U is successfully generated, we generate
another point V such that 〈U, V 〉 = EB [NA].

As for the first torsion point, a naive way is to sample a random point R ∈
EB(Fp2), and then check whether the order of [2fNB ]R is NA. Here we propose
Algorithm 3 to generate U , which is more efficient than the naive approach. We
also output {Uj |j ∈ I}, which are useful for the generation of the second torsion
point V .
The main idea of Algorithm 3 is as follows:

– Firstly, we randomly generate a point R using Elligator [7] and set U =
[2fNB ]R.
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Algorithm 3 GenerationU: generate a point of order NA

Require: EB/Fp2 : A supersingular curve, I : {j|ℓj divides NA};
Ensure: A point U ∈ EB(Fp2) of order NA, {Uj |j ∈ I}.
1: Generate a point R ∈ EB(Fp2) using Elligator;
2: U ← [2fNB ]R;
3: {Uj} ←BCM(U, I); // Algorithm 4
4: IU ← {j|Uj = O};
5: while IU ̸= ∅ do
6: Generate a point R ∈ EB(Fp2) using Elligator;
7: U ′ ← [2fNB ]R;
8: U ′ ←

∏
j∈I\IU

[ℓj ]U
′;

9: {U ′
j} ←BCM(U ′, IU ); // Algorithm 4

10: for each j ∈ {k|U ′
k ̸= O} do

11: U ← U + U ′
j , Uj ← U ′

j ;
12: end for
13: IU ← {j|U ′

j = O};
14: end while
15: return U , {Uj |j ∈ I}.

– Next, we compute Uj = [NA/ℓj ]U , where I = {j|ℓj divides NA}. It is easy
to see that Uj is a point of order ℓj if ℓj divides the order of U . Otherwise,
Uj is at infinity.

– Denote IU = {j|Uj = O}. If IU is not empty, we randomly sample another
point R and compute U ′ = [2fNB ]R. According to IU , we compute U ′

j =
[NA/ℓj ]U

′ where j ∈ IU . If U ′
j is not at infinity, set U = U +U ′

j . Finally, let
IU = {j|U ′

j = O}. We repeat the above progress to generate U ′ until IU is
empty.

As a result, for each j ∈ I, Uj = [NA/ℓj ]U 6= O. Therefore, U is a point of
order NA.

Remark 3. The approach to compute Uj is inspired by the public-key valida-
tion of CSIDH [9]. The authors check the key by generating a point and then
check the order of the point using a divide-and-conquer approach [33]. Although
this approach consumes slightly larger memory, it performs more efficient than
directly computing each Uj .

In the following we focus on how to generate another point V such that
〈U, V 〉 = EB [NA]. A naive approach is to generate V with respect to the above
method, and then check if U and V can generate the NA-torsion group. However,
this method is not so practical because the success probability is relatively small.
Here we present a more efficient method to generate V thanks to Proposition 3.

Proposition 3. Assume that U is a point of order NA = ℓ0ℓ2 · · · ℓt−1 on EB,
and V a random point on EB(Fp2)/NAEB(Fp2). Let I = {j|ℓj divides NA},

9



Algorithm 4 BCM: Batch cofactor multiplication
Require: A point U , IU : a subset of I = {j|ℓj divides NA};
Ensure: Points {U1, U2, · · · , Un′}, where Uk =

∏
j∈IU\{k}

[ℓj ]U and n′ = #IU .

1: if n′ = 1 then
2: return {U};
3: end if
4: m′ ← ⌊n′/2⌋;
5: L1 ←

∏m′−1
i=0 ℓIU [i], L2 ←

∏n′−1
i=m′ ℓIU [i];

6: left← [L1]U ;
7: right← [L2]U ;
8: Divide IU into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
9: r1 ←BCM(left,I1);

10: r2 ←BCM(right,I2);
11: return r1 ∪ r2.

Uk =
∏

j∈I\{k}
[ℓj ]U . Denote by ord(γ) the order of γ in µNA

. Then

ord(eNA
(U, V )) =

∏
j∈I

eℓj (Uj ,V )̸=1

ℓj . (5)

In particular, eNA
(U, V ) is a generator of µNA

iff 〈U, V 〉 = EB [NA].

