
Quantum Lattice Enumeration
in Limited Depth

Nina Bindel1, Xavier Bonnetain2, Marcel Tiepelt3, and Fernando Virdia4

1 SandboxAQ, Palo Alto, CA, USA, nina.bindel@sandboxaq.com
2 Université de Lorraine, CNRS, Inria, Nancy, France, xavier.bonnetain@inria.fr

3 KASTEL, Karlsruhe Institute of Technology, Karlsruhe, Germany,
marcel.tiepelt@kit.edu

4 NOVA LINCS, DI, FCT, Univerisdade NOVA de Lisboa, Portugal,
f.virdia@gmx.com

Abstract In 2018, Aono et al. (ASIACRYPT 2018) proposed to use
quantum backtracking algorithms (Montanaro, TOC 2018; Ambainis and
Kokainis, STOC 2017) to speedup lattice point enumeration. Quantum
lattice sieving algorithms had already been proposed (Laarhoven et al.,
PQCRYPTO 2013), being shown to provide an asymptotic speedup over
classical counterparts, but also to lose competitivity at relevant dimen-
sions to cryptography if practical considerations on quantum computer
architecture were taken into account (Albrecht et al., ASIACRYPT 2020).
Aono et al.’s work argued that quantum walk speedups can be applied to
lattice enumeration, achieving at least a quadratic asymptotic speedup
à la Grover search while not requiring exponential amounts of quantum
accessible classical memory, as it is the case for sieving. In this work, we
explore how to lower bound the cost of using Aono et al.’s techniques on
lattice enumeration with extreme cylinder pruning assuming a limit to
the maximum depth that a quantum computation can achieve without
decohering, with the objective of better understanding the practical ap-
plicability of quantum backtracking in lattice cryptanalysis.

Keywords: quantum cryptanalysis · lattice enumeration · post-quantum cryp-
tography · quantum circuits

1 Introduction

Cryptographic constructions based on the hardness of computational problems
over algebraic lattices have achieved significant popularity in recent years. Part
of the reason for this popularity is the conjectured security of protocols built
on them against quantum adversaries, due to the apparent hardness of lattice
problems against quantum attacks.

The state-of-the-art attacks on lattice problems usually involve the use of
lattice reduction techniques, with block reduction algorithms being the most
popular choice [73,74,22,14,54,6,31]. The leading cost of block lattice reduc-
tion (and therefore, often, of the attacks overall) comes from solving instances

of the (approximate [50,4]) shortest vector problem (SVP) in high dimension.
The leading choice for (approximate) SVP solvers are lattice point enumera-
tion [43,28,32,22,13,3] and lattice point sieving [2,58,48,16,6] algorithms. Due
to the central role these algorithms play in the cryptanalysis of lattice-based
cryptosystems [51,9,5] and because multiple soon-to-be post-quantum standards
are lattice-based [75,52,64], it is crucial to have a clear understanding of their
cost.

Enumeration and sieving are originally classical algorithms, with asymptot-
ically different classical runtime (namely, 2O(n logn) for enumeration and 2O(n)

for sieving) and memory cost (namely, O(poly(n)) for enumeration and 2O(n) for
sieving). Several quantum speedups on sieving have been proposed [49,44,20,18].
These algorithms improve upon their classical counterparts using a quantum
search or a quantum walk to speed up nearest neighbour subroutines in sieving
algorithms. Quantum speedups for enumeration have recevied significantly less
attention. Hypothetical quadratic quantum speedups on enumeration were first
suggested in [70]. Aono, Nguyen, and Shen [13] demonstrated them by leveraging
quantum backtracking techniques [55,10] on the enumeration tree constructed
internally as part of enumeration.

While applicability of these speedups appears clear in the unbounded-depth
logical-qubit model, where quantum computation achieves low error rates for
free and does not decohere, our current understanding of quantum computer
engineering suggests that this model may be overly optimistic for hypothetical
real-world quantum adversaries [63]. For example, Albrecht et al. [7] investig-
ate the impact of error correction on quantum lattice sieving, determining that
achieving even small quantum speedups over classical sieving in the cryptanalytic
regime requires making several optimistic algorithmic and physical assumptions.
We are currently not aware of any similar work on the validity of quantum
speedups on enumeration in similarly constrained models.

Our contributions. In this paper, we set to investigate whether quantum spee-
dups on lattice enumeration [13] apply to enumeration with extreme cylinder
pruning in the limited quantum depth setting. In this setting, we assume the
availability of error-corrected logical qubits and quantum-accessible classical
memory (QRACM) [34,47,40]. However, we also assume a limit MaxDepth to
the depth that a quantum circuit can achieve. Computations with higher depth
than MaxDepth are assumed to decohere, returning noise.

This setting has been proposed by the National Institute of Standards and
Technology (NIST) in their Call for Proposals for post-quantum key encap-
sulation and digital signatures [60, Sec. 4.A.5]. NIST proposes three different
values for MaxDepth, capturing different run-times and quantum computing
technology, and propose costs for key-search attacks against block ciphers and
collision-search attacks for hash functions in this setting. For our experimental
evaluation, we adopt the same MaxDepth limitations, and investigate their ef-
fect on quantum enumeration with cylinder pruning, using CRYSTALS-Kyber,
the KEM candidate selected for standardisation by NIST, as a case-study.

2

As our initial results suggest that enumeration trees constructed when at-
tacking Kyber are mostly too large to be directly enumerated quantumly when
MaxDepth is considered, we propose a combined classical-quantum enumera-
tion algorithm that allows the use of any available amount of quantum compu-
tation, regardless of quantum depth budget limits. We provide a detailed yet
generous-to-the-adversary analysis of the runtime costs of this combined attack
in terms of quantum depth and number of gates, which we then use to estimate
a lower bound on the cost of attacking Kyber.

Our results for combined classical-quantum enumeration suggest that cur-
rent quantum enumeration with cylinder pruning techniques are unlikely to
provide practical speedups against cryptographic instances of lattice problems
in a MaxDepth setting. In particular, we identify that unless the distribution
of the number of nodes in lattice enumeration trees is subject to significant a
Jensen’s gap (cf. Def. 1), schemes such as Kyber-768 and Kyber-1024 are likely
unaffected by quantum backtracking, even at MaxDepth = 296. The case for
Kyber-512 is slightly more nuanced. Indeed, in our model analysis we adopt
strict enough lower bounds that quantum speedups appear potentially plausible.
However, we emphasize that this does not result in “breaks” or contradictions to
Kyber’s claims: First, our analysis is excessively generous when underestimating
predictable overheads, and second, the Kyber team claims Kyber-512 to be no
less secure than AES-128. Black-box quantum speedups are known to apply to
the latter for high enough values of MaxDepth, so it would not necessarily be
surprising or problematic if analogous speedups were to apply to Kyber-512 too.

In order to produce coherent numbers and not overestimate costs, we attempt
to use lower bounds for all quantities. This is not always possible though, and
we highlight this in the main body where most appropriate from context, in the
form of Simpl. Assms. 1 to 3.

As part of our analysis, we also provide some minor results in the analysis
of the structure of non-pruned lattice enumeration trees, which we report in the
Supplementary Material, accompanied by matching experiments. We have made
our source code used to produce or experimental results, tables, and plots pub-
licly available at https://github.com/mtiepelt/QuantumLatticeEnumeration.

Related work. The limited quantum depth budget has been explored in the case
of Grover’s algorithm against AES and LowMC by Jaques et al. [39]. Follow-up
work focused on both optimizing the Grover search oracles [79], and improving
the search algorithm [24]. Albrecht et al. [7] investigated the cost of quantum
nearest neighbour search for lattice sieving in the non-free error correction set-
ting. Most significantly, Ambainis and Kokainis [10] expanded on the work of
Montanaro [55] by developing a tree size estimation algorithm and applying it
to quantum backtracking to obtain an algorithm that performs as a classical
algorithm would in the worst case, resulting in meaningul speedups in the case
where the expected size of the trees being enumerated is much lower than the
upper bound. We do not consider this algorithm as in lattice enumeration we
experimentally observe the average tree sizes to closely match the analysis that
we use as upper bound.

3

https://github.com/mtiepelt/QuantumLatticeEnumeration

Open directions. Our work suggests further work in various directions. First,
more careful (and hence less generous) designs of quantum circuits used for
quantum backtracking. Second, the extension of this work to other pruning tech-
niques, such as discrete pruning [13]. Third, the analysis of the multiplicative
Jensen gap (c.f. Def. 1) on lattice enumeration trees.

Roadmap. In § 2 we cover preliminaries. In § 3 we describe our lower bounds on
the cost of combined classical-quantum enumeration. In § 4 we estimate the cost
of the core circuit used in quantum enumeration. In § 5 we estimate our cost
lower bounds applied to the primal lattice attack on Kyber.

2 Preliminaries

We denote the set of integers by Z and the set of real numbers by R. We denote
by log logarithms in base 2. We define [m] := {1, ...,m}. Furthermore, we write
the absolute value of c ∈ R as |c|, the Euclidean norm of v ∈ Rn as ||v|| =
(v21 + · · ·+ v2n)

1/2 and the inner product of v, w ∈ Rn as v ·w. Given a finite set
S, we denote by U(S) the uniform distribution over S, and write s ∼ U(S) for an
element being uniformly distributed in S. To describe asymptotic complexities,
we write O(·) for the big-oh and Ω(·) for the big-omega notation.

2.1 Lattices

An n-dimensional lattice Λ is a discrete, additive subgroup of (Rn,+), generated
by a set of linearly independent vectors B = (b1, . . . , br) ∈ Rn×r, bi ∈ Rn called a
basis. We consider full-rank integer lattices Λ = {

∑r
i=1 bici | ci ∈ Z} ⊆ Zn with

r = n and denote B∗ the result of performing Gram-Schmidt orthogonalization
on B. We let λ1(Λ) = minv∈Λ\{0} ||v|| denote the first minimum of the lattice.
Furthermore, the projection πB,i : Λ→ span(b1, · · · , bi−1)

⊥ maps a lattice point
onto the span orthogonal to the vector space spanned by b1, . . . , bi−1. We omit
the subscript B and write πi(·) when the basis being used is clear from context.
Given a lattice Λ of rank n, the set πi(Λ) = {πi(v) | v ∈ Λ} is itself a lattice in
Rn−i+1. We sometimes refer to such lattices as projective sublattices.

Lattice enumeration. Given an input basisB of Λ and an upper bound λ1(Λ) ≤ R
(e.g., R = ||b∗1||), lattice enumeration finds a vector v ∈ Λ such that ||v|| ≤ R.
The procedure performs a depth-first-search on a tree consisting of an “empty
node” root on level k = 0, and the set of projected lattice points of norm at most
R in πn−k+1(Λ) on level k > 0. The leaves of the tree on level k = n are lattice
points of norm at most R.

As originally proposed, enumeration algorithms iterated over a tree span-
ning the complete intersection of the lattice with a ball of radius R around the
origin [62,43,29,71]. Modern variants restrict the search space by introducing a
branch-and-bound methodology, pruning the tree based on a heuristic bound on
the norm ||πi(v)|| of the target’s orthogonal projections [32,53,3]. This slightly

4

reduces the success probability p of the algorithm, since the short vector may
be erroneously pruned from the tree, introducing a trade-off between faster tra-
versal speed on the smaller tree versus having to re-run the procedure O(p−1)
times on re-randomised versions of the lattice basis. In this work, we focus on
the extreme cylinder pruning variant originating from [71, Alg. ENUM] used in
[32], with pruning bounds Rk for each level k of the search tree.

