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Abstract. In Crypto 2019, Zhandry showed how to define compressed
oracles, which record quantum superposition queries to the quantum ran-
dom oracle. In this paper, we extend Zhandry’s compressed oracle tech-
nique to non-uniformly distributed functions with independently sam-
pled outputs. We define two quantum oracles CStOD and CPhsOD, which
are indistinguishable to the non-uniform quantum random oracle where
quantum access is given to a random function H whose images H(x)
are sampled from a probability distribution D independently for each x.
We show that these compressed oracles record the adversarial quantum
superposition queries. Also, we re-prove the optimality of Grover search
and the collision resistance of non-uniform random functions, using our
extended compressed oracle technique.
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1 Introduction

Classically, often it is easier to prove cryptographic security in the random oracle
model [6] than in the standard model, because we may exploit various useful
properties of the random oracle. An adversary may make polynomially many
queries, where each query examines only one point. The reduction algorithm can
record these queries, and also program the random oracle to embed instances of
hard problems which the reduction algorithm has to solve.

We may regard the random oracle as an idealized model of a hash function.
On the other hand, in the post-quantum era, a quantum adversary may evaluate
a hash function in quantum superposition. Due to this, we may say that the con-
ventional classical random oracle model is providing insufficient capabilities to
the quantum adversary. Therefore, the quantum random oracle model (QROM)
was introduced in [8], where the adversary can make quantum superposition
queries to the random oracle. While this gives us a better model for a hash
function, at the same time, it makes proving security in the QROM harder; each



query may potentially inspect exponentially many points, which makes record-
ing and programming the quantum random oracle, not to mention doing just
lazy sampling, seemingly impossible.

But, in Crypto 2019, Zhandry showed that one can in fact record the adver-
sarial quantum random oracle queries [26]. He constructed compressed oracles,
and showed that these compressed oracles can handle quantum random oracle
queries, allowing lazy sampling and recording of the quantum queries.

The compressed oracle technique turned out to be extremely useful for prov-
ing security in the quantum random oracle model, or proving lower bounds for
quantum computational problems. While there are existing proof techniques like
the adversary method or the polynomial method for proving such quantum lower
bounds, the proof strategy should be carefully chosen by considering the problem
to show: for example, the (worst-case) collision lower bound [1] was proven years
after the search lower bound, and the average-case hardness of collision [25] was
taken a decade to be demonstrated. Even worse, these proofs are fairly different.
On the other hand, both problems can be proven through the machinery of the
compressed oracle in a systematic way, and some other, much more complex yet
fundamental problems [18,10] are resolved with the help of this framework for
the first time.

In this paper, we show that in fact we may define compressed oracles for
non-uniform random oracles. Consider an arbitrary probability distributionD on
{0, 1}n. Let us define a random functionH : {0, 1}m → {0, 1}n by samplingH(x)
from D, independently for each x ∈ {0, 1}m. Generalizing Zhandry’s results,
we define two quantum oracles, CStOD and CPhsOD, the compressed standard
oracle for D and the compressed phase oracle for D, respectively. They are
indistinguishable from the quantum random oracles (with the standard interface
and the phase interface) where such non-uniform random oracle H is given to
the quantum adversary, and moreover they allow recording adversarial queries.
Also, in order to define and use these oracles, we first formalize relevant concepts,
including, quantum oracles, morphisms between them, and recordability.

As applications of these, we (re-)prove two results. The first is the optimality
of the Grover search. Of course, there are many existing proofs of this [2,7,5,26]
with many different formulations. Specifically, we consider the following setup:
given a random boolean function f : {0, 1}m → {0, 1} where each f(x) is sampled
so that p = Pr[f(x) = 1] ≤ 1/2, we show that the probability that a quantum
adversary outputs a preimage of 1, after making at most q quantum queries, is
bounded by O(pq2). This was previously proved by Hülsing et al. [17]3, using
the “polynomial-like” method developed by Zhandry [24]. In comparison, we use
the compressed oracle technique for non-uniform random oracles to prove this
result.

The second application we have is the collision resistance of non-uniform hash
functions. Suppose a non-uniform random function H is given where each point
H(x) is sampled from a probability distribution D over {0, 1}n independently.
What would be the success probability of a quantum adversary, which makes

3 The proof is in the full version of their paper [16].



at most q quantum queries to H, to output a collision pair of H? In case the
distribution D is uniform, Zhandry [25] showed that the probability is bounded
by O(q3/2n), which is tight in the sense that there is a matching algorithm
with q = Θ(2n/3). Later, the uniform case is re-proved by Zhandry by using the
compressed oracle technique [26].

The question is what would happen to a non-uniform random function. Of
course, if the distribution is too far from uniform, then we may expect that
collisions would occur more likely, and the adversary could find a collision more
easily. Therefore, the min-entropy of the distributionD matters. Targhi et al. [19]
showed that the collision finding probability is bounded by O(q9/5/2k/5), where
k is the min-entropy of D. This was later improved to O(nq5/2/2k/2) in [13].
Then, Balogh et al. [4] improved that further to O(q3/2k), which matches the
known tight bound when the distribution is uniform. To this end, they introduce
a sequence of reductions from finding a collision in a uniform random function
to that of so-called flat distributions, and then again to that of non-uniform
distributions.

We re-prove the same bound O(q3/2k), again using the compressed oracle
technique for non-uniform random oracles. In fact, we prove this by directly
adapting Zhandry’s compressed oracle proof for the uniform case to the non-
uniform random oracles, but otherwise almost unchanged.

1.1 Related work

For an arbitrary function, i.e., in the worst-case analysis, [7,2,5] show the lower
bound of quantum search using different techniques around 2000, which readily
extended to the quantum random functions. For the collision-finding problem,
Aaronson and Shi [1], followed by Ambainis [3], prove the tight lower bound a
few years later. On the other hand, the collision finding lower bound for random
functions is proven in the middle of 2010s in [23,25].

For the non-uniform distributions, Balogh et al. [4] show the tight lower
bound for collision finding with respect to the min-entropy, following non-tight
bounds proved in [20,14]. However, their strategies are to reduce the non-uniform
collision from the uniform random case and are involved with multiple new con-
cepts. We reprove this bound using a modular analysis based on the compressed
oracle.

Let us summarize the properties of the original compressed oracle of Zhandry [26]
for more detailed comparisons between related works.

– Compression: while the standard oracle needs exponentially many qubits
to implement it, the compressed oracle essentially needs only polynomially
many qubits. As more queries are made, the size of individual ‘databases’ in
the oracle state grows, but only in proportion to the total number of queries.

– Indistinguishability: the compressed oracle is (perfectly) indistinguishable
from the corresponding standard oracle. Together with compression, it allows
a form of ‘lazy sampling’ of the standard oracle.



– Recording: the compressed oracle ‘records’ the standard oracle; if the ad-
versary may correctly output some input-output pairs of the oracle, the
adversary must have queried for the input, and the record can be found by
measuring the oracle state. (For example, [26, Lemma 5].)

Some previous works developed compressed oracles for non-uniform functions:

– Czajkowski et al. [12] developed compressed oracles for non-uniform func-
tions and proved so-called one-way-to-hiding lemma for compressed oracles.
However, their formalization is somewhat different from others, as the initial
state of the compressed oracle could be a non-zero state. They also do not
rely on the recording lemma.

– Hamoudi and Magniez [15], and also Cojocaru et al. [11] developed com-
pressed oracle tools for Bernoulli distributions and proved, among others,
the lower bound for finding k marked items, which has an application to
the post-quantum security of Bitcoin. They define the progress measure and
track the bound of this measure by moving the standard and compressed
oracles back and forth, instead of using the recordability.

– Unruh [21,22] gave some potential approaches for compressed oracles for
more general functions such as permutations, though the complete construc-
tion is still elusive. One of the main difficulty is that permutations have
dependent outputs, while this paper and the above-mentioned papers focus
on the functions with independent outputs.

Overall, the previous studies are mostly focused on uniform random functions or
Bernoulli distributions, and did not rely on recordability, resulting in the involved
proofs working between standard and compressed oracles. On the other hand,
we extend the compressed oracles for arbitrary distributions (with independent
outputs), and formally prove the recordability, and prove the lower bounds solely
focusing on the database of the compressed oracles.

2 Preliminaries

2.1 Notations and conventions

In this paper, all Hilbert spaces we use are finite dimensional.

For any finite set X , we define X⊥ as X ∪ {⊥}, where ⊥ is a special symbol
not in X .

For any finite sets X ,Y, we define YX as the set of all functions of form
X → Y.

Given a finite set X , we let C[X ] to denote the Hilbert space spanned by ket
vectors |x〉 of x ∈ X . For any Hilbert space H, we denote the identity operator
of H as IH. We may omit the subscript if it is clear from the context.

For any Hilbert spaces H,H′, L(H,H′) is the set of all linear operators of
form A : H → H′. We also write L(H,H′) simply as L(H).



A linear operator A : H → H′ is an isometry if it preserves the norm:
A |ψ〉  =  |ψ〉  for any |ψ〉 ∈ H. Equivalently, A†A = IH. When an isometry
A maps a Hilbert space H to itself, we say that A is unitary.

We will use the notion of quantum channels. A quantum channel Φ : L(H) →
L(H′) is a superoperator which is completely positive and trace preserving. When
U : H → H′ is an isometry, it induces a unitary quantum channel Φ : L(H) →
L(H′) by Φ(A) = UAU†. When the context is clear, we will denote this unitary
channel by the symbol of the underlying isometry U as well: U(A) = UAU†.

When D is a probability distribution over a finite set Y, for any y ∈ Y, D(y)
denotes the probability of y according to the distribution D.

Also, when X is another finite set, DX denotes the probability distribution
of functions f : X → Y where for each x ∈ X , f(x) is sampled independently
according to the distribution D. Therefore, for any f : X → Y, we have

DX (f) =


x∈X
D(f(x)).

For any probability distribution D, H∞(D) denotes the min-entropy of D,
which is defined as

H∞(D) := − log2 max
x

D(x).

