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Abstract

Count-Min Sketch (CMS) and HeavyKeeper (HK) are two realizations of a compact frequency es-
timator (CFE). These are a class of probabilistic data structures that maintain a compact summary
of (typically) high-volume streaming data, and provides approximately correct estimates of the number
of times any particular element has appeared. CFEs are often the base structure in systems looking
for the highest-frequency elements (i.e., top-K elements, heavy hitters, elephant flows). Traditionally,
probabilistic guarantees on the accuracy of frequency estimates are proved under the implicit assumption
that stream elements do not depend upon the internal randomness of the structure. Said another way,
they are proved in the presence of data streams that are created by non-adaptive adversaries. Yet in
many practical use-cases, this assumption is not well-matched with reality; especially, in applications
where malicious actors are incentivized to manipulate the data stream. We show that the CMS and HK
structures can be forced to make significant estimation errors, by concrete attacks that exploit adaptiv-
ity. We analyze these attacks analytically and experimentally, with tight agreement between the two.
Sadly, these negative results seem unavoidable for (at least) sketch-based CFEs with parameters that are
reasonable in practice. On the positive side, we give a new CFE (Count-Keeper) that can be seen as a
composition of the CMS and HK structures. Count-Keeper estimates are typically more accurate (by at
least a factor of two) than CMS for “honest” streams; our attacks against CMS and HK are less effective
(and more resource intensive) when used against Count-Keeper; and Count-Keeper has a native ability
to flag estimates that are suspicious, which neither CMS or HK (or any other CFE, to our knowledge)
admits.
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1 Introduction

The use of probabilistic data structures (PDS) has grown rapidly in recent years in correlation with the rise
of distributed applications producing and processing huge amounts of data. Probabilistic data structures
provide compact representations of (potentially massive) data, and support a small set of queries. The
trade-off for compactness is that query responses are only guaranteed to be “close” to the true answer
(i.e., if the query were evaluated on the full data) with a certain probability. For example, the ubiquitous
Bloom filter [7] admits data-membership queries (Does element x appear in the data? ). Bloom filters are
used in applications such as increasing cache performance [23], augmenting the performance of database
queries [8], indexing search results [17], and Bitcoin wallet synchronization [1]. The probabilistic guarantee
on the correctness of responses assumes that the data represented by the Bloom filter is independent of
the randomness used to sample the hash functions that are used to populate the filter, and to compute
query responses. This is equivalent to providing correctness guarantees in the presence of adversarial data
sets and queries that are non-adaptive, i.e., made in advance of the sampling of the hash functions. A
number of recent works — notably those of Naor and Yogev [29], Clayton, Patton and Shrimpton [10],
and Filić et al. [15] — have provided detailed analyses of Bloom filters under adaptive attacks; the results
are overwhelmingly negative. Paterson and Raynal [30] provided similar results for the HyperLogLog PDS,
which can be used to count the number of distinct elements in a data collection [16].

In this work, we focus on PDS that can be used to estimate the number of times any particular element x
appears in a collection of data, i.e., the frequency of x. Such compact frequency estimators (CFEs) are com-
monly used in streaming settings, to identify elements with the largest frequencies — so-called heavy hitters
or elephants. Finding extreme elements is important for network planning [14], network monitoring [21],
recommendation systems [26], and approximate database queries [3], to name a few applications.

The Count-min Sketch (CMS) [12] and HeavyKeeper (HK) [34] structures are two CFEs that we consider,
in detail. The CMS structure has been widely applied to a number of problems outlined above. Details on
these applications are thoroughly examined in the survey paper by Sigurleifsson et al. [33]. The HK structure
is the CFE of choice in the RedisBloom module [3], a component of the Redis database system [2].

Of particular interest to us is the 2019 ACM SIGSAC work of Clayton, Patton, and Shrimpton [10]
that both furthers the adversarial analysis on Bloom filters and also presents a general model for analyzing
probabilistic data structures for provable security. This paper gives a first look at the security of the Count-
min sketch in adversarial environments. However, in this paper a very conservative security model for the
CMS was used, which counted any overestimation of a particular element as an adversarial gain, rather than
tying the security to the non-adaptive guarantees of the structure. Further, a thresholding mechanism is
used to achieve security for the CMS, a solution which we deem untenable for real world uses of the CMS.

As is the case for Bloom filters, HyperLogLog and other PDS, the accuracy guarantees for CFEs effec-
tively assume that the data they represent were produced by a non-adaptive strategy. Our work explores
the accuracy of CMS and HK estimates when the data is produced by adaptive adversarial strategies (i.e.,
adaptive attacks). We give explicit attacks that aim to make as-large-as-possible gaps between the estimated
and true frequencies of data elements. We give concrete, not asymptotic, expressions for these gaps, in terms
of specific adversarial resources (i.e., oracle queries), and support these expressions with experimental re-
sults. And our attacks fit within a well-defined “provable security”-style attack model that captures four
adversarial access settings: whether the CFE representations are publicly exposed (at all times) or hidden
from the adversary, and whether the internal hash functions are public (i.e., computable offline) or private
(i.e. visible only, if at all, by online interaction with the structure).

In this work we draw explicit attention to the fact that probabilistic data structures, and in particu-
lar frequency estimators, were not designed with security in mind by presenting attacks that degrade the
correctness of the query responses these structures provide.

Our findings are negative in all cases. No matter the combination of public and private, a well resourced
adversary can force CMS and HK estimates to be arbitrarily far from the true frequency. As one example
of what this means for larger systems, things that have never appeared in the stream can be made to look
like heavy hitters (in the case of CMS), and legitimate heavy hitters can be made to disappear entirely (in
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the case of HK). This is somewhat surprising in the “private-private” setting, where the attack can only
gain information about the structure and its operations via frequency estimate queries. Of course, there are
differences in practice: when attacks are forced to be online, they are easier to detect and throttle, so the
query-resource terms in our analytical results are likely capped at smaller values than when some or all of
an attack can progress offline.

Our attacks exploit structural commonalities of CMS and HK. At their core, each of these processes
incoming data elements by mapping them to multiple positions in an array of counters, and these are updated
according to simple, structure-specific rules. Similarly, when frequency estimation (or point) queries are
made, the queried element is mapped to its associated positions, and the response is computed as a simple
function of values they hold. So, our attacks concern themselves with finding cover sets: given a target x,
find a small set of data elements (not including x) that collectively hash to all of the positions associated
with x. Intuitively, inserting a cover set for x into the stream will give the structure incorrect information
about x’s relationship to the stream, causing it to over- or underestimate its frequency.

The existence of a cover set in the represented data is necessary for producing frequency estimation
errors in HK, and both necessary and sufficient in CMS. Sadly, our findings suggest that preventing an
adaptive adversary from finding such a set seems futile, no matter what target element is selected. The task
can be made harder by increasing the structural parameters, but this quickly leads to structures whose size
makes them unattractive in practice, i.e., linear in the length of the stream.

Motivating a more robust CFE. Say that the array M in CMS has k rows and m counters (columns)
per row. The CMS estimate for x is n̂x = mini∈[k]{M [i][pi]}, where pi is the position in row i to which x
hashes. In the insertion-only stream model it must be that n̂x ≥ nx, where nx is the true frequency of x. To
see this, given an input stream S⃗, let V i

x = {y ∈ S⃗ | y ̸= x and hi(y) = pi} be the set of elements that hash
to the same counter as x, in the i-th row. Then we can write M [i][pi] = nx +

∑
y∈V i

x
ny, where the ny > 0

are the true frequencies of the colliding ys. Viewed this way, we see that the CMS estimate n̂x minimizes
the impact of “collision noise”, i.e., n̂x = nx +mini∈[k]{

∑
y∈V i

x
ny}.

We could improve this estimate if we knew some extra information about the value of the sum, or the
elements that contribute to it. Let’s say that, with a reasonable amount of extra space, we could compute

Ci = ϵi

(∑
y∈V i

x
ny

)
for some ϵi ∈ [0, 1] that is bounded away from zero. Then we would improve the

estimate to n̂x = nx +mini∈[k]

{
(1− ϵi)

(∑
y∈V i

x
ny

)}
. How might we do this? Consider the case that for

some row i ∈ [k] there is an element y∗ ∈ V i
x that dominates the collision noise, e.g. ny∗ = (1/2)

∑
y∈V i

x
ny.

Then even the ability to accurately estimate ny∗ would give a significant improvement in accuracy of n̂x,
by setting Ci to this estimate. It turns out that HK provides something like this. It maintains a k × m
matrix A, where A[i][j] holds a pair (fp, cnt). In the first position is a fingerprint of the current “owner”
of this position, and, informally, cnt is the number of times that A[i][j] “remembers” seeing the current
owner. (Ownership can change over time, as we describe in the body.) If we use the same hash functions to
map element x into the same-sized M and A, then there is possibility of using the information at A[i][pi] to
reduce the additive error (w.r.t. nx) in the value of M [i][pi]. This observation forms the kernel of our new
Count-Keeper structure.

The Count-Keeper CFE. We propose a new structure that, roughly speaking, combines equally sized
(still compact) CMS and HK structures, and provide analytical and empirical evidence that it reduces the
error (by at least a factor of two) that can be induced once a cover set is found. It also requires a type of
cover set that is roughly twice as expensive (in terms of oracle queries) to find. Moreover, it can effectively
detect when the reported frequency of an element is likely to have large error. In this way we can dampen
the effect of the attacks, by catching and raising a flag when a cover set has been found and is inserted many
times to induce a large frequency error estimation on a particular element.

Intuitively, our Count-Keeper (CK) structure has improved robustness against adaptive attacks because
CMS can only overestimate the frequency of an element, and HK can only underestimate the frequency
(under a certain, practically reasonable assumption). We experimentally demonstrate that CK is robust
against a number of attacks we give against the other structures. Moreover, it performs comparably well if
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not better than the other structures we consider in frequency estimation tasks in the non-adversarial setting.

As a side note, we uncovered numerous analytical errors in [34] that invalidate some of their claims
about the behaviors of the HK structure. We have communicated with the authors of [34] and contacted
Redis, whose RedisBloom library implements HK (and CMS) with fixed, public hash functions (i.e., the
internal randomness is fixed for all time and visible to attackers).

In [19], the authors consider adding robustness to streaming algorithms using differential privacy. Mean-
while, Hardt and Woodruff [18], Cohen et al. [11] and Ben-Eliezer et al. [5] have shown that linear sketches
(including CMS but not HK) are not “robust” to well-resourced adaptive attacks, when it comes to various
Lp-norm estimation tasks, e.g., solving the k-heavy-hitters problem relative to the L2-norm. These works
are mostly of theoretical importance, whereas we aim to give concrete attacks and results that are (more)
approachable for practitioners.

2 Data Structure Syntax

In this section, we formalize data structures as abstract, syntactic objects, and make explicit the attack
model that we consider throughout the paper. Before that, some notational conventions.

Preliminaries. Let x←← X denote sampling x from a set X according to the distribution associated with X ;
if X is finite and the distribution is unspecified, then it is uniform. For all m ≥ 2, let [m] = {1, 2, . . . ,m}. Let
{0, 1}∗ denote the set of bitstrings and let ε denote the empty string. Let X ∥Y denote the concatenation of
bitstrings X and Y . When S is an abstract data-object (e.g., a (multi)set, a list) and e is an object that can
be appended (in some understood fashion) to S, we overload the ∥ operator and write S ∥ e. Let Func(X ,Y)
denote the set of functions f : X → Y. Let A and B be sets. We take A ∪ B to be the union of the sets,
A ∩ B to be the intersection of the sets, and A \ B to be set-theoretic difference of A and B. We use ⋆ to
mean that a variable is uninitialized. By [item]× ℓ for ℓ∈N we mean a vector of ℓ replicas of item.

We use zeros(k,m) to denote a function that returns a k ×m array of 0s. We index into arrays (and
tuples) using [·] notation; in particular, if R is a function returning a k-tuple, we write R(x)[i] to mean the
i-th element/coordinate of R(x). If X=(x1, x2, . . . , xt) is a tuple and S is a set, we overload standard set
operators (e.g., X ⊆S) treating the tuple as a set; if we write X \ S, we mean to remove all instances of
the elements of S from the tuple X, returning a tuple X ′ that is “collapsed” by removing any now-empty
positions.

2.1 Data structures

We adopt the syntax of Clayton et al. [10]. We give a terse description below; see [10] for a full discussion
of their syntactic choices. Fix non-empty sets D,R,K of data objects, responses and keys, respectively. Let
Fq ⊆ Func(D,R) be a set of allowed queries, and let Fu ⊆ Func(D,D) be a set of allowed data-object
updates. A data structure is a tuple Π = (Rep,Qry,Up), where:

• Rep : K×D → {0, 1}∗ ∪{⊥} is a randomized representation algorithm, taking as input a key K ∈ K and
data object S ∈ D, and outputting the representation repr ∈ {0, 1}∗ of S, or ⊥ in the case of a failure.
We write this as repr←← RepK(S).

• Qry : K × {0, 1}∗ × Fq → R is a deterministic query-evaluation algorithm, taking as input K ∈ K,
repr ∈ {0, 1}∗, and qry ∈ Fq, and outputting an answer a ∈ R. We write this as a← QryK(repr, qry).

• Up : K × {0, 1}∗ × Fu → {0, 1}∗ ∪ {⊥} is a randomized update algorithm, taking as input K ∈ K,
repr ∈ {0, 1}∗, and up ∈ Fu, and outputting an updated representation repr′, or ⊥ in the case of a failure.
We write this as repr′ ←← UpK(repr, up).

Allowing each algorithm to take a key K ∈ K provides an explicit mechanism for separating randomness
used across algorithms and their executions, from per-operation randomness that is local to each algorithm.
HeavyKeeper is one example of a data structure with per-operation randomness. In our security model,
the key may be secret (i.e., not given to the adversary) or public. Secret keys are an explicit mechanism
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for reasoning about adversarial correctness when representations are meant to be private. Note that the
traditional unkeyed data structures are captured by setting K = {ε}. To make clear the semantic differences
among their inputs, we write repr ←← RepK(S), a← QryK(qry), and repr ←← UpK(up) for the execution of
these algorithms.

We formalize Rep as randomized to admit defenses against offline attacks and, as we will see, per-
representation randomness will play an important role in achieving our notion of correctness in the presence
of adaptive adversaries. Both Rep and the Up algorithm can be viewed (informally) as mapping data objects
to representations. — explicitly so in the case of Rep, and implicitly in the case of Up — so we allow Up
to make per-call random choices, too.

Note that Up takes a function operating on data objects as an argument, even though Up itself operates
on representations of data objects. This is intentional, to match the way these data structures generally
operate. In a data structure representing a set or multiset, we often think of performing operations such as
‘insert x’ or ‘delete y’. When the set or multiset is not being stored, but instead modeled via a representation,
the representation must transform these operations into operations on the actual data structure it is using
for storage. A Bloom filter, for example, will handle an ‘insert x’ query by hashing x and setting the resulting
bits in the filter to 1. The abstract insertion function upx is handled by Up as a concrete action of (say)
carrying out certain hashing operations, and incrementing counters indicated by those hashing operations.
Side-effects of Up, or cases where the algorithm’s behavior does not perfectly match the intended update
up, are a potential source of errors that an adversary can exploit.

We assume that all data structures admit frequency estimation queries (also known as point queries)
qryx for each x ∈ U , defined so that qryx(S) returns the number of occurrences nx of x in data-object S. We
also note that the query algorithm Qry is deterministic. This reflects the overwhelming behavior of data
structures in practice, in particular those with space-efficient representations.

For the structures we consider, the Rep algorithm can always be assumed to take an empty data object
as input. This is without loss, as creating an initial representation with a non-empty data object will be
equivalent to beginning with an “empty” initial representation, then making a sequence of Up operations to
insert the elements of the data object.

2.2 Streaming Data

A stream data-object S⃗ = e1, e2, . . . is a finite sequence of elements ei ∈ U for some universe U . The elements
of a stream are not necessarily distinct, and the (stream) frequency of some x ∈ U is |{i : ei = x}|. From the
perspective of the PDS, the stream is presented one element at a time, with no buffering or “look ahead”.
That is, processing of a stream is performed in order, and the processing of ei is completed before the
processing of ei+1 may begin; once ei has been processed, it cannot be revisited.

2.3 Formal Attack Model

To enable precise reasoning about the correctness of frequency estimators when data streams may depend,
in arbitrary ways, on the internal randomness of the data structure, we give a pseudocode description of our
attack model in Figure 1. The experiment parameters u, v determine whether the adversary A is given K and
repr, respectively. Thus, there are actually four attack models encoded into the experiment. The adversary
is provided a target x ∈ U , and given access to oracles that allow it to update the current representation (Up)
— in effect, to control the data stream — and to make any of the queries permitted by the structure (Qry).
We abuse notation for brevity and write Up(e) to mean an insertion of e into the structure and Qry(e)
to get a point query on e for some element e ∈ U . Note that when v = 0, the Up-oracle leaks nothing
about updated representation, so that it remains “private” throughout the experiment. The adversary (and,
implicitly, Rep,Up,Qry) is provided oracle access to a random oracle Hash : X → Y, for some structure-
dependent sets X ,Y. The output of the experiment is the absolute error between the true frequency nx of x
in the adversarial data stream, and the structure’s estimate n̂x of nx.

