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Abstract—Web users can gather data from secure endpoints
and demonstrate the provenance of the data to any third party
by using TLS oracles. Beyond that, TLS oracles can confirm the
provenance and policy compliance of private online data by using
zero-knowledge-proof systems. In practice, privacy-preserving
TLS oracles can efficiently verify private data up to 1 kB in
size selectively, preventing the verification of sensitive documents
larger than 1 kB. In this work, we introduce a new oracle protocol
for TLS 1.3, which reaches new scales in selectively verifying
the provenance of confidential data. We tailor the deployment
of secure computation techniques to the conditions found in
TLS 1.3 and verify private TLS data in a dedicated proof
system that leverages the asymmetric privacy setting between
the client parties of TLS oracles. Our results show that 8 kB
of sensitive data can be verified in 6.7 seconds, outperforming
related approaches by 8x. With that, we enable new boundaries
to verify the web provenance of confidential documents.

Index Terms—TLS Oracles, Data Provenance, Zero-knowledge
Proofs, Secure Two-party Computation, TLS 1.3.

I. INTRODUCTION

Secure channel protocols such as Transport Layer Security
(TLS) provide confidential and authenticated communication
sessions between two parties: a client and a server. However, if
clients present data of a TLS session to another party, then the
third party cannot verify if the presented data is authentic and
correct, and, thus, cannot verify the provenance of the data.
In the eyes of the third party, TLS data is authentic if the data
origin can be verified. TLS data is correct if the third party
is able to verify the integrity of presented TLS data against
unforgeable TLS session parameters. To save the third party
from verifying the data provenance itself, current approaches
either consider servers to attest to shared data via digital
signatures [1], or employ TLS oracles [2]–[4]. Data attestation
through servers is an efficient data provenance solution but
requires server-side software changes. In contrast, TLS oracles
are legacy-compatible and achieve data provenance without
introducing server-side changes. TLS oracles further introduce
a trusted verifier to take over the verification of TLS data
authenticity and correctness. If the data validation succeeds,
the trusted verifier certifies the TLS data of clients. With the
certificate, clients are able to convince any third party of data
provenance if the third party trusts the verifier.

We clarify the functionality of TLS oracles with the use
case of enhanced electronic surveillance (cf. Figure 1). The
use case involves a law enforcement agency which requests
a warrant from a judge for a sealed case [5]. If the judge
accepts the warrant request, the judge issues a court order to
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Fig. 1. Use case.

the law enforcement agency. The court order authorizes the
law enforcement agency to collect confidential data from a
targeted company. We suppose that for the data collection,
the law enforcement agency queries a company database via
TLS-protected API requests. Without a TLS oracle, the law
enforcement agency can query files from the company but
cannot convince the judge that the collected evidence has
been obtained from the targeted company. By collecting data
through a TLS oracle protocol, the law enforcement agency is
able to prove to a judge that the evidence originated from the
API endpoint of the company at a specific point in time. If
the employed TLS oracle supports the verification of private
data, then the operator of the TLS oracle learns nothing
beyond the fact that the requested evidence complies with the
requirements made in the court order.

This paper presents a TLS oracle protocol that we envision
as helpful for an electronic surveillance use case. Law en-
forcement agencies depend on downloading confidential files
and existing privacy-preserving TLS oracles are constrained in
the amount of sensitive data they can validate. For instance,
the work [4] presents an TLS oracle to selectively verify key
value pairs of sensitive JavaScript Object Notation (JSON)
data and validates 64 bytes of sensitive data per second (cf.
Section VI). The work [3] verifies twice the amount of private
data per second. However, the client is required to know the
structure of queried data and cannot verify dedicated parts of
TLS messages. In contrast, we introduce a new TLS oracle
protocol for TLS 1.3 which achieves new scales in selectively
verifying confidential data. Our approach validates 1 kB of
sensitive data per second and outperforms related approaches
by a factor of 8x. The applicability of our work goes beyond



the use case of verifying confidential documents and serves
as a crucial technique to build user-centric and data-sovereign
systems [6].

Before we outline the contributions of our work, we in-
troduce preliminary technical details first. In TLS oracles, the
client-side is a collaborative and secret-shared session between
two parties: a trusted verifier acting as a proxy between the
client and the server, and a client. In the presented use case
of Figure 1, the client is represented by the law enforcement
agency and the verifier is the operator of a proxy verification
service. A secret-shared session splits TLS parameters into
shares and guarantees that both the proxy and client locally
maintain the shares. If the proxy and client interact with each
other through secure computation techniques (e.g. secure two-
party computation (2PC) [7]), shares can be merged together
to reconstruct full TLS parameters. Secure computation tech-
niques guarantee that the interaction to reconstruct parameters
does not leak any information on individual shares. The secret-
shared session introduces a mutual dependence between the
proxy and the client such that both parties can only proceed
according to the TLS specification if both parties interact with
each other. This mutual dependence is used by the proxy to
audit if the TLS data presented by the client originates from an
authenticated and secret-shared TLS session. If the verification
succeeds, the proxy attest the data provenance.

Our work improves the efficiency of verifying data prove-
nance and builds upon two novel observations. The first ob-
servation concerns the key agreement protocol of the TLS 1.3
handshake phase. If the client hello (CH) message of the TLS
key agreement protocol contains a key share that is supported
by a cipher suite at the server, then the server immediately
derives handshake traffic secrets and responds to the client
with authenticated handshake messages. As a consequence,
authenticated handshake messages can be expected before the
computation of the server handshake traffic secret (SHTS).
SHTS is used to verify server-side handshake messages, and,
with that, verify the authenticity of the TLS session. In the
context of TLS oracles, where the three-party handshake
(3PHS) establishes secret-shared session parameters between
the proxy and the client, the SHTS secret is computed in a
secure computation protocol with security against malicious
adversaries [2]–[4]. However, the same security guarantees
hold if SHTS is computed in a more efficient secure compu-
tation protocol with security against semi-honest adversaries.
When assuming semi-honest adversaries during the secure
computation of SHTS, the client must verify SHTS against
server-side handshake messages before disclosing SHTS to the
proxy (cf. Section IV-B).

The second observation concerns the record and post-record
phase of TLS oracles. The record phase exchanges requests
and responses with the server. We notice that requests must
be computed using maliciously secure computation protocols.
Concerning the access to response data, the client-side re-
quires secure computation only if the content of the response
contributes to the compilation of a subsequent request of
the same TLS session. Otherwise no secure computation is

required due to our new post-record phase, where a mutual
integrity verification between client parties yields an asymmet-
ric privacy setting (cf. Section IV-C2). The post-record phase
begins upon the client’s notification to the proxy that enough
record data has been received. Up to this point, the proxy has
recorded the traffic transcript of the TLS session and can audit
client behavior against the intercepted transcript. However, the
proxy is audited first and is required to disclose all locally
maintained session secrets to the client. The disclosure of
proxy session secrets initiates the asymmetric privacy setting,
where only the client has access to all session secrets. With all
session secrets, the client is able to detect a cheating proxy by
locally recomputing and matching secure computation outputs
against previously obtained outputs. Since the client is the
only party with private secrets, the proxy can verify the
client through a proof system which is based on semi-honest
secure computation [8]. To do so, the proxy constructs the
computation to be proven by the client. The computation of
the proof system uses private inputs of the client to derive and
match TLS session parameters against the recorded message
transcripts of the proxy. To prevent the client from providing
false inputs, we build upon our first contribution as follows.
If the proxy honestly participates in the secure computation of
SHTS after obtaining server-side handshake messages, then
the proxy can securely verify the authenticity and correctness
of SHTS. The proof system leverages the authenticity of SHTS
to verify the correctness of client inputs by (i) deriving SHTS’
from client inputs and by (ii) matching SHTS against SHTS’.
Last, to prevent a malicious proxy from benefiting of the single
bit leakage of the proof system [9], we introduce a commit-
disclose-open paradigm (cf. Section IV-C3).

Our work achieves new efficiency gains compared to the
related works [3], [4], [10]–[12] as follows. The computation
of TLS parameters depends on non-algebraic structures which
proof systems with boolean arithmetic efficiently verify. On
the contrary, zkSNARK proof systems operate efficiently if
algorithms leverage supported algebraic structures. Thus, the
evaluation of AES128 on a 1 kB input takes 29 or 0.76
seconds in a Groth16 zkSNARK or boolean-based proof
system [8] respectively. With [8], our protocol verifies 8 kB
of transparent or private web data in 0.58 or 6.7 seconds and
sets new boundaries concerning the selective verification of
data provenance. In analogy to Roman mythology, we name
our efficient oracle solution after the god of transitions, Janus.
Because, the Janus protocol guards the transition of large-
scale web data into a representation where provenance can be
verified. In summary,

• We introduce Janus, a novel protocol to verify the prove-
nance of kilobytes of data, by tailoring secure computa-
tion techniques to the conditions found in TLS 1.3 while
retaining security properties equivalent to previous works.

• We show that the honest behavior of the proxy leads to
a guaranteed authenticity verification of the handshake
secret SHTS and that the malicious behavior of the proxy
does not yield any benefits in compromising the client.



TABLE I
NOTATIONS AND FORMULAS OF TLS VARIABLES.

Variable Formula

H2 H(ClientHello||ServerHello)
H3 H(ClientHello||. . . ||ServerFinished)
H6 H(ClientHello||. . . ||ServerCert)
H7 H(ClientHello||. . . ||ServerCertVfy)
H9 H(ClientHello||. . . ||ClientCertVfy)

label11 “TLS 1.3, server CertificateVerify”
(kSATS, ivSATS) | DeriveTK(s=SATS|CATS) =
(kCATS, ivCATS) ( hkdf.exp(s,“key”,H(“ ”),len(k)),

hkdf.exp(s,“iv”,H(“ ”),len(iv)) )

• We improve the efficiency of selective and privacy-
preserving data proofs by verifying the integrity of TLS
data in a semi-honest zero-knowledge proof system,
which leverages the asymmetric privacy setting between
client parties (cf. Section V-C3).

• We analyse the security of Janus (cf. Appendix F1), pro-
vide end-to-end evaluation benchmarks (cf. Section VI),
and open-source1 the implementation of our secure com-
putation building blocks.

II. PRELIMINARIES

This section introduces the key concepts of TLS 1.3 which
oracle protocols modify or build upon such that the authentic-
ity and correctness of TLS session data can be publicly veri-
fied. In addition, we explain the main functionalities of cryp-
tographic building blocks and provide further details of each
cryptographic construction or protocol in the Appendix A.

A. General Notations

The TLS notations of this work are introduced in Sec-
tion II-B, and closely follow the notations of the work [13].
Further, we denote vectors as bold characters x = [x1, . . . , xn],
where len(x) = n returns the length of the vector. Base points
of elliptic curves are represented by G ∈ EC(Fp), where the
finite field F is of a prime size p. For elliptic curve elements,
the operators ·,+ refer to the scalar multiplication and addition
of elliptic curve points P ∈ EC(Fp). The symbol λ indicates
the security parameter. For bits or bit strings, the operators
·,⊕ represent the logical AND or multiplication, and the
logical XOR or addition respectively. Other operators describe
a random assignment of a variable with $←, the concatenation
of strings with ||, and the comparison of variables with ?

=.

