
Improving the Rectangle Attack on GIFT-64

Yincen Chen1, Nana Zhang2,3, Xuanyu Liang1, Ling Song1, Qianqian Yang2,
and Zhuohui Feng1

1 College of Cyber Security, Jinan University, Guangzhou, 510632, China
icsnow98@gmail.com, xyljnu@gmail.com,

songling.qs@gmail.com, hhfzhfzh@163.com
2 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China
zhangnana@iie.ac.cn, yangqianqian@iie.ac.cn

3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

Abstract. GIFT is a family of lightweight block ciphers based on SPN
structure and composed of two versions named GIFT-64 and GIFT-128.
In this paper, we reevaluate the security of GIFT-64 against the rectangle
attack under the related-key setting. Investigating the previous rectangle
key recovery attack on GIFT-64, we obtain the core idea of improving
the attack——trading off the time complexity of each attack phase. We
flexibly guess part of the involved subkey bits to balance the time cost of
each phase so that the overall time complexity of the attack is reduced.
Moreover, the reused subkey bits are identified according to the linear
key schedule of GIFT-64 and bring additional advantages for our attacks.
Furthermore, we incorporate the above ideas and propose a dedicated
MILP model for finding the best rectangle key recovery attack on GIFT-64.
As a result, we get the improved rectangle attacks on 26-round GIFT-64,
which are the best attacks on it in terms of time complexity so far.

Keywords: symmetric cryptography · GIFT-64 · rectangle attack ·
key recovery attack · related-key scenario · key guessing strategy

1 Introduction

Accompanied by the momentous expansion in emerging ubiquitous technologies,
securing resource-limited devices has become increasingly important. Lightweight
block ciphers came into being in such a situation, which have more advantages in
terms of cost, speed, power, and execution time than traditional block ciphers, but
still provide a sufficiently high safety margin for resource-limited devices. Well-
known lightweight block ciphers include SIMON [4], SPECK [4], PRESENT [8],
GIFT [3], etc.

Over the past three decades, researchers have committed to researching
algorithms to efficiently and accurately evaluate the security of block ciphers.
In 1990, Biham and Shamir proposed differential cryptanalysis [6], which tracks
the difference between a pair of inputs to outputs. One of the essential steps of
differential cryptanalysis is to find a high-probability differential trail over the

target cipher. However, this goal is hard to achieve when the cipher contains many
rounds. The boomerang attack [29] is an extension of differential cryptanalysis,
which combines two short differential trails to get a long trail with a high
probability. The rectangle attack [5] is a variant of the boomerang attack. The
boomerang attack requires chosen plaintexts and chosen ciphertexts, while the
rectangle attack only needs to choose plaintexts. Besides, the rectangle attack
considers as many differences as possible in the middle to estimate the probability
more accurately. The boomerang and rectangle attacks have been applied to many
ciphers, and many good results have been obtained. For example, Biryukov et
al. [7] put forward the rectangle attack on full AES-192 and AES-256, and
Derbez et al. proposed the boomerang attack on full AES-192 in [13].

In recent years, many strategies emerged to mount key recovery attacks as
efficiently as possible for the rectangle attack, such as [14, 25, 32]. Song et al.
proposed the most efficient and generic rectangle key recovery algorithm at
ASIACRYPT 2022 [25]. This algorithm supports flexible key guessing strategies
and is compatible with all the previous rectangle key recovery algorithms. By
trading off the overall complexity, Song et al. obtained the optimal results of
rectangle key recovery attacks on a series of block ciphers.

GIFT is a family of SPN-based lightweight block ciphers proposed by Banik et
al. at CHES’17 [3]. It is composed of two versions named GIFT-64 and GIFT-128,
where the block sizes are 64 bits and 128 bits, and the numbers of rounds are
28 and 40, respectively. The key lengths of GIFT-64 and GIFT-128 are both
128 bits. As the inheritor of PRESENT [8], GIFT mends its weak points and
achieves efficiency and security improvements. Because of the comprehensive
treatment of the linear layer and the S-box, GIFT receives excellent performance
in hardware and software implementations and has become one of the most
energy-efficient ciphers. Benefiting from these advantages, GIFT plays the role of
the underlying primitives of many lightweight authenticated encryption schemes,
such as GIFT-COFB [2], HyENA [10], LOTUS-AEAD and LOCUS-AEAD [9],
and SUNDAE-GIFT [1]. Notably, GIFT-COFB is one of the final round finalists
of the NIST Lightweight Cryptography standardization project 4. Thus, the
security evaluation of GIFT is of great significance.

Previous attacks on GIFT-64. GIFT has attracted the attention of many
researchers since its publication and has been the subject of many cryptanalyses.
The best result of the meet-in-the-middle attack is from [21], which attacks 15-
round GIFT-64 under the single key scenario. Sun et al. proposed the best linear
attack on GIFT-64 at present, which is a linear attack on 19-round GIFT-64
in [27]. The most efficient differential analysis for GIFT-64 under the related-key
scenario is currently the 26-round differential attack of Sun et al. [26]. Dong et
al. proposed the most efficient attack on GIFT-64 for the moment, which is a
26-round rectangle key recovery attack we are interested in [14]. We summarize
the state-of-the-art attacks against GIFT-64 in Table 1, where RK and SK denote

4 https://csrc.nist.gov/projects/lightweight-cryptography.

2

related-key and single-key settings, respectively, and enc. and m.a. represent time
complexity in units of encryption and memory access.

This paper focuses on the rectangle key recovery attack against GIFT-64. In
2019, Chen et al. executed the 23-round rectangle key recovery attack on GIFT-64
based on a 19-round related-key boomerang distinguisher [11]. Later, Zhao et
al. [32] expanded this attack to 24 rounds with a more efficient key-guessing
strategy. In 2020, Ji et al. [16] proposed the 20-round related-key boomerang
distinguisher. Based on this distinguisher, they also proposed a 25-round related-
key rectangle key recovery attack on GIFT-64 using Zhao et al.’s strategy in [16].
At EUROCRYPT 2022, Dong et al. [14] further improved the key guessing
strategy and extended the attack of Ji et al. to 26 rounds, resulting in the most
effective rectangle key recovery attack of GIFT-64 so far.

Table 1: Summary of relevant analysis results of GIFT-64
Method Setting Round Time Data Memory Source

Integral SK 14 296.00 enc. 263.00 263.00 [3]

MITM SK 15 2112.00 enc. 264.00 216.00 [21]

Linear SK 19 2127.11 enc. 262.96 260.00 [27]

Boomerang RK 23 2126.60 enc. 263.30 - [19]

Differential RK 26 2123.23 enc. 260.96 2102.86 [26]

Rectangle

RK 23 2107.00 m.a. 260.00 260.00 [11]

RK 24 291.58 enc. 260.00 260.32 [32]

RK 25 2120.92 enc. 263.78 264.10 [16]

RK 26 2122.78 enc. 263.78 263.78 [14]

RK 26 2121.75 enc. 262.715 262.715 [18]

RK 26 2112.07 enc. 263.79 263.79 [31]

RK 26 2110.06 enc. and 2115.8m.a. 263.78 264.36 Sec. 3

RK 26 2111.51 enc. and 2115.78 m.a. 263.78 267.8 Sec. 3

Our contributions. We investigate the previous rectangle attacks on GIFT-64
and find that the time complexities of different attack phases are not balanced.
Inspired by the work of Song et al. [25], we study how to find a better strategy
for the rectangle key recovery attack on GIFT-64 to trade off the complexity of
each attack phase.

GIFT has a bit-wise linear layer and a bit-wise key schedule. We carefully
study each component of GIFT and, for the first time, apply the generic rectangle
key recovery algorithm [25] to such ciphers. For ciphers like GIFT, which mostly
have bit-wise operations, finding the best key-guessing strategy is much more
sophisticated than for cell-wise ciphers. In the attack on GIFT-64, we carefully
analyzed the key schedule and identified all the reused key bits. To find the
best attack for a given rectangle distinguisher, we build a MILP model in which
all possible key guessing strategies are allowed and minimize the overall time
complexity. As a result, we improve the rectangle attacks on 26-round GIFT-64

3

with new key-guessing strategies. Our attacks on GIFT-64 are better than the
previous rectangle key recovery attacks and are the best attacks on GIFT-64 in
terms of time complexity to date. The comparison of our attacks with previous
works is shown in Table 1. Apart from this, we also study the rectangle key
recovery attack on GIFT-128 and eventually reduce the complexity of the attack
in [16] by a factor of 22. We explain the attack in the Appendix B.

It’s worth noting that Yu et al. [31] proposed remarkable cryptanalysis of
GIFT-64 concurrently (available on-line on The Computer Journal on 14th July
2023). They constructed an automatic search model which treats the distinguisher
and the key recovery phase as a whole for GIFT. Taking the linear key schedule
into account, they also discovered a new boomerang distinguisher of GIFT-64.
The complexity of their 26-round rectangle key recovery attack on GIFT-64 is
(T, D, M) = (2112.07 enc., 263.79, 263.79).

Organization. The rest of the paper is organized as follows. In Sec. 2, we
introduce the structure of GIFT-64 and review the rectangle attack and the
key recovery algorithm. In Sec. 3, we propose the dedicated MILP model for
finding the best rectangle key recovery attack on GIFT-64 and describe in detail
the rectangle key recovery attack based on a new key guessing strategy. Sec. 4.
concludes the paper.

2 Preliminary

2.1 Description of GIFT-64

GIFT is a block cipher with Substitution-Permutation-Network, which Banik et
al. proposed at CHES’ 2017 [3]. According to the 64-bit and 128-bit block sizes,
GIFT has two versions, GIFT-64 and GIFT-128, with round numbers 28 and 40,
respectively. Both versions of GIFT use a 128-bit master key. r in this subsection
represents the number of rounds, where r ∈ {1, 2, ..., 28}.

