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Abstract—In post-quantum cryptography (PQC), Learning
With Errors (LWE) is the dominant underlying mathematical
problem. For example, in NIST’s PQC standardization process,
the Key Encapsulation Mechanism (KEM) protocol chosen for
standardization was Kyber, an LWE-based scheme. Recently the
dual attack surpassed the primal attack in terms of concrete
complexity for solving the underlying LWE problem for multiple
cryptographic schemes, including Kyber. The dual attack consists
of a reduction part and a distinguishing part. When estimating
the cost of the distinguishing part, one has to estimate the ex-
pected cost of enumerating over a certain number of positions of
the secret key. Our contribution consists of giving a polynomial-
time approach for calculating the expected complexity of such an
enumeration procedure. This allows us to revise the complexity
of the dual attack on the LWE-based protocols Kyber, Saber
and TFHE. For all these schemes we improve upon the total
bit-complexity in both the classical and the quantum setting.

As our method of calculating the expected cost of enumeration
is fairly general, it might be of independent interest in other areas
of cryptography or even in other research areas.

I. INTRODUCTION

Introduced by Regev in 2005 [1], the Learning With Errors
Problem (LWE) is a computational problem that has been used
as a building block for several quantum-resistant cryptographic
primitives. A consistent amount of schemes submitted to the
NIST’s Post-Quantum Standardization Process [2] base their
security on the hardness of LWE. One of them is Kyber, which
was chosen as the standard algorithm for encryption. Saber is
another LWE-based scheme, which is very similar to Kyber
and made it to the third round of the competition. It is also
possible to build Fully Homomorphic Encryption (FHE) on
LWE. TFHE is such an encryption scheme, based on [3].

Cryptanalysis of LWE is an active area of research that en-
compasses various techniques, including combinatorial meth-
ods like the Blum-Kalai-Wasserman (BKW) algorithm [4],
algebraic methods [5], and lattice-reduction-based approaches,
such as the primal attack [6] and the (recently) most successful
dual attack [7]–[10]. Both BKW and the dual attack, in
their most recent variants, include a subroutine consisting of
enumerating a vector with entries from a non-uniform distri-
bution. Previous works dealt with this problem either using
unexplained models for estimating the cost of enumeration or
using unnecessarily pessimistic upper limit formulas [9], [10].

The contribution of this manuscript is to provide a new
and more accurate method to estimate the cost of such an
enumeration procedure. Our key realization is that the frequen-
cies of the different possible secret coefficient values follow a
multinomial distribution, meaning that the number of unique
probabilities for different possible keys is only polynomial.
This allows us to precisely calculate the expected cost of key
enumeration in polynomial time.

We integrate this new method into the complexity estimation
of the dual attack and obtain new lower security estimates
for the widely studied lattice-based schemes Kyber, Saber
and TFHE, both for the classic and quantum case scenario.
Furthermore, our contribution is general enough that it easily
can be applied to any situation where enumeration over a
vector sampled from a non-uniform distribution is needed.

The remaining part of the paper is organized as follows. In
Section II, we present notations and necessary background. In
Section III we introduce our new key enumeration approach,
while in Section IV we apply it to some lattice-based proto-
cols. Finally, in Section V we give the conclusions.

II. PRELIMINARIES

A. Notation

We denote the set of the integer, rational and real numbers
with Z,Q,R respectively. For a positive integer p, we write
Zp = Z/pZ. Upper case letters, e.g. M , denote matrices, and
bold lower case letters, e.g. v, represent column vectors. We
represent with vj the j-th component of v. We let log(·) denote
the 2-logarithm. The notation ∥v∥ denotes the Euclidean norm
of v ∈ Rn defined as

∥v∥ =
√
v21 + · · ·+ v2n.

For a discrete distribution X , its entropy is defined as

H(X) := −E(log(X)) = −
∑
k

p(xk) · log(p(xk)). (1)

B. Quantum Search Algorithms

a) Groover’s Search: Grover’s algorithm is a way of
efficiently searching for elements in an unstructured set. Let
S be a finite set of N object of which t ≤ N are targets. An



oracleO identifies the targets if, for every s ∈ S,O(s) = 1 if s
is a target, O(s) = 0 otherwise. Classically, one needs O(N/t)
queries to the oracle to identify a target. Grover provided a
quantum algorithm that identifies a target with only O(

√
N/t)

queries to the oracle [11].
b) Amplitude Amplification: Amplitude amplification is

a generalization of Grover’s algorithm. Let A be a reversible
quantum circuit and a be the success probability of A. Then
there exists a quantum algorithm that, for O(

√
1/a) times,

calls A, its inverse, and O, outputs a target with probability
greater than 1− a and uses as many qubits as A and O [12].

