
Efficient Threshold Private Set Intersection via
BFV Fully Homomorphic Encryptions

Jingwei Hu1 and Wangchen Dai2

1 Nanyang Technological University, Singapore, {davidhu}@ntu.edu.sg
2 Zhejiang Laboratory, China, {w.dai}@zhejianglab.com

Abstract. In this paper, we consider how to use fully homomorphic encryptions
(FHEs) to solve the problem of private intersection cardinality and, more broadly,
the problem of threshold private set intersection where one party holding a set of
size N and the other party holding a set of size n collaboratively compute their
set intersection without revealing other information about their own set if and only
if the intersection size excesses the prescribed threshold. This problem has many
applications for online collaboration, for example, fingerprint matching, online dating,
and shareriding.

Keywords: Private Set Intersection, Threshold PSI, Fully Homomorphic Encryption

1 Introduction
This work considers how to construct threshold private set intersection (threshold PSI)
from fully homomorphic encryptions. Our protocol enables two parties (a.k.a. sender
and receiver) that each holds a set of inputs (set size is N and n, respectively) to jointly
compute the intersection if and only if the size of intersection set satisfies some specific
requirement, e.g., the intersection size is above a given threshold value, without leaking
extra information of his own set.

1.1 Contributions
We study the possibility of using state-of-art fully homomorphic encryptions to solve the
threshold PSI problem:

1. A private set intersection cardinality protocol for two parties against semi-honest
adversaries. The communication complexity of the proposed method reaches the
lower bound Ω(min(N, n)).

2. A new secret token generation protocol is constructed on our private set intersection
cardinality protocol. Then a PSI threshold protocol for two parties in semi-honest
secure model is constructed by combining a standard PSI protocol and the new secret
token generation protocol, and has communication complexity of Ω(N + n).

3. a variety of FHE-related techniques are presented to support our protocols over large
sets meanwhile reducing the concrete computation/communication overheads.

4. Our protocols remain conceptually simple and modular, which simplifies both security
analysis and implementations.

mailto:{davidhu}@ntu.edu.sg
mailto:{w.dai}@zhejianglab.com

2 iacrtans class documentation

1.2 Technical Overview
Our main threshold prviate set intersection protocol can be split into two subprotocols.
One for threshold token exchange protocol where a secret token is securely shared between
two parties if the size of set intersection satisfies the prescribed requirement, e.g., the
intersection size exceeds some threshold value, and one for standard private set intersection
protocol. Here we highlight some of the main ideas underlying our protocols. Our
construction is based on the following assumptions which are more likely to occur in real
world applications: 1) the sender’s set is not smaller than the receiver’s set. 2) the sender’s
computaitonal power is significantly than the receiver’s.

Threshold Token Exchange Protocol The goal of threshold token exchange protocol
is to enable the sender sharing a common token with the receiver if and only if the
intersection set size satisfies the threshold criterion. More formally, the receiver encodes his
set C as a Bloom filter BFC and then sends his (encrypted) Bloom filter to Sender. Sender
exploits the homomorphic operations in fully homomorphic encryption to check for each
element si in his own set S whether si belongs to BFC (a.k.a membership test). The Bloom
filter based membership test have been used in previous works [DCW13, DD15, DD15,
ZC18]. However, in contrast to these works, our new solution is to utilize the FHE-based
oblivious polynomial evaluation technique for directly converting the result of membership
tests into intersection cardinality. Our private set intersection sub-protocol achieves
communication complexity Ω(min(N, n)) which is asymptotically optimal. Based on the
set intersection cardinality sub-protocol, we again utilize programmable bootstrapping to
construct the threshold token exchange protocol: Sender locally generates a secret token
K and homomorphically generates an encryption of another secret token K ′ sent to Alice
who decrypts it to obtain K ′. The key point is that K ′ equals to K if the intersection
cardinality complies with the threshold, otherwise K ′ is completely random.

Standard PSI Protocol The sender who has his set S and a secret token K proceeds
to modify his set as SK = {si||K}i where each element in the new set SK is his original
set element si concatenated with the token K. Likewise, the receiver uses his token K ′

to modify his set as CK′ = {ci||K ′}i. Finally, the sender and the recevier engages in a
normal PSI protocol with their updated sets. Note that there is no restriction on what PSI
protocol can be used here. In our actual implementation, we choose the simple Elliptic
Curve Diffie-Hellman key exchange based PSI protocol.

2 Related work
The standard PSI, i.e., two parties securely computing the set intersection (does not
require computing some function f on the intersection) while the privacy of each party is
preserved, is extensively studied in the literature and is still an active research topic. We
categorize these research work into 4 classes as follows.

Diffie-Hellman key exchange based The earliest PSI protocols are build upon
the Diffie-Hellman key exchange [Mea86, HFH99] with semi-honest security, and later
extended with malicious security [CKT10, JL10]. RSA accumulator is exploited in to
implement PSI protocol [ACT11]. The merit of the DH-based PSI protocols is the low
communication complexity. However, these protocols reply on the complicated computation
of expoentiation, which makes the computational overhead rather large. In particular,
when the set held by each party is large, the computation efficiency for the DH-based PSI
is low.

oblivious transfer based OT-extension based constructions are the mainstream of
PSI protocols. These constructions typically include the hash-to-bins technique by using
various hashing algorithms, i.e., simple hashing, permutation-based hashing, or Cuckoo
hashing, which helps reduce the computational overhead. Since the OT extension technique

Jingwei Hu and Wangchen Dai 3

which relies on fast symmetric encryptions and a few asymmetric encryptions is highly
efficient, the OT-extension based constructions [PSZ14, KKRT16, PSSZ15, HV17, RR17,
CLR17, OOS17, PSWW18, PSZ18] are also fast. [KKRT16] also points out that the OT
extensions used in this class of PSIs can be viewed as oblivious pseudorandom function
(OPRF).

oblivious key-value store based OKVS-based construction emerges as a new
branch of PSI protocols. It uses a special encoding method to encode the set into an
oblivious data structure called oblivious key-value store(OKVS). The computing efficiency
of OKVS-based constructions [PRTY19, CM20] is initially low since they use complicated
polynomial interpolation technique. Later proposed the so called PaXoS data structure
which significantly improves the computing efficiency. Improving on this result, the up-to-
date fastest OKVS construction appears [RS21]. The concept and the method for OKVS
is further refined in [GPR+21].

polynomial manipulation The polynomial manipulation based constructions [FNP04,
KS05, DSMRY09, HN10, Haz18, FHNP16, GS19, GN19] present the set as a polynomial,
and use polynomial related operations, e.g., oblivious polynomial evaluation (OPE), to
equivalently perform set operations. These constructions are generally slower and also show
advantages on other aspects. For example, they can argue the security in the standard
model without replying on non-standard assumptions like random oracle model. They
can provide more functionalities rather rhan simply computing the set intersection (refer
to the threshold PSI [GS19] as one such instance). [CLR17] exploits fully homomorphic
encryption to perform polynomial evaluation obliviously. Their method shows better
communication complexity which only relies on the size of the smaller set if the size of
set held by each party is different. [CMdG+21] further optimizes [CLR17] by exploring
Paterson-Stockmeyer algorithm, postage-stamp bases, and Frobenius mapping to reduce
the computation and communication overhead.

Branching program This is a newly emerging and intriguing approach [JTKA22],
with an asymptotic communication complexity sublinear to the smaller set. It exhibits an
advantage when computing between non-equal sets. The core concept involves transforming
set membership tests into Branching Programs (BPs), and homomorphically executing
the BP. The significance of this approach lies not only in its potential for calculating PSI
but also in its convenience for various operations based on PSI results, such as private
computation on set intersections (PCI). Currently, this method is limited to theoretical
constructs and theoretical performance estimations.

Besides the study of standard PSI, the cryptographic research community also investi-
gate variants of standard PSI. Private intersection cardinality and threshold private set
intersection, among others, are probably most important variants.