Round Function. The round function of GIFT-64 consists of three operations.
For convenience, we consider the 64-bit round state as 16 4-bit nibbles. The three
operations of the round function are as follows:

1. SubCells: Nonlinear S-box substitutions are applied to each nibble, as is
shown in Table 2. Denote Xr and Yr as the inputs and outputs of the 16
S-boxes in the round r.

Table 2: The S-box of GIFT
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

2. PermBits: For each bit of input, linear bit permutation bP (i) ← bi, ∀i ∈
{0, 1, ..., 63} is applied. The permutation P (i) is shown in Table 3. Denote
the state which is transformed from Yr by PermBits in round r as Zr.

4

Table 3: Specifications of GIFT-64 Bit Permutation
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11
i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

3. AddRoundKey: This step consists of adding the round key and round
constants. At each round, a 32-bit round key is obtained from the master key.
Denote round key as RKr = U ||V = u15, ..., u0||v15, ..., v0. For each round,
U and V are XORed with the cipher state, i.e., b4i+1 ← b4i+1 ⊕ ui, b4i ←
b4i⊕vi,∀i ∈ {0, ..., 15}. A single bit "1" and a 6-bit constant C = c5c4c3c2c1c0
are added to each state at bit position 63, 23, 19, 15, 11, 7, 3 respectively, i.e.,
b63 ← b63⊕1, b23 ← b23⊕c5, b19 ← b19⊕c4, b15 ← b15⊕c3, b11 ← b11⊕c2, b7 ←
b7 ⊕ c1, b3 ← b3 ⊕ c0. RKr is added to the state Zr in each round.

Key Schedule. Split the master key K into 8 16-bit subkeys k7||k6||...||k1||k0 ←
K. For each round, the round key consists of the last two significant subkeys,
and then, the key state is updated following k7||k6||...||k1||k0 ← k1 ≫ 2||k0 ≫
12||...||k3||k2, where ≫ i is an i-bit right rotation within a 16-bit word.

2.2 The Rectangle Attack

In this subsection, we review the rectangle attack and the generic rectangle key
recovery algorithm [25] and explain the notations used in this paper.

Fig. 1: Boomerang distinguisher

5

Before introducing the rectangle attack, we must first review the boomerang
attack. The boomerang attack was proposed by Wanger [29] in 1999, which is
an adaptive chosen plaintext/ciphertext attack. As is illustrated in Fig. 1, it
regards the target cipher as a composition of two sub-ciphers E0 and E1, i.e.,
E = E0 ◦ E1. The differential trail α→ β travels in E0 with probability p, and
the differential trail γ → δ travels in E1 with probability q, which composes the
boomerang distinguisher with the probability p2q2. In [17], Kelsey et al. devel-
oped a chosen-plaintext variant and formed the amplified boomerang attack with
probability p2q22−n, where n is the size of each block. The rectangle attack [5]
improves the amplified boomerang attack, which estimates the probability more
accurately by considering as many differences as possible in the middle. The
probability of a rectangle distinguisher is 2−np̂2q̂2, where p̂ =

√
ΣiPr2(α −→ βi),

q̂ =
√

ΣjPr2(γj −→ δ). Later, researchers discovered many methods to com-
pute the probability more accurately and proposed an innovative tool named
boomerang connectivity table (BCT) [12,24]. The process of the rectangle attack
consists of two steps:

1. Choose plaintexts P1, P2, P3, P4 and encrypt them to C1, C2, C3, C4, where
(P1, P2) and (P3, P4) both satisfy input difference α, i.e., P1⊕P2 = P3⊕P4 =
α.

2. If ciphertexts satisfy the output difference C1⊕C3 = C2⊕C4 = δ, these four
plaintext-ciphertexts can construct a right quartet {(P1, C1), (P2, C2), (P3, C3),
(P4, C4)}.

The generic key recovery algorithm. Another line of research on the rectangle
attack is to mount key recovery attacks as efficiently as possible. The rectangle key
recovery algorithm includes four steps: (1) data collection, (2) pair construction,
(3) quartet generation and processing, and (4) exhaustive search. In the past
few years, efforts have been made to find more effective key guessing strategies
to improve the efficiency of key recovery attacks, like [14, 32]. In the generic
algorithm of Song et al. [25], which we are inspired by, one can select part of
partial key bits involved in extended rounds to guess. Using the generic algorithm,
the adversary can balance the complexities of each attack step by guessing the
involved key reasonably. The outline of the key recovery algorithm can be profiled
in Fig. 2.

The notations involved in the upcoming work will be described for a better
understanding. As shown in Fig. 2, α′ is the differential obtained by the propaga-
tion of α through E−1

b , and δ′ is the differential obtained by the propagation of δ
through Ef . Note that not all quartets which satisfy the difference α′ and δ′ are
useful to suggest and extract the right key. However, quartets that do not satisfy
such conditions are necessarily useless. rb and rf are the number of unknown bits
of input differential and output differential. kb and kf denote the subkey bits for
verifying the differential propagation in Eb and Ef , respectively, where mb = |kb|
and mf = |kf | are the size of kb and kf . In our attack, we guess part of kb and

6

Eb Ed Ef
α δα′ δ

′

rb
rf

mb

kb

︸ ︷︷ ︸

mf

︸ ︷︷ ︸
kf

Fig. 2: Outline of rectangle key recovery attack [25]

kf , so we denote k′
b and k′

f as the bits in kb and kf which have been guessed.
Similarly, m′

b = |k′
b|, m′

f = |k′
f |, and r′

b, r′
f are the number of inactive state bits

which can be deduced by guessing key bits. Besides, in order to clearly describe
the new attack, we define r∗

b = rb − r′
b and m∗

b = mb −m′
b (resp. r∗

f and m∗
f).

Related-key rectangle attack. Under the related-key scenario, the rectangle
attack and the rectangle key recovery attack differ slightly from those under the
single-key setting. Let ∆K and ∇K be the key differences for E0 and E1. In the
phase of data collection, the adversary needs to access four related-key oracles
with K1, K2 = K1 ⊕∆K, K3 = K1 ⊕∇K and K4 = K1 ⊕∆K ⊕∇K to obtain
four plaintext-ciphertexts of (P1, C1), (P2, C2), (P3, C3) and (P4, C4) respectively.
The remaining steps should be performed under the related-key oracles as well.

The success probability. From the method of [23], the success probability of
the rectangle key recovery attack is calculated according to the Eq. 1, where
SN = p̂2q̂2/2−n is the signal/noise ratio, with an h-bit or higher advantage. s is
the expected number of right quartets.

Ps = Φ

(√
sSN − Φ−1 (1− 2−h

)
√

SN + 1

)
(1)

2.3 The Rectangle Distinguisher of GIFT-64

Our attack is based on the 20-round related-key boomerang distinguisher of Ji et
al. [16]:

α = 00 00 00 00 00 00 a0 00,

δ = 04 00 00 00 01 20 10 00.

with:

∆K = 0004 0000 0000 0800 0000 0000 0000 0010,

∇K = 2000 0000 0000 0000 0800 0000 0200 0800.

7

The probability of the distinguisher above is Pd = 2−58.557. Li et al. [18] have
increased this probability to 2−57.43 by improving the BCT of the distinguisher
(but otherwise using the same parameters as Ji et al.). Note that this paper does
not discuss the calculation of the distinguisher probability but focuses on the key
guessing strategy in the key recovery phase.

3 New Rectangle Key Recovery Attack on GIFT-64

In this section, we propose the new rectangle key recovery attack on GIFT-64.
We begin by describing the specific parameters of the attack and the basic attack
idea. In subsection 3.1, we will detail the dedicated MILP model and the key
guessing strategies based on this model. In subsection 3.2, we will describe the
exact process of the attack. The complexity of the two attacks will be calculated
in subsection 3.3.

As illustrated in Table 4, we utilize the distinguisher of Ji et al. to attack
26-round GIFT-64, where ? denotes the bit with the unknown difference, 0 and 1
represent the bit with the fixed difference. Eb spans the first three rounds, and
44 unknown bits in Eb distribute over ∆Y1, thus rb =44. The number of subkey
bits involved in the unknown difference in Z1 and Z2 is 24 and 6, respectively,
so mb =30. Ef spans the last three rounds, and there are 64 unknown bits in
Ef distributing over Z26, thus rf =64. The involved 32 bits, 24 bits, and 8 bits
subkeys are added to state Z26, Z25, and Z24 respectively, so mf =64. Hence,
the number of subkey bits involved in kb and kf is mb + mf =94 bits.

Table 4: The 26-round related-key rectangle attack on GIFT-64. For round r, ∆Xr

and ∆Yr are the input and output differences of the S-boxes, and ∆Zr is the output
difference of the linear layer. r ∈ {1, 2, ..., 26}

input ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
∆Y1 ??0? 1??0 01?? ?0?? 1?0? ?1?0 0??? ?0?? ??0? ???0 0??? ?0?? ??0? ???0 0??? ?0??
∆Z1 ???? ???? ???? ???? 0000 0000 0000 0000 11?? ???? ???? ???? ???? 11?? ???? ????
∆X2 ???? ???? ???? ???? 0000 0000 0000 0000 11?? ???? ???? ???? ???? 11?? ???? ????
∆Y2 0?01 00?0 000? ?000 0000 0000 0000 0000 0100 00?0 000? ?000 ?000 0100 00?0 000?
∆Z2 ???? 0000 ?1?? 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 ?1??
∆X3 ???? 0000 ?1?? 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 ?1??
∆Y3 1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010
∆Z3 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1010 0000 0000 0000

∆X4(α) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000
: ··· ···

∆X24(δ) 0000 0100 0000 0000 0000 0000 0000 0000 0000 0001 0010 0000 0001 0000 0000 0000
∆Y24 0000 ???1 0000 0000 0000 0000 0000 0000 0000 ???? ???? 0000 ???? 0000 0000 0000
∆Z24 00?0 0000 00?? 0?00 0001 0000 ?00? 00?0 ?000 0000 ??00 000? 0?00 0000 0??0 ?000
∆X25 00?0 0000 00?? 0?00 0001 0000 ?00? 00?0 ?010 0000 ??00 000? 0?00 0000 0??0 ?000
∆Y25 ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ????
∆Z25 ??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0??
∆X26 ??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0??
∆Y26 ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
∆Z26 ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
output ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

8

Thanks to the bit-wise linear key schedule of GIFT-64, the subkey bits are
reused in certain rounds. For example, if we guess RK1, we can obtain RK25
and vice versa. This relationship between subkey bits is also present in RK2
and RK26. As shown in Table 5, we mark the subkey bits involved in kb and
kf as bold, the subkey bits shared by RK1 and RK25 as green, and the subkey
bits shared in RK2 and RK26 as cyan. Note that only the bolded-and-colored
subkey bits are reusable. The number of reusable subkey bits is 26 (20 bits
between RK1 and RK25, say k1|k0 in Table 5. 6 bits between RK2 and RK26,
say k3|k2 in Table 5). Therefore, the number of subkey bits involved in the attack
is 94− 26 =68.

