
Towards post-quantum secure PAKE - A tight security

proof for OCAKE in the BPR model

Nouri Alnahawi1 ⋆ , Kathrin Hövelmanns2 , Andreas Hülsing2⋆⋆ , Silvia Ritsch2⋆ ⋆ ⋆ , and
Alexander Wiesmaier1

1 Darmstadt University of Applied Sciences, Germany
2 Eindhoven University of Technology, The Netherlands

Abstract. We revisit OCAKE (ACNS 23), a generic recipe that constructs password-
based authenticated key exchange (PAKE) from key encapsulation mechanisms (KEMs) in
a black-box way. This allows to potentially achieve post-quantum security by instantiating
the KEM with a post-quantum KEM like KYBER. It was left as an open problem to
further adapt the proof such that it also holds against quantum attackers. The security
proof is given in the universal composability (UC) framework, which is commonly used
to model and prove security of PAKE. So far, however, it is not known how to model or
prove computational UC security against quantum adversaries. Even more so, if the proof
makes use of idealized primitives like random oracles or ideal ciphers.
To pave the way towards reasoning post-quantum security, we therefore resort to a (still
classical) game-based security proof in the BPR model (EUROCRYPT 2000). We consider
this a crucial stepping stone towards a full proof of post-quantum security.
We prove security of (a minor variation of) OCAKE generically, assuming the underlying
KEM satis�es common notions of ciphertext indistinguishability, anonymity, and (com-
putational) public key uniformity. To achieve tight security bounds, we relate security of
OCAKE to multi-user variants of the aforementioned properties.
We provide a full detailed proof � something often omitted in publications concerned
with game-based security of PAKE. As a side-contribution, we demonstrate how to handle
password guesses in a game-based proof in detail. Something we were unable to �nd in the
existing literature.

Keywords: Public-key cryptography, password-based authenticated key exchange, PAKE,
CAKE, OCAKE, post-quantum cryptography, ROM, game-based security.

1 Introduction

A central problem of secure communication is how to securely agree on a shared secret key via
public communication. The generic solution is called an authenticated key exchange (AKE) pro-
tocol, in which commonly public key cryptography is used to agree on the shared secret. This is
the basis of most modern secure communication protocols, including TLS, SSH, or WireGuard.
The drawback of this solution is that it requires users to hold a cryptographic key pair for authen-
tication. As cryptographic keys are hard to memorize, they require secure storage with all the
related challenges for usability. Hence, in many scenarios only the server is authenticated during
the AKE protocol. Users are often authenticated via the use of passwords within the already

⋆ N.A. was supported by National Research Center for Applied Cyber-Security ATHENE.
⋆⋆ A.H. was supported by an NWO VIDI grant (Project No. VI.Vidi.193.066).

⋆ ⋆ ⋆ S.R. is part of the Quantum-Safe Internet (QSI) ITN which received funding from the European
Union's Horizon-Europe programme as Marie Sklodowska-Curie Action (PROJECT 101072637 -
HORIZON -MSCA-2021-DN-01)

https://orcid.org/0000-0002-4093-580X
https://orcid.org/0000-0002-5478-0140
https://orcid.org/0000-0003-2215-4134
https://orcid.org/0009-0004-4042-4374
https://orcid.org/0000-0002-1144-549X

2 Alnahawi et al.

established communication which is secured via the shared secret. This is the case as passwords
are far easier to handle by humans. However, this means that afterwards additional measures
have to be taken to link the authentication to the session secured via the shared secret. A way
out of this is to use a password for the purpose of authentication in an AKE. Such protocols are
called password-authenticated key exchange (PAKE). In general, PAKE allow the use of any low-
entropy shared secret (like a password or a PIN) to provide the agreement with authentication.
Hao and van Oorschot classify in their SoK on PAKE[HvO22] real-world use-cases of PAKE pro-
tocols and the currently used PAKEs related to them. These include credential recovery using the
SRP-6a protocol in iCloud; device pairing (mostly IoT or embedded devices), using the PACE
protocol in eIDs or eMRTDs to prevent skimming, as well as Dragon�y in WPA3 (standard
for WiFi connection establishment); and E2E secure channel establishment using the J-PAKE
protocol in Thread. A few years ago, interest in the design and theory surrounding PAKE was in-
creased further when the Crypto Forum Research Group (CFRG) - advisory body to the Internet
Engineering Task Force (IETF) - performed a selection process for new PAKE standards. The
de�ned requirements3 emphasized high e�ciency and simultaneously high security, supported by
a formal security proof.

The quantum threat. While the CFRG announced two winners in 2020, all proposals (includ-
ing the winners OPAQUE [JKX18] and CPace [AHH23]) have in common that they rely on the
computational hardness of the Di�e-Hellman (DH) problem � something they share with most
currently deployed public-key cryptography. Since Shor famously showed how to solve this prob-
lem on a quantum computer, public-key cryptography based on DH � including the proposed
PAKE protocols � do not o�er resilience against quantum attacks.

As a �rst step towards dealing with the `quantum threat', the National Institute of Standards
and Technology (NIST) posed a call for proposals in 2017 with the goal to develop quantum-
resistant standards for public-key encryption (PKE) and digital signature schemes, which are
the most fundamental building blocks underpinning public-key cryptography. More accurately,
rather than aiming at PKE schemes, NIST aimed at key encapsulation mechanisms (KEMs). A
KEM is similar to a PKE but focused on the use-case of establishing a shared secret by send-
ing key in encrypted form. This allows the encapsulation algorithm to internally chose the key,
instead of taking it as an input, and returning the key together with a ciphertext that �encap-
sulates� it. This change in functionality allows for more e�cient constructions as the key cannot
be adversarially chosen during attacks. The NIST process recently selected Kyber [BDK+18] as
KEM and Dilithium [DKL+18], Falcon [PFH+22], and SPHINCS+ [BHK+19] as signatures for
standardization. In the context of this work we are only interested in KEMs. It should be noted
that KEMs are fundamentally di�erent from the Di�e-Hellman key exchange (DHKX), although
they serve the same purpose. The DHKX is a non-interactive key exchange with a lot of addi-
tional algebraic structure. In comparison, when KEMs are used for key exchange, the resulting
protocol is interactive, and they do not provide additional structure generically (although speci�c
proposals do). While NIST is continuing the selection process for further KEM and signature
schemes, there is no process for NIKE. The reason is the lack of an e�cient candidate with
reliable security at this time (�rst proposals exist though [CLM+18, DKS18, RS06, Cou06]).

Designing post-quantum PAKE. Amajor challenge regarding the transition to post-quantum
secure systems, is to transform existing protocols into post-quantum secure protocols replacing
quantum-vulnerable building blocks by the available KEM and signatures. The general challenge
that also concerns PAKE is that the NIST proposals cannot replace the Di�e-Hellman key
exchange in PAKE protocols in a 'plug-n-play` way: most PAKE protocols rely on the additional

3 Speci�ed in datatracker.ietf.org/doc/html/rfc8125, and expanded upon in
ietf.org/proceedings/104/slides/slides-104-cfrg-pake-selection-01.pdf

https://datatracker.ietf.org/doc/html/rfc8125
https://www.ietf.org/proceedings/104/slides/slides-104-cfrg-pake-selection-01.pdf

A tight proof for OCAKE 3

algebraic properties of the group operation in DHKX which are not known to be o�ered by
KEMs. This gave rise to the requirement to design new PAKE protocols, preferably in a way
that

� is versatile, i.e., a way that works for various PQC proposals or even pre- and post-quantum
hybrids (instead of using the internal workings of a speci�c proposal);

� works with the proposed algorithms (rather than making it necessary to introduce new
primitives);

� avoids complex mapping operations used, e.g., by elliptic-curve-based protocols;
� and satis�es state-of-the-art security notions (supported by a formal security proof).

The �rst property is motivated by the idea of crypto agility, i.e., the option to easily replace
a building block in case of successful cryptanalysis. However, it also allows to o�er the possibility
for selecting di�erent candidates depending on speci�c performance requirements like, e.g., fast
computations or low memory consumption.

A candidate proposal that aims at ful�lling the above requirements is OCAKE, recently
proposed by Beguinet, Chevalier, Pointcheval, Ricosset, and Rossi [BCP+23]. OCAKE is based
on the EKE paradigm [BM92], but replaces the need for Di�e-Hellman by building generically
on suitable KEMs, thereby setting a foundation to build quantum-resistant PAKE.

Towards post-quantum security of PAKEs. Modern security notions and proofs for PAKE
are usually given in the universal composability (UC) framework introduced in [Can01] (see,
e.g., [CHK+05, BBC+13, Sho20, AHH21, ABR+21, BCP+23]). This is also the case for OCAKE.
While security proofs in the UC framework are desirable in the sense that UC-proven building
blocks can always be composed securely, they come with a limitation when addressing post-
quantum security: so far, we are not aware of works that consider computational security against
quantum attackers in the UC framework. Hence, it is not known how these proofs can be trans-
lated into a setting considering quantum adversaries.

At the same time, there is continuous progress in lifting game-based security results to a
setting with quantum adversaries. Indeed, up to minor complications, such lifts are straight-
forward as long as no idealized models are used [Son14]. However, when proofs are given in
idealized models like the random oracle model (ROM) and/or the ideal cipher (IC) model lifting
is less straight-forward (and this is the case for PAKE). Both the ROM and the IC model do
not account for quantum attacks and therefore make it necessary to adapt the models and the
proofs. The quantum-accessible ROM (QROM) [BDF+11] is somewhat well understood by now.
Ongoing e�orts to develop the necessary techniques for lifting proofs to the QROM together are
well under way (see, e.g., [Zha19, DFMS21, CFHL21, GHHM21, HHM22, DFMS22]). Similar
results for the quantum-accessible ideal cipher model are still extremely limited but a model
exists and �rst proofs have been done [HY18].

This suggests that game-based security notions and proofs may be a good target for proving
security against quantum attacks. There are several game-based security models for PAKE [BPR00,
AFP05, Lan16]. However, detailed formal proofs for PAKE protocols that could be lifted are lack-
ing.

Our contribution. In this work, we progress towards a PAKE protocol with proven security
against quantum adversaries. Towards this end we revisit the security of a minor variation of
OCAKE. We present a rigorous game-based security proof of the protocol in the BPR model
for PAKE proposed by Bellare, Pointcheval, and Rogaway [BPR00]. We give a concrete security
bound rather than an asymptotic relation, thereby allowing to reason about concrete parameter
instantiations. To achieve a tight bound, we make use of multi-user security notions.

As a side contribution, we show how to formally treat password guesses in a detailed game-
based proof. So far, we are only aware of detailed proofs which hide this step in a proof in the

4 Alnahawi et al.

generic group model[BFK09]. Interestingly, in UC, this step is easy to formalize, but verifying
the security reasoning can be challenging.

Our proposal di�ers from OCAKE in two minor points. First, we omit session identi�ers
which are included in OCAKE to enable a proof in the UC framework but not necessary for
a game-based proof. Second, we consciously add a �nal key con�rmation message that achieve
explicit mutual authentication. This is not necessary to prove security in the BPR model but we
consider explicit authentication a relevant feature of a protocol (and BPR already discuss that
it can be added by adding key con�rmation).

A limitation. Although we ultimately aim for security against quantum adversaries, our proof
is still in the (classical) ideal cipher and random oracle model. While it would have likely been
possible to replace the ROM by the QROM for this proof, handling the ideal cipher seems more
challenging due to the limited known proof-techniques. This work presents a solid foundation to
start future in work in which either new techniques to lift results with ideal ciphers are developed,
or the use of the ideal cipher is omitted.