Private Intersection Cardinality Private intersection cardinality problem [KS05,
HW06, DD15, EFG+15, PSWW18], considers how two parties collaboratively compute
the cardinality of the intersected set, rather than the intersection itself. [FNP04] points
out the lower bound of communication complexity of private set intersection is Ω(n),
where n is the size of the set held by each party. This lower bound naturally applies to
the private intersection cardinality problem. Google’s research team explored a variant
of Private Intersection Cardinality problem called the two-party intersection-sum with
cardinality problem for the first time in [IKN+20]. This problem involves simultaneously
calculating the size of the intersection and the sum of set payloads. According to Google’s
paper, the most practical methods currently still rely on classical Diffie-Hellman and
additive homomorphic encryption schemes. In [MPR+20], research was conducted on the
intersection-sum with cardinality problem under a malicious security model. Additionally,
[36] proposed a novel method for estimating the size of privacy-preserving intersections in
the context of designing a COVID-19 contact tracing system (utilizing a combination of
Diffie-Hellman and Keyword-PIR).

4 iacrtans class documentation

Threshold Private Set Intersection In many applications, we do not target com-
puting the intersection or the intersection cardinality. For example, the two parties in the
fingerprint matching, i.e., a client who has a small set of all his features in his fingerprint,
and a server who has a large set which contains fingerprint features for multiple users. The
protocol returns yes if the number of matched features excess some prescribed threshold
parameter t (in order to tolerate false negative errors), otherwise returns no. Another
good example is the lover pairing in dating website. the two parties are the man who
has a set of his preferences, and the women who also has a set of her preferences. The
protocol should return the intersected preferences if the number of shared preferences are
large such that this pair of man and woman can learn more about each other. Otherwise,
it should return an empty set (or nothing) to avoid personal privacy leakage. These
applications are abstractly referred to as threshold PSI where each of the two parties hold
a set of size n, and engates to compute the set intersection if the number of overlapping
is above a threshold value t. Otherwise, each of the two parties should learn nothing.
The threshold PSI problem is investigated in [FNP04, HOS17, GN19, PSWW18, ZC18].
[HOS17] combines the phasing technique and the threshold key encapsulation mechanism
to construct threshold PSI. [PSWW18] optimizes the generic MPC for comparsion circuit
to construct threshold PSI. [GN19] constructs a malicious secure threshold PSI based
on the oblivious linear function evaluation and robust secret sharing. [ZC18] presents
Paillier partial homomorphic encryption based oblivious polynomial evaluation to construct
semi-honest secure PSI protocol. [GS19] reveals that when the intersection is large (say
the size of intersection is at least n − 2t ≈ n), threshold PSI protocol has to have a
communication complexity of Ω(t). Based on the results from [GS19], threshold Private
Set Intersection for multiple parties is further studied in [BMRR21] which suggests the
sublinear communication complexity still holds in the multi-party case.

3 BFV
BFV, also known as one representative scheme in the second generation of fully homomorpic
encryption (FHE), is advantageous for leveled homomorphic encryptions, i.e., homomorphic
evaluation of a circuit with shallow multiplication depth. Theoretically speaking, by using
Gentry’s bootstrapping technique, BFV can support evaluating a circuit with unlimited
multiplication depth. Nevertheless, the state-of-arts of bootstrapping is still far from being
efficient. In this paper, since we focus on constructing efficient for the threshold PSI related
computations with optimal communication complexity, we restrict the usage of BFV to
leveled HE mode.

3.1 RLWE
BFV ciphertext is essentially a RLWE ciphertext defined over polynomial ring Rq =
Zq[X]/(XN + 1):

(a(X), b(X)) = (a(X), a(X) · s(X) + ⌈q
t
⌋m(X) + e(X)) ∈ Rq ×Rq

where s is a secret key, m is the message defined over Rq (a.k.a BFV plaintext), e =∑
i eiX

i is an error polynomial where each coefficient is extracted from a discrete Gaussian
distribution with small variance ei ∼ N (0, σ2). Likewise, we use RLWEN,q

s (m) to denote
a RLWE encryption of message m(X).

3.2 Addition and Multiplication
Homomorphic addition and multiplication are two basic homomorphic operations supported
by BFV. We skip the algorithmic descriptions for these two primitives but outline the

Jingwei Hu and Wangchen Dai 5

functionality abstractly. HomoAdd takes two inputs as a RLWE encryption of message m0
and a RLWE encryption of message m1 defined over Rq ×Rq and outputs another RLWE
encryption of m0 + m1 defined over Rq ×Rq:

RLWEN,q
s (m0), RLWEN,q

s (m1) HomoAdd−−−−−→ RLWEN,q
s (m0 + m1)

HomoAdd consumes trivial amount of noise budget and thus BFV can perform almost un-
limited number of homomorphic additions. HomoAdd can also support addition of one RLWE
plaintext and one RLWE ciphertext, i.e., RLWEs(m0+m1)← HomoAdd(m0, RLWEs(m1)).

Likewise, HomoMul takes two inputs as a RLWE encryption of m0 and a RLWE
encryption of m1 and outputs another RLWE encryption of m0 ·m1:

RLWEN,q
s (m0), RLWEN,q

s (m1) HomoMul−−−−−→ RLWEN,q
s (m0 ·m1)

It is worth noting that HomoMul consumes significantly more noise budget than HomoAdd
does. The typical value for the depth of multiplcation that BFV supports is 6. HomoMul
also supports multiplication of one RLWE plaintext and one RLWE ciphertext, i.e.,
RLWEs(m0 ·m1)← HomoMul(m0, RLWEs(m1)).

3.3 SIMD Encoding
SIMD (single instruction multiple data) encoding is a unique feature for the second generation
of FHEs which encodes a vector m = (m0, · · · , mN−1) over Fq to a polynomial over Rq:

FN
q

SIMD−−−→ p(X) ∈ Rt

The key idea in SIMD is that xN + 1 can be factorized into
∏N−1

i=0 (X − ζ2i+1). By
Chinese remainder theorem (CRT), we have:

Rt = Zt[x]
xN + 1 = Zt[x]∏N−1

i=0 (x− ζ2i+1)
≃CRT

N−1∏
i=0

Zt[x]
x− ζ2i+1 =

i=N−1∏
i=0

Zt[ζ2i+1]

In other terms, every polynomial p(X) =
∑

i piX
i over Rt can be equivalently rep-

resented by its evaluations at X = ζ2i+1 for i ∈ [N]. The evaluations can be written in
matrix form as follows: m0

...
mN−1

 =

 ζ1·0 · · · ζ1·(N−1)

...
...

...
ζ(2N−1)·0 · · · ζ(2N−1)·(N−1)

 ·
 p0

...
pN−1

The vector [m0, · · · , mN−1]T is essentially the N evaluation points associated with

the polynomial p(X). For SIMD encoding purpose, this vector of evaluation points are
interpreted as the BFV plaintext vector, and by using SIMD encoding technique, the BFV
plaintext vector is transformed to BFV plaintex polynomial p(X). It is easily seen that
BFV SIMD encoding is the inverse process of evaluating p(X) at points X = ζ2i+1, written
in matrix form as follows: p0

...
pN−1

 =

 ζ1·0 · · · ζ1·(N−1)

...
...

...
ζ(2N−1)·0 · · · ζ(2N−1)·(N−1)

−1

·

 m0
...

mN−1

According to the isomorphism between the plaintext vector and the plaintext polynomial

built from CRT, the addition/multiplication of two plaintext polynomials is equivalent to
the element-wise addition/multiplication of two plaintext vectors. That is,

6 iacrtans class documentation

If p0(X)← SIMD(m0), p1(X)← SIMD(m1), then p0(X) + p1(X)↔m0 + m1, and
p0(X) · p1(X)↔m0 ⊗m1

3.4 Left Rotation
Regarding the rotation, we view the vector after SIMD encoding as a 2× N

2 matrix. In
particular, we set ζj = ζ5j(mod 2N) where ζ is a 2N-th primitive root of unity. ζj =
ζ5j(mod 2N) for all j forms a multiplicative group with order N

2 and thus p(ζj) for j ∈
[N

2]returns the first row of the matrix while p(ζ−1
j (modt)) for j ∈ [N

2] returns the second
row of the matrix.