B. Transport Layer Security

TLS is a standardized suite of cryptographic algorithms to
establish secure and authenticated communication channels in
the Web. The TLS protocol exists in different versions, where
TLS 1.3 is the version we consider in this work. The protocol
of TLS 1.3 divides into two phases, where the handshake
phase derives cryptographic parameters to secure data sent
in the record phase. TLS 1.3 relies on the algorithms of

1https://github.com/januspaper/submission1/tree/esp

TLS Handshake between the client c and server s:

inputs: x $← Fp by c. (y $← Fp, skS , pkS) by s.
outputs: (tkCATS, ivCATS, tkSATS, ivSATS) to c and s.
1. c: X = x ·G; send X in mCH
2. s: Y = y ·G; send Y in mSH
3. b: dES = hkdf.exp(hkdf.ext(0,0),“derived” || H(“ ”))
4. b: DHE = x · y ·G; HS = hkdf.ext(dES, DHE)
5. b: SHTS = hkdf.exp(HS,“s hs traffic” || H2)
6. b: CHTS = hkdf.exp(HS,“c hs traffic” || H2)
7. b: (kCHTS, ivCHTS) = DeriveTK(CHTS)
8. b: (kSHTS, ivSHTS) = DeriveTK(SHTS)

9. b: fkS = hkdf.exp(SHTS, “finished” || “ ”)
10. s: SCV=ds.Sign(skS ,label11||H6); send SCV in mSCV
11. s: SF = hmac(fkS , H7); send SF in mSF

12. c: SF’ = hmac(fkS , H7); verify SF’ ?
= SF

13. c: ds.Verify(pkS , label11 || H6, SCV) ?
= 1

14. b: fkC = hkdf.exp(CHTS, “finished” || “ ”)
15. c: CF = hmac(fkC , H9); send CF in mCF

16. s: CF’ = hmac(fkC , H9); verify CF’ ?
= CF

17. b: dHS = hkdf.exp(HS,“derived” || H(“ ”))
18. b: MS = hkdf.ext(dHS, 0)
19. b: CATS = hkdf.exp(MS, “c ap traffic” || H3)
20. b: SATS = hkdf.exp(MS, “s ap traffic” || H3)
21. b: (kCATS, ivCATS) = DeriveTK(CATS)
22. b: (kSATS, ivSATS) = DeriveTK(SATS)

Fig. 2. TLS 1.3 specification of session secrets and keys. Characters at the
beginning of lines indicate if the server s, the client c, or both parties b call
the functions per line.

hash-based message authentication code (HMAC) and HMAC-
based key derivation function (HKDF) to securely derive
cryptographic parameters and relies on digital signatures to au-
thenticate parties (cf. ds.Sign, ds.Verify, hkdf.ext, hkdf.exp,
hmac in Figure 2). We provide further details of TLS-specific
security algorithms in the Appendix A and present TLS-
specific transcript hashes, labels, and key derivation functions
of traffic keys in Table I.

1) Handshake Phase: To establish a secure channel be-
tween a server and a client, TLS 1.3 relies on the Diffie-
Hellman key exchange (DHKE) to securely exchange cryp-
tographic secrets between two parties (cf. Figure 2, lines 1-4).
With TLS configured to use elliptic curve cryptography, parties
protect secrets x, y with an encrypted representation X,Y .
Next, the values X,Y are exchanged in plain via the CH and
server hello (SH) messages mCH, mSH. With access to X,Y ,
both parties derive the Diffie–Hellman ephemeral (DHE) key,
where DHE = x · y · G = y ·X = x · Y holds. Both parties
use the DHE value to compute the handshake secret (HS),
and, with that, derive the SHTS and client handshake traffic
secret (CHTS) (cf. Figure 2, lines 5,6). SHTS and CHTS are
used to derive client-side and server-side handshake keys and
initialization vectors (cf. Figure 2, lines 7,8), which secure all

https://github.com/januspaper/submission1/tree/esp
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Fig. 3. AEAD stream cipher configured with AES in the Galois/Counter
mode (GCM). The algorithm encrypts a plaintext pt = [pt1, . . . , ptl] to a
ciphertext ct = [ct1, . . . , ctl] under key k and authenticates the ciphertext
ct and associated data AD with the tag t. The symbol MH is a Galois
field multiplication which translates bit strings into GF(2128) polynomials,
multiplies the polynomials modulo the field size, and translates the polynomial
back to the bit string representation.

subsequent handshake messages.
To mutually authenticate each other, both parties exchange

certificates and compute authentication parameters (cf. Fig-
ure 2, lines 9-16). Notice that in TLS, client-side authenti-
cation is optional, which is why we omit client certificates
in Figure 2. But, we show the computations of the server
finished (SF) and client finished (CF) authentication values,
because, to constitute a valid TLS session, both parties must
successfully exchange and verify the SF and CF messages
mSF,mCF. For server-side authentication, the server computes
the server certificate verify (SCV) value, which binds a Public
Key Infrastructure (PKI) X.509 certificate to the TLS 1.3
transcript via a digital signature [14]. Here, the signature is
computed with the server secret key skS and is verified with
the corresponding server public key pkS . The client obtains
the server public key pkS in the PKI certificate and aborts the
TLS session if the signature verification fails.

The remainder of the TLS handshake phase computes the
client application traffic secret (CATS) and server application
traffic secret (SATS), which are used to compute server-
side and client-side application traffic keys and initialization
vectors (cf. Figure 2). The TLS record phase, which we
describe next, continues to use the derived record parameters.

2) Record Phase: The TLS record phase requires parties
to protect data with an AEAD algorithm before data can be
exchanged. AEAD algorithms in TLS 1.3 use stream ciphers to
protect data and depend on previously established application
traffic keys and initialization vectors to translate plaintext
data pt into a confidential and authenticated representation
(ct, t), with ciphertext ct and authentication tag t. Stream
ciphers are characterized by pseudorandom generators, which
incrementally output key streams or counter blocks (CBs) (cf.
Figure 3). In a next stage, CBs are combined with plaintext
data chunks to compute ciphertext data chunks. Subsequently,
AEAD ciphers compute an authenticated tag t on all ciphertext
chunks and associated data. We elaborate on the AEAD
algorithm in the Appendix D. Notice that only the parties of
the TLS handshake phase have access to AEAD encryption
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Fig. 4. Example of a garbled circuit which is computed using signal bits σ.
The circuit C expresses the function f of a secure computation via boolean
logic gates. Every circuit wire wL is encoded with secret internal labels i, a
secret and random signal bit σL, external labels e=σL ⊕ i (where i, e, σ ∈
{0, 1}), and wire keys ki

L. Internal labels correspond to bits of input data.
The lists T l−d map output labels to output data. The gate-wise garbling
tables G(C) map tuples of external labels to garbled labels concatenated with
external labels. Output wires have neither external labels nor signal bits.

and decryption secrets and are eligible to access exchanged
record phase traffic.

C. Cryptographic Building Blocks

This section provides an overview of the cryptographic fun-
damentals that support the Janus protocol beyond algorithms
found in TLS and related works. Formal descriptions of the
cryptography and further details of oracle-specific algorithms
can be found in the Appendix A.

1) Semi-honest 2PC with Garbled Circuits: Secure 2PC
allows two mutually distrusting parties with private inputs x, y
to jointly compute a public function f(x, y) without learning
the counterparty’s private input [7], [15]. A 2PC system based
on boolean garbled circuits involves a party p1 with input
x as the garbler and party p2 with input y as the evaluator.
Party p1 is supposed to generate the garbled circuit G(C),
where the boolean circuit C implements the logic of the public
function f (cf. Figure 4). To generate the garbled circuit, p1
randomly samples wire keys k0

L,k1
L and a signal bit σL at

every wire wL. For the purpose of evaluating the function f ,
wire keys ki

L encode binary data representations of f using
internal labels i. The purpose of signal bits is twofold. Signal
bits encrypt internal bits to external bits eL=σ⊕i which can be
shared with p2. With that, signal bits enable the evaluator to
discover valid entries of garbled tables G(C) through external
bits e [16]. Further, signal bits randomize garbled truth tables
G(C) to obfuscate truth table bit mappings.

Once wire keys, signal bits, and external labels exist, p1
computes the garbled table entries as follows. Per row of
table G(C) (cf. Figure 4), the bit tuples in the left column are
combinations of external labels which correspond to incoming
gate wires. The right column contains double encrypted wire



keys that correspond to outgoing gate wires. For gates yielding
circuit outputs, garbled entries encrypt wire keys only. For
intermediate gates of the circuit, garbled entries encrypt wire
keys concatenated with corresponding external labels.

After garbling the entire circuit, p1 shares G(C), T l−d, and,
if x=[1,0], (k1a, e=0) and (k0b , e=1) with p2. To obtain wire
keys that correspond to the input bits of y, p2 interacts with
p1 in two 1-out-of-2 Oblivious Transfer (OT) protocols (cf.
Section II-C2). The OT protocol requires p1 to share ky

e, k
y
d

with corresponding external values with p2. Further, the OT
scheme gives p2 access to the keys (k0c , e=0) and (k1d, e=0) if
y=[0,1], and prevents p1 from learning p2’s selection of wire
keys. With access to G(C), input wire keys and corresponding
external labels, p2 is able to evaluate the garbled circuit. To
evaluate the first output bit, p2 decrypts the third entry of table
G(C0,(1,2)AND ) and obtains (k0e , e=0). With that, p2 continues to
decrypt the first entry of table G(C1,(0,1)AND ) to obtain k0f (cf.
Figure 4). Last, p2 decodes k0f using the decoding table T 0

l−d to
obtain the first output bit 0. If required, p2 shares the obtained
2PC output back to p1.

2) Oblivious Transfer: Secure 2PC based on Garbled Cir-
cuits (GCs) depends on the 1-out-of-2 OT1

2 sub protocol to
secretly exchange input parameters of the circuit [17]. The
OT1

2 scheme involves two parties where party p1 sends two
messages m1,m2 to party p2 and does not learn which of the
two messages mb is revealed to party p2. Party p2 inputs a
secret bit b which decides the selection of the message mb.
In this work, we make use of the OT1

2 scheme defined in the
work [17], which does not require a trusted setup. The trusted
setup procedure introduces a third party which (i) takes over
the generation of cryptographic material and (ii) is trusted to
delete the underlying random parameters of the material.

3) 2PC with Malicious Adversaries: We consider the
work [18] to secure the semi-honest 2PC defined in Sec-
tion II-C1 against malicious adversaries. The maliciously
secure 2PC protocol runs two instances of the semi-honest
2PC, where both parties p1 and p2 successively act as the
garbler and evaluator. Before any 2PC output is shared with
the counterparty, the protocol runs a secure validation phase
on obtained outputs. The idea of the mutual output verification
is as follows. If p1, as the evaluator, obtains output wire keys
kx and output bits b from a correctly garbled circuit of p2,
then p1 knows which output labels ky according to b p2 must
evaluate on a correctly garbled circuit of p1. Thus, if p1 shares
a commitment in form of a hash H(ky||kx) with p2 after the
first circuit evaluation, and p2 returns the same hash H(ky||kx)
after the second circuit evaluation, then p1 is convinced of a
correct garbling by p2. Because, if p2 incorrectly garbles a
circuit, then p1 obtains the bits b’. And, if p1 correctly garbles
a circuit, p2 obtains correct bits b. The incorrect bits b’ lead
p1 to a selection of labels k’x and k’y and the correct bits
b lead p2 to a correct selection of ky ̸= k’y . Since p2 does
not know which output keys p1 evaluates, p2 cannot predict
any keys k’x,k’y which lead to the hash that is expected by
p1. To communicate the output of a maliciously secure 2PC

to a single party, only the first garbler is required to share the
output decoding table with the counterparty.

4) Zero-knowledge based on Garbled Circuits: Proof sys-
tems allow a prover p to convince a verifier v of whether
or not a statement is true. In theory, proof systems rely on
a NP language L and the existence of an algorithm RL,
which decides in polynomial time if w is a valid proof for the
statement x ∈ L by evaluating RL(x,w)

?
= 1. The assumption

is that for any statement x ∈ L, there exist a valid witness w
and no witness exists for statements x /∈ L. In order for proof
systems to work, three properties of completeness, soundness,
and zero-knowledge must hold. Completeness ensures that an
honest prover convinces an honest verifier by presenting a
valid witness for a statement. Soundness guarantees that a
cheating prover cannot convince a honest verifier by presenting
an invalid witness for a statement. Zero-knowledge guarantees
that a malicious verifier does not learn anything except the
validity of the statement. Beyond that, the notion of honest
verifier zero-knowledge (HVZK) holds if the zero-knowledge
property can be shown for a semi-honest verifier, who honestly
follows the protocol specification of the proof system [19],
[20].

Interestingly, zero-knowledge is a subset of secure 2PC
and a zero-knowledge proof (ZKP) can be computed using
GC-based 2PC if only one party inputs private data. In this
work, we make use of the HVZK notion based on boolean
GCs [8]. In this setting, the garbler and constructor of the
GC acts as the verifier and is assumed to behave semi-honest.
The GC evaluates a function f , which yields {0, 1}. The
evaluator, as the prover, obtains the GC, input wire keys and
corresponding external labels but does not obtain the decoding
table. After the prover evaluates the GC and returns the wire
key which corresponds to a 1, the verifier is convinced of the
proof. Formal security proofs of completeness, soundness, and
HVZK of the HVZK proof system based on garbled circuits
can be found in the work [8].