Organisation of this paper. After recalling basic notions including the relevant security no-
tions for KEMs in Section 2, we describe the CAKE protocol in Section 3. We recall the BPR
security model for PAKE in Section 4, and then prove CAKE secure in Section 5.

Acknowledgements. We would like to thank Thomas Pöppelmann for valuable discussions
about the design of PAKE protocols, and Afonso Arriaga, Manuel Barbosa, Stanislaw Jarecki,
and Marjan Skrobot for valuable discussions about their security proofs.

2 Preliminaries

2.1 The Ideal Cipher Model

We prove security of the PAKEM protocol in the ideal cipher model [Sha49],[Bla06]. Analo-
gously to the random oracle model (RO) for hash functions, the ideal cipher (IC) is an idealized
description of a block cipher.

De�nition 1 (Block Cipher (BC)). A block cipher of block length n and with key length k
consists of two algorithms BC.enc : {0, 1}k × {0, 1}n → {0, 1}n and BC.dec : {0, 1}k × {0, 1}n →
{0, 1}n where it holds that for every plaintext m ∈ {0, 1}n and key k ∈ {0, 1}k, decryption undoes
encryption: IC.dec(k, IC.enc(k,m)) = m.

De�nition 2 (Ideal Cipher (IC)). An ideal cipher is a collection of random permutations
indexed by a key, to which all parties (including the adversary) are given oracle access. I.e., it is a
pair of random functions IC.enc, IC.dec : K×M→M, such that IC.dec(k, IC.enc(k,m)) = m
and IC.enc(k, IC.dec(k,m)) = m for all k,m in K ×M.

2.2 Key Encapsulation Mechanisms

De�nition 3 (Key Encapsulation Mechanisms (KEMs)). A KEM is a triple of algorithms
KEM = (KGen,Encap,Decap), together with a public key space PK and secret key space SK.
� KGen → (pk, sk): On empty input return key pair (pk, sk), where pk also de�nes a �nite

key space K and a ciphertext space C.
� Encap (pk)→ (c, k): On input pk return a tuplet (K, c) ∈ K×C. We call c the encapsulation

of the key K.
� Decap (sk, c)→ k: On input sk and ciphertext c deterministically return a key K ∈ K.

A tight proof for OCAKE 5

De�nition 4 (δ−Correctness (average-case)). We say that KEM is average-case (1 − δ)-
correct if

Pr[Decap(sk, c) = K|(c,K)←$ Encap(pk)] ≥ 1− δ,

where the probability is taken over (pk, sk)← KGen() and the random coins of Encap.

Security of KEM We de�ne two security notions for KEMs, ANOnymity under Chosen Plaintext
Attacks (ANO-CPA) [BBDP01], [GMP22] and INDindistinguishability under chosen-plaintext
attacks (IND-CPA), through their respective security experiments in �gure 1. For adversaries A
and A', we de�ne the advantages as:

AdvANO-CPAKEM (A) := |Pr[ANO-CPAb=0(A)]− Pr[ANO-CPAb=1(A)]| and

AdvIND-CPAKEM (A′) := |Pr[IND-CPAb=0(A′)]− Pr[IND-CPAb=1(A′)]|

ANO-CPAb=0(A) ANO-CPAb=1(A)

(pk0, sk0)←$KGen
(pk1, sk1)←$KGen
(c∗0,K

∗
0)←$ Encap(pk0) (c∗1,K

∗
1)←$ Encap(pk1)

b′ ← A(pk0, pk1, (c∗0,K∗
0)) b′ ← A(pk0, pk1, (c∗1,K∗

1))

return b = b′

1

2

3

4

5

(a)

IND-CPAb=0(A) IND-CPAb=1(A)

(pk, sk)←$KGen
(c∗,K∗)←$ Encap(pk)

. K∗
$

unif←−−−K

b′ ← A(pk, c∗,K∗) b′ ← A(pk, c∗,K∗
$)

return b = b′

1

2

3

4

5

(b)

PKUb=0(A) PKUb=1(A)

(pk, sk)←$KGen pk$ ←$PK

b′ ← A(pk) b′ ← A(pk$)
return b = b′

1

2

3

(c)

Fig. 1: The CPA security games for KEM: anonymity (a), indistinguishability (b) and public-key
uniformity (c).

Uniformity of Public Keys We will use in our security proof that any element of the public
key space can su�ciently well be explained as being a public key generated by the key generation
algorithm. Concretely, we formalize this below via a public-key uniformity game that asks the
attacker to distinguish honestly generated public keys from ones chosen uniformly at random in
the key space. This computational property was also described as fuzziness [BCP+23] where it
was also proven for the post-quantum KEM CHRYSTALS-Kyber. There have also been statistical
de�nitions, for example Bradley et al [BCJ+19] show that for discrete-log based PKE schemes,
public keys are uniformly chosen group elements.

6 Alnahawi et al.

De�nition 5. We say a KEM satis�es the public-key uniformity property if its key generation
algorithm outputs public keys that are (computationally) indistinguishable from random elements
in the public-key space:

AdvPKUKEM(A) := |Pr[PKU
b=0(A)]− Pr[PKUb=1(A)]|, and

where PKU is shown in �gure 1c.

Multi-user security notions. We de�ne multi-user (and multi-challenge) security notions
that model settings where an adversary is given a multiple challenges associated with di�erent
key pairs and wins if there is a successful attack on some security property for any of these.4

Multi-user security notions have been introduced in [BBM00], including a generic reduction
between multi-user and single-user indistinguishability ((n, qC) − IND-CPA below) for public-
key encryption. A multi-instance counterpart for key encapsulation mechanisms was given in
[GKP18]. We will also use multi-user notions for anonymity (()-ANO -CPA) and public-key
uniformity (-PKU): For n key pairs and a maximum number of challenge queries qC , the (n, qC)−
IND-CPA experiment is shown in �gure 2, and the (n, qC) − ANO-CPA experiment in �gure 3.
[DHK+21]

Exp (n, qC)− IND-CPAb=0(A) (n, qC)− IND-CPAb=1

for j ∈ [n]1

(pkj , skj)←$KGen2

pk← (pk1, . . . , pkn)

b′ ← AChall
b=0
qC

(.)(pk) b′ ← AChall
b=1
qC

(.)(pk)

return b = b′

3

4

5

Oracle Challb=0
qC (j) Challb=1

qC (j)

(c,K)←$ Encap(pkj) K$
unif←−−−K

return (c,K) return (c,K$)

1

2

Fig. 2: The multi-user IND-CPA experiment. Challenge oracle Chall can only be queried qC many
times and will return either the real key or a random key, depending on the challenge bit b.

4 This will help streamline the security analysis of the protocol.

A tight proof for OCAKE 7

Exp (n, qC)− ANO-CPAb=0(A) (n, qC)− ANO-CPAb=1

for j ∈ [n]1

(pk0,j , sk0,j)←$KGen
(pk1,j , sk1,j)←$KGen

2

3

pk0 ← (pk0,1, . . . , pk0,n)

pk1 ← (pk1,1, . . . , pk1,n)

b′ ← AChall
b=0
qC

(.)(pk0,pk1)

b′ ← AChall
b=1
qC

(.)(pk0,pk1)

return b = b′

4

5

6

7

8

Oracle Challb=0
qC (j) Challb=1

qC (j)

(c,K)←$ Encap(pk0,j)
. (c,K)←$ Encap(pk1,j)
return (c,K)

1

2

3

Fig. 3: The multi-user anonymity (ANO-CPA) experiment. The challenge oracle Chall can only
be queried qC many times and will either use the j-th public key in pk0 or the j-th key in pk1,
depending on the challenge bit b.

Experiment (n)− PKUb=0(A) (n)− PKUb=1

for j ∈ [n] for j ∈ [n]1

(pkj , skj)←$KGen pkj$
unif←−−−PK2

pk← (pk1, . . . , pkn) pk$ ← (pk1$, . . . , pkn$)

b′ ← A(pk) b′ ← A(pk$)

return b = b′

3

4

5

Fig. 4: The multi-user public-key uniformity (PKU) experiment.

De�nition 6 (Multi-user security notions of KEM). For an adversary A, we de�ne the
advantages as:

Adv
(n, qC) − IND-CPA

KEM
(A) := |Pr[(n, qC)− IND-CPAb=0(A)]− Pr[(n, qC)− IND-CPAb=1(A)]|, and

Adv
(n, qC) − ANO-CPA

KEM
(A) := |Pr[(n, qC)− ANO-CPAb=0(A)]− Pr[(n, qC)− ANO-CPAb=1(A)]|,

Adv
(n) − PKU

KEM
(A) := |Pr[(n)− PKUb=0(A)]− Pr[(n)− IND-CPAb=1(A)]|

As was shown in [GKP18] (there Lemma 3.2), the advantage of an adversary A in a multi-
user indistinguishability setting can be upper bounded by the advantage of an adversary B in the
single-user setting, factored with the number of users n and the number of queries qC . (Looking
ahead, this loss will re�ect the session-guessing loss in our PAKE proof when replacing multi-user
notions with single-user notions.) Formally we have:

Adv
(n, qC) − IND-CPA

KEM
(A) ≤ n · qC ·AdvIND-CPAKEM (B).

8 Alnahawi et al.

Below, we describe a generic relation between multi-user/challenge anonymity and single-user
anonymity. The generic bound given here may be improved for KEMs whose underlying structure
allow for a tighter reduction.

Theorem 1 (Multi-User anonymity from Single-User anonymity). Let KEM be a key
encapsulation mechanism. For any (n, qC) − ANO-CPA adversary A against KEM, there exists
an ANO-CPA adversary B against KEM such that

Adv
(n, qC) − ANO-CPA

KEM
(A) ≤ n · qC ·AdvANO-CPAKEM (B).

and the running time of B is about that of A.

Proof (Proof of Theorem 1).We reduce ANO-CPA security of KEM to multi-user security anonymity
(n, qC)− ANO-CPA, using a hybrid argument. Let A be an adversary in the (n, qC)− ANO-CPA

experiment in �gure 3, with advantage Adv
(n, qC) − ANO-CPA

KEM
(A).

Consider the sequence of hybrid games Gj,i that successively changes the game for A from
b = 1 (all challenges built using pk1) to b = 0 (all challenges built using pk0): In game Gj,i,
oracle Chall(j′) uses

� the respective public key pk0,j′ from pk0 if j′ < j or if j′ = j and i′ < i, where i′ is the
number of the query to Chall(j′),

� the respective public key pk1,j′ from pk1 if j′ > j or if j′ = j and i′ ≥ i.

Using the triangle inequality yields

Adv
(n, qC) − ANO-CPA

KEM
(A) =

∣∣∣∣∣∣
n−1∑
j=0

qC−1∑
i=0

Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]

∣∣∣∣∣∣
≤

n−1∑
j=0

qC−1∑
i=0

∣∣Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]
∣∣ .

where we made the convention that Gj,qC := Gj+1,q0 to handle index wrap-arounds.