The left cyclic rotation by r slots LRot(ct, r) is described as follows:

1. Pre-compute the rotation key rk← KSGen(s, s(X5r))

2. Let ct = (a(X), b(X)), apply Frobenius mapping to obtain ct′ = (a(X5r), b(X5r))

3. Return KS(rk, ct′)

where KSGen(s, s(X5r)) denotes the key-switching key generation algorithm which essen-
tially encrypts s(X5r) under the secret key s and KS(rk, ct′) denotes the key switching
algorithm which essentially converts a message encrypted under s(X5r) to the same message
under a different secret key s.

It is worth mentioning that the left rotation applies to each row of the matrix separately.
It is also possible to rotate the columns,i.e., swap the rows by using the following algorithm
SwapRow(ct):

1. Pre-compute the rotation key rk← KSGen(s, s(X−1))

2. Let ct = (a(X), b(X)), apply Frobenius mapping to obtain ct′ = (a(X−1), b(X−1))

3. Return KS(rk, ct′)

3.5 Oblivious Polynomial Evaluation (OPE)
Oblivious polynomial evaluation (OPE) is a simple two-party secure computation protocol
where the sender who holds a secret polynomial p(X) =

∑N
i=0 piX

i and the receiver who
holds a secret input y evalutes jointly the polynomial at point x = Y without leaking
sender’s polynomial p(X) and receiver’s y.

OPE can be implemented by BFV fully homomorphic encryption as follows. Receiver
encrypts his secret input y as RLWE(y) and sends RLWE(y) to sender. Sender can
compute RLWE(p(y)) by applying BFV HomoAdd and HomoMul repeatedly:∑

i

pi · (RLWE(y))i = RLWE(
∑

i

piy
i) = RLWE(p(y))

It is easy to prove that the BFV-based OPE protocol is semi-honest secure if the RLWE
ciphertext is semantically secure. A straightfoward way to compute OPE takes Ω(N)
homomorphic multiplications and the multiplication depth is Ω(logN). As aforementioned,
BFV at leveled HE mode can only support limited multiplication depth and thus the
straightforward method is not applicable. A practical method is to let receiver prepare
logN ciphertexts, i.e., RLWE(y2i) for i ∈ [logN] and send these logN ciphertexts to
sender. Sender then applies homomorphic multilication algorithm to retrieve RLWE(yi)
for all i ∈ [N]. Note that this new method takes logN homomorphic multiplications
and consumes only Ω(loglogN) multiplication depths. The price it pays is the significant
increase in the communication complexity, i.e. the number of ciphertexts sent from receiver
to sender, from Ω(1) up to Ω(logN).

Jingwei Hu and Wangchen Dai 7

4 The Framework for Threshold PSI via BFV Fully Homo-
morphic Encryption

In this section, we describe our threshold PSI at abstract level. The threshold can be one of
the three types: Below-threshold (which returns the set intersection only if the intersection
cardinality is below some value), Above-threshold (which returns the set intersection only if
the intersection cardinality is above some value), and In-between-threshold (which returns
the set intersection only if the intersection cardinality falls within some interval). As
shown in Fig. 1, the client holds a set C = {ci}i and the server holds a set S = {si}i. The
threshold PSI is divided into two subprotocols, the threshold token generation protocol and
the standard PSI protocol. In the threshold token generation protocol, an encryption of
secret token K ′ and another secret token K are generated from the server side based on the
encrypted intersection cardinality, i.e., RLWE(|C ∩ S|). The client receives and decrypts
the encryption of K ′ and appends K ′ to every item in his set C such that C is updated
to C ′ = {ci|K ′}i. Meanwhile, the server also updates his set from S to S′ = {si|K}i. In
the standard PSI protocol, the client inputs his new set C ′ and the server inputs his new
set S′. Then the protocol proceeds exactly as a normal PSI protocol (The Diffie-Hellman
based PSI is used in the figure). At the end of the protocol, the client learns nothing
more than C ∩ S if the threshold criterion is met. Otherwise, the client receives (with an
overwhelming probability) an empty set.

To be more specific, in the threshold token generation protocol, the client first encodes
his set C into a Bloom filter array BFc and then uses fully homomorphic encryption scheme
(FHE) to encrypt BFc as RLWE(BFc). When the server receives RLWE(BFc), he first
performs a new primitive called ePSI-CA to compute homomorphically an encryption of |C∩
S| as RLWE(|C∩S|). The server then performs another primitive called SecretTokenGen
to homomorphically generate an encryption of token K ′ based on a public known threshold
criterion, an encryption of |C ∩ S| and a self-generated secret token K. The relation
between K and K ′ is that K ′ = K if the intersection cardinality satisfies the threshold
criterion, otherwise, K ′ is a completely random token. The server uses K to update his
set to S′ = {si|K}i, and also sends RLWE(K ′) back to the client. Finally, the client
decrypts RLWE(K ′) for updating his set to C ′ = {ci|K}i. The details of ePSI-CA and
SecretTokenGen will be discussed later in this paper.

Security analysis We use the following theorem to argue that our new threshold PSI
protocol is secure against semi-honest adversaries:

Theorem 1. Assuming the existence of CPA-secure fully homomorphic encryption scheme
and semi-honest seucre standard PSI protocol; then the protocol n Fig.1 is secure in the
presence of semi-honest adversaries.

Proof. Let P1 play as the receiver/client, and P2 play as the sender/server. Since we
use a standard PSI protocol secure against semi-honest adversaries, it suffices to prove
that the threshold token generation protocol is semi-honest secure. First, we consider
the case that P2 is corrupted. Thus, we merely need to show how to simulate the
view of the incoming messages received by P2 by constructing a simulator called S2. This
part is easy because P2’s view contains only an FHE encryption of the client’s Bloom
filter BFc[·]. S1 chooses a uniformly distributed message whose length equals to that of
the ciphertext RLWE(BFc[·]). This simulated message cannot be distinguished from
RLWE(BFc[·]) in the real model by a probabilistic polynomial-time-bounded adversaries
due to the CPA-security of FHE ciphertexts.

Next, we proceed to the case that P1 is corrupted, and construct a simulator S1.
The view of P1 merely contains an FHE ciphertext RLWE(K ′) sent by P2. RLWE(K ′)
is the output of a series homomorphic operations including ePSI-CA and SecretTokenGen
performed on P2, and thus is still CPA secure. Note that in this case, P1 outputs the secret

8 iacrtans class documentation

Client Server𝐶 = {𝑐𝑖} 𝑆 = {𝑠𝑖}

𝑅𝐿𝑊𝐸(𝑩𝑭𝒄[⋅])

𝑅𝐿𝑊𝐸(𝑲′)

𝑩𝑭𝒄[⋅]

𝐶′ = 𝑐𝑖
′ 𝑖 = 𝑐𝑖 𝐾

′ 𝑖

𝐶′𝑎 = 𝑐𝑖
′ 𝑎

𝑖
= {(𝑐𝑖 𝐾 𝑎}𝑖

𝐶′𝑎𝑏 = 𝑐𝑖
′ 𝑎𝑏

𝑖
= {(𝑐𝑖 𝐾 𝑎𝑏 }𝑖

𝑎 Random

𝑆′𝑏 = 𝑠𝑖
′ 𝑏

𝑖
= {(𝑠𝑖 𝐾′ 𝑏}𝑖

𝐶′ 𝑎𝑏 ← 𝐶′ 𝑎

𝐶′ 𝑎

𝑆′ 𝑏 ← 𝑆′

𝑏 Random

𝐶′ 𝑎 ← 𝐶 ′

𝑆′ 𝑎𝑏 ← 𝑆′ 𝑏

𝐶′ 𝑎𝑏

𝐶 ∩ 𝑆 ← 𝐶′ 𝑎𝑏 ∩ 𝑆′ 𝑎𝑏

𝑅𝐿𝑊𝐸(|𝐶 ∩ 𝑆|)
𝑒𝑃𝑆𝐼−𝐶𝐴
 𝑅𝐿𝑊𝐸 𝑩𝑭𝒄 ⋅ , 𝑆

𝑅𝐿𝑊𝐸 𝐾′
𝑆𝑒𝑐𝑟𝑒𝑡𝑇𝑜𝑘𝑒𝑛𝐺𝑒𝑛
 𝑅𝐿𝑊𝐸 𝐶 ∩ 𝑆 ,𝑅,𝐾

𝑆′ = 𝑠𝑖
′ 𝑖 = 𝑠𝑖 𝐾 𝑖

Standard PSI
Protocol

Threshold Token
Generation Protocol

Figure 1: An abstract framework for our threshold PSI protocol

token K ′ which is either the actual secret token K or a random value R depending on
whether or not the threshold condition is fulfilled. Either way, S1 uses P1’s FHE secret key
to encrypt K ′ and thus this new FHE ciphertext is indistinguishable from the incoming
RLWE(K ′) from P2 in the real model.