5) Cryptographic Commitments: A cryptographic commit-
ment or simply commitment hides committed data in a com-
mitment string that can only be computed based on an explicit
and unequivocal mapping of input data. The computation of
the commitment string based on valid input data is called the
opening of the commitment. Commitments are characterized
by two properties. The binding property prevents an adversary
to find a second valid opening of the commitment. The
hiding property guarantees that the commitment does not leak
information of committed data.

III. SYSTEM MODEL

The system model of the Janus protocol introduces system
goals in form of security and usability properties and defines
a threat model and system roles.

A. System Roles

Clients establish a TLS 1.3 session with servers, query
data from servers, and present TLS data proofs to the proxy.
We assume that clients behave maliciously such that clients



arbitrarily deviate from the protocol specification in order to
learn TLS session secret shares of the proxy. Another goal of
malicious clients is to learn any information that contributes
to convincing the proxy of false statements on presented TLS
data. Clients honestly follow algorithms of the Janus protocol
if the algorithm protects secret shares of the client.

Servers participate in TLS 1.3 sessions with clients and
return responses in the TLS record phase upon the reception
of compliant API queries. We assume honest servers which
follow the Janus protocol specification.

Proxies take over the role of TLS oracle trusted verifiers.
Proxies are configured at the client and route TLS traffic
between the client and the server. We assume malicious
proxies deviating from the protocol specification with the goal
to learn TLS session secret shares of clients. Proxies honestly
execute algorithms of the Janus protocol if the algorithm
protects secret shares of proxies.

B. System Goals

The Janus protocol achieves system goals which we express
via the following properties:

Session-authenticity guarantees that our TLS oracle attests
web traffic which originates from an authentic TLS session.
Authenticity is guaranteed if the proxy successfully verifies
the PKI certificate of the server.

Session-integrity guarantees that a malicious client and
proxy cannot deviate from the TLS specification if a TLS
session has been authenticated. This means that an adversary
can neither modify server-side TLS traffic, no client-side TLS
traffic in any TLS phase. Notice that for client-side TLS
traffic of the record phase, a malicious client is able to send
arbitrary queries to the server, such that servers decide if
queries conform with API handlers.

Session-confidentiality guarantees that the proxy neither
learns any full TLS secrets nor any record data which has
been exchanged between the client and the server. Further,
the notion guarantees that the proxy learns nothing beyond
the fact that a statement on TLS record data is true or false.
Depending on the operation mode of the Janus protocol,
session-confidentiality is expected to break for proxies at some
point in the protocol.

MITM-resistance guarantees that session-integrity, session-
authenticity, and session-confidentiality hold in a system set-
ting, where adversaries are capable of mounting machine-in-
the-middle (MITM) attacks.

Legacy-compatibility holds if the TLS code stack running
at the server does not require any changes and achieves out-
of-the-box compatibility with our protocol.

C. Threat Model

We rely on a threat model with secure communication
channels and fresh randomness per TLS session between all
interacting system roles. This means that the proxy cannot
break TLS integrity and confidentiality. Network traffic, even
if it is intercepted via a MITM attack by the client, cannot
be blocked indefinitely. We assume up-to-date Domain Name

System (DNS) records at the proxy such that proxies can
resolve and connect to correct Internet Protocol (IP) addresses
of servers. The IP address of a server cannot be compromised
by the adversary such that adversaries cannot request malicious
PKI certificates for a valid DNS mapping between a domain
and a server IP address. Servers share valid PKI certificates
for the authenticity verification in the TLS handshake phase.
Server impersonation attacks are infeasible because secret
keys, which correspond to exchanged PKI certificates, are
never leaked to adversaries. Our protocol imposes multiple
verification checks on the client and the proxy, where failing
verification leads to protocol aborts at the respective parties.
All system roles are computationally bounded and learn mes-
sage sizes of TLS transcript data. Depending on the employed
ZKP systems, completeness, soundness, and HVZK hold.

IV. PROTOCOL OVERVIEW

The focus of the protocol overview lies on briefly in-
troducing existing cryptographic building blocks of related
approaches, which the Janus protocol builds upon. Throughout
this section, we clearly mark established building blocks and
highlight novel observations made in this work (cf. Sec-
tions IV-B, IV-C).

A. The Three-party TLS Setting

TLS oracles turn the two-party protocol of TLS into a
three-party protocol by introducing a trusted verifier [2]. The
task of the newly introduced verifier is the verification and
attestation of TLS data, which the client eventually presents.
If the verification succeeds, the verifier attests to TLS data of
the client by signing the data. The scope of data verification
at the verifier ensures that (i) the presented data is authentic
and originates from a TLS session between the client and an
authenticated server, and (ii) the integrity of the presented TLS
data holds, according to the TLS specification, via a verifiable
computation trace.

1) Three-party Handshake: In order to audit the integrity
of TLS data, the verifier and client join a mutually vetting but
collaborative TLS client session. To construct a joint client-
side session, TLS oracles replace the TLS handshake with
a 3PHS [2], [4]. In the 3PHS, every party injects a secret
randomness such that the DHE secret of the TLS handshake
depends on three secrets instead of two. As such, the DHE
value, which is derived at the server, can be jointly recon-
structed if the client and verifier add shared secrets together.
The Appendix A presents the cryptography of the 3PHS.
Similarly to related approaches [2]–[4], the Janus protocol
employs the 3PHS with the difference that the verifier acts
as a proxy (cf. top of Figure 5).

The consequence of the 3PHS is that the client depends on
the computational interaction with the proxy as a verifier to
correctly proceed in the TLS protocol. At the same time, the
verifier is convinced that the client preserves computational
integrity according to the TLS specification if the joint TLS
computation progresses. Because, without access to the secret
share of the verifier, clients cannot derive and use full TLS



secrets and encryption keys that are required for the secure
session with the server. And, the introduction of false session
data on the client-side leads to a session abort at the server.
Clients, on the other hand, detect malicious behavior of the
verifier during mutually dependent client-side computations.

2) Client-side Two-party Computation: With mutually de-
pendent TLS secrets, the client and the verifier continue TLS
computations by using secure two-party computation (2PC).
Secure 2PC is a special type of interactive computation, which
maintains input secrecy and, as such, secrecy of mutually
injected secret shares. To achieve efficient secure 2PC, TLS
oracles rely on different 2PC techniques. For instance, after
the 3PHS, current approaches convert DHE secret shares in
form of elliptic curve (EC) coordinates into bit-wise additive
secret shares [2], [4]. Additive secret shares can be efficiently
added together in 2PC circuits that are based on boolean
GCs [7], [18], [21]. To convert elliptic curve secret shares
into bit-wise additive secrets, current works use the Elliptic
Curve to Field (ECTF) conversion algorithm [22]. In the same
way as the works [2]–[4], the Janus protocol employs the
ECTF algorithm (cf. Figure 5) and we present further details
of the ECTF algorithm in the Appendix E2. After the ECTF
conversion, the client-side continues to use maliciously secure
2PC based on boolean GCs to proceed according to the TLS-
specification [2], [4], [10]. The reason for this is that the TLS
key derivation and record layer encryption equally rely on
algorithms, where GC-friendly and optimized binary circuits
exist [23].

B. Handshake Secrets

1) SHTS: Similar to the work [4], we leverage the fact
that, during the handshake phase, the client can securely
disclose the SHTS parameter to the proxy. Even though the
proxy knows SHTS, the key independence property of TLS
1.3 prevents the proxy from learning the HS secret and,
with that, any application traffic keys which are derived from
HS [24]. HS is protected by hkdf.exp through a pre-image
resistant hash function (cf. line 5 and 17 of Figure 2). Our
first contribution is that SHTS can be computed using semi-
honest 2PC. However, a semi-honest 2PC computation of
SHTS through a circuit CSHTS only works for a specific case in
TLS 1.3. If the client picks a server-supported cipher suite and
a suitable key share in the CH message, then the server directly
derives TLS session secrets and returns authenticated messages
(cf. first three boxes in Figure 5). Notice that clients can query
servers to discover supported cipher suites. If the client expects
authenticated handshake messages right after sending the CH
message, and verifies a semi-honest 2PC evaluation of CSHTS
against authenticated handshake messages, then no secret of
the client can be extracted by the proxy (cf. Appendix G1).

If the proxy honestly garbles the 2PC circuit CSHTS and veri-
fies the respective SHTS output against authenticated messages
of from the server, then authenticity for SHTS is guaranteed
(cf. Appendix G4). Due to the fact that the proxy learns the
transcript hash of the CH message first and since the client
committed to a CH transcript hash with the client randomness,
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Fig. 5. Overview of the Janus protocol, where the client and a proxy
collaboratively run a TLS session with the server. The dotted horizontal lines
indicate the TLS handshake, TLS record, and post-processing phases. In the
post-processing phase, the client continues to interact with the proxy in order
to convince the proxy of a valid TLS data opening.

the client cannot replay authenticated handshake messages for
another transcript that takes in the same CH message.

2) CHTS: Malicious garbling of the CHTS circuit does not
yield any information leakage to the proxy either. Because, if
an incorrectly garbled CCHTS outputs the HS or secret share
of the client, then the client computes client handshake traffic
keys based on a CHTS’ secret. If the client uses incorrect
handshake traffic keys to compute client-side handshake mes-
sages in form of ciphertexts and authentication tags, then a
proxy cannot learn any client secrets by viewing client-side
messages (cf. Appendix G1).

C. TLS Records and Data Provenance

After the handshake phase, the client and proxy jointly
compute requests to the server and process responses from
the server. The message transcripts of the record phase are
recorded at the proxy.

1) Record Computation: To compute a request, the client
evaluates a maliciously secure 2PC circuit CCB which yields
CBs of the encryption algorithm to the client only. The
client locally computes the ciphertext representation of the
request by XORing the CBs with plaintext chunks. To finalize
the request, the authentication tag must be computed in
a maliciously secure 2PC of the circuit Ctag , because the
authentication tag is made public as a part of the request



record. If the proxy maliciously garbles Ctag such that the
output tag’ is set to a client secret, and the client authenticates
the request with tag’, then the proxy can access client secrets
by intercepting the request record and session-confidentiality
is compromised. Additionally, the maliciously secure 2PC
evaluation of Ctag prevents a malicious client from mounting
a MITM attack. If clients cannot compute valid authentication
tags individually, clients cannot compile a second valid request
that passes the server AEAD verification. The maliciously
secure computation of request CBs prevents the following
case. If the proxy maliciously garbles CCB to output known
CBs and honestly garbles Ctag , then the client cannot detect
false CBs. With knowledge of CBs, the proxy is able to decrypt
ciphertext chunks and break session-confidentiality.

2) Mutual Verification of Session-integrity: The last phase
of TLS oracles decouples the client-side 2PC dependence
and requires clients to prove TLS data provenance towards
proxies. Before the client challenges the proxy to verify
data provenance, the post-processing phase mutually verifies
session-integrity of both client-side parties. As such, the proxy
is required to reveal all TLS session secrets. TLS secrets of the
proxy can be disclosed once the proxy has collected enough
transcript data to verify the provenance of session data. Since
the proxy acts as a verifying service, disclosure of proxy secrets
does not compromise the security properties provided by TLS.
The client uses all session secrets to locally recompute and
compare TLS session parameters with previously evaluated
2PC outputs and aborts the protocol upon detecting misbehav-
ior. Otherwise, the client shares indices indicating the record
chunks the client intends to open.

To verify session-integrity of the client, the client is required
to interact with the proxy in a special 2PC protocol. The
protocol requires the client to compute a proof using the 2PC-
based HVZK proof system of the work [8], which we also
refer to as the semi-honest proof system. The deployment of
the HVZK proof system is feasible because (i) the 2PC-based
proof system requires only the client to input private data and
(ii) the proxy is incentivized to honestly verify the correctness
of the client. We combine a commit-disclose-open paradigm
(cf. Section IV-C3) with the semi-honest proof system, which
introduces an additional commitment scheme and prevents the
single bit leakage problem of the HVZK proof system [8], [9].
In order to compute the proof, the client evaluates derived
session parameters, according to a circuit CzkOpen, against
message transcripts which have been intercepted at the proxy
(cf. Section V-C2). The proxy is only able to verify 2PC
input correctness within CzkOpen if the proxy has honestly
garbled CSHTS and successfully verified SHTS. If the CzkOpen

verification succeeds, then the proxy attests to the TLS data
of the client by signing the data. With the signature of the
proxy, data provenance of client data can be verified by any
third party that trusts the proxy.