We now give single-user ANO-CPA adversaries Bji to upper bound the summands∣∣Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]
∣∣: Bji receives a single set of two challenge public keys, a cipher-

text, and an encapsulated key, so (pk0, pk1, c
∗,K∗), from its ANO-CPA challenger. Bji will use

its challenge input to simulate either Gj,i or Gj,i+1: Bji generates 2 vectors of n−1 many public
keys pk0,pk1 using KGen and turns them into vectors of length n by inserting its own challenge
public keys at the j-th position. Bji then runs A on input pk0,pk1 and answers A's challenge
queries as follows: upon the i′-th query to Chall(j′), Bji responds with
� a challenge constructed using the respective public key pk0,j′ from pk0 if j′ < j, or if j′ = j
and i′ < i

� a challenge constructed using the respective public key pk1,j′ from pk1 if j′ > j, or if j′ = j
and i′ > i

� its own challenge (c∗,K∗) if j′ = j and i′ = i

When A outputs a guess to B, A forwards the guess to its own challenger.

Since Bji perfectly simulates Gj,i if its own challenge bit is 1, and Gj,i+1 if its own challenge
bit is 0, we have ∣∣Pr[GA

j,i ⇒ 1]− Pr[GA
j,i+1 ⇒ 1]

∣∣ ≤ AdvANOKEM(Bji) .

A tight proof for OCAKE 9

Upper bounding
∣∣Pr[GA

j,i ⇒ 1]− Pr[GA
j,i+1 ⇒ 1]

∣∣ accordingly yields

n−1∑
j=0

qC−1∑
i=0

∣∣Pr[GA
j,i ⇒ 1]− Pr[GA

j,i+1 ⇒ 1]
∣∣ ≤ n−1∑

j=0

qC−1∑
i=0

∣∣∣AdvANOKEM(Bji)
∣∣∣

= n · qC ·AdvANOKEM(B) ,

where B stems from folding the adversaries Bji into a single one.

Theorem 2 (Multi-User Public-Key Uniformity from Single-User Public-Key Uni-
formity). Let KEM be a key encapsulation mechanism. For any n− PKU adversary A against
KEM, there exists an PKU adversary B against KEM such that

Advn, qC − PKU

KEM
(A) ≤ n ·AdvPKUKEM(B).

and the running time of B is about that of A.

Proof (Proof of Theorem 2). We reduce PKU security of KEM to multi-user security anonymity
n−PKU, using a hybrid argument. Let A be an adversary in the n−PKU experiment in �gure 4,
with advantage Advn − PKU

KEM
(A).

Consider the sequence of hybrid games Gi that successively changes the game for A from
b = 1 (all public keys generated using KGen) to b = 0 (all public keys sampled uniformly): In
game Gi, the �rst i many public keys in pk are sampled using KGen, and the last n − i many
are sampled uniformly at random from PK.

Using the triangle inequality yields

Advn − PKU

KEM
(A) =

∣∣∣∣∣
n−1∑
i=0

Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]

∣∣∣∣∣
≤

n−1∑
i=0

∣∣Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]
∣∣ .

We now give single-user PKU adversaries Bi to upper bound the summands∣∣Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]
∣∣: Bi receives a single public key pk∗ from its PKU challenger. Bi

will use its challenge input to simulate either Gi or Gi+1: Bi generates a vector of n − 1 many
public keys pk, using random sampling from PK for the �rst i − 1 many, and KGen for the
positions i+1 to n−1. It turns the vector into a vector of length n by inserting its own challenge
public key at the i-th position.

When A outputs its guess to Bi, Bi forwards the guess to its own challenger.
Since Bi perfectly simulates Gi if its own challenge bit is 1, and Gi+1 if its own challenge bit

is 0, we have ∣∣Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]
∣∣ ≤ AdvANOKEM(Bi) .

Upper bounding
∣∣Pr[GA

i ⇒ 1]− Pr[GA
i+1 ⇒ 1]

∣∣ accordingly yields

n−1∑
i=0

∣∣Pr[GA
i ⇒ 1]− Pr[GA

i+1 ⇒ 1]
∣∣ ≤ n−1∑

i=0

∣∣∣AdvANOKEM(Bi)
∣∣∣ = n ·AdvANOKEM(B) ,

where B stems from folding the adversaries Bi into a single one.

10 Alnahawi et al.

2.3 Notation

We denote the probability of adversary A winning in game Gi as Advi.

3 The Protocol PAKEM

Initiator (Client) PAKEM Protocol Responder (Server)

Password pw Password pw
Transmit Encrypted

Public Key
kpw ← KDF(pw) kpw ← KDF(pw)
(pk, sk)←$KGen
apk ← BC.enc(kpw, pk) apk

−−−−−−−−−→
pk′ ← BC.dec(kpw, apk)

Establish Session
Pre-Key

K ′ ← Decap(sk, c) c←−−−−−−−−−− (c,K)←$ Encap(pk′)
tagr←−−−−−−−−−

tagr ← H(pw, apk, pk′, c,K, ”r”)

tagi ← H(pw, apk, pk, c,K ′, ”i”) tagi−−−−−−−−−→
Key Con�rmation,
Key Derivation

tag′r ← H(pw, apk, pk, c,K ′, ”r”) tag′i ← H(pw, apk, pk′, c,K, ”i”)
if tag′r = tagr if tag′i = tagi
SK ← KDF′(tagr,K

′) SK ← KDF′(tagr,K)
output SK and accept output SK and accept

terminate terminate

Fig. 5: The PAKEM protocol, using a key encapsulation mechanism KEM = (KGen,Encap,Decap)
and a block cipher BC = (BC.enc, BC.dec) that is modeled as an ideal cipher in the proof.
Messages c and tagi are part of the same round, so can be transmitted together, making this a
three-round protocol.

We describe a 3-message password-authenticated key exchange protocol based on an ideal ci-
pher IC and an implicitly-rejecting key encapsulation mechanism KEM in �gure 5. The protocol
achieves mutual authentication and AKE security according to the BPR model, which we prove
in section 5. Two parties, the initiator and the responder, share a common password pw and
proceeds in three phases: �rst, the initiator will generate a KEM key pair, encrypt the public key
using the password, and send it to the responder. The responder uses the password to recover
the public key, then computes an encapsulation and pre-key. The responder sends that encap-
sulation to the initiator, along with a responder tag5. The initiator decapsulates the ciphertext
to obtain a pre-key and compares the tag to one derived from its own state. The initiator only

5 Because KEM is implicitly rejecting and therefore cannot not strongly robust, this tag is needed to
authenticate the responder.

A tight proof for OCAKE 11

outputs a session key derived from the pre-key if the tags match. Finally, the initiator computes
an initiator tag and sends it to the responder. The responder checks this tag against its own
state and outputs a session key derived from its pre-key if it matches. Under the correctness of
KEM, the session key output by both parties is identical if and only if both parties used the same
password.

4 Security Model

Our security analysis is based on the BPR model for authenticated key exchange [BPR00]. In the
BPR model, an adversary can interact with the oracles shown in Fig. 6.

Query Return Value Description

Execute(P, i, P ′, j) (apk, c, tagr, tagi) Passive attack: Return transcript of an honest pro-
tocol execution between parties P and P ′, using the
ith/jth session of P/P ′

Send(P, i,msg, flow) msg′ Active attack: Send message msg to the oracle rep-
resenting honest user P , causing it to proceed de-
pending on its state. Flow indicator enumerates the
messages in a run of the protocol and improves read-
ability of the oracle.

Reveal(P, i) SK[P, i]/⊥ Session key leakage: Return session key SK of (P, i)
i� (P, i) terminated, else ⊥; marks this instance and
its matching instance "unfresh"

Corrupt(P, pw) PWD[P, :] Password leakage or overwrite: Either return dictio-
nary of passwords PWD[P, :] held by party P , or al-
low adversary to overwrite password dictionary with
PWD'[P, :].

Test(P, i) SK[P, i]/SK$ Session key challenge: Attack ith session of party P .
Only for terminated instances.

KDF(pw) kpw Random oracle, input password pw ∈ PWD, output
Ideal Cipher key kpw

H(msg) tag Random oracle, input message msg, output tag ∈ T
KDF′(msg) SK Random oracle, input message msg, output session

key SK ∈ SK
IC.enc(k,m) c Ideal cipher encryption on input (key, message)

IC.dec(k, c) m Ideal cipher decryption on input (key, ciphertext)

Fig. 6: Overview of the PAKE adversary's oracles provided by the security game. Top part (above
double midrule): oracles present in the BPR model. Bottom part: Random oracles and ideal
cipher oracles to which the attacker additionally has access when attacking the PAKEM protocol,
as our security proof idealizes the hash functions and the block cipher used in PAKEM. The
model also includes an Initialization phase, where passwords are generated by some long-lived-
key generator PW .

12 Alnahawi et al.

De�nition 7 (Partnering). Two instances Pi, P
′
j are partnered i� both instances have termi-

nated (i.e. reached a terminate instruction) with the same transcript and session key.

Intuitively, `unfreshness' expresses that the adversary may have learned the to-be-tested ses-
sion's key SK in a trivial way, i.e., by having interacted with the oracles revealing secret in-
formation in a way such that SK becomes derivable regardless of the nature of the protocol.
Concretely, the cases we cover in our freshness de�nition below are a), simply requesting the key
from the Reveal oracle, and b), learning a password pw via Corrupt and then actively interfer-
ing with the test session, e.g., using pw to manipulate the peer into using a session key of the
adversary's choosing.

De�nition 8 (Freshness with forward secrecy). Suppose that the adversary made exactly
one Test query, and it was to party P and instance i. We say the oracle of instance i of party
P is unfresh if at any time, there was a Reveal query to instance (P, i) or the instance (P ′, j)
that it is partnered with.

We also say it is unfresh if both the following two conditions hold:
� Before the Test query, there was a Corrupt query on the test session's holder P or its peer.
� One of the messages sent to P concerning the test session was manipulated by the adversary,

i.e., there was a Send(P, i) query.
The oracle of (P, i) is only considered fresh if neither of these conditions are met.

De�nition 9 (Key-Indistinguishability of Authenticated Key Exchange). For a pro-
tocol Π and an adversary A, we de�ne A's advantage with respect to Π as AdvBPR

Π (A). We say
that the adversary with access to the oracles in �gure 6 wins if on issuing a Test query for a
party (P, i) that has terminated and is fresh (see 8), A correctly guesses the bit selected in the
test query. The security experiment is shown in �gure 7 The advantage of A is then de�ned as

AdvBPR
Π (A) := |Pr[ExpBPRΠ (A)]| − 1/2

Experiment ExpBPRΠ (A)

b
unif←−−−{0, 1}

b′ ← AOb

(P, N,D)
return b = b′

1

2

3

Fig. 7: The BPR security game for active adversaries. Ob = indicates the collection of oracles
{Execute, KDF, H, KDF', IC.enc, IC.dec, Send, Reveal, Corrupt,Testb}. Here, P is the party
set, N is the number of instances per party and D is the password dictionary.

De�nition 10 (Explicit Mutual Authentication). A protocol achieves explicit mutual au-
thentication if parties accept if and only if there exists a partnered party that accepts with the
same output.

Protocol PAKEM uses tags in both directions, and while the responder tag is needed for BPR secu-
rity of the protocol, the initiator tag's purpose is to achieve explicit mutual authentication. This
approach follows the AddCSA (add client-to-server authentication) transformation introduced
in [BPR00].

A tight proof for OCAKE 13

5 Security of PAKEM

Essentially, our main Theorem 3 below relates forward security of PAKEM to security of the
used KEM, in the Random Oracle Model and the Ideal Cipher model. During its proof, we will
consider an adversary playing the BPR security game for our protocol PAKEM. The adversary
has access to
� oracles Execute, Send, Reveal, Corrupt, and Test, all of which we make explicit in �gure 9,
as well as

� random oracles KDF, KDF', and H and
� ideal cipher oracles IC.enc and IC.dec.