Proof. Let sk =
∏

j∈I\{k}
ℓj and s′k = s−1

k mod ℓk. From Uk =
∏

j∈I\{k}
[ℓj ]U we have

U =
∑

k∈I [s
′
k]Uk. Utilizing the bilinearity of the reduced Tate pairing,

eNA
(U, V )

=eNA
([s′0]U0, V ) · eNA

([s′2]U2, V ) · · · eNA
([s′t−1]Ut−1, V )

=eNA
(U0, V )s

′
0 · eNA

(U2, V )s
′
2 · · · eNA

(Ut−1, V )s
′
t−1 .

(6)

With the help of the linearity of the reduced Tate pairings,

eNA
(Uk, V ) = eℓk(Uk, V ).

Let Vk =
∏

j∈I\{k}
[ℓj ]V . Obviously, eℓk(Uk, V ) = 1 iff eℓk(Uk, Vk) = 1.

In the following, we will prove that Vk and Uk are linearly dependent iff
eℓk(Uk, Vk) = 1, i.e., eNA

(Uk, V ) = 1.
We first assume that Vk and Uk are linearly dependent. Then we have

– Vk = O, or
– Vk 6= O, but Vk ∈ 〈Uk〉,

and vice versa. Since that the curve E : y2 = x3 + x is supersingular, there
exists an isogeny from E to EA. Applying the KLPT algorithm [21], one could
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find an isogeny ϕ : E → EB of degree ℓ•1. Since gcd(NA, ℓ1) = 1, the isogeny
ϕ is a one-to-one correspondence between E[NA] and EB [NA]. Therefore, there
exist U ′

k, V
′
k ∈ E[NA] such that Uk = ϕ(U ′

k) and Vk = ϕ(V ′
k). According to [17,

Theorem IX.9(4.)], we have

eℓk(Uk, Vk) = eℓk(ϕB(U
′
k), ϕB(V

′
k)) = eℓk(U

′
k, V

′
k)

ℓ•1 .

Note that the original curve E0 is defined over the base field and now the em-
bedding degree corresponding to p and ℓk is 2. By [17, Lemma IX.13], we deduce
that eℓk(Uk, Vk) = 1.

Conversely, from Vk and Uk are linearly independent, we can easily deduce
that eNA

(Uk, V ) 6= 1 . In this case, eNA
(Uk, V ) is a generator of the group µℓk .

It is clear that eNA
(Uk, V ) 6= 1 iff eNA

(Uk, V )s
′
k 6= 1. According to Equa-

tion (6), the order of eNA
(U, V ) depends on the order of each eNA

(Uk, V ):

ord (eNA
(U, V )) =

∏
k∈I

ord
(
eNA

(Uk, V )s
′
k

)
=

∏
k∈I

ord(eNA
(Uk, V )).

If eNA
(Uk, V ) is not equal to 1, then eNA

(U, V ) has order ℓk. Otherwise, we
know that ℓk does not divide the order of eNA

(U, V ). Consequently, we have
Equation (5).

If eNA
(U, V ) is a generator of µNA

, for each k we have eℓk(Uk, Vk) 6= 1 and
thus they are linearly independent. Hence, 〈Uk, Vk〉 = EB [ℓk] for each k. It should
be noted that

EB [NA] ∼= EB [ℓ0]⊕ EB [ℓ2]⊕ · · · ⊕ EB [ℓt−1]. (7)

Therefore, 〈U, V 〉 = EB [NA]. Suppose that 〈U, V 〉 = EB [NA], and now we are
going to prove eNA

(U, V ) ∈ µNA
is of order NA. Assume that ℓk does not divide

the order of eNA
(U, V ) ∈ µNA

. Then

eNA
(U, V )NA/ℓk = eNA

([NA/ℓk]U, V ) = eNA
(Uk, V ) = 1 = eℓk(Uk, Vk).