3) Commit-disclose-open Paradigm: The additional com-
mitment scheme on 2PC output wire keys is important as
leaking a single bit in semi-honest 2PC interaction could dis-
close private plaintext bits with high entropy. The commitment

prevents the proxy as a malicious garbler to obtain any client
secrets and gives the client the opportunity to verify garbling
correctness of the 2PC circuit before the client shares wire
keys with the proxy. The commit-and-reveal protocol works
as follows. The client is required to share a commitment with
randomness rc of the HVZK output wire key with the proxy.
Next the proxy discloses the garbling truth table to the client
such that the client verifies honest garbling of the proxy. In the
case of a malicious garbled truth table, the client aborts the
protocol. Otherwise, the client shares the commit randomness
rc with the proxy. The proxy uses rc to verify if the client
committed to the correct outgoing wire keys and aborts the
protocol if the verification fails.

V. PROTOCOL SPECIFICATION

The following sections provide the remaining details of the
Janus protocol. The subsection V-B summarizes all required
2PC circuits. Afterwards, client-side parties mutually verify
each other (cf. Section V-C), before the proxy attests to TLS
data via two possible data attestation modes (cf. Section V-D).

A. System Setup

Our protocol builds upon system roles introduced in the
Section III-A, where the proxy takes the role of the TLS
oracle verifier. As such, the proxy acts as the garbler of all
2PC circuits and circuits for the computation of HVZK proofs.
The client acts as the evaluator of all 2PC circuits and garbles
2PC circuits if a maliciously secure 2PC system is required.
Initially, the client and proxy agree on a policy P , which
indicates a public statement ϕ that holds on TLS data which is
presented by the client. During the system setup, the proxy and
client execute 2PC offline computations to set up all required
parameters. Offline computations are independent of TLS
session parameters (e.g., setup or preprocessing functions)
and can be executed before a TLS session starts. Online
computations are functions which must be called throughout
the TLS session. With all offline parameters set, the client
instantiates a TLS session with the server based on the 3PHS
(cf. Appendix A). Subsequently, the client and proxy translate
shared EC secrets of the DHE value into additive secret shares
s1, s2 through the ECTF protocol (cf. Appendix E2). In the
end, the proxy and client locally keep s1 and s2 respectively
and it holds that s1 + s2 = DHE.

B. Two-party Computation

The client and proxy continue to interact with 2PC interac-
tions to collaboratively but vetting follow the TLS specifica-
tion. To do so, both parties input their secret shares s1, s2 into
a number of 2PC circuits (cf. Figure 6), which disclose 2PC
outputs to the client.

1) Handshake Circuits: The circuit CXHTS is required to
complete the handshake phase and, depending on the client
or server input labels, computes the CHTS or SHTS secrets.
The circuit takes as input both secret shares and initially
derives DHE = s1 ⊕ s2. If the circuit CXHTS outputs SHTS
to the client, then the client verifies the SF message. Upon
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Fig. 6. Overview of 2PC circuits of the Janus protocol. All circuits are executed in a semi-honest adversary setting except the circuit Ctag , which executes
with security against malicious adversaries. Depending on provided inputs, the circuits output server-side or client-side TLS 1.3 parameters.

successful verification of the server certificate (SC), SCV,
and SF messages, the client discloses SHTS to the proxy.
If the circuit CXHTS outputs CHTS, then the client, computes
and sends the CF message to the server to finish the TLS
handshake agreement. CHTS is never shared with the proxy.

2) Record Request Circuits: The next 2PC circuit C(km1 ,iv)
requires the proxy to generate and input a random mask
m1, and takes as input both client-side secret shares. The
circuit first reconstructs DHE = s1 ⊕ s2 and, with DHE,
derives application traffic secrets. The client obtains as output
a masked application traffic key km1

XATS = m1 ⊕ kXATS and
the request initialization vector ivXATS. Again, depending on
the type of TLS 1.3 labels, the circuit outputs client or server
application traffic keys.

Subsequently, for every request, the proxy and client com-
pute the circuit CCB2+

, which outputs counter blocks CB2+ to
the client. The notation CB2+ expresses counter blocks CBi

with an index i > 1. With access to CB2+ the client computes
the ciphertext chunks q of the request record and shares q with
the proxy. Once the proxy receives q, both the proxy and client
compute the 2PC circuit Ctag (cf. dark blue circuit in Figure 6)
to complete the construction of the request. The circuit Ctag
outputs the counter blocks CBtag=[CB0,CB1], which, together
with the ciphertext chucks q, let the client compute the authen-
tication tag t locally. We follow the bandwidth-efficient 2PC
dual-execution paradigm of the works [3], [18] to implement
a malicious secure 2PC evaluation of the circuits Ctag , CCB2+

,
and C(km1 ,iv).

3) Record Response Circuits: After computing and sending
requests to the server, the proxy records (i) request ciphertext
and authentication tag pairs (q, tq) and (ii) proceeding response
ciphertext and authentication tag pairs (r, tr) from the server.
When processing server-side response data, the execution of
the 2PC circuit CECB2+ depends on server application traffic
secrets. Further, the computation of response CBs is only
necessary if there exists a dependency between follow up
requests and obtained responses:

Requests are independent of responses. If no request
depends on the contents of a response, then the circuit CECB2+

is only called for the compilation of request ciphertexts. We

show that response CBs can be locally computed by the client
once proxies disclose session secrets in a later phase of the
protocol (cf. Section V-C1).

Requests depend on responses. If a request with number
n > 1 depends on the contents of responses r=[r1, . . . , rl],
where each response rm has an index m < n, then the
client and proxy perform l executions of the circuit CCB2+

.
The evaluation of l circuits CCB2+

yields l vectors of en-
crypted counter blocks CB2+ to the client. With l vectors
of CB2+, the client is capable of accessing the contents
of the responses r=[r1, . . . , rl] to construct the n-th request.
Further, with access to the l-th CB2+, the client is incapable
of accessing any TLS session secret share of the proxy and,
thus, cannot compute any y-th CB2+, with y>l. To preserve
MITM-resistance, it must hold that the proxy intercepts the
pair (r, tr) before the circuit CCB2+ outputs the corresponding
CB2+ of response r. Notice that no CB2+ vector includes any
CBtag parameters.

C. Post-record Verification

As soon as the client has exchanged enough record data
with the server such that the statement ϕ can be satisfied, the
client sends a notification to the proxy such that the proxy stops
the recording of ciphertext authentication tag pairs. Next, the
Janus protocol instantiates a mutual verification phase between
the proxy and the client. During the mutual verification, the
client verifies if the proxy (i) honestly garbled shared circuits
and (ii) provided correct input data during 2PC interactions
(cf. Section V-C1). The proxy, on the other hand, checks if the
client preserves session-integrity and presents TLS parameters
and data according to the TLS specification (cf. Section V-C3).

1) Proxy Verification: To initiate the proxy verification, the
proxy discloses (i) locally maintained TLS session secrets and
(ii) 2PC garbling truth tables to the client. The client, to
preserve session-confidentiality, never discloses locally con-
trolled secret shares. With full access to the session secrets,
the client locally recomputes and matches all TLS session pa-
rameters against previously evaluated 2PC outputs. The client
is convinced of an honest 2PC garbling by the proxy if the
2PC outputs match the individually computed TLS parameters.



Any detection of a malicious garbling at the client leads to a
protocol abort. Subsequently, the client discloses recomputed
request and response counter blocks CBtag to the proxy such
that the proxy is able to verify the authenticity of recorded
traffic. A traffic pair (x, tx) is authentic if the counter blocks
CBtag and the ciphertext chunks x compute the corresponding
tags tx. After the disclose phase, the client is able to locally
compute the remaining CBs of responses, which have not
been decrypted up to this point. The local computation of
response CBs is a strong efficiency improvement compared
to the related works [2]–[4], [10], which perform the same
computation as well as the response tag computation using
maliciously secure 2PC.

2) Indices for Data Opening: With access to all record data
in the clear, the client determines a list of indices Iopen and
shares the list with the proxy. The list Iopen contains GCM
indices of CB, ciphertext, and plaintext chunks. With Iopen,
the proxy can select required ciphertext chunks for the data
provenance verification. Depending on the operation mode of
the Janus protocol, the indices Iopen are used for a transparent
or privacy-preserving verification of TLS 1.3 data.

Transparent Mode If the Janus protocol operates in the
transparent mode, the client shares TLS plaintext chunks pt
together with the list of indices Iopen with the proxy. The
proxy verifies if the computation of presented plaintext chunks
XORed with authentic CB chunks yields intercepted ciphertext
chunks. The integrity verification of the proxy is based on a
2PC interaction, which ensures that the client knows session
secrets that lead to an authentic derivation of CB chunks
according to the TLS session (cf. Section V-C3).

Privacy-preserving Mode If the Janus protocol operates
in the privacy-preserving mode, the client does not share TLS
plaintext chunks, but, instead, shares Iopen and proves knowl-
edge of authentic plaintext data, and evaluates the plaintext
against the public statement ϕ (cf. Section V-C3). Again, the
list of indices Iopen determines which plaintext chunks are (i)
verified concerning session-authenticity and session-integrity,
and (ii) validated against the statement ϕ.

3) Client Verification: The last 2PC interaction between the
proxy and the client ensures that (i) the client inputs correct
values throughout all 2PC interactions, (ii) the client releases
correct 2PC outputs to the proxy, and (iii) the TLS 1.3 data
presented by the client achieves session-integrity and session-
authenticity. The 2PC interaction follows the HVZK proof
system of the work [8], where a valid return of output wire
keys convinces the proxy of a valid TLS data opening. The
HVZK proof system is combined with the commit-disclose-
open scheme (cf. Section IV-C3) to prevent any information
leakage in the semi-honest proof system [9]. Depending on
the Janus operation mode, the last 2PC interaction validates
either a transparent data opening or keeps TLS data private
such that only the validity of data compliance according to
the statement ϕ is revealed to the proxy.

Transparent Data Opening In the transparent mode of
Janus, the proxy garbles the semi-honest 2PC circuit CtpOpen,
where only the client inputs private data in form of the shared

tpOpen(s2 ; s1, Iopen, pt):
1. SHTS’, CB’, CB’tag = Copen(s1, s2, Iopen, pt)
2. return: kSHTS’

out , kCB’
out , kCB’tag

out

zkOpen(s2, pt; s1, Iopen, ct=(q, r), CBtag , SHTS, ϕ):

1. SHTS’, CB’, CB’tag = Copen(s1, s2, Iopen, pt)
2. ct’ = CB’ ⊕ pt
3. assert: SHTS’ ?

=SHTS; ct’ ?
=ct; CB’tag

?
=CBtag

4. assert: 1 ?
=fϕ(pt)

5. return: k1out

Fig. 7. 2PC verification circuits for the transparent (tpOpen) or privacy-
preserving (zkOpen) data opening. Both circuits are executed to verify if the
client presents data which preserves session-integrity and session-authenticity.
The semicolon ; separates circuit inputs into private (left side) and public (right
side) input arguments. The function fϕ validates input data against a public
statement ϕ and returns a 1 if the validation succeeds.

secret s2 (cf. Figure 7). The proxy reserves the disclosure
of the decoding table T l−d at this point such that the client
obtains output wire keys only. The next phase is the commit-
disclose-open scheme, where the client commits to the tpOpen
outputs ctpo=Com(kSHTS’

out ||kCB’
out ||k

CB’tag

out , r) and returns the
commitment ctpo back to the proxy. After obtaining the com-
mitment, the proxy shares the garbled truth tables G(CtpOpen)
including the output decoding tables T l−d with the client.
The client verifies correct garbling of the CtpOpen circuit
and shares the commitment randomness r with the proxy
if the CtpOpen circuit verification succeeds. The proxy uses
the commitment randomness r to open the commitment ctpo
and is convinced of session-integrity and session-authenticity
on presented TLS data if the following verification check
succeeds: The proxy decodes committed wire keys and verifies
if CB’ together with the presented plaintext chunks lead to
a matching computation of ciphertext chunks. The decoded
SHTS’ value must match the initially verified SHTS parameter
and the CB’tag parameter must match the previously shared
CBtag values (cf. Section V-C1).