Table 5: The relation of the involved subkey bits in the key recovery phase
∆Z1 ???? ???? ???? ???? 0000 0000 0000 0000 11?? ???? ???? ???? ???? 11?? ???? ????
k1|k0 15|15 14|14 13|13 12|12 11|11 10|10 9|9 8|8 7|7 6|6 5|5 4|4 3|3 2|2 1|1 0|0
∆Z2 ???? 0000 ?1?? 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 ?1??
k3|k2 15|15 14|14 13|13 12|12 11|11 10|10 9|9 8|8 7|7 6|6 5|5 4|4 3|3 2|2 1|1 0|0

...
∆Z25 ??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0??
k1|k0 11|7 10|6 9|5 8|4 7|3 6|2 5|1 4|0 3|15 2|14 1|13 0|12 15|11 14|10 13|9 12|8
∆Z26 ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????
k3|k2 11|7 10|6 9|5 8|4 7|3 6|2 5|1 4|0 3|15 2|14 1|13 0|12 15|11 14|10 13|9 12|8

Based on the observation of the previous rectangle key recovery attack instance
and the analysis of the GIFT-64 key schedule, we summarize the attack strategies
into the following two observations:

- The phases of pair construction and quartet generation and processing domi-
nate the time cost of our attacks. In general, there is a certain extent inverse
relationship between the time consumption of pair construction and quartet
generation and processing. Both of these parts are related to the number of
guessed subkey bits and the number of filtering bits produced. Balancing the
time complexity of these two parts with appropriate guessing subkey bits
will be the core idea of our improvement.

- Our key guessing strategies are based on the idea of finding a method that
requires less guessing time complexity but can obtain more conditional bits,
i.e., m′

b + m′
f ≤ 2(r′

b + r′
f). The reused subkey bits can provide additional

filtering bits for some guesses. However, excessive guessing of these subkey
bits will make the complexity of pair construction and quartet generation
and processing unbalanced. Under the consideration of trading off the time
complexity, guessing as many reused subkey bits as possible will maximize
the advantage of our attack.

3.1 The Dedicated Model and New Key Guessing Strategy

As a block cipher with the bit-wise key schedule and bit-wise linear layer, the
structure of GIFT-64 allows us to directly reap the benefits of guessing each

9

bit. These advantages provide greater flexibility for our attack. Our attack is
under the related-key setting, so the filtering process corresponds to the guessed
subkeys and their complement. Note that we propose Attack I and Attack II in
this subsection.

Since mouha et al.’s seminal paper [20], Mixed Integer Linear Programming
(MILP) has been widely used in automated cryptanalysis and has yielded promis-
ing results in numerous cryptographic key recovery attacks [15, 22, 28, 30]. In
this paper, we present a dedicated model for automated key recovery attack for
GIFT-64 based on our new subkey guessing strategy. We start our modeling
with a selection of plaintexts and ciphertexts that satisfy the difference of Z1
and Z26, respectively. We use binary variables to indicate whether each bit is
known and mark all the output bits of an S-box as known if and only if both
its input bits and the 2 bits subkey involved are guessed. Guessing the subkey
bits allows the propagation of the knownness to obtain the filtering bits. Note
that the differential propagation in Eb is the exact opposite of the differential
propagation in Ef . We then count the filtering bits of the S-box for which both
the input and output differences are known and calculate the time complexity of
each attack step. Naturally, we set our objective function to balance the time
complexity of each attack step optimally. The parameters we used are listed in
Table 6, and the dedicated model is described in Model 1.

Attack I: The guessing of the keys involved in the forward and backward extend
rounds, shown in Fig. 3, and described as follows. Note that we have marked in
red (resp. blue) the keys guessed in the Eb (resp. Ef) and the filters that can be
used. Next, the guessed key bits and filters involved in Eb and Ef are explained.

Involved in Eb: Choose the plaintexts that satisfy ∆Z1. If k0[0] and k1[0]
are guessed, we can obtain the value of X2[3 : 0] and filter out the pairs of
plaintexts that do not satisfy the difference 000? by using the filter GS(X2[3 :
0])⊕GS(X2[3 : 0]⊕∆X2[3 : 0]) = ∆Y2[3 : 0]. As shown in Fig. 3, there are none
bit in ∆X2[3 : 0] with fixed difference and 3 bits in ∆Y2[3 : 0] with fixed difference.
When k1[0] and k0[0] are guessed, there exist 3 filtering bits (????→ 000?) via
the corresponding S-box. We guess 24 bits k0[15, 14, 13, 12, 7, 6, 5, 4, 3, 2, 1, 0] and
k1[15, 14, 13, 12, 7, 6, 5, 4, 3, 2, 1, 0] to obtain 34 filtering bits in round 2. We guess
6 bits k2[15, 13, 0] and k3[15, 13, 0] to obtain 10 filtering bits in round 3. Therefore,
we guess 30 subkey bits and obtain 44 filtering bits in Eb, i.e., m′

b =30 can
verify r′

b =44, and r∗
b = rb − r′

b =0.

Involved in Ef : The filtering bits are obtained in the same way as described
in Eb. We guess 16 bits k2[8, 7, 6, 5, 4, 3, 2, 1] and k3[14, 12, 11, 10, 9, 8, 7, 5], com-
bined with the guessed subkey bits k2[15, 13, 0] and k3[15, 13, 0] which can be
reused, this guess provides 11 filtering bits in round 26. We guess 2 bits k0[10, 9],
combined with k0[14, 13, 6, 5] and k1[14, 13, 6, 5, 2, 1] that can be reused. This
guess provides 17 filtering bits in round 25. Therefore, we guess 18 subkey
bits and obtain 28 filtering bits in Ef , i.e., m′

f = 18 can verify r′
f =28, and

r∗
f = rf − r′

f =36.

10

Table 6: Parameters of dedicated model
Parameter Implication
R0 = {1, 2, 3} Extension rounds in Eb

R1 = {24, 25, 26} Extension rounds in Ef

r ∈ {R0||R1} Round number in extension rounds
m ∈ {0, ..., 16} S-box position in each round
n ∈ {0, ..., 4} Bit position in the input (resp. output) of S-box
s ∈ {0, ..., 4} Number of attack step
Binary KXr,m,n, KYr,m,n Bit difference is known or not
Binary F Xr,m,n, F Yr,m,n Bit difference is fixed or not
Binary GKr,m Subkey bits is guessed or not
Integer Ar,m Number of filtering bits of each filter
General Ts Time complexity of each attack step
General T Upper bound of Ts

Algorithm 1 Optimal key guessing strategy searching
Require: R0 rounds in Eb and R1 rounds in Ef , the system of inequalities for linear

layer and its inverse, the number of S-box in each round m, the size of each S-box n,
multi binary variables KXr,m,n, KYr,m,n, F Xr,m,n, F Yr,m,n, GKr,m, multi integer
variables Ar,m, multi general variables Ts and T

Ensure: system of inequalities
/* Initialization */
Constraints: all KX0 = KY26 = 1
Constraints: F Xr,m,n and F Yr,m,n follow the differential in Eb and Ef

/* Counting the number of filtering bits */
1: for r in R0 do
2: for i = 0 to m do
3: Constraints: all KYr,i,∗ = 1 if and only if all KXr,i,∗ = GKr,i = GKr,i′ = 1,

otherwise all KYr,i,∗ = 0
4: Constraints: Ar,i = KYr,i,∗ × (sum(F Yr,i) − sum(F Xr,i))
5: end for
6: Constraints: Linear permutation from KYr,∗,∗ to KXr+1,∗,∗
7: end for
8: for r in R1 do
9: for i = 0 to m do

10: Constraints: all KXr,i,∗ = 1 if and only if all KYr,i,∗ = GKr,i = GKr,i′ = 1,
otherwise all KXr,i,∗ = 0

11: Constraints: Ar,i = KXr,i,∗ × (sum(F Xr,i) − sum(F Yr,i))
12: end for
13: Constraints: Reversed linear permutation from KXr,∗,∗ to KYr−1,∗,∗
14: end for

/* Computing time complexity */
15: for s in the number of attack steps do
16: Constraints: Ts follow Eq. 6
17: Constraints: T >= Ts

18: end for
/* Objective function */

19: MINIMIZE T

11

63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 3
62 58 54 50 46 42 38 34 30 26 22 18 14 10 6 2

61 57 53 49 45 41 37 33 29 25 21 17 13 9 5 1
60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

∆Z1

RK1

∆X2

∆Y2

∆Z2

RK2

∆X3

∆Y3

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS GS GS GS GS GS GS GS GS GS GS GS

GS GS GS

11?? 11?????? ???? ???? ???? 0000 0000 0000 0000 ???? ???? ???? ???? ???? ????
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

k1[15] k0[15] k1[14] k0[14] k1[13] k0[13] k1[12] k0[12] k1[11] k0[11] k1[10] k0[10] k1[9] k0[9] k1[8] k0[8] k1[7] k0[7] k1[6] k0[6] k1[5] k0[5] k1[4] k0[4] k1[3] k0[3] k1[2] k0[2] k1[1] k0[1] k1[0] k0[0]k1[8] k0[8]k1[9] k0[9]k1[10] k0[10]k1[11] k0[11]

11?? 11?????? ???? ???? ???? 0000 0000 0000 0000 ???? ???? ???? ???? ???? ????