C. Lattices and Reduction Algorithms

A lattice is a discrete additive subgroup of Rn. Let B =
{b1, ..., bm} ∈ Rn be a set of linearly independent vectors.
We define the lattice generated by B as

L(B) = L(b1, ..., bm) =

{
v ∈ Rn : v =

m∑
i=1

αibi, αi ∈ Z

}
.

Unless differently specified, we will consider full-rank lattices,
i.e. n = m.

Typically, lattice reduction algorithms such as LLL or
BKZ [13]–[15], take as input a basis B of the lattice and
return another basis with short and nearly orthogonal vectors.
Lattice sieving consists of a class of algorithms, initiated with
the work of Ajtai et al. [16], to solve the Shortest Vector
Problem (SVP). These are usually used internally by BKZ
as an SVP oracle . They allow us to compute a large number
of short vectors and they have an estimated complexity of
2cβ+o(β), where β is the dimension of the lattice and c is
a constant equal to 0.292 for classical computers [17]. This
constant can be improved quantumly to 0.2653 using Grover’s
algorithm [18]. It was recently further improved to 0.2570 by
using more sophisticated quantum methods [19]1.

D. Learning With Errors and Gaussian Distributions

Definition 1: Let n be a positive integer, q a prime and
χs, χe two probability distributions over Z. Fix a secret vector
s ∈ Zn whose entries are sampled according to χs. Denote
by As,χe the probability distribution on Zn

q × Zq obtained by
sampling a ∈ Zn

q uniformly at random, sampling an error
e ∈ Z from χe and returning

(a, z) = (a, ⟨a · s⟩+ e mod q) ∈ Zn
q × Zq.

• The search Learning With Errors (LWE) problem is to
find the secret vector s given a fixed number of samples
from As,χe .

• The decision Learning With Errors (LWE) problem is
to distinguish between samples drawn from As,χe

and
samples drawn uniformly from Zn

q × Zq .
Consider m LWE samples

(a1, z1), (a2, z2), . . . , (am, zm)← As,χ.

1or even 0.2563 according to a recent preprint [20].

Then, one can represent such an LWE instance in a matrix-
vector form as

(A, z) = (A,As+ e mod q) ∈ Zm×n
q × Zm

q

where A is an m× n matrix with rows aT1 ,a
T
2 , . . . ,a

T
m, z =

(z1, z2, . . . , zm), and e is the vector of errors (e1, e2, . . . , em).
In theory, one usually instantiates χs and χe as the discrete

Gaussian distribution DZ,σ defined as the probability distri-
bution that to each a ∈ Z assigns the probability

ρ0,σ(a)∑
d∈Z ρ0,σ(d)

=
exp

(
−πa2/2σ2

)∑
d∈Z exp(−πd2/2σ2)

,

where ρ0,σ(x) is the probability distribution function of the
Gaussian distribution N(0, σ) with mean 0 and variance σ2.
In practice, it is more common to use a centered Binomial
distribution Bη , which takes values in [−η, η] or a uniform
distribution U{a, b}, which takes values in [a, b].

Given an LWE problem instance, there exists a polynomial-
time transformation [21], [22] that makes the secret vector
follow the same distribution as the error’s distribution χe.

E. Distinguishing Attacks to LWE

a) Dual Attack: The first attack on LWE performed on
the so-called dual lattice was introduced in [7]. While the
earlier versions of this attack were efficient only for instances
with very small coefficients (e.g. s ∈ {−1, 0, 1}n), thanks to
some recent contributions [8]–[10], the attack now also applies
to secrets with not-so-small coefficients.

Let (A,b = As + e mod q) be an m × n LWE instance,
for m ≥ n where the secret s and the error e have been
sampled from a discrete normal distribution with mean zero
and standard deviations σs and σe respectively. Partition the
matrix A as (A1 ∥ A2) and, in correspondence, the secret s
as (s1 ∥ s2). Consider the following pair

(A2,b−A1s̃1 mod q). (2)

For s̃1 = s1 we have that

b−A1s̃1 = A2s2 + e mod q

and therefore (2) is a new LWE instance with reduced dimen-
sion. If s̃1 ̸= s1, then (2) is uniform.

