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Abstract—TLS oracles guard the transition of web data from
an authenticated session between a client and a server to a
data representation that any third party can verify. Current
TLS oracles resolve weak security assumptions with crypto-
graphic algorithms that provide strong security guarantees (e.g.,
maliciously secure two-party computation). However, we notice
that the conditions and characteristics of TLS 1.3 allow for
reconsidering security assumptions. Our work shows that the
deployment of semi-honest two-party computation is feasible with
a single exception, while retaining equivalent security properties.
Further, we introduce a new parity checksum construction to
decouple the integrity verification over AEAD stream ciphers into
dedicated proof systems and improve end-to-end performance
benchmarks. We achieve a selective and privacy-preserving data
opening on 16 kB of TLS 1.3 data in 2.11 seconds and open 10x
more data compared to related approaches. Thus, our work sets
new boundaries for privacy-preserving TLS 1.3 data proofs.

Index Terms—TLS Oracles, Data Provenance, Zero-knowledge
Proofs, Secure Two-party Computation, TLS 1.3.

I. INTRODUCTION

Secure channel protocols such as Transport Layer Security
(TLS) provide confidential and authenticated communication
sessions between two parties: a client and a server. However,
if clients present data of a TLS session to another party, then
the third party cannot verify if the presented data is authentic
and correct, and, thus, cannot verify the data provenance.
In the eyes of the third party, TLS data is authentic if the
data origin can be verified. TLS data is correct if the third
party is able to verify the integrity of presented TLS data
against unforgeable TLS session parameters. To save the third
party from verifying data provenance itself, current approaches
either consider servers to attest to shared data via digital
signatures [1], or employ TLS-oracles [2]–[4]. Data attesta-
tion through servers is an efficient data provenance solution
but requires server-side software changes. In contrast, TLS-
oracles are legacy-compatible, which achieves data provenance
without introducing server-side changes. TLS-oracles further
introduce a trusted verifier to take over the verification of
TLS data authenticity and correctness. If the data validation
succeeds, the trusted verifier certifies the TLS data of clients.
With the certificate, clients are able to convince any third party
such that data provenance becomes publicly verifiable.

TLS-oracles have originated in the context of blockchain
ecosystems, where TLS-oracles originally solved the “oracle
problem” of trustworthy data imports with a cryptographically
verifiable origin and correctness. TLS-oracles, however, are
generally applicable in the Internet, which makes them a
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Fig. 1. Overview of the Janus protocol, where the client and a proxy
collaboratively run a TLS session with the server. At the end of the TLS
session (dotted horizontal line), the client continues to interact with the proxy
in order to convince the proxy of a valid TLS data opening.

crucial technique to build user-centric and data-sovereign
systems [5]. For instance, through TLS-oracles, users are
able to present solvency checks without giving up control
of their data [6]. As of today, multiple deployment types of
TLS-oracles exist, even TLS-oracles that support private data
proofs. However, the efficiency of privacy-preserving TLS-
oracles is limited depending on the employed approach. As
a result, privacy-preserving TLS-oracles are not applicable to,
among others, business and legal domains, where guaranteed
delivery of larger data objects (e.g., confidential files) is
necessary (e.g., to build verifiable accountability [7]). Because
current methods are unsatisfactory, we set out to improve the
scalability of TLS 1.3 data provenance.

In the context of TLS-oracles, the TLS client side is a
collaborative and secret-shared session between two parties:
the trusted verifier and the client. The mutual client-side ses-



sion guarantees that the proxy, without access to confidential
parameters of the TLS session, can audit if the client preserves
session integrity according to the TLS specification. In this
work, we expect the trusted verifier to act as a proxy between
the client and the server. In contrast to other works [4],
we assume that malicious clients can mount machine-in-the-
middle (MITM) attacks between the proxy and the server.
TLS-oracles require the mutually shared TLS session between
the proxy and the client to process messages using maliciously
secure 2PC [3], [4], [8]. This way, the security of secret-shared
TLS parameters is preserved such that the proxy maintains the
control to audit session integrity of the client.

In the presented setting, and as the first contribution, our
work makes the key observation that in the TLS 1.3 handshake
phase, picking and setting the client key share in the client
hello (CH) message can yield an immediate key derivation
at the server. With that, the server immediately responds to
both client-side parties with authenticated messages. In our
system model, which prevents forging of server certificates,
we observe that the adversary model in the TLS 1.3 handshake
phase can be reduced to a setting where the client and proxy
interact using semi-honest 2PC. To proceed according to the
TLS specification when using semi-honest 2PC, both client-
side parties eventually validate 2PC inputs or outputs against
the authenticated handshake parameters which have been
initially verified (e.g. server handshake traffic secret (SHTS))
with the help of authenticated server-side messages. As such,
all computations according to the TLS 1.3 specification can
be reduced to a semi-honest 2PC setting except for the
computation of request authentication tags (cf. Figure 1).

Our second contribution concerns the post-processing phase
of TLS-oracles, where the client opens data from the shared
TLS session towards the proxy. The proxy attests to opened
data if the integrity on opened data is correct against the
audited and authentic TLS 1.3 session. If TLS-oracles support
privacy, then the client opens data by presenting a privacy-
preserving zero-knowledge proof (ZKP) to the proxy. The
ZKP ensures that the proxy learns nothing beyond the validity
of a statement that holds on the opened data. Initial zero-
knowledge based openings of TLS data computed on small
data sizes (e.g., proving JSON key value pairs) [4]. Because,
to compute a data opening in a ZKP circuit, the client proves
that an authentic ciphertext, which is intercepted at the proxy,
has a non-ambiguous mapping to a plaintext. To prove the
mapping, the ZKP circuit computes legacy algorithms with
non-algebraic structures (e.g., AES128), which are inefficient
to evaluate in current zkSNARK proof systems [9]. In TLS 1.3,
privacy-preserving data openings benefit from the structure of
authenticated encryption with associated data (AEAD) stream
ciphers that protect exchanged TLS traffic. Here, current works
reduce the complexity of the ciphertext-to-plaintext mapping
to an efficient XOR computation which relies on an authen-
ticated stream of pseudorandom parameters. Nevertheless, the
optimization comes at a cost. In the works [3], [8], the client
must know how data is organized in order to selectively open
the data of interest. Without knowledge of how TLS data is

structured, the opening complexity depends on Merkle Tree
inclusion proofs. The work [9] partly resolves the overhead
introduced by legacy algorithms in zkSNARK proof systems
by decoupling the computation of legacy algorithms into a
record independent and record dependent computation phase.

Our work, by contrast, leverages our first contribution and
moves the computation structures of legacy algorithms into a
honest verifier zero-knowledge (HVZK) proof system, which
is based on a semi-honest 2PC setting [10]. The HVZK proof
system is able to efficiently evaluate non-algebraic structures
and, as such, efficiently verify legacy algorithms. In the first
step, we authenticate pseudorandom parameters of TLS 1.3
stream ciphers via a new secret parity checksum computation
inside the HVZK proof system (cf. red box in Figure 1). In
the second step, we efficiently open private TLS data with the
help of the parity checksum inside a zkSNARK proof system
(cf. yellow box in Figure 1). With our protocol, we achieve
new scales of privacy-preserving data openings in the context
of TLS 1.3 and open 16 kB of private TLS 1.3 data in 2.11
seconds, which outperforms related approaches by a factor of
10x (cf. Section VI). Our protocol allows selective privacy-
preserving or transparent data openings and maintains a low
communication overhead throughout the TLS 1.3 handshake
and record phase.

In analogy to Roman mythology, we name our efficient
oracle solution after the god of transitions, Janus. Because,
with our protocol, TLS 1.3 oracles in the proxy setting
transition into an area with new boundaries concerning large-
scale and privacy-preserving data proofs. We contribute to the
state of the art of data provenance protocols as follows:

• We introduce Janus, a novel protocol for data provenance
via TLS 1.3, by optimizing secure computation structures
based on characteristics found in TLS 1.3. Janus retains
security properties equivalent to previous works and sets
new benchmarks for proving kilobytes of data.

• We show that TLS 1.3 SHTS authenticity can be verified
at both client parties in a semi-honest 2PC setting. With
access to an authentic SHTS parameter, both client parties
can mutually verify the authenticity of subsequent semi-
honest 2PC interactions except for the computation of
request authentication tags (cf. Section IV).

• We improve the data scalability of selective and privacy-
preserving data proofs in TLS 1.3 by having the proxy
verify the TLS integrity in dedicated zero-knowledge
proof systems (cf. Section V-D). The decoupling of
the TLS integrity verification relies on a new masked
parity checksum which ensures that both proof systems
evaluate data that has been derived from authenticated
and consistent TLS session parameters.

• We analyse the security of Janus (cf. Appendix B), pro-
vide end-to-end evaluation benchmarks (cf. Section VI),
and open-source1 the secure computation building blocks.

1https://github.com/januspaper/submission1



TABLE I
NOTATIONS AND FORMULAS OF TLS VARIABLES.

Variable Formula

H2 H(ClientHello||ServerHello)
H3 H(ClientHello||. . . ||ServerFinished)
H6 H(ClientHello||. . . ||ServerCert)
H7 H(ClientHello||. . . ||ServerCertVfy)
H9 H(ClientHello||. . . ||ClientCertVfy)

label11 “TLS 1.3, server CertificateVerify”
(kSATS, ivSATS) | DeriveTK(s=SATS|CATS) =
(kCATS, ivCATS) ( hkdf.exp(s,“key”,H(“ ”),len(k)),

hkdf.exp(s,“iv”,H(“ ”),len(iv)) )

II. PRELIMINARIES ON TLS ORACLES

This section introduces where and how TLS-oracles use
cryptographic building blocks to modify the TLS 1.3 baseline
such that the provenance and correctness of TLS session data
can be publicly verified. Througout this section, we explain
the main functionalities of cryptographic building blocks and
provide further details of each cryptographic construction or
protocol in the Appendix A.

A. General Notations

The TLS notations of this work are introduced in Sec-
tion II-B, and closely follow the notations of the work [11].
Further, we denote vectors as bold characters x = [x1, . . . , xn],
where len(x) = n returns the length of the vector. Base points
of elliptic curves are represented by G ∈ EC(Fp), where the
finite field F has a prime size p. For elliptic curve elements,
the operators ·,+ refer to the scalar multiplication and addition
of elliptic curve points P ∈ EC(Fp). The symbol λ indicates
the security parameter. For bits or bit strings, the operators
·,⊕ represent the logical AND or multiplication, and the
logical XOR or addition respectively. Other operators describe
a random assignment of a variable with $←, the concatenation
of strings with ||, and the comparison of variables with ?

=.

B. Transport Layer Security

TLS is a standardized suite of cryptographic algorithms to
establish secure and authenticated communication channels in
the Web. The TLS protocol exists in different versions, where
TLS 1.3 is the version we consider in this work. The protocol
of TLS 1.3 divides into two phases, where the handshake
phase derives cryptographic parameters to secure data sent
in the record phase. TLS 1.3 relies on the algorithms of
hash-based message authentication code (HMAC) and HMAC-
based key derivation function (HKDF) to securely derive
cryptographic parameters and relies on digital signatures to au-
thenticate parties (cf. ds.Sign, ds.Verify, hkdf.ext, hkdf.exp,
hmac in Figure 2). We provide further details of TLS-specific
security algorithms in the Appendix A and present TLS-
specific transcript hashes, labels, and key derivation functions
of traffic keys in Table I.

TLS Handshake between the client c and server s:

inputs: x $← Fp by c. (y $← Fp, skS , pkS) by s.
outputs: (tkCATS, ivCATS, tkSATS, ivSATS) to c and s.
1. c: X = x ·G; send X in mCH
2. s: Y = y ·G; send Y in mSH
3. b: dES = hkdf.exp(hkdf.ext(0,0),“derived” || H(“ ”))
4. b: DHE = x · y ·G; HS = hkdf.ext(dES, DHE)
5. b: SHTS = hkdf.exp(HS,“s hs traffic” || H2)
6. b: CHTS = hkdf.exp(HS,“c hs traffic” || H2)
7. b: (kCHTS, ivCHTS) = DeriveTK(CHTS)
8. b: (kSHTS, ivSHTS) = DeriveTK(SHTS)

9. b: fkS = hkdf.exp(SHTS, “finished” || “ ”)
10. s: SCV=ds.Sign(skS ,label11||H6); send SCV in mSCV
11. s: SF = hmac(fkS , H7); send SF in mSF

12. c: SF’ = hmac(fkS , H7); verify SF’ ?
= SF

13. c: ds.Verify(pkS , label11 || H6, SCV) ?
= 1

14. b: fkC = hkdf.exp(CHTS, “finished” || “ ”)
15. c: CF = hmac(fkC , H9); send CF in mCF

16. s: CF’ = hmac(fkC , H9); verify CF’ ?
= CF

17. b: dHS = hkdf.exp(HS,“derived” || H(“ ”))
18. b: MS = hkdf.ext(dHS, 0)
19. b: CATS = hkdf.exp(MS, “c ap traffic” || H3)
20. b: SATS = hkdf.exp(MS, “s ap traffic” || H3)
21. b: (kCATS, ivCATS) = DeriveTK(CATS)
22. b: (kSATS, ivSATS) = DeriveTK(SATS)

Fig. 2. TLS 1.3 specification of session secrets and keys. Characters at the
beginning of lines indicate if the server s, the client c, or both parties b call
the functions per line.