Privacy-preserving Data Opening In the privacy-
preserving mode, the proxy garbles the semi-honest 2PC
circuit CzkOpen (cf. Figure 7) and withholds the decoding
and truth tables T l−d, G(CzkOpen) from the client until the
proxy receives the commitment czko=Com(k1out, r). Equally
as in the transparent opening, the client proceeds according to
the commit-disclose-open scheme and shares the commitment
randomness r if the honest garbling verification succeeds. In
the end, the proxy is convinced if the decoded output wire key
of the commitment czko maps to a 1. The difference between
the privacy-preserving and the transparent data opening is that
the circuit CzkOpen verifies pt and the derived CB’ against
ct as well as the parameters SHTS and CB’tag in the circuit.
As a result, pt remains hidden and the proxy only learns if or
if not the private plaintext chunks comply with the statement
ϕ. We express the statement compliance evaluation with the
function call fϕ(pt) (cf. line 2 in Figure V-C2). To clarify



TABLE II
SECURE COMPUTATION BENCHMARKS SEPARATED INTO OFFLINE/ONLINE EXECUTION AND COMMUNICATION VALUES. WE MARK MALICIOUSLY SECURE

PROTOCOLS WITH ∗ AND 2PC PROOF SYSTEMS WITH Σ, AND SEPARATE THE HANDSHAKE, RECORD, AND POST-RECORD PHASES WITH DASHED LINES.

2PC Circuit Constraints (x106) Execution Offline Execution Online Communication Offline Communication Online

∗ ECTF - - 212.96 ms - 1.861 kB
CXHTS 3.14 215.56 ms 144 ms 34 MB 110 kB

∗ Ckm1 ,iv 10.34 723.96 ms 484.82 ms 108.08 MB 356 kB
∗ C256 B

ECB2+
/ C2 kB

ECB2+
1.16 / 9.18 67.78 / 578.76 ms 67.6 / 164.9 ms 10.12 / 86.02 MB 116 / 566 kB

∗ C256 B
tag / C2 kB

tag 4.04 / 29.01 285.98 ms / 2.42 s 492.24 ms / 3.78 s 52.06 / 378.02 MB 512 kB / 2 MB

Σ C256 B q, 2 kB r
tpOpen 12.69 0.89 s 0.46 s 126.01 MB 583 kB

Σ C256 B q, 2 kB r
zkOpen / fϕ 12.73 / 17.15 0.89 / 1.13 s 2.04 / 2.08 s 127.02 / 168.03 MB 2.13 / 2 MB

details of introduced parameters, we provide an example of a
private data opening next.

Example: We assume that TLS is configured to use AES as
the encryption function. If proving TLS data according to the
statement ϕ depends on the data inside the third ciphertext
chunk of the first response (r1, tr

1), then the index=3 is
included in the list of indices Iopen. With Iopen, the zkOpen
circuit is able to compute the right CB2+index, and consider
CB5=AES(k, iv|| . . . 5) for the computation of ct5’=CB5⊕pt5.
If the assertions against public inputs succeed (e.g. ct′5 ?= ct5),
and CB5 has been derived with secrets that match a verified
SHTS, then the data inside pt5 preserves session-integrity and
session-authenticity. Thus, pt5 can be further evaluated against
ϕ.

D. Data Attestation

Once the client verification at the proxy succeeds, the proxy
attest to presented client data. The Janus protocol supports
two attestation modes. In the transparent mode, the proxy
hashes verified TLS data of the client and signs the hash. The
certification parameter pcert=(t, ϕ, pk, σ) of the transparent
attestation includes a signature σ=ds.Sign(sk,[ϕ, t]) computed
at time t. The proxy overwrites the statement ϕ = H(pt)
to the hash of verified data such that every third party can
evaluate arbitrary statements against the attested and public
data. With pcert, the client gains public verifiability of TLS
1.3 data and can present pcert to any third party who trusts
the proxy. In the privacy-preserving mode, the structure of
pcert remains the same except that the statement ϕ expresses
the compliance constraints as a string. By verifying a privacy-
preserving attestation, any third party trusting the proxy learns
that the client successfully verified TLS 1.3 data against the
statement ϕ at time t.

VI. PERFORMANCE EVALUATION

The evaluation comprises a description of the software
stack, provides benchmarks on a circuit level, compares the
protocol scalability, and evaluates end-to-end metrics.

A. Implementation

We implemented the 3PHS by modifying the Golang cryp-
to/tls standard library2 and configured the NIST P-256 el-
liptic curve for the elliptic curve Diffie–Hellman exchange
(ECDHE). Our proof of concept implementation configures
TLS 1.3 with the cipher suite TLS AES 128 GCM SHA256
and we implement the ECTF and Multiplicative to Additive
(MtA) conversion algorithms in Golang by using the Paillier
cryptosystem [25]. For a coherent implementation of the Janus
protocol in Golang, we chose the mpc library [26] to access
secure 2PC based on garbled circuits and we chose the gnark
framework [27] to re-implement ZKP circuits of related works.
We adjusted the mpc library to output single wire labels if
we execute 2PC circuits in the context of 2PC proof systems
and we wrote all 2PC circuits in the mpc-specific multi-party
computation language (MPCL). We open-source our secure
computation circuits here3.

B. Performance

All performance benchmarks have been collected on a
MacBook Pro configured with the Apple M1 Pro chip and 32
GB of random access memory (RAM). We average presented
benchmarks over ten executions.

1) Secure Computation Circuits: We present secure compu-
tation building blocks in Table II. The table compares circuit
complexities, execution times, and communication overhead
of 2PC circuits, where execution times and communication
overhead is further divided into offline and online benchmarks.
The 2PC circuits CXHTS, Ckm1 ,iv derive session secrets in
milliseconds and compute CBs via the circuit CX

ECB2+
for a 2

kB record in 164.9 milliseconds. An interesting fact to notice
is that the AEAD tag circuit Ctag is efficient for small request
sizes and scales sufficiently but not ideally for larger request
sizes. The overhead in the circuit Ctag is introduced by the
algebraic structure of the Galois field polynomials in GF(2128),
which, as an algebraic structure, is in conflict with the binary
representation of computation in boolean GCs. The related
works [3], [10] propose a scalable OT-based computation of

2https://pkg.go.dev/crypto/tls
3https://github.com/januspaper/submission1/tree/esp

https://pkg.go.dev/crypto/tls
https://github.com/januspaper/submission1/tree/esp


TABLE III
END-TO-END BENCHMARKS OF THE Janus PROTOCOL AND TLS 1.3 AS THE BASELINE. FOR THE LAN SETTING, WE ASSUME A ROUND-TRIP-TIME

RTT=0 MS AND A TRANSMISSION RATE Rt=1 GBPS. VALUES MARKED WITH ” TAKE ON THE VALUE OF THE PREVIOUS ROW.

Communication (kb) Execution LAN (s)
Protocol Offline Handshake Record Post-record Offline Handshake Record Post-record
TLS 1.3 - 1.94 16.28 - - 0.016 0.001 -
Janustransparent 305.17 (MB) 113.8 984 583 1.99 0.51 1.04 0.46
Janusprivate 406.29 (MB) ” ” 2 (MB) 2.63 ” ” 2.08

25 27 29 211 213

Size of Data Chunks (B)
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Fig. 8. Scalability analysis of transparent and privacy-preserving data
openings, where solid, dashed, and dotted lines indicate zero-knowledge
proof computations based on the groth16, plonk, and plonkFRI backends
respectively. Dash-dotted lines indicate transparent data openings which are
independent of zero-knowledge proof systems. Lines closer to the lower right
corner are better and prove more data in less time.

the AEAD tag, which we consider as future work to improve
our implementation.

Concerning data opening times, we can see that the trans-
parent mode with the circuit CtpOpen is more efficient compared
to the privacy-preserving mode with the circuit CzkOpen. This
behavior is expected because, the 2PC circuit of the transparent
mode does not include the ciphertext, SHTS, and CBtag

verifications inside the circuit (cf. Figure 7). As a consequence,
the data communicated in the OT scheme of the transparent
mode is about half the size of the privacy-preserving mode.
The effect is further visible in the online communication cost,
where the transparent mode communicates 3x less data than
the privacy-preserving opening mode. As another reference
benchmark (cf. fϕ of the last row in Table II), we evaluate the
verification of a confidential document hash H(f) in the cir-
cuit CzkOpen. To do so, we set the function fϕ=H(f)

?
= H(pt)

to a hash check on the 2 kB response data, with H=SHA256.
Concerning online execution times, the extra hash evaluation
yields a negligible overhead for the client but increases the
communication overhead by a factor of 1.3x.

2) Scalability Trade-off: Due to the fact that the initial
works [2], [4] achieved practical computation times during
the TLS handshake and record phase, our scalability analysis
sets the focus on post-record computations. To gain a fair
comparison between related works and the Janus protocol, we
re-implemented privacy-preserving opening modes of related
works based on the Janus software stack. For Deco [4], the
zkSNARK circuit to open private data (DecoZk) depends on
the AES128 computation in the GCM mode. Our results in
Figure 8 show that DecoZk scales linearly with respect to the

size of the opened plaintext data. Even though the scalability of
our DecoZk re-implementation scales better with the Groth16
zero-knowledge proof system, a comparison between the Janus
protocol and DecoZk using the plonkFRI proof system is
more suitable. The reason is that the plonkFRI proof system,
in the same way as the Janus protocol, does not require a
trusted setup protocol. We open source our AES128 GCM
circuit implementation4 as the first gnark circuit of AES. Our
AES implementation performs worse compared to benchmarks
found in the work [4]. This behavior is expected because our
AES implementation uses a naive s-box lookup which related
implementations optimize [28]. Thus, compared to DecoZk
configured with the plonkFRI proof system, the Janus protocol
opens private data 382x faster.

For the re-implementation of the zkSNARK circuit de-
scribed by the work [3], we computed a zkSNARK friendly
commitment on the 2PC output wire labels of the circuit
CCB2+

. With the mpc framework [26], where the circuit en-
cryption function encrypts 128-bit wire keys, committing to a
16 byte chunk of private TLS data requires a commitment on
2 kB of wire keys at the circuit output. With computational
resources of the MacBook Pro, we were able to evaluate a
MiMC commitment in the gnark circuit PageSignerZk on a
maximum of 128 bytes (cf. blue lines in Figure 8). Thus,
compared to a private data opening according to the Pagesigner
protocol [3], the Janus protocol opens private data 3.4x
faster. Last, we compare the transparent mode of the Janus
protocol against transparent opening benchmarks presented in
the work [12]. Compared to the Garble-Then-Prove approach
(GtpTp) [12], we verify transparent data presentations 2.3x
faster.

3) End-to-end Performance: We present end-to-end perfor-
mance benchmarks in Table III and evaluate a typical API
traffic transcript which encompasses a 256 byte query and a 2
kB response. In the evaluation scenario, only client application
traffic secrets are derived because in the case of a single
response, the client can compute response CBs after obtaining
the session secrets of the proxy. Notice that in the handshake
phase, the circuit CXATS must be called twice to compute
SHTS and CHTS. The end-to-end benchmarks build upon the
benchmarks distribution of our measured secure computation
building blocks of Table II and the TLS 1.3 baseline reference.
Additionally, we measure 321 milliseconds for the integrated
3PHS and a proceeding ECTF conversion. The local SHTS
and certificate verifications in the handshake phase take 9.26

4https://github.com/Consensys/gnark/pull/719
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milliseconds and the witness pre-processing of the privacy-
preserving Janus mode takes 4.47 milliseconds.

The resulting end-to-end benchmarks show that the compu-
tation overhead of the Janus protocol mainly affects the record
phase which can be linked to the overhead introduced by
the maliciously secure 2PC computation of requests. Regard-
ing private data openings, our post-record execution timings
establish new standards for privacy-preserving TLS oracles.
Our end-to-end benchmarks in the local area network (LAN)
setting serve as a comparison baseline for related works.

VII. DISCUSSION

The discussion presents related works, positions the Janus
protocol in the context of TLS oracles according to its bench-
marks and security properties, and summarizes remaining
limitations as well as future work directions.