This induces 〈Uk, Vk〉 ∼= Zℓk . From Equation (7), {U, V } is not the torsion basis
of EB [NA], which completes the proof. ■

Proposition 3 gives a way to test whether two points could generate the
torsion group EB [NA] by checking the order of the pairing value in the group
µNA

. One can randomly generate a point V ∈ EB(Fp2)/NAEB(Fp2) using El-
ligator, and compute the order of eNA

(U, V ) in µNA
. Then we have a subset

IV = {jk|eℓjk (Ujk , V ) 6= 1} of the set I = {j|ℓj divides NA}. Similar to the
method to generate the point U , we generate another point V ′ 6= V and com-
pute:

f ′ = e∏
jk∈IV

ℓjk
(
∑

jk∈IV

Ujk ,
∏

j∈I\IV

[ℓj ]V
′). (8)

After that, we check whether ℓjk divides the order of f ′ ∈ µNA
for each jk ∈ IV .

If so, set V = V +V ′
jk

, where V ′
jk

= [NA/ℓjk ]V
′. If the set IV = {jk|f ′

jk
= 1} is not

11



empty, we generate another new point V ′ and repeat the procedure. Finally, we
have a point V such that eNA

(U, V ) is a generator of µNA
, then 〈U, V 〉 = EB [NA]

according to Proposition 3.
It seems that once we would like to generate V ∈ EB(Fp2)/NAEB(Fp2),

we need to randomly generate a point R on E(Fq) and then perform a large
scalar multiplication V = [2fNB ]R such that ord(V )|NA. Fortunately, this large
scalar multiplication is not necessary when just computing ord(eNA

(U, V )). It is
obvious that 2fNB and NA are coprime and therefore,

ord(eNA
(U, V ))=ord

(
(eNA

(U,R))
2fNB

)
=ord(eNA

(U,R)).

It confirms that we can just randomly generate a point R ∈ E(Fq) to compute
ord(eNA

(U, V )) = ord(eNA
(U,R)). For the same reason we can save the scalar

multiplication of V ′ in Equation (8) as well.
Checking the order of the pairing value is also a costly step. Indeed, the aim

of the pairing computation is not to compute the precise pairing value but its
order. Here we give a lemma, which allows us to compute compressed pairings
to reach the goal.

Lemma 1. Let γ ∈ µp+1, then γ = 1 iff trFp2/Fp
(γ) = 2.

Proof. The necessity is obvious, now we show the sufficiency. Suppose that γ =
γ1 + γ2 · i. From trFp2/Fp

(γ) = 2, we have 2γ1 = 2 and hence γ1 = 1. Since
γ ∈ µp+1, γp+1 = γ2

1 + γ2
2 = 1. It implies that γ2 = 0. ■

Therefore, to check the order of the pairing value f ′, one can first compute
trFp2/Fp

(f ′), and then utilize Lucas sequences to obtain trFp2/Fp

(
(f ′)NA/jk

)
for

each jk ∈ IV . Similar to Algorithm 4, we present Algorithm 5 to compute them
efficiently.

Algorithm 5 BCE: Batch cofactor exponentiation

Require: An element f ′ ∈ trF
p2

/Fp(µNA), IV : a subset of I = {j|ℓj divides NA};

Ensure: {f ′
1, f

′
2, · · · , f ′

n′}, where f ′
k = trF

p2
/Fp

(
(f ′

k)
∏

j∈IV \{k} ℓj
)

and n′ = #IV .
1: if n′ = 1 then
2: return {f ′};
3: end if
4: m′ ← ⌊n′/2⌋;
5: L1 ←

∏m′−1
i=0 ℓIV [i], L2 ←

∏n′−1
i=m′ ℓIV [i];

6: left← LS(f ′, L1); // Algorithm 1
7: right← LS(f ′, L2); // Algorithm 1
8: Divide IV into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
9: r1 ← BCE(left,I1);

10: r2 ← BCE(right,I2);
11: return r1 ∪ r2.

12



After that, we check if each of them is equal to 2 or not. Thanks to Lemma 1,
we can deduce whether (f ′)NA/jk is equal to 1, and so its order could be deter-
mined.

In a nutshell, we present Algorithm 6 to generate V .