By enumerating over all possible vectors s̃1 of s1, one can
distinguish the right guess as follows. Let R be an algorithm
(e.g. BKZ, lattice sieving) that returns pairs (x,y) ∈ Zm×n

such that yT = (y1 ∥ y2)
T = xTA mod q, and x and y2

are short. Then, for s̃1 = s1, we have that

xT (b−A1s1) = xT (A2s2 + e) = yT
2 s2 + xTe. (3)

This quantity is distributed approximately according to a
discrete normal distribution with mean zero and variance
∥x∥2σ2

s + ∥y2∥2σ2
e . The choice for reduction algorithm R

determines the expected length of the vectors x and y2, and
therefore, the ability to distinguish (3) from uniform random.



b) BKW algorithm: In its original development, the
Blum-Kalai-Wasserman (BKW) algorithm was proposed as
a subexponential algorithm for solving the Learning Parity
with Noise (LPN) problem [23]. Later, it has been applied to
LWE [4], and further developed with new ideas such as Lazy-
Modulus-Switching, Coded-BKW and smooth-Lazy-Modulus-
Switching [24]–[28].

The BKW algorithm can be seen as a variant of the dual
attack where the reduction is performed using combinato-
rial methods instead of lattice reduction. For this reason,
techniques and improvements developed for BKW on the
distinguishing stage have been successfully applied to the
dual attack too. More generally, the BKW algorithm has the
disadvantage of requiring an exponential number of samples
(m ≫ n) to perform reduction. On the other hand, one
typically has more control over the outcome (i.e. reduced
samples).

III. IMPROVED ESTIMATION OF KEY ENUMERATION

Consider the problem of guessing the random value X
sampled from a discrete probability distribution with mass
function pk := P (X = xk). Without loss of generality, we
assume it to be non-increasing (i.e. p0 ≥ p1 ≥ p2 ≥ . . . ). The
optimal strategy is obviously to guess that X = x0, followed
by guessing that X = x1, and so on. The expected number of
guesses until the right value is found with this strategy is

G(X) =
∑
i

i · pi. (4)

Massey showed in [29] that

G(X) ≥ 1

4
2H(X).

He also showed why there is no such formula for upper
limiting G(X) in terms of H(X).

Now consider a sample of n values, each one drawn
independently from the same distribution with mass function
(p0, p1, . . . , pr−1). When enumerating all the possible samples
of s on these n positions, we want to do so in decreasing order
of probability until we find the solution. Since the total number
of outcomes is equal to rn, we cannot simply compute the
probability of every single outcome, sort all the probabilities
and then compute the expectation that way. However, we
can use the fact that the frequencies of each possible secret
value follow the multinomial distribution [30]. The number of
outcomes where k0 values are equal to 0, k1 values are equal
to 1 and so on until kr−1 values are equal to r − 1, where∑r−1

i=0 ki = n, is(
n

k0, . . . , kr−1

)
=

n!

k0!k1! · · · kr−1!
. (5)

Notice that all these outcomes have exactly the same prob-
ability of

r−1∏
l=0

pkl

l . (6)

The total number of unique probabilities is only

µ =

(
n+ r − 1

n

)
=

(n+ r − 1) · · · (n+ 1)

(r − 1)!
=

(n+ r − 1)!

(r − 1)!n!
.

(7)
For a fixed number r this expression is O(nr−1). Thus,

for a sparse distribution the number of unique probabilities is
low enough to sort them efficiently and compute the expected
value of (4).

Denote the unique probabilities by p′0, p
′
1, . . . , p

′
µ−1, such

that p′0 ≥ p′1 ≥ · · · ≥ p′µ−1. Let fi denote the number of
times p′i occurs. Also let Fi =

∑i−1
j=0 fj . Now we can express

the expected number of secrets to enumerate over until we
find the secret as

µ−1∑
i=0

p′i

Fi +

fi∑
j=1

j

 =

µ−1∑
i=0

p′i

(
Fi +

fi(fi + 1)

2

)
. (8)

A. Quantum setting

Consider again random values sampled from a discrete
probability with mass function (p0, p1, p2, ...). With a quantum
computer, as shown in [31] using amplitude amplification as
a tool, the expected number of guesses to find the right value
is

Gqc(X) =
∑
i

√
i · pi. (9)

Using the Cauchy-Schwartz inequality we have that

Gqc(X) =
∑
i

√
i · pi ·

√
pi ≤

√∑
i

i · pi ·
∑
i

pi

=

√∑
i

i · pi =
√
G(X).