A. Related Works

The garble-then-prove paradigm of the work [12] introduces
semi-honest 2PC based on authenticated garbling to improve
efficiency of TLS oracles. In contrast, TLS 1.3 allows the
mutual authenticity verification of the SHTS secret if the proxy
honestly garbles the circuit CSHTS. The proxy has the incentive
to correctly garble CSHTS, because, with access to an authentic
SHTS secret, the proxy can verify 2PC input correctness
by matching 2PC inputs against SHTS. Thus, our work is
able to deploy a semi-honest proof system based on 2PC
without authenticated garbling, which increases the efficiency
to verify private data. To prevent any information leakage,
our work introduces a new commit-disclose-open paradigm.
Related works, without access to a 2PC proof system leverage
zkSNARK proof systems to verify private data as follows.

The work [11] leverages the structure of AEAD stream
ciphers and demands clients to commit to stream cipher CBs
via a pad commitment. Concerning the commitment to AEAD
stream ciphers CBs, the ZKP computation involves the com-
putation of TLS legacy algorithms (e.g., AES128), which are
of non-algebraic structure. The related work [11] notices that
legacy algorithms contribute to over 40% of ZKP computation
times and improves the efficiency of their protocol by putting
the proof computation of the pad commitment into a pre-
processing phase. Our work, on the contrary, directly computes
the stream cipher verification in a dedicated 2PC proof system
which can efficiently verify non-algebraic structures.

The works [2], [3] decouple the maliciously secure 2PC
evaluation of response CBs through CCB, where the client
obtains a output wire keys and shares a commitment of
CB wire keys with the verifier. With the commitment, the
verifier discloses the wire key decoding table as well as
secret shares with the client. The client is now able to verify
the correctness of CCB, access response data, and select a
transparent data opening. Optionally, clients can prove TLS
data in a ZKP circuit which (i) takes in private output wire
keys, (ii) computes CBs with the decoding table as public
input, and (iii) authenticates TLS data by XORing a plaintext
with CBs to the intercepted ciphertext. This approach has the

following limitation. The wire key possession before obtaining
a decoding table prevent the client from accessing response
data such that the client remains with two options. With
knowledge of the plaintext structure, the client commits to
a selection of output encodings, which correspond to the CBs
of interest for the privacy-preserving data opening. Without
knowledge of the plaintext structure, the client uses a merkle
tree commitment structure to commit to all output encodings
and selectively opens CBs in the ZKP circuit via merkle tree
inclusion proofs [3]. Due to frequent updates, API data is
unlikely to remain static over a longer period of time such that
the scenario of not knowing plaintext structures prevails. And,
the introduction of the merkle tree increases the complexity
of privacy-preserving proofs, which scale with the amount
of commitments. Our work, in contrast, allows clients to
selectively access plaintext data before a selection of data
chunks is proven.

B. Positioning of the Janus Protocol.

The most recent work on efficient TLS oracles [12] achieves
TLS 1.2 and TLS 1.3 compatibility and converts authenticated
garbling parameters into a zkSNARK efficient Pedersen com-
mitment. However, the private opening of TLS data against
Pedersen commitments has not been evaluated. Thus, concern-
ing TLS 1.3, we can only assume that the Janus protocol is
ahead of the competition because our work does not depend
on an extra conversion algorithm and a subsequent zkSNARK-
based opening.

Due to the fact that our work achieves fast execution times
with low communication cost in the handshake and record
phase (cf. Table III), the Janus protocol is an interesting
candidate to prove data of longer TLS 1.3 sessions. With the
Janus protocol, users can efficiently collect TLS 1.3 data in
long TLS sessions, and, in the end, selectively and efficiently
decide which data to open. Further, due to the efficient privacy-
preserving opening benchmarks, our work appears as a good
candidate to attest to guaranteed TLS 1.3 delivery of larger
data objects such as confidential documents. With the Janus
protocol design, where the verifier acts as a proxy, our protocol
integrates seamlessly into the web ecosystem as standard
browsers allow the configuration of proxies. And, since the
proxy mode of the work [4] does not provide MITM-resistance,
the Janus protocol is the first proxy-mode TLS oracle with
MITM-resistance.

C. Limitations & Future Work

The current version of the Janus protocol is tailored to
the conditions found in TLS 1.3 and, as a consequence, is
compatible with TLS 1.3 only. The second limitation is that in
the current state of our implementation, the unoptimized com-
putation of the request authentication tag includes algebraic
structures which negatively impact the performance. Last, due
to the fact that the related works [3], [10], [12] withhold
benchmarks of privacy-preserving TLS data openings, our
performance results can only be compared against our re-
implementations.



We expect that the underlying paradigm of the Janus
protocol can be similarly applied to TLS 1.2. To recap, with the
paradigm of our protocol, we refer to developing an efficient
mutual verification of a handshake secret that is authenticated
by the server. Similar to how our work uses the authenticity
of SHTS, the authenticity of the TLS 1.2 handshake secret
can be leveraged to employ a HVZK proof system after
introducing the asymmetric privacy setting. However, the
following differences must be considered. Securely deriving a
parameter to bind the server authenticity differs in the context
of TLS 1.2 because the server-side handshake messages are not
immediately derived and communicated. Additionally, TLS
1.3 employs encryption protocols which do not count as key-
binding [11]. As a result, maliciously secure computation is
used to compile requests and responses by computing the
ciphertext and authentication tag [11]. In TLS 1.2, encryption
algorithms are key-binding such that approaches only compute
authentication tags using maliciously secure computation [2],
[4]. Thus, the stronger cryptographic guarantees of TLS 1.2
encryption algorithms must be investigates with regard to
introducing the asymmetric privacy setting with the secret
disclosure of the proxy. We consider the investigation of the
Janus paradigm in the context of TLS 1.2 as future work.

VIII. CONCLUSION

In this work, we reconsider the selection of secure com-
putation techniques in TLS oracles by putting an emphasis
on the conditions found in TLS 1.3. We find that the adver-
sarial behavior of the TLS client-side can be partly reduced
depending of the protocol phase of TLS. In our setting, where
the verifier acts as a proxy, we show that the SHTS secret
can be mutually verified if the proxy honestly garbles the
semi-honest 2PC evaluation of SHTS. Even if the proxy acts
maliciously during the computation of SHTS, the TLS security
guarantees between the server and the client hold against the
proxy. Further, for the case where the proxy honestly garbles
the 2PC circuit of SHTS, the proxy can use the server-side
authenticity of the SHTS parameter to verify the correctness
of client inputs during 2PC protocols. This observation allows
the deployment of a semi-honest proof system to privately
or transparently convince the proxy of data provenance. The
employed proof system achieves new standards for privacy-
preserving and transparent data proofs.

IX. ACKNOWLEDGEMENTS

The authors acknowledge the financial support by the Fed-
eral Ministry of Education and Research of Germany in the
programme of “Souverän. Digital. Vernetzt.”. Joint project 6G-
life, project identification number: 16KISK002. This work has
received funding from The Bavarian State Ministry for the
Economy, Media, Energy and Technology, within the R&D
program ”Information and Communication Technology”, man-
aged by VDI/VDE Innovation + Technik GmbH.

REFERENCES
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APPENDIX

We describe algorithmic constructions by introducing se-
curity properties and provide concise tuples of algorithms to
explain input to output parameter mappings. For cryptographic
protocols, we describe the inputs and outputs which are
provided and obtained by involved parties. Additionally, we
mention the security properties of exchanged parameters.

A. Three-party Handshake

In the 3PHS (cf. Figure 9), each party picks a secret
randomness (s, v, p) and computes its encrypted representation
(S, V , P ). By sharing V + P = X with the server in
the CH, the server derives the session secret Zs = s · X ,
which corresponds to the TLS 1.3 secret DHE. When the
server shares S in the SH, both the proxy and client derive
their shared session secrets Zv and Zp respectively such that
Zs = Zv + Zp holds. In the end, neither the client nor
the verifier have full access to the DHE secret of the TLS
handshake phase. The 3PHS works for both TLS versions but
in Figure 9, we show a TLS 1.3-specific configuration based
on the ECDHE, where the parameters (e.g. Zp) are EC points
structured as P = (x, y).

B. Digital Signatures

A digital signature scheme is defined by the following tuple
of algorithms, where

• ds.Setup(1λ) −→ (sk, pk) takes in a security parameter λ
and outputs a public key cryptography key pair (sk, pk).

• ds.Sign(sk, m) −→ (σ) takes in a secret key sk and
message m and outputs a signature σ.

• ds.Verify(pk, m, σ) −→ {0, 1} takes in the public key pk,
a message m, and a signature σ. The algorithm outputs
a 1 or 0 if or if not the signature verification succeeds.

By generating a signature σ on a fixed size message m with
secret key sk, any party with access to the public key pk is able
to verify message authenticity. Digital signatures guarantee
that only the party in control of the secret key is capable of
generating a valid signature on a message.

Client / ProverProxy / VerifierServer

Fig. 9. Illustration of the 3PHS and exchanged cryptographic parameters
between the server, the proxy, and the client. The gray box at the bottom
indicates the relationship between shared client-side secrets Zv and Zp, which
corresponds to the session secret Zs of the server.

C. Keyed-hash or Hash-based Key Derivation Function

A HKDF function converts parameters with insufficient
randomness into suitable keying material for encryption or
authentication algorithms. The HKDF scheme is defined by
a tuple of algorithms, where

• hkdf.ext(ssalt, kikm) −→ (kpr) takes in a string ssalt, input
key material kikm, and returns a pseudorandom key kpr.

• hkdf.exp(kpr, sinfo, l) −→ (kokm) takes in a pseudorandom
key kpr, a string sinfo and a length parameter l and returns
output key material kokm of length l.

Both functions hkdf.ext and hkdf.exp internally use the hmac
algorithm (cf. Formula 1), which takes in a key k, a bit string
m, and generates a string which is indistinguishable from
uniform random strings. The hmac algorithm requires a hash
function H with input size b (e.g. b=64 if H=SHA256).

hmac(k,m) =H((k′ ⊕ opad)||H((k′ ⊕ ipad)||m))

with k′ = H(k), if len(k) > b

and k′ = k, else
(1)

D. Authenticated Encryption

AEAD provides communication channels with confiden-
tiality and integrity. This means, exchanged communication
records can only be read by parties with the encryption key
and modifications of encrypted data can be detected. An
AEAD encryption scheme is defined by the following tuple
of algorithms, where

• aead.Setup(1λ) −→ (ppaead) takes in the security param-
eter λ and outputs public parameters ppaead of a stream
cipher scheme E and authentication scheme A.

• aead.Seal(ppaead, pt, k, aD) −→ (ct, t) takes in ppaead, a
plaintext pt, a key k, and additional data aD. The output
is a ciphertext-tag pair (ct, t), where ct = E(pt) and
t = A(pt, k, aD, ct) authenticates ct.

• aead.Open(ppaead, ct, t, k, aD) −→ {pt, ∅} takes in
ppaead, a ciphertext ct, a tag t, a key k, and additional
data aD. The algorithm returns the plaintext pt upon
successful decryption and validation of the ciphertext-tag
pair, otherwise it returns an empty set ∅.

https://github.com/markkurossi/mpc
https://github.com/markkurossi/mpc
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.5281/zenodo.5819104


E. Secure Two-party Computation

Secure 2PC allows two mutually distrusting parties with
private inputs x1, x2 to jointly compute a public function
f(x1, x2) without learning the private input of the counter-
party. With that, secure 2PC counts as a special case of
multi-party computation (MPC), with m = 2 parties and
the adversary corrupting t = 1 parties [15]. The adversarial
behavior model in 2PC protocols divides adversaries into semi-
honest and malicious adversaries. Semi-honest adversaries
honestly follow the protocol specification, whereas malicious
adversaries arbitrarily deviate. In the following, we introduce
secure 2PC protocols which are used in this work, and
briefly introduce cryptographic constructions which are used
to instantiate the secure 2PC protocols.

1) MtA Conversion based on Homomorphic Encryption:
The secure 2PC MtA protocol converts multiplicative shares
x, y into additive shares α, β such that α+β = x ·y = r yield
the same result r. The MtA protocol exists in a vector form,
which maps two vectors x, y, with a product r = x · y, to two
scalar values α, β, where the sum r = α + β is equal to the
product r. The functionality of the vector MtA scheme can be
instantiated based on Paillier additive Homomorphic Encryp-
tion (HE) [29]. Additive HE allows parties to locally compute
additions and scalar multiplications on encrypted values. With
the functionality provided by the Paillier cryptosystem, we
define the vector MtA protocol, as specified in the work [22],
with the following tuple of algorithms, where

• mta.Setup(1λ) −→ (skP ,pkP ) takes in the security param-
eter λ and outputs a Paillier key pair (skP ,pkP ).