Remark. Conventionally, one would define an “advantage” function over the security experiment, and
there are various interesting ways this could be done. As examples, one could parameterize by a threshold
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Atk
err-fe[u,v]
Π,U (A)

1 : S⃗ ← ∅;K ←← K

2 : repr←← RepK(S⃗)

3 : kv← ⊤; rv← ⊤
4 : if u = 1 : kv← K

5 : if v = 1 : rv← repr

6 : x←← U

7 : done←← AHash,Up,Qry (x, kv, rv)

8 : nx ← qryx(S⃗)

9 : n̂x ← QryK(repr, qryx)

10 : return |n̂x − nx|

Up(up)

1 : repr′ ←← UpK(repr, up)

2 : S⃗ ← up(S⃗)

3 : repr← repr′

4 : if v = 0 : return ⊤
5 : return repr

Qry(qry)

1 : return QryK(repr, qry)

Hash(X)

1 : if X ̸∈ X : return ⊥
2 : if H[X] = ⊥
3 : H[X]←← Y
4 : return H[X]

Figure 1: the ERR-FE (ERRor in Frequency Estimation) attack model. When experiment parameter v = 1 (resp.
v = 0) then the representation is public (resp. private); when u = 1 (resp. u = 0) then the structure key K is
rendered public (resp. private). The experiment returns the absolute difference between the true frequency nx of an
adversarially chosen x ∈ U , and the estimated frequency n̂x. The Hash oracle computes a random mapping X → Y
(i.e., a random oracle), and is implicitly provided to Rep, Up and Qry.

function T : Z → Z, and have the advantage measure the probability that the value |n̂x − nx| > T (qU ); or,
one could compare this value to known non-adaptive error guarantees. As we will not be proving the security

of any structures, we use Atk
err-fe[u,v]
Π (·) as a precise description of the attack setting. We will explore lower

bounds on the values returned by the experiment, for explicit attacks that we give.

We capture various settings related to the view of the adversary in our attack interface. We have a
setting in which the data structure representation is kept private from the adversary, and we also have a
setting in which the specific choice of hash functions selected by a particular representation are kept private
from the adversary. These settings can be examined together, separately, or both can be disregarded and the
adversary can be given a “full view”. That is we consider when the both the representation and hash functions
are private, when the representation is public and the hash functions are private, when the representation is
private and the hash functions are public, and when both the representation and hash functions are public.

In practice the private representation setting occurs due to suppression of information leaked by the oracles.
In particular in this setting, the Rep and Up oracles return nothing, thus leaking nothing about the
underlying data representation. Further, we make hash functions “private” by keying them with a (non-
empty) randomly generated secret key.

3 Count-min Sketch

Figure 2 gives a pseudocode description of the count-min sketch (CMS), in our syntax. An instance of CMS
consists of a k×m matrixM of (initially zero) counters, and a mapping R between the universe U of elements
and [m]k. An element x is added to the CMS representation by computing R(K,x)= (p1, p2, . . . , pk), and then
adding 1 to each of the counters atM [i][pi]. Traditionally, it is assumed that (p1, . . . , pk)= (h1(x), . . . , hk(x))
where the hi are sampled at initialization from some family H of hash functions, but we generalize here to
make the exposition cleaner, and to allow for the mapping to depend upon secret randomness (i.e., a key K).

The point query Qry(qryx) returns n̂x= mini∈[k]{M [i][pi]}. We note that (in the insertion-only model)

it must be that n̂x ≥ nx. To see this, let V i
x= {y ∈ S⃗ | y ̸= x and R(y)[i] = pi} be the set of elements that

“collide” with x’s counter in the i-th row. Then we can writeM [i][pi]=nx+
∑

y∈V i
x
ny, where ny ≥ 0. Viewed
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RepK(S)

1 : M ← zeros(k,m)

2 : for x ∈ S
3 : M ← UpK(M, upx)

4 : return M

UpK(M, upx)

1 : (p1, . . . , pk)← R(K,x)

2 : for i ∈ [k]

3 : M [i][pi] +=1

4 : return M

QryK(M, qryx)

1 : (p1, . . . , pk)← R(K,x)

2 : return min
i∈[k]
{M [i][pi]}

Figure 2: Keyed count-min sketch structure CMS[R,m, k] admitting point queries for any x ∈ U . The parameters
are integers m, k ≥ 0, and a keyed function R : K × U → [m]k that maps data-object elements (encoded as strings)
to a vector of positions in the array M . A concrete scheme is given by a particular choice of parameters.

this way, we see that a CMS estimate n̂x minimizes the “collision noise”, i.e., n̂x=nx+mini∈[k]{
∑

y∈V i
x
ny}.

For any ϵ, δ≥ 0, any x∈U , and any stream S⃗ (over U) of lengthN , it is guaranteed that Pr[ n̂x − nx>ϵN ] ≤ δ
when: (1) k= ⌈ln 1

δ ⌉, m= ⌈ eϵ ⌉, and (2) R(K,x) = (h1(K ∥x), h2(K ∥x), . . . , hk(K ∥x)) for hi that are uni-
formly sampled from a pairwise-independent hash family H [12]. Implicitly, there is a third requirement,
namely (3) the stream and the target x are independent of the internal randomness of the structure (i.e., the

coins used to sample the hi). This is equivalent to saying that the stream S⃗ and the target x are determined
before the random choices of the structure are made.

4 HeavyKeeper

RepK(S)

1 : // initialise k × m (fp,cnt) 2-d array

2 : for i ∈ [k]

3 : A[i]← [(⋆, 0)]×m
4 : for x ∈ S
5 : A← UpK(A, upx)

6 : return A

QryK(A, qryx)

1 : (p1, . . . , pk)← R(K,x)

2 : fpx ← T (K,x)

3 : cntx ← 0

4 : for i ∈ [k]

5 : if A[i][pi].fp = fpx

6 : cnt←A[i][pi].cnt
7 : cntx←max {cntx, cnt}
8 : return cntx

UpK(A, upx)

1 : (p1, . . . , pk)← R(K,x)

2 : fpx ← T (K,x)

3 : for i ∈ [k]

4 : if A[i][pi].fp ̸∈{fpx, ⋆}
5 : r ←← [0, 1)

6 : if r ≤ dA[i][pi].cnt

7 : A[i][pi].cnt−=1

8 : // overtake the counter if 0

9 : if A[i][pi].cnt = 0

10 : A[i][pi].fp← fpx

11 : // increase the count if fp = fpx

12 : if A[i][pi].fp = fpx

13 : A[i][pi].cnt+=1

14 : return A

Figure 3: Keyed structure HK[R, T,m, k, d] supporting point-queries for any potential stream element x ∈ U (qryx).
The parameters are a function R : K × U → [m]k, a function T : K × U → {0, 1}n for some desired fingerprint
length n, decay probability 0 < d ≤ 1, and integers m, k ≥ 0.

Like CMS, an instance of the HeavyKeeper data structure is parameterized by positive integers k,m, and
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a function R : K × U → [m]k; in addition, it is parameterized by real-valued d ∈ (0, 1], and fingerprinting
function T : K × U → {0, 1}n for some fixed n > 0. The HK structure (see the pseudocode in Figure 3)
maintains a k × m matrix A. However, each A[i][j] holds a pair (fp, cnt), initialized as (⋆, 0) where ⋆ is

a distinguished symbol. Informally, for a given stream S⃗, any z ∈ S⃗ such that A[i][j].fp = T (K, z) is an
owner of this position; there may be more than one such owner at a time, if T (K, ·) admits many collisions.
Ownership can change as a stream is processed: if some y arrives whose fingerprint is different than that
of the current owner(s), then the current (positive) value c of A[i][j].cnt is decremented with probability
d−c. Loosely, decrementing c is akin to A[i][j] “forgetting” a prior arrival of its current owner(s); with this
viewpoint, the value of A[i][j].cnt is the number of times that this position “remembers” seeing its current
owner(s). If y causes that number to become zero, then it becomes an owner: the stored fingerprint is
changed to fpy = T (K, y), and the counter is set to 1. Note that for CMS, M [i][j] “remembers” the total
number of elements that it observed, but nothing about which elements. This observation will motivate our
Count-Keeper structure, later on.

The HK provides frequency estimates via point-queries. Writing (p1, . . ., pk)← R(K,x) and fpx←T (K,x),
a point-query for x returns max {A[i][pi].cnt|A[i][pi].fp= fpx, i∈ [k]}, i.e., the largest counter value among
those positions in A that “remember” having seen x. If that set is empty, the point-query returns 0.

Yang et al. [34] do state a probabilistic guarantee on the size of estimation errors, under an assumption
that each A[i][j] has one and only one owner for the duration of the stream, but the statement is insufficiently
precise and its proof is flawed, so we will not quote it. In Appendix A, we recover a meaningful result (under
their assumptions).

5 Attacks on CMS and HK

In the following discussion of attacks against CMS and HK in our formal model, we will implement the
mappings R : U → [m]k and T : K × {0, 1}∗→{0, 1}n via calls to the Hash-oracle. In detail, given
some unambiguous encoding function ⟨·, ·, ·⟩, for CMS we set R(K,x)= (Hash(⟨1,K, x⟩),Hash(⟨2,K, x⟩, . . .,
Hash(⟨k,K, x⟩))) , and for HK, we set R(K,x)[i] =Hash(⟨“cnt”, i,K, x⟩) and T (K,x)=Hash(⟨“fp”, k +
1,K, x⟩). Note that the traditional analysis of CMS correctness assumes that the row-wise hash functions
are sampled (uniformly) from a pairwise-independent family of functions, whereas our modeling treats the
row-wise hash functions as k independent random functions from U → [m]. This makes the adversary’s task
more difficult, as our attacks cannot leverage adaptivity to exploit structural characteristics of the hash
functions. For the HK, the strings “cnt” and “fp” provide domain separation, and we implicitly assume that
the outputs of calls to the Hash-oracle can be interpreted as random elements of [m]k when called with
“cnt”, and as random elements of the appropriate fingerprint-space,e.g., {0, 1}n for some constant n≥ 0,
when called with “fp”.∗

5.1 Cover Sets

Say n̂x is the CMS estimate. As noted in Section 3, the estimate n̂x = nx + mini∈[k]{
∑

y∈V i
x
ny}; thus

n̂x = nx if there exists an i ∈ [k] such that
∑

y∈V i
x
ny = 0. Since ny > 0 for any y ∈ V i

x , we can restate

this as n̂x > nx if and only if V 1
x , . . . , V

k
x are all non-empty. When this is the case, the union C =

⋃
i∈[k] V

i
x

contains a set of stream elements that “cover” the counters M [i][pi] associated to x. Since the presence of a
covering C within the stream is necessary (and sufficient) for creating a frequency estimation error for the
CMS, we formalize the idea of a “cover” in the following definition.

Definition 1. Let U be the universe of possible stream elements. Fix x∈U , r∈Z, and Y ⊆U . Then a
set C= {y1, y2, . . ., yt} is an (Y, x, r)-cover if: (1) C ⊆ Y\{x}, and (2)∀i∈ [k] ∃j1, . . . , jr ∈ [t] such that
R(K,x)[i] =R(K, yj1)[i], . . ., R(K,x)[i] =R(K, yjr )[i]. ♦

For the CMS, we will be interested in Y =U , r=1, and we will shorten the notation to calling this a 1-
cover (for x), or just a cover. For the HK, we will still be interested in r=1, but with a different set Y. In par-

∗This separation could be more directly handled by augmenting the attack model with an additional hashing oracle, but
for simplicity and ease of reading, we chose not to do so.
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ticular, HK has a fingerprint function T (K, ·), and we define the set FP(K,x)= {y ∈ U |T (K, y) ̸=T (K,x)}.
We will typically write fpx as shorthand for the result of computing T (K,x), dropping explicit reference to
the key K;

In analyzing their HK structure, Yang et al. [34], rely on there being “no fingerprint collisions”, to ensure
that HK have only one-sided error. (In general, the HK returned estimates may over- or underestimate the
true frequency.) But, no precise definition of this term is given. We define it (by negation) as follows:

stream S⃗ does not satisfy the no-fingerprint collision (NFC) condition with respect to x (and key K) if

there exists y, z ∈ S⃗∥x such that T (K, y) = T (K, z) and ∃i such that R(K, y)[i] = R(K, z)[i]; otherwise

S⃗ does satisfy the NFC condition with respect to x (and K). In other words, S⃗∥x cannot contain distinct
elements that have the same fingerprint and share a counter position. Our analysis treats the fingerprint
function T (K, ·) and position hash functions R(K, ·)[i] as random oracles, the particular value of K will not
matter, only whether or not it is publicly known. As such, explicit mention of K can be elided without
loss of generality, and we shorten FP(K,x) to FPx. Further, in the random oracle model the fingerprint
computation and row position computation are independent, so the probability of their conjunction is much
smaller than the simple “birthday bound” event on fingerprint collisions. Anyway, for our HK analysis
(Section 5.3), we will be interested in (FPx, x, 1)-covers, which are just (U , x, 1)-covers under NFC condition.

When analyzing our new CK structure (Section 6), which inherits the fingerprint function from HK, we
will be interested in (FPx, x, 2)-covers, as r=1 will no longer enable attacks to drive up estimation error.

Exploring time-to-cover. Observe that even when the stream elements and the target x are independent
of the internal randomness of the structure, a sufficiently long stream will almost certainly contain a cover
for x. For example, for CMS, this results in n̂x being an overestimate of nx. How long the stream needs to
be for this to occur is what we explore next.

Each of CMS, HK and CK use a mapping R(K, ·) to determine the positions to which stream elements
are mapped. Let Lr

i be the number of distinct-element evaluations of R(K, .) needed to find elements covering
the target’s counter in the ith row r times. Then Lr

i is a negative binomial random variable with success
probability p= 1

m and Pr[Lr
i = z] =

(
z−1
z−r

)
(1 − p)z−rpr. This is because Lr

i counts the minimal number of
evaluations needed to find r elements y1, . . ., yr with R(K, yj)[i] = pi. This holds for any i∈ [k], and all Lr

i

are independent. Thus, letting Lr = max{Lr
1, L

r
2, . . ., L

r
k}, we have

Pr[Lr ≤ z]=
k∏

i=1

Pr[Lr
i ≤ z]=

(
pr

z−r∑
t=0

(
t+ r − 1

t

)
(1− p)t

)k

. (1)

Note that relation (1) fully defines z for any fixed values of Pr[Lr ≤ z ], m, k, r. Thus, we will be
able to relate Pr[Coverrx ] and Pr[Lr = z ] via the resources used in attacks, e.g., Coverrx occurs iff Lr ≤
fm,k,r(qH , qU , qQ) for some function fm,k,r of the adversarial resources.

When r=1, this simplifies to The L1
i are geometric random variables with success probability p, and

Pr[L1 ≤ z] =
(
(1− q)(1 + q + q2 + · · ·+ qz−1)

)k
=(1− qz)k (2)

with q=1− p. When r=2 we arrive at a more complicated expression

Pr[L2 ≤ z] = (1− zqz−1 + (z − 1)qz)k. (3)

One can show that E[L1] =
∑∞

z=0(1− (1− qz)k); for typical values of m, we have the very good approx-
imation E[L1] ≈ mHk, Hk being the k-th harmonic number. † This constant depends only on parameters m
and k.

†Concretely, when k = 5,m = 1000 we have E[L1] ≈ 2283. Experimentally, we verified this result over 10, 000 trials with
an average of 2281 insertions needed to find a cover set for a per-trial randomly chosen element x.
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5.2 Cover-Set Attacks on CMS

In our attack model, if the mapping R(K, ·) is public, we may use the Hash oracle (only) to find a cover set
for the target x “locally”, i.e., the step is entirely offline. When this is not the case, we use a combination of
queries to the Up and Qry oracles to signal when a cover set exists among the current stream of insertions;
then we make additional queries to learn a subset of stream elements that yield a cover.

Before exploring each setting, we build up some general results. Let Coverrx be the event that in the

execution of Atk
err-fe[u,v]
Π (A), the adversary queries the Up-oracle with upei , . . ., upet and e1, . . ., et is an

r-cover for the target. For concision, define random variable Err = Atk
err-fe[u,v]
Π (A). We will mainly focus

on E[Err] when analyzing the behavior of structures, so here we observe that the non-negative nature of Err
allows us to write E[Err] =

∑
ξ>1 Pr[Err ≥ ξ ]. In determining the needed probabilities, it will be beneficial

to condition on Coverrx, as this event (for particular values of r) will be crucial for creating errors.

Our attacks against CMS (and, later, HK and CK) have two logical stages. The first stage finds the
necessary type of cover for the target x, and the second stage uses the cover to drive up the estimation
error. The first stage is the most interesting, as the second will typically just insert the cover as many
times as possible for a given resource budget (qH , qU , qQ). We note that whether or not the first stage is
adaptive depends on the public/private nature of the structure’s representation and hash functions, whereas
the second stage will always be adaptive.

SayUp-query budget (i.e., number of adversarial stream elements) is fixed to qU , and for the moment as-
sume that the other query budgets are infinite. Let some q′U ≤ qU of the Up-queries be used in the first stage
of the attack. The number q′U is a random variable, call it Q, with distribution determined by the randomness
of the structure and coins of the attacker. So, E [Err] may depend on the value of Q, and then we calculate
the expectation as E[E[Err |Q]]. After a cover C is found by the first stage (so Cover1x holds), the second stage
can insert C until the resource budget is exhausted. Note that each insertion of C will increase the CMS
estimation-error by one. Our attacks ensure that |C| ≤ k, and so the number of C-insertions in the second

stage is at least
⌊
qU−Q

k

⌋
. This implies that E [Err |Q] ≥

∑⌊(qU−Q)/k⌋
ξ=1 Pr

[
Err ≥ ξ |Q,Cover1x

]
Pr
[
Cover1x |Q

]
Letting 0 ≤ T ≤ qU be the maximum number of Up-queries allowed in the first stage (i.e. Q ≤ T ), we have

E [Err]≥
T∑

q′U=0

⌊
qU−q′U
k

⌋
Pr
[
Cover1x |Q=q′U

]
Pr[Q=q′U ] .