Theorem 3 (Tight security of PAKEM in the Random Oracle and Ideal Cipher mod-
els from Multi-User Security of KEM). Let KEM be a key encapsulation mechanism that
is (1− δ)-correct, let KDF, KDF', and H be modeled as random oracles, BC be modeled as an ideal
cipher, and let A be a BPR adversary against PAKEM[KEM, KDF, KDF′, H, BC], issuing at most qS
many Send queries (i.e. active attacks), qE many Execute (number of transcripts the adversary
can see), qIC.dec many decryption queries to the ideal cipher, qIC many queries to the ideal ci-
pher in total (encryption or decryption), and qH many queries to its respective random oracles.
Then there exist multi-user-IND-CPA adversary BI a multi-user-ANO-CPA adversary BA and a
multi-user-PKU adversary BU against KEM such that

AdvBPR
PAKEM(A) ≤

qS
|D|

+Adv
(qIC.dec + qS + qE) − PKU

KEM
(BU) + 2Adv

(qS + qE, qS + 1) − ANO-CPA

KEM
(BA)

+ 2Adv
(qS + qE, qS + 1) − IND-CPA

KEM
(BI) + 3 · q2

IC
·

2 · |PK|
+ (qS + qE) · δ

+ qRO · (qS + qE) · (
1

|SK|
+

1

|K|
) + q2

RO
· (1

2 · |T |
+

1

2 · |Kpw|
)

and the running time of BI, BA, and BU is about that of A.

Theorem 4 (Security of PAKEM in the Random Oracle and Ideal Cipher Models
from Single-User Security of KEM). Let KEM be a key encapsulation mechanism that is
(1−δ)-correct, let KDF, KDF', and H be modeled as random oracles, BC be modeled as an ideal cipher,
and let A be a BPR adversary against PAKEM[KEM, KDF, KDF′, H, BC], issuing at most qS many
Send queries (i.e. active attacks), qE many Execute (number of transcripts the adversary can
see), qIC.dec many decryption queries to the ideal cipher, qIC many queries to the ideal cipher in
total (encryption or decryption), and qKDF/qKDF′/qH many queries to its respective random oracles.
Then there exist multi-user-IND-CPA adversary BI a multi-user-ANO-CPA adversary BA and a
multi-user-PKU adversary BU against KEM such that

AdvBPR
PAKEM(A) ≤

qS
|D|

+ (qIC.dec + qS + qE) ·AdvPKUKEM(BU) + 2 · (qS + qE) · (qS + 1) ·AdvINDKEM(BI)

+ 2 · (qIC.dec + qS + qE) · (qS + 1) ·AdvANOKEM(BA) + (qS + qE) · δ

+ qRO · (qS + qE) · (
1

|SK|
+

1

|K|
) + q2

RO
· (1

2 · |T |
+

1

2 · |Kpw|
) +

3 · q2
IC
·

2 · |PK|

and the running time of BI, BA, and BU is about that of A.

Theorem 4 follows directly from plugging the generic multi-user reductions in 2.2 into Theo-
rem 3, we therefore proceed by proving the `tight' theorem Theorem 3.

Intuitively, the security proof has three security goals: Showing that

14 Alnahawi et al.

(SG1) the adversary can test at most one password per session with which it actively interferes,
(SG2) honest protocol runs do not leak signi�cant amounts of information on the password, and
(SG3) the session key looks independent of both session transcript and password to the adversary

unless it manages to attack the underlying KEM.

Pseudo-code for the oracles is shown in �gure 9. Amongst the other oracles, Fig. 9 also
sketches the Send oracle. In Send, we use a �ow identi�er to separate the di�erent stages of
the protocol- We make the convention that oracle Send will only proceed if it is in the correct
state for the received message: for example, if an instance receives a ciphertext c without having
received a �ow-0 message that caused it to generate a key pair, it will not respond. As shown in
�gure 9, we at �rst will also model the Execute oracle using the Send oracle.The adversary can
query the Test oracle exactly once, for a party and instance that ful�lls the freshness de�nition.

High-level overview of proof. In the security proof, we will argue that for every actively
manipulated session, we can uniquely determine which password was tested by the adversary.
This implies that the adversary can use at most one password per active attack, satisfying security
goal SG1. During that argument, we need to catch the side-case that protocol messages could
stem from multiple passwords due to collisions. Game hops G1 to G4 are aimed at eliminating
these collisions.
After that, we address security goals SG2 and SG3 by eliminate leakage on the password and
the session key with game hops G7 to G9. Game hops G6 and G5 are in preparation for these
changes.

A tight proof for OCAKE 15

Game Change Loss

G1 KDF collisions
q2KDF

2 · |Kpw|

G2 IC simulation by sampling
q2IC

2 · |PK|

G3 IC collisions
q2IC
|PK|

G4 abort on responder tag collision
q2H

2 · |T |

G5 sample IC outputs using KGen Adv
(qIC.dec + qS + qE) − PKU

KEM

G6 detect corr pw 0

G7 randomize pk Adv
(qS + qE, qS + 1) − ANO-CPA

KEM

G8 randomize pre-key Adv
(qS + qE, qS + 1) − IND-CPA

KEM
+ (qS + qE) · δ

G9 randomize responder tag
qH · (qS + qE)

|K|

G10 randomize session key
qKDF′ · (qS + qE)

|SK|

G10 abort on corr pw
qS
|D|

+∆Pr[corrPW]

Fig. 8: Overview of all game changes and their associated loss.

16 Alnahawi et al.

Oracle Send(P, i,msg, flow)

if CORRUPT[{P,PART(P,i)}]1

FRESH[(P, i)]← false

FRESH[{P, PART (P, i)}]← false

2

3

if flow = 0 //prompt �rst message4

kpw ← KDF(pw)

(pk, sk)←$KGen
apk ← IC.enckpw

(pk)

return apk

5

6

7

8

if flow = 1 //�rst protocol message9

apk
parse←−−−− msg

kpw ← KDF(pw)

pk′ ← IC−1
kpw

(apk)

(c,K)←$ Encap(pk′)
tagi ← H(pw, apk, pk′, c,K, ”r”)

return (c, tagi)

10

11

12

13

14

15

if flow = 2 //second protocol message16

c, tagi
parse←−−−− msg

K ′ ← Decap(sk, c)

if tagi = H(pw, apk, pk, c,K ′, ”r”)

17

18

19

SK ← KDF′(tagi,K
′)

K[(P,i)]
set←−−− SK

tagr ← H(pw, apk, pk, c,K ′, ”i”)

return tagr

20

21

22

23

else return ⊥24

if flow = 3 //third protocol message25

tagr
parse←−−−− msg

if tagr = H(pw, apk, pk′, c,K, ”i”)

26

27

SK ← KDF′(tagi,K)

K[(P,i)]
set←−−− SK

28

29

Initialization

for (P, P ′) ∈ P × P1

pw ←$PWD()

PWD[{P, P ′}] set←−−− pw

2

3

Oracle Execute(P, i, P ′, j)

apk ← Send(P, i,⊥, 0)
c, tagi ← Send(P ′, j, apk, 1)

tagr ← Send(P, i, (c, tagi), 2)

Send(P ′, j, tagr, 3)

return (apk, c, tagi, tagr)

1

2

3

4

5

Oracle Corrupt(P,PWD')

PWDP ← PWD[{P, :}]
CORRUPT[{P,:}]← true //all partners

for P ′ ∈ P //replace passwords

1

2

3

if PWD'[{P, P ′}]̸=⊥4

PWD[{P, P ′}] set←−−−PWD'[{P, P ′}]5

return PWDP6

Oracle Reveal(P, i)

FRESH[(P, i)]← false //this instance

return SK[(P, i)]

1

2

Oracle Testb=0(P, i) Testb=1(P, i)

if not (FRESH[(P, i)] and FRESH[PART(P, i)])1

return ⊥2

else if SK[(P, i)] =⊥ //check if terminated3

return ⊥4

else:5

. SK$
unif←−−−SK

return SK return SK$

6

7

Fig. 9: The oracles in the security game for PAKEM. PWD is the dictionary of passwords, COR-
RUPT and FRESH indicate the corruption status of a session and PART indicates the intended
partner of an instance. Password generation in the initialization phase (Initialization) is mod-
eled using the long-lived key generator PW .

Proof (Theorem 3).

A tight proof for OCAKE 17

5.1 Original Security Game

Game G0: Original Game Game G0 represents the original BPR security game. The Send and
Execute oracles answer queries according to the protocol, as shown in �gure 9.

5.2 Eliminating Collisions (SG1)

In a �rst step, we address collision events that would allow distinct passwords to result in the
same transcript.

Game G1: Abort on Key Derivation Function Collisions First we address collisions in the key
derivation function that would allow an adversary to use an ideal cipher key that corresponds
to multiple passwords. Intuitively, this could mean that an adversary could use this derived key
and succeed in an attack on a session even if a password that is not the correct one for this
session is used. This attack applies to both to malicious initiator as well as malicious responder
adversaries.6

We now keep a list of all previous queries to the KDF oracle by recording all input-output
pairs (pw, kpw). Let KDFColl be the event there were two queries to the KDF oracle s.t. for two
distinct passwords pw ̸= pw′, the derived keys are the same:

KDFColl : kpw = kpw′ for queries kpw ← KDF(pw), kpw′ ← KDF(pw′).

In game G1, we abort whenever this event occurs. Let qKDF be the number of queries to KDF.
Since KDF is modeled as a random oracle, we can bound the probability of this event using a
standard collision bound over the number of queries and the size of the output space of KDF:

Pr[KDFColl] ≤ q2
KDF

2·|Kpw| . Since games G0 and G1 are identical unless KDFColl occurs, the distance

of the adversary's success probability is bounded:

|Adv0 −Adv1| = Pr[KDFColl] ≤ q2KDF
2 · |Kpw|

From now on, we can argue that any password-derived key kpw used in some protocol execu-
tion or oracle query corresponds to at most one password.

Game G2: Simulate Ideal Cipher We now simulate a "modi�ed" ideal cipher by lazy sampling
where instead of choosing an output from the set of remaining outputs, we sample one from the
entire domain and abort in case we sample a value that would violate the permutation property.
This is done in preparation for games G5 and G7, where we replace ideal cipher outputs with
public keys generated using KGen. This is illustrated in �gure Fig. 10.

Game G2 is identical to G1 unless it aborts in line 5 of �gure Fig. 10. The probability of this
occurring can be bounded using a standard collision bound in the total number of ideal cipher
queries qIC and the size of the public key space |PK| and therefore:

|Adv1 −Adv2| ≤
q2IC

2 · |PK|
.

6 We will later show the relation between more complex adversaries, such as those executing machine-
in-the-middle attacks and an adversary and these two base types.

18 Alnahawi et al.

IC.enc(kpw, pk)

if ∃ record (kpw, pk, apk)1

return apk2

else3

apk′
unif←−−−PK

if ∃ record (kpw, ⋆, apk
′): abort

create record (kpw, pk, apk
′)

return apk′

4

5

6

7

IC.dec(kpw, apk)

if ∃ record (kpw, pk, apk)1

return pk2

else3

pk′
unif←−−−PK

if ∃ record (kpw, pk
′, ⋆): abort

create record (kpw, pk
′, apk)

return pk′

4

5

6

7

Fig. 10: The simulated ideal cipher with abort.