1) Handshake Phase: To establish a secure channel be-
tween a server and a client, TLS 1.3 relies on the Diffie-
Hellman key exchange (DHKE) to securely exchange cryp-
tographic secrets between two parties (cf. Figure 2, lines 1-4).
With TLS configured to use elliptic curve cryptography, parties
protect secrets x, y with an encrypted representation X,Y .
Next, the values X,Y are exchanged in plain via the CH and
server hello (SH) messages mCH, mSH. With access to X,Y ,
both parties derive the Diffie–Hellman ephemeral (DHE) key,
where DHE = x · y · G = y ·X = x · Y holds. Both parties
use the DHE value to compute the handshake secret (HS),
and, with that, derive the SHTS and client handshake traffic
secret (CHTS) (cf. Figure 2, lines 5,6). SHTS and CHTS are
used to derive client-side and server-side handshake keys and
initialization vectors (cf. Figure 2, lines 7,8), which secure all
subsequent handshake messages.

To mutually authenticate each other, both parties exchange
certificates and compute authentication parameters (cf. Fig-
ure 2, lines 9-16). Notice that in TLS, client-side authenti-
cation is optional, which is why we omit client certificates
in Figure 2. But, we show the computations of the server
finished (SF) and client finished (CF) authentication values,
because, to constitute a valid TLS session, both parties must
successfully exchange and verify the SF and CF messages



...

...

+ +

+ +

...

... + +

...

Fig. 3. AEAD stream cipher configured with AES in the Galois/Counter
mode (GCM). The algorithm encrypts a plaintext pt = [pt1, . . . , ptl] to a
ciphertext ct = [ct1, . . . , ctl] under key k and authenticates the ciphertext
ct and associated data AD with the tag t. The symbol MH is a Galois
field multiplication which translates bit strings into GF(2128) polynomials,
multiplies the polynomials modulo the field size and translates the polynomial
back to the bit string representation.

mSF,mCF. For server-side authentication, the server computes
the server certificate verify (SCV) value, which binds a Public
Key Infrastructure (PKI) X.509 certificate to the TLS 1.3
transcript via a digital signature [12]. Here, the signature is
computed with the server secret key skS and is verified with
the corresponding server public key pkS . The client obtains
the server public key pkS in the PKI certificate and aborts the
TLS session if the signature verification fails.

The remainder of the TLS handshake phase computes the
client application traffic secret (CATS) and server application
traffic secret (SATS), which are used to compute server-
side and client-side application traffic keys and initialization
vectors (cf. Figure 2). The TLS record phase, which we
describe next, continues to use the derived record parameters.

2) Record Phase: The TLS record phase requires parties
to protect data with an AEAD algorithm before data can be
exchanged. The AEAD algorithm in TLS 1.3 depends on the
previously established application traffic keys and initialization
vectors and translates plaintext data pt into a confidential
and authenticated representation (ct, t), with ciphertext ct
and authentication tag t. Notice that only the parties of the
TLS handshake phase have access to AEAD encryption and
decryption secrets and are eligible to access exchanged record
phase traffic.

The record phase of TLS 1.3 allows three configurations
of AEAD stream ciphers to protect exchanged data between
the client and the server. Stream ciphers are characterized
by pseudorandom generators, which incrementally output key
streams or encrypted counter blocks (ECBs). In a next stage,
ECBs are combined with plaintext data chunks to compute
ciphertext data chunks. Subsequently, AEAD ciphers compute
an authenticated tag on all ciphertext chunks and associated
data. For instance, the TLS 1.3 stream cipher based on the
128-bit Advanced Encryption Standard (AES) in the Galois
mode implements the pseudorandom generator with the AES
encryption function Ek and authenticates data with a Galois
authentication tag t (cf. Figure 3). We elaborate on the AEAD
algorithm in the Appendix A4

C. Three-party TLS Setting

TLS-oracles turn the two-party protocol of TLS into a three-
party protocol by introducing a trusted verifier [2]. The task of
the newly introduced verifier is the verification and attestation
of TLS data, which clients eventually present (cf. Figure 1). If
the verification succeeds, the third-party attests to TLS data of
the client by signing the data. The scope of data verification
at the verifier ensures that (i) the presented data is authentic
and originates from a TLS session between the client and an
authenticated server, and (ii) integrity of the presented TLS
data holds, according to the TLS specification, via a verifiable
computation trace.

1) Three-party Handshake: In order to audit integrity of
TLS data, the verifier and client join a mutually vetting but
collaborative TLS client session. To construct a joint client-
side TLS session, TLS-oracles replace the TLS handshake with
a three-party handshake (3PHS). In the 3PHS, every party
injects a secret randomness such that the DHE secret depends
on three secrets instead of two. As such, the DHE value, which
is derived at the server, can be jointly reconstructed if the client
and verifier add shared secrets together. The Appendix A1
presents the cryptography of the 3PHS.

The consequence of the 3PHS is that the client depends
on the computational interaction with the verifier to correctly
proceed in the TLS protocol. At the same time, the verifier
is convinced that the client preserves computational integrity
according to the TLS specification if the joint TLS compu-
tation progresses. Because, without access to the secret share
of the verifier, clients cannot derive and use TLS secrets and
encryption keys that are required for the secure session with
the server. And, the introduction of false session data at the
client leads to a session abort at the server.

2) Client-side Two-party Computation: With mutually de-
pendent TLS secret, the client and the verifier continue TLS
computations by using secure two-party computation (2PC).
Secure 2PC is a special type of interactive computation, which
maintains input secrecy and, as such, secrecy of mutually
injected secret shares. To achieve efficient secure 2PC, TLS-
oracles rely on different 2PC techniques, where the first
efficient 2PC approach used in TLS-oracles is secure com-
putation based on boolean Garbled Circuits (GCs) [13]–[15].
Computations in boolean GCs is efficient if the 2PC function
can be efficiently expressed in boolean logic. With TLS 1.3,
suitable algorithms for boolean circuit computations exist. For
instance, the hash functions of the key derivation algorithms
(e.g. Secure Hash Algorithm (SHA) with 90,825 AND gates),
or the record phase encryption functions (e.g. AES with
6,800 AND gates) have optimized binary circuit representa-
tions [16]. However, after the 3PHS, parties are in control
of arithmetic secret shares and boolean garbled circuits are
inefficient in expressing arithmetic computations. For instance,
the arithmetic operations for an addition of the elliptic curve
(EC) point x-coordinate requires four subtractions, a modular
inversion, and two modular multiplications, which leads to
an estimated circuit complexity with 900,000 AND gates [4],



[17]. Atop, arithmetic garbled circuits are neither a choice
because field elements depend on garbled truth tables that scale
quadratically with respect to the selected field size [18].

To remain efficient, TLS-oracles translate the arithmetic
addition operation of the EC x-coordinate shares into a bitwise
additive operation, which can be efficiently expressed in a
boolean circuit. The additive operation is of interest, as 2PC
circuits must reconstruct TLS parameters before a key deriva-
tion or encryption circuit can be called. The 2PC technique to
translate additive arithmetic shares into bitwise additive shares
is the Elliptic Curve to Field (ECTF) protocol [3], [4]. After
running the ECTF protocol, the verifier and the client obtain
secrets with a bitwise sum that match the EC x-coordinate of
the DHE secret. Further details of the ECTF conversion and
secure 2PC techniques are provided in the Appendix A5.

3) Public Verifiability of TLS Data: The last phase of TLS-
oracles decouples the client-side computation dependence and
provides the client with public verifiability of TLS data. In the
initial TLS-oracle approache [2], [3], the decoupling concerns
the 2PC garbled circuit CECB

G which computes record phase
ECBs. Here, the client acts as the circuit evaluator, obtains a
labelled output encodings, and shares a commitment of ECB
encodings to the verifier. After receiving the commitment,
the verifier discloses encryption secret shares to the client by
revealing the bit-to-label decoding tables of the CECB

G inputs
and outputs. Further, the verifier attests to TLS data by signing
the commitments, the output bit-to-label decoding table, and
the transcript hash of the ciphertext in a certificate, which is
shared with the client. The client is now able to verify the
correctness of CECB

G labelled output encodings, decode ECBs,
and with that, decrypt the record phase ciphertext. In the last
stage, clients can selectively present a tuple of labelled output
encordings, ciphertext chunks, the output decoding table, and
the certificate with any third-party. Every third-party, who
trusts the TLS-oracle verifier, is able to publicly verify the
integrity and provenance of the presented TLS data.

Since the client is the only party with access to labelled
output encordings, clients can optionally prove TLS data by
using a privacy-preserving ZKP. In this case, the ZKP circuit
(i) takes in private labelled output encordings, (ii) computes
the ECBs with the help of the public decoding table, and (iii)
authenticates TLS data by showing that a plaintext xored with
ECBs yield a ciphertext, which matches the public ciphertext
transcript hash. Last, the circuit shows that labelled output
encordings match their signed public commitment and that
the authenticated plaintext complies with a given data policy.

III. SYSTEM MODEL

The system model of the Janus protocol introduces system
goals in form of security and usability properties and defines
a threat model and system roles.

A. System Roles & Threat Model

• Clients establish a TLS 1.3 session with servers, query
data from servers, and present TLS data proofs to the
proxy. We assume that clients behave maliciously such

that clients arbitrarily deviate from the protocol specifi-
cation in order to learn TLS session secret shares of the
proxy. Another goal of malicious clients is to learn any
information that contributes to convincing the proxy of
false statements on presented TLS data. Clients honestly
follow algorithms of the Janus protocol if the algorithm
protects secret shares of the client.

• Servers participate in TLS 1.3 sessions with clients and
return responses in the TLS record phase upon the
reception of compliant API queries. We assume honest
servers which follow the Janus protocol specification.

• Proxies take over the role of TLS-oracle trusted verifiers.
Proxies are configured at the client and route TLS traffic
between the client and the server. We assume malicious
proxies deviating from the protocol specification with the
goal to learn TLS session secret shares of clients. Proxies
honestly execute algorithms of the Janus protocol if the
algorithm protects secret shares of proxies.

We rely on a threat model with secure communication
channels and fresh randomness per TLS session between all
interacting system roles. This means that the proxy cannot
break TLS integrity and confidentiality. Network traffic, even
if it is intercepted via a MITM attack by the client, cannot
be blocked indefinitely. We assume up-to-date Domain Name
System (DNS) records at the proxy such that proxies can
resolve and connect to correct Internet Protocol (IP) addresses
of servers. The IP address of a server cannot be compromised
by the adversary such that adversaries cannot request malicious
PKI certificates for a valid DNS mapping between a domain
and a server IP address. Servers share valid PKI certificates
for the authenticity verification in the TLS handshake phase.
Server impersonation attacks are infeasible because secret
keys, which correspond to exchanged PKI certificates, are
never leaked to adversaries. Our protocol imposes multiple
verification checks on the client and the proxy, where failing
verification leads to protocol aborts at the respective parties.
All system roles are computationally bounded and learn mes-
sage sizes of TLS transcript data. Depending on the employed
ZKP systems, completeness, soundness, and zero-knowledge
or HVZK hold.

B. System Goals

The Janus protocol supports the following properties:

• Session-authenticity guarantees that our TLS oracle at-
tests web traffic which originates from an authentic TLS
session. Authenticity is guaranteed if the proxy success-
fully verifies the PKI certificate of the server.

• Session-integrity guarantees that a malicious client can-
not deviate from the TLS specification if a TLS session
has been authenticated. This means that an adversary can
neither modify server-side TLS traffic, no client-side TLS
traffic of the TLS handshake phase. Notice that for client-
side TLS traffic of the record phase, a malicious client
is able to send arbitrary queries to the server, such that
servers decide if queries conform with API handlers.



• MITM-resistance guarantees that even if the client is able
to intercept traffic between the proxy and the server, the
malicious client cannot convince a proxy of data proofs
on modified server-side traffic.

• Legacy-compatibility holds if the default TLS code stack
running at the server does not require any changes and
achieves out-of-the-box compatibility with our protocol.

• Session-confidentiality guarantees that the proxy neither
learns any full TLS secrets nor any record data which has
been exchanged between the client and the server. Fur-
ther, the notion guarantees that the proxy learns nothing
beyond the fact that a statement on TLS record data is true
or false. Depending on the operation mode of the Janus
protocol, session-confidentiality is expected to break for
proxies at some point in the protocol.

• Data-provenance holds if the client proves a verifiable
and deterministic computation trace on presented TLS
data by leveraging confidential TLS session parameters
with session-integrity and session-authenticity.