0?01 00?0 000? ?000 0000 0000 0000 0000 0100 00?0 000? ?000 ?000 0100 00?0 000?0?01 00?0 000? ?000 0100 00?0 000? ?000 ?000 0100 00?0 000?

????

????

0000

0000

?1??

?1??

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0001

0001

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

?1??

?1?????? ?1?? ?1??

k3[14] k2[14] k3[12] k2[12] k3[11] k2[11] k3[10] k2[10] k3[9] k2[9] k3[8] k2[8] k3[7] k2[7] k3[6] k2[6] k3[5] k2[5] k3[4] k2[4] k3[3] k2[3] k3[2] k2[2] k3[1] k2[1] k3[0] k2[0]k3[15] k2[15] k3[13] k2[13] k3[0] k2[0]

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00101000 0010 0010

∆Z24

RK24

∆X25

∆Y25

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS GS GS GS GS GS

GS GS GS GS GS

00?0

00?0

0000

0000

00??

00??

0?00

0?00

0001

0001

0000

0000

?00?

?00?

00?0

00?0

?000

?000

0000

0000

??00

??00

000?

000?

0?00

0?00

0000

0000

0??0

0??0

?000

?000??00 000??00? 00?0 ?0000001

k7[9] k6[11] k7[8] k6[10] k7[7] k6[9] k7[6] k6[8] k7[5] k6[7] k7[4] k6[6] k7[3] k6[5] k7[2] k6[4] k7[1] k6[3] k7[0] k6[2] k7[15] k6[1] k7[14] k6[0] k7[13] k6[1] k7[12] k6[14] k7[11] k6[13] k7[10] k6[12]

???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???????? ???????? ???? ????????

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

∆Z25

RK25

∆X26

??0?

??0?

??0?

??0?

??0?

??0?

??0?

??0?

???0

???0

???0

???0

???0

???0

???0

???0

0???

0???

0???

0???

0???

0???

0???

0???

?0??

?0??

?0??

?0??

?0??

?0??

?0??

?0??0??? ?0?????0??0? ???0

k1[11] k0[7] k1[10] k0[6] k1[9] k0[5] k1[8] k0[4] k1[7] k0[3] k1[6] k0[2] k1[5] k0[1] k1[4] k0[0] k1[3] k0[15] k1[2] k0[14] k1[1] k0[13] k1[0] k0[12] k1[15] k0[1] k1[14] k0[10] k1[13] k0[9] k1[12] k0[8]k0[6] k0[5] k1[6] k1[5] k1[14] k1[13]k1[2] k0[14] k1[1] k0[13] k0[10] k0[9]

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

∆Y26

∆Z26

RK26

output

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????????????????????

k3[11] k2[7] k3[10] k2[6] k3[9] k2[5] k3[8] k2[4] k3[7] k2[3] k3[6] k2[2] k3[5] k2[1] k3[4] k2[0] k3[3] k2[15] k3[2] k2[14] k3[1] k2[13] k3[0] k2[12] k3[15] k2[11] k3[14] k2[10] k3[13] k2[9] k3[12] k2[8]k2[2] k3[14]k3[11] k2[7] k3[10] k2[6] k3[9] k2[5] k3[8] k2[4] k3[7] k2[3] k3[12] k2[8]k3[5] k2[1] k3[13]k3[15]k3[0]k2[15] k2[13]k2[0]

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

1

Fig. 3: Guessed key bits and the corresponding propagation relations for Attack I

12

Attack II: We also performed the attack using another similar key-guessing
strategy. This attack has a slightly lower time complexity when computing ϵ
using a different method than Attack I. The parameters of the attack are only
briefly described here, and the attack processes are the same as in Attack I. We
calculate the complexity of this attack in subsection 3.3 and include a detailed
description in Fig. 4 of Appendix A. The key guessing strategy for this attack is
as follows:

Involved in Eb: In round 1, we guess 22 bits k0[15, 14, 13, 12, 7, 6, 5, 4, 3, 1, 0]
and k1[15, 14, 13, 12, 7, 6, 5, 4, 3, 1, 0] to obtain 32 filtering bits. In round 2, we
guess 4 bits k2[13, 15] and k3[13, 15] to obtain 7 filtering bits. Therefore, we have
guessed 26 bits of subkeys and obtained 39 filtering bits, i.e., m′

b =26 , r′
b =39 ,

r∗
b = rb − r′

b =5 .
Involved in Ef : In round 26, we guess 20 bits k2[14, 12, 7, 6, 5, 4, 3, 2, 1, 0] and

k3[14, 12, 11, 10, 9, 8, 7, 6, 5, 4], combine with the reused k2[15, 13] and k3[15, 13],
this guess provides 12 filtering bits. In round 25, we guess 2 bits k0[11, 9], combine
with the reused k0[15, 13, 7, 6, 5] and k1[15, 14, 13, 7, 6, 5, 3, 1], this guess provides
22 filtering bits. Therefore, we have guessed 22 bits of subkeys and obtained 34
filtering bits, i.e., m′

f =22 , r′
f =34 , r∗

f = rf − r′
f =30 .

3.2 New Rectangle Attack on GIFT-64

In this subsection, we conducted the rectangle key recovery attack against
GIFT-64 using different key guessing strategies. For both attacks, we choose
y =
√

s·2 n
2 −rb/

√
Pd to be the number of structures that should be pre-constructed,

where s is the number of quartets expected to be correct.
The key guessing strategy is detailed in subsection 3.1. The complexities will

be calculated in subsection 3.3. The attack process is as follows:

1. Collect and store y structures of 2rb plaintexts each. Encrypt these structures
under four related keys K1, K2, K3, and K4. We obtain four datasets con-
taining the plaintext-ciphertexts under four related keys, denote as L1, L2,
L3, and L4. Let D = y · 2rb for convenience, so the time, data, and memory
complexity of this step is T0 = M0 = Dtotal = 4 ·D = y · 2rb+2.

2. Guess (m′
b + m′

f)-bit key, and for each guess:
(a) Initialize a list of key counters for the unguessed subkey bits of kb and

kf , the memory complexity of key counters is Mc = 2m∗
b +m∗

f .
(b) For each plaintext-ciphertext collected in step 1, partially encrypt Pi and

partially decrypt Ci under the key bits we guessed, i.e., P ∗
i = Enck′

b
(Pi),

C∗
i = Deck′

f
(Ci), where i ∈ {1, 2, 3, 4}. The time complexity of this step

is 4 ·D = y · 2rb+2 partial encryptions.
(c) Choose to construct pairs in the input of Eb. The reason is that con-

structing pairs in the input of Eb can get more filters for the phase of
constructing pairs and balance the time complexity

i. Insert L1 into a hash table indexed by the r′
b inactive bits of P ∗

1 , so
there are 2r′

b items, each of which comprises 2r∗
b pairs (P ∗

1 , C∗
1). For

13

L2, find matches in the hash table according to the r′
b inactive bits of

P ∗
2 . Each match corresponds to a pair {(P ∗

1 , C∗
1), (P ∗

2 , C∗
2)}. There are

y ·2r′
b items in total, and there will be 2 ·

(
2r∗

b

2

)
different combinations

for each item. Perform the same operation to L3 and L4, so we can get
two sets S1 = {(P ∗

1 , C∗
1), (P ∗

2 , C∗
2)} and S2 = {(P ∗

3 , C∗
3), (P ∗

4 , C∗
4)}.

The size of each is:

y · 2r′
b · 2 ·

(
2r∗

b

2

)
= D · 2r∗

b . (2)

The memory complexity of this step is M1 = 2 ·D · 2r∗
b for storing

sets S1 and S2. We need D · 2r∗
b look-up tables to construct each set.

The time complexity of this step is 2 ·D · 2r∗
b memory accesses.

ii. Insert S1 into a hash table indexed by the 2r′
f inactive bits of both

C∗
1 and C∗

2 . Since each set contains D · 2r∗
b pairs, there are 22r′

f

items, each of which comprises D · 2r∗
b −2r′

f pairs {(P ∗
1 , C∗

1), (P ∗
2 , C∗

2)}.
For S2, find matches in the hash table according to the 2r′

f inac-
tive bits of both C∗

3 and C∗
4 . Each matching provides a quartet

{(P ∗
1 , C∗

1), (P ∗
2 , C∗

2), (P ∗
3 , C∗

3), (P ∗
4 , C∗

4)} for us. For each item, similar

to step 2(c)i, there are 2 ·
(

D · 2r∗
b −2r′

f

2

)
different combinations. So

the number of quartets we generate is

22r′
f · 2 ·

(
D · 2r∗

b −2r′
f

2

)
= D2 · 22r∗

b +2r∗
f −2rf . (3)

The time complexity of this step is D2 ·22r∗
b +2r∗

f −2rf memory accesses.
(d) Utilize the quartets we obtain above to determine the key candidates

involved in Eb and Ef and increase the corresponding key counters.
Denote the time cost of processing each quartet as ϵ. The time complexity
of this step is D2 · 22r∗

b +2r∗
f −2n · ϵ. We will discuss the estimation of ϵ in

detail in subsection 3.3.
(e) Select the top 2m∗

b +m∗
f −h hits in the counters to be the key candidates,

which delivers a h-bit or higher advantage, where 0 < h ≤ m∗
b + m∗

f .
(f) Guess the remaining k−mb −mf bits key according to the key schedule

and exhaustively search over them to recover the correct key, where k is
the key size of GIFT-64. The time complexity of this step is 2k−m′

b−m′
f −h

encryptions.

