
Generalized Fuzzy Password-Authenticated Key
Exchange from Error Correcting Codes

Jonathan Bootle1, Sebastian Faller1,2, Julia Hesse1⋆, Kristina Hostáková2

Johannes Ottenhues3⋆⋆, and
1 IBM Research Europe – Zurich

2 ETH Zurich
3 University St. Gallen

Abstract. Fuzzy Password-Authenticated Key Exchange (fuzzy PAKE)
allows cryptographic keys to be generated from authentication data that
is both fuzzy and of low entropy. The strong protection against offline at-
tacks offered by fuzzy PAKE opens an interesting avenue towards secure
biometric authentication, typo-tolerant password authentication, and au-
tomated IoT device pairing. Previous constructions of fuzzy PAKE are
either based on Error Correcting Codes (ECC) or generic multi-party
computation techniques such as Garbled Circuits. While ECC-based con-
structions are significantly more efficient, they rely on multiple special
properties of error correcting codes such as maximum distance separa-
bility and smoothness.
We contribute to the line of research on fuzzy PAKE in two ways. First,
we identify a subtle but devastating gap in the security analysis of the
currently most efficient fuzzy PAKE construction (Dupont et al., Euro-
crypt 2018), allowing a man-in-the-middle attacker to test individual
password characters. Second, we provide a new fuzzy PAKE scheme
based on ECC and PAKE that provides a built-in protection against
individual password character guesses and requires fewer, more stan-
dard properties of the underlying ECC. Additionally, our construction
offers better error correction capabilities than previous ECC-based fuzzy
PAKEs.

Keywords: Attacks on Public-Key Constructions · Key Exchange Protocols
· Password-Based Cryptography · UC Framework.

1 Introduction

Password-authenticated key exchange (PAKE) protocols allow two users to ex-
change symmetric keys from plaintext passwords only. PAKEs are a useful tool in
unlocking smartcards (e.g., German ID card [BFK09,BDFK12,BFK13], FIDO2
⋆ Author supported by the Swiss National Science Foundation (SNSF) under the AM-

BIZIONE grant “Cryptographic Protocols for Human Authentication and the IoT”
⋆⋆ Author partially funded by the EU-funded Marie Curie ITN TReSPAsS-ETN project

under the grant agreement 860813

2 Bootle et al.

[BBCW21]), securing wireless networks [All22,CNPR22], and pairing IoT devices
[HL19]. First formalized by Bellovin and Merrit [BM92], PAKEs provide optimal
protection of potentially low-entropy passwords, a feature that is called resis-
tance against offline dictionary attacks. Essentially, a PAKE does not leak any
information about the password used by the counterparty in case of password
mismatch. This guarantee needs to hold against network adversaries observing
the protocol execution as well as active attackers playing one user in the proto-
col. Such strong protection is vital for use cases of PAKE. Without it, any typing
of, e.g., the 6-digit PIN restricting access to a German national ID card would
already expose that PIN to brute-force attacks mounted through malicious card
reader hardware or software. Building secure and efficient PAKEs that even fea-
ture strong universal composability guarantees is fairly simple. The general idea
is to run a Diffie-Hellman key exchange, and either encrypt the Diffie-Hellman
public keys with the password [BM92,BPR00], or derive the group generator
from the password [Jab96,BMP00,Mac01,HS14,HL19]4.

Unfortunately, in many application scenarios of PAKE protocols, usability
can hinder their adoption. Manually entering PINs in stressful situations, such as
unlocking one’s smart ID card next to a waiting officer, or pairing a wearable IoT
device while walking, is prone to repeated mistyping. As another example, con-
sider IoT devices that want to automatically exchange a key with devices located
in their close proximity. These devices can automatically derive passwords from
sensor readings of their direct environment, but they likely end up with similar
but not exactly matching bitstrings. In these situations, key exchange through
PAKE fails even though the legitimate owner of the ID card was present, and
even though the IoT devices were actually sitting next to each other.

In 2018, Dupont et al. [DHP+18] proposed a new cryptographic primitive
called fuzzy PAKE (fPAKE), which allows two users to exchange a symmetric
key from similar passwords. In addition to being a candidate to resolve the
usability issues with password mistyping/mismatching in the aforementioned
scenarios, fuzzy PAKE opens an interesting avenue towards secure biometric
authentication, as it enables secure comparison of consecutive biometric read-
ings without leaking any other information about the biometric than “match” or
“no match”. To date, fuzzy PAKE is the only cryptographic primitive that can
provide such optimal protection of data that is both noisy and of low entropy.

Dupont et al. [DHP+18] gave two constructions of fuzzy PAKE, one rely-
ing on Garbled Circuits and one relying on error-correcting codes (ECC)5 and
PAKE, using Hamming distance as a metric for similarity of passwords. The
ECC based construction is to the best of our knowledge the most efficient fuzzy
PAKE construction in the literature [DHP+18] so far. At a high level, the proto-

4 [Hv22] provides an excellent overview of PAKEs in the literature, also mentioning
other approaches than building PAKEs through Diffie-Hellman.

5 Dupont et al. [DHP+18] use the terminology of robust secret sharing (RSS) instead
of error-correcting codes, and show how to instantiate RSS with ECC. In this work,
we state their construction in terms of an ECC, as it enables better comparison with
our protocol.

Generalized Fuzzy PAKE from Error Correcting Codes 3

col works as follows. One party takes the role of the sender, chooses a symmetric
key s, encodes it with the error-correcting code to get C ← Enc(s), XORs the
resulting codeword with the password to get E ← C ⊕ pw, and sends E to
the receiver. The receiver XORs the received E with their own password to get
C ′ ← E⊕pw′, and attempts to decode C ′ to retrieve s. Depending on whether pw
and pw′ were similar enough, the codeword C ′ is close enough to C to uniquely
decode to s. The error correction capability of the fuzzy PAKE is hence directly
related to the error correction threshold of the code. However, the protocol as
described above would be prone to offline attacks: the receiver can repeatedly
decode with many password guesses pw′, yielding a list of candidate keys. To
prevent such a dictionary attack, [DHP+18] introduce a “password expansion”
step prior to the encoding of the key. Here, the two parties run a PAKE on every
character of their passwords pw and pw′, yielding key vectors K and K ′ that
match in exactly the same entries as pw and pw′, while the other entries are
uniformly distributed. Because this expansion step requires active participation
of both parties and the vector entries are PAKE keys that are hard to guess, one
party alone cannot turn a password into a key vector. Hence, parties – malicious
or honest – are limited to only one password guess per protocol run.

In fact, to prevent C from leaking information about the key s in case the re-
ceiver is malicious, C is computed by encoding s concatenated with an extra ran-
dom input r. The error correcting code must satisfy multiple special properties,
such as a uniformity property, whereby small subsets of codeword entries appear
uniformly random, independently of s, and a smoothness property, whereby de-
coding an extremely noisy codeword results in a random key. Uniformity is a well-
known property, satisfied by the popular Reed-Solomon codes, which has been
extensively studied [CCG+07,CDBN15,Wei16,BCL22], and can be obtained via
various transformations including the method presented in [DHP+18]. Smooth-
ness is less standard, and [DHP+18] rely on maximum distance separable codes
in order to achieve it.

1.1 Our contribution
First, we identify a subtle but devastating issue in the ECC-based fuzzy PAKE
construction of [DHP+18]. In a bit more detail, we give an attack that allows
the adversary to make guesses on individual password bits (or characters), al-
lowing them to extract a user’s, e.g., n-bit password from only n executions of
the protocol with that user. Our attack demonstrates that the measures taken
by [DHP+18] to protect against such individual guesses, namely ensuring that
an attacker either guesses “all-or-zero” bits of the password, subtly fails due to
incorrect binding of the different protocol parts. Here, binding refers to ensur-
ing that all messages come from the same sender. Although there exist generic
techniques for binding together messages sent over unauthenticated channels
[BCL+05], they cannot be applied to the construction of [DHP+18] in black-box
way due to its modular layout.6
6 More precisely, and for the reader who is familiar with the Universal Composability

framework [Can01]: In Section 3.2, we argue that the split transformation of Barak

4 Bootle et al.

The effect of our attack is that an active attacker learns one bit of an honest
user’s password by simply messing with an honest protocol run between two
users. While the security notion of fuzzy PAKE [DHP+18] does leak information
about the password, i.e., it leaks the exact password of an honest user to an
attacker, we stress that this attacker must be actively running a session with
the honest user and use close password to the one of the attacked honest user.
Our attack requires much less knowledge from the adversary. In more detail,
it can be executed by a network adversary essentially flipping some bits of the
exchanged messages between honest clients. The attacker only needs to make
an assumption about the distance of the passwords used in the execution. For
example, in settings where fuzzy PAKE is usually executed without the proper
passwords, e.g, mistyping happens only rarely, every honest protocol run would
reveal one bit about the secret password of an honest party to a network attacker.
Deriving such information from honest protocol runs is prohibited by the security
model of [DHP+18].

Reference error corr. capability rounds msg size Sender Receiver model
[DHP+18] ⌊n−k

2 ⌋ 1 O(n) 2n exp Dec + 2n exp RO, IC, CRS
Our work, unique dec. ⌊n−k

2 ⌋ 1 O(n) 2n exp Dec + 2n exp RO, IC, CRS, SA
Our work, list dec. n− 1− ⌊

√
(k − 1)n⌋ 1 O(n) 2n exp LDec + 2n exp RO, IC, CRS, SA

Fig. 1. Comparison of ECC-based fuzzy PAKE constructions, using a Reed-Solomon
code of rank k, and block length n equal to the size of the password. Sender and
Receiver columns indicate computation complexity. Both protocols are instantiated
with EKE2 [DHP+18] to derive concrete performances. RO, IC, and CRS are required
for the security of EKE2. SA is split authentication. We stress that the ECC-based
[DHP+18] cannot be considered a secure fuzzy PAKE (Section 3.2).

Our second contribution is a new fuzzy PAKE protocol based on error-
correcting codes, which directly builds upon the ideas of [DHP+18] but (i) fixes
the previous insecurities, (ii) provides better error-correction capabilities, and
(iii) relies on fewer properties of the underlying code. These improvements come
at the cost of less efficient computation and communication. We provide a high-
level comparison in Figure 1. For (i), the idea is to ensure that the transformation
of Barak et al. [BCL+05] applies to the whole protocol, simply by instantiating
all building blocks that require interaction between the parties before applying
the transformation. For (ii) we investigate how the (fixed) fuzzy PAKE protocol
of [DHP+18], which applies unique decoding of the ECC, benefits from applying
a non-unique decoding technique. Namely, we make use of list decoding which
is a decoding technique that takes a codeword with errors as input, and that
can produce a list of candidate codewords including the original one. When the

et al. [BCL+05] cannot be meaningfully applied to transform a hybrid protocol that
assumes authenticated channels, to a version that is secure with unauthenticated
channels. In a nutshell, the reason is that the hybrid building blocks are unaffected
by the transformation and do not carry any authentication guarantees.

Generalized Fuzzy PAKE from Error Correcting Codes 5

ECC threshold Password Length n
n− k + 1 n = 8 n = 32 n = 64 n = 128 n = 256

(as % of n) [DHP+18] Ours [DHP+18] Ours [DHP+18] Ours [DHP+18] Ours [DHP+18] Ours
10% 1 1 3 3 6 6 12 12
25% 1 1 4 4 8 8 16 17 32 34
30% 1 1 4 4 9 10 19 20 38 41
50% 2 2 8 9 16 18 32 37 64 74

Fig. 2. Error correction capability for the ECC-based PAKE constructions of [DHP+18]
and in this work using list decoding, for various password lengths n and an [n, k, d]-
code C. The table shows the number of password errors below which key exchange
will succeed. The ECC threshold refers to the percentage of errors above which key
exchange will fail without leaking information about the password. Gray colored cells
show parameter settings for which our construction improves upon previous works.

number of errors is too large for unique decoding to work, list decoding can
still produce reasonable-sized lists of codewords that still contain the original
one. We give examples of the improved error correction capability of our scheme
over previous works in Figure 2, For (iii) we leverage new ingredients in our
construction in order to bypass the smoothness property completely.

Intuitively, such non-unique decoding introduces a “correctness error” into
the fuzzy PAKE protocol of [DHP+18], since the receiver decodes a list of key
candidates and has to guess which one is the key of the sender. Moreover, it is
unclear how to generalize the smoothness property and its proof in [DHP+18]
to the list decoding regime, due to the higher number of errors.

Our idea is to restore perfect correctness by letting the sender give a hint
about the correct key to the receiver. This hint, however, needs to be carefully
crafted so that it benefits the correctness of the key exchange without revealing
too much information about the password or the key of the sender. For example,
simply using a hash of the sender’s key is not possible. This is because during
security proofs, the hint may have to be simulated, without knowledge of the key,
against an adversary who does know the key and is able to check that whether
the hint was computed correctly or not. Instead, the sender hashes the encoding
C of s. Based on the uniformity of the error-correcting code, this hint contains
sufficient entropy to prevent information leakage on the key. Furthermore, the
fact that the hint uniquely determines the correct codeword actually allows us
to dispense with the smoothness property completely. Since smoothness, which
relied on maximum distance separability, is no longer needed, the space of pos-
sible codes which can be used in our construction is much larger, opening the
door to codes with even better list-decoding capabilities and fuzzy PAKEs with
even higher error tolerance in future.

Altogether, we are able to give a construction with better error correction
capability than previous schemes in the literature. More formally, we prove the
following in Theorem 2.

Our fuzzy PAKE using a Reed-Solomon code of rank k, block length n, list
decoding, a hint as described above and signing under ephemeral public keys to

6 Bootle et al.

achieve binding, is secure and has an error correction capability of
δ = n− 1−

√
(k − 1)n.

We can also apply our results to obtain a fixed version of the fuzzy PAKE
of [DHP+18] et al. by using unique decoding instead of list decoding, offering a
trade-off between runtime (unique decoding is generally faster than list decoding)
and error correction capability (see Figure 2 for numerical examples of the error
correction terms).

Corollary 1. Our fuzzy PAKE using a Reed-Solomon code of rank k, block
length n, unique decoding, a hint as described above and signing under ephemeral
public keys to achieve binding, is secure and has an error correction capability of
⌊n−k

2 ⌋. The computational overhead over [DHP+18] is one signature per mes-
sage, and one hash by the sender.

Roadmap. In Section 2 we provide preliminaries on error-correcting codes and list
decoding, and on implicit PAKE which is a building block of our and previous
ECC-based fuzzy PAKE protocols. Section 3 recaps fuzzy PAKE including its
security model in the UC framework, explains the fuzzy PAKE of [DHP+18] and
presents an attack that allows to test password bits. In Section 4 we give our
improved fuzzy PAKE protocol and prove its security.

1.2 Related Work

Prior to the introduction of fuzzy PAKE by Dupont et al. [DHP+18], several
attempts to base cryptography on low-entropy or noisy shared data have been
made. Information reconciliation [BBR88] and fuzzy extractors [DORS08,RW04]
let two parties identify common randomness in shared noisy bitstrings. However,
the identification comes at the price of leakage, such that these techniques cannot
be used when the shared data is of low entropy, such as in the case of passwords.
Canetti et al. [CFP+16] construct special-purpose schemes for securely compar-
ing the Hamming distance of, e.g., biometric readings. However, the security of
their construction again relies on the data having a certain min-entropy. The
PAKE-based construction for comparison of biometric readings of Boyen et al.
[BDK+05] does not protect against offline attacks on the biometric data and
hence cannot reach the security level of fuzzy PAKEs.