IV. TLS 1.3 OBSERVATIONS

Current TLS-oracles with MITM-resistance retain confiden-
tiality and integrity in the presence of malicious parties by
employing malicious secure 2PC [2], [4], [8]. In this work, we
reduce the overhead introduced by maliciously secure 2PC and
show that partly employing semi-honest 2PC is possible. With
semi-honest 2PC, our protocol achieves confidentiality of TLS
session secrets against the proxy as the verifier and prevents
a malicious client from deviating the TLS 1.3 specification.
We expect the proxy to act as the garbler in semi-honest 2PC
computations. The deployment of the semi-honest 2PC system
is possible due to the following important characteristics and
conditions of TLS 1.3.

A. Authenticity for SHTS

Our initial observation concerns the 2PC circuits which
compute and disclose the SHTS and the CHTS secrets. No-
tice that due to the key independence property of TLS 1.3,
disclosure of handshake traffic secrets does not compromise
the security of TLS 1.3 application traffic keys [19]. This
means that if the 2PC circuit correctly outputs SHTS or
CHTS, neither the client nor the proxy can learn anything
about the secret HS, which would leads parties to application
traffic keys. If the semi-honest 2PC circuit of SHTS discloses
the output to the client, then the client is able to verify
correct garbling and input provision of the proxy by validating
SHTS against the SF message. One key observation is that in
TLS 1.3, it is possible to have the client pick a supported
cipher suite and add keying material in the CH message,
such that the server directly derives traffic secrets and returns
authenticated messages. Thus, if a policy of our TLS-oracle
initially determines a cipher suite, then the server is expected
to respond with authenticated messages after obtaining the CH
message. A succeeding verification of authenticated messages
based on SHTS implies that a correct SHTS circuit has been
garbled by the proxy. If the verification fails, then the client

aborts the protocol. Otherwise, the client shares SHTS with
the verifier, such that the verifier is able to validate TLS ses-
sion authenticity by decryption the server-side certificate with
SHTS. If the client inputs incorrect secret shares into the 2PC
computation of CHTS, then incorrectly derived authentication
tags lead to session aborts at the server.

Malicious garbling of the CHTS circuit does not yield
any information leakage to the proxy either. Because, if an
incorrectly garbled CHTS circuit outputs the DHE secret share
of the client, then the client continues to compute client
handshake traffic keys based on a wrong CHTS secret. Even
if incorrectly computed client handshake traffic keys protect
client-side handshake messages with digests of a ciphertext
and authentication tag, then a proxy cannot learn any data
of the client secret share by viewing the ciphertext and
authentication tag.

B. 2PC Authenticity via SHTS

In our work, the two-party computations of the record phase
follow the garble-then-prove paradigm of the work [20], where
the garble phase comprises 2PC circuits that (i) drive applica-
tion traffic secrets and (ii) compute AEAD parameters for the
construction of application traffic records. In the garble phase,
all 2PC circuits can be computed in a semi-honest setting
except request authentication tags. Request authentication tags
must be computed in a maliciously secure 2PC system because
the authentication tag is made public as a part of the request
record. If the proxy maliciously garbles the authentication
tag circuit such that the circuit outputs client secrets, then
the proxy is able to access client secret shares via the false
authentication tag of the request record. As a result, session-
confidentiality of client secrets is compromised. Further, the
maliciously secure computation of the request authentication
tag prevents a malicious client from mounting a MITM attack.
Because if clients cannot compute valid authentication tags
individually, clients cannot compile another valid request that
passes the AEAD verification at the server.

Another key observation of our work is that, in TLS 1.3,
the prove phase of the garble-then-prove paradigm can be
computed with the HVZK system of the work [10]. Due
to the fact that TLS 1.3 allows both the proxy and client
to initially validate authenticity via the SHTS parameter (cf.
Section IV-A), the HVZK circuit can use the SHTS parameter
to verify input correctness. To verify input correctness of
secret shares, the HVZK circuit derives and matches a SHTS’
against the authenticated SHTS value. Further, the deployment
of the HVZK proof system is feasible because in the case of
a malicious garbling, the proxy learns at maximum a single
bit and the client is supposed to abort the protocol if the
2PC output of the HVZK circuit yields multiple bit. Since our
protocol ensures that the parameters computed in the HVZK
circuit are of sufficient randomness, leaking a single bit is
bearable [21]. For record data proofs, our protocol makes use
of zkSNARK proof systems which do not leak any bits (cf.
Section V-F).
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Fig. 4. Overview of 2PC circuits of the Janus protocol. All circuits are executed in a semi-honest adversary setting except the circuit Ctag , which executes
with security against malicious adversaries. Depending on provided inputs, the circuits output server-side or client-side TLS 1.3 parameters.

V. JANUS: FAST PRIVACY-PRESERVING PROXY ORACLE
FOR TLS 1.3

The following sections provide the details of the Janus
protocol (cf. Figure 1). The subsection V-B summarizes all
required 2PC circuits and introduces our construction of a
masked parity checksum. Subsequent subsections describe the
Janus protocol specification which ends with two different
TLS data attestation modes.

A. System Setup

Our protocol builds upon system roles introduced in the
Section III-A, where the proxy takes the role of the TLS-
oracle verifier. As such, the proxy acts as the garbler of all
semi-honest 2PC circuits as well as semi-honest 2PC circuits
for the computation of HVZK proofs. The client acts as the
evaluator of all 2PC circuits. In employed zkSNARK systems,
the client takes the role of the prover and the proxy acts as
the verifer. Initially, the client and proxy agree on a policy P ,
which indicates a public statement ϕ that is proven by TLS
data that has been queried by the client. Next, the proxy and
client execute 2PC and zkSNARK offline computations to set
up the required parameters for the 2PC and zkSNARK online
computations. Offline computations are independent of TLS
session parameters (e.g., setup or preprocessing functions)
and can be executed before a TLS session starts. Online
computations are functions which must be called throughout
the TLS session. With all offline parameters set, the client
instantiates a TLS session with the server based on the 3PHS
(cf. Appendix A1). Subsequently, the client and proxy translate
shared EC secrets of the DHE value into additive secret shares
s1, s2 through the ECTF protocol (cf. Appendix A5b). In the
end, the proxy and client locally keep s1 and s2 respectively
and it holds that s1 + s2 = DHE.

B. Two-party Computation

The client and proxy continue to interact in a semi-honest
2PC interaction to collaboratively but vetted follow the TLS
specification. To do so, both parties input their secret shares
s1, s2 into a number of 2PC circuits (cf. Figure 4), which, if
in the case of semi-honest 2PC, disclose outputs to the client.

1) Handshake Circuits: The circuit CXHTS is required to
complete the handshake phase and, depending on the client or
server input labels, computes the CHTS or SHTS secrets. The
circuit takes as input both secret shares and initially derives
DHE = s1 ⊕ s2. If the circuit CXHTS outputs SHTS to the
client, then the client verifies the SF message. Upon successful
verification of the SF message, the client discloses SHTS to
the proxy. If the circuit CXHTS outputs CHTS, then the client,
computes and sends the CF message to the server to finish the
TLS handshake agreement.

2) Record Request Circuits: The next 2PC circuit C(km1 ,iv)
requires the proxy to generate and input a random mask
m1, and takes as input both client-side secret shares. The
circuit first reconstructs DHE = s1 ⊕ s2 and, with DHE,
derives application traffic secrets. The client obtains as output
a masked application traffic key km1

XATS = m1 ⊕ kXATS and
the request initialization vector ivXATS. Again, depending on
the type of TLS 1.3 labels, the circuit outputs client or server
application traffic keys.

Subsequently, for every request, the proxy and client com-
pute the circuit CECB2+ , which outputs encrypted counter
blocks ECB2+ to the client. The notation ECB2+ expresses
encrypted counter blocks ECBi with an index i > 1. With
access to ECB2+ the client computes the ciphertext chunks
q of the request record and shares q with the proxy. Once
the proxy receives q, both the proxy and client interact in a
maliciously secure 2PC computation of the circuit Ctag (cf.
dark blue circuit in Figure 4) to complete the construction
of the request. The circuit derives the encrypted counter
blocks ECBtag=[ECB0,ECB1], and, together with the cipher-
text chucks q, computes and outputs the request authentication
tag t. We follow the bandwidth-efficient 2PC dual-execution
paradigm of the works [3], [14] to implement a malicious
secure 2PC evaluation of the circuit Ctag . The maliciously
secure evaluation of Ctag prevents the client from accessing
ECBtag values and other secret parameters of the proxy.
If clients access ECBtag values, non-ambiguity of request
ciphertext chunks is broken as clients are able to generate
compliant TLS session requests. If MITM attacks are feasible
and non-ambiguity of request holds, a proxy looses the ability
to verify session-integrity because clients may present any



ciphertext to the proxy but send a different ciphertext to the
server. On the other hand, the malicious secure circuit Ctag
prevents the proxy from changing the circuit output to a TLS
session secret share of the client, which would be disclosed
to the proxy as part of the request.

3) Record Response Circuits: After compiling and sending
requests to the server using 2PC, the proxy records (i) request
ciphertext and authentication tag pairs (q, tq) and (ii) pro-
ceeding response ciphertext and authentication tag pairs (r, tr)
from the server. When processing server-side response data,
the execution of the 2PC circuit CECB2+

depends on whether
or not there exists a dependency between follow up requests
and obtained responses.

a) Requests are independent of responses.: If no request
depends on the contents of a response, then the circuit CECB2+

is only called for the compilation of request ciphertexts. In
Section V-C, we explain that response ECBs can be locally
computed by the client once proxies disclose session secrets.

b) Requests depend on responses.: If a request with num-
ber n > 1 depends on the contents of responses r=[r1, . . . , rl],
where each response rm has an index m < n, then the
client and proxy perform l executions of the circuit CECB2+

.
The evaluation of l circuits CECB2+

yields l vectors of en-
crypted counter blocks ECB2+ to the client. With l vectors
of ECB2+, the client is capable of accessing the contents
of the responses r=[r1, . . . , rl] to construct the n-th request.
Further, with access to the lth ECB2+, the client is incapable
of accessing any TLS session secret share of the proxy and,
thus, cannot compute any yth ECB2+, with y>l. To preserve
MITM-resistance, it must hold that the proxy intercepts the
pair (r, tr) before the circuit CECB2+ outputs the corresponding
ECB2+. Notice that any ECB2+ vector does not include any
ECBtag parameters.

C. Commit & Disclose

As soon as the client has exchanged enough record data
with the server such that the statement ϕ can be satisfied, the
client sends a notification to the proxy such that the proxy
stops the recording of ciphertext authentication tag pairs.

1) Disclose Phase: The disclose phase sets the basis of
the mutual TLS parameter verification between the proxy and
the client. In the eyes of the proxy, the collection of request
and response pairs (q, tq) and (r, tr) represent commitments
of the client to the underlying TLS plaintext data. Once the
proxy has obtained enough traffic pairs, the proxy discloses
all TLS session secret shares to the client and, with that,
sacrifices the property of session-confidentiality. The client on
the other hand never discloses locally controlled secret shares.
With full access to the TLS session secrets, the client locally
recomputes and matches all TLS session parameters against
previously evaluated 2PC outputs. The client is convinced of
an honest 2PC garbling by the proxy if the 2PC outputs match
the individually computed TLS parameters. Any detection of
a malicious garbling at the client leads to a protocol abort.
Subsequently, the client discloses recomputed request and
response encrypted counter blocks ECBtag to the proxy such

that the proxy is able to verify recorded traffic pairs. A traffic
pair (x, tx) is valid if the encrypted counter blocks ECBtag and
the ciphertext chunks x compute the intercepted authentication
tag tx. Notice that at this stage of the Janus protocol, the client
could forge response records with a MITM attack and present
valid encrypted counter blocks ECBtag to the proxy such
that the traffic authenticity verification succeeds. However, our
protocol prevents this attack at a later stage (cf. Section V-E)
by having the proxy compare obtained ECBtag parameters
against correctly derived ECBs in a HVZK circuit.