Public hash and representation setting. The public hash setting allows to find a cover using the Hash
oracle only (i.e., Q=0). This step introduces no error; E [Err] =

⌊
qU
k

⌋
Pr
[
Cover1x |Q=0

]
. Given our definition

of L1 as the minimal number of R(K, ·) evaluations to find a cover, the cover-finding step of the attack
requires k(1+L1) Hash-queries: k to evaluate R(K,x), and then kL1 to find a cover. Say qH is the Hash-
oracle budget for the attack. A cover is then found iff L1≤ qH−k

k . Assuming qU > k (so that a found cover
is inserted at least once) and using (2) we arrive at

Pr
[
Cover1x |Q=0

]
=
(
1− (1−1/m)

qH
k −1

)k
(4)

implying E[Err] ≥
⌊
qU
k

⌋ (
1− (1− 1/m)

qH
k −1

)k
. For qH/k ≫ 1, which is likely as qH is offline work and

practical k are small, E[Err] ≈ qU/k. The full attack can be found in Figure 4.

Private hash and private representation setting. This is the most challenging setting to find a cover:
the privacy of hash functions effectively makes local hashing useless, and the private representation prevents
the adversary from learning anything about the result of online hash computations. Our attack (Figure 5)
starts by first querying for the estimated frequency of target x followed by inserting distinct random elements
(̸=x), and querying for the estimated frequency of x after each insertion. Call this stream of elements I⃗.
This continues until the estimate on x increases by 1, which signals that a full 1-cover for x is contained
within the stream I⃗ of initial insertions. Next, we extract from I⃗ a 1-cover of size ≤ k. Call z1 the last
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CoverAttackHash,Up,Qry(x,K, repr)

1 : cover←FindCoverHash(1, x,K)

2 : until qU Up-queries made:

3 : for e ∈ cover: Up(e)

4 : return done

FindCoverHash(r, x,K)

1 : cover← ∅; found← False

2 : I ← ∅; tracker← zeros(k)

3 : // R(K, x)[i] = Hash(⟨i,K, x⟩)

4 : (p1, p2, . . . , pk)← R(K,x)

5 : while not found

6 : if qH Hash-queries made

7 : return ∅
8 : y ←← U \ (I ∪ {x})
9 : I ← I ∪ {y}

10 : (q1, q2, . . . , qk)← R(K, y)

11 : for i ∈ [k]

12 : if pi = qi and tracker[i] < r

13 : cover← cover ∪ {y}
14 : tracker[i] + = 1

15 : if sum(tracker) = rk

16 : found← True

17 : return cover

Figure 4: Cover Set Attack for the CMS in public hash function setting. We use R(K,x) to mean
(Hash(⟨1,K, x⟩),Hash(⟨2,K, x⟩, . . . ,Hash(⟨k,K, x⟩))). The attack is parametrized with the update and Hash
query budget qU and qH .

element inserted as a part of I⃗. As this insertion caused the estimate to increase it must be that z1 covers
at least one counter of x. Say the last added element was z1. As this caused the CMS estimate to increase,
z1 shares a counter of x. Moreover, any counter covered by z1 must have been minimal, i.e., still holding its
initial value ci, at the time that z1 was inserted. Thus, we set our round-one candidate cover C1 ← {z1}.
Next, we keep inserting the cover until the estimate for x stops changing, signalling that counters that x
maps to that are minimal are not covered by C1 and allowing us to detect an element covering a “fresh”
x-counter with the next frequency estimate change.

We then proceed as follows. In each round i = 2, . . . we first keep reinserting I⃗ \ Ci−1 in order until
some zi increases the CMS estimate for x again, then we set Ci ← Ci−1 ∪ {zi}. We then reinsert the cover
until x’s estimate stops changing signalling, again, that the minimal x-counters are not covered by Ci and
allowing to find a “fresh” covering element of x in the subsequent round.

This procedure ensures that after ℓ ≤ k rounds a full cover is found. Each round i adds exactly one new
element zi to the incomplete cover Ci−1, and there are only k counters to cover. Let di be the number of

re-insertions of Ci in round i. Then, the number of Up-queries required to reach Cℓ is q′U ≤ ℓ|I⃗|+
∑ℓ−1

i=1 idi.
So, Cℓ can be potentially reinserted ⌊(qU − q′U )/ℓ⌋ times, each time increasing the error on x.

From the attack’s construction, it is easy to see that δi = di − 1 re-insertions of Ci each increase
the error by 1, and that, additionally, the error increases by 1 at each detection of a fresh zi. As-
suming qQ is not the limiting factor and replacing |I⃗| with L1 (as |I⃗|=L1), and simplifying, we get

Err≥
⌊(

ℓ+1
2 + 1

ℓ

(
qU +

∑ℓ−1
i=1(ℓ− i)δi

)
− L1

)⌋
. We note that Err is a function of several random vari-

ables: L1, ℓ, {δi}i∈[ℓ−1]. For practical values of k,m (e.g., k = 4, with m ≫ k) it is likely that ℓ = k;
ℓ < k if and only if at least one z ∈C cover multiple x-counters which is unlikely for small k ≪ m. So,

we approximate Err with Êrr by replacing ℓ with k, dropping the floor operation, and arrive at E[Êrr] ≈
(k + 1)/2 + 1/k

(
qU +

∑k−1
i=1 (k − i)E[δi]

)
− E[L1]. Rearranging and using the very tight approximation

E[L1] ≈ mHk: E[Êrr] ≈
(
qU
k −mHk

)
+ k+1

2 +
(

1
k

∑k−1
i=1 (k − i)E[δi]

)
. We expect E [δi] to be upper bounded
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CoverAttackUp,Qry(x,⊥,⊥)

1 : cover← FindCoverUp,Qry (x)

2 : until qU Up-queries made:

3 : for e ∈ cover: Up(e)

4 : return done

MinUncoverUp,Qry(x, a′, cover)

1 : b′ ← −1
2 : while a′ ̸= b′

3 : if (qU − |cover|+ 1)Up-

4 : or qQ Qry-queries made:

5 : return cover

6 : b′ ← a′

7 : for y ∈ cover : Up(y)

8 : a′ ← Qry(x)

9 : return a′

FindCoverUp,Qry(x)

1 : // find 1-cover for x

2 : cover← ∅
3 : found← False

4 : I⃗ ← ∅; a← Qry(x)

5 : while not found

6 : if qU Up- or qQ Qry-queries made

7 : return cover

8 : y ←← U \ (I⃗ ∪ {x})
9 : I⃗ ← I⃗ ∪ {y}

10 : Up(y); a′ ← Qry(x)

11 : if a′ ̸= a :

12 : cover← {y}
13 : found← True

14 : for i ∈ [2, 3, . . . , k]

15 : a← MinUncoverUp,Qry (x, a′, cover)

16 : if a = cover : return cover

17 : for y ∈ I // in order of insertion to I

18 : if qU Up- or qQ Qry-queries made

19 : return cover

20 : Up(y); a′ ← Qry(x)

21 : if a′ ̸= a :

22 : cover← cover ∪ {y}
23 : I⃗ ← I \ {y}
24 : break

25 : return cover

Figure 5: Cover Set Attack for the CMS in private hash function and private representation setting. The attack is
parametrised with the update and query query budget qU and qQ.

by a constant that is small relative to m, qU/k, and thus, the dominant term in E[Êrr] ≈ E[Err] will be
qU
k −mHk. This is observed experimentally (see Table 2). We give more details about this attack (including
considering the case in which qQ is the limiting adversarial resource) in Appendix B.

Public hash and private representation setting. Observe that the public representation is never used
in our attack in the public hash and public representation setting. Therefore, in this public hash and private
representation setting, the same attack can be used. The same analysis applies.

Private hash and public representation setting. The public representation allows for an attack similar
to our attack in the public hash settings (Figure 6). Here, we use the Up-oracle instead of the Hash-oracle
to find a cover. By comparing the state before and after adding an element it is easy to deduce the element’s
counters (as they are the only ones to change). Our attack first adds the target to get its counters. Then,
we keep inserting distinct elements, comparing the state before and after until a cover C is found. By the
definition of L1, the cover is found with (q′U = 1 + L1) Up-queries, and is after reinserted ⌊(qU − q′U )/|C|⌋
times, each time adding one to the estimation error. Hence, Err ≥ ⌊(qU − 1− L1)/|C|⌋ ≥ ⌊(qU − 1− L1)/k⌋
and E[Err] ≥ qU−1−E[L1]

k ≈ qU−mHk

k .
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CoverAttackUp(x,⊥, repr)

1 : cover← FindCoverUp(1, x, repr)

2 : until qU Up-queries made:

3 : for e ∈ cover: Up(e)

4 : return done

FindCoverUp(r, x, repr)

1 : cover← ∅; found← False

2 : I ← ∅; tracker← zeros(k)

3 : repr′ ← Up(x)

4 : // compute x’s indices

5 : for i ∈ [k]

6 : for j ∈ [m]

7 : if repr′[i][j] ̸= repr[i][j]

8 : pi ← j;break;

9 : while not found

10 : if qU Up-queries made : return ∅
11 : y ←← U \ (I ∪ {x})
12 : I ← I ∪ {y}
13 : repr← repr′

14 : repr′ ← Up(y)

15 : // compute y’s indices

16 : for i ∈ [k]

17 : for j ∈ [m]

18 : if repr′[i][j] ̸= repr[i][j]

19 : qi ← j;break;

20 : for i ∈ [k]

21 : // compare x’s and y’s indices row by row

22 : if pi = qi and tracker[i] < r

23 : cover← cover ∪ {y}
24 : tracker[i] + = 1

25 : if sum(tracker) = rk

26 : found← True

27 : return cover

Figure 6: Cover Set Attack for the CMS in private hash function and public representation setting. The attack is
parametrized with the update query budget qU .

5.3 Cover-Set Attacks on HK

By examining the HK pseudocode, it is not hard to see that when a stream S⃗ satisfying the NFC condition
is inserted in the HK structure, overestimations are not possible; any error in frequency estimates is due
to underestimation. We also note that if S⃗ satisfies the NFC condition, then any cover that it contains
for x ∈ U must be an (FPx, x, r)-cover. In attacking HK, we will build (FPx, x, 1)-covers; as such, in this
section we will often just say ”cover” as shorthand.

The intuition for our HK-attacks is, loosely, as follows. If one repeatedly inserts a cover for x before x is
inserted, then the counters associated to x will be owned by members of the cover, and the counter values can
be made large enough to prevent any subsequent appearances of x from decrementing these counters. (We
will sometimes say that such hard-to-decrement counters are “locked down”.) As such, the HK estimate n̂x
will be zero, even if nx ≫ 0. (At least one such counter would need to be decremented to zero, in order for
ownership of that counter to be transferred to x, i.e., A[i][pi].fp← fpx.)

We note that attacks of this nature would be particularly damaging in instances where the underlying
application uses HK to identify the most frequent elements in a stream S⃗: with relatively few insertions of
the cover set, one would be able to hide many occurrences of x. DDoS detection systems, for example, rely
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on compact frequency estimators to identify communication end-points that are subject to an abnormally
large number of incoming connections [22]. In this case, the target x is an end-point identifier (e.g., an IP
address and/or TCP port). Being able to hide the fact that the end-point x is a ”heavy hitter” in the stream
of incoming flow destinations could result in x being DDoSed.

Interestingly, while a cover is necessary to cause a frequency estimation error for x, it is not sufficient.
Unlike the CMS, whose counters are agnostic of the order of elements in the stream, the HK counters have
a strong dependence on order. Thus, if x is a frequent element and many of its appearances are at the
beginning of the stream, then it can “lock down” its counters; a cover set attack is still possible, but now
the number of times the cover must be inserted may be much larger than the frequency (so far) of x.

Setting the attack parameter t. Say our attack’s resource budget is (qH , qU , qQ). The HK attacks find
a cover C = {z1, z2 . . . } and then insert it t times, with the value for t set to ensure the target counters will
almost certainly not be decremented in future. We set a value for t in a way the probability of decrementing
any of the target’s counters at some point set to t, with fingerprint ̸= fpx, is < p, with sufficiently small
0 < p < 1. We use p = 2−128 in our experiments.

Let Dt
i be the event that at the end of the attack A[i][pi].fp = fpx given that at some point dur-

ing the attack we had A[i][pi].cnt = t with A[i][pi].fp = fpzi , zi ̸= x. Let (Dt) =
∨

i=1D
t
i . Then,

Pr[Dt
i ]≤

(
qU
t

)∏t
j=1 d

j ≤ (qU )
t
d

t(t+1)
2 . Let f(t) = k (qU )

t
d

t(t+1)
2 . If the attack set A[i][pi].cnt = t with

A[i][pi].fp = fpzi , zi ̸= x for each i, then the probability of x overtaking any of its counters by the end of the

attack is bounded by Pr[
∨k

i=1D
t
i ] ≤ f(t). This motivates the selection of t in our attacks as the smallest

t ≥ 1 such that f(t) < p.

Public hash and public representation setting. This attack (Figure 7) is the CMS attack for the public
hash setting, but with few tweaks. The cover is inserted only t times and then the Up budget is exhausted
by inserting target x (at least (qU − tk) times) to accumulate error. If ¬Dt then this process introduces the
error of at least (qU − tk). Thus, as the cover finding step uses Hash only and induces no error,

E [Err] ≥ (qU − tk)(1− p) Pr
[
Cover1x | Q = 0

]
.

For the term Pr
[
Cover1x | Q = 0

]
we can simply apply the same bound as for the CMS attack (Equation (4))

obtaining

E [Err] ≥ (qU − tk)(1− p)
(
1− (1− 1/m)

qH
k −1

)k
.

Private hash and private representation setting. We present the attack for this setting in Figure 8.
The attack starts by inserting x once. Starting with an empty HK implies that then x “owns” all of its
buckets, i.e., A[i][pi].fp = fpx for all rows i, with their associated counters c1, . . . , ck set to one, setting x’s
current frequency estimate a = maxi∈[k] {ci} = 1. The attack then keeps inserting distinct elements until
the frequency estimate for x drops to 0, i.e, A[i][pi].fp ̸= fpx for all rows i. Let I1 be the set of inserted
elements ̸= x at the moment that this happens, and the last inserted element was z1. Then, z1 must share
at least one counter with x (the one that changed A[i][pi].fp from fpx the last). So, we set our round-one
candidate cover set C1 ← {z1} and insert t times to the HK. Now we are at the point when all c1, . . . , ck are
“owned” by elements ̸= x, and, under the NFC condition, all but one are of value one. Note that inserting
I1 increased the estimate error by one.

The adaptive portion of our attack proceeds as follows. In each round i = 2, . . . we first keep reinserting
x until HK(x) reaches 1. Let di be the number of these reinsertions. Hence, these reinsertions increased
the estimate error by di − 1. At this point, at least one counter c1, . . . , ck is “owned” by x and all counters
“owned” by x are set to 1. Then, we search for a new element to create our round-i cover set candidate Ci,
by inserting new distinct elements, until we find a zi that drops HK(x) to 0. We set Ci ← Ci−1 ∪ {zi} and
insert zi t times. At this point, all counters c1, . . . , ck are “owned” by elements ̸= x again, and all are of
value one, but the ones covered by Ci which (very likely) hold a value strictly greater than 1 and (very) close
to t.
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CoverAttackHash,Up,Qry(x,K, repr)

1 : cover← FindCoverHash(x,K)

2 : t← Get-t(|cover|)
3 : for e ∈ cover

4 : for i ∈ [t]: Up(e)

5 : until qU Up-queries made:

6 : Up(x)

7 : return done

Get-t()

1 : g(t)← log2(k · (qU )
t dt(t+1)/2)− log2(p)

2 : // find the roots of the negative quadratic polynomial g

3 : t1, t2 ← FindRootsOf(g) // t1 ≤ t2

4 : // set t so t ≥ 1 and g(t) < 0

5 : if t1 > 1 or t2 < 1 : t← 1

6 : if t2 > 1 : t← ⌈t2⌉
7 : if t2 = 1 : t← 2

8 : return t

FindCoverHash(x,K)

1 : cover← {}; found← False

2 : I ← ∅; tracker← zeros(k)

3 : // R(K, x)[i]

4 : // = Hash(⟨“ct”, i,K, x⟩)

5 : (p1, p2, . . . , pk)← R(K,x)

6 : while not found

7 : if qH Hash-queries made

8 : return ∅
9 : y ←← U \ (I ∪ {x})

10 : I ← I ∪ {y}
11 : (q1, q2, . . . , qk)← R(K, y)

12 : for i ∈ [k]

13 : if pi = qi

14 : // remove duplicates

15 : cover[i]← y

16 : if tracker[i] < 1

17 : tracker[i]← 1

18 : if sum(tracker) = k

19 : found← True

20 : // return the cover

21 : return cover.values()

Figure 7: Cover Set Attack for the HK in public hash function setting. We use R(K,x) to mean
(Hash(⟨“ct”, 1,K, x⟩),Hash(⟨“ct”, 2,K, x⟩, . . . ,Hash(⟨“ct”, k,K, x⟩))). The attack is parametrized with the up-
date and Hash query budget qU and qH .