Game G3: Abort on Ideal Cipher Collisions Next we eliminate collisions in the ideal cipher.
Collisions can allow the adversary to test multiple passwords in a single session, violating security
goal (SG1). The probability of such collisions occurring is therefore directly relevant to the
security of the scheme. There are two types of collision for which this is the case.

The �rst type of collision occurs if the adversary �nds that some public key and authenticated
public key are mapped to each other under two distinct passwords. Formally, this would imply
that there were two queries to the ideal cipher such that for kpw ̸= k′pw

ICColl1 : (pk, apk) = (pk′, apk′) for two queries:(
either apk ← IC.enc(kpw, pk) or pk ← IC.dec(kpw, apk)

)
and

(
either(apk′ ← IC.enc(k′pw, pk

′) or pk′ ← IC.dec(k′pw, apk
′)
)

Therefore, an adversary sending this apk value to the Send oracle could test the passwords
corresponding to kpw and k′pw in one query.

The second type of collision occurs if there were at least two ideal cipher encryption queries for
distinct passwords and public keys that returned the same authenticated public key. Knowledge
of apk with this property allows the adversary to test both passwords in one query.7 Formally,
this would imply that there were two queries to the ideal cipher such that for kpw ̸= k′pw:

ICColl2 : apk = apk′ for queries: apk ← IC.enc(kpw, pk), apk
′ ← IC.enc(k′pw, pk

′)

In game G3, we abort whenever ICColl1 or ICColl2 occur. We de�ne the event ICColl

where Pr[ICColl] := Pr[ICColl1∨ICColl2]. We argue that the probability of this event is upper-
bounded by a standard collision bound in the total number of ideal cipher queries (encryption
and decryption) qIC and the size of the ideal cipher domain |PK|, since it requires sampling. In
game G3, we abort whenever ICColl occurs. Since games G2 and G3 are identical unless ICColl
occurs, it holds that

|Adv2 −Adv3| = Pr[ICColl] ≤ q2IC
2 · |PK|

+
q2IC.enc
2 · |PK|

≤ q2IC
|PK|

.

7 To further elaborate, this would imply that for this apk, there are two keys kpw ̸= kpw′ and therefore
two passwords pw ̸= pw′ for which the adversary could know the secret keys associated with the public
keys pk ̸= pk′. This would then allow the adversary to decrypt ciphertexts for both these public keys,
to derive two candidate session keys. Either one of them could then be compared to the session key
output by the Test query.

A tight proof for OCAKE 19

IC.encG2(kpw, pk) IC.encG3(kpw, pk)

if ∃ record (kpw, pk, apk)1

return apk2

else3

apk′
unif←−−−PK

if ∃ record (kpw, ⋆, apk
′): abort

if ∃ record (⋆, pk, apk′): abort ICColl1

if ∃ record (⋆, ⋆, apk′, "enc"): abort ICColl2

create record (kpw, pk, apk
′)

create record (kpw, pk, apk
′, "enc")

return apk′

4

5

6

7

8

9

10

IC.decG2(kpw, apk) IC.decG3(kpw, apk)

if ∃ record (kpw, pk, apk)1

return pk2

else3

pk′
unif←−−−PK

if ∃ record (kpw, pk
′, ⋆): abort

if ∃ record (⋆, pk′, apk): abort ICColl1

create record (kpw, pk
′, apk)

return pk′

4

5

6

7

8

Fig. 11: The simulated ideal cipher. In game G3, the game aborts whenever there is a collision
in the ideal cipher that would allow the adversary to test two passwords.

Game G4: Abort on Server Tag Collision We now create a record for all queries to H by the
adversary and let ROColl be the event that the random oracle outputs the same value twice, for
di�erent inputs, in which case game G4 aborts. The probability of ROColl occurring is bounded
by a standard collision bound in the number of queries qH to H and the size of the tag space T :

Pr[ROColl] ≤ q2
H

2·|T | . Since games G3 and G4 are identical unless ROColl or occurs, it holds that:

|Adv3 −Adv4| = Pr[ROColl] ≤ q2H
2 · |T |

.

For every responder tag output by the H, there is now exactly one password that was used
to create it. Therefore, whenever a malicious initiator adversary submits such a tag, this tag
corresponds to at most one password.

At this point, we have proven that it is unlikely for an adversary to be able to test multiple
passwords in a single query, in accordance with security goal 1 (SG1).

Game G5: Sample Ideal Cipher Outputs Using KEM Key Generation In game G5, we replace
the way the ideal cipher samples outputs. On decryption queries, instead of sampling from the
output domain uniformly at random, we use the key generation algorithm of KEM. This is an
auxiliary step that we do in preparation for the separation of ciphertexts c and the password,
which we will do using the anonymity property of KEM in game G7. The change is depicted in
�gure Fig. 12.

We will now argue that an adversary noticing this change can be used to attack the n−key-
uniformity (n − PKU) property of the underlying KEM, by means of a reduction BU. Let A be
the adversary running either in game G4 or G5, issuing at most qIC.dec many queries to the
ideal cipher decryption oracle. We de�ne adversary BU against the n−PKU experiment (de�ned
in Fig. 4) as follows (for the sake of formality, we give the pseudo-code of BU in Fig. 13):

20 Alnahawi et al.

IC.decG4(kpw, apk) IC.decG5(kpw, apk)

if ∃ record (kpw, pk, apk)1

return pk2

else3

pk′
unif←−−−PK pk′ ←$KGen

if ∃ record (kpw, pk
′, ⋆): abort

if ∃ record (⋆, pk′, apk): abort

create record (kpw, pk
′, apk)

return pk′

4

5

6

7

8

Fig. 12: The simulated ideal cipher now samples using the KEM's key generation algorithm KGen

instead of uniformly at random from the domain PK.

BU receives a vectors of challenge public keys pk of dimension n from its n−PKU challenger,
where n := qIC.dec + qS + qE. (Depending on the challenger's bit bPKU, pk is generated using
KGen or drawn uniformly at random from PK.)
BU samples an own challenge bit b′, runs A and answers A's queries to the Oracles H,

IC.enc, KDF, Reveal, and Testb
′
according to the oracles in G4.

When simulating ideal cipher decryption queries, BU embeds the challenge public keys
stemming from its input vector pk: Upon a query to oracle IC.dec, instead of sampling an
output like game G4 (see line 4 of Fig. 10), BU uses the next value in pk. (Note that the
changes in game 2 ensures that the resulting output is still a permutation.) In case a query
is repeated, it repeats the respective public key.

When A outputs a guess b, BU checks if b = b′ and in that case returns b′PKU := 1 as its
own output bit, otherwise, BU returns b′PKU := 0.

BU perfectly simulates G4 when run with KGen-generated public keys, G5 when run with
uniform public keys, and returns 1 if A wins the respective game. Since BU uses at most n =
qIC.dec + qS + qE many public keys in total, the di�erence between A's winning probabilities in
games G4 and G5 is upper bounded by the n := qIC.dec + qS + qE-anonymity advantage of BU
against KEM:

|Adv4 −Adv5| ≤ Adv
(qIC.dec + qS + qE) − PKU

KEM

5.3 Preparing to handle messages that involve the correct password

To quantify the protocol's leakage of the password, we will randomize protocol messages in
section 5.4. For these randomizations to go unnoticed, we need to rule out the case that the
adversary sent messages constructed from the correct password. (In many cases, the adversary
would be able to derive some or all of the protocol outputs when using the correct password,
thereby being able to notice the randomization.)

A tight proof for OCAKE 21

Adversary BU(pk)

pkIndex = 0

b
unif←−−−{0, 1}

b′ ← AOb

(pk)

output b′
PKU

:= [b = b′]

1

2

3

4

IC.dec(kpw, apk)

if ∃ record (kpw, pk, apk)1

return pk2

else3

pk′$ ← pk[pkIndex] //pk′
unif←−−−PK vs

(pk′$, sk
′
$)←$KGen

pkIndex += 1

if ∃ record (kpw, pk
′
$, ⋆): corrPW

if ∃ record (⋆, pk′$, apk): corrPW

create record (kpw, pk
′
$, apk)

return pk′

4

5

6

7

8

9

10

Fig. 13: PKU adversary BU, used to reason about the hop from game G4 to G5.

Therefore, whenever the adversary makes a Send query, we start to check if the correct
password was used. (We will not need to do this check for Execute queries.) If such a query
occurs, there are three possible reasons:

1. The adversary obtained the password by corrupting one of the parties involved in the session.
In that case, we raise the trivial guess �ag trivGuess for that session and continue the protocol
without applying the changes of the following games, i.e., without randomisation. (Since the
session is no longer fresh, it cannot be subjected to a Test query, meaning the adversary
cannot using this session. Leakage of the password also is no longer a concern.)

2. The adversary is forwarding a message that was generated honestly by a previous �ow of the
Send oracle. Clearly, this event does not imply that the adversary has guessed the password
of that session or knows any of the secret information associated with the message. Therefore,
we do not count this as a correct guess and continue by randomizing the outputs according
to section 5.4. This case is detected by keeping a record of all honestly generated transcripts.

3. The adversary guessed the password. We call this event corrPW and abort the game whenever
it occurs. This way, no Test query can be issued to such a session, and we do not have to
randomize the protocol messages. With the password already having been guessed, we no
longer have to consider any further leakage about it. Throughout the games, we will bound
how the probability of event corrPW changes, until we end up with a game in which we can
bound the probability of event corrPW in terms of the dictionary size. (Even if the protocol
reveals nothing on the password, an adversary can always try guessing.)

In conclusion, we will show that we can make the protocol messages independent of the
password for all sessions where neither 1. nor 3. occurred.

Game G6: Abort on Correct Password A correct password guess is re�ected in two cases, de-
pending on which side the adversary sits:

Authenticated Public Key (apk) Consider the event where the adversary sent an apk built
from the correct password and that the respective message was indeed generated by the
adversary, i.e., that the message was not honestly generated by a previous call to Send. We'll

22 Alnahawi et al.

received message
formed using correct

password

forwarded, honestly
generated message

=> randomize

password was
corrupted

=> flag trivGuess

password was guessed
correctly

=> flag corrPW

Fig. 14: The case distinction for messages formed using the correct password of a session.

call this event apkCorrPw. It can be detected as follows:
Whenever there is a query Send(apk∗), we look through the ideal cipher records for the record
(kpw, pk, apk

∗, ”enc”), where kpw is the password-derived key for that session's password. Due
to the changes in the previous two games, there cannot be a record for another password
in this case. Therefore, if this record exists, we know that apk∗ was generated using the
correct password. If, additionally, apk was generated by the adversary (and not forwarded
from another oracle), it contains a public key that was chosen by the adversary. If a game
where this event occurs were to continue, the adversary should be able to decrypt all following
messages in this session and receive the encapsulated key, thereby being able to distinguish
the session key in the test query. 8

Server Tag (tagi) Consider the event where the adversary sent a tagi built from the correct
password and that the respective message was indeed generated by the adversary. We'll call
this event tagCorrPw. It can be detected as follows:
When the adversary submits a responder tag to the Send oracle, we can look for records in H

that link this tag to the password used to create it. By the changes made in previous games,
it is ensured that there can be no collisions in H unless the game aborts, so there is at most
one record for this tag, uniquely determining the password that was tested in this query. If
the password in the record matches the correct one for this session, we conclude that the
correct password was used to create this tag.