2) Commit Phase: After the disclose phase, the client
computes and discloses a commitment string sECB to the proxy.
The formula of the commitment strings depends on the type
of the data opening.

a) Commitment String for a Transparent Data Opening:
In the case of a transparent data opening, where opened TLS
data is eventually disclosed to the proxy, a commitment string
sECB=H(ECB2+) (e.g. with H=SHA256) is a hash of all
ECBs that are of interest for the data opening. For a transparent
data opening, we require the hash of the commitment string to
be of a non-algebraic structure. Because, the proxy verifies the
hash in the HVZK proof system, which efficiently evaluates
algorithms that rely on non-algebraic structures. Similar to
the verification of correctly disclosed ECBtag parameters, the
HVZK circuit verifies if the client commits to valid ECBs
of a TLS session (cf. Section V-E). If the client commits to
a subset of ECBs, then the client attaches a list of indices
IECB to the commitment string such that the HVZK circuit
can determine which ECBs apply for the verification of the
commitment string.

b) Commitment String for a Privacy-preserving Data
Opening: In the privacy-preserving opening mode, where only
the validity of a statement on the opened data is revealed to
the proxy, the commitment string sECB=hECB||tECB computes
as the concatenation of a zkSNARK-friendly hash on ECBs
(e.g. hECB=MiMC(ECB) [22]) and the parity checksum pECB.
Both the parity checksum pECB and the zkSNARK-friendly
hash hECB process the same vector of ECBs, where the ECBs
are of interest for the privacy-preserving opening. We indicate
the computation of the parity checksum on a selection of ECBs
with the light blue dotted box in Figure 4. Notice that for both
types of the commitment string, the client can select request
and response ECBs and indicates via the list of indices IECB

the ECBs that apply for the opening. At this stage of the
Janus protocol, the client is able to compute the commitment
hash hECB but cannot entirely compute the parity checksum
pECB. The computation of the parity checksum depends on a
secret mask mp which is sampled at the proxy and the client
obtains the mask mp upon disclosing the commitment hash
hECB to the proxy. Once the client obtains the secret mask
mp, the client computes and discloses the parity checksum
pECB to the proxy. The proxy verifies the correctness of
the parity checksum pECB according to the list of indices
IECB in the HVZK circuit (cf. Section V-E). Notice that in
our protocol, the client is able to commit to a false set of
ECBs via hECB′

= MiMC(ECB′) and still provide a valid



parity checksum that passes the verification in the HVZK
circuit. However, once the client opens private TLS data, the
zkSNARK circuit validates the commitment hash together with
the parity checksum, such that the input ECB′ succeeds the
hash verification but fails the parity checksum validation.

Similar to how the client verifies honest behavior of the
proxy by partly recomputing the TLS transcript, the proxy
verifies honest behavior of the client by imposing an HVZK
proof computation on the client. Before we continue with the
description of the HVZK proof interaction in Section V-E,
we introduce the remaining details of the parity checksum
computation in the next section.

D. Parity Checksum

The parity checksum is a random linear combination of
ECB chunks and random bit strings and computes accord-
ing to the Formula 1. The formula takes as input a ECB
vector ECB=[ECB1, . . . ,ECBn] and a vector of randomly
samples bit strings m $← Rk. The parameter k is of the
size k=len(mi)=len(ECBi). The · operator expresses a logical
AND computation of two bit strings and the

⊕
operator

aggregates masked bit strings via the logical XOR expression.

pECB = f⊕(ECB,m) =

n⊕
i=1

(ECBi ·mi) (1)

The construction of the parity checksum gives the proxy
the opportunity to decouple the TLS integrity verification
of the client. The idea behind the parity checksum is that,
with the parity checksum, the integrity of ECBs can be
efficiently verified in a zkSNARK system once the HVZK
circuit authenticates the conformance of the parity checksum
with respect to the TLS session. Since the employed HVZK
proof systems operates on non-algebraic structures [10] and
zkSNARK proof systems efficiently computes on algebraic
structures [23], [24], the computation of the parity checksum
must be compatible with both systems. Further, in the context
of the Janus protocol, the parity checksum (i) prevents the
proxy from learning any ECBs and, with that, TLS data in
plain, and (ii) prevents the client from injecting arbitrary data
which passes the TLS-oracle data provenance verification. The
parity checksum as defined with the Formula 1 fulfills the
efficiency requirements and secures the construction of the
commitment string for privacy-preserving data openings as we
show in the Appendix B.

E. Honest-Verifier Zero Knowledge Proof

The next interaction between the proxy and the client is
the computation of a HVZK proof. The computation of the
HVZK proof ensures (i) that the client inputs correct values
throughout all 2PC interactions with the proxy and (ii) that
the client releases correct 2PC outputs to the proxy. Figure 4
indicates the HVZK circuit in light blue. The circuit validates
input correctness of the client by matching the private input
s2 against the publicly known secret SHTS. Remember that
the correctness and authenticity of the SHTS secret has been

determined by the proxy by validating the SF message and the
server certificate in the TLS handshake phase.

In the case of a transparent data opening, the HVZK circuit
computes and matches a SHA56 hash on a selection of ECBs
against the transparent commitment string of the client. In
the scenario of privacy-preserving data openings, the HVZK
circuit matches derived ECBs against the parity checksum
pECB to authenticate the commitment string sECB. As indicated
in previous sections, the parity checksum pECB requires as
public input a list of indices IECB such that the circuit can
consider a valid selection of ECBs. The client computes and
shares the list IECB with the proxy after identifying necessary
record data which satisfies the policy statement ϕ. Let us
consider an example, where TLS is configured to use AES as
the encryption function E. If proving TLS data according to
the statement ϕ depends on the data inside the third ciphertext
chunk of the first response (r1, tr

1), then the index=3 is
included in the list of indices IECB. With IECB, the HVZK
circuit is able to compute the right ECB2+index, and consider
ECB5=AES(k, iv|| . . . 5) for the computation of the response
commitment string sECB. Once the proxy successfully verifies
the HVZK proof, the client is able to open plaintext data pt3
which corresponds to the third ciphertext chunk ct3 ∈ r1 of
the response (r1, tr

1). The opening of the third plaintext chunk
succeeds because it holds that (i) the plaintext chunk matches
an authenticated ciphertext chunk with ct3 = pt3 ⊕ ECB5

and (ii) the ECB5 together with other ECBs hashes to the
commitment hECB.

Further, for every record (x, tx) to be opened by the
client, the HVZK circuit computes and matches the corre-
sponding encrypted counter blocks ECBtag against previously
shared ECBtag parameters. The ECBtag verification ensures
that records comply with the TLS session. Notice that the
verification of ECB0,ECB1 values provides MITM-resistance
because a client cannot initially predict correct ECB0,ECB1

parameters. The HVZK circuit can be optimized due to the fact
that hash functions H of TLS cipher suites depend on secure
compression functions (e.g. SHACAL-2 if H=SHA256). All
optimizations of the HVZK circuit lead to a more complex
circuit representation which we present in the Appendix C.

The sequence of the HVZK proof validation requires a
commit-and-reveal interaction between the proxy and the
client. The commitment prevents the proxy as a malicious
garbler of the HVZK circuit to obtain any client secrets and
gives the client the opportunity to verify garbling correctness
of the HVZK 2PC circuit. The commit-and-reveal protocol
works as follows. The client is required to share a commitment
with randomness rc of the HVZK output labels with the proxy.
Next the proxy discloses the garbling truth table to the client
such that the client verifies honest garbling of the proxy. In the
case of a malicious garbled truth table, the client aborts the
protocol. Otherwise, the client shares the commit randomness
rc with the proxy. The proxy uses rc to verify if the client
committed to the output label corresponding to a one and
aborts the protocol if any output label verification fails.



F. Data Attestation Modes

Once the proxy successfully verifies the HVZK circuit
and the client successfully evaluates correctness of all 2PC
outputs, our protocol continues with the data attestation phase.
The proxy as the oracle verifier attests to TLS data of the
client if the TLS data correctly opens to either one or mul-
tiple commitment strings sECB. The Janus protocol supports
different opening modes and allows the client to configure
commitment openings in the policy P . The opening mode is
either transparent, such that presented TLS data is disclosed
to the proxy, or privacy-preserving, such that the proxy does
not learn anything except the validity of TLS data compliance
against the public statement ϕ (cf. Figure 5). If the opening
succeeds, the proxy attests to TLS data of the client by
certifying the set of parameters pcert=(t, ϕ, pk, σ) with a
signature σ=ds.Sign(sk,[ϕ, t]) computed at time t. If the client
presents pcert to any third party who trusts the proxy, then
the third party is able to verify TLS data provenance. In the
following, we outline the different opening modes, which are
supported by the Janus protocol.

1) Transparent Opening: In the transparent opening mode,
the client discloses request and response plaintext chunks pt
by sending the opening data to the proxy. The proxy checks
the validity of the data opening by executing the tpOpen
algorithm (cf. Figure 5), which successfully evaluates with an
output of one. The tpOpen algorithm verifies plaintext chunks
against previously verified commitments on request and record
ECBs. Since the transparent data opening selectively discloses
TLS session data publicly, no statement is verified in the
tpOpen algorithm. But, the proxy overwrites the statement
ϕ = H(pt) to the hash of authenticated data. This way, every
third-party is able to verify data authenticity by verifying the
proxy attestation on ϕ and can individually verify public TLS
data of the client against any statement.

2) Privacy-preserving Opening: In the privacy-preserving
opening mode, the client expresses the zkOpen algorithm
in a zkSNARK circuit C and executes the zk.Prove algo-
rithm on the circuit C to obtain a proof π. Once the proof
π is shared with the proxy, the proxy is able to verify a
correct data opening by calling the zk.Verify function on
the proof π and public inputs. The zkOpen algorithm takes
as input private request and response plaintext chunks pt,
computes and matches encrypted counter blocks ecb, and
authenticates plaintext chunks by matching ecb values against
public commitments sECB. Notice that the authentication of
plaintext data remains independent of non-algebraic encryption
function calls and depends on cheap xor computations instead.
Efficiency is optimized as the commitment hash function H
can make use of zkSNARK-friendly algebraic structures (e.g.
H=MIMC) [22]. Last, the privacy-preserving opening mode
verifies authenticated plaintext data against the statement ϕ by
calling the function fϕ. This way, nothing except the statement
validity is revealed to the proxy.

tpOpen(sECB, IECB, iq , q, r, pt, ECB):

1. qchunks = q[IECB[: iq]]; rchunks = r[IECB[iq :]]
2. ptreq = pt[IECB[: iq]]; ptresp = pt[IECB[iq :]]
3. ecbreq = qchunks ⊕ ptreq; ecbresp = rchunks ⊕ ptresp

4. return: H(ECB) ?
=sECB& (ecbreq||ecbresp)

?
=ECB

zkOpen(pt, ECB; sECB, q, r, IECB, iq , m):

1. qchunks = q[IECB[: iq]]; rchunks = r[IECB[iq :]]
2. ptreq = pt[IECB[: iq]]; ptresp = pt[IECB[iq :]]
3. ecbreq = qchunks ⊕ ptreq; ecbresp = rchunks ⊕ ptresp

4. pECB = f⊕(ecbreq||ecbresp,m)

5. assert: sECB
?
=(pECB||H(ECB))&(ecbreq||ecbresp)

?
=ECB

6. assert: 1 ?
=fϕ(pt)

Fig. 5. Transparent (tpOpen) and privacy-preserving (zkOpen) commitment
opening algorithms, where H denotes the commitment function. The semi-
colon ; separates inputs of the zkOpen function into private (left side) and
public (right side) input arguments. The function fϕ validates input data
against a public statement ϕ.

VI. PERFORMANCE EVALUATION

The evaluation comprises a description of the software stack
in Section VI-A and provides a complete description and
representation of benchmarks in the Section VI-B. Based on
the performance metrics, we position the Janus type of TLS-
oracle with regard to usability and security against other types
of TLS-oracles in Section VII.

A. Implementation

We implemented the 3PHS by modifying the Golang cryp-
to/tls standard library2 and configured the NIST P-256 el-
liptic curve for the elliptic curve Diffie–Hellman exchange
(ECDHE). Our proof of concept implementation configures
TLS 1.3 with the cipher suite TLS AES 128 GCM SHA256
and we implement the ECTF and Multiplicative to Additive
(MtA) conversion algorithms with the Golang implementation
of the Paillier cryptosystem [25]. For a coherent Golang
implementation of the TLS-oracle Janus, we chose the mpc
library [26] to access secure 2PC based on garbled circuits, and
we chose the gnark framework [27] for the implementation
of our ZKP circuits. The branch of gnark was configured to
the latest available version v0.9.0-alpha and the underlying
crypto library gnark-crypto was set to the version v0.11.2.
We adjusted the mpc library to output single wire labels
if we execute 2PC circuits in the context of HVZK proofs
and we wrote all 2PC circuits in the mpc-specific multi-
party computation language (MPCL). For a broader range
of ZKP benchmarks, we executed ZKP circuits written in
gnark in all available backend systems groth16, plonk, and
plonkFRI, where plonkFRI does not depend on a trusted setup
of cryptographic parameters.

2https://pkg.go.dev/crypto/tls



TABLE II
SECURE COMPUTATION BENCHMARKS SEPARATED INTO OFFLINE AND ONLINE EXECUTION AND COMMUNICATION VALUES. WE SEPARATE

SEMI-HONEST, MALICIOUSLY SECURE, AND HVZK 2PC SYSTEMS WITH DASHED LINES. WE INDICATE MALICIOUSLY SECURE AND HVZK 2PC SYSTEMS
WITH AN ASTERISK ∗ AND THE SYMBOL Σ RESPECTIVELY. IN ZKP SYSTEMS, WE ABBREVIATE THE COMPILED CONSTRAINT SYSTEM (CCS), THE

PROVER KEY (PK), THE VERIFIER KEY (VK), THE PUBLIC WITNESS (PW), AND THE PROOF π, WHERE PK AND VK TOGETHER FORM THE COMMON
REFERENCE STRING (CRS) OF THE ZKP SYSTEM.