Biometric authentication is a very active area of research. In the following
we list several works that aim at providing secure biometric authentication by
introducing, e.g., additional trust anchors, or by leveraging the entropy in the
biometric scans. BETA [ABM+21] generates a token to be used for authenticat-
ing a client to a server, by letting three client devices communicate over authen-
ticated channels. In the fuzzy PAKE setting, each entity only needs one device
and also a fuzzy PAKE is secure even in unauthenticated channels. Agrawal et
al. [ABMR20] present a protocol for authenticating a user with their biometric
by letting the user’s phone, an external terminal and a service provider com-
municate to compute the authentication result. Differences to fuzzy PAKE are

Generalized Fuzzy PAKE from Error Correcting Codes 7

that [ABMR20] has three parties instead of two, and their protocol uses cosine
similarity instead of Hamming distance to compare the biometrics. Moreover,
[ABMR20] focuses on authentication whereas a fuzzy PAKE achieves key ex-
change. Wang et al. [WHC+21] construct authenticated key change for secure
messaging in which the users do not need to store their secret keys but instead
derive them from their biometrics. [WHC+21] uses the biometric as an error
term for LWE samples, which places very strong requirements on the biometric
distribution. A fuzzy PAKE is stronger; its security cannot rely on the distri-
bution of the authentication data, and hence our protocol is secure even when
used with low entropy passwords (or biometrics). Jiang et al. [JLHG22] build
key exchange from fuzzy data, which is also the goal of a fuzzy PAKE. However,
similar to [WHC+21], [JLHG22] relies on high entropy of that fuzzy data. A
fuzzy PAKE however does not make any assumptions about the entropy of the
authentication data (=passwords). The tools used in [JLHG22] such as secure
sketches are known to be inherently insecure when used on low entropy data.
Erwig et al. [EHOR20] leverages robust secret sharing, which previous fuzzy
PAKEs and our construction also rely on. Contrary to us, [EHOR20] builds an
asymmetric PAKE, with a client and a server party where the latter is not al-
lowed to store the password in the clear. While this is an extremely relevant
setting in practise, their solutions are computationally expensive and the au-
thors note that it seems infeasible to go beyond passwords of 40 bits. The works
of Chatterjee et al. [CAA+16], [CWP+17] propose typo-tolerant password au-
thentication systems. These password authentication systems tolerate mistyping
on the user side, i.e., the user can successfully authenticate to some server even
when using a password slightly different from the one they registered with. While
[CAA+16] corrects a predefined set of most common typos (e.g., capitalization
of first letter), the TypTop system [CWP+17] offers personalized adoption to
frequent typos of users, meaning that the system will learn from past typos and
apply certain rules whether to accept these errors in the future. The crucial
difference to fuzzy PAKE is that both these typo-tolerant systems require the
server party to learn the cleartext password of the user, as the password needs
to be fed into the decision procedure as well as into the evolving “accepted ty-
pos” cache. The main goal of fuzzy PAKE is to prevent such transmission of
clear-text passwords among the two parties. The concept of typo tolerance was
subsequently carried over to PAKE [PC20]. Typo-tolerant PAKE is a system
to log in to a server despite of typos in the password. The protocol in [PC20]
requires storage and communication proportional to the number of close pass-
words, which limits the potential applications of the protocol. The storage and
communication cost of our protocol only depends on the length of the password
but not on the number of close passwords, which also makes it possible to use
our protocol with biometrics instead of passwords.

In [RX23] it is demonstrated that the common notion of PAKE in the UC-
framework does not automatically guarantee correctness. More concretely, the
ideal functionality FPAKE [CHK+05] does not guarantee that two honest parties
that are not maliciously attacked do output the same key when they run on

8 Bootle et al.

the same password. Several ways to overcome these definitional issues were pro-
posed in [RX23]. The most simple way is to demand correctness as a separate
property from the protocol. This style of listing several properties is usually not
desirable in UC-protocols as the additionally demanded properties might not be
preserved under composition. However, [RX23, Thm. 3] shows that any PAKE
protocol that is correct and UC-realizes FPAKE can be interpreted as a protocol
that is secure in an enhanced UC PAKE formalization that ensures correctness
(by modeling the man-in-the-middle adversary as a third protocol party). The
observations of [RX23] rely on the way output is produced in FPAKE and not
on the way how the passwords are checked. Therefore, they also apply to our
FfPAKE (and FiPAKE) functionality and we have to assert correctness separately.

2 Preliminaries

Notation. We denote vectors in boldface, e.g., V ∈ Fn. Let Q ⊆ [n] := {1, . . . , n}.
Then, we denote with V |Q := (V i)i∈Q ∈ F|Q| the restriction of V to Q. We write
PPT for probabilistic polynomial time.

2.1 Universal Composability (UC)

To formally define and prove security of fuzzy PAKEs, we use the UC framework
of Canetti [Can01] as is standard in the PAKE literature. Our goal here is to
introduce the basic terminology and notation of the UC framework at a very
high level and only to the extent needed for the understanding of later sections.
For a more accurate and formal explanation of the UC framework, we refer the
reader to the work of Canetti [Can01].

In our case, we always consider protocols between two parties (which we
typically denote P0 and P1) that are executed in the presence of a PPT adversary
A who can corrupt any party at the beginning of the protocol execution (i.e., we
consider so-called static corruption). By corruption we mean that the adversary
gets a full control over the corrupt parties and learns their internal state. Parties
and the adversary A get their inputs from a special entity, called the environment
Z, which represents everything external to the protocol execution. Z also receives
outputs from both parties and the adversary. The execution of a protocol in
presence of an adversary A is typically referred to as the “real world”.

In the UC framework, security requirements of a protocol are defined via
ideal functionalities. At a very high level, an ideal functionality F defines the
intended input/output behaviour of parties, the allowed leakage of the protocol
and the influence of an adversary on the protocol. F communicates with the
environment through dummy parties P0,P1 that simply forward messages be-
tween Z and F . The functionality additionally communicates with an adversary
which is typically called the simulator and denoted S. The execution of F in
the presence of a simulator S is typically referred to as the “ideal world”. We
say that a protocol π UC-realizes (or UC-emulates) an ideal functionality F if
for any PPT adversary A, there exists a PPT simulator S such that for any

Generalized Fuzzy PAKE from Error Correcting Codes 9

PPT environment Z the ideal and real worlds are indistinguishable except for
negligible probability. In other words, any attack possible on the protocol π can
be simulated as an attack on the ideal functionality.

One of the main benefits of the UC framework is that it natively supports
protocol composition and hence allows for natural modularization of protocol
designs. Concretely, parties in a protocol can communicate with hybrid ideal
functionalities H1,H2, In such a case, we say that the protocol is a defined
in the “(H1,H2, . . .)-hybrid world”. The UC composition theorem then allows
to securely replace the hybrid ideal functionalities with concrete protocols that
UC-realize those functionalities.

2.2 Error Correcting Codes (ECC)

A linear error-correcting code C over a finite field Fq of order q with rank k and
block length n is a linear subspace C ⊆ Fn

q of dimension k. We can associate C
with an injective linear encoding function Enc : Fk

q → Fn
q , where Im(Enc) = C.

– The Hamming distance d(V , V ′) between vectors V , V ′ ∈ Fn
q is defined by

d(V , V ′) := |{i ∈ [n] : V i ̸= V ′
i}| .

– The minimum distance d(C) of a linear code C is defined as

d(C) := min
C,C′∈C,C ̸=C′

d(C, C ′) .

A linear code over Fq with rank k, blocklength n, and minimum distance d is
referred to as an [n, k, d]q code. The “q” will usually be omitted.

Error Correction. Let e ∈ Z with 0 ≤ e < d/2. A [n, k, d]-code C is said
to be e-error-correcting if there exists a function Dec : Fn

q → Fk
q such that for

all V ∈ Fn
q , M ∈ Fk

q with d(V , Enc(M)) ≤ e, we have Dec(V) = M . It is
well-known that an [n, k, d]-code is ⌊d−1

2 ⌋-error correcting.
Further, we say that a code is efficiently e-error-correcting if Dec can be

computed in polynomial time in n. Note that all linear codes are efficiently
0-error correcting, as the message associated with an error-free codeword can
simply be recovered via Gaussian elimination.

List Decoding. Let e ∈ Z with 0 ≤ e ≤ n. Let ℓ ∈ N with ℓ ≥ 1. An [n, k, d]-
code C is said to be (e, ℓ)-list-decodable if for all V ∈ Fn

q , the list L of codewords
C ∈ C with d(V , C) ≤ e contains at most ℓ codewords.

Further, we say that a code is efficiently (e, ℓ)-list-decodable if there is an
algorithm LDec which computes the list of codewords in polynomial time in n.
This necessarily implies that ℓ is polynomial in n. In this case, we will often
simply say that C is efficiently e-list-decodable.

It will be convenient to use shorthand such as “C ∈ LDec(V)” when a code-
word C is part of the output list when LDec is run on input V .

10 Bootle et al.

2.3 Randomized Codes

We also consider codes with hiding properties, using terminology from [BCL22].
Let C be a [n, k, d] code. Let kM , kR ∈ N with kM + kR = k. We may consider a
randomized encoding function Enc : FkM

q × FkR
q → Fn

q defined by Enc(M , R) :=
Enc(M∥R). When considering Enc, we refer to C as a randomized linear code.

Uniform Codes. A randomized linear code C is said to be B-query uniform if
for any set Q ⊆ [n] with |Q| ≤ B, the distribution of {Enc(M , R)|Q : R← FkR

q }
is uniform over FQ

q .

Example: Reed-Solomon Codes. Let k, n ∈ N. Let Fq be a field, let s1, . . . , sn

be distinct points in Fq, and let S := {s1, . . . , sn}. The Reed-Solomon code
RS[n, k, S] is defined as

RS[n, k, S] := {(p(s1), . . . , p(sn)) | p ∈ Fq[X], deg(p) ≤ k − 1} ,

with associated encoding function

Enc : (M0, . . . , Mk−1) 7→ (pM (s1), . . . , pM (sn)) ,

where pM :=
∑k−1

i=0 MiX
i. It is well known that RS[n, k, S] is a [n, k, n− k + 1]

code and that furthermore, when considering a randomised encoding function
for some kR < k, the Reed-Solomon code is kR-query uniform.

We state results on the decodability and list-decodability of Reed-Solomon
codes.

Lemma 1 (Berlekamp-Welch algorithm [KR07]). The code RS[n, k, S]
is ⌊n−k

2 ⌋-error correcting, and Dec is computable in time O(n2).

Lemma 2 (Guruswami-Sudan algorithm [McE03,Gur06]). The code RS[n, k, S]
is (e, ℓ)-list decodable with e = n− 1−

√
(k − 1)n and ℓ = O(n2). Moreover, the

list L can be computed in polynomial time.

Note that some references such as [McE03] allow LDec to produce codewords
with distance greater than e as part of the list L as they can be easily discarded.
We assume that this has already been done and L contains only codewords
within Hamming distance e of the input vector.

Finally, note that while both run in polynomial time, the asymptotic com-
plexity of LDec in Lemma 2 is higher than that of Dec in Lemma 1.

2.4 Implicit-Only PAKE

A PAKE is a cryptographic protocol π that allows two parties to agree on a
shared key over an unauthenticated channel assuming that both parties know the
same shared password (i.e., a potentially low entropy string), and guarantees that

Generalized Fuzzy PAKE from Error Correcting Codes 11

each party gets a freshly sampled random key if the input passwords are different.
The absence of an authenticated channel and the low-entropy assumption on the
shared password mean that an iPAKE has to take man-in-the-middle and offline
dictionary attacks into account.

The main building block of our construction is an implicit-only PAKE (or
iPAKE for short) put forward by Dupont et al. [DHP+18]. An iPAKE is a
specific type of PAKE that only achieves implicit authentication with respect
to the honest parties as well as the adversary. This means that at the end of
the protocol execution, the two interacting parties do not know if they derived
the same key or not. Moreover, an adversary launching an active attack on
the protocol by trying to guess the password does not get any feedback on the
correctness of their guesses. Dupont et al. [DHP+18] formally defined an iPAKE
as an ideal functionality FiPAKE which we recall in Fig. 12 of the Supplementary
Material.

Correctness. Roy and Xu [RX23] showed that ideal UC-functionalities for PAKE
like FPAKE by [CHK+05] do not offer correctness. This shortcoming of FPAKE also
applies to the FiPAKE functionality. In a nutshell, all these functionalities offer
an adversarial interface to prevent successful key exchange that is not subject
to any restrictions. Since protocols that emulate a functionality can allow for
the same attacks than the functionality, even a PAKE where parties always
output random keys could securely realize a PAKE functionality. Further, Roy
and Xu [RX23, Thm. 2] show that it is impossible to incorporate correctness
into FPAKE in the two-party setting. However, they show how to overcome this
limitation by defining PAKE as a three-party protocol, where the third party is
the man-in-the-middle adversary. This formulation is equivalent to demanding
correctness from the PAKE protocol as a separate property [RX23, Thm. 3]. We
therefore also demand that an iPAKE protocol has correctness. Let (K, K ′) ←
outA,π⟨P0(pw),P1(pw)⟩ denote that P0 outputs K and P1 outputs K ′ when
executing π on input pw ∈ D, respectively and in the presence of adversary A.
Here D denotes a finite alphabet (or dictionary). We adapt their correctness
definition to the setting of implicit-only PAKE here.

Definition 1. We say an iPAKE protocol π is ε-correct if for all pw ∈ D, for
some finite alphabet D, and for all passive (i.e., honest-but-curious) adversaries
A, the probability that in an execution of π with honest parties P0,P1 the first
party P0 on input pw outputs a different key than the second party P1 on input
pw in the presence of A is negligible, i.e.,

Pr[K ̸= K ′ | (K, K ′)← outA,π⟨P0(pw),P1(pw)⟩] ≤ ε(λ),

where the probability is taken over the random coins of P0,P1, and A. We call
ε the correctness error. We just say π is correct if it has negligible correctness
error.

12 Bootle et al.

2.5 Split Authentication

Another building block in our fPAKE construction is Split Authentication, put
forward by Barak et al. [BCL+05]. It is essentially a protocol that implements
something very close to an authenticated channel in an unauthenticated setting.
The adversary’s only additional ability is that they can run two separate ex-
ecutions of an authentication protocol (one with each party) without the two
communicating parties realizing it. In particular, if both parties are honest, split
authentication forces the adversary to decide at the beginning of the communica-
tion whether to launch a man-in-the-middle attack and run a separate protocol
with each party, or to just observe the messages being exchanged and potentially
delay their delivery.

Barak et al. [BCL+05] formalized Split Authentication as an ideal function-
ality FSA which we recall in Fig. 13 of the Supplementary Material.

3 Fuzzy Password-Authenticated Key Exchange

Fuzzy Password-Authenticated Key Exchange (fPAKE for short) is a crypto-
graphic protocol allowing two parties to agree on a shared key in the following
setting: the two parties are connected by an unauthenticated channel, but each
of them holds a noisy version of a shared low-entropy password.

3.1 The FfPAKE ideal functionality

Dupont et al. [DHP+18] formalized fPAKE as a UC ideal functionality FfPAKE
which we recall in Fig. 3. Here we describe FfPAKE at a high level and refer the
reader to the work of Dupont et al. for a more detailed discussion.

Parties P0,P1 initiate a password-authenticated key exchange by sending
a NewSession message to the ideal functionality including their version of the
password. To allow for initiator-responder-style protocols, the ideal functionality
allows parties to specify their role, i.e., whether they are the Sender or the
Receiver. Upon receiving a NewSession message, the functionality records the
received password pw and informs the adversary about the NewSession request.

The adversary can then try to guess the recorded password through a TestPwd
query. This interface allows an adversary to mount an active attack on the pro-
tocol. The recorded pw is marked as compromised if adversary’s guess is “close
enough” and interrupted otherwise. The adversary is informed about the re-
sult of their guess. To capture the closeness formally, FfPAKE is parametrized by
error tolerance δ and a metric d, and two passwords pw, pw′ are considered close
enough for key exchange to succeed if d(pw, pw′) ≤ δ.

The functionality outputs a secret key to a party Pi after receiving a NewKey
instruction from the adversary. This captures the ability of network attackers to
arbitrarily delay the termination of the protocol. FfPAKE decides on the secret
key being sent in three different ways (for a formal definition of each case, see
Fig. 3.):

Generalized Fuzzy PAKE from Error Correcting Codes 13

(i) The secret key is specified by the adversary if the adversary successfully
guessed Pi’s recorded password, which can happen either through a TestPwd
query, or by corrupting P1−i and submitting a password on their behalf. This
case captures the fact that a protocol participant with a close enough pass-
word can bias the final key.

(ii) If both parties are honest, their recorded passwords are δ-close and FfPAKE
already sent a secret key to party P1−i, then Pi gets the same key as P1−i.
This requirement ensures the core functionality of an fPAKE; namely, that
honest parties with close enough passwords output the same key.

(iii) In any other case, FfPAKE sends a freshly sampled random key to ensures
pseudorandomness of keys overall, and uniformity of keys output by parties
with non-matching passwords.
Dupont et al. [DHP+18] additionally defined a modified TestPwd inter-

face that gives more freedom in defining the leakage to the adversary after a
TestPwd query. The functionality is now additionally parametrized by a leak-
age threshold γ ≥ δ and three leakage functions Lc, Lm, Lf defining the leakage
to the adversary depending on the closeness of their guess to the tested pass-
word. See Fig. 5 for a graphical explanation of the extended TestPwd interface
and Fig. 4 for a formal definition of the extension.

We are particularly interested in a TestPwd interface that leaks posi-
tions at which passwords match if the passwords are sufficiently close (following
[DHP+18], we call this leakage the mask). Our proof of security will rely on this
leaked information. Formally, let FM

fPAKE be the ideal functionality from Fig. 3
except that the TestPwd interface is defined according to Fig. 4 with the fol-
lowing leakage functions (here pw = (pw1, . . . , pwn) and pw′ = (pw′

1, . . . , pw′
n)):

LM
c (pw, pw′) := ({j s.t. pwj = pw′

j}, “correct guess”),
LM

m (pw, pw′) := ({j s.t. pwj = pw′
j}, “wrong guess”),

LM
f (pw, pw′) := “wrong guess”.