• mta.Enc(x,skP ) −→ (c1) takes in a vector of field ele-
ments x=[x1, . . . , xl] and a private key skP and outputs
a vector of ciphertexts c1=[EskP

(x1), . . . , EskP
(xl)].

• mta.Eval(c1,y,pkP ) −→ (c2,β) takes in the vector of
ciphertexts c1=[c11, . . . , c1l], a vector of field elements
y=[y1, . . . , yl], and a public key pkP . The output is a
tuple of a ciphertext c2 = c1y1

1 · . . . · c1yl

l ·EpkP
(β′) and

the share β = −β′, where β′ $← Zp.
• mta.Dec(c2,skP )−→ (α) takes as input a ciphertext c2 and

a private key skP and outputs the share α=DskP
(c2).

The tuple of algorithms is supposed to be executed in the
order where party p1 first calls mta.Setup and mta.Enc. The
function Ek(z) is a Paillier encryption of message z under
key k. After p1 shares the public key pkP and the vector
of ciphertexts c1 with party p2, then p2 calls mta.Eval and
shares the ciphertext c2 with p1. Last, p1 calls mta.Dec, where
Dk(z) is a Paillier decryption of message z under key k. If the
algorithms are executed in the described order, then party p1
inputs private multiplicative shares in the vector x and obtains
the additive share α. Party p2 inputs the private vector of
multiplicative shares y and obtains the additive share β. In
the end, the relation x · y = α+β holds, and neither the party
p1 nor the party p2 learn anything about the private inputs of
the counterparty.

2) ECTF Conversion: The ECTF algorithm is a secure
2PC protocol and converts multiplicative shares of two EC x-

ECTF between two parties p1 and p2.

inputs: P1 = (x1, y1) by p1, P2 = (x2, y2) by p2.
outputs: s1 to p1, s2 to p2.

p1: (sk,pk)=mta.Setup(1λ); send pk to p2
p1: ρ1

$← Zp; c1=mta.Enc([−x1,ρ1], sk); send c1 to p2

p2: ρ2
$← Zp;(c2,β)=mta.Eval(c1,[ρ2,x2],pk);δ2=x2 · ρ2+β;

send (c2,δ2) to p1
p1: α=mta.Dec(c2,sk);δ1=−x1 ·ρ1+α;δ=δ1+δ2;η1=ρ1 ·δ−1;

c1=mta.Enc([−y1,η1],sk); send (c1,δ1) to p2
p2: δ=δ1+δ2; η2=ρ2 ·δ−1; (c2, β)=mta.Eval(c1,[η2,y2],pk);

λ2=y2 · η2+β; send c2 to p1
p1: α=mta.Dec(c2,sk); λ1=−y1 · η1 + α;

c1=mta.Enc([λ1],sk); send c1 to p2
p2: (c2,β)=mta.Eval(c1, [λ2], pk); s2 = 2 · β + λ2

2 − x2;
send c2 to p1

p1: α=mta.Dec(c2,sk); s1 = 2 · α+ λ2
1 − x1

Fig. 10. The ECTF algorithm converts multiplicative shares in form of EC
point x-coordinates from points P1, P2 ∈ EC(Fp) to additive shares s1, s2 ∈
Fp. It holds that s1 + s2 = x, where x is the coordinate of the EC point
P1 + P2.

coordinates into additive shares [2], [4]. Figure 10 shows the
computation sequence of the ECTF protocol which makes use
the vector MtA algorithm defined in Section E1. By running
the ECTF protocol, two parties p1 and p2, with EC points P1,
P2 as respective private inputs, mutually obtain additive shares
s1 and s2, which sum to the x-coordinate of the EC points sum
P1+P2. TLS oracles use the ECTF protocol to transform the
client-side EC secret shares Zv and Zp into additive shares sv
and sp [2], [4]. Since the relation sv+sp = x for (x, y) = Zs

holds, it becomes possible to follow the TLS specification
by using secure 2PC based on boolean garbled circuits with
bitwise additive shares as input.

3) Oblivious Transfer: Secure 2PC based on boolean GCs
depends on the 1-out-of-2 OT1

2 sub protocol to secretly ex-
change input parameters of the circuit [17]. The OT1

2 involves
two parties where party p1 sends two messages m1,m2 to
party p2 and does not learn which of the two messages mb

is revealed to party p2. Party p2 inputs a secret bit b which
decides the selection of the message mb. An OT scheme is
defined by a tuple of algorithms, where

• ot.Setup(1λ) −→ (ppOT) takes as input a security pa-
rameter λ and outputs public parameters ppOT of a
hash function H and encryption schemes, where E1/D1

encrypts/decrypts based on modular exponentiation and
E2/D2 encrypts/decrypts with a block cipher.

• ot.TransferX(ppOT) −→ (X) takes in ppOT, samples x
$←

Zp, and outputs an encrypted secret X = E1(x).
• ot.TransferY(ppOT, X , b) −→ (Y , kD) takes in ppOT, a

cipher X , a bit b, and samples y
$← Zp. The output is a

decryption key kD = Xy and a cipher Y encrypting as
Y = E1(y) if b ?

= 0, or as Y = X · E1(y) if b ?
= 1.

• ot.Encrypt(ppOT, X , Y , m1, m2, x) −→ (Z) takes in ppOT,



Y , and derives k1 = H(Y x), k2 = H(( YX )x). The output
is a vector of ciphers Z = [E2(m1, k1), E2(m2, k2)].

• ot.Decrypt(ppOT, Z, kD, b) −→ (mb) takes in ppOT, key
kD, the bit b, and a vector of ciphers Z = [Z1, Z2]. The
output is the message mb = D2(Zb, kD).

In the OT1
2 protocol, party p1 calls ot.Setup and ot.TransferX,

and sends the public parameters and cipher X to p2. Party
p2 calls ot.TransferY, locally keeps the decryption key and
shares the cipher Y with p1. Now, p1 shares the output of
ot.Encrypt with p2, who obtains mb by calling ot.Decrypt.

4) Semi-honest 2PC with Garbled Circuits: We define
secure 2PC based on boolean garbled circuits by extending
our OT definition of Section E3 with the tuple of algorithms,
where

• gc.Setup(1λ) −→ (ppGC) takes in the security parameter λ
and outputs public parameters ppGC.

• gc.Garble(ppGC, CG, din) −→ (l, Tl-w, T
G
l-w, Td-l) takes as

input ppGC, a boolean circuit CG, the input bit string din,
and randomly samples rG, l

$← Zn. The output consists of
labels l, the undistorted and garbled label-to-wire tables
Tl-w, T

G
l-w, and the bit-to-label table Td-l.

• gc.Evaluate(ppGC, ld
p1
in

in , ld
p2
in

in , TG
l-w, T dec

lout-dout
) −→ (dout) takes

in ppGC, input labels l
d
p1
in

in , ld
p2
in

in , the garbled label-to-wire
table TG

l-w, a label-to-bit decoding T dec
lout-dout

, and outputs
the bit string dout.

On a high-level, a 2PC system based on boolean garbled
circuits involve a party p1 as the garbler and party p2 as
the evaluator. Party p1 calls gc.Setup and gc.Garble, where
p1 loops over every wire of the circuit CG and assigns two
randomly generated labels to every wire. Each label pair at
a wire correspond to a (0,1) bit pair such that in the end,
the tables Td-l and Tl-w provide a bit-to-wire mapping of all
possible bit combinations. Further, the wires w and with that
table Tl-w encode the computation logic of CG. Next, p1 uses
the randomness rG to turn Tl-w into a garbled representation
TG
l-w, and determines labels l

d
p1
in

in at input wires according to
input bits dp1

in . Subsequently, p1 sends l
d
p1
in

in ,T dec
lout-dout

,TG
l-w to p1.

Next, to obtain the remaining input labels l
d
p2
in

in , p1 and p2
interact with the OT1

2 scheme defined in Section E3. Because,
p1 is not allowed to learn the private input dp2

in of p2. Hence,
per input bit of the string dp2

in , p1 sends labels encrypted by
ot.Encrypt as messages (m1=l̂d

p2
in

in , m2=l̂¬d
p2
in

in ) to p2. Party p2

obtains labels ld
p2
in

in =md
p2
in

by calling ot.Decrypt, and, with that,

p1 does not learn any bits dp2

in . With access to the labels l
d
p1
in

in ,
l
d
p2
in

in , p2 is able to evaluate TG
l-w inside gc.Evaluate and, with

the label-to-bit decoding table T dec
ldout -dout

, p2 translates computed
output labels back to the bit string dout.

5) Cryptographic Commitments: Cryptographic commit-
ments are used to construct commitment schemes, which we
define by the following tuple of algorithms. The function

• c.Commit(x) −→ (c, w) takes as input the data x and
outputs a commitment string c and a witness w.

• c.Open(w, x, c) −→ {0, 1} takes as input the witness w,
the committed data x, and the commitment c and outputs
a one if the only valid pair (w, x) is provided as input.

Commitment schemes are often used in protocols which rely
on ZKP cryptography. Using a ZKP to compute the c.Open
function allows a prover to convince the verifier from knowing
a valid commitment opening without revealing the witness.

F. Zero-knowledge Proof Systems

In practice, zero-knowledge proof systems are implemented
by a tuple of algorithms, where

• zk.Setup(1λ, C) −→ (CRSC) takes in a security parameter
and algorithm, and yields a common reference string,

• zk.Prove(CRSC , x, w) −→ (π) consumes the CRS, public
input x, and the private witness w and outputs a proof π.

• zk.Verify(CRSC , x, π) −→ {0, 1} yields true (1) or false
(0) upon verifying the proof π against public input x.

The tuple of algorithms achieves the properties of a zero-
knowledge proof systems. If zero-knowledge proof frame-
works depend on cryptographic constructions that require a
trusted setup (e.g. use pairings or KZG commitments), the
zk.Setup function must be called by a trusted third party. For
transparent instantiations of zero-knowledge proof frameworks
(e.g. based on FRI commitments), the zk.Setup function can
be called by either party. The function zk.Prove and zk.Verify
are called by the prover and verifier respectively.

1) Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge: A zkSNARK proof system is a zero-knowledge
proof system, where the four properties of succinctness, non-
interactivity, computational sound arguments, and witness
knowledge hold [30]. Succinctness guarantees that the proof
system provides short proof sizes and fast verification times
even for lengthy computations. If non-interactivity holds (e.g.,
via the Fiat-Shamir security [31]), then the prover is able to
convince the verifier by sending a single message. Computa-
tional sound arguments guarantee soundness in the zkSNARK
system if provers are computationally bounded. Last, the
knowledge property ensures that provers must know a witness
in order to construct a proof.

The security analysis audits the properties of session-
integrity, session-confidentiality, and session-authenticity un-
der the assumption that MITM attacks are feasible. Other
system goals result from how the Janus protocol is designed.
For our theorems, we assume that the security guarantees
provided by TLS 1.3 [13] hold.

G. Handshake Phase

The Janus protocol ensures that in the TLS handshake phase
the properties of session-confidentiality, session-integrity, and
SHTS and session-authenticity hold.

1) Session Confidentiality: In the handshake phase, semi-
honest 2PC circuits are executed as follows. Before evaluating
the circuit CXHTS with labels that output the secret SHTS,
the client expects the authenticated and encrypted server-
side messages SF, SC, and SCV and discloses the 2PC



output SHTS if the verification of SHTS against the server-
side messages succeeds. The evaluation of CXHTS for CHTS
happens after the exchange of SHTS. Notice that CHTS is
never shared with the proxy. Further, if the proxy honestly
garbles CSHTS and passes server-side messages back to the
client, then the SHTS verification at the client succeeds and
the correct SHTS value does not reveal anything about the HS
secret due to the key independence property of TLS 1.3 [24]

Theorem 1. Under a secure OT, garbling, and hash scheme,
the semi-honest 2PC evaluation of CXHTS with subsequent
TLS 1.3-specific computations achieves session-confidentiality
against a probabilistic polynomial time adversary A which
maliciously garbles CXHTS, replays previously established
handshake transcripts, and deviates during the 2PC evalua-
tion.