2PC Circuit Constraints (x106) Execution Offline Execution Online Communication Offline Communication Online

CXHTS 3.14 215.56 ms 144 ms 34 MB 110 kB
Ckm1 ,iv 5.17 361.98 ms 242.41 ms 54.04 MB 178 kB
C256 B

ECB2+
/ C16 kB

ECB2+
0.58 / 36.76 33.89 ms / 4.25 s 33.8 ms / 1.52 s 5.06 / 351.01 MB 58 kB / 2.02 MB

∗ ECTF - - 212.96 ms - 1.861 kB
∗ C256 B

tag / C2 kB
tag 4.04 / 29.01 285.98 ms / 2.42 s 492.24 ms / 3.78 s 52.06 / 378.02 MB 512 kB / 2 MB

Σ C256 B req, 16 kB resp
HVZKprivate

82.1 11.4 s 3 s 794.05 MB 274.13 kB

Σ C256 B req, 16 kB resp
HVZKtransparent

79.12 12.68 s 5.19 s 754.04 MB 274.13 kB

Execution Offline Execution Online Communication Offline Communication Online

ZKP Circuit Constraints (x103) Compile (s) Setup (s) Prove (s) Verify (ms) CCS, SRS (MB) PK (MB) VK (kB) π (B) PW (kB)

C256 B
zkOpen / C16 kB

zkOpen 13.6 / 853.5 0.05 / 2.78 0.71 / 37.17 0.047 / 2.11 1.07 / 2.5 2.9 / 239.7 2.27 / 143.48 9.1 / 513 128 1.09 / 64.06

B. Performance

All performance benchmarks have been collected on a
MacBook Pro configured with the Apple M1 Pro chip and
32 GB of memory. We average presented benchmarks over
ten executions.

1) Secure Computation Circuits: We present secure compu-
tation building blocks in Table II. The table compares circuit
complexities, execution times, and communication overhead
of 2PC and zkSNARK circuits, where execution times and
communication overhead is further divided into offline and
online benchmarks. Semi-honest 2PC circuits derive session
secrets vis the circuits CXHTS, Ckm1 ,iv in milliseconds and
compute ECBs via the circuit CX

ECB2+
for a 16 kB record

in 1.52 seconds. For maliciously secure 2PC computations,
the interesting fact to notice is that the AEAD tag circuit
Ctag is efficient for small request sizes and scales sufficiently
but not ideally for larger request sizes. The overhead in the
circuit Ctag is introduced by the algebraic structure of the
Galois field polynomials in GF(2128), which is in conflict with
the binary computation logic of boolean GCs. The related
works [3], [8] propose a scalable and Oblivious Transfer
(OT)-based computation of the AEAD tag, which we consider
as future work to improve our implementation. Concerning
HVZK circuits, we can see that the transparent protocol mode
with circuit CHVZKtransparent introduces more overhead compared
to the privacy-preserving mode with circuit CHVZKprivate . This
behavior is expected because, the computation of the parity
checksum on ECBs through f⊕ is less complex compared to
computing a SHA256 hash on ECBs. Further, we generated
the pseudorandom masks of the parity checksum inside the
circuit CHVZKprivate based on a separate counter mode evaluation
of AES128. This way, we received about double as many
constraints and execution delays but saved the OT scheme
to communicate 16.256 kB of data. With interest to run the
Janus protocol as fast as possible, we evaluate the ZKP circuits
of Table II using the groth16 backend. As such, the privacy-
preserving opening of TLS 1.3 data takes around 2.11 seconds
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Fig. 6. Scalability analysis of zkSNARK circuits, where solid, dashed, and
dotted lines indicate zero-knowledge proof computations based on the groth16,
plonk, and plonkFRI backends respectively. Lines closer to the lower right
corner are better and prove more data in less time.

for an entire record with 16 kB. In comparison, the transparent
opening of 16 kB takes 0.05 milliseconds if the opening is
evaluated with the SHA256 hash.

The groth16 backend achieves the best execution times
among gnark-supported proof systems (cf. Section VI-B2) at
the cost of requiring a trusted setup. Among zkSNARK proof
systems for TLS-oracles, we expect groth16 to remain relevant
because of its maturity and existing efforts towards automating
trusted setup ceremonies [28]. To clarify the behavior of
different proof systems concerning different record sizes, we
present a scalability analysis of the zkOpen circuit next.

2) Scalability Trade-off: We evaluate the zkOpen circuit by
scaling circuit input sizes among different proof systems (cf.
Figure 6). The scalability benchmarks show a linear relation
between prove times and input sizes for every proof system.
Within 4 seconds, the groth16 backend proves 8 times more
data than the plonk backend, and 320 times more data than
the plonkFRI backend. To contrast the scalability benefits of
the Janus protocol against the TLS 1.3 ECB commitment
approach of the works [3], [8], [9] (e.g. decrypt-from-pad hash
in [9]), and due to the fact that these related works have not
provided a zkSNARK opening analysis yet, we compare the



TABLE III
END-TO-END BENCHMARKS OF THE Janus PROTOCOL AND TLS 1.3 AS THE BASELINE. FOR THE LAN SETTING, WE ASSUME A ROUND-TRIP-TIME

RTT=0 MS AND A TRANSMISSION RATE Rt=1 GBPS. VALUES MARKED WITH ” TAKE ON THE VALUE OF THE PREVIOUS ROW.

Communication (kb) Execution LAN (s)
Protocol Offline Handshake Record Post-record Offline Handshake Record Post-record
TLS 1.3 - 1.94 16.28 - - 0.016 0.001 -
Janusprivate 1.71 (GB) 223.8 764 338.3 53.21 0.634 0.769 5.15
Janustransparent 1.28 (GB) ” ” 274.13 13.78 ” ” 5.19

evaluation of the zkOpen circuit against an ECB commitment
based on the SHA256 hash function. We deem the SHA256
hash as suitable because it relies on non-algebraic structures
and can be efficiently computed in the 2PC approaches that
are found in the related works. Thus, compared to an ECB
commitment opening based on the SHA256 hash in the
groth16 proof system (cf. solid red line in Figure 6), the Janus
protocol achieves 10 times faster opening benchmarks.

To compare our protocol against private and naive data
opening circuits described in the early works [2], [4], we
compare our benchmarks against our open sourced gnark im-
plementation of AES128 (cf. solid black line in Figure 6). Data
opening circuits which compute TLS encryption functions are
compatible with TLS 1.2 and TLS 1.3 and, according to our
analysis, achieve similar benchmarks as our protocol with with
the plonkFRI zkSNARK backend. We further interpret our
scalability results in the Section VII-B , where we position
the Janus protocol in the context of TLS-oracles based on the
achieved benchmarks.

3) End-to-end Performance: We present end-to-end perfor-
mance benchmarks in Table III and evaluate a typical API
traffic transcript which encompasses a 256 byte request and a
16 kilo byte response. In the evaluation scenario, only client
application traffic secrets are derived because in the case of a
single response, the client can compute response ECBs after
obtaining the session secrets of the proxy. Notice that in the
handshake phase, the circuit CXATS must be called twice to
compute SHTS and CHTS. Concerning the post-record phase,
the transparent protocol mode does not rely on any zkSNARK
computations but instead, depends on the additional ECB hash
computation which is verified in the HVZK circuit. The end-
to-end benchmarks build upon the benchmarks distribution of
our measured secure computation building blocks of Table II
and the TLS 1.3 baseline reference. Additionally, we measure
321 milliseconds for the integrated 3PHS and a proceeding
ECTF conversion. The SHTS and certificate verification of
the handshake phase takes 9.26 milliseconds and the witness
extraction of the privacy-preserving Janus mode takes 4.47
milliseconds.

The resulting end-to-end benchmarks show that the ZKP
preprocessing dominates offline execution times. The compu-
tation overhead of the Janus protocol mainly affects the post-
record phase such that clients are able to efficiently collect
data throughout the record phase. With regard to the size
of privately opened data, our post-record execution timings
establish new standards for privacy-preserving TLS-oracles.

Our results serve as a comparison baseline for related works
which, until now, miss out on a complete evaluation of privacy-
preserving opening functions.

VII. DISCUSSION

The discussion presents related works, positions the Janus in
the context of TLS-oracles with regard to supported properties,
and summarizes remaining limitations.

A. Related Works

We outline our contributions in contrast to related works as
follows. Our first protocol optimization follows the garble-
then-prove paradigm of the work [20] but allows the ex-
ecution of the garble-then-prove paradigm under different
assumptions. In contrast to the work [20], TLS 1.3 allows
the mutual verification and authentication of the SHTS secret.
With access to the authenticated and correct SHTS secret,
the Janus protocol verifies 2PC input correctness by matching
2PC inputs against the known parameter of SHTS. With this
optimization, the Janus protocol does not rely on employing
a semi-honest 2PC system with authenticated garbling, which
is used in the work [20]. Instead, the Janus protocol can take
advantage of the more efficient and highly optimized semi-
honest 2PC systems based on boolean garbled circuits [13],
which increases our overall protocol efficiency. We further
notice that the reduction to a semi-honest 2PC setting without
the requirement to employ an authenticated garbling technique
allows the deployment of the HVZK proof system based
on semi-honest 2PC [10]. The HVZK proof system of the
work [10] can be used to efficiently evaluate non-algebraic
algorithms. In our work, we exploit the benefits of the HVZK
proof system to optimize the zkSNARK circuit complexity of
the privacy-preserving data opening function. Related works,
without access to the HVZK proof system propose privacy-
preserving data openings based on zero-knowledge proof as
follows. The work [9] leverages the structure of AEAD stream
ciphers and demands clients to commit to stream cipher ECBs
via a pad commitment. The works [3], [8] require parties to
embed a commitment to encoded 2PC outputs into the 2PC
interaction that computes ECBs. The last relevant approach
converts authenticated session secrets into zkSNARK-friendly
commitments to achieve efficient private data openings [20].
All approaches introduce interesting trade-offs, which our
work partly improves upon.

Concerning the commitment to AEAD stream ciphers
ECBs, the ZKP computation involves the computation of TLS



legacy algorithms (e.g., AES128), which are of non-algebraic
structure. The related work [9] notices that legacy algorithms
contribute to over 40% of client ZKP computation times and
improves the efficiency of their protocol by putting the proof
computation of the pad commitment into a pre-computing
phase. Our work follows the approach to compute on stream
cipher ECBs and introduces a commitment string construction
based on a parity checksum. In detail, our parity checksum ag-
gregates selected ECBs and interleaves the ECB commitment
string with the disclosure of the parity checksum secret mask.
As such, we verify the masked parity checksum on ECBs in
the HVZK proof system and let clients prove the zkSNARK-
friendly commitment string and the parity checksum in a
zkSNARK proof system (cf. red and yellow boxes in Figure 1).
Our decoupled verification of the commitment string with the
help of the parity checksum yields an performance benefit
by a factor 75x when opening 1 kB of data. Notice that our
numbers are based on measuring non-optimized ZKP circuits
of legacy algorithms.

Concerning the commitment to 2PC output encodings of
the ECB computation, as suggested by the works [3], [8], the
client faces the following limitation. The output encodings
of ECBs prevent the client from accessing TLS plaintext
data such that the client remains with two options. With
knowledge of the plaintext structure, the client commits to a
selection of output encodings, which correspond to the ECBs
of interest for the privacy-preserving data opening. Without
knowledge of the plaintext structure, the client uses a merkle
tree commitment structure to commit to all output encodings
and selectively opens ECBs in the ZKP circuit via merkle
tree inclusion proofs [3]. Due to frequent updates, API data
is unlikely to remain static over a longer period of time
such that the scenario of not knowing plaintext structures
prevails. And, the introduction of the merkle tree structure
increases the complexity of privacy-preserving data openings,
which scales with the amount of required commitments. Our
work, in contrast, allows clients to access plaintext data before
determining the selection of ECBs for the commitment string
while remaining efficient.

The conversion of authenticated session secrets into
zkSNARK-friendly commitments relies on an additive homo-
morphic commitment scheme [20]. In contrast, our protocol
computes the commitment string based on zkSNARK-friendly
hash-based commitment structures. According to state-of-the-
art studies [24], hash-based commitment structures outperform
additive homomorphic commitment structures which puts our
work ahead.

B. Positioning of the Janus Protocol.

The most recent work on efficient TLS-oracles [20] achieves
TLS 1.2 and TLS 1.3 compatibility and converts authenti-
cated garbling parameters into a zkSNARK efficient Pedersen
commitment. The Pedersen commitment can be used to open
authenticated ciphertext chunks in a privacy-preserving data
opening. Even though the work [20] does not benchmark
a zero-knowledge opening of the Pedersen commitment, we

expect their approach to achieve slightly less efficient privacy-
preserving data openings. Because, our work does not depend
on additive homomorphic commitment structures, which until
today, remain less efficient compared to hash-based commit-
ment structures [24]. Thus, in the context of TLS 1.3, we
see the Janus protocol ahead in terms of scalable ZKP data
openings compared to the work [20]. A detailed comparison
of both protocols is a topic of future work.