Combining the two cases and ruling out corruptions, we let corrPW be the event that either
apkCorrPw or tagCorrPw occur and that neither party in the session was corrupted.

We let game G6 abort whenever corrPW occurs. Since both games proceed identically unless
corrPW occurs, we have

|Adv5 −Adv6| ≤ Pr[corrPWG6
]

We will track how the probability of event corrPW changes throughout the sequence of games,
and �nish by bounding its probability in game 10.

5.4 Randomizing Protocol Messages (SG2)

Our next goal is to replace the protocol messages to make them independent of the password
and the session key. We then argue that the modi�ed game is indistinguishable to the adversary,

8 Note that the existence of a record (kpw, pk, apk
∗, ”dec”) is of no concern because it implies the

adversary queried decryption of apk∗ and received a public key pk that was chosen at random. In fact,
the adversary can make any number of such queries and learn the possible public keys used to generate
the response. We will argue in games 7 and 8 that this information is not helpful to the adversary.

A tight proof for OCAKE 23

using anonymity and indistinguishability of KEM. Using these computational assumptions, we
can bound the amount of information that the protocol messages leak concerning the password.

As stated above, the adversary could notice this if they used the correct password to create
a session. But this case can now be ruled out since the game then aborts, anyways. We only
need to keep track of how the probability of corrPW changes, which we can also bound in terms
of the computational assumptions on KEM since corrPW is an event that can be checked by a
respective .

Game G7: Randomize Encapsulation Public Key In the �rst randomization step, we make the
following change for all queries to the Send or Execute oracles where �ag trivGuess is not raised:
The public key used for the encapsulation is now generated independently of the password and
the previously sent session messages, see the pseudo-code in �gure 15.

We will now argue that an adversary noticing this change can be used to attack the multi-user
anonymity property (n, qC)−ANO-CPA where n := qIC.dec+ qS+ qE and qC := qS+1. Intuitively,
parameter n represents the number of public-keys in the reduction and is equal to the total
number of potential public keys for any ciphertext c output by the Send or Execute oracles.
Since the Send and Execute oracles query IC.dec, the number of sessions has to be added to
the number of IC.dec queries the adversary is allowed to make.

Parameter qC represents the maximal number of challenges issued for a given key pair, and
is equal to the number of times an adversary could replay an authenticated public key, which is
upper bounded by the total number of sessions.

We de�ne adversary BA0 against the (n, qC) − ANO-CPA experiment (de�ned in Fig. 3) as
follows (for the sake of formality, we give the pseudo-code of BA0 in Fig. 16):

BA0 receives two vectors of challenge public keys (pk0,pk1) of dimension n = qIC.dec+qS+qE,
and can query its challenge oracle Chall, provided by its (n, qC)− ANO-CPA challenger, at
most qC = qS + 1 many times. (Depending on the challenger's bit, the challenges are gener-
ated using either pk0 or pk1.) BA0 samples an own challenge bit b′, runs A and answers A's
queries to the Oracles H, IC.enc, KDF, Reveal, and Testb

′
according to the oracles in G6.

When simulating ideal cipher decryption queries, BA0 embeds the challenge public keys con-
tained in pk0 (see Fig. 16).

Whenever A queries the Send(.,.,.,�ow=1) or Execute oracle, the ideal cipher decryption
oracle is evaluated on the apk value sent by the initiator and the password-derived key of
that session. Due to the abort conditions in game G3, we know that the record for apk and
pw was not the result of a ideal cipher encryption query and the query returns one of the
embedded challenge public keys. Therefore, there exists j ∈ [n] s.t. pk′ = pk0,j .

To answer the query, BA0 then issues a query Chall(j) to receive a challenge (c∗,K∗),
outputs c∗ to A and uses K∗ as K (see Fig. 16). (Ciphertexts returned by the Send or
Execute oracle are therefore either encapsulations under the public key pk0,j or under pk1,j ,
depending on the challenge bit in the (n, qC)−ANO-CPA game. Note that since A can replay
an apk value in each of the qS many sessions, the same public key will sometimes be used
to obtain multiple challenges. This is why we bound the number of challenges per key by
qC = qS + 1.)

When A outputs a guess b, BA0 checks if b = b′. In the case that corrPW did not occur
and that b = b′, it returns 1 as its own output bit, otherwise, it returns 0.

BA0 perfectly simulatesG6 when run with challenge bit 0,G7 when run with with challenge bit
1, and returns 1 if the adversary wins. Therefore, the di�erence between A's winning probabilities
in games G6 and G7 is upper bounded by the respective (n, qC) − ANO-CPA advantage of BA0
against KEM:

24 Alnahawi et al.

|Pr[G6 ⇒ 1]− Pr[G7 ⇒ 1]| ≤ Adv
(qS + qE, qS + 1) − ANO-CPA

KEM
(BA0)

We note that we keep sessions involving corrupted parties (meaning trivGuess was raised
for that session) una�ected of this change. As these sessions are by de�nitions unfresh, however,
they cannot lead to a win for the adversary if tested.

To keep track of the change in the probability of Pr[corrPW], we can slightly adapt the
reduction BA0 : our new reduction BA1 behaves exactly like BA0 except how its output bit is de�ned.
BA1 returns 1 if corrPW occured, and otherwise 0.

|Pr[corrPWG6]− Pr[corrPWG7]| ≤ Adv
(qS + qE, qS + 1) − ANO-CPA

KEM
(BA1)

Oracle SendG6
(P, i, msg, flow) SendG7

(P, i, msg, flow)

if flow = 11

apk
parse←−−−− msg

kpw ← KDF(pw)

pk′ ← IC.dec(kpw, apk)

(c,K)←$ Encap(pk′)
tagi ← H(pw, apk, pk′, c,K, ”r”)

return c, tagi

2

3

4

5

6

7

8

9

10

11

if flow = 112

apk
parse←−−−− msg

kpw ← KDF(pw)

if PK[(kpw, apk)] ̸=⊥:

pk′$ ← PK[(kpw, apk)]

else

(pk′$, sk$)←$KGen

PK[(kpw, apk)]
set←−−− pk′$

(c,K)←$ Encap(pk′$)

tagi ← H(pw, apk, pk′$, c,K, ”r”)

return c, tagi

13

14

15

16

17

18

19

20

21

22

Fig. 15: Game G6: Randomizing public key in Send queries. This change in principle only needs
to be done for queries where the apk value submitted by the adversary is not indicative of a
correct guess (thereby triggering a game abort), according to the de�nition in subsection 5.3.
The dictionary PK is a book-keeping tool introduced in game G7 to ensure that replays of the
same value result in the same behavior. Note that this mirrors exactly what happens inside the
ideal cipher.

With this change, the ciphertext c output by the Send and Execute oracles (for non-corrupted
parties) is now independent of the password.

A tight proof for OCAKE 25

Adversary BA0 (pk0,pk1)

pkIndex = 0

b
unif←−−−{0, 1}

b′ ← AOb

()

b′
ANO

:= [b = b′]

output b′ANO

1

2

3

4

5

IC.dec(kpw, apk)

if ∃ record (kpw, pk, apk)1

return pk2

else3

pk′ ← pk0[pkIndex] //pk′ ←$KGen
pkIndex+= 1

if ∃ record (kpw, pk
′, ⋆): abort

if ∃ record (⋆, pk′, apk): abort

create record (kpw, pk
′, apk)

return pk′

4

5

6

7

8

9

Oracle Send(P, i, msg, flow)

if flow = 11

apk
parse←−−−− msg

kpw ← KDF(pw)

pk′ ← IC.dec(kpw, apk)

�nd j s.t. pk′ = pk0[j] //IC returned challenge pk from

pk0

(c,K)← Chall(j) //(c,K)← Encap(pk′)

tagi ← H(pw, apk, pk′, c,K, ”r”)

return c, tagi

2

3

4

5

6

7

8

9

Fig. 16: (n, qC) − ANO-CPA adversary BA0 , used to reason about the hop from game G6 to G7.
O = {KDF, IC.enc, IC.dec, Execute, Send, Reveal, Corrupt}

Game G8: Randomize Session Pre-Key For all queries to the Send or Execute oracles where
�ag trivGuess is not raised, we now randomize the pre-key K that is used to derive the �nal
session key and the responder tag, see the pseudo-code in �gure 17. This change will make the
pre-key independent of the ciphertext and the password for all sessions that are fresh. To keep
the game consistent, however, we will need to let both sides of an honestly executed session use
the same key. This is where correctness errors come into play since originally, both sides might
have ended up with di�erent keys in that case

We will now argue that an adversary noticing this change can be used to attack the in-
distinguishability property of the KEM. We de�ne adversary BI0 against the (n, qC) − IND-CPA
experiment (de�ned in Fig. 2) as follows (for the sake of formality, we give the pseudo-code of
BI0 in Fig. 18):

BI0 receives a vector of challenge public keys pk, of dimension n = qS and can query its
challenge oracle Chall, provided by its (n, qC) − IND-CPA challenger, at most qC = qS +

26 Alnahawi et al.

Oracle SendG7(P, i, msg, flow) SendG8(P, i, msg, flow)

if flow = 1 //�rst protocol message1

apk
parse←−−−− msg

kpw ← KDF(pw)

if PK[(kpw, apk)] ̸=⊥:

2

3

4

pk′$ ←PK[(kpw, apk)]5

else:6

(pk′$, sk$)←$KGen
PK[(kpw, apk)]

set←−−− pk′$

7

8

(c,K)←$ Encap(pk′$)

. K$
unif←−−−K

tagi ← H(pw, apk, pk′$, c,K, ”r”) tagi ← H(pw, apk, pk′$, c,K$, ”r”)

return c, tagi

9

10

11

12

if flow = 2 //second protocol message13

c, tagi
parse←−−−− msg

K ′ ← Decap(sk, c)

if tagi = H(pw, apk, pk, c,K ′, ”r”) if ∃ record tagi = H(pw, apk, pk, c,K$, ”r”): K ′
$ ← K$

14

15

16

SK ← KDF′(tagi,K
′) SK ← KDF′(tagi,K

′
$)

K[(P,i)]
set←−−− SK

tagr ← H(pw, apk, pk, c,K ′, ”i”) tagr ← H(pw, apk, pk, c,K ′
$, ”i”)

return tagr

17

18

19

20

else return ⊥21

if flow = 3 //third protocol message22

tagr
parse←−−−− msg

if tagr = H(pw, apk, pk′, c,K, ”i”) if tagr = H(pw, apk, pk′$, c,K$, ”i”)

23

24

SK ← KDF′(tagr,K) SK ← KDF′(tagr,K$)

K[(P,i)]
set←−−− SK

25

26

Fig. 17: In game G8, the pre-key set after querying Send or Execute for some parties Pi, Pj will
be independent of the password and the previous messages.

A tight proof for OCAKE 27

1 many times. (Depending on the challenger's bit, the challenge keys are either properly
encapsulated keys or uniformly random.)
BI0 samples an own challenge bit b′, runs A and answers A's queries to the Oracles H,

IC.enc, KDF, Reveal, and Testb
′
according to the oracles in G7.

(Contrary to the reduction in the previous game hop, BI0 does not have to embed the chal-
lenge public keys in the ideal cipher any more � due to the previous game hop, the public keys
used for the encapsulation are now independent from the ones in the ideal cipher records.)