The procedure ensures that after some ℓ ≤ k rounds we have found a complete 1-cover with (very) high
probability. Each round i adds maximally one element new element to incomplete cover Ci−1. The added
element covers whatever x is “owning” at the beginning of the round. Thus, with (very) high probability,
counters “owned” by x in the round are not covered by Ci−1. This is because all the counters covered by
Ci−1 were set to value t (or a value close to t with very high probability‡) at some point, and the selection
of t makes the probability of later overtaking one such counter (very) small. There are only k counters to
cover and so with (very high) probability having only k rounds suffices to find a 1-cover.

Let Ii be the set of inserted elements ̸= x in each round. We get the number of Up-queries required to
complete k rounds is

q′U ≤
k∑

i=1

(di + |Ii|+ t) =

k∑
i=1

(di + |Ii|) + tk. (5)

So, x can be potentially inserted qU − q′U times, accumulating some additional error§. Let us assume that qQ
is not the limiting resource in the attack. Say C is the attack’s maximal round candidate cover. Whenever
¬ (Dt), adding zi t times to the HK incremented one of the x’s counters, not yet set to value t by elements
in Ci−1. If, in addition, we have |C| = k, k different elements set k different counters of x (i.e. all of the
x’s counters) to t making them impossible to decrement later. Therefore, after the rounds to reach C are

‡We could have zi simultaneously covering more not yet covered counters. Then, adding zi t times fixes one counter to t,
and the others to t with the probability ≥ 0.9 – the other counters might have been “owned” by some others elements but are
definitely of value one, so each of them gets “taken” by zi in the first insertion with probability 0.9.

§We say potentially as the Qry-query budget might be a limiting factor.
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CoverAttackUp,Qry(x,⊥,⊥)

1 : FindInsertCoverUp,Qry (x)

2 : until qU Up-queries made:

3 : Up(x)

4 : return done

ReintroUp,Qry(x)

1 : // reintroduce target x

2 : while True

3 : if qU Up- or qQ Qry-queries made:

4 : return

5 : Up(x); a← Qry(x)

6 : if a > 0 : return

7 : endwhile

8 :

FindInsertCoverUp,Qry(x)

1 : // insert ≤ k elements t times in a row

2 : cover← ∅
3 : t← Get-t()

4 : I ← ∅
5 : for i ∈ [1, 2, . . . , k]

6 : ReintroUp,Qry (x)

7 : while True

8 : if qU Up- or qQ Qry-queries made

9 : return

10 : y ←← U \ (I ∪ {x})
11 : I ← I ∪ {y}
12 : Up(y); a← Qry(x)

13 : if a = 0 :

14 : cover← cover ∪ {y}
15 : for j ∈ [t] : Up(y)

16 : break

17 : return

Figure 8: Cover Set Attack for the HK in private hash function and representation setting. The attack is parametrised
with the update and query query budget qU and qQ. The attack uses the function Get-t(.) from Figure 7.

completed every further insertion of x (qU − q′U of them) increased the error by 1. Note that |C| = k implies
the attack completed exactly k rounds and[

Err | ¬
(
Dt
)
, |C| = k

]
≥

k∑
i=1

(di) + qU −
k∑

i=1

(
di +

[
|Ii| | ¬

(
Dt
)
, |C| = k

])
− tk

≥ qU −
k∑

i=1

[
|Ii| | ¬

(
Dt
)
, |C| = k

]
− tk.

Let Di be the set of rows j with A[j][pj ].fp = fpx (i.e. x “owning” the counter), and let ci,j be the values
of A[j][pj ].cnt after the i-th round reinsertion step. Say Yi,j counts the minimal number of distinct element
insertions to “overtake” the counter from x in row j ∈ Di after the i-th round reinsertion step, i.e., the
minimal number of distinct evaluations of R(K.·) to set A[j][pj ].fp ̸= fpx. Then, Yi,j is a geometric random

variable with p = dci,j

m , dci,j coming from the probabilistic decay mechanism. Moreover, ci,j = 1 for all j ∈ Di

– counters “owned” by x equal 1 after every reinsertion step. As |D1| = k we have that |I1| = maxj∈D1
{Y1,j}

is essentially L1 with p = d
m . Since |Di| ≤ k and all Yi,j are positive and i.i.d. geometric variables with
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p = d
m , we have that E [|Ii|] ≤ E [|I1|]. So, E [|Ii|] ≤ m

d Hk. This implies that

E [Err] =
k∑

s=0

E
[
Err |

(
Dt
)
, |C| = s

]
Pr
[(
Dt
)
∧ |C| = s

]
+

k∑
s=0

E
[
Err | ¬

(
Dt
)
, |C| = s

]
Pr
[
¬
(
Dt
)
∧ |C| = s

]
≥ E

[
Err | ¬

(
Dt
)
, |C| = k

]
Pr
[
¬
(
Dt
)
∧ |C| = k

]
≥ (qU−tk) Pr

[
¬
(
Dt
)
∧ |C| = k

]
−

k∑
i=1

E [|Ii|]

≥ (qU−tk) Pr
[
¬
(
Dt
)
∧ |C| = k

]
− km

d
Hk.

We expect Pr [¬ (Dt) ∧ |C| = k] ≈ 1 and E [Err] ≈ qU−tk−km
d Hk. We confirmed this experimentally as seen

in Table 2.

Public hash and private representation setting. As with the CMS, the same attack and analysis
applies from the public hash and public representation setting.

Private hash and public representation setting. The public representation allows us to design an
attack similar to the attack for the public hash settings, but, as with the CMS attack in the setting, we need
to find the cover using the Up oracle. Starting with an empty filter, the attack first inserts x setting all x’s
buckets fingerprints. Then, we keep adding distinct elements, until all the A[i][pi].fp has changed, signaling
the cover for x has been found. We give a pseudocode description of this attack in Figure 9.

Under the NFC condition, inserting distinct elements keeps all x-counters at value 1. Hence, adding
any y ̸= x has d

m probability to change A[i][pi].fp. Let Yi be the minimal number of distinct element ̸= x
insertions before A[i][pi].fp changes from fpx. Yi is a geometric random variable with success probability
p = d

m . Set Y = maxi∈[k]{Yi}. So, our cover-finding step requires (q′U = 1 + Y ) Up-queries to complete.
Say qU is the total Up-query budget. After the cover finding step, we insert cover C t times, followed by
qU − q′U − t|C| insertions of x. Each x-insertion added one to the error if ¬ (Dt) and

E[Err] ≥ E
[
Err | ¬

(
Dt
)]

Pr
[
¬
(
Dt
)]

≥ (qU − 1− E [Y ]− tk) Pr
[
¬
(
Dt
)]

≈ qU −
m

d
Hk − tk.

The last approximation comes from assuming t is set such that Pr [¬ (Dt)] ≈ 1, and observing that Y is
essentially L1 with p = d

m (i.e. m replaced with m
d ).

6 Count-Keeper

In Figure 10 we present the Count-Keeper (CK) data structure. At a high level, CK uses information from
both CMS and HK (with d = 1) to create frequency estimates that are more accurate than either CMS or
HK (alone) when the stream is “honest”, and that are more robust in the presence of adversarial streams.
After describing the structure, we will provide analytical support for its design, i.e., why it is more accurate
and robust. To summarize this very briefly and informally: CK is more accurate because its HK component
can decrease the effect of “collision noise” that drives up the values held at the relevant M [i][pi] in the CMS
component; and it is more robust because a 1-cover no longer suffices to create estimation errors (minimally, a
2-cover is needed) and, unlike either CMS or HK alone, CK can detect when the state ofM,A is “abnormal”
and prone to producing spurious estimates.
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CoverAttackUp,Qry(x,⊥, repr)

1 : cover← FindCoverUp(x, repr)

2 : t← Get-t()

3 : for e ∈ cover

4 : for i ∈ [t]: Up(e)

5 : until qU Up-queries made:

6 : Up(x)

7 : return done

FindCoverUp(x, repr)

1 : cover← {}; found← False

2 : I ← ∅; tracker← zeros(k)

3 : repr′ ← Up(x)

4 : // compute x’s indices

5 : for i ∈ [k]

6 : for j ∈ [m]

7 : if repr′[i][j].fp ̸= repr[i][j].fp

8 : pi ← j;break;

9 : while not found

10 : if qU Up-queries made : return ∅
11 : y ←← U \ (I ∪ {x})
12 : I ← I ∪ {y}
13 : repr← repr′

14 : repr′ ← Up(y)

15 : // compute y’s indices

16 : for i ∈ [k]

17 : qi ← False

18 : for j ∈ [m]

19 : if repr′[i][j].fp ̸= repr[i][j].fp

20 : qi ← j;break;

21 : for i ∈ [k]

22 : // compare x’s and y’s indices row by row

23 : if qi ̸= False and pi = qi

24 : // remove duplicates

25 : cover[i]← y

26 : if tracker[i] < 1

27 : tracker[i]← 1

28 : if sum(tracker) = k

29 : found← True

30 : // cover elements ’own’ the target’s counters

31 : return cover.values() // all counters set to 1

Figure 9: Cover Set Attack for the HK in private hash function and public representation setting. The attack is
parametrized with the update query budget qU . The attack uses the function Get-t(.) from Figure 7.

6.1 Structure

At initialization, the CK initializes a standard CMS (initialized in the structure as M) and a HK with the
decay parameter d = 1 (initialized in the structure as A) in their usual way. We set the substructures to be
of the same number of rows and buckets and let the elements hash to the same counters’ positions in each
substructure using the same row hash functions.

To insert a stream element x arrives, we run the CMS and HK update proceduresM ← UpCMS
K (M, upx)

and A← UpHK
K (M, upx), respectively. We note that the same positions (p1, . . . , pk)← R(K,x) are visited in

both procedures; thus the same elements are observed byM [i][pi] and A[i][pi]. By “observed”, we mean that
both M [i][pi] and A[i][pi] maintain summary information about the same substream, namely the substream
of elements z such that pi =R(K, z)[i].
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RepK(S)

1 : M ← zeros(k,m)

2 : for i ∈ [k]

3 : A[i]← [(⋆, 0)]×m
4 : repr← ⟨M,A⟩
5 : for x ∈ S
6 : repr←←UpK(repr, upx)

7 : return repr

UpK(repr, upx)

1 : ⟨M,A⟩ ← repr

2 : M ←← UpCMS
K (M, upx)

3 : A←← UpHK
K (A, upx)

4 : return repr←⟨M,A⟩

QryK(repr, qryx)

1 : ⟨M,A⟩ ← repr

2 : (p1, . . . , pk)← R(K,x), fpx ← T (K,x)

3 : Θ1,Θ2 ←∞
4 : // CMS only overestimates

5 : cntUB,x ← QryCMS
K (M, qryx)

6 : // HK only underestimates

7 : cntLB,x ← QryHK
K (A, qryx)

8 : // return upperbound if equal to lowerbound

9 : if cntUB,x = cntLB,x

10 : return cntUB,x

11 : for i ∈ [k]

12 : // if never observed

13 : if A[i][pi].fp = ⋆

14 : cntUB,x ← 0

15 : return 0

16 : // upper bound adjustment

17 : // x does not own counter

18 : else if A[i][pi].fp ̸= fpx

19 : Θ← M [i][pi]−A[i][pi].cnt+1

2

20 : Θ1←min {Θ1,Θ}
21 : // x owns counter

22 : else if A[i][pi].fp = fpx

23 : Θ← M [i][pi]+A[i][pi].cnt

2

24 : Θ2←min {Θ2,Θ}
25 : cntUB,x←⌊min {Θ1,Θ2}⌋
26 : return cntUB,x

Figure 10: Keyed structure CK[R, T,m, k] supporting point-queries for any potential stream element x (qryx).
QryCMS

K ,UpCMS
K , resp. QryHK

K ,UpHK
K , denote query and update algorithms of keyed structure CMS[R, T,m, k] (Fig-

ure 2), resp. HK[R, T,m, k, 1] (Figure 3, but note d = 1). The parameters are a function R : K × {0, 1}∗ → [m]k, a
function T : K×{0, 1}∗ → {0, 1}n for some desired fingerprint length n, and integers m, k ≥ 0. A concrete scheme is
given by a particular choice of parameters.
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When queried for the frequency estimate of an element x ∈ U , CK first computes the CMS and HK
estimates, which we will write as CMS(x) and HK(x) for brevity. If CMS(x)=HK(x), then we return their
shared response. We will see precisely why this is the correct thing to do, but loosely, it is because (under
the NFC assumption) HK(x) ≤ nx ≤ CMS(x). If CMS(x) ̸= HK(x) then CK proceeds row-by-row, using
the information held at A[i][pi] to refine the summary information held at M [i][pi]. If any of the A[i][pi].fp
are uninitialized, then we are certain that nx = 0; had any stream element been mapped to this position,
the fingerprint would no longer be uninitialized. In this case, CK(x) returns 0.

Now assume that none of the A[i][pi] have uninitialized fingerprints, and CMS(x) ̸= HK(x). To ex-
plain our row-by-row refinements, let us define two sets Ix = {i ∈ [k] | A[i][pi].fp= fpx} and Îx = {i ∈
[k] | A[i][pi].fp ̸= fpx}, i.e., the subset of rows in M (and A) that are “owned” and not “owned” (resp.) by x.
Observe that we can write the CMS estimate for x as

CMS(x) = min

{
min
i∈Ix
{M [i][pi]} ,min

i∈Îx

{M [i][pi]}
}

so for each row i ∈ [k], we have two cases to consider. For each case, CK maintains an internal estimator:
when i ∈ Îx the estimator is Θi

1, and when i ∈ Ix the estimator is Θi
2. We will talk about each of these,

next. The upshot of this discussion is that CK defines Θ1 = mini∈Îx
{Θi

1}, Θ2 = mini∈Ix{Θi
2}, and its return

value ⌊min{Θ1,Θ2}⌋ is always at least as good as CMS(x).

6.2 Correcting CMS and Correctness of CK

In what follows, we will assume the NFC condition. For sufficiently large fingerprints (e.g., τ -bit fingerprints
where 2τ is much larger than the number of distinct elements in the stream) this is reasonable. Under this
assumption, CK may only overestimate the value of nx.

Correcting M [i][pi] when x does not “own” A[i][pi]. By its design as a count-all structure, the value
of M [i][pi] = nx +

∑
y∈V i

x
ny. When i ∈ Îx, we claim that nx ≤

∑
y∈V i

x
ny. To see this, observe that if

nx >
∑

y∈V i
x
ny then x would own A[i][pi]: we can pair up appearances of x with appearances of elements in

y ∈ V i
x , and because no element of V i

x has the same fingerprint as x, each pair (x, y) effectively contributes
0 to the value of A[i][pi].cnt. So if nx >

∑
y∈V i

x
ny, the fingerprint held at A[i][pi] would be fpx. Note

that if nx =
∑

y∈V i
x
ny and i ∈ Îx, then A[i][pi].cnt = 1 and some y ̸= x was the last insertion. Thus,

A[i][pi] − 1 is a lowerbound on the difference
∑

y∈V i
x
ny − nx, i.e., the number of occurrences of y ∈ V i

x

that are not canceled out by an occurrence of x. Thus, nx + A[i][pi] − 1 ≤
∑

y∈V i
x
ny, which implies

that M [i][pi] = nx +
∑

y∈V i
x
ny ≤ 2nx + A[i][pi] − 1. This argument gives a proof sketch of the following

lemma, whose full proof (along with full proofs for Lemma 2, Corollary 1,and Corollary 2) can be found in
Appendix C.

Lemma 1. Let S⃗ satisfy the NFC condition, and let x ∈ U . Then for any i ∈ Îx we have nx ≤
M [i][pi]−A[i][pi].cnt+1

2 =Θi
1. ♦

As this lemma holds for every i ∈ Îx, we conclude that nx ≤ Θ1 = mini∈Îx
{Θi

1} ≤ mini∈Îx
{M [i][pi]}.

Correcting M [i][pi] when x does “own” A[i][pi]. Now, say that row i∈ Ix. Under the NFC condition
A[i][pi].cnt stores the number of occurrences of x that are not canceled out by occurrences of y ∈V i

x . So, we
must have had at least

∑
y∈V i

x
ny ≥nx − A[i][pi].cnt occurrences of y ∈ V i

x . This implies M [i][pi]≥ 2nx −
A[i][pi].cnt, and, by rearranging, nx≤ M [i][pi]+A[i][pi].cnt

2 . This sketches a proof of the following lemma, whose
full proof appears in Appendix C.

Lemma 2. Let S⃗ satisfy the NFC condition, and let x ∈ U . Then for any i ∈ Ix we have nx ≤
M [i][pi]+A[i][pi].cnt

2 = Θi
2. ♦

As this lemma holds for every i∈ Ix, we conclude that nx≤Θ2 = mini∈ Ix{Θi
2}≤ mini∈ Ix{M [i][pi]}.