3.3 Complexity Analysis

We will introduce two different methods to process quartets and extract key
information, i.e., calculation of ϵ, which will bring different time complexity
to our attacks. We apply ϵ computed using the method of the pre-constructed

14

hash table into the MILP model and compute the time complexity of Attack I
accordingly. We also bring ϵ computed using the method of the guess and filter
to the MILP model and compute the time complexity of Attack II accordingly.
We mount this approach to our two attacks and take Attack I as an example to
introduce it in detail. The complexity analysis of Attack II is calculated in detail
in the appendix A.

Guess and filter: Suppose we obtain Nq quartets after step 2d in the first attack.
Guessing k2[14, 12] and k3[6, 4], we can use filters GS(Y26[15 : 12])⊕GS(Y26[15 :
12]⊕∆Y26[15 : 12] =?0?? and GS(Y26[47 : 44])⊕GS(Y26[47 : 44]⊕∆Y26[47 : 44] =
?0??. Furthermore, combined with the subkey bits k0[15, 7, 3, 1] and k1[15, 7, 3],
which have been guessed before, we can use filters GS(Y25[63 : 60])⊕GS(Y25[63 :
60] ⊕∆Y25[63 : 60] = 00?0 and GS(Y25[55 : 48]) ⊕ GS(Y25[55 : 48] ⊕∆Y25[63 :
48] = 00??, 0?00. There are 10 filtering bits for pairs, so 20 filtering bits for
quartets. Therefore, there are 24 ·Nq · 2−20 = Nq · 2−16 quartets remain, and the
time cost is 24 ·Nq S-box accesses. Note that after this step, the number of quartets
remaining is much lower than before. The time consumption of the remaining
steps will be far less than Nq · 24 S-box accesses. Therefore, ϵ ≈ 24/26 ≈ 2−0.7

encryption.

Table 7: Precomputation tables for the 26-round attack on GIFT-64
No. Starting bits Subkey bits Bits deduced Filter condition T & M Filter

effect
1 Y26[47 : 44]

Y26[15 : 12]
X26[63 : 60]
X26[31 : 28]

k2[14, 12]
k3[6, 4]

Y ′
26[47 : 44]

Y ′
26[15 : 12]

X26[47 : 44]
X′

26[47 : 44]
X26[15 : 12]
X′

26[15 : 12]
X25[63 : 60]
X′

25[63 : 60]
X25[55 : 48]
X′

25[55 : 48]

X26[14] ⊕ X′
26[14] = 0

X26[44] ⊕ X′
26[44] = 0

X25[63 : 60] ⊕ X′
25[63 : 60]

= 00?0
X25[55 : 48] ⊕ X′

25[55 : 48]
= 00??, 0?00

248 2−16

Y i
26[47 : 44], Y i

26[15 : 12], X26[63 : 60], X26[31 : 28], i = 1, 2, 3, 4 :
k2[14, 12], k3[6, 4]

2 Y26[51 : 48]
Y26[35 : 32]
Y26[19 : 16]
X26[3 : 0]

k0[8]
k1[8]
k2[14, 10, 9]
k3[6, 2, 1]

Y ′
26[51 : 48]

Y ′
26[35 : 32]

Y ′
26[19 : 16]

X26[51 : 48]
X′

26[51 : 48]
X26[35 : 32]
X′

26[35 : 32]
X26[19 : 16]
X′

26[19 : 16]
X25[15 : 12]
X′

25[15 : 12]
X25[7 : 0]
X′

25[7 : 0]

X26[49] ⊕ X′
26[49] = 0

X26[32] ⊕ X′
26[32] = 0

X26[19] ⊕ X′
26[19] = 0

X25[15 : 12] ⊕ X′
25[15 : 12]

= 0?00
X25[7 : 0] ⊕ X′

25[7 : 0]
= 0??0, ?000

250 2−14

Y i
26[51 : 48], Y26[35 : 32], Y26[19 : 16], X26[3 : 1], i = 1, 2, 3, 4 :

k0[8], k1[8], k2[14, 10, 9], k3[6, 2, 1]

15

Pre-construct hash tables: As shown in Table 7, the time complexity of step
2d can be reduced by accessing the hash table instead of traversing subkeys. We
can obtain the bits deduced according to the inputs of the filters, i.e., starting
bits and subkey bits. Utilize these bits to match pairs in the quartets. Each
match can provide the corresponding subkey information. The time and memory
cost of each subtable is determined by the underlined bits, and the filtering effect
indicates the number of candidate subkeys obtained for each subtable access.
Note that these hash tables in our paper are all built for quartets but can also
be built for pairs in memory-limited cases.

As shown in Fig. 3, these uncoloured cells of ∆RKi denote the subkey bits not
used in previous steps, where i = 24, 25, 26. We should access subtable No.1 in
Table 7 first. Combining state Y26[47 : 44], Y26[15 : 12], X26[63 : 60], X26[31 : 28]
with subkey bits k2[14, 12], k3[6, 4], we can deduce the corresponding Y ′

26[47 : 44],
Y ′

26[15 : 12], X26[47 : 44], X ′
26[47 : 44], X26[15 : 12], X ′

26[15 : 12], X25[63 : 60],
X ′

25[63 : 60], X25[55 : 48], X ′
25[55 : 48]. We can obtain filtering bits from

X26[14]⊕X ′
26[14] = 0, X26[44]⊕X ′

26[44] = 0, X25[63 : 60]⊕X ′
25[63 : 60] = 00?0,

X25[55 : 48]⊕X ′
25[55 : 48] = 00??, 0?00. Specifically, for a pair of plaintext, there

are 10 filtering bits from ∆Y26[47 : 44] =????→ ∆X26[47 : 44] =???0, ∆Y26[15 :
12] =???? → ∆X26[15 : 12] =?0??, ∆Y25[63 : 60] =???? → ∆X25[63 : 60] =
00?0, ∆Y25[31 : 28] =????, ???? → ∆X25[31 : 28] = 00??, 0?00. Therefore, we
can get 20 filtering bits for a quartet using these filters. According to these
filters, we can extract information of k2[14, 12], k3[6, 4] and discard quartets that
suggest nothing. We need to store subkey bits k2[14, 12], k3[6, 4] into a hash
table indexed by 64-bit Y i

26[47 : 44], Y i
26[15 : 12], Xi

26[63 : 60], Xi
26[31 : 28] in

total, where i = 1, 2, 3, 4. The filter effect is 2−16, which means 216 quartets will
be filtered out, so the time and memory cost to construct such a subtable is
264−16 = 248.

For now, the number of quartets is much lower than before. To process the
rest of the quartets and increase key counters, we need to access the remaining
subtable No.2. The time cost of the following steps will be far less than that of
accessing subtable No.1. Finally, we get ϵ ≈ 1 memory access.

The complexity of Attack I: Considering the total complexity and success rate,
we choose s = 2 and h = 20, so we need construct y =

√
s · 2 n

2 −rb/
√

Pd = 217.78

structures in step 1 and D = y · 2rb = 261.78.

• Data complexity: The plaintexts in step 1 are the total data we need to collect
in this attack.

Dtotal = 4 ·D = 263.78 (4)

• Memory complexity: We need store data collected in step 1, key counters
described in step 2a, and datasets S1 and S2 generated in step 2(c)i.

16

Mtotal = M0 + M1 + Mc

= 4 ·D + 2 ·D · 2r∗
b + 2m∗

b +m∗
f

= 263.78 + 262.78 + 236

≈ 264.36

(5)

• Time complexity: The time complexity consists of five parts: (1) data collection
in step 1 denote as T0, (2) partial encryption and partial decryption in step 2b
denote as T1, (3) pairs generation in step 2(c)i denote as T2, (4) quartets
generation and processing in step 2d denote as T3 and (5) the exhaustive search
of the remaining key in step 2f denote as T4. Recall that our key guessing
strategy provides the following parameters: m′

b = 30, r′
b = rb = 44, r∗

b = 0
and m′

f = 18, r′
f = 28, r∗

f = rf − r′
f = 36. For the last four parts, we need to

consider all guessing of (m′
b + m′

f) = 48 subkey bits.

T0 = 4 ·D = 263.78

T1 = 2m′
b+m′

f · 4 ·D = 2111.78

T2 = 2m′
b+m′

f · 2 ·D · 2r∗
b = 2110.78

T3 = 2m′
b+m′

f ·D2 · 22r∗
b +2r∗

f −2n · ϵ = 2115.56 · ϵ

T4 = 2m′
b+m′

f +k−m′
b−m′

f −h = 2k−h = 2108

(6)

We obtain ϵ ≈ 2−0.7 encryption with the method of the guess and filter. The
time complexity of Attack I is T1+T3+T4 = 6

26 ·2
111.78+2115.56−0.7+2108 ≈2114.86

encryption and T2 =2110.78 memory access.
We obtain ϵ ≈ 1 memory access with the method of the pre-constructed hash

table. The time complexity of Attack I is T1+T4 = 6
26 ·2

111.78+2108 ≈ 2111.78−2.11+
2108 ≈ 2110.06 26-round encryptions and T2 + T3 = 2110.78 + 2115.56 ≈ 2115.80

memory accesses.
According to Eq. 1, the success rate of Attack I is around 75%.