Enumeration trees. The key observation behind lattice enumeration algorithms
is that orthogonal projections cannot increase the norm of a vector. This means,
for a lattice Λ with basis B = (b1, . . . , bn), shortest vector v, and sufficiently
large R, that R ≥ ||v|| = ||π1(v)|| ≥ ||π2(v)|| ≥ · · · ≥ ||πn(v)|| ≥ 0, with πi(v)
living in a (n−i+1)-dimensional subspace of Rn. Thus, to enumerate vectors
in Λ of norm at most R, it is sufficient to enumerate vectors in the lower-rank
projections πi(Λ) for i ≤ n, discarding guesses for πi(v) if they are too long.
Starting from i = n, suppose πn(v) = gn is guessed correctly for some vector
gn ∈ πn(Λ).1 The enumeration algorithm then attempts to extend this into a
guess gn−1 ∈ πn−1(Λ) for πn−1(v) such that πn(gn−1) = gn. If ||gn−1|| ≤ R,2 one
proceeds similarly trying to extend gn−1 into a guess for gn−2 for πn−2(v) and
so on; else one attempts to find a different guess g′n−1 ̸= gn−1 for πn−1(v) that is
short enough, and if no such vector exists one aborts the search in πn−1(Λ) and
attempts to extend a different guess g′n ̸= gn for πn(v). Every guess gi for πi(v)
of norm at most R becomes a node in the enumeration tree. A node gi is the child
of some guess gi+1 for πi+1(v) such that πi+1(gi) = gi+1. Moreover, every node
gi is the parent of guesses {gi−1 ∈ πi−1(Λ) | πi(gi−1) = gi} for πi−1(v). Careful
computation using the Gram-Schmidt vectors B∗ = (b∗1, . . . , b

∗
n) and coefficients

µi,j = bi · b∗j/||b∗j ||2 for i > j, shows that given a lattice vector v =
∑n

i=1 cibi
where ci ∈ Z for all i, its projections are of the form πj(v) =

∑n
i=j αib

∗
i where

αj = cj +
∑

i>j µi,j ci. By orthogonality of the (b∗i)i, we have ||πj(v)||2 =

|αj |2||b∗j ||2 + ||πj+1(v)||2. Hence, for any guess gj+1 for πj+1(v), a guess gj for
πj(v) with πj+1(gj) = gj+1 must satisfy |αj |2 ≤ (R2 − ||πj+1(v)||2)/||b∗j ||2, i.e.,

∣∣∣cj+∑
i>j

µi,j ci

∣∣∣ ≤
√
R2−||πj+1(v)||2

||b∗j ||
=

√√√√R2−
n∑

r=j+1

(
cr+

n∑
i=r+1

µi,rci

)2

||b∗r ||2

||b∗j ||
. (1)

Remark 1. In the case of pruned enumeration, the main difference in the process
is that we are given a pruning set {Ri | i ∈ [n], 0 < R1 ≤ · · · ≤ Rn = R} rather
than a single bound R, with Rn−j+1 replacing R in Eq. (1).

1 Since lattices are symmetrical around the origin, in practice implementations con-
sider only half of the possible guesses for πi(v).

2 To unburden notation, we temporarily consider the non-pruned case, where Rk = R
for all k.

5

Expected cost of enumeration. The cost of enumeration is typically estimated
to be equal to the number of nodes visited by the algorithm—the “enumeration
tree”. Let Zk be the set of nodes on the kth level of the tree (that is, at distance
k from the empty root node), Hk be the expected cardinality of Zk over the
distribution of random bases being enumerated, and N the total number of
nodes in the tree. The cardinality of Zk depends on the pruning strategy and
on the geometry of the projective sublattices implied by the lattice bases. The
expected number of total nodes is E[N] = 1

2

∑n
k=1 E[|Zk|] = 1

2

∑n
k=1 Hk, where

the expectation is taken over the distribution from which the lattice is being
sampled, and the 1/2 factor is due to exploiting lattices’ additive symmetry to
avoid unnecessarily visiting half of the tree. Cost estimation for the algorithm
then reduces to estimating Hk. This is a standard computation that we perform
in detail in App. A, closely following [32,12].

Solving LWE via lattice reduction. Learning with errors (LWE) [66,67] is a pop-
ular hardness assumption for constructing post-quantum secure primitives, such
as Kyber [75]. One of the main approaches to solving LWE is via block lattice
reduction algorithms, such as BKZ [73,74]. After building a lattice embedding
of dimension n of a given LWE challenge, block reduction algorithms will call
O(poly(n)) many times a shortest vector problem (SVP) solver, such as lattice
enumeration, in dimension in dimension β < n. This process results in a better
basis for the LWE lattice embedding, that allows the attacker to recover the
LWE challenge secret. In our work we consider modern versions of BKZ using
early-termination and approximate-SVP solvers, which have been shown [50,4]
to be effective while requiring to find a “short enough” lattice vector, rather than
the shortest. In order to go from a LWE challenge to an embedding and a choice
of BKZ block size β, we use the lwe-estimator [8].

2.2 Quantum algorithms

We denote quantum states in the Hilbert space H with Greek letters |φ⟩ , |ϕ⟩ , |ψ⟩,
and registers as lower case letters |a⟩. We denote by Id the identity operator.

Quantum backtracking. Backtracking search is a depth-first-search algorithm
that allows exhaustively finding “marked” leaves on trees. Given a tree T of height
n, we partition the set of nodes into levels 1 ≤ k ≤ n, based on their distance
from the root node r. Every node x ∈ T then corresponds to a partial assignment
to a set of variables x1, . . . , xn identifying a path to the node, using ∗ to mark
yet unassigned values. For example, the root node r is labelled (∗, . . . , ∗), nodes
on level k = 1 are labelled (∗, . . . , ∗, x̃n) for some values of x̃n, and so forth. The
backtracking algorithm needs to be provided an oracle for a predicate function
P : T → {True,False, Indeterminate} that given a node returns True if
it is a marked leaf, False if it can be determined that the node cannot be on
the path to a marked leaf, and Indeterminate otherwise. Lattice enumeration
algorithms are backtracking algorithms with a predicate PR(v) returning False

6

Quantum backtracking
[55, Alg. 2 and §2.3] FindMV DetectMV QPE W := RARB

DF(T) times QD(T) times WQ(T,W) times

Quantum circuit

Figure 1: Overview of Montanaro’s marked vertex (MV) finding backtracking
algorithm [55]. Only part of the algorithm needs to run within MaxDepth.

if ||πi(v)|| > R, Indeterminate if ||πi(v)|| ≤ R for i < n and no other value
||πj(v)|| is known with j < i, and True if ||π1(v)|| = ||v|| ≤ R.3

In [55], Montanaro introduced quantum backtracking algorithms for detect-
ing [55, Alg. 2] and returning [55, § 2.3] marked vertices in a tree, both achieving
an asymptotic speedup over classical backtracking. We depict their main sub-
procedures in Fig. 1. Both of these algorithms are based on a common quantum
walk, QPE(W), where W is the operator that corresponds to a single step of the
quantum walk using the predicate PR to decide if a node is marked.

Then the quantum walk can be seen as a quantum phase estimation (QPE)
which consecutively applies WQ(T ,W) many times W to a state corresponding
to a superposition of the nodes in the backtracking tree T . By the proof of [55,
Lem. 2.4], the eigenvectors of W are the states that admit a path from the root
to a marked node. Measuring the root node after a sufficient number of steps
allows to identify whether a path to a marked node exists with false positive
probability ≤ 1/4 and false negative probability ≤ 1/2.

The detection algorithm DetectMV [55, Alg. 2] consists of repeating K :=
⌈ε log(1/δDMV)⌉ many times QPE, for some constant ε > 0, to output “marked
node exists” or “no marked node exists” with a failure probability of at most
δDMV. We determine bounds on values for ε and δDMV in § 3.1 (with a more
detailed analysis in App. F) and refer to the resulting number of calls to the
QPE within DetectMV as QD(T).

Theorem 1 ([55, Theorem 1.2], abridged). Let T be a backtracking tree of
size at most #T u with degree O(1). Let P(x) be a predicate that returns True
if and only if x is a marked node. For any 0 < δDMV < 1, DetectMV outputs
“marked node exists” if there exists x ∈ T such that P(x) = True and “marked
node does not exist” otherwise, with failure probability at most δDMV. The al-
gorithm performs O

(√
#T un log(1/δ)

)
evaluations of P, using poly(n) qubits.

For the algorithm returning a marked node in T , FindMV [55, § 2.3], Montanaro
suggests to perform classical depth-first-search on T by using DetectMV as a
predicate. DetectMV would be called on the children ci of the root node, until
one on the subtrees rooted at ci, for some i, returns “marked node exists”. It
would then proceed to search for a child of ci spawning a subtree with a marked
node, and so on, until reaching a marked leaf. For a tree of height n with nodes
having at most d children, FindMV will call O(nd) times DetectMV, in the
worst case. We will determine the concrete number of calls (denoted by DF(T))

3 The pruned enumeration case replaces R with Rn−i+1, cf. Rmk. 1.

7

in § 3.1. If no upper bound on the number of nodes of T is known, the search can
be repeated with growing values of #T u = 20, 21, 22, . . . , resulting in an addi-
tional runtime factor of O(log#T). Montanaro also shows that overestimating
the tree-size does not affect the quantum walk’s success probability.

Quantum backtracking for lattice enumeration. Aono et al. [13] analyze the
asymptotic cost of using quantum backtracking algorithms to perform lattice
enumeration in a black-box setting. In [13, Thm. 7(1)], they identify the asymp-
totic runtime for finding a short non-zero vector using cylinder pruning and
poly(n) many qubits to be O

(√
#T n3 poly(log(1/δ), log n)

)
. In [13, Sec 4.2]

they argue that this holds also when performing extreme pruning with M ran-
domized lattice bases (Bi)i≤M , by collecting each enumeration tree into a larger,
single tree, resulting in an asymptotic runtime for finding a non-zero vector via
quantum extreme pruning of O

(√
#T Mn3b poly(log n, log(1/δ), log(b), logM)

)
,

where b is the bit-size of the entries of Bi, for i ∈ [M] and #T M is the sum of
the number of nodes of all M trees.

2.3 Cost metrics for quantum circuits

Circuit depth. Given a circuit instantiating a quantum algorithm using a given
set of gates, a common metric to measure its cost is the circuit’s depth. This can
be defined as the longest path from the input state to the output state, if the cir-
cuit is considered as a directed graph with quantum gates as nodes. Circuit depth
can be seen as an analogous measure to the runtime of a classical computation,
by considering that applying a gate must take a non-zero amount of time, and
is therefore often used to express the asymptotic cost of quantum algorithms, as
independent quantum gates could be applied in parallel. In this paper, we make
two crucial assumptions regarding circuit depth. First, we exclusively measure
T-depth, that is the circuit depth when only taking into consideration T gates,
as preparation of these is expected to be the most time-consuming part of prac-
tical quantum computation [42,30]. Second, we investigate the cost of quantum
enumeration when imposing a limit MaxDepth to the maximum depth a cir-
cuit can achieve while maintaining state coherence. This consideration follows
from observing that currently state decoherence seems to be one of the main
hurdles to achieving large-scale quantum computation. As part of the call for
proposals for its post-quantum cryptography standardization process, NIST [60]
proposed the three possible values of 240, 264, or 296 for MaxDepth. This lim-
itation means that care should be paid to any circuit parallelization required to
stay within MaxDepth circuit depth when measuring the cost of long-running
quantum algorithms as these do not always trivially parallelize, such as in the
case of Grover’s search [78].