Discussion In the proof, the circuit privacy property of fully homomorphic encryption
schemes must be fulfiled. In the secretTokenGen subprotocol, the server may interact
with the client for reducing the noise in the ciphertexts. However, the noise term is related
to the function that the FHE computes and the client can extract the noise term for
learning information leakage in the ciphertext by decrypting it locally. To fix this circuit
privacy issue, we apply the noise flooding technique, where the sender re-randomizes the
output ciphertext c by homomorphically adding an encryption of zero with a large noise
term [Gen09]. Specifically, if the error component in the output ciphertext is bounded by
B, denoted as |e| < B, then the noise term in LWE(0) is bounded by Ω(2λB) [AJLA+12].
By adding this large noise term, denoted as c′ = c + Enc(0), a statistical distance of 2−λ

(negligible) is achieved between c and c′.

5 Challenges in the FHE-based threshold PSI
In this section, we outline the main challenges in the FHE-based threshold PSI and describe
our new methods for solving these challenges.

The first challenge is to homomorphically compute an indicator δ for the membership
test, i.e., the server who holds the set S homomorphically decides whether an element ci

from the client’s set C belongs to S:

δ(ci, S) =
{

1 if ci ∈ S

0 Otherwise

Jingwei Hu and Wangchen Dai 9

Table 1: Notation symbols used in this paper

Notations Definition
C client set
ci ∈ C an element in the client set
S server set
si ∈ S an element in the server set
δ(ci, S) membership test function, i.e., returns 1 if the in-

put element ci belongs to set S, otherwise returns
0

Pδ(X) membership test polynomial, i.e., Pδ(ci) = 1 if
the input element ci belongs to set S, otherwise
Pδ(ci) = 0

RLWEs(m) ∈ Rq ×Rq an RLWE encryption of the message m ∈ Rq

w.r.t. secret key s
i ∈ [N] a variable i is choosen from the set {0, 1, · · · , N −

1}

The difficulty is to convert this problem to OPE while keeping the multiplicative depth
low.

The second challenge is to homomorphically sum δ(ci, S) for all ci, which leads to the
intersection size |C ∩ S| =

∑
ci∈C δ(ci, S). Since the SIMD coding is used in FHE, it is

required to manipulate the elements in the encrypted vector, i.e., to sum all elements in
the SIMD slot.

The third challenge is to homomorphically compare the intersection size |C ∩ S| with
some given threshold t, and then to generate a secret token based on this comparison
result:

fabove−threshold(|C ∩ S|) =
{

K if |C ∩ S| > threshold

R Otherwise

where K is generated by the server for updating his own set and R is a completely
random token. The difficulty is the same as the first one which includes how to keep low
multiplicative depth for OPE but even more difficult since the input, i.e., an encryption
of |C ∩ S| contains relative high level of noise and the noise budget left for computing
fabove−threshold is much fewer.

5.1 Use OPE for membership test
The first critical task in the proposed PSI protocol is how to implement the primitive δ
in the membership test. Suppose that each element in the set C and S is represented
by a 32-bit integer. We define a super set S(sup) def= {1, 2, · · · , 232 − 1} over the sender’s
set S such that |S(sup)| = 232 − 1 and S ⊂ S(sup). Note that the element 0 is excluded
from S(sup) and reserved as a dummy item. We use Lagrange interpolation to construct a
high degree polynomial Pδ(X) =

∑
i=0 PδXi for the set S with evaluation points (x, 1) for

x ∈ S ∩ S(sup), and (x, 0) for x ∈ S(sup) − S. It is easily seen that the degree of Pδ(X) is
exactly 232 − 1.

Note that the above membership test must be performed homomorphically. The client
encrypts every element ci in his set C and sends RLWE(ci) to the server. Then the server
applies OPE on RLWE(ci) and Pδ(X) to compute RLWE(Pδ(ci)). A straightforward
method for computing RLWE(Pδ(ci)) consumes logN multiplicative depth. However,

10 iacrtans class documentation

BFV supports very limited multiplicative depth of which a typical value is 8. Therefore
the straightforward method is not applicable.

Reduce the multiplicative depth Consider a natural method which trades com-
munication complexity for better multiplicative depth: the receiver prepares N = 232 − 1
ciphertexts for each ci as RLWE(ci), RLWE(c2

i), · · · , RLWE(cN
i) and send these N ci-

phertexts to server. The server can compute RLWE(Pδ(X)) in depth one. However,
the price is that the communication complexity increases by N times. A more balanced
method called windowing, is as follows: the receiver prepares ⌊log2N⌋ + 1 ciphertexts
including RLWE(ci), · · · , RLWE(cj

i), · · · , RLWE(c2⌊log2N⌋

i). Now the sender can com-
pute RLWE(Pδ(X)) in depth ⌈log(⌊logN⌋+ 1)⌉ ≈ loglogN , and the price it pays is the
communication complexity increased by ⌊logN⌋+ 1 times. Note that the SIMD encod-
ing is used, therefore, the OPE is batched and the final ciphertext encrypts a vector as
{RLWE(Pδ(ci))}i for i ∈ [N]. Note the noise in the ciphertext RLWE(Pδ(X)) after OPE
is relatively large, denoted as Error(RLWE(Pδ({ci})) ∼ N (0, σ2

δ).
Reduce the number of ciphertext-ciphertext homomorphic multiplications

It is worth noting that the ciphertext-ciphertext multiplication is computationally more
complex than the ciphertext-plaintext multiplication due to the relineariztion procedure. In
fact, ciphertext-plaintext multiplication consumes only 2 multiplications over Rq whereas
ciphertext-ciphertext multiplication consumes about 4 + Ω(log2 q) multiplications over
Rq, which generally indicates that ciphertext-ciphertext multiplication is at least two
orders of magnitude slower than ciphertext-plaintext multiplication. To conclude, the
computation of OPE is bottlenecked by the number of ciphertext-ciphertext homomorphic
multiplications used for homomorphically computing all powers of X and it is reasonable
to bound the computation overhead of membership test by the number of homomorphic
multiplications occuring in the OPE protocol. Recall that if the windowing method which
is used to balance between the multiplicative depth and the communication overhead, the
number of ctx-ctx multiplications is upper-bounded by B − ⌊log2 B⌋ ≈ B.

In practice, a better method we use in our software implementations for computing the
OPE protocol is by applying the Paterson-Stockmeyer algorithm. In this case, Pδ(Enc(X))
is rewritten as:

Pδ(Enc(X)) =
B∑

i=0
Pδ,i · (Enc(X))i =

H−1∑
i=0

L−1∑
j=0

Pδ,iL+j · Enc(X)j

 · Enc(X)iL

where H ·L ≥ B + 1 and H ≈ L = Ω(
√

B). The sender first pre-computes Enc(X)j for all
j ∈ [L] and Enc(X)iL for all i ∈ [H] from Enc(X)2m for m ∈ [⌈log2L⌉] and Enc(X)2nL for
n ∈ [⌈log2H⌉] sent by the receiver, which consumes precisely L+H−⌈log2L⌉−⌈log2H⌉−2
ciphertext-ciphertext multiplications and consumes another H − 1 ciphertext-ciphertext
multiplications to evaluate Pδ(Enc(X)). To summarize, the OPE protocol consumes about
L + 2H − ⌈log2H⌉ − ⌈log2L⌉ − 3 ≈ L + 2B