2.2 Partial functions

A partial function is a function where some function values might be undefined.
When a function value f(x) is undefined, we denote that as f(x) = ⊥. When f
is a partial function from X to Y, we denote that as f : X ⇀ Y. In this case, we
define the domain of f , denoted by dom(f), as

dom(f) := {x ∈ X | f(x) ∕= ⊥}.

We also define the range of f as

rng(f) := {y ∈ Y | y = f(x) for some x ∈ dom(f)}.

When X = dom(f), the partial function f : X ⇀ Y is called total, and such
a total function f can be written as f : X → Y, as usual.

There are two equivalent ways to regard a partial function. First, we can
identify a partial function f : X ⇀ Y with a total function f : X → Y⊥, with
Y⊥ = Y ∪ {⊥}, where ⊥ is a special symbol not in Y. In other words, we reify
the undefinedness as yet another value ⊥, and when f(x) is undefined, we let
f(x) = ⊥ ∈ Y⊥.

Another way to regard a partial function f is to identify it with its (set-
theoretic) graph, which is

{(x, f(x)) | f(x) ∕= ⊥}.

Hence, we can apply set-theoretic notions to partial functions. For example,
when f is a partial function, then |f | = | dom(f)|. We call this quantity |f | as
the rank of f .



Also, when f and g are partial functions, then f ⊆ g means that f(x) = g(x)
whenever f(x) ∕= ⊥ (hence, especially g(x) ∕= ⊥ in this case). When f ⊆ g, then
we say that f is a restriction of g, and g is an extension of f .

Due to this identification of a partial function with its graph, the empty set
∅ also naturally denotes the empty partial function, where ∅(x) = ⊥ for any x.
Sometimes we will also write this empty partial function as ⊥.

Also, we have dom(f) = {x | ∃y, (x, y) ∈ f}, and rng(f) = {y | ∃x, (x, y) ∈ f}.
When f : X ⇀ Y, z ∈ X , y ∈ Y, then f [z → y] is a partial function from X

to Y defined as

f [z → y](x) :=


y if x = z,

f(x) if x ∕= z.

Implementation of partial functions The identification of a partial function
f : X ⇀ Y with its graph also gives a trivial way to implement a partial function
efficiently, especially when its rank is small. All we need is to write down the
graph in a unique way, as a database of f .

For this, let us assume that the set X has a standard total order. Let
x1, . . . , xr be all of the elements in dom(f), enumerated in the ascending or-
der: x1 < x2 < · · · < xr. Then, the graph of f can be uniquely written as the
following tuple:

((x1, f(x1)), (x2, f(x2)), . . . , (xr, f(xr))).

In this way, a partial function f can be uniquely encoded, and moreover, the
number of bits/qubits to represent f is proportional to its rank.

3 Quantum oracles

3.1 Definition of quantum oracles

We would like to discuss quantum oracles and that one oracle is recording other
oracle. For this, we formally define a notion of quantum oracles. We want our
definition to encompass all of Zhandry’s purified oracles and compressed oracles,
as well as the quantum random oracles. So we will give a stateful definition;
the oracle maintains an internal quantum state, and the state update occurs
whenever a quantum query is made. This captures what happens to Zhandry’s
compressed oracles.

First, let us start with defining the pure variant of a quantum oracle.

Definition 3.1. A pure quantum oracle is a tuple O = (I,S, query, |init〉),
where I is a Hilbert space called the interface space, S is another Hilbert space
called the oracle state space, and

query : I ⊗ S → I ⊗ S

is a unitary operator. Finally, |init〉 ∈ S is an element called the initial state of
the oracle.



The idea is that, the oracle interacts with an adversary A whose state space
can be written as P ⊗I, where P is the private state space of A. The joint state
space of the adversary and the oracle is P ⊗ I ⊗ S, and the state is initialized
as |initP 〉⊗ |initI〉⊗ |init〉, for some |initP 〉 ∈ P and |initI〉 ∈ I as specified by the
adversary. The adversarial computation can be written as a sequence of unitary
operators Ui : P ⊗ I → P ⊗ I for i = 0, . . . , t, and the operations Ui ⊗ IS and
IP ⊗ query are performed alternatingly for i = 0, . . . , t.

Definition 3.2. Let O1 = (I1,S1, query1, |init1〉) and O2 = (I2,S2, query2, |init2〉)
be pure quantum oracles. Then, a pure morphism µ : O1 → O2 from O1 to O2

is a tuple µ = (µI , µS) satisfying the following.

1. µI : I1 → I2 and µS : S1 → S2 are isometries.
2. µS |init1〉 = |init2〉.
3. The following is a commutative diagram.

I1 ⊗ S1 I1 ⊗ S1

I2 ⊗ S2 I2 ⊗ S2

query1

µI⊗µS µI⊗µS

query2

In other words, we have (µI ⊗ µS) ◦ query1 = query2 ◦ (µI ⊗ µS).
When µ = (µI , µS) is a morphism, sometimes we say µI is the converter of
µ, since it provides conversion between interfaces.

While we will mostly work with pure quantum oracles and pure morphisms
between them, we do need to extend the definition such that the internal state
of the oracle can be mixed. For this, we define the general notion of the quantum
oracle as follows.

Definition 3.3. A quantum oracle is a tuple O = (I,S, query, init), where I is
a Hilbert space called the interface space, S is another Hilbert space called the
oracle state space, and

query : I ⊗ S → I ⊗ S

is a unitary operator. Finally, init ∈ L(S) is a density operator called the initial
state of the oracle.

Remark 3.4. A pure quantum oracle O = (I,S, query, |init〉) can be considered
as a quantum oracle, by regarding |init〉〈init| as the initial state.

Now, let us define general morphisms between quantum oracles.

Definition 3.5. Let O1 = (I1,S1, query1, init1) and O2 = (I2,S2, query2, init2)
be quantum oracles. Then, a morphism µ : O1 → O2 from O1 to O2 is a tuple
µ = (µI , µS) satisfying the following.

1. µI : I1 → I2 is an isometry, and µS : L(S1) → L(S2) is a quantum channel.
2. µS(init1) = init2.



3. The following is a commutative diagram.

L(I1 ⊗ S1) L(I1 ⊗ S1)

L(I2 ⊗ S2) L(I2 ⊗ S2)

query1

µI⊗µS µI⊗µS

query2

Here, µI is the unitary quantum channel given by the isometry µI : I1 → I2;
for any A ∈ L(I1), we have µI(A) = µIA(µI)†. Similarly, queryi is the
unitary quantum channel given by the unitary operator queryi, for i = 1, 2.
Finally, µI ⊗µS is the product channel of two quantum channels µI and µS.

Remark 3.6. A pure morphism µ : O1 → O2 between two pure quantum ora-
cles O1 = (I1,S1, query1, |init1〉) and O2 = (I2,S2, query2, |init2〉) can be con-
sidered as a morphism: the underlying isometry µS : S1 → S2 defines a uni-
tary quantum channel µS : L(S1) → L(S2). Since µS |init1〉 = |init2〉, we have
µS(|init1〉〈init1|) = µS |init1〉〈init1| (µS)† = |init2〉〈init2|.

Also, it is straightforward to verify that the equation query2 ◦ (µI ⊗ µS) =
(µI ⊗ µS) ◦ query1 as an equation of isometries immediately implies the same
equation query2 ◦ (µI ⊗ µS) = (µI ⊗ µS) ◦ query1 as an equation of quantum
channels.

Composition of two morphisms µ1 = (µI
1, µ

S
1 ) : O1 → O2 and µ2 = (µI

2, µ
S
2 ) :

O2 → O3 are defined obviously: µ2 ◦ µ1 = (µI
2 ◦ µI

1, µ
S
2 ◦ µS

1 ). Also, for any
quantum oracle O, we have an obvious identity morphism IO : O → O.

Definition 3.7. A morphism µ = (µI , µS) : O1 → O2 is called an isomorphism,
if there exists an inverse morphism ν : O2 → O1 such that ν ◦ µ = IO1 and
µ ◦ ν = IO2

.

Theorem 3.8. If there exists a morphism µ : O1 → O2, then, for any adversary
A outputting an element of a finite set X , there exists another adversary B such
that the following holds.

Pr[AO1() = x] = Pr[BO2() = x], for any x ∈ X .

Moreover, if A makes at most q queries for some q, then B also makes at most
q queries. Also, if A is an efficient quantum adversary and if the unitary map
µI can be implemented efficiently, then B is also efficient.

Proof. Suppose that O1 = (I1,S1, query1, init1), O2 = (I2,S2, query2, init2), and
a morphism µ = (µI , µS) between them are given.

Let A be an adversary interacting with O1 whose computation can be de-
scribed by a sequence of unitary operators Ui : P ⊗ I1 → P ⊗ I1 for i = 0, . . . , t,
with the initial state initP1 ⊗initI1 ∈ L(P⊗I1). Also assume that the final output of
A is obtained by a measurement with respect to a complete set of measurement
operators {Mx}x∈X on P ⊗ I1.



Then, let U ′
i be the unitary operator defined by (I⊗µI)◦Ui◦(I⊗(µI)†). Also,

we define measurement operatorsM ′
x on P⊗I2 byM ′

x := (I⊗µI)◦Mx◦(I⊗(µI)†)
for x ∈ X .

Now, let B be the adversary with the sequence U ′
0, . . . , U

′
t , and the initial

state initP2 ⊗ initI2, where initP2 = initP1 , init
I
2 = µI(initI1) = µI initI1(µ

I)†, with the
final output obtained by the measurement with respect to {M ′

x}x∈X .
Let Φ1 ∈ L(P ⊗ I1 ⊗ S1) be the density operator representing the final state

of the joint system of A and O1, and let Φ2 ∈ L(P ⊗ I2 ⊗ S2) be the density
operator representing the final state of the joint system of B and O2.

Now, we can see that the following is a commutative diagram.