Number of gates. Another metric commonly used to express the cost of quantum
circuits in the cryptanalysis literature is the number of gates, or G-cost (which
can always be lower-bounded by the depth of the circuit). The use of the G-cost is
motivated by the observation that, in practice, quantum gates are not a physical

8

device, but an operation performed on the quantum state. Such operation is
likely to be managed by a classical microcontroller, meaning that the G-cost is
a lower bound on the cost of evaluating gates of a quantum circuit. As such cost
also consumes classical resources, it can be compared to the cost of a classical
algorithm [41, Def. 2.4].

As part of their call for proposals, NIST [60] defined security categories
corresponding to the hardness of breaking AES and SHA. When considering
quantum algorithms, they expressed this hardness in terms of G-cost, assum-
ing a MaxDepth limit. We will similarly estimate lower bounds on the G-cost
of quantum enumeration, in order to simplify comparisons to the rest of the
cryptanalytic literature.

Memory. Different kinds of memory devices can be used by quantum computers,
categorised depending on how they are interacted with [40]. A common metric
that we ignore in this work is that of how many qubits are used by the al-
gorithm. Qubits are currently notoriously to manufacture and maintain in co-
herent state. Another form of useful memory is QRACM, or quantum accessible
classical memory. This can be thought of as a classical array (a1, . . . , an) that
can be read by a quantum computer into a state

∑
i≤n |ai⟩ in O(n poly(log(n)))

operations [34,47,40]. All our algorithms use a polynomial amount of qubits, and
some of our approaches require an exponential-size QRACM.

Limits of the NIST metrics. The NIST metrics were designed to give a security
goal and allow comparisons between candidates. As all metrics, part of them
is arbitrary, and they were not designed to accurately define what could be
computable in the long term. In particular, the classical and quantum security
levels are incomparable, and a break of a system due to a quantum attack does
not imply the most efficient way to attack it will be, in the long run, quantum.
Still, post-quantum cryptography has to do some optimistic assumptions on the
eventual capabilities of quantum computers, as otherwise pre-quantum schemes
would be fine.

3 Estimating the Cost of Quantum Enumeration

In this section, we outline the components of our cost estimation of quantum
lattice enumeration via backtracking under a MaxDepth restriction. We start
by reviewing the gate-cost of Montanaro’s FindMV algorithm and the depth
of the quantum walk QPE(W), since the latter will imply an upper bound to
the size of the largest tree that can be searched within a MaxDepth budget
for coherent quantum computations. We then proceed to explore the cost of
combining quantum enumeration with classical one, to address settings where
the trees are too large for the limited quantum depth budget.

3.1 Quantum Backtracking to Find a Marked Vertex

Here, we follow the proof of Thm. 1, aiming to provide concrete lower bounds
(rather than asymptotic upper bounds) to the cost of the FindMV algorithm.

9

The quantum backtracking framework laid out in § 2.2 performs a classical
depth-first search on the backtracking tree, where each node is evaluated using
multiple, individual quantum walks to decide if its subtree contains a marked
node. An overview of Montanaro’s quantum algorithm is sketched in Fig. 1. Since
the depth of a quantum circuit is the principal limitation for our cost model (see
§ 2.3) all calls to the quantum circuit QPE(W) can be viewed independently,
meaning their depth does not accumulate towards the MaxDepth limit.

Node degree. While Thm. 1 assumes the tree being enumerated having con-
stant degree, this is not the case for enumeration trees (of depth n) on gen-
eral lattices where the leaves are lattice vectors v of norm at most R. Given
a node (⋆, . . . , ⋆, cn−k+1, . . . , cn) on level k of the tree, an upper bound Ck

on its degree corresponds to an upper bound on the number of possible val-
ues cn−k ∈ Z such that (⋆, . . . , ⋆, cn−k, cn−k+1, . . . , cn) is in the backtracking
tree. An upper bound on the degree of the tree would then be C = maxk Ck.
For q-ary lattices as considered in our experiments in § 5, a bound could be
Ck = q for all k. A better bound is given by Lem. 2 in App. B, where we show
Ck ≈ min(⌊2 ·Rk+1/||b∗n−k||⌉, q).

Procedures. As outlined in § 2.2 and Fig. 1, the quantum algorithm that can
identify marked vertices in a tree, FindMV, will internally call DetectMV,
which detects whether a marked vertex exists in a tree at all. This, in turn, runs
quantum phase estimation QPE on the operator W.

Each procedure calls the respective sub-procedure multiple times (with the
number of calls depending on the properties of the respective tree T), resulting
in total depth and gate cost for FindMV of

T-Depth(FindMV(T)) = DF(T) · QD(T) · WQ(T ,W) · T-Depth(W), (2)
GCost(FindMV(T)) = DF(T) · QD(T) · WQ(T ,W) · GCost(W), (3)

where DF(·), QD(·), and WQ(·) are the number of calls to the subroutines
DetectMV in FindMV, QPE in DetectMV, and W in QPE, respectively.
We will analyze the number of these calls under the assumption that the search
tree is of depth n and degree bound by C, prioritising strict lower bounds.

Number of calls DF(·). We define DF(T) to be the number of calls to De-
tectMV needed within FindMV. Every call to FindMV (cf. § 2.2) performs
a classical search upon input tree T , and outputs a single leaf on level n. Aono,
Nguyen and Shen [13] analyze the number of calls to DetectMV made when
searching an enumeration tree without an asymptotically constant degree. Their
analysis performs an asymptotically convenient implicit transformation of the
tree into a binary tree [13, Theorem 5], resulting in O(n log C) calls in the worst
case, where we could take C = maxk{min(⌊2 · Rk+1/||b∗n−k||⌉, q)} (cf. App. B).
This bound is likely tight on average when trees are guaranteed to contain a
marked leaf. However, as we will see in § 3.2, a MaxDepth constraint results

10

in performing quantum walks on (sub-)trees without such a guarantee. Since
FindMV requires a single call to DetectMV to identify that a tree has no
marked leafs, we instead lower bound DF(·) ≥ 1.

The success probability of a call to FindMV depends on that of DetectMV.
In the following paragraph we lower bound the cost of DetectMV with success
probability 1, so that FindMV also has full success probability.

Number of calls QD(·). An upper bound on the quantum depth required to run
DetectMV can be established directly from [55, Alg. 2] and [55, Lemma 2.4].

Corollary 1 (T-Depth of quantum circuit to detect a marked node).
Let W be a quantum operator of depth T-Depth(W) that acts on a back-

tracking tree T in n (unassigned) variables. Let QPE(W) be the quantum circuit
performing phase estimation on W. For any failure probability δDMV ∈ (0, 1),
there exists a quantum algorithm DetectMV that decides with probability at
least 1−δDMV if a marked node exists in T by calling QPE K := ⌈ε log(1/δDMV)⌉
times, such that T-Depth(QPE) ≤ 1/b

√
#T · n · T-Depth(W), for some value

b > 0 depending on W.

As mentioned in § 2.2 and Cor. 1, each call to DetectMV repeats the QPE
a total of K := ⌈ε log(1/δDMV)⌉ times for some constant ε > 0. The value of ε
depends on the failure probability of the quantum phase estimation QPE(W),
and on the desired failure probability δDMV of DetectMV. The failure probab-
ility of QPE(W) in turn depends on the number of applications of the operator
W, relative to the tree-size #T, the dimension n of the lattice and a constant b
(cf. Cor. 1). It is important to note that there is a trade-off between the number
of repetitions of W in the QPE, and the number of repetitions of the QPE.
We do not consider any optimizations related to this trade-off as they are im-
plementation specific. Instead, since we are determining lower bounds for the
number of calls, with ε ≥ 0 we lower bound QD(T) ≥ 1.

Number of calls WQ(·). Asymptotically, Ω(
√

#Tn) is a lower bound on the
query-complexity of detecting a marked node in a tree with #T nodes and
depth n [1, Theorem 7][56, Sec 4]. Montanaro also notes that Thm. 1.1 and
thus Lem. 2.4 of [56] are optimal for δDMV = Ω(1). As a consequence, Cor. 1
is an asymptotic lower bound if b ∈ Ω(1), where in the black box setting
T-Depth(W) = Ω(1).

Finding the hidden constant for the phase estimation is slightly more in-
volved. While explicit constants exists for phase estimation [17], Montanaro’s
algorithm may not necessarily use the optimal majority voting scheme as part
of DetectMV.

While we investigate a possible approximation to the constants in App. F,
for the sake of safety we settle for the following simplifying assumption for our
estimations in § 5, believing that this should not cause us to overestimate sig-
nificantly the runtime of the attack given all the other strict lower bounds we
adopt.

11

Simplifying Assumption 1 We ignore hidden constants in the query complex-
ity of QPE of and consider WQ(T ,W) =

√
#Tn.

Beyond lower bounds. The lower bounds on DF(T),QD(T) and WQ(T) result
a conservative cost estimation, at the cost of underestimating the attack cost. In
App. F, we perform a heuristic analysis of the hidden constants, estimating more
realistic values for these quantities. Indeed, we show that the number of calls
to DetectMV is likely DF(T) ∈ {1, n log C} depending on the subtree being
searched, the a sufficient number of calls to the QPE in DetectMV could be
QD(T) = ⌈20 log(n log(C))⌉ for ε ≤ 20, and that a sufficient number of calls to
W during QPE is WQ(T) ≈ 64

√
#Tn , adopting a constant b ≥ 1/64.

While our estimations seem realistic, and incidentally support Simpl. Assm. 1,
for the sake of keeping our analysis as conservative as possible, we will keep using
the strict lower bounds obtained above during attack cost estimation in § 3.3
and 5. Analogue results to those in § 5 using the results in App. F can be found
in App. F.1.

Depth of QPE(W). With Simpl. Assm. 1 in hand, we can attempt to es-
timate the depth budget required to break practical lattice-based schemes using
quantum enumeration as proposed by Aono, Nguyen and Shen [13]. By using
the lwe-estimator [8] we obtain the block size β required by the BKZ [73,74]
algorithm to successfully run key recovery on Kyber [75] using the primal lattice
attack. Using n = β and E[#T] equal to the returned cost of enumeration when
using a custom cost model implementing the lower bound from [12, Eq. 16], and
momentarily assuming E[

√
#T] ≈

√
E[#T] (we give a more nuanced analysis in

§ 3.3), we can see that

logE[
√

#Tn] ≈ logE[#T] + log β

2
≈

90.3 for Kyber-512,
166.2 for Kyber-768,
263.7 for Kyber-1024,

where we assume T to be a collection of 264 cylinder pruning enumeration trees
of dimension β.

While the above numbers are a rule-of-thumb approximation, it can be seen
that most likely and regardless of the value of T-Depth(W), breaking Kyber-
768 and Kyber-1024 with a single direct quantum enumeration will not be pos-
sible within MaxDepth ≤ 296. To deal with this issue, we propose combining
quantum backtracking with classical enumeration, in a manner similar to clas-
sical parallel enumeration in the next section.

3.2 Combined Classical-Quantum Enumeration

Generally, parallelization of lattice enumeration [23,38,46] is conceptually simple,
as the tree structure directly induces a partitioning to the search problem. This

12

•

•

...
...
...

•

...
...

•

•

...

•

...
...

root node r

g

•

...
...

...

•

...
...

•

...

•

•

Z1 = H1 ≔ 𝔼[|Z1|]

H2 ≔ 𝔼[|Z2|]

Hk ≔ 𝔼[|Zk|]

Z2 =

Zk =

Wk,1(g) = Sk,1 ≔ 𝔼[|Wk,1(g)|]

N
k
,h

 ≔
 S

k
,1 +

 ··· +
 S

k
,hSk,h ≔ 𝔼[|Wk,h(g)|] Wk,h(g) =

Level

0

1

2

k

k+1

n = k+h

Figure 2: Combined classical-quantum enumeration tree. Quantum enumeration
will happen on subtrees rooted at level k, here circled in purple.

means that when searching for short vectors on a tree n levels deep, one can
first serially enumerate all nodes on level k < n, and then run in parallel lattice
enumeration on the subtrees rooted at level k of depth at most n− k.