L ciphertext-ciphertext multiplications in total.
Reduce the degree of Pδ(X) Consider using the classic hash-to-bins technique to

further reduce the homomorphic evaluation of Pδ(X) for all ci ∈ C. Assume that each
element in the set C and S is represented by a 32-bit integer and we reasonably set
|S(sup)| = N (sup) = 232 − 1, |C| = n where those elements s.t. s

(sup)
i ∈ S are called valid

balls and those elements ssup
i /∈ S are called invalid balls. The receiver invokes Cuckoo

Hashing (with two hash functions h0, h1) to hash his set elements {ci}i to Ω(n) bins (we
prepare 1.5n bins in practice to achieve a negligible hash collision probability) where each
bins has at most one element. The sender invokes simple hashing (with the same hash
functions h0, h1) to hash his set elements {s(sup)

i }i to Ω(n) bins (In practice, the number
of bins is also set to 1.5n) where each bin has up to N(sup)

n +O(
√

N(sup)·logn
n) elements

with high probability. Now the sender and receiver only need to perform bin-wise PSI

Jingwei Hu and Wangchen Dai 11

Sender Receiver

𝑦4

𝑦5

𝑦3

𝑦1

𝑦2

𝑥5 𝑥4

𝑥2 𝑥3 𝑥1

𝑥4 𝑥5

𝑥1 𝑥2

𝑥3

Figure 2: Pδ(X) by hash-to-bins technique

for each bin, in other words, the polynomial associated with each of the sender’s bin has
degree of N(sup)

n +O(
√

N(sup)·logn
n).

An illustrative toy example is shown in Fig. 2 where |S(sup)| = N (sup) = 5, |C| = n = 5
and the number of bins is set to 5. The sender uses simple hashing to hash his set
elements x1, · · · , x5 to 5 bins: for example, x1 is inserted into bin#2 and bin#4 since
h0(x1) = 2, h1(x1) = 4. The receiver uses Cuckoo hashing to hash his set elements
y1, · · · , y5 to 5 bins without hash collision (with a high probability). After hashing, the
sender and the receiver performs the bin-wise comparison to check whether yi belongs to
set S: for example, the receiver compares his bin#1 which contains y4 with the sender’s
bin#1 which contains x4, x5, and so on so forth.

Batching the computation of OPE Consider exploiting the SIMD encoding to
parallelize the computation of OPE. Note that in practice, the elements in the sender’s
bins are represented by membership test polynomial denoted as Pδi

(X) for bin#i. The
basic idea goes as follows: the receiver batches N items (in N distinct bins) into one
ciphertext sent to the sender. The sender batches N coefficients from his membership test
polynomials {Pδi

(X)}i (one coefficient from each membership test polynomial) into one
plaintext, and therefore N(sup)

n +O(
√

N(sup)·logn
n) such plaintexts suffice representing N

distinct membership test polynomials. Finally, the sender performs OPE on the ciphertext
sent by the receiver and N(sup)

n + O(
√

N(sup)·logn
n) plaintexts of his own to obtain an

encryption of N membership test results.
An illustrative toy example for batching OPE is shown in Fig. 3 with the same

configuration from Fig. 2. For security reasons, the degree for each membership test
polynomial Pδi

(X) assoicated to bin#i on sender’s side must be equal and therefore,
these bins are inserted by dummy items. For example, sender’s bin#1 has x5, x4 and
a direct Lagrange interpolation yields a polynomial P ∗

δ1
(X) with degree 2. The sender

inserts a dummy item, i.e., X = 0 and makes Pδ1(X) = X · P ∗
δi

(X) with degree 3. The
sender repeats the interpolation polynomial construction process for all bins to create
Pδi

(X) =
∑3

j=0 Pδi,jXj for all i ∈ {1, 2, 3, 4, 5}. Then, the sender batches Pδi,j for all i,
i.e., the j-th coefficient of the polynomial Pδi

(X) for all i into one plaintext denoted as
pt(j)(X). It is easily seen that 3 such plaintexts batch all the coefficients Pδi,j for all i and
all j. Finally, the sender inputs the ciphertext ct which encrypts y = (y4, y5, y3, y1, y2)
sent by the receiver, and his own plaintexts pt(j)(X) for j ∈ {1, 2, 3} for performing an

12 iacrtans class documentation

Sender Receiver

𝑦4

𝑦5

𝑦3

𝑦1

𝑦2

𝑥5 𝑥4

𝑥2 𝑥3 𝑥1

𝑥4 𝑥5

𝑥1 𝑥2

𝑥3

Dummy item

Figure 3: Batching the computation of Pδ(X) together with the hash-to-bins technique

OPE protocol to batch the computation of Pδ(y) where Pδ(·) = {Pδ1(·), · · · , Pδ5(·)}.
Computation overhead We set the size of the hash table (number of bins used) equal

to the FHE parameter N . We use h = 3 hash functions for simple hashing for the sender
and Cuckoo hashing scheme for the receiver. Therefore, the maximum load in the bin for
the server’ set satisfies B ≈ h · |S(sup)|/N , and the maximum load in the bin for the receiver
is strictly 1. Since we use batching, one OPE operation suffices to complete the membership
test. The OPE operation is implemented by the Paterson-Stockmeyer algorithm. This
algorithm requires precisely L + 2H − ⌈log2L⌉ − ⌈log2H⌉ − 3 ctx-ctx multiplications and
B − 1 ptx-ctx multiplications where we set L = 65, H = ⌈B/L⌉ = ⌈1024/65⌉ = 16 for
easier implementations.

Noise growth If the windowing method and Paterson’s method are applied, the critical
path for the OPE-based membership consists of two parts. The first part is for the prepro-
cessing for Enc(xj) for j ∈ [L] and Enc(xiL) for i ∈ [H] from Enc(x), Enc(x2), · · · , Enc(x2log2 L)
and Enc(xL), Enc(x2L), · · · , Enc(x2log2 H L). Then it is easy to see that it consumes
⌈log2⌈log2(max(H, L))⌉⌉ layers of multiplicative depth.

The second part is for the Paterson-Stockmeyer method where one layer of ptx-ctx
multiplication and one layer of ctx-ctx multiplication are consumes. To summarize, the total
multiplicative depth used in the OPE protocol is bounded by ⌈log2⌈log2(max(H, L))⌉⌉+ 2.
The noise bound for the result of OPE is estimated as:

||eOPE||can ≤ (32
√

Nt√
12

)D · 16
√

Nt√
12
· ||e0||can + 32

6 Nt2 ·
(32

√
Nt√

12)D − 1
32

√
Nt√

12 − 1
· 16
√

Nt√
12

+ 16
12Nt2

where the initial noise in the fresh BFV ciphertext is bounded by ||e0||can ≤ Nt
2 . The

estimation above exploits the general term formula an = kn · a0 + b · kn−1
k−1 for the linear

recursive relation an = k · an−1 + b.
If the Paterson-Stockmeyer method is applied, the critical path is changed to D =

⌈log2(⌊log2 B⌋+1)⌉ ≈ log2 log2 B ciphertext-ciphertext multiplication depth for computing

Jingwei Hu and Wangchen Dai 13

Enc(X)j and Enc(X)iL plus 1 plaintext-ciphertxt multiplicative depth and 1 ciphertxt-
ciphertxt multiplicative depth. Therefore, the noise bound is estimated as:

||eOPE||can ≤ 32
√

Nt√
12

(32
√

Nt√
12

)D · 16
√

Nt√
12
· ||e0||can + 32

6 Nt2 ·
(32

√
Nt√

12)D − 1
32

√
Nt√

12 − 1
· 16
√

Nt√
12

+ 16
12Nt2

+32
12Nt2

5.2 Homomorphic Accumulation

In the previous subsection, |C|
N ciphertexts are computed where each ciphertex encrypts a

binary vector. The next target is to (homomorphically) accumulate all ciphertexts. This
accumulation is performed in two phases.

In the first phase, the normal homomorphic addition is performed as
∑ |C|

N −1
i=0 RLWE((Pδ(ciN), · · · , Pδ(ciN+N−1)))

which eventually returns a single ciphertext denoted as RLWE(Pδ,0, · · · , Pδ,N−1).
Method-I for Phase Two There exsit two methods to implement the second phase.