Combined with the conclusion of Lemma 1, we have nx≤CK(x)= ⌊min{Θ1,Θ2}⌋≤CMS(x).
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Precise estimation when some |V i
x | ∈ {0, 1}. If there exists an i such that

∣∣V i
x

∣∣ =0, thenM [i][pi] =A[i][pi] =
nx. Hence, in this special case, both CMS(x) = nx and HK(x) = nx. When this is not the case, nx < M [i][pi]
for all i ∈ [k], so nx < CMS(x). For CK, on the other hand, if there exists a row i such that |V i

x | = 1, we
still have CK(x) = nx. Our next result, which is a corollary of Lemmas 1 and 2, shows that either one of Θi

1

or Θi
2 is precisely nx, or the smaller of the two is nx ± 1/2. Thus CK(x) = ⌊min{Θ1,Θ2}⌋=nx. The proof

can be found in Appendix C.

Corollary 1. Let i ∈ [k] be such that |V i
x | = 1. If the stream satisfies the NFC condition, then

i ∈ Îx⇒ nx=
M [i][pi]−A[i][pi].cnt

2
+c with c ∈ {1/2, 0},

i ∈ Ix⇒ nx=
M [i][pi] +A[i][pi].cnt

2
+c with c ∈ {−1/2, 0}. ♦

Finally, we note one more case when CK(x)=nx. If one of the x’s buckets holds uninitialized fingerprint,
i.e. i ∈ [k] such that A[i][pi].fp= ⋆, then |n̂x − nx|=0. This is because 1) the HK has the property that if x
maps to a position in A with an uninitialized fingerprint, then x was never inserted (i.e., nx =0); and 2) we
define CK to return n̂x =0 if any of x’s positions in A holds an uninitialized fingerprint.

6.3 Frequency estimate errors

In this section we extend the frequency estimation error analysis of CMS to CK. We have already seen that
the CK estimate is never worse than the CMS estimate; in this section, we explore how much better it can
be.

We begin with a simple theorem about the relationship between Θ1 and the plain CMS estimate.

Theorem 1. Fix an x ∈ U , and let i∗ be any row index such that CMS(x) = M [i∗][pi∗ ]. Then either

CK(x) = nx or
(
i∗ ∈ Îx

)
⇒
(
Θ1 ≤ CMS(x)

2

)
. ♦

Proof. If A[i∗][pi∗ ] has an uninitialized fingerprint, then CK(x) = nx = 0. Now assume this is not the case,
so that A[i][pi].cnt ≥ 1 for all of the counters associated to x. By definition Θ1 = mini∈Îx

{Θi
1} ≤ Θi∗

1 , and

so Θ1 ≤ M [i∗][pi∗ ]−A[i∗][pi∗ ].cnt+1
2 ≤ CMS(x)

2 .

Next, a similar theorem relating Θ2, the plain CMS estimate, and the HK estimate (when d = 1).

Theorem 2. Fix an x ∈ U , and let i∗ be any row index such that CMS(x) = M [i∗][pi∗ ]. If i∗ ∈ Ix then

Θ2 ≤ CMS(x)+HK(x)
2 . ♦

Proof. We have, Θ2= mini∈Ix Θ
i
2 ≤ Θi∗

2 =
M [i∗][p∗

i ]+A[i∗][p∗
i ].cnt

2 . Thus, the theorem is proved by observing
that A[i∗][p∗i ].cnt ≤ HK(x).

Now, if CK(x) is determined by line 10 of Figure 10, then CK(x) = CMS(x)+HK(x)
2 . On the other hand,

if CK(x) is determined by line 15, then CK(x) = 0 ≤ CMS(x)+HK(x)
2 . If neither of these holds, CK(x) =

⌊min{Θ1,Θ2}⌋. Thus, Theorem 1 and 2 imply ⌊min{Θ1,Θ2}⌋ ≤ CMS(x)+HK(x)
2 , giving us the following

lemma.

Lemma 3. For any x ∈ U , CK(x) ≤ CMS(x)+HK(x)
2 . ♦

From here, it is straightforward to bound the CK estimation error, giving us the main result of this section.

Corollary 2. Let x ∈ U . If the stream satifies the NFC condition, then CK(x)− nx ≤ CMS(x)−HK(x)
2 . ♦

21



Consequences of Corollary 2. First, as CMS(x) and HK(x) approach each other — even if both are
large numbers (e.g. when the stream is long and x is relatively frequent) — the error in CK(x) approaches
zero.

Next, because CMS is a count-all structure, the worst case guarantee is that the error CK(x) − nx ≤
CMS(x)/2, i.e., when HK(x) = 0. This occurs iff x does not own any of its counters, which implies that x
is not the majority element in any of the substreams observed by the positions A[i][pi].cnt to which x maps.
As M [i][pi] observes the same substream as A[i][pi], and CMS(x) = mini∈[k]{M [i][pi]}, for practical values
of k,m it is unlikely that all k of the V i

x have unexpectedly large numbers of elements. Moreover, for typical
distributions seen in practice (e.g., power-law distributions that have few true heavy elements), it is even less
likely that all of the V i

x contain a heavy hitter. Thus under “honest” conditions, we do not expect CMS(x)
be very large when HK(x) is very small.

This last observation surfaces something that CK can provide, and neither CMS nor HK can: the ability
to signal when the incoming stream is atypical. We explore this in detail in Section 6.6.

6.4 Experimental Results

We will now compare non-adversarial performance of the compact frequency estimators (CFEs) by measuring
the ability of these structures in identifying the most frequent (heavy) elements of a stream. Finding the
heavy elements of a stream is the typical use case of CFEs and as such these structures are used for that
purpose in many systems level applications [6,9,12,24,25,28,34]. The ability to accurately identify these heavy
elements is based on a CFE’s ability to accurately make frequency estimations on these heavy elements, while
maintaining the ability to make accurate frequency estimations on the non-heavy elements, such that one
would be able to distinguish between the two classes of elements. Therefore, we experimentally measure the
non-adversarial performance of these structure by comparing a number of performance metrics in identifying
heavy elements across three different streams.

Data Streams. We have three different streams we experiment with. We sourced two streams from a
frequent item mining dataset repository¶. We also sourced an additional stream by processing a large
English language novel from Project Gutenberg.

We summarize each of these three streams and why they are of particular interest to experiment on
below.

1. Kosarak Stream: This data collection contained anonymized click-rate data collected from visits to
an online Hungarian news site. The resultant stream is of total length 8, 019, 015 with 41, 270 distinct
elements. As aforementioned, we sourced this stream from a frequent item mining dataset repository which
is a collection of data sets meant to test frequent item finding algorithms on – the very task which we are
doing. We flattened the raw collection of data such that it would resemble a stream that could be processed
item-by-item.

2. Novel Stream: We created a stream by processing the individual words sequentially of The Project
Gutenberg eBook plaintext edition of the 1851 English-language novelMoby-Dick; or, The Whale by Herman
Melville (ignoring capitalization and non-alphabetical characters) [27]. Long bodies of natural language obey
an approximate Zipf distribution as the frequency of any word is inversely proportional to its rank in an
ordered frequency list [4]. It is of interest to measure compact frequency estimators performance against
data following a Zipf distribution [6, 9, 13, 25, 28, 34]. The stream is of total length 2, 174, 111 with 19, 215
distinct elements.

3. Retail Stream: This data collection contained anonymized shopping data from a Belgian retail store.
The resultant stream is of total length 908, 576 and contains 16, 740 distinct elements. This data set is also
from the frequent items mining dataset repository. As with the Kosarak stream we flattened the raw data
such that it would resemble a stream after processing.

¶http://fimi.uantwerpen.be/data/
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Kosarak stream Novel stream Retail stream

Figure 11: We plot the top 35% probability mass for each stream. That is the most frequent elements that make
up 35% of the total weight of the stream (i.e. the fewest number of elements in each stream whose frequencies sum
to such that when divided by the total length of the stream equal 35%). The first vertical red line in each plot is the
top 20% probability mass, the second the top 25%, the third the top 30%, and the last the top 35%. From visual
inspection we decided to make the top-K cut-off at, 20 for Kosarak stream, 22 for the Novel stream, and 22 for the
Retail stream.

Measures and Metrics. We want to measure the performance of the CFEs of interest in the non-adversarial
setting by determining how well they are able to identify and characterize the heavy elements in the streams
above.

This problem, with varying but related definitions, is referred to in the literature as the heavy-hitters
problem, the hot-items problem, or the top-K problem.

The simplest of these definitions to apply is that of the top-K problem, which is to simply report
the set of elements with the K highest frequencies (for some K) for a given stream. That is given ele-

ments of a stream S⃗ ⊆ {e1, e2, . . . , eM} with associated frequencies (ne1 , ne2 , . . . , neM ) we can order the
elements {e∗1, e∗2, . . . , e∗M} such that (n∗e1 ≥ n∗e2 ≥ . . . ≥ n∗eM ). Then for some K ∈ Z+ we output the set of
elements {e∗1, e∗2, . . . , e∗K} with the K highest frequencies (n∗e1 ≥ n

∗
e2 ≥ . . . ≥ n

∗
eK ).

The top-K problem can be solved exactly given space linear to that of the stream by keeping an
individual counter for each distinct element in the stream. It is not possible to solve exactly with space less
than linear (see [32] for a formal impossibility argument), but it is a common technique to place a small data
structure such as a min-heap restricted to size K on top of a CFE and by updating this small structure on
each insertion once, one is able to approximate this top-K set [24,28,34].

For our purposes we simply compute the approximate top-K by processing the stream with a compact
frequency estimator, querying on every distinct element in the stream, and ordering elements by approxi-
mated frequency. Likewise, we compute a true top-K for each stream by processing said stream with a map
linear in the size of the stream, computing a frequency for each element, and ordering by true frequency.
We note that we would have achieved identical results by putting a min-heap on top of each structure with
fixed sized K, updating as described in [34] and outputting its contents once the entire stream has been
processed. However, for experimental purposes our approach is more extensible than the one that would be
used in practice.

The number of heavy elements, or perhaps the number of heavy elements one would care about, varies
depending on the stream and the application. For instance, it is noted that in a telecommunications scenario
when monitoring the top outgoing call destinations of a customer typically a value ofK in the range of 10−20
is appropriate [20]. Moreover, when identifying the most frequent elements of interest of Zipfian distribution
it is often of interest to vary K based on the parameters of the underlying distribution [9].

We select K for each stream by observing the number of clearly identifiable outliers in the underlying
stream. We do this by visually inspecting the selected streams’ frequency plots. We set the x-axis to
enumerate all distinct elements in a stream, ordered from most to least frequent and the y-axis as those
distinct elements’ corresponding frequencies. We make a cut-off around the point where the frequencies
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went from very peaked (distinct with prominent frequency jumps from element to element) to flat (many
elements with about the same frequency – the point at which the frequency differences decline less sharply).
These frequency plots can be seen in Figure 11. We set K = 20 for the Kosarak stream, K = 22 for the
novel stream, and K = 22 for the retail stream.

We measure the accuracy of the non-adversarial performance according to four different metrics.

1. Set Intersection Size (SIS): This measures the size of the set intersection of the true top-K set K
of the stream and the estimated top-K set K̃ as reported by the CFE: SIS = |K ∩ K̃|. This is measure of
precision on the estimated top-K set as compared to the true top-K set. A SIS of K would imply perfect
precision.

2. Jaccard Index (JI): The JI is a statistic that measures the similarity of two sets [31]. We use the
statistic to determine the similarity of the true top-K set K of the stream and the estimated top-K set K̃ as

reported by the CFE. It is defined as JI = |K∩K̃|
|K∪K̃| . A JI can be in the range [0, 1], with a JI of 1 implying a

perfect characterization of the true top-K set by the CFE in its top-K estimation.

3. Minimal Top-K̃ to Capture True Top-K (MCT): This measures determines the minimal size L ≥ K
the estimated top-k set K̃ would need to be to capture all elements contained in the true top-K set K. That
is if one were to order the frequency estimates of all items made by a particular CFE, we would determine
the number of items one would need to examine (starting from the most-frequent going down to the least-
frequent) until all the elements from K were contained in that ordered set. Thus, L−K indicates the number
of elements that fall out of K that are incorrectly being individually estimated to be greater than at least
one element that is truly in K.

4. Average Relative Error on Top-k elements (ARE): Average Relative Error is a standard measure

to use when comparing CFEs [34]. It is defined as ARE = 1
K

∑K
i=1

|n̂i−ni|
ni

where i ∈ [K] indexes the true
top-K elements for a particular stream.

Results. We crafted reference implementations for all three CFEs of interest: CMS, HK, and CK‖. They
are implemented in Python3 and use the BLAKE2b cryptographic hash function for independent row hash
functions and for a fingerprint hash function in the case of CK and HK.

We are interested in comparing performance when the space used by the structures is held constant.
Observe that CK is three times as large as CMS, and HK is twice as large as CMS assuming the same space
is used for a counter bucket and a fingerprint bucket (in the CK and HK) across all structures. In practice
these buckets could be (say) 32-bits. We picked two sets of parameters, a standard set and a constrained set
to test.

The standard set of parameters setm = 2048, k = 4 for CMS,m = 1024, k = 4 for HK, andm = 910, k =
3 for CK. This corresponds to 32.76 kB of space when using a 32-bit bucket sizes. We experimentally show
that at this size all the structures are able to identify the heavy elements of the streams we test upon with
minimal to no error.

The constrained set of parameters sets m = 512, k = 4 for CMS, m = 256, k = 4 for HK, and m =
341, k = 2 for CK. This corresponds to just 8.19 kB of space when using a 32-bit counter and fingerprint
bucket sizes. In this space constrained setting the structures are still able to identify the heavy elements of
the streams we test upon, but with some degree of moderate error.

For HK, we set d = 0.9 for all experiments, as this is the default chosen by Redis [3] and satisfies the
desired properties of the exponential decay function stated in [34].

We ran 1000 trials for each structure, stream, and parameter triplet using our reference implementations.
We randomize each trial on the particular choice of hash functions used for the rows (by selecting a random
per-trial seed), as well as the order in which the items in the stream are processed. The latter simulates an
item being randomly drawn from the underlying distribution of the stream. We averaged our four metrics
for each structure, stream and parameter triplet over the 1000 trials.

‖Source code is available at: https://github.com/smarky7CD/cfe-in-adv-envs
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Structure
Parameters

(m,k)
Stream SIS JI MCT ARE

Standard

CK (910,3) Kosarak (K = 20)
Novel (K = 22)
Retail (K = 22)

20
22
22

1
1
1

20
22
22

≈ 0
≈ 0
≈ 0

CMS (2048,4)
19.303
22.999
21.643

0.934
0.999
0.997

20.901
22.001
22.405

0.017
0.009
0.040

HK (1024,4)
20
22
22

1
1
1

20
22
22

≈ 0
≈ 0
≈ 0

Constrained

CK (341,2) Kosarak (K = 20)
Novel (K = 22)
Retail (K = 22)

17.189
21.617
13.442

0.757
0.967
0.441

28.695
22.451
209.439

≈ 0
≈ 0
0.021

CMS (512,4)
18.241
21.638
18.745

0.841
0.969
0.745

24.567
22.473
41.609

0.125
0.062
0.296

HK (256,4)
20
22

21.976

1
1

0.998

20
22

55.008

≈ 0
0.001
0.005

Table 1: A summary of non-adversarial setting results between the CK, CMS, and HK compact frequency estimators.

We present a summary of the results in Table 1. For the standard parameter set we see that CK and
HK perform best, being able to perfectly capture the true top-K set for each stream with their outputted
estimated top-K set in every trial. This is indicated by the SIS and MCT being equal to K and the JI being
equal to 1 for each stream. Moreover, the estimates on these top-K elements for both of these structures
were very tight. The ARE over all trials and streams was ≈ 0 (ignoring a small rounding error). This
indicates that CK and HK nearly perfectly individually estimated every single element in the true top-K
across all trials.

CMS with the standard parameter sizing performs almost as well. Only failing to capture the true
top-K set with its estimated set a few number of times over the 1000 trials. This is indicated by the SIS
and MCT being very close to K and the JI being very close to 1 for each stream. However, CMS, as it is
prone to overestimation on every element, has slightly higher ARE than the other structures.

The constrained set of parameters presents a challenge for all the CFEs in computing individual fre-
quency estimations on elements in the streams, and as a result computing an accurate estimated top-K.
This setting only allocates CK a measly 642 individual counters to compactly represent streams that all
have over 19, 000 distinct elements. Under these conditions, HK performs best according to our metrics. It
perfectly captures the true top-K in both the Kosarak and Novel stream, while only failing to do so in a
handful of trials with the Retail stream. Moreover, the ARE is small across all streams – comparatively
less than CMS with the standard parameters. HK by design prioritizes providing accurate estimates on
the most frequent elements, by way of its probabilistic decay mechanism. So while it performs well on this
task, it severely underestimates middling and low frequency elements at this sizing, reporting an individual
frequency estimate ≈ 0 for any element that is not heavy.

CMS and CK perform less well in this small space allocation setting. While CMS performs slightly
better in capturing the true top-K set within its estimated top-K set, CK continues to give better accuracy
on individual point estimations of the true top-K elements across streams due to its internal sub-estimators
that provide tighter estimations than CMS.