Now, whenever A queries the Send(.,.,.,1) or Execute oracle, BI0 will use one of the
challenge public keys in pk (instead of generating a fresh public key), and issue a respective
Chall query to its own challenger to receive a challenge (c∗,K∗), where j is the index of the
respective public key. Upon receiving a challenge (c,K), BI0 uses it to answer the query.

If the same apk is submitted multiple times for sessions using the same password, the
game is kept consistent by re-using the respective public key. (As discussed in the previous
game hop, an adversary can replay an apk value qS times, so the maximal number of queries
to the challenge oracle for every key is qC = qS + 1.)

Now, whenever A queries the Send(.,.,.,1) or Execute oracle, BI0 will look for a record
matching the tag to use the correct challenge key.

When A outputs a guess b, BA0 checks if b = b′. In the case that corrPW did not occur
and that b = b′, it returns 1 as its own output bit, otherwise, it returns 0.

BI0 perfectly simulates G7 when run with challenge bit 0 unless a correctness error occured
for an honestly executed session, G8 when run with with challenge bit 1, and returns 1 if the
adversary wins. Therefore, the di�erence between A's winning probabilities in games G7 and G8

is upper bounded by the respective (qS + qE, qS + 1)− IND-CPA advantage of BI0 against KEM:

|Adv7 −Adv8| ≤ Adv
(qS + qE, qS + 1) − IND-CPA

KEM
(BI0) + (qS + qE) · δ

To keep track of the change in the probability of Pr[corrPW], we can adapt the reduction BI0
exactly like in the game-hop before by rede�ning the output bit to be 1 i� corrPW occured.

|Pr[corrPWG7
]− Pr[corrPWG8

]| ≤ Adv
(qS + qE, qS + 1) − IND-CPA

KEM
(BI1)

We again note that while sessions involving corrupted parties are also una�ected by this
change, these sessions are by de�nitions unfresh and cannot lead to a win for the adversary if
tested.

At this point, the pre-key K (for sessions between non-corrupted parties) is independent of
both the password and the protocol messages.

Game G9: Randomize Server Tag To argue that the responder tag does not leak signi�cant
information on the password or the session key, we replace it with a random value. The change
for Send queries is shown in �gure 19.

Let TagQueried be the event that the adversary has queried H(pw, apk, pk′$, c,K$, ”r”). We
argue that due to the properties of the random oracle H, games G8 and G9 are indistinguishable
to the adversary unless TagQueried occurs. Since the pre-key K is independent of the attacker's
view the best attack is random guessing. Games G8 and G9 are identical unless TagQueried

occurs. Therefore, if A can issue at most qH queries to the random oracle H, we have

|Adv8 −Adv9|, |Pr[corrPWG8
]− Pr[corrPWG9

]| ≤ Pr[TagQueried] ≤ qH · (qS + qE)

|K|

28 Alnahawi et al.

Adversary BI0(pk)

pkIndex = 0

b
unif←−−−{0, 1}

b′ ← AOb

(pk)

b′IND := [b = b′]

output b′IND

1

2

3

4

5

Oracle Send(P, i, msg, flow)

if flow = 1 //�rst protocol message1

apk
parse←−−−− msg

kpw ← KDF(pw)

if ∃ record PK[(kpw, apk)]:

2

3

4

pk′$ ←PK[(kpw, apk)]5

else:6

pk′$ ← pk[pkIndex]

pkIndex += 1

PK[(kpw, apk)]
set←−−− pk′$

7

8

9

�nd j s.t. pk′$ = pkj // may not be unique but that's OK

(K∗, c∗)← Chall(j) // K∗ is real or random w.r.t. c∗

tagi ← H(pw, apk, pk′$, c
∗,K∗, ”r”)

return c, tagi

10

11

12

13

if flow = 2 //second protocol message14

c, tagi
parse←−−−− msg

if ∃ record tagi = H(pw, apk, pk, c,K$, ”r”):

15

16

K ′
$ ← K$

SK ← KDF′(tagi,K
′
$) //insert challenge K ′

$ = K∗

K[(P,i)]
set←−−− SK

tagr ← H(pw, apk, pk, c,K ′
$, ”i”)

return tagr

17

18

19

20

21

else return ⊥22

Fig. 18: (n, qC) − IND-CPA adversary BI0, used to reason about the hop from game G7 to G8.
O = {KDF, IC.enc, IC.dec, Execute, Send, Reveal, Corrupt}

A tight proof for OCAKE 29

Oracle SendG8(P, i,msg, flow) SendG9(P, i,msg, flow)

if flow = 1 //�rst protocol message1

apk
parse←−−−− msg

kpw ← KDF(pw)

(pk′$, sk)←$KGen
(c,K)←$ Encap(pk′$)
K$

unif←−−−K

tagi ← H(pw, apk, pk′$, c,K$, ”r”) tagi$
unif←−−−T

return c, tagi return c, tagi$

2

3

4

5

6

7

8

Fig. 19: Randomizing tags in Send queries. T is the domain of the random oracle H.

5.5 Randomizing Session Key (SG3)

Game G10: Randomize Session Key Finally, we replace the �nal session key for all Send and
Execute queries with one chosen independently at random from the session key space SK, mean-
ing they are now independent of the previous messages and the password. This change is only
done for sessions where �ag trivGuess did not occur.

Let SKQueried be the event that the adversary has queried KDF(tagi,K$). In game G10, we
abort whenever this occurs. We argue that due to the properties of the random oracle KDF', games
G9 and G10 are indistinguishable to the adversary unless SKQueried occurs. Since each pre-key
K$ is independent of the attacker's view the best attack is random guessing. Therefore, for an
adversary that can issue at most q′KDF queries to the random oracle KDF' and qS + qE potential
session keys, we can bound the probability of this event. Since games G9 and G10 are identical
unless SKQueried occurs, we have that

|Adv9 −Adv10|, |Pr[corrPWG9
]− Pr[corrPWG10

]| ≤ Pr[SKQueried] ≤ qKDF′ · (qS + qE)

|SK|

After this change, the adversary has to test a session that will always respond with a uni-
formly random value that is independent of the challenge bit. We can conclude that the winning
probability of A in game G10 is therefore reduced to that of random guessing:

Adv10 =
1

2
.

Bounding Correct Password Event All of the responder's protocol messages are now independent
of the respective password for all sessions that are fresh, meaning they do not give the adversary
any information about the passwords. However, the adversary can still attempt a password guess
by picking a password from the password space and using it in a Send query. We can bound
the probability of a correct random guess depending on the number of send queries and the
distribution of the passwords. Assuming a uniform distribution on a password dictionary of size
|D|, and assuming A issues qS many send queries, we get the bound

Pr[corrPWG10
] ≤ qS
|D|

.

30 Alnahawi et al.

Oracle SendG9
(P, i,msg, flow) SendG10

(P, i,msg, flow)

if flow = 2 //second protocol message1

c, tagi
parse←−−−− msg

if ∃ record tagi = H(pw, apk, pk, c,K$, ”r”): K
′
$ ← K$

2

3

SK ← KDF′(tagi,K
′
$) SK$

unif←−−−SK

K[(P,i)]
set←−−− SK K[(P,i)]

set←−−− SK$

tagr ← H(pw, apk, pk, c,K ′
$, ”i”)

return tagr

4

5

6

7

else return ⊥8

if flow = 3 //third protocol message9

tagr
parse←−−−− msg

K ′ ← Decap(sk, c)

if tagr = H(pw, apk, pk′$, c,K$, ”r”) for some K$

10

11

12

. if K$ ̸= K ′

SK ← KDF′(tagi,K$) SK$ ← K[(P, i)]

K[(P,i)]
set←−−− SK K[(P,i)]

set←−−− SK$

13

14

15

Fig. 20: In game G10, the �nal session key is randomized.

A tight proof for OCAKE 31

Collecting the probabilities, we can now bound the probability of event corrPW occurring in
game 6:

Pr[corrPWG6] ≤
9∑

i=6

(Pr[corrPWGi]− Pr[corrPWGi+1]) + Pr[corrPWG10]

≤ qS
|D|

+Adv
(qS + qE, qS + 1) − ANO-CPA

KEM
(BA1)

+Adv
(qS + qE, qS + 1) − IND-CPA

KEM
(BI1) +

qH · (qS + qE)

|K|
+

qKDF′ · (qS + qE)

|SK|

5.6 Total bound on BPR security

To wrap up the proof, we can now bound the BPR advantage of an adversary against the PAKEM
protocol, using the triangle inequality. We will also fold the two anonymity adversaries BA0 and
BA1 into one (BA), as well as the two indistinguishability adversaries BI0 and BI1 (BI).

AdvBPR
PAKEM(A) ≤ |Adv0 −Adv9| −

1

2

≤
9∑

i=1

|Advi −Advi+1| −
1

2

=
q2KDF

2 · |Kpw|
+

q2IC
2 · |PK|

+
q2IC
|PK|

+
q2H

2 · |T |
+ Pr[apkCorrPw] + Pr[tagCorrPw]︸ ︷︷ ︸

=Pr[corrPW]

+

+Adv
(qIC.dec + qS + qE) − PKU

KEM
+Adv

(qS + qE, qS + 1) − ANO-CPA

KEM
+Adv

(qS + qE, qS + 1) − IND-CPA

KEM

+
qH · (qS + qE)

|K|
+

qKDF′ · (qS + qE)

|SK|
+ (qS + qE) · δ +

1

2
− 1

2

≤ qS
|D|

+
q2KDF

2 · |Kpw|
+

q2IC
2 · |PK|

+
q2IC
|PK|

+
q2H

2 · |T |
+

qH · (qS + qE)

|K|
+

qKDF′ · (qS + qE)

|SK|

+Adv
(qIC.dec + qS + qE) − PKU

KEM
(BU) +Adv

(qS + qE, qS + 1) − ANO-CPA

KEM
(BA0) +Adv

(qS + qE, qS + 1) − ANO-CPA

KEM
(BA1)

+Adv
(qS + qE, qS + 1) − IND-CPA

KEM
(BI0) +Adv

(qS + qE, qS + 1) − IND-CPA

KEM
(BI1) + (qS + qE) · δ

≤ qS
|D|

+Adv
(qIC.dec + qS + qE) − PKU

KEM
(BU) + 2Adv

(qS + qE, qS + 1) − ANO-CPA

KEM
(BA)

+ 2Adv
(qS + qE, qS + 1) − IND-CPA

KEM
(BI) + 3 · q2IC·

2 · |PK|
+ (qS + qE) · δ

+ qRO · (qS + qE) · (
1

|SK|
+

1

|K|
) + q2RO · (

1

2 · |T |
+

1

2 · |Kpw|
)

Notes on Reveal and Corrupt queries Under the restrictions outlined in the freshness condition
(de�nition 8), an adversary can also obtain session keys by using Reveal queries and passwords
using Corrupt queries. We argue that the proof given above holds in the presence of these queries.

Reveal: an adversary can reveal the session key of an instance that has terminated. Then
this instance and the instance running the other side of the protocol (if it exists) can no longer

32 Alnahawi et al.

be subject to a Test query. However, if the protocol leaked information on the password if the
session key is known, this would break security. To give an example of how password leakage
could occur, imagine the following modi�ed insecure protocol: the protocol is the same as the
PAKEM protocol, but the �nal session key SK is not the output of KDF'(tagi,K), but K. Then,
revealing the session key K would give the adversary an oracle for the password: by computing
candidate tagi (or tagr) values based on di�erent values of pw, you can check which password
gives the correct tag because the password space is small enough that a brute-force attack is
feasible.