Following this approach, we will run classical enumeration up to depth k, and
proceed to run quantum enumeration on the smaller subtrees of depth h ≤ n−k,
corresponding to sub-lattices of dimension h. We will choose k such that the
depth of any call to QPE(W) is within the limit of MaxDepth, following Cor. 1.
We depict the general strategy in Fig. 2.

This combined approach is independent of the implementation of the quantum
circuits, particularly of the operator W. This means we would be able to estimate
bounds on the cost of the attack given different possible values for T-Depth(W)
and GCost(W), including generous lower bounds (cf. § 4.1).

The approach is also compatible with pruned enumeration techniques. In the
remainder of the paper, we will focus in particular on cylinder pruning [32]. We
will start by analyzing the cost of the combined enumeration algorithm on a
single (possibly pruned) tree, in § 3.3, and extend this to the case where M
pruned trees are combined to achieve high success probability, in § 3.4.

3.3 Combined Enumeration of a Single Tree

We start by recalling some notation introduced in § 2.1 to describe enumeration
trees, illustrated in Fig. 2. Given a tree of depth n, its nodes are partitioned
into sets (Zi)

n
i=1 of expected cardinality (Hi)

n
i=1 over the distribution of lattices

being inspected, where Zi collects all the nodes on “level i”, that is distant i
from the root node r. Any node g ∈ Zk generates a subtree T(g) of depth
h ≤ n − k. The nodes of this subtree are partitioned into sets (Wk,i(g))

h
i=1 of

13

expected cardinality (Sk,i)
h
i=1 over random trees and g distributed uniformly in

Zk. The expected number of nodes in the subtree T(g), including the root g, is
1 + Nk,h, where Nk,h :=

∑h
i=1 Sk,i, while the expected number of nodes in the

entire enumeration tree T , including the root r, equals 1+ 1
2

∑n
i=1Hi, where the

1
2 factor comes from the fact that the tree is symmetric around 0, and hence
only half of the tree needs to be searched to identify all the vectors within the
enumeration radius, up to sign.

Classically and quantumly enumerated components. We first discuss how
we divide the classical and quantum components of the enumeration algorithm.

Classical component. In the setting of combined classical-quantum enumeration,
let k be the level up to where classical enumeration is performed. This costs

E
random
tree T

[Classical GCost] ≈ 1 +
1

2

k∑
i=1

Hi, (4)

where we equate the cost of enumeration to the number of nodes visited by the
algorithm, as is standard in the literature.

Quantum component. After the classical enumeration phase, we have Hk nodes
on level k, each admitting a subtree of height h ≤ n − k, and covering the
remaining levels of the full enumeration tree. A natural approach could be to
enumerate all Hk subtrees individually (and possibly in parallel). However, it is
not known which subtree contains the (likely few) marked nodes, meaning that
we would be running ≈ Hk calls to quantum enumeration. In both pruned and
non-pruned enumeration, the bulk of the nodes contained in the trees being tra-
versed is contained in the “middle” levels Zi for i ≈ n/2, with pruning “spreading
the bulk” on a larger window of levels around n/2 [32, Fig. 1]. For our setting,
this would imply three scenarios, depending on k:

k ≈ 1, in this case most of the tree fits within the quantum enumeration sub-
routine, and a quadratic speedup is possibly achievable,

k ≈ n/2, in which case we would be running ≈ Hn/2 quantum enumeration calls,
meaning that the GCost of the operation would be proportional to Hn/2,
which is approximately the cost of fully-classical enumeration.

k ≈ n, which means that we would be running some quantum enumeration,
but the bulk of the enumeration would anyway be classical, nullifying any
possible speedups from quantum enumeration.

While the case k ≈ 1 is possible, requiring to have a high enough MaxDepth
to fit most of the enumeration tree within the quantum subroutine available, is
quite restricting; in particular, given the rule-of-thumb numbers from § 3.1.

A possible alternative approach for the quantum phase of the attack is to
collect all the subtrees rooted on level k under a single tree, by adding a “virtual”

14

root node as the “parent” to all the nodes in Zk, and to run quantum enumer-
ation on this tree; we illustrate this in Fig. 3 for multiple virtual nodes. This
approach has the advantage of running a single quantum enumeration rather
than Hk many, potentially achieving a better speedup than in the previous case.
However, this comes at a cost in terms of quantum-readable classical memory
(QRACM) [34,47,40], since the gi ∈ Zk would need to be first enumerated and
then stored in memory, to be accessible for the quantum algorithm. Except for
k ≈ 1 or k ≈ n, this approach may require a super-exponential amount Hk

of QRACM for any meaningfully small value of k such that a speedup can be
achieved (say, k ⪅ n/2).

Given the issues of the two methods above, we consider an interpolation of
both. We assume to have access to enough QRACM to store 2y nodes on level
k at a time. We then classically enumerate up to 2y nodes gi ∈ Zk, and collect
them under a virtual root node gr as to form a tree T(gr). We then run quantum
enumeration on T(gr). This means that we will encounter a quantum GCost of

E
random
tree T

[Quantum GCost] ≈ E
random
tree T

[∑
gr, out of the
Hk/2

y many

GCost(FindMV(T(gr)))
]

=
Hk

2y
· E[GCost(FindMV(T(gr)))] (by Wald’s identity). (5)

Simplifying Assumption 2 The expectation in Eq. (5) is taken over the dis-
tribution of random trees T, assuming the T(gr) are formed by uniformly sampling
2y nodes gi ∈ Zk and collecting these under the virtual node gr.

Remark 2. Crucially, we note that if the enumeration bound R is small enough
to guarantee few marked leaves in the full enumeration tree, then these subtrees
would be likely to contain no marked leaf, and hence to be of height strictly
smaller than n − k. It also means that DetectMV would be called only once
at the root node for most calls to FindMV(T(gr)) for most gr (cf. § 3.1).

Expected cost of one quantum enumeration. After having illustrated how
to divide the classical and quantum components, we move our attention to com-
puting the expected gate-cost of FindMV. Here, we repurpose the analysis from
§ 3.1, adapting it to the case where the enumerated tree is rooted on level k and
has depth h ≤ n− k + 1.4

We start by recalling Eq. (3) for the gate-cost of FindMV for a tree T(g) of
height h and with at most C children per node:

GCost(FindMV(T(g))) = DF(T(g)) · QD(T(g)) · WQ(T(g),W) · GCost(W)

≥
√
#T(g) · h · GCost(W).

4 The +1 term coming from adding a “virtual” root node.

15

Remark 3. We note that although most subtrees T(g) may not have height
n− k + 1 due to likely not having any marked leaves (cf. Rmk. 2). Nonethe-
less we need to assume “full height” n − k + 1, since the few trees containing
marked leaves are of this height. Underestimating the tree height means that
the marked leaves would not be found. Hence, every phase estimation of W as-
sumes a subtree of full height. On the other hand, as we are aiming for strict
lower bounds, we do not consider the full height of the implicit binary tree from
Aono et al [13].

The GCost of operator W and the expected number of repetitions are inde-
pendent of each other, and thus, the respective cost can be analyzed individually.
The cost of the former is explored in § 4, while we elaborate on the number of
repetitions for a single tree next.

To compute E [GCost(FindMV(T(g))))] we first notice that DF(T(g)) and
QD(T(g)) are constant quantities in our analysis (namely, we set both to 1),
although in general they likely depend on the lattice problem and our setup of
the full algorithm (such as in the choice of k, which would be done a priori based
on cost estimations). Similarly we set

√
h =

√
n− k + 1 (cf. Rmk. 3). Hence,

DF(T(g)), QD(T(g)), and h do not have a probability distribution, and do not
affect the computation of the expectation. Similarly, the design of W is done a
priori, and thus, the resulting GCost(W) is a constant (cf. § 4).

This leaves us with having to estimate E[
√

#T(g)]. As pointed out in [13], the
probability distribution of the number of nodes in enumeration trees (or subtrees,
such as T(g)) is not known. Jensen’s inequality gives an upper bound

√
E[#T(g)]

but no clear lower bound. We address this by defining the multiplicative Jensen’s
gap, and evaluate the cost of the attack for different values of it.

Definition 1 (Multiplicative Jensen’s gap). Let X be a random variable.
We say X has multiplicative Jensen’s gap 2z if

√
E[X] = 2z E[

√
X].

This leaves us to having to estimate E[#T(g)]. Given a “virtual” node g collecting
2y subtrees rooted at nodes {g1, . . . , g2y} ⊂ Zk, by linearity of expectations

E
T,{gi}i

[#T(g)] = 1 +
2y∑
i=1

E
T,{gi}i

[#T(gi)] = 1 + 2y (1 +Nk,h) = 1 + 2y + 2y
h∑

j=1

Sk,j ,

where the expectation is taken over the distribution of random trees T , and
{g1, . . . , g2y} is assumed to be a set of uniformly random elements of Zk. While
this may not be exactly true, as during enumeration it may be easier to find
“related” elements in Zk, where their coefficient vectors are similar, we hope this
gives a good approximation of the cost.

To lower bound Sk,h, we use the following result.

Lemma 1. Given a random enumeration tree generated as part of BKZ-β re-
duction for β large enough such that the Gaussian heuristic applies,5 a level

5 Experimentally, β > 45 appears to be sufficient.

16

k ≥ 1, and a node g ∈ Zk, then the expected number of nodes in level k + i des-
cending from g is E

T,g
[|Wk,h(g)|] = Sk,h ≥ Hk+h

Hk
, where the expectation is taken

over the distribution of random trees T, and g is uniformly distributed in Zk.

Proof. See App. B.1. ⊓⊔

Simplifying Assumption 3 As part of our analysis, we use Lem. 1 to lower-
bound Sk,h by the ratio Hk+h/Hk, where Hk is estimated as in App. A. At the
moment of computing these numbers to estimate the cost of the attack, we will
make use of lower bounds on Hk obtained in [12], since closed forms for the exact
expectation Hk are notoriously difficult to obtain. This poses a problem at the
moment of estimating a lower bound to Hk+h/Hk, since this would require the
use an upper bound for the denominator. Unfortunately, upper bounds to the size
of cylinder pruning enumeration trees appear not to be easy to obtain [12], and
therefore as a simplifying measure we use the use the same lower-bound estimate
used for the numerator. We remark that the lower bounds we use are measured to
be relatively tight [12], suggesting that this should not introduce significant error.

Combining all the steps above gives us a final estimation of

E
random
tree T

[Quantum GCost] ≈ Hk

2y
· E [GCost(FindMV(T(g)))]

≥ Hk

2y

 1

2z

√√√√(1 + 2y + 2y
n−k+1∑
j=1

Hk+j

Hk

)
(n−k+1)

 · GCost(W), (6)

reducing the estimation of a lower bound on the expected cost to the estimation
of Hi and GCost(W). The estimation of Hi can be done using standard lat-
tice cryptanalysis techniques; we provide a detailed derivation in the case of no
pruning and of extreme cylinder pruning in App. A. Estimations for GCost(W)
are discussed in § 4.1.