Due to the fact that our work achieves fast execution times
with low communication cost in the handshake and record
phase (cf. Table III), the Janus protocol is an interesting
candidate to prove data of longer talking TLS 1.3 sessions.
With the Janus protocol, users can efficiently collect TLS
1.3 data in long TLS sessions, and, in the end, selectively
and efficiently decide which data to open. Further, due to
the efficient privacy-preserving opening benchmarks, our work
appears as a good candidate to attest to guaranteed TLS 1.3
delivery of larger data objects such as confidential documents.

C. Limitations
The Janus protocol is tailored to the characteristics and con-

ditions found in TLS 1.3 and, as a consequence, is compatible
with TLS 1.3 only. The second limitation is that in the current
state of our implementation, the unoptimized computation of
the request authentication tag includes algebraic structures
which negatively impact the performance. The negative impact
translates into a noticeable performance decrease because the
Janus protocol depends on a maliciously secure 2PC interac-
tion to compute request authentication tags. Last, due to the
fact that the related works [3], [8], [20] withhold benchmarks
of privacy-preserving TLS data openings, our performance
results remain somewhat isolated and only allow us to make
educated guesses about how our work behaves in comparison
to other approaches (cf. Section VII-B).

VIII. CONCLUSION

In this work, we investigate how security characteristics and
conditions of TLS 1.3 can be leveraged to complement security
requirements of TLS-oracles. We find that the adversarial
behavior in the two-party computation setting can be partly
reduced to the assumption of semi-honest adversaries while
maintaining a threat model with security against a malicious
prover and verifier. Further, we decouple the structure of
TLS 1.3 stream ciphers with a commitment scheme and a
parity checksum such that TLS 1.3 integrity of the client can
be verified efficiently in dedicated proof systems. Thus, our
system sets new standards for private TLS 1.3 data proofs.
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APPENDIX

A. Cryptographic Building Blocks

We describe algorithmic constructions by introducing se-
curity properties and provide concise tuples of algorithms to
explain input to output parameter mappings. For cryptographic
protocols, we describe the inputs and outputs which are
provided and obtained by involved parties. Additionally, we
mention the security properties of exchanged parameters.

1) Three-party Handshake: In the 3PHS (cf. Figure 7), each
party picks a secret randomness (s, v, p) and computes its
encrypted representation (S, V , P ). By sharing V + P = X
with the server in the CH, the server derives the session secret
Zs = s · X , which corresponds to the TLS 1.3 secret DHE.
When the server shares S in the SH, both the proxy and client
derive their shared session secrets Zv and Zp respectively such
that Zs = Zv + Zp holds. In the end, neither the client nor
the verifier have full access to the DHE secret of the TLS
handshake phase. The 3PHS works for both TLS versions but
in Figure 7, we show a TLS 1.3-specific configuration based
on the ECDHE, where the parameters (e.g. Zp) are EC points
structured as P = (x, y).



Client / ProverProxy / VerifierServer

Fig. 7. Illustration of the 3PHS and exchanged cryptographic parameters
between the server, the proxy, and the client. The gray box at the bottom
indicates the relationship between shared client-side secrets Zv and Zp, which
corresponds to the session secret Zs of the server.

2) Digital Signatures: A digital signature scheme is defined
by the following tuple of algorithms, where

• ds.Setup(1λ) −→ (sk, pk) takes in a security parameter λ
and outputs a public key cryptography key pair (sk, pk).

• ds.Sign(sk, m) −→ (σ) takes in a secret key sk and
message m and outputs a signature σ.

• ds.Verify(pk, m, σ) −→ {0, 1} takes in the public key pk,
a message m, and a signature σ. The algorithm outputs
a 1 or 0 if or if not the signature verification succeeds.

By generating a signature σ on a fixed size message m with
secret key sk, any party with access to the public key pk is able
to verify message authenticity. Digital signatures guarantee
that only the party in control of the secret key is capable of
generating a valid signature on a message.

3) Keyed-hash or Hash-based Key Derivation Function: A
HKDF function converts parameters with insufficient random-
ness into suitable keying material for encryption or authenti-
cation algorithms. The HKDF scheme is defined by a tuple of
algorithms, where

• hkdf.ext(ssalt, kikm) −→ (kpr) takes in a string ssalt, input
key material kikm, and returns a pseudorandom key kpr.

• hkdf.exp(kpr, sinfo, l) −→ (kokm) takes in a pseudorandom
key kpr, a string sinfo and a length parameter l and returns
output key material kokm of length l.

Both functions hkdf.ext and hkdf.exp internally use the hmac
algorithm (cf. Formula 2), which takes in a key k, a bit string
m, and generates a string which is indistinguishable from
uniform random strings. The hmac algorithm requires a hash
function H with input size b (e.g. b=64 if H=SHA256).

hmac(k,m) =H((k′ ⊕ opad)||H((k′ ⊕ ipad)||m))

with k′ = H(k), if len(k) > b

and k′ = k, else
(2)

4) Authenticated Encryption: AEAD provides communica-
tion channels with confidentiality and integrity. This means,
exchanged communication records can only be read by parties
with the encryption key and modifications of encrypted data
can be detected. An AEAD encryption scheme is defined by
the following tuple of algorithms, where

• aead.Setup(1λ) −→ (ppaead) takes in the security param-
eter λ and outputs public parameters ppaead of a stream
cipher scheme E and authentication scheme A.

• aead.Seal(ppaead, pt, k, aD) −→ (ct, t) takes in ppaead, a
plaintext pt, a key k, and additional data aD. The output
is a ciphertext-tag pair (ct, t), where ct = E(pt) and
t = A(pt, k, aD, ct) authenticates ct.

• aead.Open(ppaead, ct, t, k, aD) −→ {pt, ∅} takes in
ppaead, a ciphertext ct, a tag t, a key k, and additional
data aD. The algorithm returns the plaintext pt upon
successful decryption and validation of the ciphertext-tag
pair, otherwise it returns an empty set ∅.

5) Secure Two-party Computation: Secure 2PC allows two
mutually distrusting parties with private inputs x1, x2 to
jointly compute a public function f(x1, x2) without learning
the private input of the counterparty. With that, secure 2PC
counts as a special case of multi-party computation (MPC),
with m = 2 parties and the adversary corrupting t = 1
parties [29]. The adversarial behavior model in 2PC protocols
divides adversaries into semi-honest and malicious adversaries.
Semi-honest adversaries honestly follow the protocol specifi-
cation, whereas malicious adversaries arbitrarily deviate. In the
following, we introduce secure 2PC protocols which are used
in this work, and briefly introduce cryptographic constructions
which are used to instantiate the secure 2PC protocols.

a) MtA Conversion based on Homomorphic Encryption:
The secure 2PC MtA protocol converts multiplicative shares
x, y into additive shares α, β such that α+β = x ·y = r yield
the same result r. The MtA protocol exists in a vector form,
which maps two vectors x, y, with a product r = x · y, to two
scalar values α, β, where the sum r = α + β is equal to the
product r. The functionality of the vector MtA scheme can be
instantiated based on Paillier additive Homomorphic Encryp-
tion (HE) [30]. Additive HE allows parties to locally compute
additions and scalar multiplications on encrypted values. With
the functionality provided by the Paillier cryptosystem, we
define the vector MtA protocol, as specified in the work [31],
with the following tuple of algorithms, where

• mta.Setup(1λ) −→ (skP ,pkP ) takes in the security param-
eter λ and outputs a Paillier key pair (skP ,pkP ).

• mta.Enc(x,skP ) −→ (c1) takes in a vector of field ele-
ments x=[x1, . . . , xl] and a private key skP and outputs
a vector of ciphertexts c1=[EskP

(x1), . . . , EskP
(xl)].

• mta.Eval(c1,y,pkP ) −→ (c2,β) takes in the vector of
ciphertexts c1=[c11, . . . , c1l], a vector of field elements
y=[y1, . . . , yl], and a public key pkP . The output is a
tuple of a ciphertext c2 = c1y1

1 · . . . · c1yl

l ·EpkP
(β′) and

the share β = −β′, where β′ $← Zp.
• mta.Dec(c2,skP )−→ (α) takes as input a ciphertext c2 and

a private key skP and outputs the share α=DskP
(c2).

The tuple of algorithms is supposed to be executed in the
order where party p1 first calls mta.Setup and mta.Enc. The
function Ek(z) is a Paillier encryption of message z under
key k. After p1 shares the public key pkP and the vector
of ciphertexts c1 with party p2, then p2 calls mta.Eval and



ECTF between two parties p1 and p2.

inputs: P1 = (x1, y1) by p1, P2 = (x2, y2) by p2.
outputs: s1 to p1, s2 to p2.

p1: (sk,pk)=mta.Setup(1λ); send pk to p2
p1: ρ1

$← Zp; c1=mta.Enc([−x1,ρ1], sk); send c1 to p2

p2: ρ2
$← Zp;(c2,β)=mta.Eval(c1,[ρ2,x2],pk);δ2=x2 · ρ2+β;

send (c2,δ2) to p1
p1: α=mta.Dec(c2,sk);δ1=−x1 ·ρ1+α;δ=δ1+δ2;η1=ρ1 ·δ−1;

c1=mta.Enc([−y1,η1],sk); send (c1,δ1) to p2
p2: δ=δ1+δ2; η2=ρ2 ·δ−1; (c2, β)=mta.Eval(c1,[η2,y2],pk);

λ2=y2 · η2+β; send c2 to p1
p1: α=mta.Dec(c2,sk); λ1=−y1 · η1 + α;

c1=mta.Enc([λ1],sk); send c1 to p2
p2: (c2,β)=mta.Eval(c1, [λ2], pk); s2 = 2 · β + λ2

2 − x2;
send c2 to p1

p1: α=mta.Dec(c2,sk); s1 = 2 · α+ λ2
1 − x1

Fig. 8. The ECTF algorithm converts multiplicative shares in form of EC point
x-coordinates from points P1, P2 ∈ EC(Fp) to additive shares s1, s2 ∈ Fp.
It holds that s1+s2 = x, where x is the coordinate of the EC point P1+P2.

shares the ciphertext c2 with p1. Last, p1 calls mta.Dec, where
Dk(z) is a Paillier decryption of message z under key k. If the
algorithms are executed in the described order, then party p1
inputs private multiplicative shares in the vector x and obtains
the additive share α. Party p2 inputs the private vector of
multiplicative shares y and obtains the additive share β. In
the end, the relation x · y = α+β holds, and neither the party
p1 nor the party p2 learn anything about the private inputs of
the counterparty.

b) ECTF Conversion: The ECTF algorithm is a secure
2PC protocol and converts multiplicative shares of two EC x-
coordinates into additive shares [2], [4]. Figure 8 shows the
computation sequence of the ECTF protocol which makes use
the vector MtA algorithm defined in Section A5a. By running
the ECTF protocol, two parties p1 and p2, with EC points P1,
P2 as respective private inputs, mutually obtain additive shares
s1 and s2, which sum to the x-coordinate of the EC points sum
P1+P2. TLS-oracles use the ECTF protocol to transform the
client-side EC secret shares Zv and Zp into additive shares sv
and sp [2], [4]. Since the relation sv + sp = x for (x, y) =
Zs holds, it becomes possible to follow the TLS specification
by using secure 2PC based on boolean garbled circuits with
bitwise additive shares as input.

c) Oblivious Transfer: Secure 2PC based on boolean
GCs depends on the 1-out-of-2 OT1

2 sub protocol to secretly
exchange input parameters of the circuit [32]. The OT1

2 in-
volves two parties where party p1 sends two messages m1,m2

to party p2 and does not learn which of the two messages mb

is revealed to party p2. Party p2 inputs a secret bit b which
decides the selection of the message mb. An OT scheme is
defined by a tuple of algorithms, where

• ot.Setup(1λ) −→ (ppOT) takes as input a security pa-
rameter λ and outputs public parameters ppOT of a
hash function H and encryption schemes, where E1/D1

encrypts/decrypts based on modular exponentiation and
E2/D2 encrypts/decrypts with a block cipher.

• ot.TransferX(ppOT) −→ (X) takes in ppOT, samples x
$←

Zp, and outputs an encrypted secret X = E1(x).
• ot.TransferY(ppOT, X , b) −→ (Y , kD) takes in ppOT, a

cipher X , a bit b, and samples y
$← Zp. The output is a

decryption key kD = Xy and a cipher Y encrypting as
Y = E1(y) if b ?

= 0, or as Y = X · E1(y) if b ?
= 1.