L(P ⊗ I1 ⊗ S1) L(P ⊗ I1 ⊗ S1)

L(P ⊗ I2 ⊗ S2) L(P ⊗ I2 ⊗ S2).

Ui⊗I

I⊗µI⊗µS I⊗µI⊗µS

U ′
i⊗I

This is because we have

U ′
i ◦ (I ⊗ µI) = (I ⊗ µI)Ui(I ⊗ (µI)†)(I ⊗ µI)

= (I ⊗ µI)Ui(I ⊗ (µI)†µI )

= (I ⊗ µI) ◦ Ui,

as isometries, due to the definition of U ′
i , and the fact that (µI)†µI = II1

, since
µI is an isometry. This implies U ′

i ◦ (I ⊗µI) = (I ⊗µI) ◦Ui as unitary channels.
Then, we have the following commutative diagram.

∗ ∗ ∗ ∗ . . . ∗

∗ ∗ ∗ ∗ . . . ∗

U0⊗I

I⊗µI⊗µS

I⊗query1

I⊗µI⊗µS

U1⊗I

I⊗µI⊗µS

I⊗query1

I⊗µI⊗µS

Ut⊗I

I⊗µI⊗µS

U ′
0⊗I I⊗query2 U ′

1⊗I I⊗query2 U ′
t⊗I

So, when we chase this diagram, starting from top left, with the element
initP1 ⊗ initI1 ⊗ initO1 , the diagram relates the joint states of A and O1, and B
and O2. Especially, via the rightmost arrow, we can see that the final states are
related as

Φ2 = (I ⊗ µI ⊗ µS)Φ1.

Then, for any x ∈ X

(M ′
x ⊗ I)Φ2

= (I ⊗ µI ⊗ I)(Mx ⊗ I)(I ⊗ (µI)† ⊗ I)(I ⊗ µI ⊗ µS)Φ1

= (I ⊗ µI ⊗ I)(Mx ⊗ I)(I ⊗ I ⊗ µS)Φ1

= (I ⊗ µI ⊗ µS)(Mx ⊗ I)Φ1

Since I ⊗ µI ⊗ µS is a quantum channel, it is trace preserving.



Now, we can compute

Pr[BO2() = x] = tr[(M ′
x ⊗ I)Φ2]

= tr[(I ⊗ µI ⊗ µS)(Mx ⊗ I)Φ1]

= tr[(Mx ⊗ I)Φ1]

= Pr[AO1() = x].

In the above, if A is efficient and µI can be implemented efficiently, then
Ui and Mx can be efficiently implemented. According to the construction of
operators U ′

i and M ′
x, the adversary B is also efficient.

In case the converter µI of the morphism µ is bijective, we may reverse the
order of the quantification in Theorem 3.8:

Corollary 3.9. If there exists a morphism µ : O1 → O2, and if the converter
µI of µ is bijective, then, for any adversary B outputting an element of a finite
set X , there exists another adversary A such that the following holds.

Pr[AO1() = x] = Pr[BO2() = x], for any x ∈ X .

Moreover, if B makes at most q queries for some q, then A also makes at most
q queries. Also, if B is an efficient quantum adversary and if the unitary map
µI can be implemented efficiently, then A is also efficient.

Proof. The proof proceeds very similar to that of Theorem 3.8: from the adver-
sary B, we may construct the adversary A using the maps I ⊗µI and I ⊗ (µI)†.
Since µI is a bijective isometry, we have µI(µI)† = II2 . This can be used to
prove the corollary.

Definition 3.10. Suppose that O1,O2 are two quantum oracles with the same
interface space I. Suppose that there exists a morphism µ = (µI , µS) : O1 → O2,
where the isometry µI is the identity operator II of I, then we say that O1 is a
suboracle of O2, and O2 is a superoracle of O1. In that case, the morphism µ
is called an embedding of O1 into O2.

Also, when µ = (II , µ
S) : O1 → O2 is an embedding, then obviously we do

not have to specify II , so we will abuse notation and simply denote the mapping
µS as µ.

Corollary 3.11. Let O1,O2 be two quantum oracles over I. Suppose that µ :
O1 → O2 is an embedding. Then, the two oracles O1,O2 are completely indis-
tinguishable: for any adversary A and any possible output x, we have

Pr[AO1() = x] = Pr[AO2() = x].

Proof. When we examine the proof of Theorem 3.8, we see that B is the same
adversary as A, as µI is the identity operator.



3.2 Examples of quantum oracles

Now let us define a few quantum oracles that we will use. First, we define the
non-uniform quantum random oracle with respect to a probability distribution
D, with the standard interface. Our quantum random oracle should sample and
give oracle access to a (non-uniform) random function h : X → Y according to
the distribution DX . Therefore, the initial state of the quantum random oracle
should be a mixed state


h D

X (h) |h〉〈h|. Formalizing this, we have:

Definition 3.12 (Quantum random oracle with respect to D, standard
interface). Let X := {0, 1}m, and Y := {0, 1}n. Let D be a probability distribu-
tion over Y. We define the quantum random oracle with respect to D with the
standard interface, StQROD = (C[X ]⊗ C[Y],C[YX ], query, init) as follows.

The query operator is given by

query |x〉 |y〉 ⊗ |h〉 := |x〉 |y ⊕ h(x)〉 ⊗ |h〉 ,

and the initial state init is given by

init :=


h∈YX

DX (h) |h〉〈h| .

Similarly, we may offer the phase interface to the quantum random oracle
(with respect to D):

Definition 3.13 (Quantum random oracle with respect to D, phase in-
terface). Let X := {0, 1}m, and Y := {0, 1}n. Let D be a probability distribution
over Y. We define the quantum random oracle with respect to D with the phase
interface, PhsQROD = (C[X ]⊗ C[Y],C[YX ], query, init) as follows.

The query operator is given by

query |x〉 |y〉 ⊗ |h〉 := (−1)y·h(x) |x〉 |y〉 ⊗ |h〉 ,

and the initial state init is given by

init :=


h∈YX

DX (h) |h〉〈h| .

Now, let us define Zhandry’s purified quantum oracles, but generalized with
respect to a probability distribution D.

Definition 3.14 (Standard oracle with respect to D). Let X := {0, 1}m,
and Y := {0, 1}n. Let D be a probability distribution over Y. We define the
standard oracle with respect to D, StOD = (C[X ]⊗C[Y],C[YX ], query, |init〉) as
follows. StOD is a pure quantum oracle, whose query operator is given by

query |x〉 |y〉 ⊗ |h〉 := |x〉 |y ⊕ h(x)〉 ⊗ |h〉 ,

and the initial state |init〉 is given by

|init〉 :=


h∈YX


DX (h) |h〉 =



h∈YX




x∈X


D(h(x))


|h〉 .



As before, we may also consider the ‘phase interface’, which gives us the
phase oracle with respect to D.

Definition 3.15 (Phase oracle with respect to D). We define the phase
oracle with respect to D, PhsOD = (C[X ]⊗C[Y],C[YX ], query, |init〉) as follows.
This pure oracle is identical to the standard oracle StOD in all aspects, except
the query operator:

The query operator of PhsOD is given by

query |x〉 |y〉 ⊗ |h〉 := (−1)y·h(x) |x〉 |y〉 ⊗ |h〉 .

Remark 3.16. Let us define |ιD〉 ∈ C[Y] as

|ιD〉 :=


y∈Y


D(y) |y〉 .

Then the initial state of StOD and PhsOD is

|init〉 =


h∈YX




x∈X


D(h(x))


|h〉

=


h∈YX




x∈X


D(h(x))




x∈X
|h(x)〉

=


x∈X



y∈Y


D(h) |y〉 =



x∈X
|ιD〉 .

We will often drop D from |ιD〉, and write this vector just as |ι〉.

We will often denote the query operator of a quantum oracle by the name of
the quantum oracle itself, like, PhsOD |x〉 |y〉 ⊗ |h〉 := (−1)y·h(x) |x〉 |y〉 ⊗ |h〉.

The following is a well-known fact, merely translated into this language.

Theorem 3.17. StOD and PhsOD are isomorphic quantum oracles. Also, StQROD

and PhsQROD are isomorphic quantum oracles.

Proof. The isomorphism µ = (µI , µS) from StOD to PhsOD (and from StQROD

to PhsQROD) is simple: µS is the identity operator, and µI |x〉 |y〉 := |x〉H⊗n |y〉,
where H⊗n is the Hadamard transformation. It can be easily verified that this
µ is an isomorphism between StOD and PhsOD.

Remark 3.18. Since the converter of the isomorphism between StOD and PhsOD

is not the identity, (obviously) they are not indistinguishable oracles.

Now we can prove that StOD and StQROD are completely indistinguishable,
and so are PhsOD and PhsQROD.

Theorem 3.19. There are embeddings StOD → StQROD, and PhsOD → PhsQROD.



Proof. We will show the proof for the embedding StOD → StQROD; the PhsOD →
PhsQROD case can be done essentially identically.

The embedding µ : StOD → StQROD is simply the ‘measurement’: for any
A ∈ L(C[YX ]), we have

µ(A) :=


h∈YX

|h〉〈h|A |h〉〈h| =


h∈YX

〈h|A|h〉 |h〉〈h| .

Recall that the initial state of StOD is


f∈YX


DX (f) |f〉, corresponding

to the density operator

ρ =






f∈YX


DX (f) |f〉










g∈YX


DX (g) 〈g|



 =


f,g∈YX


DX (f)DX (g) |f〉〈g| .