Correctness of fPAKE. For the same reason as for an iPAKE protocol (see dis-
cussion in Section 2.4), we also additionally require that a fuzzy PAKE protocol
has correctness. Let (K, K ′)← outA,π⟨P0(pw),P1(pw′)⟩ denote that P0 outputs
K and P1 outputs K ′ when executing π on input pw and pw′, respectively and
in the presence of adversary A.
Definition 2. We say a fuzzy PAKE protocol π is (δ, ε)-correct if for all pw, pw′ ∈
D with d(pw, pw′) ≤ δ, where D is a finite alphabet, and for all passive (i.e.,
honest-but-curious) adversaries A the probability that in an execution of π with
honest parties P0,P1 the first party P0 on input pw outputs a different key than
the second party P1 on input pw′ in the presence of A is bounded above:

Pr[K ̸= K ′ | (K, K ′)← outA,π⟨P0(pw),P1(pw′)⟩] ≤ ε(λ),

where the probability is taken over the random coins of P0,P1, and A. We call
ε the correctness error. We just say π is δ-correct if it has negligible correctness
error.

14 Bootle et al.

Functionality FfPAKE

The functionality FfPAKE is parameterized by a security parameter λ and error
tolerance δ and leakage threshold γ ≥ δ. It interacts with an adversary A and two
parties P0 and P1 via the following queries:

On input (NewSession, sid, pwPi , role) from party Pi, where pwPi is a pass-
word and role = sender implies that Pi wishes to initiate a key exchange, while
role = receiver implies that Pi wishes to respond:

– Send (NewSession, sid,Pi, role) to A;
– If one of the following is true, record (Pi, pwPi) and mark this record fresh:
• This is the first NewSession query;
• This is the second NewSession query and there is a record (P1−i, pwP1−i).

On (TestPwd, sid, Pi, pw∗) from the adversary A:
If there is a fresh record (Pi, pwPi), then set d← d(pwPi , pw∗) and do:

– If d ≤ δ, mark the record compromised and reply to A with “correct guess”;
– If d > δ, mark the record interrupted and reply to A with “wrong guess”.

On (NewKey, sid, Pi, sk) from the adversary A:
If there is no record of the form (Pi, pwPi), or if this is not the first NewKey
query for Pi, then ignore this query. Otherwise:

– If at least one of the following is true, then output (sid, sk) to player Pi:
• The record is compromised;
• The record is fresh, P1−i is corrupted, and there is a

record (P1−i, pwP1−i) with d(pwPi , pwP1−i) ≤ δ.
– If this record is fresh, both parties are honest, there is a record (P1−i, pwP1−i)

with d(pwPi , pwP1−i) ≤ δ, a key sk′ was sent to P1−i, and (P1−i, pwP1−i) was
fresh at the time, then output (sid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length λ and send (sid, sk′)
to Pi.

– Mark the record (Pi, pwPi) as completed.

Fig. 3. Ideal functionality FfPAKE [DHP+18]

On (TestPwd, sid, Pi, pw∗) from the adversary A:
If there is a fresh record (Pi, pwPi), then set d← d(pwPi , pw∗) and do:

– If d ≤ δ, mark the record compromised and reply to A with Lc(pwPi , pw∗);
– If δ < d ≤ γ, mark the record compromised and reply toA with Lm(pwPi , pw∗);
– If γ < d, mark the record interrupted and reply to A with Lf (pwPi , pw∗).

Fig. 4. A modified TestPwd interface to allow for different leakage [DHP+18]

3.2 On the insecurity of previous fuzzy PAKE constructions

Dupont et al. [DHP+18] proposed a concrete fPAKE protocol (which they call
πRSS

fPAKE) that uses an implicit PAKE (iPAKE) and an error-correcting code (ECC)7.
7 As already discussed in the introduction, Dupont et al. [DHP+18] use the terminol-

ogy of Robust Secret Sharing instead of ECC.

Generalized Fuzzy PAKE from Error Correcting Codes 15

n− γ n− δ n0

γ δ 0n

←− password distance

matching password pos. −→

no KE, leakage Lf no KE, leakage Lm KE, leakage Lc

Fig. 5. A graphical explanation of the relaxed TestPwd interface of Figure 4. Here,
“KE” stands for successful key exchange (e.g., when 0 to δ errors occur), and “no
KE” stands for failure of key exchange, i.e., both parties outputting uniformly random
strings.

In this section we explain why, in fact, the πRSS
fPAKE protocol does not realize the

FfPAKE functionality. In order to do so, we first need to discuss the main ideas
of πRSS

fPAKE. We refer the reader to the original work [DHP+18] for more details.

Description of πRSS
fPAKE. Let pw = (pw1, · · · , pwn) ∈ D = Ln, for some finite

alphabet L, be the input password of the Sender and pw = (pw′
1, · · · , pw′

n) ∈
D = Ln the input password of the Receiver. We typically talk about passwords
being vectors of password characters. In the first stage of the protocol, the two
parties engage in n iPAKE protocols. In the t-th execution, the Sender’s input is
the t-th password character pwt and the Receiver’s input is pw′

t. Parties receive
outputs Kt, K ′

t ∈ Fq respectively. The iPAKE with the correctness property
guarantees that if pwt = pw′

t and there is no attack, then Kt = K ′
t. Otherwise

the keys Kt and K ′
t are independent. At the end of this stage, the parties hold

character keys K := (Kt)t∈[n], K ′ := (K ′
t)t∈[n] ∈ Fn

q respectively.
In the second stage, the Sender samples a random field element U ← Fq and

encodes it using an error correcting code with a hiding property. Let C ∈ Fn
q

denote the resulting codeword. The Sender now performs a one-time-pad and
sends E := C + K to the Receiver. The Receiver computes C ′ := E −K ′ and
decodes the obtained codeword to U ′. The idea is that if K and K ′ only differ at
a few positions, then both codewords C and C ′ decode to the same value thanks
to the error correcting property of the code, and hence both parties output the
same key.

In order to realize the FfPAKE functionality, one needs to bind the n iPAKE
executions and the final message together, as otherwise, active attacks on in-
dividual iPAKE instances allow to derive information about the corresponding
password characters as observed already in [DHP+18]. To this end, the proto-
col πRSS

fPAKE actually makes use of a labelled iPAKE (or ℓ-iPAKE for short). In
a nutshell, ℓ-iPAKE allows each party to additionally input a public label that
serves as a public authentication string (i.e., any tampering with the label can be
detected efficiently). The Sender then samples a signing key pair (sk, vk) at the
beginning of the πRSS

fPAKE protocol and uses vk as their label in all ℓ-iPAKE execu-
tions. The Receiver checks that all the output labels of the ℓ-iPAKE executions
are the same and aborts if this is not the case. In the last message, the Sender

16 Bootle et al.

Sender(sid, pw) Receiver(sid, pw′)

(sk, vk)← KeyGen(1λ)
For t ∈ {1, . . . n}: For t ∈ {1, . . . n}:

sidt := (sid, t) -(sidt, (vk, pwt)) � (sidt, (ϵ, pw′
t)) sidt := (sid, t)

ℓ-iPAKE
� (ϵ, Kt) -(ℓt, K′

t) Abort if ℓt ̸∈ VK
Abort if ∃r ̸= s s.t. ℓr ̸= ℓs

K := (K1, . . . , Kn) K′ := (K′
1, . . . , K′

n)
U $←− Fq

C ← Enc(U)
E := C + K
σ ← Signsk(E) -(E, vk, σ) Abort if vk ̸= ℓ1

Abort if Vfyvk(E, σ) ̸= 1
U ′ ← Dec(E −K′)

Output U Output U ′

Fig. 6. Description of the πRSS
fPAKE protocol from [DHP+18] that uses n instances of an

ℓ-iPAKE and a signature scheme (KeyGen, Sign, Vfy) whose verification key space is VK
and an error-correcting code (Enc, Dec).

sends their signature σ = Signsk(E) and vk to the Receiver in addition to E. The
Receiver aborts if vk is not equal to the output labels of the ℓ-iPAKE instances
or with the signature does not verify. See Fig. 6 for a schematic description of
the protocol.

Attack on πRSS
fPAKE. It turns out that the way ℓ-iPAKE instances and the last

message were tightened together in the πRSS
fPAKE protocol is not sufficient to realize

the FfPAKE functionality. Let us assume that both parties enter passwords pw, pw′

whose distance is exactly at the threshold δ, i.e., d(pw, pw′) = δ. This means that
the fPAKE would yield matching keys for both parties if there was no active
attack on the protocol. The adversary can now make one of the ℓ-iPAKE key
exchanges fail by making a wrong guess (without loss of generality, assume the
first one). This perfectly emulates a situation where the first password values pw1
and pw′

1 mismatch. Now, imagine a simulator that ensures indistinguishability
of the ideal execution of FfPAKE from the real protocol execution πRSS

fPAKE where
parties make calls to the ℓ-iPAKE instances. The simulator’s task is to figure
out whether the described attack actually constitutes a successful DoS attack
against the whole fPAKE or not, i.e., whether the passwords entered by both
parties were already at the error tolerance δ and if pw1 = pw′

1. If so, the result of
the attack in the real world is that both parties compute random keys, otherwise
they compute the same key. The only leakage about the passwords accessible by
the simulator is through the TestPwd interface of FfPAKE. Calling this interface,
however, requires the simulator to provide a password γ-close to pw or pw′, as
otherwise parties will already receive randomized keys in the ideal world because
of the session getting interrupted. The probability that the simulator guesses
the password depends on the dictionary size but is not negligibly close to 1.
This results in a significant distinguishing advantage for the environment. We
highlight that this attack has practical implications on the protocol. For the sake

Generalized Fuzzy PAKE from Error Correcting Codes 17

of simplicity, assume that the passwords must match exactly (i.e., δ = 0), and
that the password is encoded as a bit string. An attacker can completely retrieve
a user’s n-bit password from only n executions of the protocol with that user
by guessing one bit per execution. Whenever key exchange is successful the bit
was guessed correctly. For δ > 0, the attack needs slightly more guesses as the
attacker must ensure that the distance from his guess to the user’s password
is exactly at the δ boundary before the bit-wise guessing will work. We now
describe the attack more formally.

Formalizing the attack on πRSS
fPAKE To formalize the attack, we need to show that

for every simulator S there exists an environment Z that can distinguish the in-
teraction with the hybrid world adversary and the protocol from the interaction
with the simulator and the ideal functionality with non-negligible probability.
In fact, in Fig. 7, we describe a distinguishing environment Z that can distin-
guish the hybrid and ideal worlds with non-negligible probability for all PPT
simulators.

Let us first look at the pseudocode in Fig. 7 and consider that Z interacts
with the hybrid world (i.e., the protocol πRSS

fPAKE making calls to Fℓ-iPAKE, and the
real world dummy adversary A that does what Z tells them to do). One can
easily observe that if the environment’s choice bit is set to b = 0, then the attack
results in DoS (i.e., output keys sk and sk′ are chosen uniformly at random) and
if b = 1, the attack does not disturb the key exchange (i.e. sk = sk′). Hence, if Z
interacts with the hybrid world, they will correctly output HYBRID except with
negligible probability (note that Pr[sk = sk′ | sk $←− Fq, sk′ $←− Fq] = 1

q , where
q ≈ 2λ).

Let us now focus on the ideal world, where Z interacts with the ideal func-
tionality FfPAKE and a simulator S. The task of S is to make FfPAKE produce
an output indistinguishable from the hybrid world described above. Let us first
summarize all the information that S gets. From the environment, S receives
pw∗

1 ∈ Fp and we can assume that S knows that this character is different from
pw1. According to the definition of FfPAKE, S gets no information about the pass-
words pw, pw′ from FfPAKE by default. The only way S could get information
via FfPAKE is through the TestPwd interface, where S has to guess pw or pw′.
If S makes a wrong guess of one of the passwords, this password gets marked
as interrupted which means that the simulator loses all power over the keys
being output to both parties (i.e., each party gets a randomly sampled key). In
order to get useful information about the passwords via the TestPwd interface
without causing random keys, the simulator would have to make a close enough
guess of one of the passwords. But since S knows only that pw1 ̸= pw∗

1 and the
passwords were chosen uniformly at random, the probability that S succeeds in
guessing is not negligibly close to 1 (the exact probability depends, of course, on
the size of the dictionary and γ). .

Hence, if S would be a simulator that could ensure indistinguishability of the
ideal and hybrid world, this would imply that S is able to guess b correctly with
non-negligible probability. Since b was chosen uniformly at random from {0, 1}
by Z, this is information theoretically impossible.

18 Bootle et al.

1. Sample a bit b ∈ {0, 1} uniformly at random.
2. Sample pw = (pw1, . . . , pwn) ∈ Fn

p uniformly at random.
3. Choose a random pw′ = (pw′

1, . . . , pw′
n) ∈ Fn

p s.t. (1) d(pw, pw′) = δ and (2)
pw′

1 = pw1 if b = 0 and pw′
1 ̸= pw1 if b = 1.

4. Choose pw∗
1 ∈ Fp \ {pw1}.

5. Send (NewSession, sid, pw, Sender) to P0 and (NewSession, sid, pw′, Receiver) to
party P1, where sid chosen arbitrarily.

6. Upon receiving (NewSession, (sid, 1),P0, Sender) and (NewSession, (sid, 1),P1,
Receiver), instruct the adversary to send (TestPwd, (sid, 1),P0, pw∗

1).
7. Instruct the adversary to send (NewKey, (sid, 1),P0, sk1) and then (NewKey,

(sid, 1),P1, sk1) for an arbitrary key sk1.
8. For every t = 2, . . . , n:

(a) Upon receiving (NewSession, (sid, t),P0, Sender) and (NewSession, (sid, t),
P1, Receiver), instruct the adversary to send (NewKey, (sid, t),P0, skt) and
then (NewKey, (sid, t),P1, skt) for an arbitrary key skt.

9. Upon receiving (sid, sk) from P0 and (sid, sk) from P1 distinguish the following two
cases:

– b = 0: If sk ̸= sk′, output HYBRID. Otherwise, output IDEAL.
– b = 1: If sk = sk, output HYBRID. Otherwise, output IDEAL.

Fig. 7. Pseudocode of an environment Z distinguishing the interaction with the πRSS
fPAKE

protocol in the Fℓ-iPAKE hybrid world from the interaction with the FfPAKE ideal func-
tionality.

3.3 Towards repairing the previous construction

In their work, Dupont et al. mention an alternative way of binding the iPAKE
instances and the last message together (see footnote 6 on page 26 of the eprint
version of their paper [DHP+17]). Instead of using labels and a one-time sig-
nature scheme, they suggest letting the two parties sign every message using
the split transformation put forward by Barak et al. [BCL+05]. A natural first
step when trying to fix the πRSS

fPAKE protocol is hence to follow this alternative
approach. Unfortunately, it turns out that applying the split transformation is
not straightforward.

At a very high level, the split transformation is a generic way to transform a
protocol realizing an ideal functionality F assuming authenticated channels into
a protocol that achieves the same without authenticated channels.8 Instead, the
transformed protocol works in the FSA-hybrid world, where FSA is the ideal
functionality for split authentication recalled in Section 2.5.

Intuitively, this seems to be exactly what is needed to bind the iPAKE in-
stances and the message of πRSS

fPAKE together. Let πplain
fPAKE denote the protocol which

is defined exactly as πRSS
fPAKE except that it uses FiPAKE instead of Fℓ-iPAKE instances

and the sender does not sign the last message. Assume that the sender and the
8 This is an oversimplified statement as the transformed protocol does not realize F

but its split variant, denoted sF . See the work of Barak et al. [BCL+05] for more
details.

Generalized Fuzzy PAKE from Error Correcting Codes 19

receiver have an authenticated channel available which they can use for all the
communication happening during all the n iPAKE executions and parties can
use the same channel for the last message. Then the πplain

fPAKE protocol would be
a secure fuzzy PAKE. Unfortunately, this intuition is misleading as it does not
reflect the UC formalization of the πRSS

fPAKE protocol correctly.
The core of the problem is that the result of Barak et al. does not apply to

hybrid protocols like πplain
fPAKE. In a bit more detail, recall that the protocol πplain

fPAKE
is defined in the FiPAKE-hybrid world. This, in particular, means that the only
message sent between the sender and the receiver in πplain

fPAKE is the last message.
The rest of the protocol consists of the communication between a party and
FiPAKE ideal functionality. Sending (only) the last message over an authenticated
channel would not help us to bind the n iPAKE executions together, so such a
protocol could not realize FfPAKE. Hence, applying the split transformation does
not have the desired effect of protecting against active attacks on individual
password characters, like the one described in Fig. 7, in πRSS

fPAKE.