• ot.Encrypt(ppOT, X , Y , m1, m2, x) −→ (Z) takes in ppOT,
Y , and derives k1 = H(Y x), k2 = H(( YX )x). The output
is a vector of ciphers Z = [E2(m1, k1), E2(m2, k2)].

• ot.Decrypt(ppOT, Z, kD, b) −→ (mb) takes in ppOT, key
kD, the bit b, and a vector of ciphers Z = [Z1, Z2]. The
output is the message mb = D2(Zb, kD).

In the OT1
2 protocol, party p1 calls ot.Setup and ot.TransferX,

and sends the public parameters and cipher X to p2. Party
p2 calls ot.TransferY, locally keeps the decryption key and
shares the cipher Y with p1. Now, p1 shares the output of
ot.Encrypt with p2, who obtains mb by calling ot.Decrypt.

d) Semi-honest 2PC with Garbled Circuits: Our de-
scription of a GC scheme requires additional notations.
We express a GC scheme with the parameters GC =
{d, l, w, Td-l, Tl-w, T

G
l-w, CG}, where d is a bit string of data,

which we further divide into input, intermediate, and output
strings d = {din, dinterm, dout}. Since input data is secret
shared between two parties, we divide input bit strings into
din = dp1

in ||d
p2

in . We divide labels into input, intermediate, and
output labels l = {lin, linterm, lout} and break down input labels
into lin = {ld

p1
in

in , l
¬d

p1
in

in , l
d
p2
in

in , l
¬d

p2
in

in }, where labels correspond
to previously introduced bit strings. Last, we divide bit-to-
label tables into encoding, evaluation, and decoding mappings
Td-l = {T enc

din-lin
, T eval

dinterm-linterm
, T dec

lout-dout
}. We denote the boolean

garbled circuits as CG, with boolean logic gates AND and
XOR, and wires w. The tables Tl-w, T

G
l-w refer to label-to-wire

and garbled label-to-wire mappings respectively. The garbled
table TG

l-w encrypts every output wire label under input wire
label combinations of the same gate. Finally, we define secure
2PC based on boolean garbled circuits by extending our OT
definition of Section A5c with the tuple of algorithms, where

• gc.Setup(1λ) −→ (ppGC) takes in the security parameter λ
and outputs public parameters ppGC.

• gc.Garble(ppGC, CG, din) −→ (l, Tl-w, T
G
l-w, Td-l) takes as

input ppGC, a boolean circuit CG, the input bit string din,
and randomly samples rG, l

$← Zn. The output consists of
labels l, the undistorted and garbled label-to-wire tables
Tl-w, T

G
l-w, and the bit-to-label table Td-l.

• gc.Evaluate(ppGC, ld
p1
in

in , ld
p2
in

in , TG
l-w, T dec

lout-dout
) −→ (dout) takes

in ppGC, input labels l
d
p1
in

in , ld
p2
in

in , the garbled label-to-wire
table TG

l-w, a label-to-bit decoding T dec
lout-dout

, and outputs
the bit string dout.

On a high-level, a 2PC system based on boolean garbled
circuits involve a party p1 as the garbler and party p2 as
the evaluator. Party p1 calls gc.Setup and gc.Garble, where
p1 loops over every wire of the circuit CG and assigns two



randomly generated labels to every wire. Each label pair at
a wire correspond to a (0,1) bit pair such that in the end,
the tables Td-l and Tl-w provide a bit-to-wire mapping of all
possible bit combinations. Further, the wires w and with that
table Tl-w encode the computation logic of CG. Next, p1 uses
the randomness rG to turn Tl-w into a garbled representation
TG
l-w, and determines labels l

d
p1
in

in at input wires according to
input bits dp1

in . Subsequently, p1 sends l
d
p1
in

in ,T dec
lout-dout

,TG
l-w to p1.

Next, to obtain the remaining input labels l
d
p2
in

in , p1 and p2
interact with the OT1

2 scheme defined in Section A5c. Because,
p1 is not allowed to learn the private input dp2

in of p2. Hence,
per input bit of the string dp2

in , p1 sends labels encrypted by
ot.Encrypt as messages (m1=l̂d

p2
in

in , m2=l̂¬d
p2
in

in ) to p2. Party p2

obtains labels ld
p2
in

in =md
p2
in

by calling ot.Decrypt, and, with that,

p1 does not learn any bits dp2

in . With access to the labels l
d
p1
in

in ,
l
d
p2
in

in , p2 is able to evaluate TG
l-w inside gc.Evaluate and, with

the label-to-bit decoding table T dec
ldout -dout

, p2 translates computed
output labels back to the bit string dout.

e) Malicious Secure 2PC with Dual Execution: The
malicious secure 2PC paradigm of the work [3], [14] runs two
instances of a semi-honest 2PC evaluation of a circuit C, where
the proxy and client successively act as the garbler. Afterwards,
the protocol runs a secure validation phase and with that a
mutual output label equality check. The idea behind the secure
validation phase is as follows. If the client as the evaluator
obtains output labels lc and bits b from a correctly garbled
circuit of the proxy, then the client knows which output labels
lp according to b a proxy must evaluate on a correctly garbled
circuit of the client. Thus, if the client shares a commitment in
form of a hash H(lp||lc) with the proxy after the first circuit
evaluation, and the proxy returns the same hash H(lp||lc) after
the second circuit evaluation, then the client is convinced of
a correct circuit garbling. Because, if the proxy incorrectly
garbles a circuit, then the client obtains wrong bits b′. And if
the client correctly garbles a circuit, the proxy obtains correct
bits b. The incorrect bits b′ lead the client to a selection of
labels l′c and l′p and the correct bits b lead the proxy to a correct
selection of lp ̸= l′p. However, since the proxy does not know
which incorrect output labels l′c the client evaluated, it cannot
predict either of the incorrect output labels l′c, l

′
p, which are

expected by the client. Only when using a correctly garbled
circuit, the same bits b lead both parties to the same labels
which have been separately samples at random.

6) Cryptographic Commitments: A cryptographic commit-
ment or simply commitment hides committed data in a com-
mitment string that can only be computed based on an explicit
and unequivocal mapping of input data. The computation of
the commitment string based on valid input data is called the
opening of the commitment. Commitments are characterized
by two properties. The binding property prevents an adversary
to find a second valid opening of the commitment. The
hiding property guarantees that the commitment does not leak
information of committed data.

Cryptographic commitments are used to construct commit-

ment schemes, which we define by the following tuple of
algorithms. The function

• c.Commit(x) −→ (c, w) takes as input the data x and
outputs a commitment string c and a witness w.

• c.Open(w, x, c) −→ {0, 1} takes as input the witness w,
the committed data x, and the commitment c and outputs
a one if the only valid pair (w, x) is provided as input.

Commitment schemes are often used in protocols which rely
on ZKP cryptography. Using a ZKP to compute the c.Open
function allows a prover to convince the verifier from knowing
a valid commitment opening without revealing the witness.

7) Zero-knowledge Proof Systems: Proof systems allow a
prover p to convince a verifier v of whether or not a statement
is true. In theory, proof systems rely on a NP language L
and the existence of an algorithm RL, which can decide
in polynomial time if w is a valid proof for the statement
x ∈ L by evaluating RL(x,w)

?
= 1. The assumption is that

for any statement x ∈ L, there exist a valid witness w and
no witness exists for statements x /∈ L. In order for proof
systems to work, three properties of completeness, soundness,
and zero-knowledge must hold. Completeness ensures that an
honest prover convinces an honest verifier by presenting a
valid witness for a statement. Soundness guarantees that a
cheating prover cannot convince a honest verifier by presenting
an invalid witness for a statement. Zero-knowledge guarantees
that a malicious verifier does not learn anything except the
validity of the statement. Beyond the three properties, the
special notion of HVZK considers a semi-honest verifier, and,
when applied, improves efficiency of the proof system [33],
[34].

In practice, zero-knowledge proof systems are implemented
by a tuple of algorithms, where

• zk.Setup(1λ, C) −→ (CRSC) takes in a security parameter
and algorithm, and yields a common reference string,

• zk.Prove(CRSC , x, w) −→ (π) consumes the CRS, public
input x, and the private witness w and outputs a proof π.

• zk.Verify(CRSC , x, π) −→ {0, 1} yields true (1) or false
(0) upon verifying the proof π against public input x.

The tuple of algorithms achieves the properties of a zero-
knowledge proof systems. If zero-knowledge proof frame-
works depend on cryptographic constructions that require a
trusted setup (e.g. use pairings or KZG commitments), the
zk.Setup function must be called by a trusted third party. For
transparent instantiations of zero-knowledge proof frameworks
(e.g. based on FRI commitments), the zk.Setup function can
be called by either party. The function zk.Prove and zk.Verify
are called by the prover and verifier respectively.

a) Zero-Knowledge Succinct Non-Interactive Argument
of Knowledge: A zkSNARK proof system is a zero-knowledge
proof system, where the four properties of succinctness, non-
interactivity, computational sound arguments, and witness
knowledge hold [35]. Succinctness guarantees that the proof
system provides short proof sizes and fast verification times
even for lengthy computations. If non-interactivity holds (e.g.,
via the Fiat-Shamir security [36]), then the prover is able to



convince the verifier by sending a single message. Computa-
tional sound arguments guarantee soundness in the zkSNARK
system if provers are computationally bounded. Last, the
knowledge property ensures that provers must know a witness
in order to construct a proof.

b) HVZK based on Garbled Circuits: Interestingly, zero-
knowledge is a subset of secure 2PC. For instance, a ZKP
can be computed by using GC-based 2PC, where only one
party inputs private data. In this work, we make use of the
HVZK proofs built with boolean GCs in a semi-honest 2PC
setting [10]. In this setting, the garbler and constructor of the
GC acts as the verifier and is assumed to behave semi-honest.
The GC evaluates a function f , which either yields zero or
one. By running the OT protocol for each witness bit, the
evaluator as the prover obtains garbled input labels without
revealing any witness bits to the garbler. After the prover
evaluates the GC and returns the wire label corresponding to
a one, the verifier is convinced of the proof. Formal security
proofs of completeness, soundness, and HVZK of the HVZK
proof system based on garbled circuits can be found in the
work [10].

B. Security Analysis

The security analysis audits the properties of session-
integrity, session-confidentiality, session-authenticity, and
data-provenance under the assumption that MITM attacks
are feasible. Other system goals come for free by following
established approaches of TLS-oracles. For our theorems, we
assume that the security guarantees provided by TLS 1.3 [11]
hold.

1) Handshake Phase: The Janus protocol ensures that,
throughout the TLS handshake phase, the properties
of session-confidentiality, session-integrity, and session-
authenticity hold.

a) Session Confidentiality: In the handshake phase, semi-
honest 2PC circuits are executed as follows. Before evaluating
the circuit CXHTS with labels that output the secret SHTS, the
client expects the encrypted SF message and discloses the 2PC
output SHTS if the verification of SF and the server certificate
succeeds. The evaluation of CXHTS for CHTS happens after the
exchange of SHTS.

Theorem 1. Under a maliciously secure OT scheme and a
collision resistant hash function, the semi-honest 2PC evalu-
ation of CXHTS with subsequent TLS 1.3-specific computations
achieves session-confidentiality against a probabilistic poly-
nomial time adversary A which maliciously garbles CXHTS.

Proof 1. If the adversary maliciously garbles CSHTS such
that the output yields SHTS=0, then the adversary is able
to generate server-side handshake traffic keys and present
a forged but conform encryption of the SF message to the
client. The adversary must further forge the server certificate
(SC) message and the SCV message to force the client into
passing the SHTS validation. However, the adversary cannot
learn any information on the client secret share s2 because
receiving SHTS=0 does not leak any information of s2. If

the adversary maliciously garbles CSHTS and sets the output
SHTS to s2 or to an information leakage Ls2 on s2 (e.g.
statistic), then the adversary must correctly guess Ls2 , s2 or
find a hash collision on the inputs Ls2 , s2. Otherwise, the
adversary cannot generate forged messages which pass the
SHTS validation at the client. The key independence property
of TLS 1.3 prevents the adversary from evaluating a guess
on s2 with the help of Ls2 , which reduces the challenge for
the adversary to the hardness of guessing s2. Thus, with a
deployment of a collision resistant hash function and a OT
scheme which mutually protects the 2PC inputs, the property
of session-confidentiality is preserved when evaluating CSHTS
according to the Janus protocol.

The semi-honest 2PC evaluation of the circuit CCHTS is
secure under the same cryptographic schemes as the evaluation
of the circuit CSHTS. The malicious secure OT scheme protects
the client input secret share and CHTS is not disclosed to the
adversary. Instead, the client follows the TLS specifications
and derives hash-based keying material from CHTS to even-
tually disclose public AEAD parameters (ciphertext and au-
thentication tag) to the adversary in form of AEAD protected
handshake messages. A malicious garbling of CCHTS leads
from a protected propagation of CHTS=s2 or CHTS=Ls2 to
an indistinguishable set of AEAD parameters at the adversary.
Thus, a semi-honest deployment of the circuit CCHTS preserves
session-confidentiality, because the adversary remains with a
negligible probability of guessing s2.

b) Session Integrity: Handshake session-integrity pre-
vents an adversary from deviating the TLS 1.3 handshake
specification and provides honestly operating parties with an
identifiable abort option when detecting misbehavior of the
adversary.