Algorithm 6 GenerationV: generate a point of order NA such that 〈U, V 〉 =
EB [NA]

Require: EB/Fp2 : A supersingular curve, I : {j|ℓj divides NA}, U : A point of order
NA on EB/Fp2 ;

Ensure: A point V ∈ EB(Fp2) of order NA such that ⟨U, V ⟩ = EB [NA].
1: Generate a point V ∈ EB(Fp2) using Elligator;
2: f ′ ← trF

p2
/Fp (eNA(U, V ));

3: {f ′
j} ←BCE(f ′, I); // Algorithm 5

4: IV ← {jk|f ′
jk

= 2};
5: while IV ̸= ∅ do
6: Generate a point V ′ ∈ EB(Fp2) using Elligator;
7: U ′ ←

∑
jk∈IV

Ujk , L←
∏

jk∈IV
ℓjk ;

8: f ′ ← trF
p2

/Fp (eL(U
′, V ′));

9: {f ′
jk
} ←BCE(f ′, IV ); // Algorithm 5

10: if f ′
jk
̸= 2 for some jk then

11: V ′ ←
∏

j∈I\IV
[ℓj ]V

′;
12: {V ′

jk
} ←BCM(V ′, IV ); // Algorithm 4

13: end if
14: for each jk ∈ {jk|f ′

jk
̸= 2} do

15: V ← V + V ′
jk

;
16: end for
17: IV ← {jk|f ′

jk
= 2};

18: end while
19: V ← [2fNB ]V ;
20: return V .

Remark 4. During the torsion basis generation, the first batch cofactor multi-
plication of U in Line 3 of Algorithm 3 and the first pairing computation in
Line 2 Algorithm 6 consume large computational resources. To eliminate these
two expensive parts for Alice, Bob could send her the initial IU (in Line 4 of
Algorithm 3) and IV (in Line 4 of Algorithm 6). They can be translated into
two (t+1)/2-bit strings. It would be a trade-off between the public key size and
efficiency.

4.2 Discrete logarithm computation

Different from the case we handle in SIDH, one should compute discrete loga-
rithms in the multiplicative group µNA

. Since NA is smooth, one could use the
Pohlig-Hellman algorithm [29] to simplify a discrete logarithm in µNA

to discrete
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logarithms in the groups µℓj with j ∈ I = {j|ℓj divides NA}, and finally use the
Chinese Remainder Theorem to recombine.

Firstly, we compute h
NA/ℓj
i with j ∈ I and i = 1, 2, 3, 4 using a divide-and-

conquer approach. Note that this step could be also accelerated with the help of
Lucas sequences [32, Section 3], as we proposed in Algorithm 7.

Algorithm 7 BCEA: Batch cofactor exponentiation in µNA

Require: An element h′ ∈ µNA , I ′: a subset of I = {j|ℓj divides NA};
Ensure: {h′

1, h
′
2, · · · , h′

n′}, where h′
k =

(
(f ′

k)
∏

j∈I′\{k} ℓj
)

and n′ = #I ′.
1: if n′ = 1 then
2: return {h′};
3: end if
4: m′ ← ⌊n′/2⌋;
5: L1 ←

∏m′−1
i=0 ℓi, L2 ←

∏n′−1
i=m′ ℓi;

6: left← ELS(h, L1); // Algorithm 2
7: right→ ELS(h, L2); // Algorithm 2
8: Divide I ′ into two subsets I1, I2 such that #I1 = n′ −m′ and #I2 = m′;
9: r1 ←BCEA(left,I1);

10: r2 ←BCEA(right,I2);
11: return r1 ∪ r2.

After that, we need to choose one of hi, i = 1, 2, 3, 4 to be the base of discrete
logarithms. A direct approach is to check whether the order of hi is equal to NA.
It is easy to be done by observing if hNA/ℓj

i = 1 for some j. When it happens,
ℓj does not divide the order of hi and thus hi is not a generator. We use label
to mark which one to be the base.

Without loss of generality, we assume that h4 is a generator. For each j ∈
I, compute the discrete logarithms of h

NA/ℓj
1 , h

NA/ℓj
2 and h

NA/ℓj
3 to the base

h
NA/ℓj
4 , denoted by s

(j)
1 , s(j)2 and s

(j)
3 , respectively. This step is efficient since ℓj

is relatively small.
Finally, from s

(j)
1 , s(j)2 and s

(j)
3 with j ∈ I we recover s1 = logh4

(h1), s2 =
logh4

(h2) and s3 = logh4
(h3), respectively. This step is fast with the help of the

Chinese Remainder Theorem.
Algorithm 8 is the pseudocode summarizing our ideas to compute discrete

logarithms.