Our approach. To address this issue, we define a protocol that does not work
in the FiPAKE-hybrid world. Instead, it lets the Sender and the Receiver run
the code of a protocol πiPAKE realizing FiPAKE directly. In a bit more detail, let
us assume that the Sender received pw = (pw1, . . . , pwn) as input. For every
t ∈ [n], our protocol instructs the Sender to run the code of the πiPAKE-sender on
input pwt. Whenever the πiPAKE-sender would have sent a message to the πiPAKE-
receiver instance, the Sender does so via the channel available for the two parties
in our protocol. The Receiver in our protocol is defined analogously. This way,
all communication happening during the iPAKE executions and the last message
are sent via the same channel between the Sender and the Receiver. Hence, the
split transformation will have the desired effect. We formally prove this intuitive
statement in the next section, where we define our final protocol precisely.

Potential alternative approach. Another way to resolve the insufficient binding
of the iPAKE instances and the last message together could be to define a new
building block, “batched iPAKE”. This new iPAKE primitive would take as
input a vector (pwt)t∈[n] and output a vector (Kt)t∈[n]. An adversary would be
allowed to make a TestPwd query, but would always have to test all password
characters (pw∗

t)t∈[n]. Hence, the adversary would be forced to launch a man-
in-the-middle attack either against all iPAKE instances, or none of them, which
would guarantee the binding of the iPAKEs. In order to bind iPAKEs to the last
message, we would require the “batch iPAKE” to be labelled. As in πRSS

fPAKE, the
sender would use their verification key as a label and then use the corresponding
signing key to sign the last message.

4 Our Construction

General idea. The idea behind our construction is very simple: we modify the
fuzzy PAKE of Dupont et al. [DHP+18] by letting the receiver apply list decoding

20 Bootle et al.

instead of unique decoding. Since now the receiver ends up with a list of potential
key candidates (or codewords, more precisely), we additionally let the sender
compute a “hint” on which codeword is the correct one. More formally, the
sender adds the hash of the original codeword h := H(C) to the last message.
The receiver applies list decoding which results in a list of candidates C1, . . . , Cℓ.
They then find the one that satisfies h = H(Cj) and compute U ← Dec(Cj).
The value h is a hint on which of the candidates is the correct one. The benefit
of our construction is that it can correct more errors in the password: for a Reed-
Solomon code of rank k and block length n, unique decoding can correct up to
⌊n−k

2 ⌋ errors (Lemma 1), while list decoding outputs a list containing the original
codeword in the presence of n − 1 −

√
(k − 1)n errors. Fig. 2 provides several

numerical examples of these terms, demonstrating that for growing password
sizes, the list decoding approach yields a significantly better error correction
capability than the unique decoding approach in [DHP+18].

On the other hand, it is not intuitively clear that the extra information passed
from the sender to the receiver does not void any of the security guarantees of
the protocol. To give an example, consider a different kind of hint h̄ := H(sk),
where sk is the output key of the sender. Such a hint helps the receiver to
choose its output key just as well as the hint h := H(C). However, a fuzzy
PAKE protocol sending h̄ cannot realize FfPAKE. The reason is that h̄ depends
deterministically on secret information known to the sender (namely its output
key sk), and hence it leaves no wiggle room for a simulator, who simply has to
guess sk in order to simulate correctly. While the hint H(C) does include some
randomness contributed by the sender to the encoding algorithm Enc, it is not
straightforward to see that the resulting fuzzy PAKE is simulatable, meaning
that it does not involuntarily reveal any information about the sender’s password
through the hint.

In the remainder of this section, we hence carefully analyze the security of
our fuzzy PAKE protocol given in Fig. 8.

Formal protocol description. The protocol is depicted in Fig. 8. To be able to fix
previous issues of imperfect binding of messages, and as detailed in Section 3.2,
we let parties send messages to each other over functionality FSA (the function-
ality was briefly discussed in Section 2.5 and is formally defined in Fig. 13). The
protocol parties take a password from a dictionary D = Ln as input, where L is
some finite alphabet. We write that the sender chooses s $←− Fk

q and encodes it us-
ing Enc(s). One can equivalently say that the sender chooses a message s0

$←− Fq

and randomness r $←− Fk−1
q and uses the randomized encoding Enc(s0, r). To

make our protocol description modular, let πj denote an instance of a protocol
that UC-realizes FiPAKE. We write X ← πj(Pi, sid, pwPi) to denote that Pi out-
puts X when running πj on sid and pwPi and K ← πj(Pi, sid, X) to denote that
Pi outputs K as response to input X when running πj on sid. For the sake of
simplicity, we assume that the πj protocols are one-round protocols. For multi-
round protocols, one can send every message again over FSA to the respective
other party, like in the first round. A more formal description of the protocol,
using the interfaces of FfPAKE can be found in Figure 14.

Generalized Fuzzy PAKE from Error Correcting Codes 21

P0(sid, pwP0) FSA P1(sid, pwP1)

-(Init, ({P0,P1})) �(Init, ({P0,P1}))

� (Init, sidH) -(Init, sidH)
For j ∈ [n]: For j ∈ [n]:

sidj := (sid, sidH, j) sidj := (sid, sidH, j)
X∗

j ← πj(P0, sidj , pwP0
j) Y ∗

j ← πj(P1, sidj , pwP1
j)

X∗ := (X∗
1 , . . . , X∗

n) Y ∗ := (Y ∗
1 , . . . , Y ∗

n)
-(Send,P0,P1, X∗) �(Send,P1,P0, Y ∗)

�(Deliver,P1,P0, Y ∗) -(Deliver,P0,P1, X∗)
For j ∈ [n]: For j ∈ [n]:

Kj ← πj(P0, sidj , Y ∗
j) K′

j ← πj(P1, sidj , X∗
j)

Let K := (K1, . . . , Kn) Let K′ := (K′
1, . . . , K′

n)
s := (s0, . . . , sk−1) $←− Fk

q

C ← Enc(s)
E := C ⊕K
h := H0((sid, sidH), C)

-(Send,P0,P1, (E, h)) -(Deliver,P0,P1, (E, h))

{C1, . . . , Cℓ} ← LDec(E ⊕K′)
Output H1((sid, sidH), s0) If h := H0((sid, sidH), Cj) for j ∈ [ℓ]:

s := Dec(Cj)
Output H1((sid, sidH), s0)

Else output u $←− {0, 1}λ

Fig. 8. The protocol in the FSA-hybrid model. We drop sid from all messages for brevity.
We recall FSA in Figure 13 in the appendix, but for the sake of understanding our
protocol it is enough to know that FSA is used to transmit the protocol messages. With
πj we denote an instances of a protocol that UC-realizes FiPAKE (cf. Figure 12). We
write X ← πj(Pi, sid, pwPi

j) to denote that Pi outputs X when running πj on sid with
password pwPi

j and K ← πj(Pi, sid, X) to denote that Pi outputs K as response to
input X when running πj on sid.

22 Bootle et al.

We start by proving the correctness of our protocol.

Theorem 1. If C is a randomized linear code which is efficiently δ-list decodable,
H1 is a ε2-collision-resistant hash function and π is ε1-correct and UC-realizes
FiPAKE then the protocol in Figure 8 is (δ, ε0)-correct for

ε0 = nε1 + ε2.

Remark 1 (Implications for previous results). Note that our construction implies
(a fixed version of) the original fuzzy PAKE of Dupont et al. [DHP+18] when
falling back to unique decoding algorithms. Indeed, one can simply set the list
size of the list decoding to one and thus obtain unique decoding instead of
list decoding as in [DHP+18], preserving our security analysis. There are two
notable differences in this “fallback” version of our fuzzy PAKE and the one
of [DHP+18]. First, our version applies a proper binding mechanism by using
the split functionality FSA for sending messages [BCL+05], at the cost of one
signature per message (see Appendix D for the concrete instantiation). Second,
our security proof does not rely on the smoothness property of the underlying
code. This enables the usage of a variety of codes for which such properties are
not well researched, or do not hold at all.

Proof. Assume that two honest parties P0,P1 execute the protocol from figure
Fig. 8 on input pwP0 and pwP1 with d(pwP0 , pwP1) ≤ δ, respectively. Further,
assume that the adversary A attacking this protocol is passive. Each instance
πj of π is ε1-correct by assumption (see Definition 1). We construct a sequence
of hybrids H0, . . . ,Hn where in the j-th hybrid we abort the execution of the
protocol if the two parties of πj output different keys even though the respective
inputs pwP0

j and pwP1
j are the same. By the ε1-correctness of π, Hj differs from

Hj−1 at most by ε1 for all j ∈ {1, . . . , n}. Now inHn, as we have d(pwP0 , pwP1) ≤
δ, there are at least n − δ instances of π where P0 and P1 run on matching
inputs pwP0

j and pwP1
j . Thus, we have Kj = K ′

j for at least n − δ keys. So the
codeword C ′ = E ⊕ K ′ that the receiver computes differs from the sender’s
C on at most δ entries. As C is δ-list decodable, the list that is output by
LDec contains the same C that the sender encoded. Now assume that there
are two possible words C, C∗ with s = Dec(C) and s∗ = Dec(C∗) such that
H1((sid, sidH), s0) = H1((sid, sidH), s∗

0) with probability ε2. One can construct
an adversary against the collision-resistance of H1 that internally runs P0(pwP0)
and P1(pwP1) and outputs s0, s∗

0 as above. We get

Pr[K ̸= K ′ | (K, K ′)← outA,π⟨P0(pwP0),P1(pwP1)⟩] ≤ nε1 + ε2.

Theorem 2. If C is a RS[n, k, S] code over Fq for q = 2Ω(λ), π UC-realizes
FiPAKE and is correct, and H0 and H1 are modeled as random oracles then the
protocol in Figure 8 UC-realizes FM

fPAKE in the FSA-hybrid model with error tol-
erance δ = n− 1−

√
(k − 1)n and leakage threshold γ = n− k.

We discuss the proof of Theorem 2 in Section 5.

Generalized Fuzzy PAKE from Error Correcting Codes 23

4.1 Comparison with properties and proof techniques in [DHP+18]

As previously discussed, prior work [DHP+18] constructs fuzzy PAKE protocols
from linear error-correcting codes, using the fact that the errors in noisy code-
words can be uniquely corrected up to the unique decoding radius. However, in
this work, we wish to offer improved PAKE functionality by using list-decoding
algorithms to correct errors beyond the unique decoding radius. The proof strat-
egy employed in [DHP+18] does not readily generalise to this setting, and the
presence of the hint h becomes crucial in the proof of Theorem 2, as we will
explain.

The PAKE construction of [DHP+18] builds fuzzy PAKE protocols from
robust secret-sharing (RSS) schemes with various special properties, which are
in turn constructed from linear error-correcting codes. First, we summarize the
RSS properties used in the PAKE construction of [DHP+18] and rephrase them
as properties of error-correcting codes. Then, we describe the techniques used in
the proof of the reconstruction and smoothness properties, and how this proof
strategy leads to challenges when we generalize to list-decoding. Finally, we
explain how the inclusion of the hint h allows us to circumvent these issues.

RSS properties in [DHP+18]. An RSS scheme consists of a sharing algorithm,
which takes a message as input and produces n output shares, and a reconstruc-
tion algorithm, which, on input a list of (possibly corrupted) shares, returns a
secret.

In this work, in line with our study of PAKE protocols from a decoding
perspective, we phrase our algorithms in terms of randomised error-correcting
codes as in Section 2.2, instead of RSS schemes. With this view, the randomised
encoding algorithm Enc simply corresponds to a share algorithm with message
space generalised from F to FkM , and explicit random input R ∈ FkR .

The PAKE construction of [DHP+18] uses the following properties of ran-
domised encoding algorithms (with their corresponding RSS terminology from
[DHP+18] included for clarity):

– B-query uniformity (Section 2.3), which corresponds to strong B-privacy for
RSS;

– the existence of an efficient algorithm for e-error correction (Section 2.2),
which corresponds to e-robustness for RSS;

– for all E ⊆ [n] with |E| ≤ e, all M ∈ FkM , the distribution of{
Dec(V) : R← FkR , V |E := Enc(M , R)|E , V |Ē ← FĒ

}
(1)

is uniform over FkM . This corresponds to e-smoothness for RSS;
– e-smoothness on random secrets. This is similar to e-smoothness except that

M is also sampled uniformly at random from FkM .

The authors of [DHP+18] give a construction of a randomised linear code
with each of the above properties from a standard linear error correcting code.
The construction was originally given as an RSS.

24 Bootle et al.

Lemma 3 ([DHP+18, Lemma 5], restated). Given an [n + 1, k, n−k + 2]-
linear code C0, there is a [n, k, d = n − k + 1] randomised linear code C with
kM = 1, (k − 1)-smoothness, (k − 1)-query uniformity, ⌊n+k

2 ⌋-error correction
and ⌊n+k

2 ⌋ − 1 smoothness on random secrets.

Arguing smoothness and decoding properties for Lemma 3. The proof of Lemma 3
in [DHP+18] starts by defining C to be the code obtained by puncturing C0 in its
last coordinate. Then, (k−1)-smoothness is proved with respect to the following
decoding algorithm. On input a codeword in C′, the decoding algorithm selects
the subvector of k entries of the codeword and then inverts the submatrix of the
generator matrix of C′ corresponding to these entries on the subvector to find
the original message. Finally, this message vector is combined with the column
of the generator matrix of C corresponding to its last coordinate.

Intuitively, in the case of Reed-Solomon codes, this is like choosing k code-
word entries of a punctured codeword with the last entry missing, and then
interpolating to find out what the last entry should be.

With this decoding algorithm, it is relatively easy to prove smoothness, be-
cause V in Equation (1) has at least n − k + 1 random entries, so at least one
entry out of the k entries is random. Based on the MDS properties of C, one can
show that the “last coordinate” computed from the k selected entries must also
be random.

In order for this decoding algorithm to be robust, it must be able to select k
error-free positions. Otherwise, the submatrix inversion step will incorporate an
error and produce an incorrect message. In the case of Reed-Solomon codes, this
could be achieved by using another decoding algorithm (such as the Berlekamp-
Welch algorithm) to identify these positions.

Therefore, proving the smoothness property relies heavily on the MDS prop-
erties of C and the existence of efficient decoding algorithms to allow errors in
the codeword to be located.

Moving beyond the unique decoding radius. In this work, we intend to construct
a PAKE scheme which works for errors beyond the unique decoding radius. In
this high-error setting, the natural replacement for a decoding algorithm is a list-
decoding algorithm, which produces all possible codewords within a particular
radius of the transmitted word. The first challenge for our PAKE algorithm to
overcome was to allow the sender and receiver to agree on the same password,
even though decoding may no longer produce a unique codeword which can
be used to determine the password. We solve this problem by way of the hint
h = H(C).

Another challenge is the fact that smoothness, an important property in
the security proofs of [DHP+18], relies heavily on the special decoding strategy
introduced, which must apply a linear map to error-free positions in a codeword
in order to ensure robustness. In this high-error setting, it may be impossible to
identify a unique set of error-free positions in a codeword. Thus, the decoding
strategy above, which involves inverting the generator matrix on an error-free set
of codeword entries, may not be possible either. Therefore, it seems challenging to

Generalized Fuzzy PAKE from Error Correcting Codes 25

construct a list-decoding algorithm with a generalised smoothness property via
a linear decoding algorithm that still returns the correct codeword somewhere in
its list, as the linear decoding step may always be applied to strings with errors
instead of error-free positions.

However, amazingly, the hint that we introduce lets us circumvent this issue.
In order to prove our PAKE protocol secure, we require only that the list de-
coding algorithm will not produce the same codeword provided by the hint after
many random errors are added to it. This follows almost trivially as adding a
large number of random errors produces a string which is so far away from the
original codeword that the list decoding algorithm cannot produce the original
codeword. This relates to G8 and Lemma 4 in the security proof.

5 Proof of Security

To prove that the protocol in Figure 8 UC-realizes FM
fPAKE, we have to show that

every PPT environment Z has at most negligible advantage in distinguishing
a real execution of the protocol from an ideal execution, with FM

fPAKE and the
simulator that we show in Figs. 9 to 10. We show this by a sequence of hybrid
games. In the following, we give intuition for each of the game hops and prove
the necessary lemmas. We defer the full proof of Theorem 2 to Section A of the
Supplementary Material.

On using other iPAKE protocols than EKE: The current simulator in Figures 9
to 10 is written with an iPAKE protocol in mind in which each party only
sends one message. However, the simulator can be easily adapted to work with
any iPAKE protocol as follows: Instead of forwarding only one set of messages
({Z∗

j }n
j=1 between Z and the iPAKE simulators, S would forward all iPAKE mes-

sages between Z and the corresponding iPAKE simulator.