We first introduce the first method as shown in the total sum algorithm (see Alg. 1), which
exploits the homomorphic cyclic rotation to accumulate all the elements in the encrypted
vector (Pδ,0, · · · , Pδ,N−1), and eventually returns RLWE(

∑N−1
i=0) where

∑N−1
i=0 Pδ,i =

|C ∩ S|.

Input: RLWE ciphertext ct which encrypts a vector v = (v0, v1, · · · , vN−1)
Output: RLWE ciphertext ct′ which encrypts a vector v′ = (

∑
i vi, · · · ,

∑
i vi)

1 ct′ ← ct, e← 1
2 for j ← numBits(N)− 2 down to 0 do
3 ct′ ← ct′ + LeftRotate(ct′,−e)
4 e← 2 · e
5 if bitj(N) == 1 then
6 ct′ ← ct + LeftRotate(ct′,−1)
7 e← e + 1
8 return ct′

Algorithm 1: Total_Sum algorithm which accumulates every element in the en-
crypted vector

The function numBits(·) in step 2, Alg. 1 denotes the number of bits used to represent
the input integer. Alg. 1 is highly efficient regarding the computational complexity. Assume
that N is 2n − 1 for some n which is exactly the worst case since the if condition (step
10-step 12) is always performed. In this case, it is readily seen the number of homomorphic
rotations required in Alg. 1 is:

2(logN − 1) = Ω(logN)

Nevertheless, the problem with Total_Sum described in Alg. 1 is that the storage
for rotation key might be huge: log2N rotation keys are needed to fulfil each rotation
mentioned in step 3. To solve this problem, a storage efficient version of Total_Sum is
given in Alg. 2. The basic idea is to factor the right rotation by e slots into a combination
of at most k types of right rotaions. In this case, we choose k < log2N rotation keys which
correspond to right rotation by 2ℓi slots for i ∈ [k] to save storage for rotation keys. A
natural selection for {ℓi}i∈[k]} is that {ℓi}i∈[k] evenly divides the interval [0, 1, · · · , log2N].
For easy of analysis, we assume that N is 2n − 1 for some n which is exactly the worst
case since e starts with 12 and grows up 112, 1112 · · · . For e falls in the interval-i with

14 iacrtans class documentation

Sender Receiver

𝒗 + 𝒓
𝐷𝑒𝑐𝑠𝑘 ⋅
 𝐸𝑛𝑐(𝒗 + 𝒓)

𝐸𝑛𝑐 𝒗 + 𝒓 ← 𝐸𝑛𝑐 𝒗 + 𝒓

𝐸𝑛𝑐(𝒗 + 𝒓)

𝑠𝑢𝑚(𝒗 + 𝒓)
𝑠𝑢𝑚 ⋅
 𝒗 + 𝒓

𝐸𝑛𝑐(𝑠𝑢𝑚(𝒗 + 𝒓))

𝐸𝑛𝑐(𝑠𝑢𝑚(𝒗)) ← 𝐸𝑛𝑐 𝑠𝑢𝑚(𝒗 + 𝒓) − 𝑠𝑢𝑚(𝒓)

𝒓
$
← ℤ𝑡

𝑁

𝐸𝑛𝑐 𝒗 + 𝒓
𝑛𝑜𝑖𝑠𝑒 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 𝐸𝑛𝑐 𝒗 + 𝒓

𝐸𝑛𝑐(𝑠𝑢𝑚 𝒗 + 𝒓)
𝐸𝑛𝑐 ⋅
 𝑠𝑢𝑚 𝒗 + 𝒓

Figure 4: A fast homomorphic accumulation for all elements in an encrypted vector by
interaction

[2i·logN/k, 2(i+1)·logN/k − 1] and i ∈ [k], the number of cyclic rotations is:

(2
logN

k − 1)i +

logN
k∑

j=1
(2j − 1) = (2

logN
k − 1)i + 2

logN
k +1 − logN

k
− 2

Therefore, the total number of cyclic rotations (in the worst case) is:

(2
logN

k −1 · k − 1
2 · k) + 2

logN
k +1 · k − (logN

k
+ 2)k = Ω(k22

logN
k)

Input: RLWE ciphertext ct which encrypts a vector v = (v0, v1, · · · , vN−1)
Output: RLWE ciphertext ct′ which encrypts a vector v′ = (

∑
i vi, · · · ,

∑
i vi)

1 ct′ ← ct, e← 1
2 for j ← numBits(N)− 2 down to 0 do
3 rewrite e w.r.t the base {2ℓ1 , · · · , 2ℓk} such that e =

∑
i ei · 2ℓi

4 ct′′ ← ct′

5 for i← k down to 1 do
6 for j ← ei − 1 down to 0 do
7 ct′′ ← LeftRotate(ct′′,−2ℓi)

8 ct′ ← ct′ + ct′′

9 e← 2 · e
10 if bitj(N) == 1 then
11 ct′ ← ct + LeftRotate(ct′,−1)
12 e← e + 1
13 return ct′

Algorithm 2: Total_Sum algorithm (storage efficient version) which accumulates
every element in the encrypted vector

Method-II for Phase Two Method-I for homomorphic accumulation of the encrypted
vector extensively exploits the cyclic rotation which bottlenecks the computational perfor-
mance of the entire threshold PSI protocol, though it avoids the interaction between the
sender and the receiver completely. Here we introduce a more practical method as shown

Jingwei Hu and Wangchen Dai 15

in Fig. 4 to solve this computational inefficiency by only one round of light communication
between the sender and the receiver.

In Fig. 4, the sender randomizes the encryption of a sensitive and secret vector
v def= (Pδ,0, · · · , Pδ,N−1) by adding a random vector r to it for creating a new ciphertext
Enc(v + r). It is worth noting that the noise term of the input ciphertext Enc(v) may
contain extra sensitive information of the sender’s set and thus an operation of noise
flooding is necessary to hide this undesirably leakage before being sent to the receiver.
The receiver locally decrypts Enc(v + r) to v + r and sums all elements in the vector v + r
to obtain sum(v + r). The receiver re-encrypts sum(v + r) and sends this ciphertext to
the sender. Finally, the sender de-randomizes Enc(sum(v + r)) by subtracting r to obtain
Enc(sum(v)) without knowing the exact sum(v) def=

∑
i Pδ,i.

Regarding the performance, the sender performs two homomorphic additions and one
noise flooding, and the receiver performs one encryption, one decryption and one sum of
all elements in the plaintext, the computational overheads of which are almost negligible if
compared with homomorophic cyclic rotations used in method-I. The price that this new
method pays is an extra round of communication includes two BFV ciphertexts, which is
about a few megabytes.

5.3 Homomorphic Comparison
We again apply OPE for the specific homomorphic comparison. Differing from the normal
comparison functionality, our purpose is to output a secret token by checking whether
the input is smaller or bigger than a threshold value. We denote this new functionality
as SecretTokenGen. For example, for the above-threshold criteria, i.e., it outputs a valid
secret token K if and only if the cardinality is above some given threshold t, the polynomial
we construct has the following form:

fth(X) = r ·
N∏

i=t

(X − i) + K

where r is a random number and k is the target secret token. It is seen that the multiplicative
depth for computing fth(X) is loglog(N − t + 1). Likewise, for the below-threshold criteria,
i.e., it outputs a valid secret token k if and only if the cardinality is below some given
threshold t, the polynomial can be constructed as follows:

fth(X) = r ·
t∏

i=0
(X − i) + K

The challenage part is that the initial noise in the ciphertext RLWE(|C ∩ S|) is too
large to further evaluate fth(X). Bootstrapping is a theoretic approach to reduce the
noise level but in practice we should avoid using this method. We propose using the
following method to fast reduce the noise in RLWE(|C ∩S|) at the price of another round
of communication between the client and server.