Then,

µ(ρ) =


h

〈h|ρ|h〉 |h〉〈h|

=


h,f,g


DX (f)DX (g) 〈h|f〉 〈g|h〉 |h〉〈h|

=


h

DX (h) |h〉〈h| ,

which is the initial state of the quantum random oracle StQROD.
Also recall that StOD and StQROD have the same query operator query |x〉 |y〉⊗

|h〉 := |x〉 |y ⊕ h(x)〉 ⊗ |h〉. In order to show that µ is an embedding, we have to
show that (I ⊗ µ) ◦ query = query ◦ (I ⊗ µ), as quantum channels. When applied
to |xyf〉〈x′y′f ′|, we have

(I ⊗ µ) ◦ query(|xyf〉〈x′y′f ′|) = (I ⊗ µ)(query |xyf〉〈x′y′f ′| query†)
= (I ⊗ µ)(|x, y ⊕ f(x), f〉〈x′, y′ ⊕ f ′(x′), f ′|)
= |x, y ⊕ f(x)〉〈x′, y′ ⊕ f ′(x′)|⊗ µ(|f〉〈f ′|)

= |x, y ⊕ f(x)〉〈x′, y′ ⊕ f ′(x′)|⊗


h

〈h|f〉 〈f ′|h〉 |h〉〈h| .

On the other hand,

query ◦ (I ⊗ µ)(|xyf〉〈x′y′f ′|) = query(|xy〉〈x′y′|⊗ µ(|f〉〈f ′|))

= query


|xy〉〈x′y′|⊗



h

〈h|f〉 〈f ′|h〉 |h〉〈h|


= |x, y ⊕ h(x)〉〈x′, y′ ⊕ h(x′)|⊗


h

〈h|f〉 〈f ′|h〉 |h〉〈h| .

We see that both are zero, when f ∕= f ′, and both are equal to

|x, y ⊕ f(x)〉〈x′, y′ ⊕ f(x′)|⊗ |f〉〈f | ,



when f = f ′. Therefore, we have (I⊗µ)◦query = query ◦ (I⊗µ), and this shows
that our µ : StOD → StQROD is indeed an embedding.

Corollary 3.20. For any probability distribution D, two quantum oracles StOD

and StQROD are completely indistinguishable, and so are PhsOD and PhsQROD.

Proof. This follows from Theorem 3.19 and Corollary 3.11.

3.3 Typed oracles

In order to talk about recording an oracle, we need to be able to measure the
internal state of a quantum oracle to get a (partial) function. This leads us to
the following definition.

Definition 3.21. Let O = (I,S, query, init) be a quantum oracle, and let X ,Y
be finite sets. We say that a tuple (O,M) is a typed oracle of type X → Y, if
M = {Mf}f :X⇀Y is a complete set of measurement operators of the state space
S of O, parametrized by partial functions f : X ⇀ Y. Often, we will simply say
that O is a typed oracle, if M is implicitly given by the context. M is called the
associated measurement operator set of the typed oracle O.

When O is a typed oracle of type X → Y, then we denote that as O : X → Y.

In other words, we may use the set M to measure the oracle state of the
oracle O : X → Y, to obtain a partial function f : X ⇀ Y, with probability
Pr[f ] = tr[MfρM

†
f ], if ρ ∈ L(S) is the density operator representing the oracle

state. When the oracle space of O is measured and f is obtained as the result,
we write that as f ← O.

Definition 3.22. Let O : X → Y be a typed oracle, and let M = {Mf}f :X⇀Y be
the associated measurement operator set of O. When Mf ∕= 0 implies f is total,
we say that the typed oracle O : X → Y is total.

We will define the measurement operator sets for StQROD, PhsQROD, StOD

and PhsOD so that they all become total typed oracles of type X → Y, with
X = {0, 1}m, Y = {0, 1}n: for any partial function f : X ⇀ Y, Mf is defined by

Mf =


|f〉〈f | if f is total,

0 otherwise.

We need the following simple lemma for StQROD and PhsQROD.

Lemma 3.23. Consider the ‘measurement’ embedding µ : StOD → StQROD

(or µ : PhsOD → PhsQROD). For any internal oracle state ρ and any total
function f : X → Y, we have

tr[Mfµ(ρ)M
†
f ] = tr[MfρM

†
f ].



Proof. In fact, we may show that Mfµ(ρ)M
†
f = MfρM

†
f .

Mfµ(ρ)M
†
f = |f〉〈f |




h

|h〉〈h| ρ |h〉〈h|

|f〉〈f |

= |f〉〈f | ρ |f〉〈f |
= MfρM

†
f .

3.4 Compressed oracles

Now we define the notion of compressed oracles.

Definition 3.24. Let O = (I,S, query, init) : X → Y be a quantum oracle, of
type X → Y. We say that O is compressed, if for any adversary A, when A in-
teracts with O, the number of qubits used to encode the oracle state is O(q),when
A made q quantum queries so far, at any moment. Moreover, we also require
that when we measure the oracle state to get a partial function f : X ⇀ Y right
after the qth query, we have Pr[f ] = 0 if |f | > q.

Suppose O is compressed. If O is initialized and then measured immediately
and a partial function f : X ⇀ Y is obtained, then we should have |f | = 0, since
O was never queried so far. Then, f = ⊥, the empty partial function. Due to
this, when O = (I,S, query, init) is a compressed quantum oracle, we will often
write the initial state simply as |⊥〉, and say that such O is null-initialized.

3.5 Examples of compressed oracles

We are going to define two pure compressed oracles, CStOD and CPhsOD. For
that, first we need to define the swap operator σD : C[Y⊥] → C[Y⊥] defined by

σD |ιD〉 := |⊥〉 ,
σD |⊥〉 := |ιD〉 ,
σD |φ〉 := |φ〉 , if 〈ιD|φ〉 = 0.

Note that σD is a unitary, hermitian, and involutive operator. When the
distribution D is clear, we would often omit D from the notation and just write
σ.

Now we are ready to define CStOD and CPhsOD.

Definition 3.25 (Compressed standard oracle with respect to D). Let
X := {0, 1}m, and Y := {0, 1}n. Let D be a probability distribution over Y.
We define the compressed standard oracle with respect to D, CStOD = (C[X ]⊗
C[Y],C[YX

⊥ ], query, |⊥〉) as follows.
The query operator query is given by


IC[X ]⊗C[Y] ⊗



x∈X
σD


◦ query′ ◦


IC[X ]⊗C[Y] ⊗



x∈X
σD


.



where the operator query′ is the query operator of StOD:

query′ |x〉 |y〉 ⊗ |f〉 := |x〉 |y ⊕ f(x)〉 ⊗ |f〉 .

In fact, we need to extend the definition of query′ by defining y⊕⊥ := y for any
y ∈ Y = {0, 1}n. So query′ |x〉 |y〉 |f〉 is well-defined for any partial f .

CStOD is a typed oracle of type X → Y: we may define its measurement
operators Mf parametrized by partial functions f : X ⇀ Y simply by

Mf = |f〉〈f | .

Note that Mf = |f〉〈f | =


x∈X |f(x)〉〈f(x)|.

Definition 3.26 (Compressed phase oracle with respect to D). Let X ,
Y, and D be the same as in Definition 3.25. We define the compressed phase
oracle with respect to D, CPhsOD as identical in all aspects to CStOD, except
that.

The query operator query is given by


IC[X ]⊗C[Y] ⊗



x∈X
σD


◦ query′ ◦


IC[X ]⊗C[Y] ⊗



x∈X
σD


.

where the operator query′ is the query operator of PhsOD:

query′ |x〉 |u〉 ⊗ |f〉 := (−1)u·f(x) |x〉 |u〉 ⊗ |f〉 .

Again, we need to extend query′ by defining u ·⊥ = 0 for any y ∈ Y = {0, 1}n.
Just like CStOD, CPhsOD is a typed oracle of type X → Y, with measurement

operators Mf = |f〉〈f | for partial functions f : X ⇀ Y.

We can easily prove the following, which corresponds to Theorem 3.17.

Theorem 3.27. CStOD and CPhsOD are isomorphic quantum oracles.

Let us define two operators i, e : C[Y] → C[Y⊥]. First, i is the trivial embed-
ding of Hilbert spaces:

i |y〉 := |y〉 , for any y ∈ Y.

Then e is defined as

e := σ ◦ i.

It is clear that both i and e are isometries.

Theorem 3.28. There are pure embeddings StOD → CStOD, and PhsOD →
CPhsOD.



Proof. Both embeddings are given by


x∈X e. Let query, query′ be the query
operators for CStOD, StOD, respectively. Then, the following is a commutative
square:

C[X ]⊗ C[Y]⊗ C[YX ] C[X ]⊗ C[Y]⊗ C[YX ]

C[X ]⊗ C[Y]⊗ C[YX
⊥ ] C[X ]⊗ C[Y]⊗ C[YX

⊥ ]

query′

IC[X ]⊗C[Y]⊗


x∈X e IC[X ]⊗C[Y]⊗


x∈X e

query

This is because

query(I ⊗


x

e)

= (I ⊗


x

σ)query′(I ⊗


x

σ)(I ⊗


x

σi)

= (I ⊗


x

σ)query′(I ⊗


x

σσi)

= (I ⊗


x

σ)query′(I ⊗


x

i), ∵ σ is an involution.

Note that when p is total, then query′(I ⊗


x i) |x〉 |y〉 |p〉 = query′ |x〉 |y〉 |p〉 =
|x〉 |y ⊕ p(x)〉 |p〉, and the result still has a total function p. Therefore,

query′


I ⊗



x

i


=


I ⊗



x

i


query′.

Then,

query(I ⊗


x

e) = (I ⊗


x

σ)query′(I ⊗


x

i)

= (I ⊗


x

σ)(I ⊗


x

i)query′

= (I ⊗


x

σi)query′

= (I ⊗


x

e)query′.

Of course, the same mapping gives an embedding PhsOD → CPhsOD.

Theorem 3.28 immediately gives us the following, due to Corollary 3.11.

Corollary 3.29. The oracles StOD and CStOD are completely indistinguish-
able, and so are the oracles PhsOD and CPhsOD.

For later uses, we need to be able to compute σ and e concretely.

Lemma 3.30. We have

σ = IC[Y⊥] − (|⊥〉 − |ι〉)(〈⊥|− 〈ι|).