Theorem 2. Under an honest server, and a secret shared
client session, the Janus protocol preserves TLS 1.3 session-
integrity against a probabilistic polynomial time adversary A
which deviates from the TLS 1.3 specification by modifying the
traffic transcript or by providing false inputs into semi-honest
2PC computations.

Proof 2. Injecting false inputs into the semi-honest 2PC
circuit CXHTS leads to a computation of SHTS’ and CHTS’,
which deviate from server-side secrets SHTS and CHTS. As
a consequence, the server is incapable of processing non-
compliant AEAD parameters which have been derived under
false session secrets. The same session abort happens if the
adversary modifies the traffic transcript without full access to
the secret shared client session.

c) Session Authenticity: In the handshake phase, we
investigate session-authenticity with regard to unforgeability
of server-side PKI certificates and transcript forgeries.

Theorem 3. Under the honest server assumption and a secure
digital signature scheme, the Janus protocol achieves session-
authenticity against a probabilistic polynomial time adversary
A which mounts MITM attacks and replays previously estab-
lished TLS 1.3 sessions.



Proof 3. Agreeing on a cipher suite before instantiating a
TLS 1.3 session, and setting a key share in the CH message
allows the server compute all TLS 1.3 session secrets. Subse-
quently, the server immediately shares server-side handshake
messages back to the client. If the proxy intercepts correct
SF, SCV, and SC messages before participating in the 2PC
computation of SHTS, any subsequent forged but compliant
server-side handshake messages of the adversary are not
accepted by the proxy anymore. Hence, the adversary must
disclose the correct SHTS secret to proceed in our protocol.
The proxy further detects forged server-side messages because
the adversary cannot share compliant server-side handshake
messages before evaluating SHTS. Our system model prevents
the adversary from forging PKI certificates without access
to the server IP address. Hence, the secure digital signature
scheme prevents the adversary from compromising the server
key pair which has been authenticated by the PKI certificate.
TLS 1.3 replay attacks are infeasible because every TLS 1.3
Janus session injects new randomness via the updated CH
message key share at the proxy. Thus, session-authenticity
is preserved if the proxy verifies the server’s PKI certificate,
authenticates the server’s signature in the SCV message, and
checks a correct session transcript by verifying the SF digest.

2) Record Phase: The security analysis of the record phase
investigates if the security properties of session-confidentiality,
session-integrity, and data-provenance hold throughout the
TLS record phase.

a) Session Confidentiality: In the record phase, the ad-
versary tries to maliciously garble 2PC circuits such that
shared outputs either reveal the secret input share of the client
or yield information on AEAD parameters which leak private
record data of the client (e.g. ECBs to decrypt ciphertext
chunks). Malicious clients try to learn secret shares of the
proxy with the goal to forge compliant traffic transcripts via
MITM attacks such that arbitrary data can be injected into the
Janus protocol. For clients, session-confidentiality is supposed
to hold throughout the Janus protocol whereas for the proxy,
session-confidentiality applies until the disclosure phase where
the proxy, according to the Janus protocol, shares all session
secrets with the client.

Theorem 4. Under a maliciously secure OT scheme, a secure
commitment scheme, and a HVZK proof system leaking a
single bit, the Janus protocol maintains session-confidentiality
during the TLS 1.3 record phase against a probabilistic
polynomial time adversary A, which maliciously garbles semi-
honest 2PC circuits or acts as a malicious verifier.

Proof 4. The adversary A1, acting as a client, is not able
to learn any encrypted counter blocks of the type ECBtag

before the proxy intercepts a corresponding pair of a ciphertext
and authentication tag. Because, the proxy discloses TLS 1.3
session secrets after the transcript traffic has been recorded.
Further, the deployment of malicious secure 2PC system to
compute request authentication tags does not leak information
on secret inputs or AEAD parameters to A1. Thus, A1 is
neither able to predict a forged authentication tag and, with

that, gain the ability to inject arbitrary data into the protocol,
nor can A1 learn client secret shares because the malicious
secure OT scheme protects 2PC inputs of the proxy.

Vice versa, an adversary A2, acting as the proxy, cannot ac-
cess record phase 2PC inputs due to the employed maliciously
secure OT scheme. By receiving the parity checksum, and
with knowledge of the random masks, A2 cannot access any
ECB bit string because the xor aggregation only disclose xor
results of ECBs to A2. If A2 maliciously garbles the HVZK
circuit CHVZK, then a single bit can be leaked to A2. However,
the circuit CHVZK verifies session secrets shares, ECBs, or
intermediate checksum parameters which all contain sufficient
randomness such that leaking a bit is bearable [21]. On the
contrary, zkSNARK proof systems, which are used to compute
privacy-preserving data openings, do not leak any bits when
opening private record data. Thus, session-confidentiality hold
throughout the Janus protocol against A2 and until the secret
disclosure of proxy secrets towards A1.

b) Session Integrity: To compromise session-integrity in
the record phase, the adversary intends to inject arbitrary
AEAD parameters into the HVZK circuit CHVZK

sECB
such that the

verifier accepts an incorrect derivation of the parity checksum.
Further, the adversary tries to share false 2PC outputs to the
proxy and provides false inputs to 2PC circuits in order to
extract secret session information of the counterparty.

Theorem 5. Under a HVZK proof system, a maliciously
secure OT scheme, a maliciously secure 2PC system, randomly
samples bit string masks, and a secure commitment scheme,
the Janus protocol preserves session-integrity against a proba-
bilistic polynomial time adversary A which acts as a cheating
prover, malicious garbler, or injects false TLS values into 2PC
circuits.

Proof 5. To prove session-integrity in the record phase, we
introduce two adversaries A1,2. The adversary A1 takes the
role of the proxy and maliciously garbles the 2PC circuits
C(km1 ,iv), CECB2+

, and Ctag or provides false 2PC inputs. After
recording all record phase transcript pairs (x, tx), A1 shares all
TLS session secret shares with the client and shares the garbled
truth table after receiving a commitment of the HVZK output
label with the client. The client detects cheating behavior of
A1 by locally recomputing and matching TLS 1.3 session
parameters against all 2PC outputs. Validity of recomputed
parameters is guaranteed because the client verifies recom-
puted values against the SHTS parameter which has been
authenticated by the server. Thus, any incorrect 2PC input
provisions of A1 lead to protocol aborts which guarantees
session-integrity of A1. Neither A1 nor the adversary A2, who
acts as the client, cannot provide false inputs or maliciously
garble the circuit Ctag , because Ctag is evaluated in the
maliciously secure 2PC system. Malicious garbling is detected
by the client because the garbled circuits are re-computed or
truth tables allow for honest garbling verification at the client.

Concerning A2, any TLS 1.3 protocol deviation is caught
by the requirement on A2 to share a HVZK proof of the circuit
CHVZK with the proxy. In the record phase, the authenticated



and correct SHTS parameter is publicly known and the proxy
verifies input correctness of A2 in CHVZK by matching a
computation trace from input secret shares against SHTS.
After the assertion of correct inputs, the circuit computes all
encrypted counter blocks ECB and matches derived ECBtag

against public input ECBtag vectors. The ECBtag verification
ensures that the circuit Ctag has been evaluated with valid
inputs that are conform to the TLS session. Thus, A2 cannot
input incorrect values into Ctag . The verification of ECBtag

vectors further ensures that intercepted request and response
records preserve integrity regarding the TLS session such that
A2 cannot forge transcript data against the proxy.

Concerning the computation of the parity checksum, A2 is
able to commit to arbitrary ECB’ values and pass in valid ECB
values into the circuit CHVZK such that the circuit succeeds
in verifying the parity checksum pECB. Notice that session-
integrity and session-authenticity hold on the parity checksum,
if the circuit CHVZK successfully verified the parity checksum.
If session-integrity and session-authenticity of a parity check-
sum pECB hold, A2 cannot open arbitrarily committed ECB’
values in the zkSNARK circuit because the parity checksum
only verifies for a correct set of ECB values (cf. Section B2c).
Thus, the parity checksum enforces session-integrity on A2

throughout the record phase.
c) Data Provenance: To compromise data-provenance,

the adversary tries to convince a verifier of an invalid com-
putation trace from presented data towards TLS 1.3 session
parameters, which have been verified regarding authenticity
and integrity.

Theorem 6. Under a secure zkSNARK proof system, and a
secure commitment scheme, and randomly samples bit string
masks, data-provenance of the Janus protocol holds against a
probabilistic polynomial time adversary A, which, acting as
a cheating prover, evaluates a plaintext pt against a pair of
a ciphertext and commitment string (ct, sECB) with session-
authenticity and session-integrity.

Proof 6. The input of private encrypted counter blocks ECB
is fully determined by the zkSNARK circuit because the circuit
matches all individual bits inside ECB against a commitment
string sECB with session-authenticity and session-integrity. Due
to the binding property of the employed commitment string,
the probability of the adversary to find a collision of ECB′

and ECB against the hash in sECB is negligible. Further,
if the public bit string masks combined with private ECB
values evaluate to the parity checksum in sECB, then the ECB
values fulfil session-integrity. The reasoning is as follows.
The adversary can guess an xor evaluation of a bit string
mask m′ with an arbitrary ECB’ value that matches the xor
evaluation of a valid bit string mask m and a valid ECB
with negligible probability. Even though the adversary has
access to the vector ECB, guessing a masked ECB without
the mask has negligible success probability (e.g., 2−127 for
16 byte ECB chunks). Thus, since the zkSNARK circuit fully
determines the verification trace of ECB values, and matches
the computation of plaintext chunks pt xored with previously
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Fig. 9. Merkle-Damgård structure of the SHA256 hash function. Values
marked in red indicate private input whereas blue background indicates public
input. To protect a secret key, the prover must compute the first f (grey
background) in circuit. All remaining intermediate hash values f (white
background) can be computed out of circuit by the verifier and checked against
the public input hash value h.

verified ECB values against authenticated ciphertext chunks
ct, data-provenance of pt is guaranteed.

C. HVZK Circuit Optimization

The TLS 1.3 key derivation can be optimized by lever-
aging the security provided by the Merkle-Damgård struc-
ture. The Merkle-Damgård structure is used to compress
input data to a fixed size output in hash algorithms (e.g.
SHA256). If TLS 1.3 is configured with the cipher suite
TLS_AES_128_GCM_SHA256, then the Merkle-Damgård
repetitively appears during the TLS key derivation function
hkdf.extr and hkdf.exp because the key derivation
functions internally call hmac, which in turn, calls SHA256
and with that the Merkle-Damgård structure.

1) Merkle-Damgård Structure: In a scenario where hmac
is called in TLS 1.3 and TLS 1.3 is configured with
TLS_AES_128_GCM_SHA256, the concatenation of the in-
ner hash H((K ′ ⊕ ipad)||m) (32 bytes) and K ′ ⊕ opad
(64 bytes) yields a 96 byte output, which in turn, is the input
to the outer hash function (cf. Formula 2). The input to the
inner hash function is of size 64 + len(m) bytes. Thus, both
hash input sizes in HMAC are above 64 bytes. If the hash
input of SHA256 is above 64 bytes, SHA256 applies the
Merkle-Damgård structure which repeats calls to an internal
compression blockcipher f to reduce the input to a fixed sized
output. The compressing blockcipher SHACAL-2 of SHA256
uses 64 computation rounds to hide its input and has not been
broken [37]. Thus depending on whether the inner or outer
hash is computed, the first call of the one-way compression
blockcipher inside SHA256 already hides inputs (K ⊕ ipad)
or (K⊕ opad) of size 64 bytes and with that, hides the secret
K of the prover [4]. As a result, the output of the compressing
blockcipher in SHA256 can be used as public input to reduce
the HVZK circuit complexity.

Figure 9 shows the case which applies in a ZKP circuit to
compute the HMAC inner hash Hinner = H((K ′⊕ipad)||m),
where e.g. m =H2 is publicly known input. If m is publicly
known by the verifier, the prover can compute the grey f
and disclose it to the verifier, which computes the remaining
part of the hash out of circuit. The same optimization of
SHA256 is feasible when computing the outer hash Houter =
H((K ′⊕opad)||Hinner). Thus, proving HMAC in a ZKP takes
two evaluations of the SHACAL-2 compression function f if
the message input m is publicly known.



In the key derivation in TLS 1.3, successive SHA256 calls
generate public intermediate values which allow intermediate
proceedings of the TLS specification out of circuit. Generated
intermediate values, which have been computed out of circuit,
can be fed back into the HVZK circuit if the computation
of secret parameters proceeds. Thus, all intermediate values
which can be generated, computed on out of circuit, and fed
back into the circuit as public input, optimize the HVZK
circuit.