The same approach can be used to determine the depth of quantum phase
estimation of W, which is the limiting factor in a runtime analysis with limited
depth budget, resulting in

T-Depth(QPE(W)) ≥ 1

2z

√√√√(1 + 2y + 2y
n−k+1∑
j=1

Hk+j

Hk

)
(n−k+1)·T-Depth(W). (7)

3.4 Combined Enumeration of a Set of Trees

In the context of enumeration with extreme pruning [32] one considers a trade-
off between the success probability of finding a short vector and the number of
nodes pruned. Let p be the probability that the enumeration tree contains a node
corresponding to a sufficiently short lattice point, that is p = 1 if the full tree is

17

enumerated and p < 1 if branches are pruned. In the case of extreme pruning,
p≪ 1, meaning that enumeration of the tree is much cheaper, but likely to fail.
To boost the success probability, the original lattice basis is rerandomized M
times, for some large value of M . Under assumptions of independence between
the resulting rerandomized, pruned, trees, the probability of finding a short
vector in at least one of theM pruned trees is 1−(1−p)M = 1−(1−Mp+O(p2)),
which is high if M ≈ 1/p as M ≫ 1. It should be noticed that in practice
rerandomization usually lowers the quality of the bases, essentially “undoing”
some of the lattice reduction [3, §2.5]. However, we will ignore this effect for the
sake of finding a simple lower bound and assume that the quality of rerandomized
bases for the same lattice is the same as the one for the original basis. Moreover,
we assume that pruned trees corresponding to these rerandomized bases are
independent of each other.

For our purposes, we will collect the M trees corresponding to M bases into a
single tree TM , by adding a top “super-tree” connecting their roots to an overall
root. Let r be the root node of this new tree and let r1, r2, ..., rM be the root
nodes of the enumeration trees with randomized basis (Bi)

M
i=1. We arrange r

as parent node of the ri; a sketch of the full tree is illustrated in Fig. 3. The
backtracking predicate (cf. § 2.2) that decides on branching on input of a node ri
will always returns Indeterminate on the levels 0 and 1, since all enumeration
subtrees rooted at the respective ri are independent of each other due to basis
re-randomisation. We define a quantity HM

k counting the expected number of
nodes on level k of TM , in terms of H(i)

k , that is E[#{nodes on level k of T(ri)}]
(or “Hk from tree T(ri)”), where T(ri) is the pruned enumeration tree rooted at
ri. If follows that HM

0 = 1, HM
1 = M , and HM

k =
∑

i∈[M]H
(i)
k−1 = M · Hk−1

if k > 1. From HM
k we can then redefine SM

k,h similarly to Sk,h, reducing it to
Hk. This means that we can “port” our cost formulae from § 3.3 by replacing
Hk with HM

k . We estimate HM
k for no pruning and of extreme cylinder pruning

in App. A, since this is a standard computation taken from [32,12], and continue
with the cost estimation GCost(W) in the next subsection.

4 Instantiations for the quantum operator W

In this section, we focus on exploring lower and upper bound costs for the
quantum operator W. At its core, quantum enumeration consists of multiple re-
petitions of QPE on the operator W (see Fig. 1). In estimating whether quantum
enumeration could be leveraged under a MaxDepth constraint, W plays two
roles. First, its depth T-Depth(W) plays a part in determining how much clas-
sical versus quantum enumeration is used, by constraining the admissible values
for k, y and z (cf. Eq. (7)) based on the requirement that T-Depth(QPE(W)) ≤
MaxDepth. Second, its gate-cost GCost(W) is a factor in estimating the total
cost of the attack. By Cor. 1, the gate depth of QPE is partly determined by
the gate depth of the operator W.

18

Hk/2
y many virtual roots

M many roots (ri)i
of pruned trees

2y many gi

r

r1 r2 r3 . . .

gr

g1 g2 . . .

g′
r

. . .

Level
0

1

k

n+ 1

Figure 3: Full enumeration tree TM for combined classical-quantum enumeration.
Nodes and links in blue correspond to “virtual” nodes collecting 2y subtrees, as
in § 3.3.

4.1 Query-based

The query-based model is assuming access to a black-box oracle that computes
the operator W on any input on-demand. Therefore, we account any query to the
operator as having “unit cost”, meaning T-Depth(W) = GCost(W) = 1. This
setting implies a conservative lower bound on the cost of quantum enumeration.
It also represents the setting where classical-quantum enumeration can make the
most of any hypothetical quantum speedups.

4.2 Circuit-based: minimal circuit

Here, we aim to estimate the size of a minimal or smallest known quantum
operator W in the circuit-model. The objective is to provide a more realistic
lowest-known bound on the gate cost (i.e., number of T gates) of W than the
very conservative query-based model. Our focus is on finding an approximate
smallest T count and depth for arithmetic operations used inside of W. We
claim that, at a minimum, the operator W has to implement a predicate P
deciding whether a projected lattice point has length larger than the pruning
bound Ri. We assume that each coefficient of the state vector |ci⟩ consists of
b = ⌈log q⌉ qubits. Whenever we require floating point arithmetic, we follow [38]
assuming double precision is used, meaning ξ = 53 bits of precision are required.
To estimate a lower bound to the cost of the minimal circuit for W, we ignore the
cost for all operations except for the bare minimum arithmetic that is required
to compute the single, most expensive lattice point projection.

Size of quantum arithmetic circuits. The quantum arithmetic literature contains
many design proposals for integer and floating point adders and multipliers. We
report the smallest to our knowledge in Tab. 1. During our computations, we
will be ignoring constants and lower order terms hidden by the O. We refer the
reader to App. D for a more detailed literature review.

19

Table 1: Used T -gate count and depth asymptotics for quantum arithmetic cir-
cuits on x-bit numbers.

Operation T-Depth GCost Reference

Addition and Comparison O(log x) O(x) [26] or [35, Table 2]
Multiplication and Squaring O(log2 x) O(x log(x) log(log(x))) [59]

Table 2: Assumed cost of arithmetic operations in Umin
P . Each operations has

input numbers of bit length xi and outputs numbers of size xi+1

Operation Input bit lengths T-Depth GCost

1, parallel multiplication x0 = min(b, ξ) log2(x0) h2 · x0 log(x0) log(log(x0))
2, binary tree addition x1 = b+ ξ log h · log(x1) h2 · x1

3, squaring x2 = x1 + log h log2(x2) h · x2 log(x2) log(log(x2))
4, binary tree addition x3 = 2x2 log h · log(x3) h · x3

5, comparison x4 = x3 + log h log(x4) x4

Depth and cost estimation of W. In our setting, quantum enumeration is be-
ing performed on a tree T(g ∈ Zk) of height h = n − k, where n is the di-
mension of the full lattice Λ = Λ((b1, . . . , bn)) being enumerated. This process
would require performing arithmetic using the projected lattice basis vectors
(πn−ℓ+1(bn−ℓ+1), . . . , πn−ℓ+1(bn−k)) of Λ for all levels k < ℓ ≤ n. An operator
Umin

P is designed as to evaluate the predicate P which identifies projected vectors
v ∈ πn−ℓ+1(Λ) such that ||v|| ≤ Rℓ and πn−k+1(v) = g. In order to lower-bound
the cost of operation, we only consider the case of evaluating this inequality
at ℓ = n, where (πn−ℓ+1(bn−ℓ+1), . . . , πn−ℓ+1(bn−k)) = (b1, . . . , bh). Evaluating
predicate P becomes checking whether ||

∑
i≤h cibi||2 ≤ R2 − ||g||2 for some in-

teger coefficients (ci)i. Since (b1, . . . , bh) span an h-dimensional vector space, we
consider them to be h-dimensional by assuming an appropriate change of basis
was applied.6 Our estimate for the cost of Umin

P is derived as in Tab. 2 applying
the following sequence of operations:

1. Parallel multiplication of h2 pairs (ci, (bi)j) 7→ ci(bi)j , of b- and ξ-bit length,
outputting numbers of bit length b+ ξ.

2. Addition of coefficients (c1(b1)j , . . . , ch(bh)j) 7→
∑

i ci(bi)j for j ∈ [h]. These
additions can be run in parallel over j. For a fixed j, the corresponding
sum is run by adding terms in pairs, forming a binary tree of sums. Each∑

i ci(bi)j output is b+ ξ + log h bits long.
3. Squaring the

∑
i ci(bi)j sums in parallel (output bit length 2(b+ ξ+ log h))

6 In classical implementations, this computation benefits from extensive caching of
Gram-Schmidt orthogonalisation operations and results [76]. Asymptotically, the
number of individual arithmetic operations is the same as if computing directly
from the basis (b1, . . . , bh).

20

Table 3: Kyber parameters [75, Sec 4.3] with corresponding BKZ block-sizes
required for the primal attack. Column log#TM reports our estimated lower
bound on the number of nodes enumeration tree of dimension β if using extreme
cylinder pruning with M = 264 and targeting success probability ≈ 1, follow-
ing [12, Eq. (16)].
Scheme LWE dimension n Modulus q Block-size β log#TM Target bit security

Kyber-512 512 3329 406 172.5 128
Kyber-768 768 3329 623 323.2 192
Kyber-1024 1024 3329 873 517.7 256

4. Adding the squared sums in a binary-tree fashion to obtain ||
∑

i≤h cibi||2 =∑
j(
∑

i ci(bi)j)
2 of bit length 2(b+ ξ + log h) + log h.

5. Comparison with the (adjusted) pruning bound R2 − ||g||2.

In this setting, for the purpose of estimating a minimum cost of the attack we
consider the depth and gate-cost of W to correspond to the sum of depths and
costs of the five operations above.

5 Estimating Quantum Enumeration Attacks on Kyber

In § 3 and 4, we have described methods to explore the enumeration tree un-
der a MaxDepth limitation (cf. § 3.3 and 3.4), and introduced two differ-
ent instantiations of the quantum backtracking operator W. In this section,
we leverage these results to present cost estimations for primal lattice reduc-
tion attacks using quantum enumeration against Kyber [75], the post-quantum
key encapsulation mechanism selected by NIST for standardisation in 2022. To
that end, we compute lower bounds on the cost of combined classical-quantum
cylinder pruning in the gate-cost metric against the three different paramet-
risations of Kyber (cf. Tab. 3). For each of them, we consider attacks within
MaxDepth = 240, 264, 296, as suggested by NIST [60], each assuming the two
different instantiations of the operator W outlined in § 4.

5.1 Attack Setting

Our aim is to estimate a lower bound on the possible cost of classical-quantum
enumeration in the setting of lattice-based cryptography. As a case-study, we
look at the primal attack on Kyber, where a block lattice reduction algorithm
is used to recover the secret key of the cryptosystem by reducing an embedding
lattice [15] constructed using the public key.

We follow the convention of using BKZ as the lattice reduction algorithm,
and assume that its shortest vector problem (SVP) oracle is instantiated using
our classical-quantum enumeration approach. The common approach to primal
attack estimates is to choose a cost model for BKZ that accounts for the cost

21

of running the SVP oracle and for the number of calls made [5]. Normally, cost
models will use a closed formula for the cost of enumeration in dimension β
to account for the cost of the SVP oracle, either fitted or derived from the-
ory or experiments. This is then used with some estimation script such as the
lwe-estimator [8], which will simulate the effect of lattice reduction and find
the cheapest parametrisation of the attack leading to high success probability.

Since our setting involves an implicit relation between the gate-cost of the
SVP oracle and the MaxDepth constraint, we don’t attempt to fit our results on
a curve as a function of β. Instead, we opt for calling an estimator script assum-
ing the optimistic cost of classical enumeration obtained as part of our analysis
(cf. App. A), which assumes that input bases achieve a linear lattice profile (as
predicted by the Geometric Series Assumption, using the root-Hermite factor
((πβ)1/ββ/(2πe))1/(2(β−1)) from [21]) so that enumeration costs 2β log β/8+O(β)

(recently experimentally confirmed as possible in [3]), and assuming specifically
the lower bound costs for extreme cylinder pruning proven in [12]. From this cost
estimation we obtain three different block sizes β for the three parameter sets of
Kyber, reported in Tab. 3. We then proceed to estimate the gate-cost of classical-
quantum enumeration in dimension β under different MaxDepth values, and
compare these with the corresponding bit security (e.g. 2128 for Kyber-512),
approximate gate-cost of Grover search on AES for the corresponding category
(e.g. Kyber-512 with AES-128), and a hypothetical asymptotic quadratic spee-
dup for the full tree.