We observe in this constrained space setting across the structures measured performance is the worst
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on the Retail stream. This is because the Retail stream has a flatter distribution as compared to the other
streams. That is to say, it has very few clearly identifiable heavy elements before containing a large collection
of elements of about the same frequency. This can be seen in the frequency plot in Figure 11. The Retail
element with frequency rank 22 has a true frequency of 1715 while the Retail element of frequency rank 56
has a true frequency of 1005. Comparing this to n22 = 22631, n56 = 9559 and n22 = 1176, n56 = 474,
respectively for the Kosarak and Novel stream, one can see that the relative fall off in true frequency is far
less pronounced within this region of the Retail stream. This in turn leads to small errors in the individual
frequency estimations of elements near (but outside) the true top-K of the Retail stream propagating to
the top-K estimation – by making it challenging for the CFEs to draw a clear distinction between the truly
heavy elements and the nearly heavy elements. The upshot being, one needs larger structures to accurately
estimate these flatter streams.

In sum, CK performs comparatively well to both CMS and HK, and in fact better than CMS when
not burdened with very tiny space constraints. It is able to perfectly estimate the true top-K for all
streams overall trials with only 2730 individual counters in the standard parameter setting, while also being
adversarial robust where the others structures are not.

6.5 Attacks Against the CK

Our attacks against CK are almost one-to-one with those we present against the CMS with one major
difference. Recall from Corollary 1 that if at least one counter in some row i of the element x we are
querying on maps to has |V i

x | ≤ 1 then CK returns estimate n̂x such that n̂x = nx, i.e. CK(x) is a perfect
estimate of x. This implies that for an error to exist in a frequency estimation of x it must be that ∀i ∈ [k]
it is necessary that |V i

x | ≥ 2. In the attack setting this means we need to find a 2-cover (specifically
a (FPx, x, 2)-cover) on x to create error.

A 2-cover C for x contains elements {y1, y2, . . . , yt} such that for every counter x maps to in posi-
tions (p1, p2, . . . , pk)← R(K,x) it is such that two distinct elements in C cover each counter. In our attack
model we assume an initially empty representation and we never insert x in any of our attacks (except for
once to discover its counter positions in the public representation, private hash setting).

We attack CK in a two-step process, as with CMS and HK. We first find a 2-cover for our target
element x and then repeatedly insert the 2-cover to create error. Under the assumption that x does not own
any of its counters in the A substructure of the CK (which is guaranteed in our attack model∗∗), then the Θ1

sub-estimator will be used to make the final error evaluation Qry query on x. Say that after some process
of finding a 2-cover for x (which will be of size ≤ 2k – for this discussion we will assume the size of the
2-cover is exactly 2k) we have ω insertions to repeatedly insert the elements in the cover. Repeated and equal
insertions of each of the elements in the 2-cover for x will cause the values in all of x’s counters in the M
substructure of the CK to be of value ω

k . In the A substructure the value in the counters that x maps to will
have value 1 and be owned by some element in the 2-cover. This is because (under the no-fingerprint collision
assumption) in the initially empty structure, ownership of said counters will flip-flop on each iteration of the
insertion of the 2-cover between the two distinct elements that map to these counters in accordance with
the Up algorithm of the HK with d = 1.

Then applying the estimation from Θ1 we see that we will generate error on x equal to ω
2k . If we hold k

constant and assume that we are attacking a CMS under the same conditions (we have found a 1-cover for
a target x through some process and have ω insertions to accrue error) we will have an error of ω

k , which is
twice that of the CK under the same conditions. Under the same assumptions for HK, with the added one
that we have already primed the cover in the structure, we will achieve an error on the target of ω, which
is ω − ω

2k greater than that of the CK. We will see this pattern holds when giving concrete experimental
attack error results at the conclusion of this section.

Public hash and representation setting. As our other attacks (for CMS and HK) in this setting, the CK
attack (Figure 12) can be viewed as a two-step process. In this setting, we find a 2-cover for target x using
the Hash oracle only, and then accumulate error for the target by repeatedly inserting the 2-cover. Each

∗∗Save for the trivial case in the public representation, private hash setting when no cover is able to be found.
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CoverAttackHash,Up,Qry(x,K, repr)

1 : cover←FindCoverHash(2, x,K)

2 : until qU Up-queries made:

3 : for e ∈ cover: Up(e)

4 : return done

FindCoverHash(r, x,K)

1 : cover← ∅; found← False

2 : I ← ∅; tracker← zeros(k)

3 : // R(K, x)[i] = Hash(⟨i,K, x⟩)

4 : (p1, p2, . . . , pk)← R(K,x)

5 : while not found

6 : if qH Hash-queries made

7 : return ∅
8 : y ←← U \ (I ∪ {x})
9 : I ← I ∪ {y}

10 : (q1, q2, . . . , qk)← R(K, y)

11 : for i ∈ [k]

12 : if pi = qi and tracker[i] < r

13 : cover← cover ∪ {y}
14 : tracker[i] + = 1

15 : if sum(tracker) = rk

16 : found← True

17 : return cover

Figure 12: Cover Set Attack for the CK in public hash function setting. The attack is parametrized with the update
and Hash query budget qU and qH .

insertion of the 2-cover increases the error by one. The two cover can be inserted at least qU
2k as the size of the

cover is ≤ 2k. We apply the same analysis used for the CMS attack, but replace k(1+L1) with k(1+L2) as
the number of Hash-queries to complete the cover-finding step, as again, we now find a 2-cover. Assuming

qU > 2k (so that any found C can be inserted at least once) we arrive at E[Err] ≥
⌊
qU
2k

⌋
Pr
[
L2 ≤ qH−k

k

]
Using

results from Section 5.1 we can further obtain a concrete expression for Pr
[
L2 ≤ qH−k

k

]
.

Private hash and representation setting. Our attack for the setting is presented in Figure 13. The
attack begins by querying x to learn its current frequency estimate (= 0 as the filter is initially empty). Say⌊
M [1][p1]−A[1][p1].cnt+1

2

⌋
= c1, . . . ,

⌊
M [k][pK ]−A[k][pk].cnt+1

2

⌋
= ck be the rows frequency-estimates associated

with x. Currently, mini∈[k]{ci} = a ≥ 0, but none of the rows’ frequency-estimate values was actually used
to obtain CK(x) on an empty filter, storing no fingerprints.

The attack then keeps inserting distinct random elements, checking until CK(x) increases to a + 1,
implying that (1) all the fingerprints A[i][pi].fp are set and (2) a two cover for x was inserted as a direct

result of Corollary 1. Let I⃗ be the stream of inserted elements at the moment that this happens. We next
begin the first “round” of extracting a (I⃗ , x, 2) cover from I⃗. Let z1 be the last inserted element. Inserting
z1 caused CK(x) to increase, and z1 must have increased one of the minimal row-frequency estimates from

0 to 1 (by covering the counter for the second time). So, we set our round-one candidate (I⃗ , x, 2) cover as
C1 ← {z1}.

LetM(C1) = {i ∈ [k] | ∃z1, z2 ∈ C : R(K, z1)[i] = R(K, z2)[i] = pi}, i.e., the set of rows whose x-counters
are 2-covered by C1, and let d = minj ̸∈M(C1){cj} −mini∈M(C1){ci}. Notice that reinserting C1 increases all
cj by one per reinsertion, and keeps each ci at the same value (if none of elements in C1 cover the counter,
or if exactly one element from C1 covers the counter, and, in addition, also owns the counter) or, when the
exactly one element from C1 covering the counter does not own it, first only limited (i.e. A[i][pi].cnt) number
of reinsertions increase ci by one, and the ci stops changing.

At the point when CK(x) stops changing we have that the rows associated with the currently minimal
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CoverAttackUp,Qry(x,⊥,⊥)

1 : cover← FindCoverUp,Qry (x)

2 : until qU Up-queries made:

3 : for e ∈ cover: Up(e)

4 : return done

MinUncoverUp,Qry(x, a′, cover)

1 : b′ ← a′ − 1

2 : while a′ ̸= b′

3 : if (qU − |cover|+ 1)Up-

4 : or qQ Qry-queries made:

5 : return cover

6 : b′ ← a′

7 : for y ∈ cover : Up(y)

8 : a′ ← Qry(x)

9 : return a′

FindCoverUp,Qry(x)

1 : // find 2- cover for x

2 : cover← ∅
3 : found← False

4 : I ← ∅; a← Qry(x)

5 : while not found

6 : if qU Up- or qQ Qry-queries made

7 : return cover

8 : y ←← U \ (I ∪ {x})
9 : I ← I ∪ {y}

10 : Up(y); a′ ← Qry(x)

11 : if a′ ̸= a :

12 : cover← {y}
13 : found← True

14 : for i ∈ [2, 3, . . . , 2 · k]
15 : a← MinUncoverUp,Qry (x, a′, cover)

16 : if a = cover : return cover

17 : for y ∈ I // in order of insertion to I

18 : if qU Up- or qQ Qry-queries made

19 : return cover

20 : Up(y); a′ ← Qry(x)

21 : if a′ ̸= a :

22 : cover← cover ∪ {y}
23 : I ← I \ {y}
24 : break

25 : return cover // cover is inserted at least once

Figure 13: Cover Set Attack for the CK in private hash function and representation setting. The attack is parametrized
with the update and query query budget qU and qQ.

row frequency-estimates of x have not been 2-covered by C1. This implies that the next element to increase
CK(x) must cover a counter not yet 2-covered by C1.

At this point we begin round 2, searching for z2 ∈ I⃗ \ C1 that covers a row associated with the newly

minimal row frequency-estimate of x. Recall that, by definition, I⃗ certainly contains a 2-cover. So, we are
guaranteed to hit an element satisfying z2 ̸= z1 that increases the estimate after its insertion. Thus, to find
z2 we keep adding z ∈ I⃗ \C1 in order until CK(x) stops changing. At the point this happens, the last inserted

element is the element we are looking for and we set z2 to the element, and our round-2 candidate (I⃗ , x, 2)
cover as C2 ← C1∪{z2}. Continuing this this way, after ℓ ≤ 2k rounds we will have found a complete 2-cover
for x. As each round i adds exactly one new element zi to the incomplete cover Ci−1, and there can only

be k counters to 2-cover, maximally 2k rounds will be executed before finding a (I⃗ , x, 2)-cover.

Notice that in round ℓ, when we reinsert Cℓ we will never observe that some new row started to hold
the new minimal row frequency-estimate of x: all x-counters are 2-covered by Cℓ, so all will be increased by
each reinsertion. Nonetheless, each reinsertion of Cℓ adds one to the estimation error, and these reinsertions
may continue until the resource budget is exhausted, i.e., until a total of qU elements have been inserted (via
Up) as part of the attack.

Say each round inserts round-i 2-cover set candidate Ci δi+1 times. Then, by definition, each complete
round increases the error by δi by reinserting Ci, and additionally by one when zi has been detected. So, the
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number of Up-queries (i.e. insertions) required to reach the complete cover Cℓ is

q′U ≤ ℓ|I⃗|+
ℓ−1∑
i=1

i(δi + 1)

and so Cℓ can potentially be reinserted at least ⌊(qU − q′U )/ℓ⌋ times, each time adding one to the estimation
error. Assuming qQ is not the limiting factor, the error introduced by the attack is

Err ≥

⌊(
ℓ+ 1

2
+

1

ℓ

(
qU +

ℓ−1∑
i=1

(ℓ− i)δi

)
− L2

)⌋
.

The error bound we derive is similar to the one we derived for the our CMS attack, but with L1 replaced
with L2 as now |I⃗| is precisely L2. As for the CMS attack, for reasonable sizes of the CK we mainly expect

ℓ = 2k and that 1
2k

∑2k−1
i=1 (2k − i)E[δi] = O(2k). Given that k ≪ m in all practical settings, we expect

E

[⌊(
2k + 1

2
+

1

2k

(
qU +

2k−1∑
i=1

(2k − i)δi

)
− L2

)⌋]
≈ qu

2k
− E[L2]

to approximate E[Err].

Public hash and private representation setting. As with the CMS, the attack and analysis from the
public hash and representation setting applies.

Private hash and public representation setting. This attack (Figure 14) is one-to-one with the CMS

attack in the same setting, but again we find 2-cover as opposed to a 1-cover. Hence, E[Err] ≥ qU−1−E[L2]
2k ⪆

qU−1−2mHk

2k .

Attack Comparisons. We implemented our attacks against all structures in all settings to experimentally

Public Hash Setting
Private Hash,

Private Rep Setting
Structure |cover| Experimental Err E[Err] |cover| Experimental Err E[Err]

CK, (m = 682, k = 4) 7.96 131821.00 131072.00 7.96 130796.69 127432.90
CMS, (m = 2048, k = 4) 3.99 263017.82 262144.00 3.99 261116.16 257877.34
HK, (m = 1024, k = 4) 3.99 1047502.69 1047500.00 4.0 1038804.55 1038018.54
CK, (m = 1365, k = 8) 15.97 65667.10 65536.00 15.93 63776.52 56618.28
CMS, (m = 4096, k = 8) 8.00 131072.00 131072.00 7.99 127029.66 119939.65
HK, (m = 2048, k = 8) 7.96 1046434.76 1046424.00 7.98 1007439.04 996946.87

Table 2: A comparison of Err accumulated by the different structures during attacks in the public hash setting and the
private hash, private representation setting. We give the average size of the cover set and average error accumulated
in each structure, setting pair over the 100 experiment trials. We also give the E[Err] according to our analysis.

verify their correctness and our analysis. In Table 2 we present a summary of results for the public hash
setting (our least restrictive setting) and the private hash, private representation setting (our most restrictive
setting.). We experiment on two sets of parameters, one fixing k = 4 and the other k = 8. We then select a
reasonable value of m for CMS and then half it for HK and third it for CK so that the same space is used
in each structure. We fix adversarial resources such that qH , qU , qQ = 220. In practice this ensures that the
number of Hash queries or Qry queries will not be the bottleneck in our attacks and that we are able to
generate sufficient error in each attack to showcase overall trends. We run each attack setting and structure
pairing over 100 trials, selecting a random target in each trial, and average the results.
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CoverAttackUp,Qry(x,⊥, repr)

1 : cover← FindCoverUp(2, x, repr)

2 : until qU Up-queries made:

3 : for e ∈ cover: Up(e)

4 : return done

FindCoverUp(r, x, repr)

1 : ⟨M,A⟩ ← repr

2 : cover← ∅; found← False

3 : I ← ∅; tracker← zeros(k)

4 :
〈
M ′, A′〉← Up(x)

5 : // compute x’s indices

6 : for i ∈ [k]

7 : for j ∈ [m]

8 : if M ′[i][j] ̸=M [i][j]

9 : pi ← j;break;

10 : while not found

11 : if qU Up-queries made : return ∅
12 : y ←← U \ (I ∪ {x})
13 : I ← I ∪ {y}
14 : ⟨M,A⟩ ←

〈
M ′, A′〉

15 :
〈
M ′, A′〉← Up(y)

16 : // compute y’s indices

17 : for i ∈ [k]

18 : for j ∈ [m]

19 : if M ′[i][j] ̸=M [i][j]

20 : qi ← j;break;

21 : for i ∈ [k]

22 : // compare x’s and y’s indices row by row

23 : if pi = qi and tracker[i] < r

24 : cover← cover ∪ {y}
25 : tracker[i] + = 1

26 : if sum(tracker) = rk

27 : found← True

28 : return cover

Figure 14: Cover Set Attack for the CK in private hash function and public representation setting. The attack is
parametrized with the update query budget qU .

Observe the pattern that when holding k constant and setting reasonable m values, adjusting such that
CMS, CK, and HK use the same space, attacks against CK generate the least amount of error. The attacks
against CK produce about half of the amount of error as opposed to the CMS attacks, and about qU − qU

2k
less the amount of error as opposed to the HK attacks. Moreover, observe that our analytical results closely
match those of our experimental results.

6.6 Adversarial Robustness

Corollary 2 shows that the error in CK(x) is largest when HK(x) ≪ CMS(x). In particular, when x does
not own any of its counters HK(x) takes on its minimal value of zero. But we can say something a bit more
refined, by examining what is computed on the way to the returned value CK(x).

Specifically, recall that CK(x) = ⌊min{Θ1,Θ2}⌋, where Θ1 is the smallest upperbound on nx that we
can determine by looking only at the rows that x does not own, and Θ2 is the smallest upperbound on nx
that we can determine by looking only at the rows that x does own. Let ∆ = |CK(x)− nx| be the potential
error in the estimate CK(x). Dropping the floor for brevity, if CK(x) = Θ1 then Lemma 2 tells us that
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RepK(S)

1 : M ← zeros(k,m)

2 : for i ∈ [k]

3 : A[i]← [(⋆, 0)]×m
4 : repr← ⟨M,A⟩
5 : for x ∈ S
6 : repr←←UpK(repr, upx)

7 : return repr

UpK(repr, upx)

1 : ⟨M,A⟩ ← repr

2 : M ←← UpCMS
K (M, upx)

3 : A←← UpHK
K (A, upx)

4 : return repr←⟨M,A⟩

QryK(repr, qryx)

1 : ⟨M,A⟩ ← repr

2 : (p1, . . . , pk)← R(K,x), fpx ← T (K,x)

3 : Θ1,Θ2,∆←∞
4 : flag← False

5 : N ←
m∑

j=1

M [1][j]

6 : cntUB,x ← QryCMSK(M, qryx)

7 : cntLB,x ← QryHK
K (A, qryx)

8 : if cntUB,x = cntLB,x

9 : return cntUB,x, flag

10 : for i ∈ [k]

11 : if A[i][pi].fp = ⋆

12 : cntUB,x ← 0

13 : return 0, flag

14 : else if A[i][pi].fp ̸= fpx

15 : Θ← M [i][pi]−A[i][pi].cnt+1

2

16 : Θ1←min {Θ1,Θ}

17 : ∆̂← M [i][pi]−A[i][pi].cnt+1

2

18 : ∆←min
{
∆, ∆̂

}
19 : else if A[i][pi].fp = fpx

20 : Θ← M [i][pi]+A[i][pi].cnt

2

21 : Θ2←min {Θ2,Θ}

22 : ∆̂← M [i][pi]−A[i][pi].cnt
2

23 : ∆←min
{
∆, ∆̂

}
24 : cntUB,x←⌊min {Θ1,Θ2}⌋
25 : if ∆ ≥ ψN
26 : flag← True

27 : return cntUB,x, flag

Figure 15: Keyed structure CK[R, T,m, k, ψ] supporting point-queries for any potential stream element x (qryx) and
the ability to raise a flag on “bad” frequency estimation. QryCMS

K ,UpCMS
K , resp. QryHK

K ,UpHK
K , denote query and

update algorithms of keyed structure CMS[R, T,m, k] (Figure 2), resp. HK[R, T,m, k, 1] (Figure 3). The parameters
are a function R : K × {0, 1}∗ → [m]k, a function T : K × {0, 1}∗ → {0, 1}n for some desired fingerprint length n,
integers m, k ≥ 0, and flag parameter ψ ∈ (0, 1). A concrete scheme is given by a particular choice of parameters.