In the case where the �nal session key is derived from the pre-key K and the transcript, this
attack on the password is infeasible since you would �rst need to brute-forcing the pre-key K
from the identity SK ← KDF′(tagi,K) knowing only SK and tagi. In game 10, the session key
is randomized for all sessions that where the password was not guessed, demonstrating that SK
does not reveal signi�cant information on the password.

Corrupt: an adversary can reveal the passwords of a party. In that case, no session key
derived from a session this party is involved in can be subject to a Test query. However, the
adversary's view of the experiment must stay consistent throughout the game hops, even if this
additional information is known to the adversary. An adversary that knows the password of a
pair of parties could potentially notice that some protocol messages are at some point no longer
derived from the password, which would mean that the view has changed. This would present a
problem even if the adversary is forbidden from issuing a Test query on the instances of these
parties, however we only randomize values dependent on the password for sessions where the
password is not available to the adversary. This is accomplished in game 6, where we abort all
experiments where a message was submitted that the adversary has created using the correct
password of a non-corrupted session.

Because we want to achieve forward-secrecy, we also allow Test queries on corrupted parties,
as long as the session that is tested is not subject to any Send queries. Therefore, we focus on the
parts of the proof that a�ect Execute queries and see that by the end of the proof, all transcripts
output by that oracle have a session key that is randomized. In fact, this follows directly from
the IND-CPA property of KEM, which can be seen in game 8.

References

ABR+21. Michel Abdalla, Manuel Barbosa, Peter B. Rønne, Peter Y. A. Ryan, and Petra �ala. Security
characterization of j-pake and its variants. Cryptology ePrint Archive, Paper 2021/824, 2021.
https://eprint.iacr.org/2021/824.

AFP05. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. In Serge Vaudenay, editor, PKC 2005: 8th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, volume 3386 of Lecture
Notes in Computer Science, pages 65�84, Les Diablerets, Switzerland, January 23�26, 2005.
Springer, Heidelberg, Germany.

AHH21. Michel Abdalla, Björn Haase, and Julia Hesse. Security analysis of CPace. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology � ASIACRYPT 2021, Part IV, volume
13093 of Lecture Notes in Computer Science, pages 711�741, Singapore, December 6�10, 2021.
Springer, Heidelberg, Germany.

AHH23. Michel Abdalla, Björn Haase, and Julia Hesse. CPace, a balanced composable PAKE.
Internet-Draft draft-irtf-cfrg-cpace-08, Internet Engineering Task Force, July 2023. Work
in Progress.

https://eprint.iacr.org/2021/824

A tight proof for OCAKE 33

BBC+13. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for SPHFs and e�cient one-round PAKE protocols. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology � CRYPTO 2013, Part I, vol-
ume 8042 of Lecture Notes in Computer Science, pages 449�475, Santa Barbara, CA, USA,
August 18�22, 2013. Springer, Heidelberg, Germany.

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in
public-key encryption. In Colin Boyd, editor, Advances in Cryptology � ASIACRYPT 2001,
volume 2248 of Lecture Notes in Computer Science, pages 566�582, Gold Coast, Australia,
December 9�13, 2001. Springer, Heidelberg, Germany.

BBM00. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Bart Preneel, editor, Advances in Cryptology
� EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 259�274,
Bruges, Belgium, May 14�18, 2000. Springer, Heidelberg, Germany.

BCJ+19. Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja Lehmann, Gregory Neven, and Ji-
ayu Xu. Password-authenticated public-key encryption. In Robert H. Deng, Valérie Gauthier-
Umaña, Martín Ochoa, and Moti Yung, editors, ACNS 19: 17th International Conference on
Applied Cryptography and Network Security, volume 11464 of Lecture Notes in Computer
Science, pages 442�462, Bogota, Colombia, June 5�7, 2019. Springer, Heidelberg, Germany.

BCP+23. Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, and Mélissa Rossi.
Get a cake: Generic transformations from key encaspulation mechanisms to password au-
thenticated key exchanges. Cryptology ePrint Archive, 2023.

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Scha�ner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology � ASIACRYPT 2011, volume 7073 of Lecture Notes in Com-
puter Science, pages 41�69, Seoul, South Korea, December 4�8, 2011. Springer, Heidelberg,
Germany.

BDK+18. Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, Gregor Seiler, and Damien Stehle. CRYSTALS - Kyber: A CCA-Secure Module-
Lattice-Based KEM. In IEEE (EuroS&P) 2018, pages 353�367, 2018.

BFK09. Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the PACE key-agreement
protocol. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and Claudio Agostino
Ardagna, editors, ISC 2009: 12th International Conference on Information Security, vol-
ume 5735 of Lecture Notes in Computer Science, pages 33�48, Pisa, Italy, September 7�9,
2009. Springer, Heidelberg, Germany.

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld,
and Peter Schwabe. The SPHINCS+ signature framework. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on
Computer and Communications Security, pages 2129�2146, London, UK, November 11�15,
2019. ACM Press.

Bla06. John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash
function. In Matthew J. B. Robshaw, editor, Fast Software Encryption � FSE 2006, volume
4047 of Lecture Notes in Computer Science, pages 328�340, Graz, Austria, March 15�17,
2006. Springer, Heidelberg, Germany.

BM92. Steven Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secureagainst dictionary attacks. Security and Privacy, IEEE Symposium on, 0:72, 04 1992.

BPR00. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange se-
cure against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology � EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139�155, Bruges,
Belgium, May 14�18, 2000. Springer, Heidelberg, Germany.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, pages 136�145, Las Vegas,
NV, USA, October 14�17, 2001. IEEE Computer Society Press.

CFHL21. Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In Anne Canteaut and

34 Alnahawi et al.

François-Xavier Standaert, editors, Advances in Cryptology � EUROCRYPT 2021, Part II,
volume 12697 of Lecture Notes in Computer Science, pages 598�629, Zagreb, Croatia, Octo-
ber 17�21, 2021. Springer, Heidelberg, Germany.

CHK+05. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Uni-
versally composable password-based key exchange. In Ronald Cramer, editor, Advances in
Cryptology � EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
404�421, Aarhus, Denmark, May 22�26, 2005. Springer, Heidelberg, Germany.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH:
An e�cient post-quantum commutative group action. In Thomas Peyrin and Steven Gal-
braith, editors, Advances in Cryptology � ASIACRYPT 2018, Part III, volume 11274 of
Lecture Notes in Computer Science, pages 395�427, Brisbane, Queensland, Australia, De-
cember 2�6, 2018. Springer, Heidelberg, Germany.

Cou06. Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291, 2006. https://eprint.iacr.org/2006/291.

DFMS21. Jelle Don, Serge Fehr, Christian Majenz, and Christian Scha�ner. Online-extractability in the
quantum random-oracle model. Cryptology ePrint Archive, Report 2021/280, 2021. https:
//eprint.iacr.org/2021/280, accepted for publication at Eurocrypt 2022.

DFMS22. Jelle Don, Serge Fehr, Christian Majenz, and Christian Scha�ner. Online-extractability in
the quantum random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology � EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in
Computer Science, pages 677�706, Trondheim, Norway, May 30 � June 3, 2022. Springer,
Heidelberg, Germany.

DHK+21. Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, and Gregor Seiler.
Faster lattice-based KEMs via a generic fujisaki-okamoto transform using pre�x hashing. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and
Communications Security, pages 2722�2737, Virtual Event, Republic of Korea, November 15�
19, 2021. ACM Press.

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018(1):238�268, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/839.

DKS18. Luca De Feo, Jean Kie�er, and Benjamin Smith. Towards practical key exchange from or-
dinary isogeny graphs. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryp-
tology � ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer Science,
pages 365�394, Brisbane, Queensland, Australia, December 2�6, 2018. Springer, Heidelberg,
Germany.

GHHM21. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Tight adaptive
reprogramming in the QROM. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology � ASIACRYPT 2021, Part I, volume 13090 of Lecture Notes in Computer Science,
pages 637�667, Singapore, December 6�10, 2021. Springer, Heidelberg, Germany.

GKP18. Federico Giacon, Eike Kiltz, and Bertram Poettering. Hybrid encryption in a multi-user
setting, revisited. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st Interna-
tional Conference on Theory and Practice of Public Key Cryptography, Part I, volume 10769
of Lecture Notes in Computer Science, pages 159�189, Rio de Janeiro, Brazil, March 25�29,
2018. Springer, Heidelberg, Germany.

GMP22. Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum
public key encryption. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in
Cryptology � EUROCRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer
Science, pages 402�432, Trondheim, Norway, May 30 � June 3, 2022. Springer, Heidelberg,
Germany.

HHM22. Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Failing gracefully: Decryption
failures and the fujisaki-okamoto transform. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology � ASIACRYPT 2022, Part IV, volume 13794 of Lecture Notes in

https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2021/280
https://eprint.iacr.org/2021/280
https://tches.iacr.org/index.php/TCHES/article/view/839

A tight proof for OCAKE 35

Computer Science, pages 414�443, Taipei, Taiwan, December 5�9, 2022. Springer, Heidelberg,
Germany.

HvO22. Feng Hao and Paul C. van Oorschot. Sok: Password-authenticated key exchange � theory,
practice, standardization and real-world lessons. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS '22, page 697�711, New
York, NY, USA, 2022. Association for Computing Machinery.

HY18. Akinori Hosoyamada and Kan Yasuda. Building quantum-one-way functions from block ci-
phers: Davies-Meyer and Merkle-Damgård constructions. In Thomas Peyrin and Steven Gal-
braith, editors, Advances in Cryptology � ASIACRYPT 2018, Part I, volume 11272 of Lecture
Notes in Computer Science, pages 275�304, Brisbane, Queensland, Australia, December 2�6,
2018. Springer, Heidelberg, Germany.

JKX18. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology � EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes
in Computer Science, pages 456�486, Tel Aviv, Israel, April 29 � May 3, 2018. Springer,
Heidelberg, Germany.

Lan16. Jean Lancrenon. On password-authenticated key exchange security modeling. In Frank
Stajano, Stig F. Mjølsnes, Graeme Jenkinson, and Per Thorsheim, editors, Technology and
Practice of Passwords, pages 120�143, Cham, 2016. Springer International Publishing.

PFH+22. Thomas Prest, Pierre-Alain Fouque, Je�rey Ho�stein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhen-
fei Zhang. FALCON. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

selected-algorithms-2022.
RS06. Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On Isogenies.

Cryptology ePrint Archive, Report 2006/145, 2006. https://eprint.iacr.org/2006/145.
Sha49. Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical

Journal, 28(4):656�715, 1949.
Sho20. Victor Shoup. Security analysis of spake2+. Cryptology ePrint Archive, Paper 2020/313,

2020. https://eprint.iacr.org/2020/313.
Son14. Fang Song. A note on quantum security for post-quantum cryptography. In Michele Mosca,

editor, Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, pages
246�265, Waterloo, Ontario, Canada, October 1�3, 2014. Springer, Heidelberg, Germany.

Zha19. Mark Zhandry. How to record quantum queries, and applications to quantum indi�erentia-
bility. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology �
CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 239�268,
Santa Barbara, CA, USA, August 18�22, 2019. Springer, Heidelberg, Germany.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2020/313

	Towards post-quantum secure PAKE - A tight security proof for OCAKE in the BPR model