4.3 An alternative approach to solve discrete logarithms

In this subsection we propose another method to overcome the issue mentioned
in Remark 1. The method is not as efficient as the former method, but avoids
repeating the procedure when none of hi, i = 1, 2, 3, 4 could generate µNA

.
Firstly, we compute four discrete logarithms of hi, i = 1, 2, 3, 4 to the base

h0 = eNA
(ϕB(PA), ϕB(QA)), which is the generator of µNA

. Since PA and QA
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Algorithm 8 Discrete logarithm computation
Input: I: {j|ℓj divides NA}; h1, h2, h3, h4: the values computed in Equation (4);
Output: label: a label to mark the base is Hb = hlabel, and H1, H2, H3 are the other
three elements; s1, s2, s3: Integers in {0, 1, · · · , NA − 1} such that H1 = hs1

b , H2 = hs2
b

and H3 = hs3
b .

1: for k ∈ {1, 2, 3, 4} do
2: {h(j)

k } ← BCEA(hk, I); // Algorithm 7
3: end for
4: for k ∈ {1, 2, 3, 4} do
5: if h

(j)
k ̸= 1 for all j then

6: label← k, Hb ← hk, {H1, H2, H3} ← {hj |j ̸= k}; break;
7: end if
8: end for
9: for each k ∈ {1, 2, 3} do

10: for each j ∈ I do

11: find s
(j)
k such that H

(j)
k =

(
H

(j)
b

)s
(j)
k ;

12: end for
13: end for
14: for each k ∈ {1, 2, 3} do
15: Use the Chinese remainder theorem to compute sk mod NA such that sk ≡

s
(j)
k mod ℓj with j ∈ I;

16: end for
17: return s1, s2, s3, label.

are fixed, the value h0 = eNA
(PA, QA)

NB could be precomputed to accelerate
the performance. Note that ci = − logh0

hi, di = logh0
hi+2, i = 0, 1. For each

j ∈ I = {j|ℓj divides NA}, let c
(j)
i = ci mod ℓj , d(j)i = di mod ℓj , i = 0, 1. Since

ℓj is prime and 〈UA, VA〉 = EB [NA] = 〈ϕB(PA), ϕB(QA)〉, either d
(j)
0 or d

(j)
1 is

invertible. Therefore, we have

(
S
(j)
1 , S

(j)
2 , S

(j)
3 , labelj

)
=


(
−(d

(j)
1 )−1d

(j)
0 ,−(d

(j)
1 )−1c

(j)
1 , (d

(j)
1 )−1c

(j)
0 , 1

)
, if d(j)1 6= 0,(

1, (d
(j)
0 )−1c

(j)
1 ,−(d

(j)
0 )−1c

(j)
0 , 0

)
, otherwise.

(9)
Thanks to the Chinese Remainder Theorem, one could obtain Si mod NA

from S
(j)
i mod ℓj with j ∈ I.

The public key is (B,S1, S2, S3, label), where

label = label0 + label2 · 2 + · · ·+ labelt−1 · 2(t−1)/2. (10)

The pesudocode is proposed in Algorithm 9.
A question raised here is how Alice generates a kernel generator GA of the

group 〈ϕB(PA)+[skA]ϕB(QA)〉 = 〈[d1−c1 ·skA]U+[−d0+c0 ·skA]V 〉 according
to (B,S1, S2, S3, label).
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Algorithm 9 Another approach to compute discrete logarithms
Input: I: {j|ℓj divides NA}; h0: eNA(PA, QA)

NB ; h1, h2, h3, h4: the values computed
in Equation (4);
Output: label: A (t− 1)/2-bit integer defined in Equation (10); S1, S2, S3: Integers in
{0, 1, · · · , NA − 1} defined as above, which satisfies Equation (9).
1: for k ∈ {0, 1, 2, 3, 4} do
2: {h(j)

k } ← BCEA(hk, I); // Algorithm 7
3: end for
4: for each j ∈ I do
5: for each k ∈ {1, 2} do