Proof (Sketch). We depict a UC execution of Fig. 8 in Fig. 14 in Section D of
the Supplementary Material, which makes explicit all the interfaces of FfPAKE.
The general proof strategy of showing indistinguishability of this protocol from
FfPAKE is to start with the real-world execution of the protocol from Fig. 14
and replace step-by-step parts of the protocol by simulated parts. The goal is
to reach the ideal-world execution where the simulator can work without using
the secret passwords of the participating parties but with help from the ideal
functionality FM

fPAKE. In the following we give intuition for every game-hop we
make:

– G0: The proof starts with the real execution of the protocol.
– G1: We move the whole execution into one machine which we will call simu-

lator. We also add dummy parties and a functionality that merely forwards
the input of the parties (i.e. NewSession calls) to the simulator. Further-
more, the functionality forwards the output of the simulator to the parties
as NewKey messages. This allows the simulator to execute the protocol on
the real inputs pwPi and pwP1−i . The goal of the remaining steps is to add

26 Bootle et al.

On (NewSession, sid,Pi, role) from FfPAKE or (Init, ({P0,P1}, sid)) from a corrupted Pi to FSA:
– Create record ⟨Pi, sid, role,⊥⟩ and mark it fresh.
– Send (Init, ({P0,P1}, sid)) to Z in the name of FSA.

On (Init, sid,Pi,H, sidH) from Z in the name of A to FSA:
– Perform the same checks as FSA on sidH and H and ignore the message if one of them fails.
– Record ⟨H, sidH⟩.
– If Pi is corrupted then provide output (Init, sid, sidH) to Pi. Regardless:
• If H = {P0,P1} then set MitM := 0.
• Else if H = {Pi} set MitM := 1.

– Retrieve ⟨Pi, sid, role,⊥⟩ and replace ⊥ by MitM.
– If there is not already an instance of SiPAKE for session-id (sid, sidH, j) for j ∈ [n] create one. //

I.e., create {Sj
iPAKE}

n
j=1 if MitM = 1 or if MitM = 0 and {Sj

iPAKE}
n
j=1 are not yet created for P1−i.

– For all j ∈ [n] send (NewSession, (sid, sidH, j), Pi, role) to Sj
iPAKE.

– Upon receiving output Z∗
j from all n instances of SiPAKE, send (sid,Pi,P1−i, msg := (Z∗

1 , . . . , Z∗
n))

formatted as coming from FSA to Z and store ⟨sid,Pi,P1−i, msg⟩.

On instruction from Z to send (Deliver, sid,Pi,P1−i, msg := {Z∗
j }n

j=1) to FSA:
– If MitM = 0:
• If message msg is the one that S sent, i.e. S has a record ⟨sid,Pi,P1−i, msg⟩:

∗ Give instruction to Sj
iPAKE to send message Z∗

j to P1−i in the name of Pi.
∗ Remove one appearance of the record ⟨sid,Pi,P1−i, msg⟩.

• Else: do nothing. // message manipulated
– Else // if MitM = 1
• Give instruction to Sj

iPAKE to send message Z∗
j to P1−i in the name of Pi.

On (TestPwd, (sid, sidH, j),Pi, pw′
j) from Sj

iPAKE to Fj
iPAKE

– store ⟨test-pwd, sid,Pi, j, pw′
j⟩. // Remember the query. No need to answer

On instruction from Z to send (Deliver, sid,P1−i,Pi, msg := (E′, h′)) to FSA:
– Retrieve record ⟨Pi, sid, role, MitM, K⟩ marked waiting.
– If MitM = 0 and both parties of session sid are honest:
• Remove one appearance of the record ⟨sid,P1−i,Pi, (E′, h′)⟩. // Record exists because no

MitM attack.
• If role = receiver then send (NewKey, sid,Pi,⊥) to FfPAKE.
• Else, ignore this message. // role = sender does not expect this message

– Else // MitM = 1 or one of the parties is corrupted
• If Pi is honest and role = receiver then

∗ Compute {C1, . . . , Cℓ} ← LDec(E′ ⊕K).
∗ If h′ = H0((sid, sidH), Cj) for j ∈ [ℓ] then set s := Dec(Cj).
∗ If the record ⟨Pi, sid, role, MitM⟩ is marked as accident, then choose ŝk $←− {0, 1}λ.
∗ Else if the record ⟨Pi, sid, role, MitM⟩ is marked as compromised then set ŝk :=

H1((sid, sidH), s0).
∗ Else // record interrupted set ŝk := ⊥.
∗ Regardless, send (NewKey, sid,Pi, ŝk) to FfPAKE.

• Else if Pi is corrupt then output (Received, sid,P1−i,Pi, (E′, h′)) to Pi.
• Else, ignore this message. // role = sender does not expect this message

On a query ((sid, sidH), s0) to H1:
– If there is a record ⟨H1, (sid, sidH), s0, k⟩ return k. Else draw k $←− {0, 1}λ, record
⟨H1, (sid, sidH), s0, k⟩ and return k.

On a query ((sid, sidH), C) to H0:
– If there is a record ⟨H0, (sid, sidH), C, ρ⟩ return ρ. Else draw ρ $←− {0, 1}λ. If there is another

record ⟨H0, (sid, sidH), C′, ρ′⟩ with C ̸= C′ but ρ = ρ′ abort the simulation. Else record
⟨H0, (sid, sidH), C, ρ⟩ and return ρ.

Fig. 9. The first part of the simulator S for FfPAKE and our Fuzzy PAKE with list-
decoding protocol. S simulates FSA and the random oracles H0 and H1. If we write
“retrieve record” and the record does not exist, S ignores the message.

Generalized Fuzzy PAKE from Error Correcting Codes 27

On (NewKey, sid,Pi, skj) from Sj
iPAKE, record ⟨NewKey, sid,Pi, skj⟩. If this is the n-th NewKey

query for Pi, do:
– Retrieve record ⟨Pi, sid, role, MitM⟩ marked fresh.
– If MitM = 0 and both parties of session sid are honest: choose K $←− Fn

q .
– Else // MitM = 1 or one of the parties is corrupted, then retrieve records
⟨test-pwd, sid,Pi, j, pw′

j⟩ for any j ∈ [n] where such a record exists. Let J be the set of j
for which a record exists.
• If there are |J | ≥ n − γ such records, choose pw′

t
$←− {0, 1} for t ∈ [n] \ J and send

(TestPwd, sid,Pi, pw′
1∥ . . . ∥pw′

n) to FfPAKE.
• Else // there are |J | < n−γ test-pwd records, choose K $←− Fn

q . Send (TestPwd, sid,Pi,⊥)
to FM

fPAKE.// Interrupt the record.
• Regardless, wait for FfPAKE’s response:

∗ If FfPAKE responds with (T, “correct guess”) or (T, “wrong guess”) check if |T ∩ J | <
n−γ. If that is the case, mark the record ⟨Pi, sid, role, MitM⟩ as accident. Else retrieve
records ⟨NewKey, sid,Pi, skj⟩ and set Kt := skt for all t ∈ T ∩J and choose Kt

$←− Fq

for all t ∈ [n] \ (T ∩ J). Mark the record ⟨Pi, sid, role, MitM⟩ as compromised.
∗ Else // FfPAKE responds with “wrong guess” choose K $←− Fn

q . Mark the record
⟨Pi, sid, role, MitM⟩ as interrupted.

– Regardless,
• If role = receiver then append K to the record ⟨Pi, sid, role, MitM⟩ and mark the record as

waiting.
• Else // role = sender

∗ Choose s $←− Fk
q . Set C := Enc(s),E := C ⊕K, and h := H0((sid, sidH), C).

∗ If the record ⟨Pi, sid, role, MitM⟩ is marked as accident, then choose ŝk $←− {0, 1}λ.
∗ Else if the record ⟨Pi, sid, role, MitM⟩ is marked as compromised then set ŝk :=

H1((sid, sidH), s0).
∗ Else // record interrupted, or fresh set ŝk := ⊥.
∗ Regardless, send (NewKey, sid,Pi, ŝk) to FfPAKE. Store ⟨sid,Pi,P1−i, (E, h)⟩ and send

(Pi,P1−i, (E, h)) to Z as message from FSA. Mark ⟨Pi, sid, role, MitM⟩ as completed.

Fig. 10. The second part of the simulator S for FfPAKE and our Fuzzy PAKE with
list-decoding protocol. S simulates FSA and the random oracles H0 and H1. If we write
“retrieve record” and the record does not exist, S ignores the message.

28 Bootle et al.

and adapt interfaces of the ideal functionality until we reach FM
fPAKE and to

make the simulator independent of the input passwords pwPi , pwP1−i until
we reach the simulator as described in Figs. 9 to 10.

Z

P0 P1

FfPAKE

SfPAKE

F1
iPAKE Fn

iPAKE

S1
iPAKE

Sn
iPAKE

. . .

. . .

P0 P1

FSA A

Fig. 11. This figure shows the layout of our simulator SfPAKE in G3 in a setting without
MitM attack.

– G2: In this game the simulator aborts on collisions of H0.
– G3: In this game we use the hypothesis that the iPAKE protocol πj UC-

realizes FiPAKE. There is a simulator SiPAKE that interacts with FiPAKE and
simulates a protocol execution of π. Thus, we can replace each instance πj

of π by an instance Sj
iPAKE of SiPAKE. The simulator S must also simulate

FiPAKE towards SiPAKE to make sure that the simulation works. Note that S
still needs the input passwords pwPi , pwP1−i to internally run FiPAKE.

– G4: In this game we equip FM
fPAKE with the TestPwd interface. Also the

NewKey and TestPwd interfaces mark records. Also the NewKey inter-
face reacts to the marked records. However, S does not use the TestPwd
interfaces yet.

– G5: SiPAKE might send TestPwd queries to FiPAKE. S still uses the input
passwords to answer these. The games G5 to G8 will changes this. In G5
we argue that SiPAKE will never send a TestPwd query to FiPAKE if both
parties are honest and no man-in-the-middle attack is mounted. So in that
case S can ignore TestPwd queries of SiPAKE.

– G6: In this game we start dealing with attacks on an honest sender. Such
an attack will lead to TestPwd queries from the SiPAKE. S can also send a
TestPwd query to FM

fPAKE. We leverage the fact that communication runs
over the split authentication functionality. Because of FSA the FiPAKE in-
stances of the sender run in a different authentication set than the iPAKE
instances of the (malicious) receiver. Thus, FiPAKE will never have a success-
ful key exchange. Either the key is adversarially chosen or it is random. This
is what mitigates the attack from Section 3.2.
The general idea in this game is that S collects the TestPwd queries of
the iPAKE simulators, concatenates the passwords and uses this to ask a

Generalized Fuzzy PAKE from Error Correcting Codes 29

TestPwd query to FfPAKE. If the password was close enough (i.e. within
γ distance), then S receives the position of the correct password characters
as leakage from FM

fPAKE. Our simulator then uses this knowledge to simulate
the FiPAKE to Z. If S’s password guess was too far away, it will not receive
any leakage information from FM

fPAKE. In that case S still uses the input
passwords pwPi , pwP1−i to produce output keys Kj for the iPAKE sessions.
The only difference to G5 is that in the case of an attack on an honest sender,
in G6 the sender gets a random key as output from the functionality and not
from the simulator anymore. However, by the k − 1 query uniformity of the
code we can argue that the output was already independent and uniformly
random in the previous game.

– G7: In this game we change how S simulates iPAKE keys of an honest sender
when there is a MitM attack or the receiver is corrupt. In the case that the
adversary attacked less than n−γ iPAKE sessions or guessed less than n−γ
characters of the password correctly, S just uses uniformly random iPAKE
keys Kj for all j ∈ [n]. So even for the few successfully attacked iPAKE
sessions the output key will be random. Again, we can use (k − 1)-query
uniformity to argue that the few correct entries of C that an adversary
obtains already looked uniformly random before.

– G8: In this game, we deal with attacks on honest receivers. Like in the
previous game S can use split authentication and the TestPwd interface
of FM

fPAKE with leakage to deal with n− γ or more attacked iPAKE sessions.
In the case where less than n − γ iPAKE sessions were attacked, S does
not try to decode but instead interrupts the record by sending a TestPwd
query to FM

fPAKE with pw = ⊥. Then it sends a NewKey query with sk = ⊥
to FM

fPAKE, which causes the output of the receiver to be a independent,
uniformly random value. One can use Lemma 4 to see that in the case of less
than n−γ password characters the LDec algorithm will not output anything
that matches the hint h and, thus, already in the previous game the receiver’s
output was an independent uniform random value.

– G9: This game syntactically changes S to remove usage of the provided
input passwords pwPi , pwP1−i in dealing with NewSession and TestPwd
queries. We made sure in the previous games that S does not need pwPi and
pwP1−i anymore for those queries.

– G10: In this game S is modified such that honest and undisturbed parties
produce output without S using the provided inputs for the parties. For this,
S can use the NewKey interface of FM

fPAKE. The functionality FM
fPAKE will

produce output according to the input passwords. If d(pw, pw′) ≤ δ then
FM

fPAKE produces matching passwords. Because of Lemma 6 the real-world
protocol does the same. If d(pw, pw′) > δ then FM

fPAKE produces independent
keys. By Lemma 5 the real-world protocol does the same. We also replace the
message (E, h) by a uniformly random message, which is indistinguishable
for Z as the iPAKE keys of honest parties are hidden from Z.

– G11: This is the ideal-world experiment with FM
fPAKE and the simulator from

Figs. 9 to 10.

30 Bootle et al.

The following lemma essentially says that given a target vector C, a vector
C̃ with at least γ + 1 = n − k + 1 random entries will have d(C, C̃) ≥ γ + 1.
This is necessary in our protocol to make sure that a malicious sender with a
far away password cannot make the key exchange succeed. In the security proof
of our protocol we use this lemma in G8.

Lemma 4. For q = 2Ω(λ),∀n, k ∈ N with n ≥ k : ∀A ⊆ [n] with |A| ≤ k −
1: ∀C, C̃ ∈ Fn

q with C̃|Ā $←− Fn−|A|
q :

Pr[d(C, C̃) ≥ n− k + 1] ≥ 1− negl(λ).

The probability is taken over the randomness used to sample C̃|Ā.

Proof. Remember that γ = n − k. Observe that d(C, C̃) = d(C|A, C̃|A) +
d(C|Ā, C̃|Ā). The statement must even hold for d(C|A, C̃|A) = 0 and A maxi-
mally large, i.e., |A| = k − 1 and, thus, |Ā| = n− k + 1 = γ + 1. What remains
to be shown is that d(C|Ā, C̃|Ā) ≥ n− k + 1 = γ + 1 with overwhelming prob-
ability. For d(C|Ā, C̃|Ā) ≥ γ + 1 to hold, C|Ā and C̃|Ā must be distinct in all
γ + 1 coordinates. The probability that C|Ā and C̃|Ā are distinct in a specific
coordinate is 1 − 1

q . Thus, the probability that C|Ā and C̃|Ā are distinct in all
γ + 1 coordinates is (1 − 1

q)γ+1. For constant γ and q = 2λ this probability is
overwhelming in λ.

The next lemma is similar to Lemma 4. One important difference is that in
Lemma 4 C was an arbitrary vector in Fn

q , whereas in Lemma 5 C is a valid
codeword. We use this lemma to guarantee that in our protocol in a session with
an honest sender and an honest receiver, whose passwords missmatch in more
than δ positions, both parties get independent random keys. In particular this
lemma guarantees that the receiver will not be able to decode the codeword,
which will make them output a random key. This is important in the transition
from G9 to G10.

Lemma 5. For s $←− Fq, C ← Enc(s), C̃ ∈ Fn
q and A ⊆ [n] such that |A| ≤ k−1,

C|A = C̃|A, and C̃|Ā $←− Fn−|A|
q , we have that C ∈ LDec(C̃) with negligible

probability.

Proof. From Lemma 4 we get that d(C, C̃) ≥ n − k + 1 with overwhelming
probability. Because n− k + 1 > n− 1−

√
(k − 1)n = δ and LDec(C̃) does not

output candidates C with d(C, C̃) > δ by Lemma 2, we get that C ∈ LDec(C̃)
with negligible probability.

Lemma 6 can be seen as the counterpart of Lemma 5, as we use it to guarantee
that in our protocol two honest parties that have close enough passwords (i.e.
≤ δ) get the same session key. In detail, this lemma guarantees that the honest
receiver is able to correctly decode C ′ = E⊕K ′, which then leads to successful
key exchange. We use this lemma in the transition from G9 to G10.

Generalized Fuzzy PAKE from Error Correcting Codes 31

Lemma 6. For s $←− Fq, C ← Enc(s), C̃ ∈ Fn
q and A ⊆ [n] such that |A| ≥ n−δ,

C|A = C̃|A, and C̃|Ā $←− Fn−|A|
q , we have that C ∈ LDec(C̃) with overwhelming

probability.