(10)

Here, our method for computing the estimated cost of the
enumeration of (9) still applies, with a minor twist. In this
setting (8) changes to

µ−1∑
i=0

p′i

 fi∑
j=1

√
Fi + j

. (11)

We can rewrite
∑fi

j=1

√
Fi + j =

∑Fi+fi
j=1

√
j −

∑Fi

j=1

√
j.

Now, we only need to have an efficient and precise formula for
computing

∑n
i=1

√
i. For n ≤ 30 we can pre-compute the ex-

pression. For n > 30 using the Euler-Maclaurin formula [32],
we can derive the function

f(n) ≈ ζ(−0.5)+1

2
n

1
2+

2

3
n

3
2+

1

24
n− 1

2− 1

1920
n− 5

2+
1

9216
n− 9

2 ,

(12)
where ζ(·) is the Riemann zeta function, which approxi-

mates the sum with a relative error that is smaller than or
equal to machine epsilon.



B. Further optimizations

If for two outcomes x1 and x2 we have P (x1) = P (x2),
then we can merge these terms to speed up the calculation of
the enumeration.

Also, more generally, if throughout the enumeration we have
two lists of values [x1, x2, . . . , xk] and [x′

1, x
′
2, . . . , x

′
k] and

P ([x1, x2, . . . , xk]) = P ([x′
1, x

′
2, . . . , x

′
k]), then we can also

merge the two lists.

IV. APPLICATION TO LATTICE-BASED SCHEMES

In the Matzov version of the dual attack on LWE, the n
positions of the secret s are divided up into three parts, klat,
kfft and kenum. The attack first performs lattice reduction on klat
positions. In the second phase it enumerates, in decreasing
order of probability, all possible secrets on kenum positions.
For each such secret it performs an FFT on kfft positions
and checks if it has found the correct solution. Rewriting [9,
Theorem 5.1] asymptotically we get the following formula for
the cost of the distinguishing part of the dual attack.

O
(
G(χkenum) · (D + pkfft)

)
, (13)

where D is the number of samples needed to distinguish
the secret. The fact that the cost is additive in D and pkfft

means that it is best to keep these two terms of similar size.
Quantumly however, the cost is proportional to the square root
of the number of samples needed to distinguish the secret,
the cost of enumeration and the cost of performing the FFT
quantumly [10, (4)]. More concretely the cost is

O
(√

D · pkfft/2 ·Gqc(χ
kenum) · poly(log(n))

)
. (14)

The drastically reduced cost of distinguishing is the main
source of the quantum improvement that [10] achieves com-
pared to [9]. Notice the more than quadratic speed-up of
Gqc(χ

kenum) over G(χkenum), as shown in (10). In practice this
speed-up means that it is optimal for the schemes studied in
this paper to do enumeration only and let kfft = 0.

In Matzov [9], it was assumed that the expected cost
of enumerating over kenum positions is 2kenum·H(χ), without
any explanation. In [10], this problem was addressed. They
developed an upper limit formula for the expected cost of
enumerating over kenum positions sampled from a Discrete
Gaussian distribution with a specified standard deviation σ.
When estimating the expected cost of enumerating over the
secret of an actual scheme, they simply approximated the
secret distribution as a Discrete Gaussian with the same
standard deviation, see Table III. In the quantum setting they
developed a similar model.

Using the method detailed in Section III, in both the clas-
sical and quantum setting we can calculate the expected cost
of enumeration numerically with arbitrarily good precision, to
compare against the models of [9], [10].

A classical comparison is illustrated in Figure 1, for the
expected cost of enumeration for Kyber512/FireSaber. The
exhaustive cost is the obvious upper limit of guessing every

possible key. Notice that while the Matzov numbers are a bit
too optimistic, they are actually closer to the exact numbers
than the Albrecht/Shen model is. Notice that the gaps between
the different models increase with the dimension.

Figure 2 covers the quantum setting. Notice that there is
a consistent gap between the expected cost according to the
Albrecht/Shen model and the exact value, which increases very
slowly with the number of dimensions.