Proof. According to the definition of the operator σ, we see that

σ = |⊥〉〈ι|+ |ι〉〈⊥|+


i

|φi〉〈φi| ,

where |φi〉 are orthonormal basis vectors of |ι〉⊥ = {|φ〉 | 〈ι|φ〉 = 0}.
Then,

σ = |⊥〉〈ι|+ |ι〉〈⊥|+


i

|φi〉〈φi|

= |⊥〉〈⊥|+ |ι〉〈ι|+


i

|φi〉〈φi|

− (|⊥〉〈⊥|+ |ι〉〈ι|) + (|⊥〉〈ι|+ |ι〉〈⊥|)
= I − (|⊥〉〈⊥|+ |ι〉〈ι|) + (|⊥〉〈ι|+ |ι〉〈⊥|)
= I − (|⊥〉 − |ι〉)(〈⊥|− 〈ι|).

Lemma 3.31. We have

e = i+ (|⊥〉 − |ι〉) 〈ι| .

Proof. For any y ∈ Y, we have

e |y〉 = σi |y〉 = σ |y〉
= |y〉 − (|⊥〉 − |ι〉)(〈⊥|− 〈ι|) |y〉
= |y〉+ (|⊥〉 − |ι〉) 〈ι|y〉 .

In fact, we need to show that CStOD and CPhsOD are indeed compressed.
For this, we define the following operator swap. For any |xyz〉 ⊗ |f〉, we define

swap |xyz〉 ⊗ |f〉 := |xyz〉 ⊗



σ |f(x)〉 ⊗


w ∕=x

|f(w)〉



.

The above notation could be somewhat confusing, but σ |f(x)〉 is in the register
indexed by x, and for w ∕= x, |f(w)〉 is in the register indexed by w.

Then,

swap |xyz〉 ⊗ |f〉

= |xyz〉 ⊗



σ |f(x)〉 ⊗


w ∕=x

|f(w)〉





= |xyz〉 ⊗ (|f(x)〉 − (|⊥〉 − |ι〉)(〈⊥|− 〈ι|) |f(x)〉)⊗


w ∕=x

|f(w)〉

= |xyz〉 ⊗



|f(x)〉 ⊗


w ∕=x

|f(w)〉



+ (〈ι|f(x)〉 − 〈⊥|f(x)〉) |⊥〉 ⊗


w ∕=x

|f(w)〉

−(〈ι|f(x)〉 − 〈⊥|f(x)〉) |ι〉 ⊗


w ∕=x

|f(w)〉





= |xyz〉 ⊗

|f〉+ (〈ι|f(x)〉 − 〈⊥|f(x)〉) |f [x → ⊥]〉

− (〈ι|f(x)〉 − 〈⊥|f(x)〉)


y′


D(y′) |f [x → y′]〉





Hence, when f(x) = ⊥,

swap |xyz〉 ⊗ |f〉 = |xyz〉 ⊗


y′


D(y′) |f [x → y′]〉 ,

and when f(x) ∕= ⊥,

swap |xyz〉 ⊗ |f〉 = |xyz〉 ⊗



 |f〉+

D(f(x)) |f [x → ⊥]〉

−

D(f(x))



y′


D(y′) |f [x → y′]〉





Theorem 3.32. The quantum oracle CStOD is compressed, and its query oper-
ator can be described as

swap ◦ query′ ◦ swap,

where query′ is the query operator of StOD, extended for ⊥.
Similarly, we have

CPhsOD = swap ◦ query′′ ◦ swap,

where query′′ is the query operator of PhsOD, extended for ⊥.

Proof. Let us show this for CPhsOD; the case for CStOD can be proved similarly.
We have to show that CPhsOD |xyzf〉 = swap ◦ query′′ ◦ swap |xyzf〉 for any

x, y, z and f . For this, let us fix x, y and z arbitrarily. Recall that query′′ |xyzf〉 =
|xyz〉⊗(−1)y·f(x) |f〉, and swap |xyz〉⊗|f〉 := |xyz〉⊗


σ |f(x)〉 ⊗


w ∕=x |f(w)〉


.

Then, both query′′ and swap preserve |xyz〉, and depends only on |f〉. In fact,
we see that both query′′ and swap only depend on the oracle register indexed
by x, and acts as identity on other registers of the oracle state. Therefore, both
query′′ and swap, when regarded as operators on the oracle state (as we have
fixed |xyz〉), commute with I ⊗


w ∕=x σ, where I denotes the identity operator



on the oracle register indexed by x. Then, CPhsOD query operator, when |xyz〉
is fixed, is (


w σ)query′′(


w σ), but then,

CPhsOD

= (


w

σ)query′′(


w

σ)

= (I ⊗


w ∕=x

σ) ◦ swap ◦ query′′ ◦ (I ⊗


w ∕=x

σ) ◦ swap

= (I ⊗


w ∕=x

σ) ◦ (I ⊗


w ∕=x

σ) ◦ swap ◦ query′′ ◦ swap

= (I ⊗


w ∕=x

σσ) ◦ swap ◦ query′′ ◦ swap

= swap ◦ query′′ ◦ swap.

Now we see that CPhsOD (and CStOD) is indeed compressed. Consider the
maximum of the rank of partial functions occurring in the oracle state right after
the qth query. Since CPhsOD is null-initialized, at the start the maximum rank
is 0. For each query, since CPhsOD = swap ◦ query′′ ◦ swap, from the formula
for swap we see that CPhsOD |xyzf〉 contains any term with larger rank than
|f | precisely when f(x) = ⊥, and in that case the maximum rank is ≤ |f | + 1.
Therefore, the maximum rank of partial functions occurring in the oracle state
is bounded by q, and each partial function f can be implemented efficiently as
a dictionary of size O(q).

4 Recordability

We want to formally define a notion of recordability of quantum oracles. While
it could be nontrivial to capture all possible ways such recording can be done
and used, one possible and natural initial attempt could be made by elevating
Lemma 5 of Zhandry [26] to a definition:

Definition 4.1. Let O,O′ be quantum oracles over the same interface space
I, and suppose that they have the same type X → Y. Let µ : O → O′ be
an embedding. Consider a quantum algorithm A making queries to a quantum
oracle and outputting a tuple (f, z), where f : X ⇀ Y is a partial function, and
z is an auxiliary data. Let R be a relation of such tuples.

Suppose A interacts with O and outputs a tuple (f, z). Assume O is measured
afterwards: h ← O. Let p be the probability that, (1) R(f, z), and (2) f ⊆ h.

Similarly, let p′ be the probability defined exactly like p, except that in this
case A interacts with O′. So, A outputs (f, z) after the interaction, and then O′

is measured: h′ ← O′. Then p′ is defined as the probability that, (1) R(f, z) and
(2) f ⊆ h′.

Let rR be defined as

rR := max
f

{|f | | ∃z,R(f, z)},



the maximum possible rank of f , which satisfies R(f, z) for some z.
Then, we say that the embedding µ ε-records O for the relation R, if

√
p ≤


p′ +

√
ε · rR

holds for any such adversary A.

Remark 4.2. When the embedding µ : O → O′ is clear, we may simply say that
the oracle O′ ε-records the oracle O for R.

Example 4.3. Zhandry [26] showed in his Lemma 5 that, when we consider the
uniform distribution, CStO 1/2n-records StO for any relation R.

Remark 4.4. One difference between our Definition 4.1 and Zhandry’s Lemma 5
is that our oracles record for some particular relation R. We need this to handle
the case where, for example, the codomain Y is small, like {0, 1}. We refer to
Remark 5.3 for more discussions.

We would like to show that CStOD records StOD in general. For this, we
need a stronger, if somewhat abstract formalism for our purposes. Therefore,
we will define strong recordability. While we believe that this definition can be
generalized, here we will simply give the definition for StOD and CStOD (and
also for PhsOD and CPhsOD).

Definition 4.5 (Strong recordability). We say that CStOD ε-strongly records
StOD for a relation R, if the following holds.





x∈dom(f)

i |f(x)〉〈f(x)|−


x∈dom(f)

|f(x)〉〈f(x)| e



2

F

≤ ε · rR,

for any f : X ⇀ Y and z satisfying R(f, z). Also,  · F is the Frobenius norm
of an operator.

Similarly, we define that CPhsOD ε-strongly records PhsOD for a relation R,
if the same inequality as above holds.

Remark 4.6. Strong recordability defined above, and also Theorem 4.8 below
are influenced by Chung et al. [9], specifically Lemma 4.1 and the proof of the
lemma. While their lemma is based on the Fourier transform and works for
the uniform distribution, at the last step of the proof they use the Frobenius
norm. We observe that in fact the Frobenius norm can be used from the start,
and moreover it also works for any probability distribution D, and without the
Fourier transform.

We have the following useful lemma.

Lemma 4.7. When B,C are isometries, then for any operator A and any vector
|Ψ〉, we have

(A⊗B) |Ψ〉  = (A⊗ C) |Ψ〉 .



Proof. Write |Ψ〉 in terms of an orthonormal basis of the tensor product:

|Ψ〉 =


a,b

αab |φa〉 |ψb〉 .

Then,

(A⊗B) |Ψ〉 2 =


abcd

αabαcd 〈φa|A†A |φc〉 〈ψb|B†B |ψd〉

=


abcd

αabαcd 〈φa|A†A |φc〉 〈ψb|C†C |ψd〉

= (A⊗ C) |Ψ〉 2.

In the above, since B,C are isometries, B†B = C†C = I.

Now we may relate strong recordability and recordability in the following
theorem. The proof is an adaptation of Corollary 4.2 of Chung et al. [9]. While
the following theorem is given in terms of CStOD and StOD, the proof works for
CPhsOD and PhsOD, identically.

Theorem 4.8. ε-strong recordability implies ε-recordability.

Proof. Let R be a relation of partial functions f : X ⇀ Y and auxiliary data z.
And let ε > 0 be a constant.

Suppose that µ =


x e -strongly records StOD for a relation R. We need
to show that µ ε-records StOD for a relation R.