∆ ≤ (M [i∗][pi∗ ]−A[i∗][pi∗ ].cnt + 1)/2, where i∗ ∈ {j | Θj
1 = mini∈Îx

{Θi
1}}.

Likewise, if CK(x) = Θ2 then by Lemma 2 we have nx ≤ (M [i∗][pi∗ ] + A[i∗][pi∗ ].cnt)/2, where now
i∗ ∈ {j | Θj

2 = mini∈Ix{Θi
2}}. In this case A[i∗][pi∗ ].cnt ≤ nx, so we know that ∆ ≤ (M [i∗][pi∗ ] +

A[i∗][pi∗ ].cnt)/2 − A[i∗][pi∗ ].cnt = (M [i∗][pi∗ ] − A[i∗][pi∗ ].cnt)/2. Adding 1/2 to this upperbound gives the
same expression as in the previous case.

Thus, we can augment the basic version of CK so that Qry(qryx) computes ∆, and returns a boolean
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value flag along with the estimate of nx. The value of flag would be set to 1 iff ∆ ≥ ψN , where N is
the length of currently inserted stream and ψ is a parameter. We choose this condition because the non-
adaptive correctness guarantees of CMS have a similar form: with k rows and m counters per row, the
estimate CMS(x) is such that Pr[CMS(x)− nx ≤ ϵN ] ≥ 1− δ when ϵ = e/m, δ = e−k.

Observe that when the frequency estimation error on an element x is large, then row i∗ will be
such that M [i∗][pi∗ ] will have a large value and A[i∗][pi∗ ].cnt will have a value very small relative to the
value in M [i∗][pi∗ ]. In the worst case A[i][pi∗ ].cnt = 1 – in our attacks we force this to be the case.
Taking A[i∗][pi∗ ].cnt ≈ 0, observe that whether CK(x) is determined by Θ1 or Θ2, we see CK(x) ≈
(1/2)M [i∗][pi∗ ] ≈ (1/2)CMS(x) in this high error case. Then rolling in the non-adaptive CMS correct-
ness guarantee we see Pr[∆ > (1/2)(ϵN) − (1/2)nx] ≤ δ and certainly Pr[∆ > 1/2(ϵ)N ] ≤ Pr[∆ >
1/2(ϵ)N − (1/2)nx], thus setting ψ = (1/2)ϵ (where we can derive ϵ from parameter m) can be a useful
starting point for setting ψ. As a caveat, however, as N becomes large, an adversarial stream may be able
to induce significant error by setting ψ in this way (due to the looseness of the CMS bound). Depending on
the deployment scenario, smaller values of ψ, or even sublinear functions of N , may be more appropriate for
detecting abnormal streams.

Nonetheless, we implemented an version of CK with flag-raising (see Figure 15), and setm = 1024, k = 4.
This corresponds to ϵ = 0.00265, δ = 0.0183. We then set ψ = 0.0012 < 1

2ϵ. Against it, we ran 100 trials of
the public hash, public representation attack with qU = 216, and with per-trial random target elements x.
The average error was 8203.71, and in every trial the warning flag was raised.

For comparison, we also ran 100 trials, with the same parameters, using the non-adversarial streams
from Section 6.4. In each trial, the entire stream was processed, and then we queried for the frequency of
every element in the stream, counting the number of estimates that raised the flag. Over all 100 trials, or
nearly 7.7 million estimates in total, only three flags were raised. These initial findings suggest that the
potential for CK to flag suspicious estimates may be of significant benefit to systems employing compact
frequency estimators.
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A Reconsidering the main result of [34]

The main technical result for the HK structure (Theorem 3 in [34]) gives a bound on frequency estimation
error in the non-adaptive adversarial setting. However, the assumptions of the theorem statement are under-
specified, and the proof itself is incorrect. As a result, the behavior of the HK structure in the presence
of non-adaptive attacks remains open. Here we give our own bound, under what we understand to be the
assumptions made in [34][Theorem 3].

Fix a target element x ∈ U , and let T : U → {0, 1}n be the fingerprint function for (we omit the key
k ∈ K for ease of presentation). If some x̃ ∈ U is such that T (x̃) = T (x) and x̃ ̸= x, then we say that the pair
(x̃, x) constitutes a fingerprint collision. Similarly, fix a row A[j] in the HK structure. We say that (x̃, x) are
an hj-collision if hj(x̃) = hj(x) (where hj is the hash function that maps elements to a particular counter
position in any row j of A); note that this implies that x̃, x both point to the same bin of A[j], and hence
they may both affect the counter held there. If x already owns that counter, i.e. A[j][hj(x)].fp = T (x), then
we will refer to any x̃ such that hj(x̃) = hj(x) and T (x̃) ̸= T (x) as an imposter.

The following theorem considers a single row A[j] in the HK structure, where a particular counter
A[j][hj(x)].cnt in that row is owned by some x, i.e., from the viewpoint of that counter x is an “elephant”
flow. Any element x̃ that hj-collides with x will increment the counter if T (x̃) = T (x), and decrement the
counter (with some probability) if T (x̃) ̸= T (x). In the non-adaptive setting, if fingerprints are sufficiently
long with respect to the number of distinct elements in the stream, it is unlikely that any x̃ will have
the same fingerprint as the particular element x — if there are Q distinct elements in the stream, then,
with probability at least 1 − Q/2n, the fingerprint of x differs from that of all other stream elements. The
probability is even lower that any two distinct elements have the same fingerprint and hash to the same
counter in any particular row. Under this assumption, any stream element x̃ that hj-collides with x is an
imposter, and may only decrement the counter.

Observe that under the assumption that ∀x̃ ̸= x : (hj(x̃) = hj(x)) ⇒ T (x̃) ̸= T (x), we do not need to
distinguish distinct imposter elements; from the point of view of the counter A[j][hj(x)].cnt being decre-
mented (or not), all imposters x̃ are the same. Thus, the theorem will assume that there is a single “generic”
imposter element x̃, by renaming all imposter elements as x̃. In addition, any stream elements that are not
from x̃ nor x are irrelevant to the value of C (a shorthand we will use for the value stored in A[j][hj(x)].cnt),
and can be renamed Y.

Consider a stream of the form Y, x, x, Y, x, Y, x̃, x, Y, x̃, x̃, Y, x, Y. First, the packets labeled Y can be
ignored. Now, each occurrence of x will increment C, and each occurrence of x̃ decrements C with a
probability that explicitly depends on the value of C at the time that x̃ arrives. In the example, when the
first x̃ arrives, C = 3, and the probability that this x̃ decrements the counter is d3; when the second x̃ arrives,
the counter value is C = (3+ 1)− 1 = 3 with probability d3, or C = (3+ 1)− 0 = 4 with probability 1− d3.
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This example surfaces a recursive expression. In particular, say there are nx̃ occurrences of x̃ in the
stream. For t = 0, 1, . . . , nx̃, let the t-th imposter epoch (or epoch, for short) be defined as the portion of
the stream beginning with the t-th occurrence of x̃ and ending one element before the (t + 1)th occurrence
of x̃. We make the convention that the 0-th epoch is everything before the first x̃, and the nx̃-th epoch
is everything following the last x̃. Let δt be the number of packets labeled x in the t-th epoch. (In the
above example, δ0 = 3, δ1 = 1, δ2 = 0, δ3 = 1.) Let Ct be the value of the counter C immediately
after the t-th imposter packet is processed, and let Xt ∈ {0, 1} indicate that the t-th imposter packet
resulted in the counter being decremented. Then we can write Ct = Ct−1 + δt −Xt, and recursing gives us

Ct = C0 +
∑t

s=1 δs −
∑t

s=1Xs. Observe that for each value of t, the sum n
[t]
x =

∑t
s=1 δs counts the number

of x packets through the t-th epoch. Then, making the natural conventions that C0 = 0, X0 = 0, we arrive

at the expression Ct = n
[t]
x −

∑t
s=0Xs, or, after rearranging, n

[t]
x −Ct =

∑t
s=0Xs. With this setup in mind,

we proceed to give a theorem that bounds the difference between the true count of x, at any point in the
stream, and the corresponding value held by Aj [hj(x)].cnt. We will state the theorem and provide a bit of
discussion about what it says, before proceeding to the proof.

Theorem 3. Fix a element x, and let nx be the true number of occurrences of x in the stream. Fix a
row j ∈ {1, . . . , k} in an (m, k)-HK structure, and let the decrement parameter be d for some 0 < d ≤ 1.
Let hj be a random mapping from the universe of elements to {1, . . . ,m}. Assume that:

1. no element other than x ever owns the counter Aj [hj(x)].cnt

2. any element x̃ that hj-collides with x is an imposter (i.e., no fingerprint collisions), and that there
are nx̃ < nx such imposters.

For t = 0, . . . , nx̃, let

• n
[t]
x ≤ nx be the number of occurrences of x in the portion of the stream up to the end of the t-th

imposter-epoch (i.e., just before the arrival of the (t+ 1)-th imposter),

• Ct be the value of Aj [hj(x)].cnt at the end of the t-th imposter-epoch (i.e., just before the arrival of the
(t+ 1)-th imposter),

• St ≤ t be the number of imposters, among the first t, that cause the counter Aj [hj(x)].cnt to decrement.

Then, for any v ≤ t,
Pr
[
(n[t]x − Ct) ≤ v

]
> 1− 1

v(1− dα)

where α is any constant (in particular, the largest one) such that ∀t > 0 it holds that α ≤ (n
(t)
x −St−1)/t. □

Before giving the proof, a few remarks. The requirement α ≤ (n
[t]
x − St−1)/t says, loosely, that across

the t “epochs” defined by the arrivals of imposter packets 0, 1, . . . , t − 1, on average there are at least α
packets from x for every successful imposter packet, i.e., ones that decrement the counter. Given that x is
envisioned to be an “elephant flow”, this seems reasonable; in particular, the counter increases as packets
from x arrive, and so the probability that the next imposter will be successful decreases exponentially in the
counter value. That also suggests that this is a very conservative bound: almost certainly, α is going to be
an increasing function of the stream length (hence dα will become quite small, tightening the bound), rather
than a constant that must hold for all t.

The theorem assumes that the number of imposters nx̃ < nx, so one might wonder how reasonable is
this assumption. Note that the number of imposters nx̃ is a random variable (over the random mapping hj)
whose value is a function of the HK-parameter m (the number of counters in any row) and the number of
distinct, non-x elements in the stream. In particular, if the latter is fixed, then nx̃ almost certainly decreases
as m increases, and vice versa. Thus, as expected, as m increases there will be fewer opportunities for
imposters to decrement the counter A[j][hj(x)].cnt; in turn, this suggests that α will grow, tightening the
bound.

Additionally, recall that an HK point-query for element x is answered with

n̂x = max
1≤j≤k

A[j][hj(x)].cnt]|A[j][hj(x)].fp] = fpx,
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that is the maximum value of the row-counters associated to this element. Observe that during any given
imposter-epoch, the difference between the true number of occurrence of x and the counter A[j][hj(x)].cnt re-
mains constant, as both increase by one with each packet from x. In addition, if the hash functions h1, . . . , hk
are modeled as independent random functions, then the distribution of any row-specific random variable will
be the same in every row, and the distribution in any particular row is independent of every other row.
Thus, the following corollary.

Corollary 3. Applying Theorem 3 for each j ∈ {1, . . . , k}: at any point in the stream, if nx is the true
frequency of x and n̂x = HK(x), then

Pr [nx − n̂x ≤ v] >
k∏

j=1

(
1− 1

v(1− dαj )

)
where αj is the constant α from Theorem 3 specific to the j-th row. Conservatively, taking α as the smallest
of the αj, one has Pr [nx − n̂x ≤ v] > (1− (1/v(1− dα)))k. □

We now proceed to the proof of Theorem 3, with a final note that the proof actually surfaces additional
insights, in particular on the outsized effect (on counter “error”) of appearances of x early in the stream,
versus late in the stream.

Proof of Theorem 3. For 0 ≤ t ≤ nx̃, let Xt be a random variable indicating that the t-th imposter causes a

decrement, with the convention that X0 = 0. Clearly, n
[0]
x − C0 = 0 as no imposters have yet arrived. Then

∀1 ≤ i ≤ nx̃, v ≤ i, Pr
[
n
[i]
x − Ci = v

]
= Pr

[∑i
t=0Xt = v

]
, so bounding Pr

[∑i
t=0Xt = v

]
suffices to bound

the difference between the true count of x and the estimate provided by the counter. For i ≥ 1 we can write

Pr

[
i∑

t=0

Xt = v

]
= Pr

[
Xi = 0 |

i−1∑
t=0

Xt = v

]
Pr

[
i−1∑
t=0

Xt = v

]

+ Pr

[
Xi = 1 |

i−1∑
t=0

Xt = v − 1

]
Pr

[
i−1∑
t=0

Xt = v − 1

]

=
(
1− dn

[i−1]
x −v

)
Pr

[
i−1∑
t=0

Xt = v

]

+
(
dn

[i−1]
x −(v−1)

)
Pr

[
i−1∑
t=0

Xt = v − 1

]

and we note that Pr
[∑i−1

t=0Xt = v
]
= 0 if v = i, and Pr

[∑i−1
t=0Xt = v − 1

]
= 0 if v = 0. Recalling the

notation that δi is the number of x packets in the i-th epoch, this already leads to the simple bound

Pr
[
n[i]x − Ci ≤ (i− 1)

]
= 1− Pr

[
n[i]x − Ci = i

]
= 1− d(i)δ0+(i−1)δ1+···+2δi−2+δi−1)−(i(i−1)/2)

which highlights the outsized effect of having a large number of x packets arriving early in the stream, versus
late in the stream. If the packets from x arrive at a constant rate, so that δ0 = δ1 = · · · = δi−1 = r this
simplifies to

Pr
[
n[i]x − Ci ≤ (i− 1)

]
= 1− d

r(i+1)(i)
2 − i(i−1)

2 .

Still, we can say more. Let Si =
∑i

t=0Xi and consider the sequence of random variables S0, S1, . . . , Si. We
first observe that Si − Si−1 ≤ 1. Moreover, observe that E [Si |S0, . . . , Si−1] = E [Si |Si−1], and so

E [Si |Si−1] = E [Xi + Si−1 |Si−1]

= E [Xi |Si−1] + Si−1

= dn
[i]
x −Si−1 + Si−1
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Now using the fact that for any two random variables U, V we have E[U ] = E[E[U |V ]], we have E [Si] =

E[E[Si |Si−1]] = E
[
dn

[i]
x −Si−1

]
+ E[Si−1], which we can telescope out to give E [Si] =

∑i
j=1 E

[
dn

[j]
x −Sj−1

]
.

Recalling that E[Si] = E
[∑i

t=0Xt

]
, by Markov’s inequality, we have

Pr
[
n[i]x − Ci > v

]
≤

∑i
j=1 E

[
dn

[j]
x −Sj−1

]
v

Let us make the assumption that, for all j ≥ 1, we have (1/j)(n
[j]
x − Sj−1) ≥ α for some constant α ≥ 1.

Under this assumption, we have E
[
dn

[j]
x −Si−1

]
≤ dαj , and

∑i
j=1 d

αj ≤
∑∞

j=1 d
αj = 1/(1− dα).

Pulling everything together, for all 0 ≤ v ≤ i we have

Pr
[
n[i]x − Ci ≤ v

]
> 1− 1

v(1− dα)

B More on CMS attacks

The following is a more detailed version of the analysis that appears in Section 5.2. In Figure 5 we give
an attack for the private hash and private representation setting. This is the most challenging setting for
finding a cover set: the privacy of the hash functions makes local hash computations effectively useless,
and the privacy of the representation prevents the adversary from using it to view the result of online hash
computations. The attack begins by querying x to learn its current frequency estimate; let (p1, p2, . . . , pk)←
R(K,x) and let M [1][p1] = c1, . . . ,M [k][pk] = ck be the values of the counters associated to x at this time,
i.e., mini∈[k]{ci} = a ≥ 0.