Proof. This follows directly from Lemma 2 with δ = e = n− 1− ⌈
√

(k − 1)n⌉.

References

ABM+21. Shashank Agrawal, Saikrishna Badrinarayanan, Payman Mohassel, Pratyay
Mukherjee, and Sikhar Patranabis. BETA: Biometric-enabled threshold
authentication. In Juan Garay, editor, PKC 2021, Part II, volume 12711
of LNCS, pages 290–318. Springer, Heidelberg, May 2021.

ABMR20. Shashank Agrawal, Saikrishna Badrinarayanan, Pratyay Mukherjee, and
Peter Rindal. Game-set-MATCH: Using mobile devices for seamless
external-facing biometric matching. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1351–1370. ACM
Press, November 2020.

All22. WiFi Alliance. Wpa3 specification version 3.1. https://www.wi-
fi.org/download.php?file=/sites/default/files/private/WPA32022.

BBCW21. Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi.
Provable security analysis of FIDO2. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 125–156,
Virtual Event, August 2021. Springer, Heidelberg.

BBR88. Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy am-
plification by public discussion. SIAM J. Comput., 17(2):210–229, 1988.

BCL+05. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin.
Secure computation without authentication. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 361–377. Springer, Heidel-
berg, August 2005.

BCL22. Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge iops
with linear-time prover and polylogarithmic-time verifier. In Proceedings of
the 41st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, EUROCRYPT ’22, pages 275–304, 2022.

BDFK12. Jens Bender, Özgür Dagdelen, Marc Fischlin, and Dennis Kügler. The
pace|aa protocol for machine readable travel documents, and its security. In
Angelos D. Keromytis, editor, Financial Cryptography and Data Security
- 16th International Conference, FC 2012, Kralendijk, Bonaire, Februray
27-March 2, 2012, Revised Selected Papers, volume 7397 of Lecture Notes
in Computer Science, pages 344–358. Springer, 2012.

BDK+05. Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam
Smith. Secure remote authentication using biometric data. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 147–163.
Springer, Heidelberg, May 2005.

BFK09. Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the
PACE key-agreement protocol. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio A. Ardagna, editors, Information Security, 12th
International Conference, ISC 2009, Pisa, Italy, September 7-9, 2009. Pro-
ceedings, volume 5735 of Lecture Notes in Computer Science, pages 33–48.
Springer, 2009.

32 Bootle et al.

BFK13. Jens Bender, Marc Fischlin, and Dennis Kügler. The pace|ca protocol for
machine readable travel documents. In Roderick Bloem and Peter Lipp,
editors, Trusted Systems - 5th International Conference, INTRUST 2013,
Graz, Austria, December 4-5, 2013, Proceedings, volume 8292 of Lecture
Notes in Computer Science, pages 17–35. Springer, 2013.

BM92. Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks. In 1992 IEEE
Symposium on Security and Privacy, pages 72–84. IEEE Computer Society
Press, May 1992.

BMP00. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure
password-authenticated key exchange using Diffie-Hellman. In Bart Pre-
neel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 156–171.
Springer, Heidelberg, May 2000.

BPR00. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Heidelberg,
May 2000.

CAA+16. Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas
Ristenpart. pASSWORD tYPOS and how to correct them securely. In 2016
IEEE Symposium on Security and Privacy, pages 799–818. IEEE Computer
Society Press, May 2016.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CCG+07. Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod
Vaikuntanathan. Secure computation from random error correcting codes.
In Proceedings of the 26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, EUROCRYPT’ 07, pages
291–310, 2007.

CDBN15. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

CDD+15. Ronald Cramer, Ivan Bjerre Damgård, Nico Döttling, Serge Fehr, and
Gabriele Spini. Linear secret sharing schemes from error correcting codes
and universal hash functions. In Elisabeth Oswald and Marc Fischlin, ed-
itors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 313–336.
Springer, Heidelberg, April 2015.

CFP+16. Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam D.
Smith. Reusable fuzzy extractors for low-entropy distributions. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 117–146. Springer, Heidelberg, May 2016.

CHK+05. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
404–421. Springer, Heidelberg, May 2005.

CNPR22. Cas Cremers, Moni Naor, Shahar Paz, and Eyal Ronen. CHIP and CRISP:
Protecting all parties against compromise through identity-binding PAKEs.
In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 668–698. Springer, Heidelberg, August 2022.

CWP+17. Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and
Thomas Ristenpart. The TypTop system: Personalized typo-tolerant pass-
word checking. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,

Generalized Fuzzy PAKE from Error Correcting Codes 33

and Dongyan Xu, editors, ACM CCS 2017, pages 329–346. ACM Press,
October / November 2017.

DHP+17. Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and
Sophia Yakoubov. Fuzzy password-authenticated key exchange. Cryptology
ePrint Archive, Paper 2017/1111, 2017. https://eprint.iacr.org/2017/
1111.

DHP+18. Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin,
and Sophia Yakoubov. Fuzzy password-authenticated key exchange. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 393–424. Springer, Heidelberg,
April / May 2018.

DORS08. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith.
Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. SIAM J. Comput., 38(1):97–139, 2008.

EHOR20. Andreas Erwig, Julia Hesse, Maximilian Orlt, and Siavash Riahi. Fuzzy
asymmetric password-authenticated key exchange. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of
LNCS, pages 761–784. Springer, Heidelberg, December 2020.

Gur06. Venkatesan Guruswami. Algorithmic results in list decoding. Found. Trends
Theor. Comput. Sci., 2(2), 2006.

HL19. Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE
protocol tailored for the IIoT. IACR TCHES, 2019(2):1–48, 2019. https:
//tches.iacr.org/index.php/TCHES/article/view/7384.

HS14. Feng Hao and Siamak Fayyaz Shahandashti. The SPEKE protocol revisited.
IACR Cryptol. ePrint Arch., page 585, 2014.

Hv22. Feng Hao and Paul C. van Oorschot. SoK: Password-authenticated key
exchange - theory, practice, standardization and real-world lessons. In Yuji
Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako, editors, ASIACCS
22, pages 697–711. ACM Press, May / June 2022.

Jab96. David P. Jablon. Strong password-only authenticated key exchange. Com-
put. Commun. Rev., 26(5):5–26, 1996.

JLHG22. Mingming Jiang, Shengli Liu, Shuai Han, and Dawu Gu. Fuzzy authenti-
cated key exchange with tight security. In Vijayalakshmi Atluri, Roberto
Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, ES-
ORICS 2022, Part II, volume 13555 of LNCS, pages 337–360. Springer,
Heidelberg, September 2022.

KR07. Michel Kulhandjian and Atri Rudra. Lecture 27: Berlekamp–welch algo-
rithm, 2007.

Mac01. Philip MacKenzie. On the security of the SPEKE password-authenticated
key exchange protocol. IACR Cryptol. ePrint Arch., page 57, 2001.

McE03. R J McEliece. The guruswami—sudan decoding algorithm for reed-
–solomon codes. IPN Progress Report 42-153, 2003.

PC20. Thitikorn Pongmorrakot and Rahul Chatterjee. tpake: Typo-tolerant
password-authenticated key exchange. In Lejla Batina, Stjepan Picek, and
Mainack Mondal, editors, Security, Privacy, and Applied Cryptography En-
gineering - 10th International Conference, SPACE 2020, Kolkata, India,
December 17-21, 2020, Proceedings, volume 12586 of Lecture Notes in Com-
puter Science, pages 3–24. Springer, 2020.

RW04. Renato Renner and Stefan Wolf. The exact price for unconditionally secure
asymmetric cryptography. In Christian Cachin and Jan Camenisch, edi-

https://eprint.iacr.org/2017/1111
https://eprint.iacr.org/2017/1111
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384

34 Bootle et al.

tors, EUROCRYPT 2004, volume 3027 of LNCS, pages 109–125. Springer,
Heidelberg, May 2004.

RX23. Lawrence Roy and Jiayu Xu. A universally composable PAKE with zero
communication cost - (and why it shouldn’t be considered uc-secure). In
Alexandra Boldyreva and Vladimir Kolesnikov, editors, Public-Key Cryp-
tography - PKC 2023 - 26th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023,
Proceedings, Part I, volume 13940 of Lecture Notes in Computer Science,
pages 714–743. Springer, 2023.

Wei16. Mor Weiss. Secure computation and probabilistic checking, 2016.
WHC+21. Mei Wang, Kun He, Jing Chen, Zengpeng Li, Wei Zhao, and Ruiying Du.

Biometrics-authenticated key exchange for secure messaging. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2618–2631. ACM
Press, November 2021.

Supplementary Material

A Full proof

In the following, we discuss in detail why the game hops presented in Section 5
show that no PPT environment Z has noticeable advantage in distinguishing a
real execution of the protocol from Figure 8 from an ideal execution, with FM

fPAKE
and the simulator from Figs. 9 to 10.

Proof. The first game, denoted as G0 is the real execution. We gradually change
the experiment until we reach the ideal execution, denoted as G11. In the fol-
lowing, we introduce the games in between and argue directly why each game is
indistinguishable from its predecessor. We write Pr[Gi] as a shorthand for the
probability that the environment outputs 1 in game Gi, where the probability
is taken over the random coins of the environment and all parties.

Game G0: The real execution.
Game G1: Create functionality and simulator. In this step, we introduce

a simulator to the experiment. We move the whole execution of the real
protocol to the simulator. Concretely, this means that the simulator runs
all parties of the protocol with their real code. To do this the simulator
needs the inputs of the parties (which the simulator won’t get any more
in later games). We therefore introduce dummy parties and an ideal func-
tionality that merely forwards all messages, i.e., a dummy party forwards its
input (NewSession, sid, pwPi , role) to the functionality and the functionality
forwards (NewSession, sid,Pi, pwPi , role) to the simulator (without chang-
ing or suppressing pwPi). Finally, we equip the functionality with interfaces
(NewKey, sid,Pi, sk) that allow the simulator to make any dummy parties
output the key sk that the simulator wants.
Note that the internal parties inside of the simulator now execute the pro-
tocol exactly as in the real world and also have the same output. We just

Generalized Fuzzy PAKE from Error Correcting Codes 35

changed where the parties execute their code. This is merely a syntactical
change. Thus, both hybrids are identically distributed, i.e.,

Pr[G1] = Pr[G0].

Game G2: Abort on collisions of H0. In this game, we change the simulator
such that it aborts the simulation whenever there are two inputs C, C ′ with
C ̸= C ′ such that H0((sid, sidH), C) = H((sid, sidH), C ′). As the output for
each new hash query is chosen uniformly at random, two values collide with
probability 1/2λ. When there are η queries to H0 we get

|Pr[G2]− Pr[G1]| ≤
(

η

2

)
2−λ.

Game G3: Exchanging real iPAKE messages by simulated ones. In
this game, we only change the simulator. We introduce a variable MitM,
which is set to 1, if there is a man-in-the-middle attack and to 0 other-
wise. More precisely, on a message (Init, sid,Pi,H, sidH) from Z to the sim-
ulated FSA, S sets MitM = 0, if H = {P0,P1} and MitM = 1, otherwise.
From now on, the simulator runs one internal instance of FiPAKE, presented
in Figure 12, for each distinct session of π. Whenever a party Pi in our
protocol starts a new session of π on a new sid (sid, sidH, j) with pwPi

j ,
S creates an instance of FiPAKE with the same sid and gives it the input
(NewSession, (sid, sidH, j), pwj , role) in the name of Pi. S also invokes one
iPAKE simulator SiPAKE for each instance of FiPAKE, which is guaranteed to
exist, because π UC-realizes FiPAKE. The situation is depicted in Fig. 11. If
the environment is not doing a MitM attack on the communication, i.e., sidH
is the same for both parties, then there will be n instances of FiPAKE. If the
environment is doing a MitM attack, i.e., sidH is different for P0 and P1, then
there will be 2n instances of FiPAKE, because then each party has their own
n FiPAKE instances that run on different session-ids than the other party’s
instances. S can simply execute the code of FiPAKE, as in this game S still
knows the parties’ passwords and, thus, all inputs to the FiPAKE instances.
When an instance of FiPAKE outputs ((sid, sidH, j), sk) to Pi as response to a
NewKey query of the corresponding SiPAKE, S gives this to Pi as if coming
from πj . Whenever all n SiPAKE belonging to Pi produce a message Z∗

j for Z,
simulating that Pi sent this message, S gives (Z∗

1 , . . . , Z∗
n) to FSA as message

from Pi. This is the same as Pi would have done when all n πj had produced
a message Z∗

j . Finally, whenever FSA delivers a message (Z∗
1 , . . . , Z∗

n) to Pi

(upon instruction from Z), S gives the instruction to deliver Z∗
j to Sj

iPAKE in
the name of the environment.
To show that G3

c
≈ G2 we use a hybrid argument. In the j-th step of the

hybrid argument, we exchange the j-th instance πj of π by one instance of
the ideal execution F j

iPAKE and Sj
iPAKE. After at most 2n steps (or n steps if

there is no man-in-the-middle attack) we have exchanged all instances of π
and reached G3.

36 Bootle et al.

To see that an individual hybrid step is valid, observe that S perfectly em-
ulates the internal FiPAKE instances. Furthermore, because π UC-realizes
FiPAKE, the outputs of the simulators SiPAKE are indistinguishable from the
messages of π.
In a bit more detail, if there is an index l, such that an environment Zl

can distinguish between hybrids l and l + 1, then we can use Zl to build
an environment Z∗ that can distinguish between an execution of π and an
execution of the ideal protocol with FiPAKE. Let Sl be the simulator in G3
at hybrid step l. The environment Z∗ runs Zl and Sl and whenever a party
Pi starts a session of πl+1, Z∗ gives the input to their test-session, which is
either the real version of π, or the ideal version with FiPAKE. If Zl guesses
that it is in hybrid l, Z∗ outputs that it is in the real world, and if Zl guesses
that it is in hybrid l + 1 then Z∗ outputs that it is in the ideal world. Z∗

has the same advantage as Zl.
Thus, we have that

|Pr[G3]− Pr[G2]| ≤ 2nDistπ,{FiPAKE,SiPAKE}
Z∗ (λ),

where Distπ,{FiPAKE,SiPAKE}
Z∗ (λ) denotes the distinguishing advantage that a

PPT environment Z∗ has in distinguishing a real-world execution of π from
an ideal-world execution with FiPAKE and SiPAKE.

Game G4: Functionality makes records of running sessions, marks
them, and reacts accordingly. In this game, we only change the ideal
functionality. Now, whenever the functionality receives input
(NewSession, sid, pwPi , role) from the dummy party Pi it records ⟨Pi, sid, role, pwPi⟩
if this was the first NewSession query or if it was the second NewSession
query and there already is a record ⟨P1−i, sid, pwP1−i⟩. It marks the record as
fresh. This means that the ideal functionality now has the full NewSession
interface of FfPAKE with the addition that it still forwards the passwords to
the simulator. Next, we add the TestPwd interface as in the full FM

fPAKE
functionality, thus, records can also be marked interrupted or compromised.
Furthermore, we change the functionality’s behavior on (NewKey, sid,Pi, sk)
queries such that it now checks if a record ⟨Pi, sid, role, pwPi⟩ exists. If so, it
outputs a uniformly random key when the corresponding record is marked
as interrupted. Also, it outputs the adversarially provided key sk when the
corresponding record is marked as compromised or the other party is cor-
rupted as in FfPAKE. Note, however, that the functionality in case of fresh
records still uses the key provided by the simulator. This will change in a
later game. Regardless of how the record was marked before, the function-
ality now marks the record as completed.
Note that the records and markings are only internal and their only effect
to the outside is through the NewKey interface. In the NewKey interface
the functionality still outputs the key chosen by the simulator, except if
the corresponding record is interrupted. However, so far our simulator
never calls FfPAKE’s TestPwd interface and, therefore, currently a record
can never be interrupted. Thus, the changes to the functionality are only

Generalized Fuzzy PAKE from Error Correcting Codes 37

syntactical and we have
Pr[G4] = Pr[G3].