6: find c
(j)
k such that h

(j)
k =

(
h
(j)
0

)−c
(j)
k ;

7: find d
(j)
k such that h

(2+j)
k =

(
h
(j)
0

)d
(j)
k ;

8: end for
9: if d

(j)
1 ̸= 0 then

10: S
(j)
1 ← −

(
d
(j)
1

)−1

d
(j)
0 , S

(j)
2 ← −

(
d
(j)
1

)−1

c
(j)
1 , S

(j)
3 ←

(
d
(j)
1

)−1

c
(j)
0 ,

labelj ← 1;
11: else
12: S

(j)
1 ← 1, S(j)

2 ←
(
d
(j)
0

)−1

c
(j)
1 , S(j)

3 ← −
(
d
(j)
0

)−1

c
(j)
0 , labelj ← 0;

13: end if
14: end for
15: for each k ∈ {1, 2, 3} do
16: Use the Chinese remainder theorem to compute Sk mod NA such that Sk ≡

S
(j)
k mod ℓj with j ∈ I;

17: end for
18: label←

∑
j∈I labelj · 2

j ;
19: return S1, S2, S3, label.

Using Algorithms 3 and 6, Alice obtains U and V . Besides, she could con-
struct

S
(j)
4 ≡ 1 mod ℓj if labelj = 1, or S

(j)
4 ≡ 0 mod ℓj otherwise. (11)

Utilizing the Chinese Remainder Theorem, Alice could recover S4 mod NA from
Equation (11). Let

GA = [S4 + S2 · skA]U + [S3 + S1 · skA]V.

Now we show that GA is a kernel generator of 〈ϕB(PA) + [skA]ϕB(QA)〉. It
is equivalent to show that for each k ∈ I,

〈[NA/ℓk]GA〉 = 〈[d1 − c1 · skA]Uk + [−d0 + c0 · skA]Vk〉, (12)
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where Uk = [NA/ℓk]U and Vk = [NA/ℓk]V . From Equation (9), we know that
S
(j)
1 ≡ S1 mod ℓj

S
(j)
2 ≡ S2 mod ℓj

S
(j)
3 ≡ S3 mod ℓj

if labelj = 1, or


S
(j)
1 ≡ 1 mod ℓj

S
(j)
2 ≡ S2 mod ℓj

S
(j)
3 ≡ S3 mod ℓj

otherwise.

If labelj = 1, then S′
4 = 1 mod ℓj and hence

[NA/ℓk]GA = [1 + S2 · skA]Uk + [S3 + S1 · skA]Vk.

Note that
[1 + S2 · skA]Uk + [S3 + S1 · skA]Vk

=[1 + S
(j)
2 · skA]Uk + [S

(j)
1 + S

(j)
3 · skA]Vk

=[1− (d
(j)
1 )−1c

(j)
1 · skA]Uk + [−(d

(j)
1 )−1d

(j)
0 + (d

(j)
1 )−1c

(j)
0 · skA]Vk

=[(d
(j)
1 )−1] ·

(
[d

(j)
1 − c

(j)
1 · skA]Uk + [−d

(j)
0 + c

(j)
0 · skA]Vk

)
=[(d

(j)
1 )−1] · ([d1 − c1 · skA]Uk + [−d0 + c0 · skA]Vk) .

In other words, we have

[NA/ℓk]GA ∈ 〈[d1 − c1 · skA]Uk + [−d0 + c0 · skA]Vk〉

when S
(j)
4 = 1. Similarly, we can deduce that [NA/ℓk]GA and [d1− c1 · skA]Uk +

[−d0 + c0 · skA]Vk are linearly dependent when S
(j)
1 = 0. Therefore, GA satisfies

Equation (12).
Proposition 4. After applying Algorithm 9 and modifying the public key, com-
pressed M-SIDH is still secure whenever M-SIDH is secure.
Proof. Analogous to what Bob does in the key agreement phase, Eve could re-
cover (S(j)

1 , S
(j)
2 , S

(j)
3 , S

(j)
4 ), then S1, S2, S3 and S4 using the Chinese Remainder

Theorem, and thus he is able to compute

P ′
A = [S4]UA + [S3]VA = [α′]ϕB(PA),

Q′
A = [S2]UA + [S1]VA = [α′]ϕB(QA),

where α′ ∈ Z∗
NA

satsifies{
α′ ≡ d

(j)
1 mod ℓj , if labelj = 1,

α′ ≡ d
(j)
0 mod ℓj , if labelj = 0.