The basic idea is essentially a client-assisted bootstrapping where the server resends the
ciphertext RLWE(|C ∩ S|) back to the client who can decrypt RLWE(|C ∩ S|) and then
re-encrypt |C ∩S|. The new ciphertext RLWE(|C ∩S|) has the minimum amount of noise
since it is newly generated. However, the client learns the exact value of |C ∩ S| when he
decrypts RLWE(|C ∩ S|). This extra learned knowledge viloates the security definition of
threshold PSI. Therefore, the server must randomize the ciphertext before sending it to the
client. The client receives the randomized message which leaks no information to him. More
concretely, the sender performs RLWE(|C∩S|+r′) = RLWE(|C∩S|)+(0, r′) and send it
to receiver. The receiver re-encrypts it to have a noise-less ciphertext RLWE(|C ∩S|+ r′).

16 iacrtans class documentation

Sender Receiver

 𝐶 ∩ 𝑆 + 𝑟0

𝐷𝑒𝑐𝑠𝑘 ⋅
 𝐸𝑛𝑐(𝐶 ∩ 𝑆 + 𝑟0)

 𝐸𝑛𝑐(𝐶 ∩ 𝑆 2𝑖
)

𝑖
, 𝑓𝑡ℎ 𝑋

𝑂𝑃𝐸
 𝐸𝑛𝑐 𝑓𝑡ℎ(|𝐶 ∩ 𝑆|)

𝐸𝑛𝑐 𝐶 ∩ 𝑆 + 𝑟0 ← 𝐸𝑛𝑐 𝐶 ∩ 𝑆 + 𝑟0

𝐸𝑛𝑐(𝐶 ∩ 𝑆 + 𝑟0)

𝐸𝑛𝑐(𝐶 ∩ 𝑆 + 𝑟0)
𝐸𝑛𝑐𝑝𝑘 ⋅

 𝐶 ∩ 𝑆 + 𝑟0
𝐸𝑛𝑐(𝐶 ∩ 𝑆 + 𝑟0)

 𝑡𝑚𝑝𝑖+1 ← 𝑡𝑚𝑝𝑖 × 𝑡𝑚𝑝𝑖

𝑡𝑚𝑝0 ← 𝐸𝑛𝑐 𝐶 ∩ 𝑆 + 𝑟0

𝑡𝑚𝑝𝑖+1 ← 𝑡𝑚𝑝𝑖+1 + 𝑟𝑖+1 𝑡𝑚𝑝𝑖+1

 𝐶 ∩ 𝑆 2𝑖+1
+ 𝑟𝑖+1

𝐷𝑒𝑐𝑠𝑘 ⋅
 𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝𝑖+1

𝐸𝑛𝑐𝑝𝑘 ⋅

 𝐶 ∩ 𝑆 2𝑖+1
+ 𝑟𝑖+1

𝐸𝑛𝑐 𝐶 ∩ 𝑆 2𝑖
 ← 𝑡𝑚𝑝𝑖 − 𝑟𝑖

𝑓𝑜𝑟 𝑖 = 0, ⋯ , log2 deg 𝑓𝑡ℎ 𝑋 − 1:

𝑡𝑚𝑝𝑖+1

𝑡𝑚𝑝𝑖 ← 𝑡𝑚𝑝𝑖 − 𝑟𝑖

𝑟0

$
← ℤ𝑞

𝑟𝑖+1

$
← ℤ𝑞

Repeat

 log2 deg 𝑓𝑡ℎ 𝑋

times to generate

 𝑡𝑚𝑝𝑖 𝑖

with minimal noise.

𝑓𝑜𝑟 𝑖 = 1, ⋯ , log2 deg 𝑓𝑡ℎ 𝑋 − 1:

Figure 5: A client-assisted bootstrap framework for our secret token generation subprotocol
SecretTokenGen

Finally the sender de-randomize RLWE(|C ∩ S|+ r′) by performing RLWE(|C ∩ S|) =
RLWE(|C ∩ S|+ r′)− (0, r′).

Fig. 5 describes in detail the process for executing the secretTokenGen subprotocol
where server inputs an RLWE encryption of the intersection cardinality, i.e., Enc(|C ∩ S|)
and finally outputs a RLWE encryption of fth(|C ∩ S|) after ⌈log2(deg(fth(X)))⌉ + 1
rounds of interactions with the client. In the first round of interaction, the sender reduces
the large noise in Enc(|C ∩ S|) to much smaller one by exploiting the client-assisted
bootstrapping technique described above. Then in the next ⌈log2(deg(fth(X)))⌉ rounds,
the sender locally generates Enc(|C ∩ S|2j) for j = 0, 1, · · · , ⌈log2(deg(fth(X)))⌉ − 1
from Enc(|C ∩ S|) by performing homomorphic multiplications. Note that the noise
increased by the operation of homomorohic multiplications is reduced to minimal by
the client-asisted bootstrapping. Finally, these noise-suppressed Enc(|C ∩ S|2j) (for all
j) are utilized in the next OPE protocol (described previously in ‘Reduce multiplicative
depth’ paragraph in Section 5.1) to generate Enc(fth(|C ∩ S|)). Assume the threshold
t = O(N), and it is readily seen that the communication overhead for secretTokenGen
subprotocol is 2 + 2⌈log2deg(fth(X))⌉ = O(logN) RLWE ciphertexts where the sender
transmits 1 + ⌈log2deg(fth(X))⌉ ciphertexts to the receiver and vice versa.

Computation overhead Analogous to the computation overhead for the OPE-
based membership, the homomorphic comparison is also bottlenecked by the number of
ciphertext-ciphertext homomorphic multiplications used. Let deg(fth(X)) = εN with
0 < ε < 1. If the combination of the windowing method and the Paterson-Stockmeyer
algorithm is applied, the number of ctx-ctx multiplications is reduced to L + 2H − 3 where
L = 65, H = ⌈ deg(fth(X))

L ⌉.

Jingwei Hu and Wangchen Dai 17

5.4 Put all pieces together
We formally describe the BFV-based threshold PSI protocol in Alg. 3. In line 1, the client
initializes the FHE scheme and then shares it with the server. In line 2, the client encrypt
his own set C. In line 3, the server receives the encrypted client’s set and then performs
the ePSI-CA primitive to obtain an RLWE encryption of |C ∩ S| as RLWE(|C ∩ S|). In
line 4, the server continues to generate the secret token K ′ homomorphically based on the
threshold criterion and RLWE(|C ∩ S|) an also augments his set as SK = {si|K}i with
a random and secret token K. In line 5, the client augments his set as CK′ = {ci|K ′}i

with the decrypted token K ′. In line 6, a standard PSI between the set SK and CK′ is
performed which returns the intersection C ∩ S if |C ∩ S| > t.

Input: On the client side: a set C, the threshold value t; On the server side: a set
S

Output: The client side receives C ∩ S if |C ∩ S| satisfies the threshold
requirement

1 Initialise system parameters for BFV, i.e. RLWEn,q
s (·), relinearization key

relinKey and rotation key rotKey
2 The client encrypts his set (in SIMD manner) as

RLWE(ci) = RLWE(ci·N , ci·N+1, · · · , ci·N+N−1) for all cN ·i+j ∈ C to the server.

3 The server runs the ePSI-CA primitive to obtain RLWEs(|C ∩ S|)
4 The server runs the SecretTokenGen primitive to obtain an encrypted token

RLWE(K ′) and an augmented set SK = {si|K}i

5 The client receives and then decrypts RLWE(K ′) to obtain K ′. The client
appends K ′ to every element in his set C as CK′ = {ci|K ′}i

6 Finally, the client and server engages in a normal PSI protocol with set SK and set
CK′

7 return CK′ ∩ SK

Algorithm 3: Framework for threshold PSI via FHE

We implement Alg. 3 in C++, based on SEAL and APSI lib. In particular, the
primitive ePSI-CA in step 3 consists of two algorithms: 1. the batched OPE using
Pateerson-Stockmeyer algorithm 2. the homomorphic accumulation where phase two is
implemented by method-II shown in Fig. 4. The primitive SecretTokenGen in step 4 is
essentially the OPE-based homomorphic comparison variant shown in Fig. 5.