Proof 1. SHTS: If the adversary as a proxy performs a
replay attack and shares previously obtained and authenticated
handshake messages in a new Janus session, then the adver-
sary can maliciously garble CSHTS to output a SHTS’ which
matches the replayed server-side parameters. However, even
if the client shares the 2PC output of SHTS’ back to the
adversary, SHTS’ does not leak information of the client’s
secret share. Since the client expects server-side messages
before evaluating SHTS, SHTS’ is already determined when
the client obtains server-side messages. Hence, the adversary
can only set SHTS’ with a prediction on the client secret
share. And, predicting the correct client secret share has
negligible probability for the adversary. Thus, any malicious
garbling of CSHTS which leaks a secret bit of the client’s secret
share yields an unpredictable outcome that is caught by the
client’s SHTS verification against server-side messages5. If
the client continues the TLS session after verifying SHTS’
against a replayed transcript, then the client continues to
use an uncompromised secret share. In that case, the Janus
protocol ensures that the client eventually aborts the protocol
before any secrets or confidential TLS data can be extracted
by the adversary. Our protocol protects client secrets in the
record phase through the deployment of maliciously secure
computations techniques (cf. Appendix H1), or lets clients
detect malicious proxies after the disclose of TLS session
secrets (cf. Appendix H2).

CHTS: The semi-honest 2PC evaluation of the circuit
CCHTS is secure under the same cryptographic schemes as the
evaluation of the circuit CSHTS. The secure OT and garbling
scheme protect the client input secret share and CHTS is
not disclosed to the adversary. Instead, the client follows the
TLS specifications and derives hash-based keying material
from CHTS to eventually disclose public AEAD parameters
(ciphertext and authentication tag) to the adversary in form of
AEAD protected handshake messages. A malicious garbling
of CCHTS leads from a protected propagation of CHTS=s2 or
CHTS=Ls2 to an indistinguishable set of AEAD parameters at

5This reasoning contradicts the incorrect arguing of the work [10] which
declares the Janus protocol vulnerable to the described replay attack by a
malicious proxy.

the adversary. Thus, a semi-honest deployment of the circuit
CCHTS preserves session-confidentiality, because the adversary
remains with a negligible probability of guessing s2.

2) Session Integrity: Session-integrity in the handshake
phase of the Janus protocol is only partly supported. Generally,
session-integrity prevents an adversary from deviating the TLS
1.3 handshake specification and provides honest parties with
an identifiable abort option when detecting misbehavior of
the adversary. However, due to the ability of the adversary to
create and present authentic traffic transcripts through replay
and MITM attacks, session-integrity in the handshake phase
only holds for the case where a single attack is false input
provision.

Theorem 2. Under an honest server, and a secret shared
client session, the Janus protocol preserves session-integrity
against a probabilistic polynomial time adversary A which
deviates from the TLS 1.3 specification by providing false
inputs into semi-honest 2PC computations.

Proof 2. Injecting false inputs into the semi-honest 2PC
circuit CXHTS leads to a computation of SHTS’ and CHTS’,
which deviate from server-side secrets SHTS and CHTS. As
a consequence, the server is incapable of processing non-
compliant AEAD parameters which have been derived under
false session secrets. Further, the SHTS verification fails
against authenticated and protected handshake messages of the
server.

Notice. The adversary is able to modify traffic transcripts
through replay attacks which cannot be detected by an honest
party in the TLS handshake phase but will be eventually
detected by the honest party during the post-record phase.
Until the detection of the malicious adversary, the Janus
protocol ensures session-confidentiality.

3) Session Authenticity: In the handshake phase, we in-
vestigate session-authenticity with regard to unforgeability of
server-side PKI certificates and transcripts.

Theorem 3. Under the honest server assumption and a secure
digital signature scheme, the Janus protocol achieves session-
authenticity against a probabilistic polynomial time adversary
A which tries to forge a message transcript for a valid
certificate.

Proof 3. The adversary can only forge a TLS handshake
transcript, if the adversary is able to compute the messages
SF, SCV, and SC. Computing the messages SF, SCV, and
SC requires the computation of a signature on the handshake
message transcript, where the signature corresponds to the
information of the certificate in the SC message. Since the
adversary cannot obtain the private key which corresponds
to the public key of the certificate, the adversary cannot
forge a signature. Thus, session-authenticity is preserved for
a message transcript if any client party verifies the server’s
PKI certificate, authenticates the server’s signature in the SCV
message, and checks a correct session transcript by verifying
the SF digest.



Notice. Our system model allows replay attacks where
adversaries can obtain session-authenticity on multiple tran-
scripts. Agreeing on a cipher suite before instantiating a TLS
1.3 session, and setting a key share in the CH message allows
the server compute all TLS 1.3 session secrets. Subsequently,
the server derives session secrets and authenticates server-
side handshake messages using the signature scheme. Since
the server signs the message transcript of the obtained CH
message and derives all other message transcripts locally, the
adversary can only determine the structure of the CH message
and obtain authenticated message transcripts which depend on
a secret server randomness.

4) SHTS Authenticity: In the handshake phase, we investi-
gate the authenticity of SHTS in the case of an honestly acting
proxy, and consider the client as the adversary.

Theorem 4. Under the honest server and proxy assumption,
a secure digital signature, a secure OT and semi-honest
garbling scheme scheme, the semi-honest 2PC evaluation and
disclosure of SHTS achieves authenticity for the proxy against
a probabilistic polynomial time adversary A which tries to
forge the authenticity of SHTS for a given CH message.

Proof 4. The client shares a CH message with the proxy
where the proxy overwrites the key share value by adding
another key share via the 3PHS. With the addition of the
proxy secret, the CH message is fully determined and the proxy
records the CH transcript first and before the client can predict
the CH transcript hash. Further, the CH message is uniquely
defined by the client randomness. To forge the authenticity of
the SHTS value, the adversary must find another transcript of
SF, and SCV according to SC, which is infeasible because
the adversary cannot forge a signature according to the server
certificate. If the adversary performs a replay attack, then the
adversary can determine a SHTS’ which matches authenticated
messages. Instead of evaluating an honest 2PC of the SHTS
circuit, the client simply shares SHTS’ with the proxy such that
the proxy verifies authenticity of SHTS’. However, the attack
fails when the proxy decrypts the SF message and checks the
transcript hash of the signature according to the CH message.
The adversary is only able to request authenticated handshake
messages for individual CH messages because the adversary
cannot compute the signature otherwise. In addition, the proxy
can verify if the right authenticated messages match the CH
message because every CH message is individually defined by
the client randomness which the proxy learns before the client.
Thus, any detection of the CH transcript hash deviation leads
to an abort by the proxy.

H. Record & Post-record Phase

The security analysis of the record phase investigates if
the security properties of session-confidentiality and session-
integrity hold throughout the TLS record and post-record
phase. Session-authenticity holds in the Janus protocol if
session-authenticity is preserved for parameters that achieve
session-integrity in the post-record phase.

1) Session Confidentiality: In the record phase, the ad-
versary tries to maliciously garble 2PC circuits such that
shared outputs either reveal the secret input share of the client
parties or yield information on AEAD parameters which leak
private record data of the client (e.g. CBs to decrypt ciphertext
chunks). Malicious clients try to learn secret shares of the
proxy with the goal to forge compliant traffic transcripts via
MITM attacks such that arbitrary data can be injected into the
Janus protocol. For clients, session-confidentiality is supposed
to hold throughout the Janus protocol whereas for the proxy,
session-confidentiality applies until the disclosure phase where
the proxy, according to the Janus protocol, shares all session
secrets with the client.

Theorem 5. Under a secure OT, commitment, and garbling
scheme and a semi-honest proof system leaking a single bit,
the Janus protocol maintains session-confidentiality during
the record and post-record phases against a probabilistic
polynomial time adversary A, which maliciously garbles 2PC
circuits, acts as a malicious verifier, or deviates as the evalu-
ator in 2PC systems.

Proof 5. For the adversary A1, acting as a client, the
interaction to compute all record and post-record circuits
C(km1 ,iv), CECB2+

, Ctag , CtpOpen, and CzkOpen never leaks secret
information of the proxy due to the secure OT and garbling
scheme. Thus, A1 never learns secret shares of the proxy. For
an adversary A2, acting as the proxy, no 2PC interactions to
compute the circuits C(km1 ,iv), CECB2+

, Ctag leaks a bit due
to the deployment of the maliciously secure 2PC system in
the record phase. In the post record phase, the adversary A2

does not learn any bit throughout the semi-honest interaction
in the proof system to compute CzkOpen, because the commit-
open-disclose paradigm yields a commitment opening after
the decoding table of the circuits has been shared with the
client. The secure commitment does not leak any information
on the output wire keys to the adversary A2. As a result, the
client is able to detect any incorrect garbling that would leak
private information and aborts the protocol upon detecting any
leakage. During the evaluation of the circuit CtpOpen, session-
confidentiality is not preseved anymore because A2 learns the
data which is transparently shared.

2) Session Integrity: To compromise session-integrity in the
record or post-record phase, the adversary intends to inject
arbitrary AEAD parameters into the interactive computation
of record ciphertexts and authentication tags. Further, the ad-
versary tries to convince the verifier from an incorrect mapping
of plaintext chunks during the semi-honest interaction in the
proof system. The adversary continues to leverage the sharing
of false 2PC outputs or provides false inputs to 2PC circuits
in order to deviate from the protocol.

Theorem 6. Under a semi-honest proof system leaking a
single bit, a secure OT, garbling, and commitment scheme, and
a maliciously secure 2PC system, the Janus protocol preserves
session-integrity against a probabilistic polynomial time ad-
versaryA which acts as a cheating prover, a malicious garbler,



or injects arbitrary TLS parameters or data throughout the
protocol.

Proof 6. The adversary A1, acting as a client, cannot inject
arbitrary response records into the Janus protocol because the
adversary A1 only obtains full session secrets to compute
valid responses after the proxy stops the recording of record
transcripts. Further, since the proxy verifies every selected
transcript record pair (x, tx), which has been selected by the
adversary, in the semi-honest proof system, the adversary A1

cannot inject arbitrary response data into the Janus protocol.
The adversary A1 can neither inject request transcripts that
pass the verification at the server and that are not recorded
at the proxy, because the proxy only participates in the 2PC
computation of request authentication tags if the corresponding
ciphertext has been shared. In the post-record phase the
integrity of correct data provenance is verified by the proxy by
requiring the adversary to present a valid proof in the semi-
honest proof system. In the proof system, any false input pro-
vision of the adversary A1 for the circuits CtpOpen and CzkOpen
is caught, because the honest proxy verifies input against an
already authenticated SHTS parameter (cf. Section G4). As
such the computation to be proven verifies intercepted and
recorded traffic transcripts of the proxy against the correct
input of the adversary.

If the adversary A2, taking the role of a malicious proxy,
maliciously garbles the 2PC circuits C(km1 ,iv), CECB2+ , and
Ctag , then the client detects the adversary through the ma-
liciously secure 2PC system which is used to compute the
circuits. The malicious garbling of the circuits and CtpOpen and
CzkOpen is detected by the client after the proxy discloses the
garbled truth tables in the commit-disclose-open paradigm.
Further, we consider the adversary A2 to successfully pass
the SHTS verification of the client in the handshake phase
based on a replay attack. In that case, the client has verified
a malicious SHTS’. The adversary is left with the options to
(i) input arbitrary data into honestly garbled 2PC circuits, and
(ii) disclose arbitrary data when disclosing all session secrets.
With (i), the adversary can compute and accept arbitrary
requests from 2PC request computations and, according to
the forged TLS session, compute and share valid responses
with the client. The arbitrary encryption of records prevent
the adversary from accessing any secrets. However, with
(ii), the adversary is forced to share a session secret which,
combined with the secret share of the client, must yield a
SHTS’ ?

=SHTS in a honest and local computation of SHTS.
The adversary only knows the underlying secret that leads to
the computation of SHTS’ and cannot predict the information
preserving addition of secret shares without knowledge of the
client secret share. Thus, the disclosure requirement of all
session secrets leads to the detection of a cheating A2 because
the comparison of the local computation of SHTS against
the previously obtained SHTS’ cannot be predicated by the
adversary and leads to a mismatch.

During the evaluation of CtpOpen and CzkOpen, only the client
inputs private data such that the adversary A2 can only

deviate form the Janus protocol if A2 maliciously garbles
the circuits. As already stated in the previous sentences, a
malicious garbling of A2 in the record and post-record phase
is infeasible.
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