It is important to highlight an issue towards claiming lower bounds on the
cost of classical-quantum enumeration, and how we address it. As pointed out
in [13] and mentioned in § 3, the expected speedup of quantum enumeration
over equivalent classical enumeration may be more than quadratic, depending
on the probability distribution of the size of the trees being enumerated, due to
Jensen’s inequality implying E[

√
#T] ≤

√
E[#T]. Since we would like to provide

lower bounds to the expected attack cost, we define z ≥ 0 such that E[
√
#T] =

2−z
√

E[#T], and estimate the attack cost for z = 0, . . . , 64. While we do not
know what the value of z may be for lattices encountered in cryptanalysis,7 this
allows us to delegate the estimation of the concrete cost to future analysis on
the distribution of #T , while clearly identifying threshold values z0, such that
z ≥ z0 may imply possible effective attacks, while z < z0 would indicate that
classical-quantum enumeration would not appear to obviously put the security
of Kyber at risk.

We note that an alternative approach could be deriving a lower bound to the
Jensen’s gap, depending on some other parameter of the problem. We attempt
this approach in App. G, where we derive bounds depending on the variance
of #T . This however presents the same issue as above, that is that we are not
aware of the exact distribution of #T , meaning that while it provides a different

7 Albeit not at cryptographically relevant sizes, in App. C we present the results of
small-dimension measurements of the Jensen gap against small q-ary lattices. We
observe that for pruned enumeration in dimension β ≈ 60, the gap appears to be
around z ≈ 1.

22

Table 4: Attack parameters for experimental evaluation.
MaxDepth ∈ {240, 264, 296}, y ∈ {0, . . . , 64}, z ∈ {0, . . . , 64}, M = 2m ∈ {20, 21, . . . , 264},

n ∈ {406, 623, 873}, k ∈ [n], DF(·) = QD(·) = 1, WQ(·) =
√
#Tn

Table 5: Legend for plots reporting attack costs under MaxDepth constraint.

2y
subtrees rooted at level k

combined under a single FindMV
call, cf. § 3.3

QRACM
Maximum amount of quantum accessible
classical memory available, a constraint

on 2y

Exp. cost of
Grover on AES

Expected GCost of Grover search
for AES key recovery [39, Tab. 12]

with prob. ≈ 1

Quantum
GCost

Expected combined cost (cf. Eq. (6)) of
all quantum circuits that enumerate the

level below k

MaxDepth
Constraint on

T-Depth(QPE(W)), cf. Eq. (7) 2z Multiplicative Jensen’s Gap, cf. Def. 1

Classical
GCost

Expected # nodes (cf. Eq. (4))
enumerated classically up to level k

Quasi-Sqrt
(class. cost)

Asymptotic runtime of quantum
enumeration, ≈

(
2y ·NM

k,n−k · (n− k)
)1/2

Targeted
security

2128 (resp., 2192, 2256) for
Kyber-512 (resp., -768, -1024)

Exp. cost of
classical enum.

Lower bounds on the cost of enumeration
with extreme cilinder pruning [12]

Total GCost Classical cost + quantum cost M = 2m Number of pruned trees enumerated

formulation of the problem, it currently does not represent a better alternative
to testing many values of z looking for threshold values.

Overall, our estimation code for the cost of enumeration on a β-dimensional
lattice bases is given in input a multiplicative Jensen gap 2z and a MaxDepth
constraint, and optimizes the number of combined bases M , the level k which
separates classical and quantum enumeration as well as the maximal number
2y of combined nodes on this level, looking for the cheapest possible attack.
We estimate the cost of extreme pruning attacks with success probability ≈ 1.
We give an overview over all parameters used in the estimation process in
Tab. 4. We have made our source code used to produce or experimental res-
ults, tables, and plots publicly available at https://github.com/mtiepelt/
QuantumLatticeEnumeration.

5.2 Cost Estimation of the Attack

Cost metrics and success conditions. As mentioned in § 2.3, the cost of
a quantum algorithm can be measured using various metrics. In this paper, we
prefer to focus on the number of classical and quantum gates required by the
attack in total, since, plausibly, applying one quantum gate requires running one
classical computation on some microcontroller [41], meaning that to some extent
these two quantities can be compared and combined. In these terms, one could
say a combined classical-quantum enumeration attack was successful if the total

23

https://github.com/mtiepelt/QuantumLatticeEnumeration
https://github.com/mtiepelt/QuantumLatticeEnumeration

number of gates required8 was lower than some threshold capturing some notion
of security.

The success of an attack can be defined in multiple ways. For a scheme like
Kyber-512 (with analogous notions for -768 and -1024), one could consider an
attack successful if its cost is lower than 2target bit security = 2128. Alternatively,
one can note that submissions to the NIST standardisation process, such as Ky-
ber, were required to propose parameters for cryptographic primitives as hard to
break as AES or SHA (depending on the targeted security category). This would
imply a notion where a quantum attack against Kyber may be considered suc-
cessful only if its cost is lower than the number of gates required to run Grover
search against AES, which we estimate using Tables 10 and 12 of [39].9 It should
be noticed that the reason such a separation between classical and quantum
attacks is due to the assumed and yet-unknown hidden costs of quantum com-
putation. To be conservative, we compare the security notions above to a simple
sum of classical and quantum gate costs, which is likely extremely generous
towards quantum computation.

Another interesting threshold check is whether the attack cost under depth
constraints ever achieves a “quasi-quadratic” speedup over classical enumeration
(meaning going from #T gates to

√
#T · h, where h is the height of T), as it

could be expected from Thm. 1.
In the following paragraphs we proceed to explore whether these thresholds

could be plausibly met for classical-quantum enumeration with cylinder pruning,
where plausibility depends on the multiplicative Jensen gap required (cf. Def. 1),
if any, to achieve them. An overview of our results, based on the strict lower
bounds for DF, QD, and WQ stated in § 3.3, can be found in Tab. 6. A similar
table based on our estimates for these quantities performed in App. F can be
found in App. F.1.

Cost estimation without MaxDepth restrictions. We start by estimating
the cost of enumeration without MaxDepth restrictions—the most favourable
setting to the adversary. In this setting, a quadratic speedup in terms of quantum
depth can be achieved as the full enumeration tree can be enumerated directly
within a call to FindMV, meaning no classical phase is required. This means,
the attack consists of calling FindMV(TM) once. No QRACM is needed, and
the classical cost is null. The dependency between the cost of the attack and

8 We lower bound this as the number of nodes visited in the classical phase of the
attack plus the number of quantum gates applied during the quantum phase of the
attack.

9 Under no MaxDepth constraint, [39, Table 10] suggests that the GCost of key
recovery against AES-128 (resp. AES-192, AES-256) with success probability ≈ 1
is ≈ 283 (resp. 2115, 2148). Under a depth constraint, [39, Table 12] suggests the
GCost ≈ 2157/MaxDepth (resp. 2221/MaxDepth, 2285/MaxDepth). We note
that further improvements in the design of the Grover oracles against AES have
achieved minor speedups in terms of overall gate cost.

24

Table 6: Summary of the values for the Jensen’s gap 2z at crossover points of
our combined classical-quantum enumeration attacks against Kyber and different
“success metrics” to claim an attack. We remark that exact crossovers happen
at fractional values of z. In this table we round down threshold values of z. The
cost of Grover’s search against AES is taken from [39, Tables 10 and 12].

more likely to be feasible less likely to be feasible
logE[GCost] (with W as in § 4.1) below. . . logE[GCost] (with W as in § 4.2) below. . .

MD Kyber Target security Grover on Quasi-Sqrt Target security Grover on Quasi-Sqrt
AES{128,192,256} 1/b

√
#T · h AES{128,192,256} 1/b

√
#T · h

-512 z ≥ 7, k ≤ 92 z ≥ 13, k ≤ 83 z ≥ 26, k ≤ 59 z ≥ 23, k ≤ 96 z ≥ 29, k ≤ 79 z ≥ 42, k ≤ 63
-768 z ≥ 51, k ≤ 114 z ≥ 57, k ≤ 106 z ≥ 64, k ≤ 77 z > 64 z > 64 z > 64240

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-768 z ≥ 39, k ≤ 114 z ≥ 57, k ≤ 77 z ≥ 52, k ≤ 77 z ≥ 55, k ≤ 106 z > 64 z > 64
-512 z ≥ 0, k ≤ 83 z ≥ 13, k ≤ 64 z ≥ 14, k ≤ 59 z ≥ 11, k ≤ 79 z ≥ 29, k ≤ 54 z ≥ 30, k ≤ 46264

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 46 z ≥ 8, k ≤ 46 z ≥ 1, k ≤ 46 z ≥ 0, k ≤ 46 z ≥ 33, k ≤ 46 z ≥ 25, k ≤ 46
-768 z ≥ 23, k ≤ 77 z ≥ 56, k ≤ 44 z ≥ 36, k ≤ 77 z ≥ 40, k ≤ 77 z > 64 z ≥ 53, k ≤ 62296

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k = 0 z ≥ 9, k = 0 z ≥ 1, k = 0 z ≥ 0, k = 0 z ≥ 33, k = 0 z ≥ 26, k = 0
-768 z ≥ 0, k = 0 z ≥ 52, k = 0 z ≥ 1, k = 0 z ≥ 1, k = 0 z > 64 z ≥ 27, k = 0∞

-1024 z ≥ 9, k = 0 z > 64 z ≥ 1, k = 0 z ≥ 35, k = 0 z > 64 z ≥ 28, k = 0

the Jensen gap 2z is straightforward in this setting, with the quantum cost
exponentially reducing as z increases.

We report our results in Tab. 6, under the “MD = ∞” rows and make a few
observations next. First, quadratic speedups can be achieved in the very conser-
vative query-based model of § 4.1, but seem already less likely under the mild
assumptions of the circuit-based model of W in § 4.2, which appear to require
z ⪆ 26. Second, achieving a gate cost under the target bit-security (e.g., attack-
ing Kyber-768 in less than 2192 quantum gates) seems plausible in most cases.
Yet, this is a crude notion of security in the quantum-attack setting. Indeed,
comparing the attack cost with that of Grover on AES gives a picture suggest-
ing that quantum enumeration-powered primal lattice attacks on Kyber may
be unlikely to succeed. Only Kyber-512 appears to be plausibly approachable,
z ≥ 0 sufficing, yet this is still only considering the query model for W. A larger
Jensen gap of z ≥ 33 is required in the circuit-based model of W in § 4.2.

Cost estimation with MaxDepth restrictions. We now consider the effect
of depth restrictions on the cost of the attack. In most cases, depth restrictions
mean that we will need to use a combined classical-quantum attack as described
in § 3.2 and 3.3, where classical enumeration is run up to level k, as to create
subsets {g1, . . . , g2y} ⊂ Zk. A ‘virtual’ root node g is added as ‘parent’ of these,

25

and quantum enumeration is run on the resulting tree T(g). This process requires
about 2y QRACM to store the {gi}i≤2y , and is run on the extreme cylinder
pruning enumeration tree TM from § 3.4.

To compute Eq. (6) given a Jensen gap 2z, we minimize the total cost of
the combined classical-quantum enumeration with extreme cylinder pruning and
success probability ≈ 1 over: the number M = 2m of re-randomized bases used
for extreme pruning, for m ≤ 64; the amount 2y of QRACM used; the level k at
which classical enumeration ends and quantum enumeration starts, for k ≤ n.
For each set of parameters, we only consider those such that the depth of the
quantum phase estimation QPE(W) (cf. Eq. (7)) is no larger than MaxDepth.
For every z ∈ {0, ..., 64}, we output (m, y, k) minimizing the total cost. We report
our results in Tab. 6, under the “MD = 240, . . . , 296” rows.