Table I shows the state-of-the-art of solving the underlying
LWE problem using the dual attack for the different schemes
and models considered in [10]. We briefly summarize the
models here. The models CC, CN and C0 are increasingly
optimistic models for the cost of the dual attack on classical
computers. GE19 refers to the most pessimistic quantum
model from [33]. QN and Q0 correspond to CN and C0,
but with the classical lattice sieving of [17] replaced by the
quantum lattice sieving of [19]. Finally, QN [10] and Q0 [10]
refer to the works of [10], where quantum speed-ups of the
FFT and the enumeration are applied. All the numbers are
computed using the script from [10].

Table II shows the updated state-of-the-art. These are
achieved by replacing Albrecht’s and Shen’s upper limit
formulas for enumeration by the exact values, as described
in Section III2. For all schemes and all models we show
improvements, but the magnitude of the improvements vary.
Our largest improvements are for the TFHE schemes, where
the secret follows a uniform distribution, meaning that a
Discrete Gaussian is a particularly bad approximation.

Very recently, another pre-print of an improved version of
the dual attack of Matzov was published [34]. There they
introduce a modified way of enumerating over the secret.
Compared to the results from [10] they achieve comparable
levels of improvements to us, in the classical setting. They
enumerate over the secret in a different way, meaning that our
improved estimate of the cost of enumeration does not apply in
their setting. However, they do not provide a quantum version
of their improved algorithm, the setting where our contribution
is the most impactful.

TABLE I
PREVIOUS STATE-OF-THE-ART.

Scheme CC CN C0 GE19 QN Q0 Q0 [10] QN [10]
Kyber512 139.2 134.4 115.4 139.5 124.4 102.7 119.3 99.7
Kyber768 196.1 190.6 173.7 191.9 175.3 154.6 168.3 150.0
Kyber1024 262.4 256.1 241.8 252.0 234.5 215.0 225.6 208.4
LightSaber 138.5 133.1 113.7 138.4 122.7 101.1 118.9 98.9

Saber 201.4 195.9 179.2 196.2 179.9 159.4 173.8 155.0
FireSaber 263.5 258.2 243.8 253.1 235.9 216.7 228.1 210.8
TFHE630 118.2 113.3 93.0 120.2 105.2 83.0 100.8 80.7

TFHE1024 122.0 117.2 95.4 123.9 108.5 84.8 105.6 83.2

A. Applications to BKW

As discussed in Section II-E, the techniques introduced in
Section III apply to the BKW algorithm too. In the setting
of [27], [28], the secret coefficients are discrete Gaussian

2The code for computing these numbers will be made available.



TABLE II
UPDATED STATE-OF-THE-ART.

Scheme CC CN C0 GE19 QN Q0 Q0 [10] QN [10]
Kyber 512 138.7 133.8 115.0 139.1 123.6 102.4 118.0 98.4
Kyber 768 194.8 190.0 172.9 190.6 174.5 154.5 166.3 148.0

Kyber 1024 260.6 254.5 240.6 251.0 233.4 214.5 223.2 206.2
LightSaber 137.5 132.6 113.3 138.0 122.3 101.0 117.6 97.7

Saber 200.9 195.6 178.5 196.1 179.3 159.2 172.4 153.8
FireSaber 262.9 256.9 242.6 252.8 235.3 216.4 226.2 208.8
TFHE630 115.7 111.3 92.1 118.2 103.9 82.8 95.6 76.8
TFHE1024 120.4 115.6 94.8 122.8 107.7 84.5 101.7 80.4

TABLE III
THE SECRET DISTRIBUTION AND ITS STANDARD DEVIATION, FOR EACH

SCHEME.

Scheme Distribution Standard deviation
Kyber512 B3

√
6/2

Kyber768 B2 1
Kyber1024 B2 1
LightSaber B5

√
10/2

Saber B4

√
8/2

FireSaber B3

√
6/2

TFHE630 U{0, 1} 1/2
TFHE1024 U{0, 1} 1/2

with a relatively large standard deviation, taken from the
distributions of the LWE Darmstadt Challenges [35]. The
authors perform enumeration over all possible secret values
within 3 standard deviations for each position. By instead
enumerating over the secret coefficients in decreasing order
of probability, one would see improvements similar to those
of the dual attack.

V. CONCLUSIONS

The method presented in this paper improves over previous
estimations for key-enumeration used in the literature. As a
direct application, we used it to revise the state-of-the-art
complexities for the dual attack against Kyber, Saber and
TFHE. Future research directions include the application of
this methods to other areas in crytpanalysis where an enu-
meration of a non-uniform vecotor is required. Furthermore,
thanks to its generality, the method might find application also
in areas outside the context of cryptography.
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