The complexity of Attack II: We choose s = 2 and h = 20, so D = 261.78.
The data complexity is Dtotal = 263.78, memory complexity is M ′

total = 267.8. We
obtain that ϵ ≈ 2−2.7 encryptions with the method of the guess and filter, so time
complexity is 2111.51 26-round encryptions and 2115.78 memory accesses. We
obtain that ϵ ≈ 1 memory access with the method of the pre-construct hash table.
Thence, the time complexity is 2110.06 26-round encryptions and 2116.06 memory
accesses. The complexity calculation of Attack II is detailed in Appendix A.

According to Eq. 1, the success rate of Attack II is around 75%.
In summary, we obtained that the best current rectangle key recovery attack

on GIFT-64 is Attack I, which pre-constructs hash tables to process quartets. The
attack complexity is: data complexity is Dtotal = 263.78, memory complexity
is Mtotal = 264.36, time complexity is Ttotal = 2110.06 26-round encryption

17

and 2115.80 memory accesses. Further, calculating using the probability which
improved by Li et al., the overall complexity of the attack is: D∗

total = 263.22,
M∗

total = 263.8, T ∗
total = 2109.5 26-round encryption and 2115.24 memory accesses.

Reevaluate the Security of GIFT-128 We also re-evaluate the ability of
GIFT-128 to resist rectangle key recovery attack. In [16], Ji et al. proposed
the rectangle key recovery attack on 23-round GIFT-128. They guessed all the
subkey bits involved in Eb, non-guessed any subkey bits in Ef . For improvement,
we guess 2 fewer subkey bits in Eb than [16] and roughly reduce its total time
complexity by a factor of 22. The details are given in Appendix B.

4 Discussion and Conclusion

We propose new key guessing strategies to improve the attack of 26-round GIFT-
64. The MILP model of the best key guessing strategy for GIFT-64 rectangle key
recovery attack is constructed, and thus the optimal key guessing strategy for
our attack scenario is obtained by searching and comparing. Our attacks against
GIFT-64 are the best in terms of time complexity so far. For GIFT-64, its bit-wise
linear permutation gives us great flexibility, and the reused subkey bits derived
by the bit-wise key schedule provide additional filter bits for each guessing. Our
attack starts from the bit-wise operations of GIFT-64 and considers the more
accurate selection of the subkey bits involved in the attack so as to guess the key
more effectively. This idea also provides a new possibility for better attacks on
block ciphers structured by bit-wise operations.

We have observed that the designer of GIFT had not claimed the related-key
security. For the community of symmetric cryptography, however, we believe that
cryptographic security analysis under related-key settings is indispensable.

5 Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments and
suggestions. This paper is supported by the National Key Research and Develop-
ment Program (No. 2018YFA0704704, No.2022YFB2701900, No.2022YFB2703003)
and the National Natural Science Foundation of China (Grants 62022036, 62132008,
62202460, 62172410).

A Complexity analysis of Attack II

Recall that the key guessing strategy for Attack II has the following parameters:
m′

b = 26, r′
b = 39, r∗

b = 5, m′
f = 22, r′

f = 34, r∗
f = 30, which are also visually

identified in Fig. 4. As in Attack I, we choose s = 2 and h = 20, so D = 261.78.

Guess and filter In the second attack, supposing the number of quartets to
be processed is N ′

q. We guess k0[2] and k1[2], which provide 4 filtering bits for

18

63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 3
62 58 54 50 46 42 38 34 30 26 22 18 14 10 6 2

61 57 53 49 45 41 37 33 29 25 21 17 13 9 5 1
60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

∆Z1

RK1

∆X2

∆Y2

∆Z2

RK2

∆X3

∆Y3

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS GS GS GS GS GS GS GS GS GS GS

GS GS

11?? 1??0???? ???? ???? ???? 0000 0000 0000 0000 ???? ???? ???? ???? ???? ????
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

k1[15] k0[15] k1[14] k0[14] k1[13] k0[13] k1[12] k0[12] k1[11] k0[11] k1[10] k0[10] k1[9] k0[9] k1[8] k0[8] k1[7] k0[7] k1[6] k0[6] k1[5] k0[5] k1[4] k0[4] k1[3] k0[3] k1[2] k0[2] k1[1] k0[1] k1[0] k0[0]k1[2] k0[2]k1[8] k0[8]k1[9] k0[9]k1[10] k0[10]k1[11] k0[11]

11?? 11?????? ???? ???? ???? 0000 0000 0000 0000 ???? ???? ???? ???? ???? ????

0?01 00?0 000? ?000 0000 0000 0000 0000 0100 00?0 000? ?000 ?000 0100 00?0 000?0?01 00?0 000? ?000 0100 00?0 000? ?000 ?000 00?0 000?

????

????

0000

0000

?1??

?1??

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0001

0001

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

?1??

?1?????? ?1??

k3[14] k2[14] k3[12] k2[12] k3[11] k2[11] k3[10] k2[10] k3[9] k2[9] k3[8] k2[8] k3[7] k2[7] k3[6] k2[6] k3[5] k2[5] k3[4] k2[4] k3[3] k2[3] k3[2] k2[2] k3[1] k2[1] k3[0] k2[0]k3[15] k2[15] k3[13] k2[13]

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00101000 0010

∆Z24

RK24

∆X25

∆Y25

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GSGSGSGSGSGSGSGS

GSGSGSGS

00?0

00?0

0000

0000

00??

00??

0?00

0?00

0001

0001

0000

0000

?00?

?00?

00?0

00?0

?000

?000

0000

0000

??00

??00

000?

000?

0?00

0?00

0000

0000

0??0

0??0

?000

?0000?00 0000 0??0 ?000000000?000000000

k7[9] k6[11] k7[8] k6[10] k7[7] k6[9] k7[6] k6[8] k7[5] k6[7] k7[4] k6[6] k7[3] k6[5] k7[2] k6[4] k7[1] k6[3] k7[0] k6[2] k7[15] k6[1] k7[14] k6[0] k7[13] k6[15] k7[12] k6[14] k7[11] k6[13] k7[10] k6[12]

???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???????? 0000 ???? ????0000????00000000

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

∆Z25

RK25

∆X26

??0?

??0?

??0?

??0?

??0?

??0?

??0?

??0?

???0

???0

???0

???0

???0

???0

???0

???0

0???

0???

0???

0???

0???

0???

0???

0???

?0??

?0??

?0??

?0??

?0??

?0??

?0??

?0????0? ???0 0??? ?0??

k1[11] k0[7] k1[10] k0[6] k1[9] k0[5] k1[8] k0[4] k1[7] k0[3] k1[6] k0[2] k1[5] k0[1] k1[4] k0[0] k1[3] k0[15] k1[2] k0[14] k1[1] k0[13] k1[0] k0[12] k1[15] k0[1] k1[14] k0[10] k1[13] k0[9] k1[12] k0[8]k0[7] K0[6] k0[5] k0[14] k0[1]k1[7] k1[6] k1[5] k1[15] k1[14] k1[13]k0[11] k0[9]k1[3] k0[15] k1[1] k0[13]

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

∆Y26

∆Z26

RK26

output

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????

????????????????

k3[11] k2[7] k3[10] k2[6] k3[9] k2[5] k3[8] k2[4] k3[7] k2[3] k3[6] k2[2] k3[5] k2[1] k3[4] k2[0] k3[3] k2[15] k3[2] k2[14] k3[1] k2[13] k3[0] k2[12] k3[15] k2[1] k3[14] k2[10] k3[13] k2[9] k3[12] k2[8]k3[11] k2[7] k3[10] k2[6] k3[9] k2[5] k3[8] k2[4] k3[7] k2[3] k3[6] k2[2] k3[5] k2[1] k3[4] k2[0] k2[14] k2[12] k3[14] k3[12]k3[13]k3[15]k2[15] k2[13]

⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕ ⊕⊕

1

Fig. 4: Guessed key bits and the corresponding propagation relations for Attack II

19

quartets (∆X2[11 : 8] = 11??→ ∆Y2[11 : 8] = 0100), the filter is GS(X2[11 : 8])⊕
GS(X2[11 : 8]⊕∆X2[11 : 8]) = 0100. Therefore, there are 22 ·N ′

q · 2−4 = N ′
q · 2−2

quartets remain, and the time cost is 22 ·N ′
q S-box accesses. Note that after this

step, the number of quartets remaining is much lower than before. The time
consumption of the remaining steps will be far less than N ′

q · 22 S-box accesses.
Therefore, ϵ ≈ 22/26 ≈ 2−2.7 encryption.

Pre-construct hash tables: We also pre-construct hash tables in the second
attack to calculate ϵ. The detail is in Table 8. With similar processes as Attack I,
we obtain ϵ ≈ 1 memory access.

Table 8: Precomputation tables for the 26-round attack on GIFT-64
No. Starting bits Subkey bits Bits deduced Filter condition TM Filter

effect
1 X2[11 : 8]

X3[3 : 0]
Y25[35 : 32]

k0[0]
k1[0]
k2[0]
k3[0]

X′
2[11 : 8]

X′
3[3 : 0]

Y2[11 : 8]
Y ′

2 [11 : 8]
Y3[3 : 0]
Y ′

3 [3 : 0]
X25[35 : 32]
X′

25[35 : 32]

Y2[35 : 32] ⊕ Y ′
2 [35 : 32] =

0100
Y3[3 : 0] ⊕ Y ′

3 [3 : 0] = 0010
X25[11 : 8] ⊕ Y ′

2 [11 : 8] =
00?0

236 2−12

X2[11 : 8], X3[3 : 0], Y25[35 : 32], i = 1, 2, 3, 4 :
k0[0], k1[0], k2[0], k3[0]

2 Y26[51 : 48]
Y26[35 : 32]
Y26[19 : 16]
Y26[3 : 0]

k2[3, 2, 1, 0]
k3[10, 9, 8, 1]

Y ′
26[51 : 48]

Y ′
26[35 : 32]

Y ′
26[19 : 16]

X′
26[3 : 0]

X26[51 : 48]
X′

26[51 : 48]
X26[35 : 32]
X′

26[35 : 32]
X26[19 : 16]
X′

26[19 : 16]
X26[3 : 0]
X′

26[3 : 0]
X25[15 : 12]
X′

25[15 : 12]
X25[7 : 0]
X′

25[7 : 0]

X26[49] ⊕ X′
26[49] = 0

X26[32] ⊕ X′
26[32] = 0

X26[19] ⊕ X′
26[19] = 0

X26[2] ⊕ X′
26[2] = 0

X25[15 : 12] ⊕ X′
25[15 : 12]

= 0?00
X25[7 : 0] ⊕ X′

25[7 : 0]
= 0??0, ?000

248 2−16

Y i
26[51 : 48], Y26[35 : 32], Y26[19 : 16], X26[3 : 1], i = 1, 2, 3, 4 :

k2[10, 9, 8, 1], k3[3, 2, 1, 0]

• Data complexity: The required data are the same as described in Eq. (4).
Dtotal = 4 ·D = 263.78

• Memory complexity: Let M ′
0, M ′

1 and M ′
c denote the memory complexity of

storing pairs, quartets, and key counters respectively.