Game G5: Simulator handles TestPwd queries of FM
fPAKE for honest

and undisturbed session. In this game, we only modify the simulator.
In the case of an honest session, i.e. when there is no MitM attack and no
party is corrupted, S does not use the passwords of the parties to simulate
TestPwd of SiPAKE queries anymore. Whenever S receives a TestPwd
query from SiPAKE for a session with two honest parties and where MitM = 0,
S just ignores the query.
This means, for hones sessions, S can simulate the NewSession and the
TestPwd interfaces of FiPAKE to SiPAKE without using the password pwPi , pwP1−i

of the parties. However, S still uses pwPi and pwP1−i to simulate FiPAKE’s
reaction on NewKey queries from SiPAKE.
Below we argue why this does not change the distribution of the game. The
only way that ignoring TestPwd queries from the SiPAKE can change the
distribution of the game is when a SiPAKE asks a TestPwd query. How-
ever, we only changed the simulator for the case of an honest session and in
that case, both parties receive the same sidH′ = sidH from FSA TBD: There
is something wrong.]and FSA behave like the normal authenticated channel
functionality. Thus, the adversary can either let the session proceed with-
out inserting or changing messages, or it can completely prevent the iPAKE
sessions from finishing. Intuitively, in an honest and undisturbed iPAKE ses-
sion, SiPAKE cannot ask a TestPwd query, because SiPAKE does not know the
password and, thus, this would most likely interrupt the session. Then both
parties would get distinct keys, even when they used the same passwords.
This should not happen in an honest session.
More formally we argue as follows. As we assumed that the iPAKE protocol
π is correct (see Definition 1) it follows that the SiPAKE simulators will not
send a TestPwd query to S as both parties are honest and the adversary
only eavesdrops on the session. (In the terminology of [RX23], SiPAKE is a
perfectly reasonable simulator. This follows from the fact that π is correct
and UC-realizes FiPAKE, see [RX23, Thm. 1].) Thus, we get

Pr[G5] = Pr[G4].

Game G6: Simulator handles attacks on honest senders. Previously,
we argued that S does not need to send a TestPwd query to FM

fPAKE if
there is no man-in-the-middle attack and both parties are honest to deal
with TestPwd of SiPAKEs. In this game, we change the simulator’s behavior
when there is a man-in-the-middle attack against an honest sender or when
the receiver is corrupted.
The high-level idea in this game is that S collects the TestPwd queries
from the iPAKE simulators, concatenates them, and then asks one TestPwd
query to FM

fPAKE. If the guess was close enough, S learns the position of
the correct password characters. Then S marks the record of the (internal)
FiPAKE instance as compromised if the corresponding character was correct,

38 Bootle et al.

or as interrupted if that character was wrong. If the guess of S was too far
away, S still uses the password of the sender to check which of the characters
were correct and then sets the FiPAKE entry accordingly.
Next, we describe the changes to S in more detail. When S receives a
(NewSession, sid,Pi, pwPi , role) message from FfPAKE then S records ⟨Pi, sid, role⟩.
In the following, we only change S’s behavior if S recorded ⟨Pi, sid, sender⟩,
i.e., if Pi is a sender. On getting a (TestPwd, sid,Pi, pw′

j) query from Sj
iPAKE,

S stores the password guess and does not do anything else, because F j
iPAKE

would also not answer to the query. (Remember that FiPAKE models implicit-
only PAKE.) When getting a (NewKey, sid,Pi, sk) query from Sj

iPAKE, S
stores sk. As soon as S receives a NewKey query from all n SiPAKEs, S does
the following: Let m be the number of iPAKE TestPwd queries for Pi that
S received, so m ≤ n. We have m < n when there are some simulators Sj

iPAKE
that give input NewKey to S without first giving input TestPwd to S.
Let δ and γ be as in Figure 4.

– If m = n, then S concatenates all the iPAKE password guesses and asks a
TestPwd query to FM

fPAKE. Concretely, after receiving
(NewKey, sid,Pi, skj) from Sj

iPAKE, for all j ∈ [n], S retreives the stored
pw′

j and sends (TestPwd, sid,Pi, pw′
1∥ . . . ∥pw′

n) to FM
fPAKE. If the guess

was correct, i.e., at least n− δ correct password characters, then S con-
tinues the simulation of Pi with the skj from the NewKey queries to
Fj

iPAKE, where the corresponding password character pwj was correct.
For the incorrect pwj , S uses random iPAKE keys, which is the same
as FiPAKE would do. If the guess was wrong, but there were at least
n − γ correct password characters, S learns the position of the correct
characters from FM

fPAKE through the leakage function. S continues the
simulation as above, i.e., with setting the iPAKE keys to skj if the j-th
password character was correct and to a random value if it was incorrect.
If the guess was wrong and S does not get the position of the correct
characters, i.e., less than n− γ correct characters, then S uses the input
password of the sender (which in this game it still gets from FfPAKE) to
check for which j ∈ [n] the TestPwd queries of Sj

iPAKE to FiPAKE was
correct. For the wrong positions S chooses a uniformly random key and
for the correct positions j the simulator uses the skj provided by SiPAKE.

– If m < n−γ, then S uses the input password pwPi of the honest sender as
above to check which TestPwd queries to FiPAKE were correct. For the
wrong positions S chooses a uniformly random key and for the correct
positions j the simulator uses the skj provided by SiPAKE. Additionally
S sends a TestPwd query for Pi with pw = ⊥ to FM

fPAKE in order to
make sure that the record is interrupted.

– If n− γ ≤ m < n, S arbitrarily chooses the missing password characters
and asks a TestPwd query to FM

fPAKE. If the guess was wrong and S does
not get leakage from FM

fPAKE, then S acts as above and uses the input
password pwPi of the honest sender to check which TestPwd queries
from SiPAKE to FiPAKE were correct. For the wrong positions S chooses a

Generalized Fuzzy PAKE from Error Correcting Codes 39

uniformly random key and for the correct positions j the simulator uses
the skj provided by SiPAKE.
Let’s now consider the case that S gets leakage from FM

fPAKE (either
because the guess was correct, or at most γ characters were wrong).
Then S needs to check if this was only because of the missing password
characters that S arbitrarily guessed, or because Z did guess enough
correct characters. Because S learned from FM

fPAKE the position of the
correct characters, S can check if Z did indeed guess enough correct
characters. If that is the case, then S continues the simulations with
the skj from the NewKey queries to FiPAKE for the correct positions
and with random keys for the incorrect positions. Otherwise (if Z did
not guess enough correct characters), S uses the sender’s password to
determine the position of the correct characters and then sets the iPAKE
keys as in a case as above. The only issue is in the case that Z guessed
less than n − γ correct characters, but S’s guesses of the remaining
characters were responsible for exceeding n− γ, then FM

fPAKE’s record is
compromised, although it should be interrupted. S recognizes this case,
through learning the positions of the correct password characters from
the leakage function. Thus, S can remedy the issue by setting a random
key in the NewKey query to FM

fPAKE, thereby imitating a interrupted
record. Note that S can do this as the outputs that the internal F j

iPAKE
functionalities give to parties are not reported to Z directly but only to
S.

In all of the above cases, if the record is interrupted (S recognizes this by
getting “wrong guess” and no leakage as an answer to the TestPwd query),
S sets sk = ⊥ in the NewKey query to FM

fPAKE, as FM
fPAKE would ignore sk

anyways. If the record is compromised, S still sets sk to the key that the
simulated Pi would output.
We argue in the following why the difference between G6 and G5 is at most
negligible. When there is a man-in-the-middle attack happening or the re-
ceiver is corrupted S has n iPAKE simulators for the Pi session (and another
n iPAKE simulators for the P1−i session if P1−i is not corrupted). This is
because the adversary plays a man-in-the-middle attack (S knows this) and
therefore FSA (played by S) provides different session identifier sidH′ ̸= sidH
to Pi and Pi−1. Therefore Pi runs its own instance of FiPAKE with sidH (actu-
ally n of them). This instance is in particular independent of P1−i’s instance
F ′

iPAKE that runs with sidH′ ̸= sidH. Therefore, FiPAKE is not in the case where
two honest parties execute the protocol. This means, either the adversary
compromises the session and makes Pi output an adversarially chosen sk′

or the adversary makes Pi output a random key either by interrupting the
session with a wrong password guess in a TestPwd to FiPAKE query or by
sending NewKey without a TestPwd query to FiPAKE. S would ignore
NewKey queries for P1−i, because FiPAKE would also ignore them, because
P1−i never sent a NewSession query (for that specific session-id). S would
also ignore TestPwd queries from SiPAKE for P1−i for the same reason. Note
that this is what prevents the attack from Section 3.2.

40 Bootle et al.

We distinguish two cases depending on how many characters of the tested
password were correct. Let us first consider the case where Z guessed less
than n−γ = t password characters correctly (this includes the case that S’s
guess of the additional characters made the guess appear correct to FM

fPAKE).
In this case, S still uses the honest sender’s password and sets the output of
the FiPAKE instances the same way as in G5. The only difference to G5 is that
the record (Pi, pwPi) of FM

fPAKE is now interrupted and, thus, the output of the
sender is a uniformly random value instead of H1((sid, sidH), s0). Let us ex-
plain why this change is not detectable by Z. Because H1 is a random oracle,
H1((sid, sidH), s0) is uniformly random for anybody that did not query H1 on
((sid, sidH), s0). The chance of guessing s0 is negligible. The only other values
that could contain information about s0 are the hint h = H0((sid, sidH), C)
and E = C⊕K. Because Z guessed at most n−γ−1 = k−1 password char-
acters correctly, Z can recover at most k− 1 coordinates of C. By the k− 1
query uniformity of the code, these (at most) k− 1 undisturbed coordinates
appear uniformly random and, thus, do not reveal any information about s0.
The hint h is also uniformly random unless one has queried ((sid, sidH), C)
to H0. Let us now bound the probability that Z queries C to H0. Since
E = C ⊕K and K is uniformly random (and unknown to Z) in at least
γ + 1 positions, Z would need to correctly guess the remaining coordinates
in Fγ+1

q . The probability that Z can do so in polynomial time is negligible.
Let us now consider the case that Z guessed at least n− γ password charac-
ters correctly. In this case, S learned the position of the correct characters
via the leakage function and, thus, simulates the FiPAKE identically to G5.
Therefore, the session key that S sends to FM

fPAKE via the NewKey inter-
face is identically distributed to G5. The only difference is that in G6 the
corresponding record of FM

fPAKE is compromised instead of fresh. However,
until now, FM

fPAKE outputs S’s key in both cases. Therefore, also in the case
that Z guessed at least n− γ password characters correctly, G5 and G6 are
identically distributed, whereby we get

Pr[G6] = Pr[G5].

Game G7: Use random iPAKE keys in case of attack on honest sender.
Again we only change the simulator in the case of a MitM attack, or if
the receiver is corrupted. If the password guess of Z is correct in at most
k − 1 = n− γ − 1 characters, then S uses random iPAKE keys for all FiPAKE
instances of the sender. This means that the view of Z on C ′ := E ⊕K ′ is
different in G6 and G7. Let t ≤ k − 1 be the number of correct password
characters. In G6 the receiver still obtained the original code word on t
entries, whereas in this game all entries are uniformly random. However, as
t ≤ k − 1, the k − 1-query uniformity of the code guarantees that C ′ was
already uniformly random in G6. Therefore, G7 is identically distributed
asG6.
Note that in the case of a MitM attack, or if the receiver is corrupted,
the simulator does not use the password of the honest sender anymore and

Generalized Fuzzy PAKE from Error Correcting Codes 41

instead only uses the information that it received from FM
fPAKE as an answer

to a TestPwd query. We get

Pr[G7] = Pr[G6].

Game G8: Simulator handles attacks on honest receivers. In this game,
we change the simulator’s behavior when there is a man-in-the-middle attack
against an honest receiver happening or when the sender is corrupted. More
precisely, we only change S’s behavior if S recorded ⟨Pi, sid, sender, MitM =
1⟩ or if S recorded ⟨Pi, sid, sender, MitM = 0⟩ but P1−i is corrupted.
Like in G6, S now records TestPwd queries from Sj

iPAKE for j ∈ [n]. When
it received all n NewKey queries from Sj

iPAKE for Pi, it distinguishes the
following cases:

– If S recorded m ≥ n − γ TestPwd queries with a guess pwj of Sj
iPAKE

then S randomly chooses the missing n −m password-entries and sub-
mits a TestPwd query to FfPAKE. If S receives leakage from FfPAKE as
response S behaves exactly as in G6. This means, S sets Kj to the value
skj that was chosen by Sj

iPAKE for the j where the corresponding guess
of pwj was correct and sets Kj to random values for those j ∈ [n] where
the guess of pwj was wrong or there was no TestPwd query of Sj

iPAKE
for that j. In particular, if FfPAKE answers that the guess was correct,
then S must check if this was due to its own added password entries or
because of the guesses from the SiPAKEs and adjust its NewKey query
to FfPAKE accordingly. However, in the case where S does only get the
answer “wrong guess” and no leakage from FfPAKE, S does not use LDec.
Instead, S simply sends a NewKey query to FM

fPAKE with sk = ⊥, as the
record is interrupted and FM

fPAKE would ignore sk anyways.
– If there were less than n−γ TestPwd queries of Sj

iPAKE recorded, then S
asks a TestPwd query in order to interrupt the record of FM

fPAKE. Then
S acts as above when it receives no leakage. This means, it does not
decode E but instead sends a NewKey query to FM

fPAKE with sk = ⊥.
Like in G6, when S receives leakage from FfPAKE the distribution of the
experiment does not change as S uses the same session keys skj from Sj

iPAKE
as in G6 for the correct j ∈ [n] and random keys Kj for the other positions.
We stress again here that we leverage the fact that communication runs over
FSA for that argument. As MitM = 1 (or the sender is corrupted) the FiPAKE
instances of the receiver will never successfully exchange keys, as they run
in a different authentication set, i.e., with a different session-id, than the
iPAKE of the sender. This is what prevents the attack from Section 3.2.
However, in the case where S does not receive leakage or less than n − γ
of the Sj

iPAKE sent a TestPwd query, the behavior of S changed. In G7, as
we either have MitM = 1 or a corrupt sender, Z can instruct the adversary
to send a modified message (E′, h′) to the honest receiver. But in G7 the
receiver would at least have γ + 1 indices j ∈ [n] where the correspond-
ing iPAKE key Kj is uniformly random. That is because either Sj

iPAKE did

42 Bootle et al.

send NewKey without sending TestPwd or because the provided pass-
word guess pwj from the TestPwd query of Sj

iPAKE was wrong. But then,
the receiver computes LDec(E′ ⊕K ′), where E′ ⊕K ′ is uniformly random
in at least γ + 1 positions. Now we need to argue that also in G7 the hon-
est receiver would have output an independent, uniformly random key. First
consider the case that Z has not queried the random oracle H0 on a vector
v ∈ Fn

q such that H0((sid, sidH), v) = h′. Then the probability that a candi-
date codeword Cj output by LDec matches the hint h′ is negligible and the
honest receiver will output u $←− {0, 1}λ. Now consider the case that Z did
query v ∈ Fn

q such that H0((sid, sidH), v) = h′. Then, v is uniquely deter-
mined by h′ because since G2 the simulator aborts on collisions of H0. Here
we can apply Lemma 4 by setting C = v, C̃ = C and A to be the indices
of the correct password guesses of the Sj

iPAKE and get that d(v, C ′) ≥ γ + 1,
which also means that d(v, C) ≥ δ + 1. Since LDec does not output candi-
dates with a distance greater than δ to C, LDec will not output v and, thus,
none of the candidates will match the hint. Therefore, the honest sender will
output u $←− {0, 1}λ.
Thus, in G7 in both cases, the honest sender outputs a fresh uniformly
random key with overwhelming probability which is the same as in G8.

Pr[G8] ≈ Pr[G7].

Game G9: Simulator does not give passwords to FiPAKE instances. In
this game, we change the simulator. Whenever the simulator receives a mes-
sage (NewSession, sid,Pi, pwPi , role) from FfPAKE for an honest party Pi

it does not use pwPi as input for FiPAKE. Concretely, instead of internally
running F j

iPAKE on input (NewSession, sid,Pi, pwPi
j , role) the simulator for-

wards (NewSession, sid,Pi, role) (without the j-th bit of pwPi) to Sj
iPAKE.

Further, S checks if this is the first NewSession query or this is the second
NewSession query and if there is a record ⟨FiPAKE,P1−i, (sid, sidH, j)⟩. If
so, S creates a record ⟨FiPAKE,Pi, (sid, sidH, j)⟩ and marks it fresh. On a
NewKey query, S still behaves exactly as FiPAKE by using pwPi to check if
a matching output has to be given to the parties.
For every iPAKE instance, the view on the execution did not change, as S
behaves as FiPAKE would.

Pr[G9] = Pr[G8].

Game G10: Simulator makes honest and undisturbed parties output a
key. In this game, we change the simulator and the functionality. First, we
change FM

fPAKE’s behavior on receiving a query (NewKey, sid,Pi, sk) from S.
Now, FM

fPAKE treats these queries exactly like in Fig. 3. That means concretely,
if the record (Pi, pwPi) is fresh and both parties are honest and run on
input passwords with d(pwPi , pwP1−i) ≤ δ then both parties receive the
same random key.
We also change the simulator. When the simulator receives a message (NewSession, sid,Pi, pwPi , role)
from FfPAKE for an honest party Pi where there is no man-in-the-middle at-
tack S discards pwPi and stores ⊥ instead of pwPi in all records of the form

Generalized Fuzzy PAKE from Error Correcting Codes 43

⟨Pi, sid, role, pwPi⟩. We also change how S reacts on receiving all n NewKey
queries from Sj

iPAKE for j ∈ [n].
– If the role of Pi is role = receiver then S marks its record ⟨Pi, sid, role, MitM =

0⟩ as waiting but produces no output for Pi. Instead, on a message
(Deliver, sid,Pi,P1−i, (E, h)) the simulator sends a message
(NewKey, sid,Pi,⊥) to FfPAKE if (E, h) is not tampered with.