The attack then inserts distinct random elements that are not equal to x, checking the estimated
frequency after each insertion until the estimated frequency for x increases to a + 1, as this signals that a
cover set for x has been inserted. Let I⃗ be the stream of inserted elements at the moment that this happens.
At this point, we begin the first “round” of extracting from I⃗ a 1-cover. Say the last inserted element was
z1. As this caused the CMS estimate to increase, z1 must share at least one counter with x. Moreover, any
counter covered by z1 must have been minimal, i.e., still holding its initial value ci, at the time that z1 was
inserted. Thus, we set our round-one candidate cover set C1 ← {z1}. Notice that by definition, the insertion
of z1 increases the estimation error by one.

LetM(C1) = {i ∈ [k] | ∃z ∈ C : R(K, z)[i] = pi}, i.e., the set of rows whose x-counters are covered by C1,
and let δ1 = minj ̸∈M(C1){M [j][pj ]} −mini∈M(C1){M [i][pi]}. Notice that δ1 is the gap between the smallest
counter(s) not covered by C1, and the smallest counter(s) that are covered by C1. (Observe that z1 may also
cover non-minimal x-counters.) Thus, if we now reinsert C1 a total of δ1 times, this gap shrinks to zero;
reinserting it once more will cause some x-counter that is not covered by C1 to become minimal, and we can
observe this by making an estimation query (i.e. a Qry call) after each reinsertion.

Example: Say we have k = 4, and prior to the first insertion of z1 (as part of I⃗) we have M [1][p1] = 2,
M [2][p2] = 3, M [3][p3] = 5 and M [4][p4] = 0. Now, say that z1 covers the x-counters in rows 1,4: then upon
first inserting z1, we have M [1][p1] = 3, M [2][p2] = 3, M [3][p3] = 5 and M [4][p4] = 1. We create C1 = {z1},
and compute δ1 = 3− 1 = 2. If we were to insert C1 twice more, we would have M [1][p1] = 5, M [2][p2] = 3,
M [3][p3] = 5 andM [4][p4] = 3; if we had checked the CMS estimate for nx after each insertion, we would have
observed responses 2 and 3. After δ1 + 1 = 3 re-insertions of C1, we would have M [1][p1] = 6, M [2][p2] = 3,
M [3][p3] = 5, M [4][p4] = 4, and the CMS estimate of nx would remain 3 because now M [2][p2] is minimal.◦

Notice that the δ1 + 1 re-insertions of C1 will increase the CMS estimate of nx by exactly δ1. At this
point we begin round 2, searching for z2 ∈ I⃗ \ C1 that covers the newly minimal x-counters. Recall that

the elements of I⃗ are distinct (by design), so if we reinsert I⃗ \ C1 in order we are guaranteed to hit some
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satisfying z2 ̸= z1, and this can be observed by checking the CMS estimate of nx after each element is
reinserted. As was the case for z1, we know that z2 covers the currently minimal x-counters, and that prior
to reinserting z2 these counters had not changed in value since the end of round 1. Thus, reinserting z2
increases the estimation error by one. We set C2 ← C1 ∪ {z2}, and then switch to reinserting C2 a total of
δ2 + 1 times (where δ2 is defined analogously to δ1) to end round 2. Again, this increases the estimation
error by δ2.

Continuing this way, after some ℓ ≤ k rounds we will have found a complete 1-cover for x. There can
be at most k rounds, because each round i adds exactly one new element zi to the incomplete cover Ci−1,
and there are only k counters to cover. Notice that in round ℓ, when we reinsert Cℓ we will never observe
that some new x-counter has become minimal: all x-counters are covered by Cℓ, so all will be increased by
each reinsertion. Nonetheless, each reinsertion of Cℓ adds one to the estimation error, and these re-insertions
may continue until the resource budget is exhausted, i.e., until a total of qU elements have been inserted (via
Up) as part of the attack.

The number of Up-queries (i.e. insertions) required to reach the complete cover Cℓ is

q′U ≤ ℓ|I⃗|+
ℓ−1∑
i=1

(δi + 1)(i) = ℓ|I⃗|+ ℓ(ℓ− 1)

2
+

ℓ−1∑
i=1

iδi

and so Cℓ can potentially be reinserted at least ⌊(qU − q′U )/ℓ⌋ times, each time adding one to the estimation
error. We say potentially because the Qry-query budget may be the limiting factor; we’ll return to this in
a moment. For now, assuming qQ is not the limiting factor, the error introduced by the attack is

Err ≥

⌊(
ℓ+

ℓ−1∑
i=1

δi

)
+

(
qU − ℓ|I⃗| − ℓ(ℓ−1)

2 −
∑ℓ−1

i=1 iδi

ℓ

)⌋

=

⌊(
ℓ+ 1

2
+

1

ℓ

(
qU +

ℓ−1∑
i=1

(ℓ− i)δi

)
− L1

)⌋

where the final line holds because |I⃗| is, by construction, precisely L1. We note that Err is a function of
several random variables: L1, ℓ, {δi}i∈[ℓ−1].

We would like to develop an expression for E[Err], so we observe that for practical values of k,m (e.g.,
k = 4, with m ≫ k) it is likely that ℓ = k. We have ℓ < k only if one or more of the covering elements

cover multiple x-counters, and for small k ≪ m this is unlikely. We approximate Err with Êrr by replacing ℓ
with k, dropping the flooring operation, arriving at

E[Err] ≈ E[Êrr] ≈

(
k + 1

2
+

1

k

(
qU +

k−1∑
i=1

(k − i)E[δi]

)
− E[L1]

)

Rearranging and using the very tight approximation E[L1] ≈ mHk, we have

E[Êrr] ≈
(qU
k
−mHk

)
+
k + 1

2
+

(
1

k

k−1∑
i=1

(k − i)E[δi]

)
We do not have a crisp way to describe the distribution of the δi random variables, but we can make some
educated statements about them. The expected value of any counter M [i][j] after I⃗ has been inserted is

|I⃗|/m ≈ mHk/m = Hk, and Hk < 4 for k ≤ 30 (and practical values of k are typically much less than 30);
moverover, standard balls-and-bins arguments tell us that as the number of balls approaches m lnm, the
maximum counter value in any row approaches the expected value. Since δ1 ≤ maxj ̸∈M({z1}){M [j][pj ]} −
mini∈M({z1}){M [i][pi]}, we can safely assume that E [δ1] is upper-bounded by a constant that is small relative
to m, qU/k.

After inserting C1= {z1} a total of δ1 +1 times, we switch to reinserting I⃗ \ C1 until we find a z2 that
covers the currently minimal x-counters. When we begin to reinsert C2, we know by construction that
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δ2 ≤ minj ̸∈M({z1,z2}){M [j][pj ]} −
(
minj ̸∈M({z1}){M [j][pj ]}+ 1

)
. For the first term in the difference, we

“roll back” one round; say that α = maxj ̸∈M({z1}){M [j][pj ]}. Then, being very pessimistic, we know that

minj ̸∈M({z1,z2}){M [j][pj ]} ≤ 2α+(δ1 +1): in finding z2, we reinsert at most all of I⃗ \{z1}, which would add
another (at most) α to that maximum counter value, and the repeated insertions of C1 could have added
at most δ1 +1 to said maximum counter. However, the second term in the difference is at least δ1 +1, so
δ2 ≤ 2α and we have already argued that α is in the neighborhood of Hk < 4. Continuing this this way,

we reach the conclusion that the dominant term in E[Êrr] ≈ E[Err] will be qU
k − mHk. This is observed

experimentally in Table 2. For realistic values of k, significant error will be created when qU ≫ (mk)Hk. For
example, when k=4,m=2048 we require qU ≫ 17067; this is likely not a real restriction in most practical
use-cases of CMS, e.g., computing the heavy hitter flows traversing a router.

Returning to the matter of exhausting the Qry-budget, the total number of Qry-queries for the attack
depends somewhat heavily on whether or not ℓ = k. If ℓ = k then |Ck| = k, and we know that a complete
cover has been found. Thus, we do not need to make any Qry-queries during reinsertions of Ck. If ℓ < k,
however, then we must make Qry-queries during reinsertions of Cℓ, because we do not know that Cℓ contains
a complete cover.

Either way, the number of Qry-queries need to reach Cℓ is q′Q ≤ 1+ℓ|I⃗|+
∑ℓ−1

i=1(δi+1), and the expected
gap between q′U and q′Q is

E[q′U − q′Q] ≈ E

[
ℓ−1∑
i=1

i(δi + 1)−
ℓ−1∑
i=1

(δi + 1)

]

≤ E

[
ℓ−1∑
i=1

δi

]
+

(k − 1)(k − 2)

2

≤ kE
[
max

i∈[ℓ−1]
{δi}

]
+

(k − 1)(k − 2)

2

By the arguments just given about the δi, we can safely bound E
[
maxi∈[ℓ−1]{δi}

]
by kHk. So E[q′U − q′Q] =

O(k2) with a small hidden constant. Thus, the expected numbers of Up-queries and Qry-queries expended
to find the complete cover Cℓ are similar, especially for realistic values of k.

Now, in the most likely case that ℓ = k, no further Qry-queries are needed. Hence, when ℓ = k,
the overall error induced by the attack will be determined by the insertion/Up-budget (qU ) when the total
Qry-budget qQ is approximately the insertion-budget required for finding the cover. When ℓ < k, in order
for the overall error to be determined by the insertion budget, the total Qry-budget needs to accommodate
q′Q + (qU − q′U )/ℓ queries. The second summation comes from the fact that while accumulating error via
re-insertions of Cℓ, we must make one Qry-query per reinsertion. This is a potentially large jump in the
number of estimation queries required, from ℓ = k to ℓ < k. But in reality the jump might be less important
than it appears: if ℓ < k then given our intuition about the δi, it seems likely that if some Ci is taking a large
number of insertions, one can likely assume that Ci is a complete cover, cease making estimation queries and
switch to an insertion only strategy.

C Delayed Proofs for CK results

Lemma 1. Let S⃗ satisfy the NFC condition, and let x ∈ U . Then for any i ∈ Îx we have nx ≤
M [i][pi]−A[i][pi].cnt+1

2 =Θi
1. ♦

Proof of Lemma 1. We can think of the counter A[i][pi].cnt as counting the depth of a stack of fingerprint-
labeled plates. The rules of the stack are as follows. Upon insertion of x into the CK structure:

1. if A[i][pi].cnt = 0 then the stack is empty; then push an fpx-labeled plate and set A[i][pi].cnt ←
1, A[i][pi].fp← fpx.
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2(a). if A[i][pi].cnt = c > 0 and A[i][pi].fp = fpx, then push an fpx-labeled plate on to the stack and
increment A[i][pi].cnt← c+ 1.

2(b). if A[i][pi].cnt = c > 0 and A[i][pi].fp ̸= fpx, then pop the top (fp-labeled) plate and decrement
A[i][pi].cnt← c− 1. If this causes A[i][pi].cnt = 0, then push an fpx-labeled plate and set A[i][pi].cnt←
1, A[i][pi].fp← fpx.

These stack rules are precisely the CK rules for handling insertions. Now, upon the first insertion to CK, by
rule 1 it is clear that all plates on the stack (there is only one of them) have label A[i][pi].fp, and A[i][pi].cnt
is the number (1) of plates on the stack. Inductively, assume that A[i][pi].cnt = c > 0 and all c of the plates
on the stack have the same label A[i][pi].fp. Say that the next insertion is z and A[i][pi].fp = fpz. By rule
2(a), we push an fpz-plate on to the stack and increment A[i][pi].cnt ← c+ 1. In this case, by assumption,
it remains the case that all plates have the same label equal to A[i][pi].fp, and there are c + 1 of them.
Alternatively, if A[i][pi].fp ̸= fpz then by rule 2(b) we pop the top plate and decrement A[i][pi].cnt← c− 1.
At this point, either the stack is empty and A[i][pi].cnt = 0, so by 2(b) we push an fpz-plate and set
A[i][pi].cnt ← 1 and A[i][pi].fp ← fpz; or the stack is not empty, and we take no further action. In the
first case, the stack contains a single plate labeled with A[i][pi].fp and the counter is 1; in the second, by
assumption all plates on the stack are still labeled with A[i][pi].fp, and A[i][pi].cnt still gives the number of
plates on the stack.

Having shown the invariant of the stack, we make the following observation. Let ñ =
∑

y∈V i
x
ny. Then

M [i][pi] = nx + ñ. By the statement of the lemma i ∈ Îx, implying that A[i][pi].fp ̸= fpx. We claim that
A[i][pi].cnt = c > 0 implies ñ − nx ≥ A[i][pi].cnt − 1. To see this, note that A[i][pi].cnt = c > 0 means
that there are c plates labeled with A[i][pi].fp ̸= fpx on the stack associated to c insertions of elements in V i

x

with fingerprint A[i][pi].fp. If there ever were any fpx-labeled plates on the stack (i.e., nx > 0), they were
subsequently popped off by insertions of elements with their fingerprints not equal to fpx. On the other
hand, if an insertion of x did not place a plate on to the stack, then it popped off a plate corresponding to
an insertion of an element in V i

x . Thus, at most ñ− nx insertions of elements in V i
x have never popped off a

plate of x, or had their plate popped off by an insertion of x. For ñ− nx = 0 we have that A[i][pi].cnt = 1,
and ñ − nx ≥ A[i][pi].cnt − 1. Similarly, if ñ − nx = d > 0 then ñ − nx ≥ A[i][pi].cnt − 1 as there are still
A[i][pi].cnt plates associated with insertions of elements in V i

x that have never been popped off and at least
A[i][pi].cnt− 1 of them correspond to insertions not popping off a plate of x.

We conclude that M [i][pi] = nx + ñ ≥ nx + (nx + A[i][pi].cnt − 1) = 2nx + A[i][pi].cnt − 1. Or, by
rearranging,

nx ≤
M [i][pi]−A[i][pi].cnt + 1

2

which proves the lemma.

Lemma 2. Let S⃗ satisfy the NFC condition, and let x ∈ U . Then for any i ∈ Ix we have nx ≤
M [i][pi]+A[i][pi].cnt

2 = Θi
2. ♦

Proof of Lemma 2. We can think of the counter A[i][pi].cnt as counting the depth of a stack of fingerprint-
labeled plates as for the proof of Lemma 1. View an insertion of x being associated with either an insertion
of y ∈ V i

x that pops off its fpx-labelled plate from the stack or an insertion of y ∈ V i
x of the plate it pops off.

By the statement of the lemma i ∈ Ix, A[i][pi].fp = fpx and under the NFC condition all plates on
the stack are of x. Out of the insertions having plates on the stack, only the bottom plate one could have
popped off a plate of y ∈ V i

x . Thus, at least nx −A[i][pi].cnt insertions of x are associated with an (unique)
insertion of y ∈ V i

x and
ñ ≥ nx −A[i][pi].cnt.

From M [i][pi] = nx + ñ we thus obtain M [i][pi] ≥ 2nx −A[i][pi].cnt and

nx ≤
M [i][pi] +A[i][pi].cnt

2
.
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Corollary 1. Let i ∈ [k] be such that |V i
x | = 1. If the stream satisfies the NFC condition, then

i ∈ Îx⇒ nx=
M [i][pi]−A[i][pi].cnt

2
+c with c ∈ {1/2, 0},

i ∈ Ix⇒ nx=
M [i][pi] +A[i][pi].cnt

2
+c with c ∈ {−1/2, 0}. ♦

Proof of corollary 1. We think of the counter A[i][pi].cnt as counting the depth of a stack of fingerprint-
labeled plates as for the proof of Lemma 1 and associate occurrences of x and y ∈ V i

x in the similar way.
Moreover, |V i

x |=1 implies M [i][pi] =nx + nz, or equivalently, nz =M [i][pi]− nx for z ̸=x.

We start by focusing on the case i∈ Îx (A[i][pi].fp ̸= fpz). Say x at some point owned the counter. Then,
the plate at the bottom of the stack (labeled with fpz) corresponds to a occurrence of z that popped off a plate
of x. So, only A[i][pi].cnt− 1 occurrences of z are not associated with x implying nz = nx +A[i][pi].cnt− 1.

Hence, M [i][pi] − nx = nx + A[i][pi].cnt − 1, or equivalently, nx =
M [i][pi]−A[i][pi].cnt+1

2 . Say x never owned
the counter. Then, none of the occurrences of z with a plate on the stack popped an x-plate from the stack.

This implies that nz = nx +A[i][pi].cnt, and nx =
M [i][pi]−A[i][pi].cnt

2 .

Let now i ∈ Ix (A[i][pi].fp= fpx). Say x was the only owner of the counter. Then, none of the occurrences
of x with a plate on the stack popped an z-plate from the stack. Thus, nx = nz + A[i][pi].cnt and, adding

nx to both sides and rearranging, nx =
M [i][pi]+A[i][pi].cnt

2 . Say z at some point owned the counter. Then,
the plate at the bottom of the stack (labeled with fpx) corresponds to the occurrence of x that popped off

a plate of z, and nx =nz +A[i][pi].cnt− 1 and nx =
M [i][pi]+A[i][pi].cnt−1

2 .

Corollary 2. Let x ∈ U . If the stream satifies the NFC condition, then CK(x)− nx ≤ CMS(x)−HK(x)
2 . ♦

Proof of corollary 2. The NFC condition gives CK(x)≥nx≥HK(x), and CK(x) − nx≤CK(x) − HK(x).
So, by Lemma 3 we arrive at

CK(x)− nx ≤
(
CMS(x) +HK(x)

2

)
− nx

≤
(
CMS(x) +HK(x)

2

)
−HK(x)

≤ CMS(x)−HK(x)

2
.
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