6 Experimental Results and Comparisons

Table 2: Details of Computation and communication cost of our threshold PSI implemen-
tation

|X| |Y| sender offline sender online comm.(MB)
total interpolate_set cmp_poly total membership_test homo_add homo_cmp C → S S → C

220

4096
2048
1024

1

Our works extends the FHE-based standard PSI [CLR17, CMdG+21] to PSI-cardinality
and threshold PSI and thus we first compare with theirs. Compared with [CLR17,

18 iacrtans class documentation

Table 3: Comparisons between our threshold PSI implementation and others

|X| |Y| Protocol sender offline sender online comm.(MB)
210 210 ours, PSI-cardinality
212 212 ours, tPSI
212 212 [JTKA22], PSI — 7.396s 141

220

5535
ours, tPSI

[CLR17], PSI 43s 4.23s 11.50
[CMdG+21], PSI 28s 3.23s 5.39

11041
ours, tPSI

[CLR17], PSI 43s 4.47s 14.34
[CMdG+21], PSI 29s 4.23s 8.94

220 1024 ours, PSI-cardinality
≈ 222 1120 [TSS+20], PSI-cardinality — 35.2s 126.7
220 220 [IKN+20], PSI-sum-cardinality — 776.4s 84
220 220 [MPR+20], PSI-sum-cardinality — 35583s 436.7
220 220 [PSWW18], PSI-cardinality-threshold — 86.6s 6950.6

CMdG+21], our works realizes computations over private set intersection with acceptable
commputation and communication overhead.

[JTKA22] proposes a new idea of constructing PSI and its variant protocols by ho-
momorphically evaluating a branching program. Compared with [JTKA22], our works is
advantageous in running time when the server’set is relatively large.

[IKN+20, MPR+20] study a particular PSI variant called private intersection-sum with
cardinality (PSI-sum-cardinality). Compared with theirs, it is easy to modify our design
to implement PSI-sum-cardinality with little performance penalty.

[TSS+20] proposes building PSI-cardinality protocol based on keyword PIR. [TSS+20]
does not implement their protocol but provides performance estimates. Compared with
[TSS+20] which uses the single-server PIR, our performance is more or less the same.

Theorem 2. Let ||e0||can and ||e1||can denote the canonical norm of the noise in ct0
and ct1, respectively. The noise after a ciphertext-ciphertext homomorphic multiplication
ct0 · ct1 is upper-bounded by 16(

√
Nt||e0||can

√
12 +

√
Nt||e1||can

√
12) + 32Nt2

12

Theorem 3. Let ||e1||can denote the canonical norm of the noise in ct0 and ct1 and
m1(X) ∈ Rt denotes a plaintext polynomial, respectively. The noise after a ciphertext-
plaintext homomorphic multiplication ct0 ·m1(X) is upper-bounded by 16(

√
Nt||e0||can

√
12) +

16Nt2

12

Theorem 4. Let ||e0||can and ||e1||can denote the canonical norm of the noise in ct0 and
ct1, respectively. The noise after a ciphertext-ciphertext homomorphic addition ct0 + ct1
is upper-bounded by ||e0||can + ||e1||can + 12 ·

√
Nt√
12

References
[ACT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size matters:

size-hiding private set intersection. In International Workshop on Public Key
Cryptography, pages 156–173. Springer, 2011.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold fhe. In Advances in
Cryptology–EUROCRYPT 2012: 31st Annual International Conference on

Jingwei Hu and Wangchen Dai 19

the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings 31, pages 483–501. Springer, 2012.

[BMRR21] Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter
Rindal. Multi-party threshold private set intersection with sublinear com-
munication. In IACR International Conference on Public-Key Cryptography,
pages 349–379. Springer, 2021.

[CKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity
private set intersection protocols secure in malicious model. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 213–231. Springer, 2010.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection
from homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1243–1255,
2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet
setting from lightweight oblivious prf. In Annual International Cryptology
Conference, pages 34–63. Springer, 2020.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg. Labeled psi from homomorphic
encryption with reduced computation and communication. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1135–1150, 2021.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages
789–800, 2013.

[DD15] Sumit Kumar Debnath and Ratna Dutta. Secure and efficient private set
intersection cardinality using bloom filter. In International Conference on
Information Security, pages 209–226. Springer, 2015.

[DSMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient
robust private set intersection. In International Conference on Applied
Cryptography and Network Security, pages 125–142. Springer, 2009.

[EFG+15] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, and
Jörn Tillmanns. Privately computing set-union and set-intersection cardinality
via bloom filters. In Australasian Conference on Information Security and
Privacy, pages 413–430. Springer, 2015.

[FHNP16] Michael J Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. Effi-
cient set intersection with simulation-based security. Journal of Cryptology,
29(1):115–155, 2016.

[FNP04] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In International conference on the theory and
applications of cryptographic techniques, pages 1–19. Springer, 2004.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. Stanford university,
2009.

20 iacrtans class documentation

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure
private set intersection. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 154–185. Springer, 2019.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set intersection.
In Annual International Cryptology Conference, pages 395–425. Springer,
2021.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In Annual International Cryptology Conference, pages
3–29. Springer, 2019.

[Haz18] Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection
from algebraic prfs. Journal of Cryptology, 31(2):537–586, 2018.

[HFH99] Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In Proceedings of the 1st ACM conference
on Electronic commerce, pages 78–86, 1999.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of
malicious adversaries. In International Workshop on Public Key Cryptography,
pages 312–331. Springer, 2010.

[HOS17] Per Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-
preserving ridesharing. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 276–291. IEEE, 2017.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-
party private set-intersection. In IACR international workshop on public key
cryptography, pages 175–203. Springer, 2017.

[HW06] Susan Hohenberger and Stephen A Weis. Honest-verifier private disjointness
testing without random oracles. In International Workshop on Privacy
Enhancing Technologies, pages 277–294. Springer, 2006.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying
secure computing: Private intersection-sum-with-cardinality. In 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 370–389.
IEEE, 2020.

[JL10] Stanisław Jarecki and Xiaomin Liu. Fast secure computation of set intersection.
In International Conference on Security and Cryptography for Networks, pages
418–435. Springer, 2010.

[JTKA22] Jonas Janneck, Anselme Tueno, Jörn Kußmaul, and Matthew Akram. Private
computation on set intersection with sublinear communication. Cryptology
ePrint Archive, 2022.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious prf with applications to private set intersection.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 818–829, 2016.

[KS05] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual
International Cryptology Conference, pages 241–257. Springer, 2005.

Jingwei Hu and Wangchen Dai 21

[Mea86] Catherine Meadows. A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party. In 1986 IEEE
Symposium on Security and Privacy, pages 134–134. IEEE, 1986.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung.
Two-sided malicious security for private intersection-sum with cardinality. In
Annual International Cryptology Conference, pages 3–33. Springer, 2020.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n
ot extension with application to private set intersection. In Cryptographers’
Track at the RSA Conference, pages 381–396. Springer, 2017.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light:
Lightweight private set intersection from sparse ot extension. In Annual
International Cryptology Conference, pages 401–431. Springer, 2019.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In 24th USENIX
Security Symposium (USENIX Security 15), pages 515–530, 2015.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Effi-
cient circuit-based psi via cuckoo hashing. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 125–157.
Springer, 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set
intersection based on {OT} extension. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 797–812, 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private
set intersection based on ot extension. ACM Transactions on Privacy and
Security (TOPS), 21(2):1–35, 2018.

[RR17] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via
dual execution. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1229–1242, 2017.

[RS21] Peter Rindal and Phillipp Schoppmann. Vole-psi: fast oprf and circuit-psi
from vector-ole. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 901–930. Springer, 2021.

[TSS+20] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song.
Epione: Lightweight contact tracing with strong privacy. arXiv preprint
arXiv:2004.13293, 2020.

[ZC18] Yongjun Zhao and Sherman SM Chow. Can you find the one for me? In
Proceedings of the 2018 Workshop on Privacy in the Electronic Society, pages
54–65, 2018.

	Introduction
	Contributions
	Technical Overview

	Related work
	BFV
	RLWE
	Addition and Multiplication
	SIMD Encoding
	Left Rotation
	Oblivious Polynomial Evaluation (OPE)

	The Framework for Threshold PSI via BFV Fully Homomorphic Encryption
	Challenges in the FHE-based threshold PSI
	Use OPE for membership test
	Homomorphic Accumulation
	Homomorphic Comparison
	Put all pieces together

	Experimental Results and Comparisons