Let A be an adversary which interacts with an oracle and eventually outputs
a pair (f, z), where f : X ⇀ Y is a partial function and z is an auxiliary
data, and let R be a collection of such tuples. After outputting (f, z), let us
measure the rest of the internal state of the adversary and let the outcome of
the measurement be w. Let qf,z,w be the probability that the output of AStOD is
(f, z) and the measurement outcome of the rest of the state is w. And let pf,z,w
be the probability that h ← StOD satisfies f ⊆ h, conditioned on f, z, and w.
By definition,

p =


(f,z)∈R,w

qf,z,wpf,z,w.

Similarly, let us define q′f,z,w and p′f,z,w to be the corresponding probabilities,
when A interacts with CStOD. Again we have

p′ =


(f,z)∈R,w

q′f,z,wp
′
f,z,w.

Since µ is an embedding, by Corollary 3.11, StOD and CStOD are completely
indistinguishable as quantum oracles, so q′f,z,w = qf,z,w.

Let {Mf}f :X⇀Y be the set of measurement operators for StOD, and let
{M′

f}f :X⇀Y be the set of measurement operators for CStOD. Recall that M′
f =

|f〉 〈f | =


x∈X |f(x)〉 〈f(x)|, and Mf = |f〉 〈f | for any total function f , and
Mf = 0 for partial functions.



Observe that when |Ψ〉 is the internal state of StOD, post-selected for f, z, w,
then

pf,z,w =





h⊇f

Mh |Ψ〉



2

=






x

i




h⊇f

Mh |Ψ〉



2

,

since


x i is an isometry. Note that




x∈X
i




h⊇f

Mh =




x∈X
i




h⊇f



x∈X
|h(x)〉〈h(x)|

=


x∈dom(f)

i |f(x)〉〈f(x)|⊗


x ∕∈dom(f)

i


y∈Y
|y〉〈y|

=


x∈dom(f)

i |f(x)〉〈f(x)|⊗


x ∕∈dom(f)

i.

So,

pf,z,w =








x∈dom(f)

i |f(x)〉〈f(x)|⊗


x ∕∈dom(f)

i



 |Ψ〉



2

.

Since µ = (


x e) is an embedding, we see that µ |Ψ〉 is the corresponding ora-
cle state of CStOD, postselected for f, z, w. So, p′f,z,w = 


h⊇f M

′
h(


x e) |Ψ〉 2.
Similar to pf,z,w, we can separate dom(f) part and the rest to get

p′f,z,w =








x∈dom(f)

|f(x)〉〈f(x)| e⊗


x ∕∈dom(f)

e



 |Ψ〉



2

,

Applying Lemma 4.7, we get

p′f,z,w =








x∈dom(f)

|f(x)〉〈f(x)| e


x ∕∈dom(f)

i



 |Ψ〉



2

,

Then, we have

√
pf,z,w −


p′f,z,w

=








x∈dom(f)

i |f(x)〉〈f(x)|⊗


x ∕∈dom(f)

i



 |Ψ〉



−








x∈dom(f)

|f(x)〉〈f(x)| e⊗


x ∕∈dom(f)

i



 |Ψ〉



≤








x∈dom(f)

i |f(x)〉〈f(x)|−


x∈dom(f)

|f(x)〉〈f(x)| e



⊗






x ∕∈dom(f)

i



 |Ψ〉





≤








x∈dom(f)

i |f(x)〉〈f(x)|−


x∈dom(f)

|f(x)〉〈f(x)| e



⊗


x ∕∈dom(f)

i



≤





x∈dom(f)

i |f(x)〉〈f(x)|−


x∈dom(f)

|f(x)〉〈f(x)| e





x ∕∈dom(f)

i

=





x∈dom(f)

i |f(x)〉〈f(x)|−


x∈dom(f)

|f(x)〉〈f(x)| e



≤





x∈dom(f)

i |f(x)〉〈f(x)|−


x∈dom(f)

|f(x)〉〈f(x)| e


F

≤
√
ε · rR.

In the above, we have used properties of the operator norm, and the fact that
the operator norm is bounded by the Frobenius norm.

Now, we have

pf,z,w ≤


p′f,z,w +
√
ε · rR

2

= p′f,z,w + 2
√
ε · rR


p′f,z,w + ε · rR.

Then,

p =


(f,z)∈R,w

qf,z,wpf,z,w

≤


(f,z)∈R,w

qf,z,w


p′f,z,w + 2

√
ε · rR


p′f,z,w + ε · rR



=


(f,z)∈R,w

qf,z,wp
′
f,z,w + 2

√
ε · rR



(f,z)∈R,w

qf,z,w


p′f,z,w

+ ε · rR


(f,z)∈R,w

qf,z,w

= p′ + 2
√
ε · rR



(f,z)∈R,w

qf,z,w


p′f,z,w + ε · rR

≤ p′ + 2
√
ε · rR

 

(f,z)∈R,w

qf,z,wp′f,z,w + ε · rR

= p′ + 2
√
ε · rR


p′ + ε · rR = (


p′ +

√
ε · rR)2.

In the last inequality above, we used Jensen’s inequality.
Hence, √

p ≤

p′ +

√
ε · rR.



In order to prove that CStOD strongly records StOD, we need one additional
definition.

Definition 4.9. Let R be a relation of partial functions f and auxiliary data z.
We say that R is ε-bounded with respect to D, if for any f : X ⇀ Y and z,
whenever R(f, z) holds, then

D(f(x)) ≤ ε, for all x ∈ dom(f).

Remark 4.10. We see that any R is 1/2k-bounded with respect to D, if k is the
min-entropy of D, since

D(y) ≤ 1

2k

for any y ∈ Y.

Theorem 4.11. If R is ε-bounded with respect to D, then CStOD ε-strongly
records StOD for R, and CPhsOD ε-strongly records PhsOD for R.

Proof. Fix an arbitrary partial function f : X ⇀ Y which satisfies R(f, z) for
some z, and let r be the rank of f . Let dom(f) = {x1, . . . , xr}, and yi := f(xi).

Since i : C[Y] → C[Y⊥] is an inclusion map, we have i |y〉〈y| = |y〉〈y| i for
any y ∈ Y.

Recall that A2F = tr[A†A] for any operator A. Then we have
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F

Rewriting the above using the trace, we get
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= tr
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j=1

i−
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e
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= tr




r

j=1

|yi〉〈yi|




r

j=1

ii† −
r

j=1

ei† −
r

j=1

ie† +

r

j=1

ee†









= tr




r

j=1

|yi〉〈yi| ii†


− tr




r

j=1

|yi〉〈yi| ei†




− tr




r

j=1

|yi〉〈yi| ie†


+ tr




r

j=1

|yi〉〈yi| ee†




=

r

j=1

〈yi| ii† |yi〉 −
r

j=1

〈yi| ei† |yi〉 −
r

j=1

〈yi| ie† |yi〉+
r

j=1

〈yi| ee† |yi〉 .

Now, for any y, z ∈ Y, we have 〈z| i† |y〉 = 〈y| i |z〉 = 〈y|z〉 = 〈z|y〉. So
i† |y〉 = |y〉. Then, 〈y| ii† |y〉 = 〈y|y〉 = 1.

Also, we have

〈y| ei† |y〉 = 〈y| e |y〉 = 〈y| (i+ (|⊥〉 − |ι〉) 〈ι|) |y〉
= 〈y|y〉 − 〈y|ι〉 〈ι|y〉 = 1−D(y),

〈y| ie† |y〉 = 〈y| ei† |y〉 = 1−D(y) = 1−D(y),

〈y| ee† |y〉 = 〈y| (i+ (|⊥〉 − |ι〉) 〈ι|)e† |y〉
= 〈y| ie† |y〉 − 〈y|ι〉 〈ι| e† |y〉
= 1−D(y)− 〈y|ι〉 〈y| e |ι〉
= 1−D(y)− 〈y|ι〉 〈y|⊥〉 = 1−D(y).

Then,
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F
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(1−D(yj)) +

r
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(1−D(yj))
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(1−D(yj)) ≤
r
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D(yj)

=


x∈dom(f)

D(f(x)) ≤


x∈dom(f)

ε = ε|f | ≤ ε · rR.

Combining Theorem 4.8 and Theorem 4.11, we obtain:



Corollary 4.12. Suppose D is a probability distribution over Y. If R is ε-
bounded with respect to D, then CStOD ε-records StOD for R, and CPhsOD

ε-records PhsOD for R.

Corollary 4.13. Suppose D is a probability distribution over Y. Suppose k is
the min-entropy of D. Then, CStOD 1/2k-records StOD for any relation R, and
CPhsOD 1/2k-records PhsOD for any relation R.

5 Applications

In this section, we will apply the compressed oracle technique for non-uniform
random oracles to two problems: optimality of Grover search, and collision lower
bound for non-uniform random oracles.

5.1 Optimality of Grover search

First, we will give yet another proof that the quadratic speed-up of the Grover
search is optimal. Specifically, we will consider a non-uniform random oracle
H : {0, 1}m → {0, 1}, where each H(x) is distributed independently according
to the Bernoulli distribution B, where B be a probability distribution over {0, 1},
with B(1) = p and B(0) = 1−p for some p satisfying 0 ≤ p ≤ 1/2. We will show
that the success probability of an adversary for finding a point x with H(x) = 1
is O(pq2).

In section 4 of [26], Zhandry gives a similar result, using the compressed
oracle technique: for a uniform random oracle H : {0, 1}m → {0, 1}n, the success
probability for finding a point x ∈ {0, 1}m with H(x) = 0n is O(q2/2n). This
corresponds to the Bernoulli distribution with p = 1/2n. We generalize this to
arbitrary Bernoulli parameter p, using the compressed oracle technique which we
have extended to non-uniform random oracles. In fact, we may re-use Zhandry’s
proof almost unchanged, but applied to non-uniform compressed oracles.