20

M ′
total = M ′

0 + M ′
1 + M ′

c

= 4 ·D + 2 ·D · 2r∗
b + 2m∗

b +m∗
f

= 263.78 + 267.78 + 235

≈ 267.8

(7)

• Time complexity: The time complexity consists of five parts: (1) data collection
denoted as T ′

0, (2) partial encryption and partial decryption denoted as T ′
1,

(3) two sets S′
1, S′

2 generation denoted as T ′
2, (4) quartets generation and

processing denoted as T ′
3, and (5) exhaustively searching the remaining key

bits denoted as T ′
4.

T ′
0 = 4 ·D = 263.78

T ′
1 = 2m′

b+m′
f · 4 ·D = 2111.78

T ′
2 = 2m′

b+m′
f · 2 ·D = 2115.78

T ′
3 = 2m′

b+m′
f ·D2 · 22r∗

f −2n · ϵ = 2113.56 · ϵ
T ′

4 = 2k−h = 2108

(8)

We obtain that ϵ ≈ 2−2.7 encryptions with the method of the guess and
filter, so T ′

3 ≈ 2110.86 memory access. The time complexity is T ′
1 + T ′

3 + T ′
4 =

6
26 · 2

111.78 + 2110.86 + 2108 ≈ 2111.51 26-round encryptions and T ′
2 = 2115.78

memory accesses.
We obtain that ϵ is 1 memory access with the method of the pre-construct

hash table. Thence, the time complexity is T ′
1 + T ′

4 = 6
26 · 2

111.78 + 2108 = 2110.06

26-round encryptions and T ′
2 + T ′

3 = 2115.78 + 2113.56 ≈ 2116.06 memory accesses.

B Rectangle key recovery attack on GITF-128

The 19-round related-key rectangle distinguisher of GIFT-128 [16]:

α = 00000000000000a00000000060000000,

δ = 00200000000000000000004000002020.

with:

∆K = 8000 0000 0000 0000 0000 0000 0002 0000,

∇K = 0000 0000 0000 0000 0002 0000 0002 0000.

The probability of this distinguisher is Pd = 2109.626. As shown in Table 9,
The unknown state difference is distributed in ∆X2[23 : 20], ∆X2[119 : 116] and
∆X2[123 : 120]. The subkey bits involved in the forward expansion round are
k5[14], k1[14], k5[13], k1[13], k4[5], and k0[5].

21

Table 9: The 23-round related-key rectangle attack on GIFT-128. For round r, ∆Xr

and ∆Yr are the input and output differences of the S-boxes, and ∆Zr is the output
difference of the linear layer. r ∈ {1, 2, ..., 23}

input
0000 0000 0000 0000 11?? ???? ???? ???? ???? ???? ???? ???? 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 11?? 0000 0000 0000 0000

∆Y1
0000 0000 0000 0000 0100 00?0 000? 1000 ?100 0??0 00?? ?00? 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000

∆Z1
0000 11?? ?1?? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000

∆X2
0000 11?? ?1?? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000

∆Y2
0000 0100 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

∆Z2
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000

∆X3(α) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000
0000 0000 0000 0000 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000

:

∆X22(δ) 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000 0000 0010 0000 0010 0000

∆Y22
0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 ???1 0000 0000 0000 0000 0000 ???? 0000 ???? 0000

∆Z22
000? 0000 0000 0000 0000 0001 0000 0?0? ?000 0000 0000 0000 0000 ?000 0000 ?0?0
0?00 0000 0000 0000 0000 0?00 0000 0?0? 00?0 0000 0000 0000 0000 00?0 0000 ?0?0

∆X23
000? 0000 0010 0000 0000 0001 0000 0?0? ?000 0000 0000 0000 0000 ?000 0000 ?0?0
0?00 0000 0000 0000 0000 0?00 0000 0?0? 00?0 0000 0000 0000 0000 00?0 0000 ?0?0

∆Y23
???? 0000 ???? 0000 0000 ???? 0000 ???? ???? 0000 0000 0000 0000 ???? 0000 ????
???? 0000 0000 0000 0000 ???? 0000 ???? ???? 0000 0000 0000 0000 ???? 0000 ????

∆Z23
0?0? ?0?0 0?00 ?0?0 0?00 ?0?0 0?00 ?0?0 ?0?0 0?0? 00?0 0?0? 00?0 0?0? 00?0 0?0?
0?0? ?0?0 000? ?0?0 000? ?0?0 000? ?0?0 ?0?0 0?0? ?000 0?0? ?000 0?0? ?000 0?0?

output
0?0? ?0?0 0?00 ?0?0 0?00 ?0?0 0?00 ?0?0 ?0?0 0?0? 00?0 0?0? 00?0 0?0? 00?0 0?0?
0?0? ?0?0 000? ?0?0 000? ?0?0 000? ?0?0 ?0?0 0?0? ?000 0?0? ?000 0?0? ?000 0?0?

Ji et al. [16] guessed all these 6-bit subkeys involved in ∆X2. By applying
filters GS(X2[23 : 20])⊕GS(∆X2[23 : 20]⊕X2[23 : 20]) = ∆Y2[23 : 20] = 1000,
GS(X2[119 : 116])⊕GS(∆X2[119 : 116]⊕X2[119 : 116]) = ∆Y2[119 : 116] = 0010,
and GS(X2[123 : 120])⊕GS(∆X2[123 : 120]⊕X2[123 : 120]) = ∆Y2[123 : 120] =
0100, they obtained 9 filtering bits, which are highlighted in red in Table 9. The
parameters they used were rb = 9, mb = m′

b = 6, so r∗
b = 0; rf = 52, mf = 34,

m′
f = 0, so r∗

f = 52; s = 2 and h = 22, yielding y =
√

s · 2n/2−rb/Pd = 2110.31

and D = y · 2rb = 2119.31.
However, they overlooked the time consumption of partial encryption and

decryption. To recalculate the time complexity based on their parameters: T0 =
4 · D = 2121.31 encryptions, T1 = 2m′

b+m′
f · 4 · D = 2127.31 partial encryptions,

T2 = 2m′
b+m′

f · 2 · D · 2r∗
b = 2126.31 memory accesses, and T3 = 2m′

b+m′
f · D2 ·

22rb+2r∗
f −2n · ϵ = 292.62 encryptions using the guess and filter method, where

ϵ = 4 · 22/23 ≈ 2−0.52 encryptions. Additionally, T4 = 2m′
b+m′

f +k−m′
b−m′

f −h =
2k−h = 2106 encryptions. The total time complexity is T0 + T1 + T3 + T4 =
2121.31 + 2127.31 · 4/26 + 292.62 + 2106 ≈ 2124.72 encryptions and T2 = 2126.31

memory accesses.
We chose to guess only 4 subkey bits involved in the forward expansion

round, namely k5[13], k1[13], k4[5], and k0[5]. By applying the filter GS(X2[23 :
20])⊕GS(∆X2[23 : 20]⊕X2[23 : 20]) = ∆Y2[23 : 20] = 1000 and GS(X2[119 :
116]) ⊕ GS(∆X2[119 : 116] ⊕ X2[119 : 116]) = ∆Y2[119 : 116] = 0010, we

22

obtained 7 filtering bits. Therefore, m′
b = 4, r′

b and r∗
b = 9 − 7 = 2, the

rest of the parameters are the same as [16]. The time complexities of this
attack are T0 = 4 · D = 2121.31 encryptions, T1 = 2m′

b+m′
f · 4 · D = 2125.31

partial encryptions, T2 = 2m′
b+m′

f · 2 · D · 2r∗
b = 2126.31 memory accesses, and

T3 = 2m′
b+m′

f ·D2 · 22r+
b

2r∗
f −2n · ϵ = 294.62 encryptions using the guess and filter

method, where ϵ = 4 · 22/23 ≈ 2−0.52 encryptions. The total time complexity is
T0 + T1 + T3 + T4 = 2121.31 + 2125.31 · 4/26 + 294.62 + 2106 ≈ 2123.1 encryptions,
and T2 =2126.31 memory accesses.