Compared to the unbounded-depth setting, we immediately notice that quad-
ratic speedups appear unlikely to happen for Kyber-768 and -1024 already in
the query-based model, § 4.1, and also for Kyber-512 in the circuit-based model,
§ 4.2, albeit keeping in mind the caveat that we do not known with certainty
how likely a Jensen gap of, say, z ≥ 25 is. As it is to be expected, the required
gap diminishes as MaxDepth increases. Unlike in the unbounded-depth set-
ting, achieving a total gate-cost below the target security value appears also
unlikely, except in the case of Kyber-512, where some attack settings achieve
this already at z = 0. As per the attack costing less than Grover search on
AES, the situation is similar, with more stringent requirements for the Jensen
gap. While in the query-based model attacks on Kyber-512 appear potentially
more likely (c.f. z ≥ 8 at MaxDepth = 296 or z ≥ 13 at MaxDepth = 240),
attacks on Kyber-768 and -1024 appear less plausible. Yet, moving away from
the query-based model into the circuit-based model of W, immediately ups the
requirements of a successful attack on Kyber-512 up to z ≥ 29.

We remark that whenever we can find a value of z < 64 such that a success
target is achieved, the value of k is well below n/2. This matches our intuition:
at k ≈ n/2, the classical cost of the component would essentially equal the cost
of the fully-classical attack, but would also incur into a quantum overhead.

An important difference between the bounded- and unbounded-depth set-
tings for combined classical-quantum enumeration is the dependency of the total
cost on the Jensen’s gap, 2z. Indeed, while in the unbounded setting the cost of
the attack is simply proportional to 2−z, in the bounded setting different values
of MaxDepth and z imply different amounts of classical precomputation.

Since we do not have a clear prediction of the exact value of z for different
enumeration tree distributions, we investigate how sensitive is the total cost of
the attack to small changes in z by plotting the predicted classical and quantum
gate costs and QRACM requirements as a function of z. In Fig. 4 we show the
resulting plots for Kyber-512 at MaxDepth = 240 and 296 in the query-based
model, as a representative example. Plots for MaxDepth = 264 and for Kyber-
768 and -1024, and for circuit-based model can be found in App. E.

Overall costs appear to decrease smoothly as z increases, without sudden
reductions. Two peculiar phenomenons can be observed: the optimal attack is

26

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES
Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=142

k=103
y=24

z=7
Cost 128

k=92
y=28

z=13
Cost 116

k=83
y=31

z=26
Cost 90

k=59
y=30

Quantum GCost
Total GCost
Classical GCost
QRACM

(a) with MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=91

k=46
y=64

z=1
Cost 90

k=46
y=64

z=8
Cost 83

k=46
y=64

Quantum GCost
Total GCost
Classical GCost
QRACM

(b) with MaxDepth = 296

Figure 4: Cost estimation for Kyber-512 under MaxDepth restrictions with the
instantiation for operator W as in § 4.1. Cf. Tab. 5 for an expanded legend.

not achieved when the two phases of the attack are balanced, and the QRACM
requirements show a saw-tooth behaviour, apparently related to the reduction
of costs of the classical precomputation phase. We will now elaborate on these.

Unbalanced classical and quantum cost. The only parameter determining the
classical cost is k. Since in our observed case the classical cost is always smaller
than the quantum one, the only option for balancing the two would be by in-
creasing k. Increasing k 7→ k+1, the classical cost increases by an additive term
Hk+1/2, while the quantum cost and the quantum depth approximately change

by a factor
√

n−k−1
n−k

Hk+1

Hk
and

√
n−k−1
n−k

Hk

Hk+1
respectively. How overall this af-

fects the quantum cost will depend on whether Hk+1/Hk ≷ 1, as well as whether
a different value of y is chosen as to keep using exactly MaxDepth quantum
depth during the attack. From Tab. 6, it appears that the optimal attacks we
find are in the k < n/2 regime, where Hk+1/Hk > 1 [32], meaning increasing
k may increase both classical and quantum costs, which is undesirable. Due to
the complexity of an analytic analysis, we believe the safer approach is looking
for the optimal attack computationally. It would then appear that the lowest
classical plus quantum cost is achieved with unbalanced quantum and classical
costs, within the constraints we consider.

Saw-tooth QRACM. Suppose we are given values z, k and y corresponding to
some point on the graphs in Figure 4. Recalling Eq. (7) and using the query model
as an example, the depth constraint becomes 1

2z

√
(n− k) · 2y · E[#T(g ∈ Zk)] ≈

MaxDepth. Suppose we increase z while always enforcing the depth constraint,

27

this implies an increase in
√
(n− k) · 2y · E[#T(g ∈ Zk)]. This means our cost-

ing loop will explore increasing y and decreasing k (hence increasing (n − k) ·
E[#T(g ∈ Zk)]). Increasing y always leaves the classical cost intact, and always
reduces the quantum cost by a factor

√
2y, at the cost of increasing the QRACM

consumption. Decreasing k in the k < n/2 regime will increase (n−k) and E[#T]
and decrease Hk, meaning the classical cost will decrease and the quantum cost
may increase or decrease (cf. Eq. (6)). In practice, the complicated trade-off
landscape appears (from our calculations) to result in having k stay the same
and y increase most of the time, with k decreasing sporadically. Overall this
results in the classical cost being a decreasing step function and the QRACM be
“piece-wise increasing” sawtooth function, with peaks of the sawtooth preceeding
downward steps of the classical cost function, which correspond to points where
z increases enough that decreasing k is beneficial.

Conclusions. From this overview of our cost estimations, one could be tempted
to take home the message that quantum enumeration using cylinder pruning
seems unlikely to lead to a break of Kyber-768 and Kyber-1024, but that Kyber-
512 could potentially be exposed to such attacks to some extent. This, however,
should not be necessarily surprising or particularly alarming. Kyber-512 was
designed to be in the same security regime as AES-128, a cipher for which
quadratic quantum speedups are in principle not dismissible, even in the case
of bounded depth attacks. Furthermore, we would like to stress again that our
estimates are extremely conservative: we attempt to use lower bounds everywhere
we can, such as for the size of the enumeration trees and subtrees, the number
of quantum phase estimations performed, the cost of QRACM and qubits (that
we entirely ignore), the size of the quantum circuit W performing floating point
arithmetic to compute lattice point projections in superposition. Moreover, it is
not clear that a Jensen gap of z ≈ 10 would be easy or likely to be achieved
for BKZ-induced enumeration lattices. Keeping all of this in mind, it is hard to
claim that Kyber-512 is at risk of being less secure than AES-128, when attacks
on it in the circuit-based model of W require z ≈ 30.

Instead, we believe that the take-home message of this case-study should
be that imposing MaxDepth limitations to quantum backtracking appears to
present a significant obstacle towards leveraging this technique for lattice crypt-
analysis. Even accounting for the possible uncertainty on the value of the Jensen
gap 2z, it should be noted that our results seem to suggest that the cost of the
attack varies smoothly as a function of z, and that future “ballpark” estimations
of the gap could already provide some guarantees on the hardness of the attack,
since no sudden drops in the cost of the attack appear to happen up to z ≤ 64.

Open directions. Two clear directions for further research are open: the better
estimations of the Jensen’s Gap, and the analysis of quantum enumeration for
other forms of pruning. A possible approach to the first problem is outlined in
App. G. The second problem also appears of particular interest. Indeed, it could
potentially be the case that while quantum enumeration does not prove effect-

28

ive in limited depth settings using cylinder pruning, other pruning techniques,
possibly designed ad hoc to this setting, could be more viable.

Acknowledgements. We would like to thank Sam Jaques for multiple fruitful
conversations, Joe Rowell for help understanding the source code of fplll, and
Martin R. Albrecht for offering computing power for running our experiments.

References

1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. pp. 200–209 (2003).
https://doi.org/10.1109/SFCS.2003.1238194

2. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. pp. 601–610 (2001). https://doi.org/10.1145/380752.380857

3. Albrecht, M.R., Bai, S., Fouque, P.A., Kirchner, P., Stehlé, D., Wen, W.: Faster
enumeration-based lattice reduction: Root hermite factor k1/(2k) time kk/8+o(k).
pp. 186–212 (2020). https://doi.org/10.1007/978-3-030-56880-1_7

4. Albrecht, M.R., Bai, S., Li, J., Rowell, J.: Lattice reduction with approximate
enumeration oracles - practical algorithms and concrete performance. pp. 732–759
(2021). https://doi.org/10.1007/978-3-030-84245-1_25

5. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite,
E.W., Virdia, F., Wunderer, T.: Estimate all the LWE, NTRU schemes! pp. 351–
367 (2018). https://doi.org/10.1007/978-3-319-98113-0_19

6. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. pp.
717–746 (2019). https://doi.org/10.1007/978-3-030-17656-3_25

7. Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Estimating
quantum speedups for lattice sieves. pp. 583–613 (2020). https://doi.org/10.1007/
978-3-030-64834-3_20

8. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015). https://doi.org/
doi:10.1515/jmc-2015-0016, https://doi.org/10.1515/jmc-2015-0016

9. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. pp. 327–343 (2016)

10. Ambainis, A., Kokainis, M.: Quantum algorithm for tree size estimation, with
applications to backtracking and 2-player games. In: Hatami, H., McKenzie, P.,
King, V. (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017.
pp. 989–1002. ACM (2017). https://doi.org/10.1145/3055399.3055444, https://doi.
org/10.1145/3055399.3055444

11. Aono, Y., Espitau, T., Nguyen, P.Q.: Random lattices: Theory and practice, pre-
print, available at https://espitau.github.io/bin/random_lattice.pdf

12. Aono, Y., Nguyen, P.Q., Seito, T., Shikata, J.: Lower bounds on lattice enu-
meration with extreme pruning. pp. 608–637 (2018). https://doi.org/10.1007/
978-3-319-96881-0_21

13. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning. pp. 405–434 (2018). https://doi.org/10.1007/978-3-030-03326-2_
14

29

https://doi.org/10.1109/SFCS.2003.1238194
https://doi.org/10.1109/SFCS.2003.1238194
https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-84245-1_25
https://doi.org/10.1007/978-3-030-84245-1_25
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1145/3055399.3055444
https://espitau.github.io/bin/random_lattice.pdf
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14

14. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms
and their precise cost estimation by sharp simulator. pp. 789–819 (2016). https:
//doi.org/10.1007/978-3-662-49890-3_30

15. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary lwe. In: Information
Security and Privacy: 19th Australasian Conference, ACISP 2014, Wollongong,
NSW, Australia, July 7-9, 2014. Proceedings 19. pp. 322–337. Springer (2014)

16. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. pp. 10–24. SIAM
(2016). https://doi.org/10.1137/1.9781611974331.ch2, https://doi.org/10.1137/1.
9781611974331.ch2

17. Bessen, A.J.: Lower bound for quantum phase estimation. Physical Review A
71(4), 042313 (2005)

18. Bonnetain, X., Chailloux, A., Schrottenloher, A., Shen, Y.: Finding many colli-
sions via reusable quantum walks - application to lattice sieving. In: Hazay, C.,
Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Lyon, France, April 23-27, 2023, Proceedings, Part V. Lecture Notes in
Computer Science, vol. 14008, pp. 221–251. Springer (2023). https://doi.org/10.
1007/978-3-031-30589-4_8, https://doi.org/10.1007/978-3-031-30589-4_8