Observe that it would be possible to obtain this result using only compressed
oracles for uniform random oracles: approximate p in binary with sufficient pre-
cision: p ≈ d/2n for some d, and analyze the success probability in finding some x
with 0 ≤ H(x) ≤ l−1. But, our method could be considered as more straightfor-
ward: we directly prove our results for random boolean functions with Bernoulli
distribution for each point. See Remark 5.3 for more discussions about this.

Theorem 5.1. Let B be a distribution over {0, 1} with B(1) = p and B(0) = 1−
p. Let O be either CStOB or CPhsOB. Then, for any adversary A interacting with
O, if O is measured after A makes q queries, the probability that the measurement
outcome f ← O contains an element x ∈ X with f(x) = 1 is at most 8pq2.

Proof. Since CStOB and CPhsOB are isomorphic, we need only to show this for
CPhsOD. Consider the joint state of the adversary and the oracle right before
the adversary’s jth query:

|ψ〉 =


x,y,z,f

αxyzf |xyz〉 ⊗ |f〉 ,



where |z〉 is in the work register of the adversary.
Let us define four projections P,Q,R, S as follows.

– P is the projection onto the span of |xyzf〉 where 1 ∈ rng(f).
– Q is the projection onto the span of |xyzf〉 where 1 ∕∈ rng(f), y = 1, and

f(x) = ⊥.
– R is the projection onto the span of |xyzf〉 where 1 ∕∈ rng(f), y = 1, and

f(x) ∕= ⊥, hence f(x) = 0.
– S is the projection onto the span of |xyzf〉 where 1 ∕∈ rng(f), and y = 0.

Then, P +Q+R+ S = I. We will show that P |ψ〉  does not increase too
fast, as the number of queries increases.

Suppose that |xyzf〉 is in the support of Q. In that case, y = 1, f(x) = ⊥,
and

P CPhsOD |xyzf〉 = P swap query′ swap |xyzf〉

= P swap query′ |xyz〉 ⊗


y′


D(y′) |f [x → y′]〉

= P swap |xyz〉 ⊗


y′

(−1)y·y
′

D(y′) |f [x → y′]〉

= P |xyz〉 ⊗


y′

(−1)y
′

D(y′)



 |f [x → y′]〉

+

D(y′) |f〉 −


D(y′)



y′′


D(y′′) |f [x → y′′]〉



.

Since 1 ∕∈ rng(f), when we apply the projection P , in the above |f〉 will
vanish, and only terms involving |f [x → 1]〉 survive. In this case, f [x → y′] and
f [x → y′′] become f [x → 1] and the corresponding coefficients D(y′) and D(y′′)
collapse to p. So the above equals

−√
p ·



1 +






y′

(−1)y
′
D(y′)







 |xyz〉 |f [x → 1]〉

= −√
p(1 + ((1− p)− p)) |xyz〉 |f [x → 1]〉

= −2
√
p(1− p) |xyz〉 |f [x → 1]〉 .

So, if Q |ψ〉 =


xyzf αxyzf |xyzf〉, then we have Q |ψ〉 2 =


xyzf |αxyzf |2,
and

P CPhsOB Q |ψ〉 =


xyzf

αxyzf (−2
√
p(1− p)) |xyz〉 |f [x → 1]〉 .

So,

P CPhsOB Q |ψ〉 2 =


xyzf

|αxyzf |2 · 4p(1− p)2



= 4p(1− p)2Q |ψ〉 2

≤ 4pQ |ψ〉 2.

Hence, P CPhsOB Q |ψ〉  ≤ 2
√
pQ |ψ〉 .

Also, suppose that |xyzf〉 is in the support of R. In that case, y = 1, f(x) = 0,
and

P CPhsOD |xyzf〉
= P swap ◦ query′ ◦ swap |xyzf〉

= P swap ◦ query′ |xyz〉

|f〉+


B(f(x)) |f [x → ⊥]〉

−

B(f(x))



w


B(w) |f [x → w]〉



= P swap |xyz〉

(−1)1·0 |f〉+


1− p |f [x → ⊥]〉

−

1− p



w

(−1)1·w

B(w) |f [x → w]〉



= P swap |xyz〉 (|f〉+

1− p |f [x → ⊥]〉

−

1− p



w

(−1)1·w

B(w) |f [x → w]〉)

= P |xyz〉 (|f〉+

B(f(x)) |f [x → ⊥]〉

−

B(f(x))



w


B(w) |f [x → w]〉

+

1− p



w


B(w) |f [x → w]〉

−

1− p



w

(−1)w

B(w)(|f [x → w]〉

+

B(w) |f [x → ⊥]〉

−

B(w)



w′


B(w′) |f [x → w′]〉))

Again, when the projection P is applied, |f〉 , |f [x → ⊥]〉 vanish, and only terms
involving |f [x → 1]〉 survive. So, the above equals

= |xyz〉 (−

1− p

√
p |f [x → 1]〉

+

1− p

√
p |f [x → 1]〉

−

1− p(−1)1

√
p |f [x → 1]〉

+

1− p




w

(−1)wB(w)


√
p |f [x → 1]〉)



=

p(1− p)


1 +



w

(−1)wB(w)


|xyz〉 |f [x → 1]〉

=

p(1− p)(1 + (1− p)− p) |xyz〉 |f [x → 1]〉

= 2

p(1− p)(1− p) |xyz〉 |f [x → 1]〉 .

So, if we write R |ψ〉 =


xyzf αxyzf |xyzf〉, then R |ψ〉 2 =


xyzf |αxyzf |2,
and

P CPhsOB R |ψ〉

=


xyzf

αxyzf (2

p(1− p)(1− p)) |xyz〉 |f [x → 1]〉 .

So,

P CPhsOB R |ψ〉 2 =


xyzf

|αxyzf |2 · 4p(1− p)3

= 4p(1− p)3R |ψ〉 2

≤ 4pR |ψ〉 2.

Hence, P CPhsOB R |ψ〉  ≤ 2
√
pR |ψ〉 .

Finally, when |xyzf〉 is in the support of S, y = 0. In that case, query′,
which is query′ |xyzf〉 = (−1)y·f(x) |xyzf〉, acts as the identity operator, when
restricted to the support of S. Therefore, CPhsOB = swap ◦ query′ ◦ swap =
swap ◦ swap, which is identity since swap is involutive.

So, CPhsOB S |ψ〉 = S |ψ〉. Therefore, P CPhsOB S |ψ〉 = PS |ψ〉 = 0.
Also, for any |ψ〉, we have P CPhsOB P |ψ〉  ≤ CPhsOB P |ψ〉  = P |ψ〉 .
Now, for any |ψ〉,

P CPhsOB |ψ〉 
≤ P CPhsOB P |ψ〉 + P CPhsOB Q |ψ〉 

+ P CPhsOB R |ψ〉 + P CPhsOB S |ψ〉 
≤ P |ψ〉 + 2

√
p(Q |ψ〉 + R |ψ〉 )

≤ P |ψ〉 + 2
√
2
√
p.

This shows that if |ψ〉 denotes the joint state right after qth query, then P |ψ〉  ≤
2
√
2
√
pq, since the internal state of the oracle is initialized as f = ⊥, and each

query can increase the value only by 2
√
2
√
p. Then, the probability we want to

bound is P |ψ〉 2, which is bounded by 8pq2.

Corollary 5.2. Let X = {0, 1}m, Y = {0, 1}, and let B be a Bernoulli distri-
bution over Y. Let p be B(1).

Consider any quantum adversary A. When A makes q queries to the non-
uniform quantum random oracle h ← BX and outputs x ∈ X , the probability
that h(x) = 1 is at most O(pq2).



Proof. Let A′ be another adversary which runs A internally until A outputs
x ∈ X , then outputs the partial function f = {(x, 1)} of rank 1. Let R be a
relation over partial functions such that R(f) iff f = {(x, 1)} for some x ∈ X .
Then, let us define three probabilities s, s′, s′′ as follows:

s := Pr[f ← A′ StQROB ();h ← StQROB : h ⊇ f ∧R(f)],

s′ := Pr[f ← A′ StOB ();h ← StOB : h ⊇ f ∧R(f)],

s′′ := Pr[f ← A′CStOB ();h ← CStOB : h ⊇ f ∧R(f)]

We can see that s is the success probability of A which we want to bound.
Also, due to Corollary 3.20 and Lemma 3.23, we have s = s′.

Then, by the recordability, we have

√
s′ ≤

√
s′′ +

√
p,

as the relation R is p-bounded, and rR = 1. Also, according to Theorem 5.1, s′′

is bounded above by 8pq2. Combining, we have

s = s′ ≤


8pq2 +
√
p
2

= O

pq2


.

Remark 5.3. In our Definition 4.1, we describe an oracle O′ as recording another
oracle O for a particular relation R. This is needed for this application. Here,
when the Bernoulli parameter p is very small, |0〉 ∈ C[{0, 1}] is very close to
|ιB〉 ∈ C[{0, 1}]. Since |ιB〉 is ‘compressed’ back to |⊥〉 after each query, it is
very likely that even if an adversary made a query for a point x and obtained
f(x) = 0, that fact could be easily ‘forgotten’ by the compressed oracle. So, in
general we may say that CPhsOB does not ‘record’ PhsOB very well. Also note
that, when the codomain is {0, 1}, the min-entropy of any D over {0, 1} must
be at least 1/2.

(In comparison, this is not applicable for CStO or CPhsO of Zhandry, where
D is uniform and {0, 1}n is exponentially large: all computational basis elements
|y〉 for y ∈ {0, 1}n are almost orthogonal to |ιD〉 = 2−n/2


y |y〉, so they are

rarely forgotten.)
On the other hand, the state |1〉 is almost orthogonal to the initial state |ιB〉,

so if the adversary ‘has seen’ f(x) = 1 for some x, that fact is not easily forgotten
by the compressed oracle. Since we are interested in finding x with f(x) = 1 here,
forgetting about 0 is all right. Indeed, according to Definition 4.9, our relation
R is p-bounded, and CPhsOB ‘records’ 1 without any problem.