– If the role of Pi is role = sender then S marks its record ⟨Pi, sid, role, MitM =
0⟩ as completed and chooses K1, . . . , Kn uniformly at random. The sim-
ulator uses these keys to produce (E, h) like an honest party would do.
S sends (Send, sid,Pi,P1−i, (E, h)) to Z formatted as being sent from
Pi to P1−i via FSA. Then, S sends (NewKey, sid,Pi,⊥) to FfPAKE.

Note that the changes to FM
fPAKE only affect the case where both parties are

honest and no man-in-the-middle attack is happening. Because if a man-in-
the-middle attack is mounted then S will send a TestPwd query to FM

fPAKE
(see G6 and G8) either marking FM

fPAKE’s record (Pi, pwPi) as interrupted
or as compromised, so the record will not be fresh. The rest of the NewKey
interface of FM

fPAKE was already like in Fig. 3 since G4.
In the first case role = receiver only the output of the party is changed. This is
because the keys K1, . . . , Kn (output by F j

iPAKE) were only used internally by
Pi in G9. In this game, Pi produces output as the ideal functionality FfPAKE
provides the dummy party with output on receiving NewKey from S. In G9
the output was H1((sid, sidH), s0). In the second case role = sender, FfPAKE
provides the dummy party also with output instead of H1((sid, sidH), s0).
Note that we assumed no man-in-the-middle attack and thus, FfPAKE will
produce output for Pi and P1−i depending on the input passwords pwPi

and pwP1−i . If d(pwPi , pwP1−i) ≤ δ then FfPAKE provides matching outputs
sk = sk′ to Pi and P1−i and if d(pwPi , pwP1−i) > δ then the output sk of Pi

is drawn independently of the output sk′ of P1−i. Clearly, by Lemma 6 both
parties output the same random string sk = sk′ in G9 if d(pwPi , pwP1−i) ≤ δ.
Further, in G9 if d(pwPi , pwP1−i) > δ, we can use Lemma 5 to see that both
parties output different keys. That is because the passwords mismatch on
more than δ characters and so the codeword C ′ = E⊕K ′ computed by the
receiver will with overwhelming probability not decode to C.
It remains to argue that Z’s view on the protocol transcript does not change.
Note that in G9 (E, h) was computed as E := C⊕K, where K = (K1, . . . , Kn)
were the outputs of F j

iPAKE for j ∈ [n]. In G10 K is uniformly random. The
output Kj of F j

iPAKE is also a uniformly random string when both parties
are honest and no man-in-the-middle attack happened. The only difference
is that both parties, Pi and P1−i receive the same Kj as output for that
session. But as we argued above, the receiver only uses Kj internally, so Z
does not see whether both parties output the same Kj for a iPAKE session.
We get

Pr[G10] ≈ Pr[G9].

Game G11: Simulator does not get inputs of the parties anymore. In
this game, we change the functionality. Instead of sending

44 Bootle et al.

(NewSession, sid,Pi, pwPi , role) to S the functionality now keeps the input
pwPi secret and sends only (NewSession, sid,Pi, role) to S.
Since G10 S does not need the input pwPi anymore to simulate the n in-
stances of FiPAKE for two honest parties with no man-in-the-middle attack.
Further, we argued in G6 and G8 that in a session with a corrupted party or
where a man-in-the-middle attack is mounted S also does not need pwPi as
it can either use random keys K1, . . . , Kn or it learns through a TestPwd
query to FfPAKE which iPAKE sessions were successful. Overall, the simulator
does not use the provided input pwPi anymore. Hence, we get

Pr[G11] = Pr[G10].

Note that G11 is the same as the ideal execution of FfPAKE with the simulator
from Figs. 9 to 10. This concludes the proof.

B Additional preliminaries

We recap the implicit PAKE functionality of Dupont et al. [DHP+18] in Fig. 12
as well as the split authentication functionality of Barak et al. [BCL+05] in
Fig. 13.

C On the similarities to AMD codes

In Section 4, we explained how our protocol can narrow down the list of “can-
didate decodings” that are output of the list-decoding to a single codeword by
using the hint h. Cramer et al. [CDD+15] had a similar idea. To construct a
robust secret sharing scheme, they use a list-decodable code. But before encod-
ing the message with this code, they apply an Algebraic Manipulation Detection
(AMD) code to the message. Intuitively, these codes allow to detect manipulation
of an encoded message and abort decoding if the codeword was manipulated.
Now, one could suspect that the hint h = H0(C) serves as AMD code in our
construction. But we argue in the following that hashing the codeword and ap-
pending the hash is not an AMD code. Roughly speaking, if we would use our
construction without split authentication it would be trivial for an adversary to
tamper with the codeword and the hint, such that a receiver decodes the wrong
message. We elaborate on this more formally:

An AMD code is defined as follow:

Definition 3 (Algebraic Manipulation Detection Code). Let q be a prime-
power, n > k be integers and ρ > 0. A (k, n, ρ)-AMD C consists of a probabilis-
tic encoding algorithm Enc : Fk

q → Fn
q and a deterministic decoding algorithm

Dec : Fn
q → Fk

q ∪ {⊥}, such that the following holds for every x ∈ Fk
q :

– Correctness: Dec(Enc(x)) = x with probability 1.
– Manipulation detection: for every ∆ ∈ Fn

q and for C ← Enc(x) it holds that
Dec(x⊕∆) ∈ {⊥, x} except with probability at most ρ.

Generalized Fuzzy PAKE from Error Correcting Codes 45

The functionality FiPAKE is parameterized by a security parameter λ. It interacts
with an adversary A and the (dummy) parties P0 and P1 via the following queries:

– Upon receiving a query (NewSession, sid, pwPi , role) from party Pi:
• Send (NewSession, sid,Pi, role) to A;
• If one of the following is true, record (Pi, pwPi) and mark this record

fresh:
∗ This is the first NewSession query
∗ This is the second NewSession query and there is a

record (P1−i, pwP1−i)
– Upon receiving a query (TestPwd, sid, Pi, pw∗) from A:

If there is a fresh record (Pi, pwPi), then:
• If pwPi = pw∗, mark the record compromised;
• If pwPi ̸= pw∗, mark the record interrupted.

– Upon receiving a query (NewKey, sid, Pi, sk) from A, where |sk| = λ:
If there is no record of the form (Pi, pwPi), or if this is not the first NewKey
query for Pi, then ignore this query. Otherwise:
• If at least one of the following is true, then output (sid, sk) to player Pi:

∗ The record is compromised
∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a

record (P1−i, pwP1−i) with pwPi = pwP1−i

• If this record is fresh, both parties are honest, there is a
record (P1−i, pwP1−i) with pwPi = pwP1−i , a key sk′ was sent to P1−i,
and (P1−i, pwP1−i) was fresh at the time, then output (sid, sk′) to Pi;

• In any other case, pick a new random key sk′ of length λ and send (sid, sk′)
to Pi.

• Mark the record (Pi, pwPi) as completed.

Fig. 12. Functionality FiPAKE [DHP+18].

46 Bootle et al.

Functionality FSA

Initialization:

Upon activation with input (Init, sid), where sid = (P, sid′) and P is a set of
PIDs, record P and forward it to the adversary.

On (Init, sid,P,H, sidH) from the adversary, verify that:
– P ∈ P and P ∈ H, and
– for all recorded sets H′, either
• H ∩H′ contains only corrupt parties and sidH ̸= sidH′ , or
• H′ = H and sidH = sidH′ .

If so, then output (Init, sid, sidH) to P and record (H, sidH) if not yet recorded.
Else, do nothing.

Message authentication:

On input (Send, sid,P,P ′, msg) from P, where P ′ ∈ P, send (P,P ′, msg) to A
and add (P,P ′, msg) to an (initially empty) list W of waiting messages. Note that
the same triple can appear multiple times in the list. Else do nothing.

On (Deliver, sid,P,P ′, msg) from A, proceed as follows:
– If P ′ did not previously receive an (Init, sid, ·) output then do nothing.
– Else, if P is in the authentication set H of P ′, and P is honest, then do:
• If there is a triple (P,P ′, msg) ∈ W, then remove one appearance of the

triple from W and output (Received, sid,P,P ′, msg) to P ′.
• Otherwise do nothing.

– Else (i.e., P ′ received (Init, sid, ·), and either P is corrupted or P /∈ H), output
(Received, sid,P,P ′, msg) to P ′, regardless of W.

Fig. 13. Ideal functionality FSA for split authentication [BCL+05].

We can try to formalize the hint mechanism as above by setting Enc(x) :=
x∥H(x). The decoding parses a codeword as C := x∥h and outputs x if h =
H(x) and else an error symbol ⊥. But it turns out that this is not an AMD
code. The reason is that manipulation detection must hold for all ∆ ∈ Fn

q . Let
x′ ∈ Fk

q with x′ ̸= x. Then manipulation detection must hold in particular for
the vector

∆ = (x⊕ x′, H(x)⊕H(x′)).

But the decoding algorithm would now output x′ and not ⊥ or x on input x⊕∆.
Now, why does this weakness not allow for an attack on our fuzzy PAKE

protocol? The reason is that we send messages over a split-authenticated channel.
If both parties are authenticated, i.e., in the same authentication set H then
an adversary can not tamper with the message by adding ∆ as above to the
codeword. Else if there is a MitM attack happening then we distinguish two
cases. (1) If the adversary (playing as corrupted sender) guesses at least n − δ
password characters of the receiver correctly then the receiver gets iPAKE keys
of the adversaries choice. That means, the adversary can anyways make the

Generalized Fuzzy PAKE from Error Correcting Codes 47

client output a shared key of its choice by changing the iPAKE keys accordingly.
So tampering with h does not give the adversary additional power. (2) If the
adversary guessed less than n − δ password characters correctly then there is
already so much randomness added to the codeword by the iPAKE keys that the
list decoding algorithm will output some specific codeword only with negligible
probability.

D UC Execution and Instantiation of our fuzzy PAKE

We give a UC execution of our fuzzy PAKE protocol of Figure 8 using the
interfaces of FfPAKE in Fig. 14. We can instantiate the building blocks of our

The parties P0 and P communicate with the hybrid functionalities FSA and FRO.

On (NewSession, sid,Pi, role) from FfPAKE or (Init, ({Pi,P1−i}, sid)) from Z in the name of Pi to FSA
– Record ⟨sid, role⟩
– Send (Init, ({Pi,P1−i}, sid)) to FSA.

On (Init, sid, sidH) from FSA
– For j ∈ [n]:
• Run X∗

j ← πj(Pi, (sid, sidH, j), pwj)
– Send (Send, sid,Pi,P1−i, (X∗

1 , . . . , X∗
n)) to FSA

On (Deliver, sid,Pi,P1−i, (Y ∗
1 , . . . , Y ∗

n)) from FSA and if Pi recorded ⟨sid, sender⟩
– For j ∈ [n]:

Run Kj ← πj(Pi, (sid, sidH, j), Y ∗
j)

– Let K := (K1, . . . , Kn)
– s = (s0, . . . , sk−1) $←− Fk

q

– C ← Enc(s)
– E := C ⊕K
– h := H0((sid, sidH), C)
– Send (Send, sid,Pi,P1−i, (E, h)) to FSA
– Send ((sid, sidH), s0) to FRO. On response ρ from FRO output ρ.

On (Deliver, sid,Pi,P1−i, (Y ∗
1 , . . . , Y ∗

n)) from FSA and if Pi recorded ⟨sid, receiver⟩
– For j ∈ [n]:

Run Kj ← πj(Pi, (sid, sidH, j), Y ∗
j)

– Let K := (K1, . . . , Kn)
– Append K to ⟨sid, receiver⟩

On (NewSession, sid,Pi, role) from FfPAKE or (Init, ({Pi,P1−i}, sid)) from Z in the name of Pi to FSA
– Send (Init, ({Pi,P1−i}, sid)) to FSA.

On (Deliver, sid,Pi,P1−i, msg := (E′, h′)) from FSA and if Pi recorded ⟨sid, receiver⟩:
– Run {C1, . . . , Cℓ} ← LDec(E ⊕K′)
– If h = H0((sid, sidH), Cj) for a j ∈ [ℓ]
• s′ ← Dec(Cj)
• Send ((sid, sidH), s0) to FRO. On response ρ from FRO output ρ.

– else output u $←− {0, 1}λ

Fig. 14. A UC Execution of our Protocol.

protocol with EKE2 [BPR00] as iPAKE and a signature-based transformation
to instantiate FSA by Barak et al. [BCL+05]. The fully instantiated protocol is
depicted in Fig. 15.

48 Bootle et al.

P0(sid, pwP0) P1(sid, pwP1)

(pk0, sk0)← KeyGen(1λ) (pk1, sk1)← KeyGen(1λ)
-pk0

� pk1

Set sid0 := (P0, pk0,P1, pk1) Set sid1 := (P0, pk0,P1, pk1)
σ0 ← Sign(sk0, sid0) σ1 ← Sign(sk1, sid1)

-σ0, sid0

� σ1, sid1

If Vfy(pk1, sid1, σ1) ̸= 1 or sid0 ̸= sid1: if Vfy(pk0, sid0, σ0) ̸= 1 or sid0 ̸= sid1:
output u $←− {0, 1}λ output u $←− {0, 1}λ

Set ctr0 := 0 Set ctr1 := 0
x $←− Fn

p y $←− Fn
p

For j ∈ [n]: For j ∈ [n]:
send (sid, sid0, j) to Fj

CRS and receive CRS = (gj , p) send (sid, sid1, j) to Fj
CRS and receive CRS = (gj , p)

give (Enc, (sid, sid0, j), pwP0
j , g

xj

j) to FIC give (Enc, (sid, sid1, j), pwP1
j , g

yj

j) to FIC

get X∗
j from FIC get Y ∗

j from FIC

σX ← Sign(sk0, (sid0, X∗
1 , . . . , X∗

n, ctr0)) σY ← Sign(sk1, (sid1, Y ∗
1 , . . . , Y ∗

n , ctr1))
-X∗

1 , . . . , X∗
n, ctr0, σX

�Y ∗
1 , . . . , Y ∗

n , ctr1, σY

ctr0 := ctr0 + 1 ctr1 := ctr1 + 1
if ctr1 appeared previously or If ctr0 appeared previously or
Vfy(pk1, (sid1, Y ∗

1 , . . . , Y ∗
n , ctr1), σY) ̸= 1: Vfy(pk0, (sid0, X∗

1 , . . . , X∗
n, ctr0), σX) ̸= 1:

output u $←− {0, 1}λ output u $←− {0, 1}λ

For j ∈ [n]: For j ∈ [n]:
give (Dec, (sid, sid0, j), pwP0

j , Y ∗
j) to FIC give (Dec, (sid, sid1, j), pwP1

j , X∗
j) to FIC

get g
yj

j from FIC get g
xj

j from FIC

give ((sid, sid0, j), X∗
j , Y ∗

j , g
xj yj

j) to FRO give ((sid, sid1, j), X∗
j , Y ∗

j , g
xj yj

j) to FRO

receive Kj from FRO receive K′
j from FRO

Let K := (K1, . . . , Kn) Let K′ := (K′
1, . . . , K′

n)
s $←− Fk

q

C ← Enc(s)
E := C ⊕K
h := H0((sid, sid0), C)
σE ← Sign(sk0, (sid0, E, h, P1, ctr0)) -E, h,ctr0, σE if ctr0 appeared previously or

Vfy(pk0, (sid0, E, h, P1, ctr0)) ̸= 1:
Output u $←− {0, 1}λ

{C1, . . . , Cℓ} ← LDec(E ⊕K′)
Output H1((sid, sid0), s0) If h = H0((sid, sid1), Cj) for a j ∈ [ℓ]:

s′ ← Dec(Cj)
Output H1((sid, sid1), s′

0)
Else output u $←− {0, 1}λ

Fig. 15. The protocol in the FCRS,FRO,FIC-hybrid model without any black-box PAKE
functionality but with explicit EKE and with signing like in the split transform. Assume
that a party aborts the execution if any check fails. Parts in grey are for the n EKE2
key exchanges and parts in blue are for the split-transform-like authentication.

	Generalized Fuzzy Password-Authenticated Key Exchange from Error Correcting Codes