References
1. Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S.M., Tischhauser, E., Todo,

Y.: SUNDAE-GIFT. In: Submission to the NIST Lightweight Cryptography project
(2019)

2. Banik, S., Chakraborti, A., Inoue, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin,
T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB. In: Cryptology ePrint Archive
(2020)

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10529, pp. 321–345. Springer
(2017). https://doi.org/10.1007/978-3-319-66787-4_16, https://doi.org/10.
1007/978-3-319-66787-4_16

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint
Arch. 2013, 404 (2013)

5. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the
serpent. In: Pfitzmann, B. (ed.) Advances in Cryptology - EUROCRYPT 2001,
International Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding. Lecture Notes in Com-
puter Science, vol. 2045, pp. 340–357. Springer (2001). https://doi.org/10.1007/
3-540-44987-6_21, https://doi.org/10.1007/3-540-44987-6_21

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563, https://doi.
org/10.1007/BF00630563

7. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and
AES-256. In: Matsui, M. (ed.) Advances in Cryptology - ASIACRYPT 2009, 15th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Tokyo, Japan, December 6-10, 2009. Proceedings. Lecture Notes
in Computer Science, vol. 5912, pp. 1–18. Springer (2009). https://doi.org/10.
1007/978-3-642-10366-7_1, https://doi.org/10.1007/978-3-642-10366-7_1

8. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
International workshop on cryptographic hardware and embedded systems. pp.
450–466. Springer (2007)

9. Chakraborti, A., Datta, N., Jha, A., Lopez, C.M., Nandi, M., Sasaki, Y.: LOTUS-
AEAD and LOCUS-AEAD. In: Submission to the NIST Lightweight Cryptography
project (2019)

23

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-10366-7_1

10. Chakraborti, A., Datta, N., Jha, A., Nandi, M.: HYENA. In: Submission to the
NIST Lightweight Cryptography project (2019)

11. Chen, L., Wang, G., Zhang, G.: MILP-based related-key rectangle attack and its
application to GIFT, Khudra, MIBS. Comput. J. 62(12), 1805–1821 (2019). https:
//doi.org/10.1093/comjnl/bxz076, https://doi.org/10.1093/comjnl/bxz076

12. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity
table: A new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part II. Lecture Notes in Computer Science, vol. 10821,
pp. 683–714. Springer (2018). https://doi.org/10.1007/978-3-319-78375-8_22,
https://doi.org/10.1007/978-3-319-78375-8_22

13. Derbez, P., Euler, M., Fouque, P., Nguyen, P.H.: Revisiting related-key boomerang
attacks on AES using computer-aided tool. In: Agrawal, S., Lin, D. (eds.) Advances
in Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, December
5-9, 2022, Proceedings, Part III. Lecture Notes in Computer Science, vol. 13793, pp.
68–88. Springer (2022). https://doi.org/10.1007/978-3-031-22969-5_3, https:
//doi.org/10.1007/978-3-031-22969-5_3

14. Dong, X., Qin, L., Sun, S., Wang, X.: Key guessing strategies for linear key-schedule
algorithms in rectangle attacks. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May
30 - June 3, 2022, Proceedings, Part III. Lecture Notes in Computer Science, vol.
13277, pp. 3–33. Springer (2022). https://doi.org/10.1007/978-3-031-07082-2_
1, https://doi.org/10.1007/978-3-031-07082-2_1

15. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: Milp-based automatic search algorithms
for differential and linear trails for speck. In: Fast Software Encryption: 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised
Selected Papers 23. pp. 268–288. Springer (2016)

16. Ji, F., Zhang, W., Zhou, C., Ding, T.: Improved (related-key) differential cryptanal-
ysis on GIFT. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) Selected Areas in
Cryptography - SAC 2020 - 27th International Conference, Halifax, NS, Canada
(Virtual Event), October 21-23, 2020, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 12804, pp. 198–228. Springer (2020). https://doi.org/10.
1007/978-3-030-81652-0_8, https://doi.org/10.1007/978-3-030-81652-0_8

17. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Schneier, B. (ed.) Fast Software Encryption,
7th International Workshop, FSE 2000, New York, NY, USA, April 10-12,
2000, Proceedings. Lecture Notes in Computer Science, vol. 1978, pp. 75–93.
Springer (2000). https://doi.org/10.1007/3-540-44706-7_6, https://doi.org/
10.1007/3-540-44706-7_6

18. Li, C., Wu, B., Lin, D.: Generalized boomerang connectivity table and improved
cryptanalysis of gift. In: International Conference on Information Security and
Cryptology. pp. 213–233. Springer (2023)

19. Liu, Y., Sasaki, Y.: Related-key boomerang attacks on GIFT with automated trail
search including BCT effect. In: Jang-Jaccard, J., Guo, F. (eds.) Information Security
and Privacy - 24th Australasian Conference, ACISP 2019, Christchurch, New
Zealand, July 3-5, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11547,

24

https://doi.org/10.1093/comjnl/bxz076
https://doi.org/10.1093/comjnl/bxz076
https://doi.org/10.1093/comjnl/bxz076
https://doi.org/10.1093/comjnl/bxz076
https://doi.org/10.1093/comjnl/bxz076
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-031-22969-5_3
https://doi.org/10.1007/978-3-031-22969-5_3
https://doi.org/10.1007/978-3-031-22969-5_3
https://doi.org/10.1007/978-3-031-22969-5_3
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-030-81652-0_8
https://doi.org/10.1007/978-3-030-81652-0_8
https://doi.org/10.1007/978-3-030-81652-0_8
https://doi.org/10.1007/978-3-030-81652-0_8
https://doi.org/10.1007/978-3-030-81652-0_8
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-44706-7_6

pp. 555–572. Springer (2019). https://doi.org/10.1007/978-3-030-21548-4_30,
https://doi.org/10.1007/978-3-030-21548-4_30

20. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using
mixed-integer linear programming. In: Information Security and Cryptology: 7th
International Conference, Inscrypt 2011, Beijing, China, November 30–December 3,
2011. Revised Selected Papers 7. pp. 57–76. Springer (2012)

21. Sasaki, Y.: Integer linear programming for three-subset meet-in-the-middle attacks:
Application to GIFT. In: Inomata, A., Yasuda, K. (eds.) Advances in Information
and Computer Security - 13th International Workshop on Security, IWSEC 2018,
Sendai, Japan, September 3-5, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11049, pp. 227–243. Springer (2018). https://doi.org/10.1007/
978-3-319-97916-8_15, https://doi.org/10.1007/978-3-319-97916-8_15

22. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects: Revealing structural properties of several ciphers. In: Advances
in Cryptology–EUROCRYPT 2017: 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30–May
4, 2017, Proceedings, Part III 36. pp. 185–215. Springer (2017)

23. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008). https://doi.org/10.1007/s00145-007-9013-7,
https://doi.org/10.1007/s00145-007-9013-7

24. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited. applica-
tion to SKINNY and AES. IACR Trans. Symmetric Cryptol. 2019(1), 118–141
(2019). https://doi.org/10.13154/tosc.v2019.i1.118-141, https://doi.org/
10.13154/tosc.v2019.i1.118-141

25. Song, L., Zhang, N., Yang, Q., Shi, D., Zhao, J., Hu, L., Weng, J.: Optimizing
rectangle attacks: a unified and generic framework for key recovery. In: Advances
in Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory
and Application of Cryptology and Information Security, Taipei, Taiwan, December
5–9, 2022, Proceedings, Part I. pp. 410–440. Springer (2023)

26. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear
characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 2021(1),
269–315 (2021). https://doi.org/10.46586/tosc.v2021.i1.269-315, https://
doi.org/10.46586/tosc.v2021.i1.269-315

27. Sun, L., Wang, W., Wang, M.: Improved attacks on GIFT-64. In: AlTawy, R.,
Hülsing, A. (eds.) Selected Areas in Cryptography - 28th International Conference,
SAC 2021, Virtual Event, September 29 - October 1, 2021, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 13203, pp. 246–265. Springer
(2021). https://doi.org/10.1007/978-3-030-99277-4_12, https://doi.org/10.
1007/978-3-030-99277-4_12

28. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation
and (related-key) differential characteristic search: application to simon, present,
lblock, des (l) and other bit-oriented block ciphers. In: Advances in Cryptology–
ASIACRYPT 2014: 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, ROC, December 7-11,
2014. Proceedings, Part I 20. pp. 158–178. Springer (2014)

29. Wagner, D.A.: The boomerang attack. In: Knudsen, L.R. (ed.) Fast Software
Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1636, pp. 156–
170. Springer (1999). https://doi.org/10.1007/3-540-48519-8_12, https://
doi.org/10.1007/3-540-48519-8_12

25

https://doi.org/10.1007/978-3-030-21548-4_30
https://doi.org/10.1007/978-3-030-21548-4_30
https://doi.org/10.1007/978-3-030-21548-4_30
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/s00145-007-9013-7
https://doi.org/10.1007/s00145-007-9013-7
https://doi.org/10.1007/s00145-007-9013-7
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.46586/tosc.v2021.i1.269-315
https://doi.org/10.1007/978-3-030-99277-4_12
https://doi.org/10.1007/978-3-030-99277-4_12
https://doi.org/10.1007/978-3-030-99277-4_12
https://doi.org/10.1007/978-3-030-99277-4_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12

30. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying milp method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Advances in Cryptology–ASIACRYPT 2016: 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I 22. pp. 648–678. Springer (2016)

31. Yu, Q., Qin, L., Dong, X., Jia, K.: Improved Related-Key Rectangle Attacks On
GIFT. The Computer Journal p. bxad071 (07 2023). https://doi.org/10.1093/
comjnl/bxad071, https://doi.org/10.1093/comjnl/bxad071

32. Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle
attacks on block ciphers with linear key schedule: applications to SKINNY and
GIFT. Des. Codes Cryptogr. 88(6), 1103–1126 (2020). https://doi.org/10.1007/
s10623-020-00730-1, https://doi.org/10.1007/s10623-020-00730-1

26

https://doi.org/10.1093/comjnl/bxad071
https://doi.org/10.1093/comjnl/bxad071
https://doi.org/10.1093/comjnl/bxad071
https://doi.org/10.1093/comjnl/bxad071
https://doi.org/10.1093/comjnl/bxad071
https://doi.org/10.1007/s10623-020-00730-1
https://doi.org/10.1007/s10623-020-00730-1
https://doi.org/10.1007/s10623-020-00730-1
https://doi.org/10.1007/s10623-020-00730-1
https://doi.org/10.1007/s10623-020-00730-1

	Improving the Rectangle Attack on GIFT-64