Observe also that Zhandry formulated the optimality of Grover search as dif-
ficulty of finding a preimage of 0n for a uniform random function H : {0, 1}m →
{0, 1}n. While the bound O(q2/2n) for the uniform random function remains
true trivially even for n = 1, Zhandry’s Lemma 5, which claims one may switch
from StO to CStO with penalty r/2n (where r is the rank of the partial function
output by the adversary), would not work for n = 1, because r/2n is no longer
negligible.



5.2 Collision lower bound for non-uniform random oracle

We will also prove that a non-uniform random oracle satisfies collision resistance,
provided that the min-entropy is large.

Theorem 5.4. Let O be either CStOD or CPhsOD. Then, for any adversary A
interacting with O, if O is measured after A makes q queries, the probability that
the measurement outcome f ← O contains a collision, that is, f(x) = f(x′) for
some distinct x, x′ ∈ dom(f), is at most 32q3/2k, where k is the min-entropy of
D.

Proof. Again, we need only to show this for CPhsOD. Consider the joint state
of the adversary and the oracle right before the jth query:

|ψ〉 =


x,y,z,f

αxyzf |xyz〉 ⊗ |f〉 .

We see that any f which occurs in the above must satisfy |f | ≤ j−1, because
the oracle state is initialized as ⊥, and each query will increase the rank of partial
functions occurring in the oracle state at most by 1.

Let us define four projections P,Q,R, S as follows.

– P is the projection onto the span of |xyzf〉 where a collision exists in f .
– Q is the projection onto the span of |xyzf〉 where no collisions exist in f ,

y ∕= 0n, and f(x) = ⊥.
– R is the projection onto the span of |xyzf〉 where no collisions exist in f ,

y ∕= 0n, and f(x) ∕= ⊥.
– S is the projection onto the span of |xyzf〉 where no collisions exist in f ,

and y = 0n.

Clearly, P +Q+R+ S = I.
Let us show the following.
Suppose that |xyzf〉 is in the support of Q. In that case, f(x) = ⊥, and

P CPhsOD |xyzf〉
= P swap ◦ query′ ◦ swap |xyzf〉

= P swap ◦ query′ |xyz〉 ⊗


y′


D(y′) |f [x → y′]〉

= P swap |xyz〉 ⊗


y′

(−1)y·y
′

D(y′) |f [x → y′]〉

= P |xyz〉 ⊗


y′

(−1)y·y
′

D(y′)



 |f [x → y′]〉

+

D(y′) |f〉 −


D(y′)



y′′


D(y′′) |f [x → y′′]〉







Since f does not contain any collision, when the projection P is applied, |f〉
will vanish, and only terms of form |f [x → w]〉 with w ∈ rng(f) will survive. So,
the above equals

= |xyz〉 ⊗


y′∈rng(f)

(−1)y·y
′

D(y′) |f [x → y′]〉

− |xyz〉 ⊗






y′

(−1)y·y
′
D(y′)






y′′∈rng(f)


D(y′′) |f [x → y′′]〉

=


y′∈rng(f)


D(y′)



(−1)y·y
′
−


y′′

(−1)y·y
′′
D(y′′)



 |xyz〉 |f [x → y′]〉 .

So, if we writeQ |ψ〉 =


xyzf αxyzf |xyzf〉, then Q |ψ〉 2 =


xyzf αxyzf2,
and then

P CPhsOD Q |ψ〉 2

=


xyzf



y′∈rng(f)

|αxyzf |2D(y′)


(−1)y·y

′
−


y′′

(−1)y·y
′′
D(y′′)



2

≤


xyzf



y′∈rng(f)

|αxyzf |2
1

2k



1 +


y′′

D(y′′)




2

=


xyzf

|αxyzf |2





y′∈rng(f)

4

2k



 ≤ 4(j − 1)

2k



xyzf

|αxyzf |2

=
4(j − 1)

2k
Q |ψ〉 2.

In the above, we use the property of min-entropy in the first inequality,


y′′ D(y′′) =
1 in the equality after that. The condition |f | ≤ j−1 is used in the last inequality.

Therefore, we have

P CPhsOD Q |ψ〉  ≤ 2


j − 1

2k
Q |ψ〉 .

Now, suppose that |xyzf〉 is in the support of R. In that case, f(x) ∕= ⊥, and
if w = f(x), then we may write f as f = f ′[x → w], where f ′(x) = ⊥. We see
that no collisions exist in f ′, and moreover w ∕∈ rng(f ′) so that f = f ′[x → w]



does not have collisions. Similar computation as before gives us

P CPhsOD |xyzf〉

=

D(w)



y′∈rng(f ′)



1− (−1)y·w − (−1)y·y
′

+


y′′

(−1)y·y
′′
D(y′′)





D(y′) |xyz〉 ⊗ |f ′[x → y′]〉 .

So, if we write R |ψ〉 =


xyzf ′w αxyzf ′w |xyz〉 |f ′[x → w]〉, then R |ψ〉 2 =
xyzf ′w |αxyzf ′w|2, and then

P CPhsOD R |ψ〉 2

=


xyzf ′



y′∈rng(f ′)

D(y′)




w

αxyzf ′w


D(w)



1− (−1)y·w − (−1)y·y
′
+


y′′

(−1)y·y
′′
D(y′′)







2

≤


xyzf ′



y′∈rng(f ′)

D(y′)




w

|

D(w)|2





w


αxyzf ′w



1− (−1)y·w − (−1)y·y
′
+


y′′

(−1)y·y
′′
D(y′′)







2

=


xyzf ′



y′∈rng(f ′)

D(y′)


w

|αxyzf ′w|2

1− (−1)y·w − (−1)y·y

′
+


y′′

(−1)y·y
′′
D(y′′)



2

≤


xyzf ′



y′∈rng(f ′)

1

2k



w

|αxyzf ′w|2


1 + 1 + 1 +


y′′

D(y′′)




2

=


xyzf ′w

|αxyzf ′w|2





y′∈rng(f ′)

16

2k





≤ R |ψ〉 2 16(j − 1)

2k
.

In the above, we have used the Cauchy-Schwarz inequality, the definition of
min-entropy, and the fact that |f ′| ≤ |f | ≤ j − 1.

Therefore, we have

P CPhsOD R |ψ〉  ≤ 4


j − 1

2k
R |ψ〉 .



Finally, suppose |xyzf〉 is in the support of S. So y = 0n.
Then, for any f , query′ |xyzf〉 = (−1)y·f(x) |xyzf〉. So query′ acts as an iden-

tity, when restricted to the support of S. Then, CPhsOD = swap◦query′ ◦swap =
swap ◦ swap, which is identity because swap is an involution. Then,

P CPhsOD S |ψ〉 = PS |ψ〉 = 0.

Also,

P CPhsOD P |ψ〉  ≤ CPhsOD P |ψ〉  = P |ψ〉 .

Now, for any |ψ〉,

P CPhsOB |ψ〉 
≤ P CPhsOB P |ψ〉 + P CPhsOB Q |ψ〉 

+ P CPhsOB R |ψ〉 + P CPhsOB S |ψ〉 

≤ P |ψ〉 + 2


j − 1

2k
Q |ψ〉 + 4


j − 1

2k
R |ψ〉 

≤ P |ψ〉 + 4


j − 1

2k
(Q |ψ〉 + R |ψ〉 )

≤ P |ψ〉 + 4


2(j − 1)

2k
.

This shows that if |ψ〉 denotes the joint state right after qth query, then

P |ψ〉  ≤
q

j=1

4


2(j − 1)

2k
≤ 4q


2q

2k

Then, the probability we want to bound is P |ψ〉 2, which is bounded by
32q3/2k.

Corollary 5.5. Let X = {0, 1}m, Y = {0, 1}n, and let D be a distribution
over Y. Consider any quantum adversary A. When A makes q queries to the
non-uniform quantum random oracle h ← DX and outputs (x, x′) ∈ X 2, the
probability that x ∕= x′ and h(x) = h(x′) is at most O(q3/2k), where k is the
min-entropy of D.

Proof. Let A′ be another adversary which runs A internally until A outputs
(x, x′), then making its own queries to get function values y, y′ for x, x′, respec-
tively, and output the partial function f = {(x, y), (x′, y′)}. Then, A′ makes
q + 2 queries in total. Let R be a relation over partial functions such that R(f)
iff f = {(x, y), (x′, y)} for some x, x′ ∈ X and y ∈ Y such that x ∕= x′.

Let us define probabilities p, p′, p′′ as follows.

p := Pr[f ← A′ StQROD ();h ← StQROD : h ⊇ f ∧R(f)],

p′ := Pr[f ← A′ StOD ();h ← StOD : h ⊇ f ∧R(f)],



p′′ := Pr[f ← A′CStOD ();h ← CStOD : h ⊇ f ∧R(f)].

We see that p is the success probability of A which we want to bound (with
two extra queries). Also, due to Corollary 3.20 and Lemma 3.23, we have p = p′.

Then, by the recordability, we have


p′ ≤


p′′ +


2

2k
,

as R is trivially 1/2k-bounded, and rR = 2. Also, according to Theorem 5.4, p′′

is bounded above by 32(q + 2)3/2k. Combining, we have

p = p′ ≤


32(q + 2)3

2k
+


2

2k

2

= O


q3

2k


.

6 Conclusion

In this paper, we have extended Zhandry’s compressed oracle technique to non-
uniform random oracles, and used it to prove optimality of Grover search and
collision resistance of non-uniform random oracles.

It would be an interesting question how far we can generalize the compressed
oracle technique to other quantum oracles. The original motivation of this work
was to try to explain the compressed standard oracle as the tensor product
of smaller, ‘compressed point oracles’, and then to prove that the compressed
standard oracle records the standard oracle by showing that the tensor product
preserves the (strong) recording property. For example, this might be a way to
extend the compressed oracle technique to quantum ideal ciphers, whose purifi-
cation would be a tensor product of purified quantum random permutations. At
this point, we do not know how to implement compressed quantum permutation
oracles, nor how to handle a tensor product of them. But such generalizations
could be useful in many applications.
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