Similar to the proof in Proposition 2, one could compute pairings and solve
one discrete logarithm to compute (α′)2 mod NA. Choose one root α′

0 such that
(α′

0α
′)2 ≡ 1 mod NA and set α = α′

0α
′, then

[α]ϕB(PA) = [a′][a−1
0 ]ϕB(PA),

[α]ϕB(QA) = [a′][a−1
0 ]ϕB(QA).

In the M-SIDH setting, recovering α is hard and so is α′
0, which ends the proof.■
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The new method is not as efficient as the method proposed in Section 4.2.
The main reason is that the former requires one more execution of BCEA (Al-
gorithm 7) and one more discrete logarithm. Furthermore, the public key size
is slightly larger since a (t + 1)/2-bit integer label is required. However, the
new method confirms that there is no need to select another secret key when all
hi (i = 1, 2, 3, 4) are not of full order NA. This leads to more stable performance.

5 Implementation Results

In this section, we implement compressed M-SIDH in SageMath (version 9.5) [2]
and give our experimental results.

Isogeny computation is the most expensive part of (compressed) M-SIDH.
There are mainly two ways to construct the isogeny. One is the traditional Vélu’s
formula [35], and the other is a more efficient formula to construct the large
degree isogeny [6]. We combine both of them to implement compressed M-SIDH.
For small degree isogeny computations we use traditional Vélu’s formula, and
use the method proposed in [6] to compute the large degree isogeny.

Based on the code1 from [6], we give a proof-of-concept implementation of
compressed M-SIDH in SageMath. We compiled our code2 by using a 12th Gen
Intel(R) Core(TM) i9-12900K 3.20 GHz on 64-bit Linux with the so-called turbo
boost and hyper-threading features disabled. Table 1 reports the performance of
the key generation phase.

Table 1. Experimental results of key generation of Alice in compressed M-SIDH for
the NIST-1 level of security.

Procedure Alice Bob
Isogeny Computation 687.05s 690.53s
Torsion Basis Generation 16.29s 16.37s
Pairing Computation 16.24s 16.15s
Discrete Logarithm Computation (Alg. 8/Alg. 9) 5.66s/6.04s 5.55s/6.01s
Total Cost (the whole key generation phase) 725.24s/725.62s 728.60s/729.06s

As shown in Table 1, isogeny computation dominates the cost of key gen-
eration. One may try to utilize several techniques proposed in the literature to
speed up the compressed M-SIDH implementation. There are several works on
the optimizations of CSIDH [9]. For example, the approach [10] to find an op-
timal strategy of CSIDH could be easily extended to the isogeny computation
of M-SIDH. It is also possible to improve the performance by changing the per-
mutation of the ℓj-isogeny computation [19]. The improvement of large degree
isogeny computation is explored by [3].

Torsion basis generation and pairing computation are the efficiency bottle-
necks of public-key compression in M-SIDH. The computational cost of discrete

1 https://velusqrt.isogeny.org/
2 https://github.com/CompressedMSIDH/CompressedMSIDH
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logarithm computation is approximately one third of that of torsion basis gen-
eration. We leave the exploration of the faster implementation of compressed
M-SIDH for future work.

6 Conclusion

In this paper, we proposed a method to compress the public key of M-SIDH by
utilizing several techniques. The implementation showed that public-key com-
pression was relatively efficient, compared with isogeny computation.

It should be noted that the techniques proposed in this work could be also
extended easily to other SIDH-like schemes. Although the implementation of
compressed M-SIDH is not efficient now because of the huge characteristic of
the base field and expensive isogeny computation, we believe that compressed
SIDH-like schemes could find their positions with further research.
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