19. Campbell, E., Khurana, A., Montanaro, A.: Applying quantum algorithms to
constraint satisfaction problems. Quantum 3, 167 (jul 2019). https://doi.org/10.
22331/q-2019-07-18-167, https://doi.org/10.22331%2Fq-2019-07-18-167

20. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks (2021)
21. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complète-

ment homomorphe. Ph.D. thesis, Paris 7 (2013), https://archive.org/details/
PhDChen13, available at https://archive.org/details/PhDChen13

22. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. pp. 1–20 (2011).
https://doi.org/10.1007/978-3-642-25385-0_1

23. Dagdelen, Ö., Schneider, M.: Parallel enumeration of shortest lattice vectors.
Cryptology ePrint Archive, Report 2010/097 (2010), https://eprint.iacr.org/2010/
097

24. Davenport, J.H., Pring, B.: Improvements to quantum search techniques for block-
ciphers, with applications to AES. pp. 360–384 (2020). https://doi.org/10.1007/
978-3-030-81652-0_14

25. Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating lattice reduction with
FPGAs. pp. 124–143 (2010)

26. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum
carry-lookahead adder. Quantum Info. Comput. 6(4), 351–369 (jul 2006)

27. Elandt-Johnson, R.C., Johnson, N.L.: Survival models and data analysis. Wiley
Series in Probability and Statistics, John Wiley & Sons, Nashville, TN (Sep 1980)

28. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Mathematics of computation 44(170),
463–471 (1985)

29. Fincke, U., Pohst, M.E.: Improved methods for calculating vectors of short length
in a lattice. Mathematics of Computation (1985)

30. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
Towards practical large-scale quantum computation. Physical Review A
86(3) (sep 2012). https://doi.org/10.1103/physreva.86.032324, https://doi.org/10.
1103%2Fphysreva.86.032324

30

https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331%2Fq-2019-07-18-167
https://archive.org/details/PhDChen13
https://archive.org/details/PhDChen13
https://archive.org/details/PhDChen13
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://eprint.iacr.org/2010/097
https://eprint.iacr.org/2010/097
https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1007/978-3-030-81652-0_14
https://doi.org/10.1103/physreva.86.032324
https://doi.org/10.1103/physreva.86.032324
https://doi.org/10.1103%2Fphysreva.86.032324
https://doi.org/10.1103%2Fphysreva.86.032324

31. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
pp. 207–216 (2008). https://doi.org/10.1145/1374376.1374408

32. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
pp. 257–278 (2010). https://doi.org/10.1007/978-3-642-13190-5_13

33. Gao, X., Sitharam, M., Roitberg, A.E.: Bounds on the jensen gap, and implications
for mean-concentrated distributions. Australian Journal of Mathematical Analysis
and Applications 16(2), 1–16 (2019), https://ajmaa.org/cgi-bin/paper.pl?string=
v16n2/V16I2P14.tex

34. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Physical
review letters 100(16), 160501 (2008)

35. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quantum
circuits for elliptic curve discrete logarithms. In: Post-Quantum Cryptography:
11th International Conference, PQCrypto 2020, Paris, France, April 15–17, 2020,
Proceedings 11. pp. 425–444. Springer (2020)

36. Häner, T., Roetteler, M., Svore, K.M.: Factoring using 2n + 2 qubits with tof-
foli based modular multiplication. Quantum Info. Comput. 17(7–8), 673–684 (jun
2017)

37. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. pp. 447–464 (2011). https://doi.org/10.1007/
978-3-642-22792-9_25

38. Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel
shortest lattice vector enumeration on graphics cards. pp. 52–68 (2010)

39. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for
quantum key search on AES and LowMC. pp. 280–310 (2020). https://doi.org/10.
1007/978-3-030-45724-2_10

40. Jaques, S., Rattew, A.G.: Qram: A survey and critique (2023)
41. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: Claw-finding

attacks on SIKE. pp. 32–61 (2019). https://doi.org/10.1007/978-3-030-26948-7_2
42. Jones, N., Van Meter, R., Fowler, A., McMahon, P., Kim, J., Ladd, T., Yamamoto,

Y.: Layered architecture for quantum computing. Physical Review X 2 (10 2010).
https://doi.org/10.1103/PhysRevX.2.031007

43. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. pp. 193–206 (1983). https://doi.org/10.1145/800061.808749

44. Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quantum al-
gorithms for the approximate k-list problem and their application to lattice sieving.
pp. 521–551 (2019). https://doi.org/10.1007/978-3-030-34578-5_19

45. Koch, D., Samodurov, M., Projansky, A., Alsing, P.M.: Gate-based circuit designs
for quantum adder-inspired quantum random walks on superconducting qubits.
International Journal of Quantum Information 20(03), 2150043 (2022)

46. Kuo, P.C., Schneider, M., Dagdelen, Ö., Reichelt, J., Buchmann, J., Cheng, C.M.,
Yang, B.Y.: Extreme enumeration on GPU and in clouds - - how many dollars
you need to break SVP challenges -. pp. 176–191 (2011). https://doi.org/10.1007/
978-3-642-23951-9_12

47. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem (2011), arXiv preprint arXiv:1112.3333

48. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. pp. 3–22 (2015). https://doi.org/10.1007/978-3-662-47989-6_1

49. Laarhoven, T., Mosca, M., van de Pol, J.: Solving the shortest vector problem in
lattices faster using quantum search. pp. 83–101 (2013). https://doi.org/10.1007/
978-3-642-38616-9_6

31

https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://ajmaa.org/cgi-bin/paper.pl?string=v16n2/V16I2P14.tex
https://ajmaa.org/cgi-bin/paper.pl?string=v16n2/V16I2P14.tex
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1103/PhysRevX.2.031007
https://doi.org/10.1103/PhysRevX.2.031007
https://doi.org/10.1145/800061.808749
https://doi.org/10.1145/800061.808749
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-642-23951-9_12
https://doi.org/10.1007/978-3-642-23951-9_12
https://doi.org/10.1007/978-3-642-23951-9_12
https://doi.org/10.1007/978-3-642-23951-9_12
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-642-38616-9_6
https://doi.org/10.1007/978-3-642-38616-9_6
https://doi.org/10.1007/978-3-642-38616-9_6
https://doi.org/10.1007/978-3-642-38616-9_6

50. Li, J., Nguyen, P.Q.: A complete analysis of the BKZ lattice reduction al-
gorithm. Cryptology ePrint Archive, Report 2020/1237 (2020), https://eprint.iacr.
org/2020/1237

51. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
pp. 319–339 (2011). https://doi.org/10.1007/978-3-642-19074-2_21

52. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G.,
Stehlé, D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of
Standards and Technology (2022), available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022

53. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
pp. 276–294 (2015). https://doi.org/10.1137/1.9781611973730.21

54. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. pp. 820–
849 (2016). https://doi.org/10.1007/978-3-662-49890-3_31

55. Montanaro, A.: Quantum-walk speedup of backtracking algorithms. Theory Com-
put. 14(1), 1–24 (2018). https://doi.org/10.4086/toc.2018.v014a015, https://doi.
org/10.4086/toc.2018.v014a015

56. Montanaro, A.: Quantum-walk speedup of backtracking algorithms. Theory
of Computing 14(15), 1–24 (2018). https://doi.org/10.4086/toc.2018.v014a015,
https://theoryofcomputing.org/articles/v014a015

57. Muñoz-Coreas, E., Thapliyal, H.: Quantum circuit design of a t-count optimized
integer multiplier. IEEE Transactions on Computers 68(5), 729–739 (2019). https:
//doi.org/10.1109/TC.2018.2882774

58. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptol. 2(2), 181–207 (2008). https://doi.org/10.1515/JMC.
2008.009, https://doi.org/10.1515/JMC.2008.009

59. Nie, J., Zhu, Q., Li, M., Sun, X.: Quantum circuit design for integer multiplication
based on schönhage-strassen algorithm. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems pp. 1–1 (2023). https://doi.org/10.1109/
TCAD.2023.3279300

60. NIST: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process (2016), https://csrc.
nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf

61. Pham, P., Svore, K.M.: A 2d nearest-neighbor quantum architecture for factoring
in polylogarithmic depth. Quantum Inf. Comput. 13(11-12), 937–962 (2013)

62. Pohst, M.: On the computation of lattice vectors of minimal length, suc-
cessive minima and reduced bases with applications. SIGSAM Bull. 15(1),
37–44 (feb 1981). https://doi.org/10.1145/1089242.1089247, https://doi.org/10.
1145/1089242.1089247

63. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79
(Aug 2018). https://doi.org/10.22331/q-2018-08-06-79, https://doi.org/10.22331/
q-2018-08-06-79

64. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2022), available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022

65. Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. pp.
390–405 (2008). https://doi.org/10.1007/978-3-540-89255-7_24

66. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual

32

https://eprint.iacr.org/2020/1237
https://eprint.iacr.org/2020/1237
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-19074-2_21
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://theoryofcomputing.org/articles/v014a015
https://doi.org/10.1109/TC.2018.2882774
https://doi.org/10.1109/TC.2018.2882774
https://doi.org/10.1109/TC.2018.2882774
https://doi.org/10.1109/TC.2018.2882774
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1109/TCAD.2023.3279300
https://doi.org/10.1109/TCAD.2023.3279300
https://doi.org/10.1109/TCAD.2023.3279300
https://doi.org/10.1109/TCAD.2023.3279300
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1145/1089242.1089247
https://doi.org/10.1145/1089242.1089247
https://doi.org/10.1145/1089242.1089247
https://doi.org/10.1145/1089242.1089247
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-540-89255-7_24
https://doi.org/10.1007/978-3-540-89255-7_24

ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24,
2005. pp. 84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603, https:
//doi.org/10.1145/1060590.1060603

67. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6), 34:1–34:40 (2009). https://doi.org/10.1145/1568318.
1568324, https://doi.org/10.1145/1568318.1568324

68. Rudin, W.: Real and Complex Analysis. McGraw-Hill series in higher mathematics,
McGraw-Hill Professional, New York, NY, 3 edn. (Sep 1986)

69. Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum four-
ier transform. Quantum Information Processing 16, 1–14 (2017)

70. Schanck, J.M., Hulsing, A., Rijneveld, J., Schwabe, P.: NTRU-HRSS-
KEM. Tech. rep., National Institute of Standards and Technology (2017),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-1-submissions

71. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming 66, 181–199 (08
1994). https://doi.org/10.1007/BF01581144

72. Schnorr, C.: Lattice reduction by random sampling and birthday methods. In: Alt,
H., Habib, M. (eds.) STACS 2003, 20th Annual Symposium on Theoretical Aspects
of Computer Science, Berlin, Germany, February 27 - March 1, 2003, Proceedings.
Lecture Notes in Computer Science, vol. 2607, pp. 145–156. Springer (2003). https:
//doi.org/10.1007/3-540-36494-3_14, http://dx.doi.org/10.1007/3-540-36494-3_
14

73. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. In: FCT (1991)

74. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming (1994)

75. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D., Ding, J.: CRYSTALS-KYBER. Tech.
rep., National Institute of Standards and Technology (2022), available at https:
//csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

76. development team, T.F.: fplll, a lattice reduction library, Version: 5.4.2 (2023),
https://github.com/fplll/fplll, available at https://github.com/fplll/fplll

77. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.3) (2021), https://www.sagemath.org

78. Zalka, C.: Grover’s quantum searching algorithm is optimal. Physical Review A
60(4), 2746 (1999)

79. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementa-
tions of AES with fewer qubits. pp. 697–726 (2020). https://doi.org/10.1007/
978-3-030-64834-3_24

A Estimating the Size of Lattice Enumeration Trees

In this appendix we perform some standard computations on the size of enumer-
ation trees. We use these to compute the value of Hk in § 3 and 5. This analysis
closely follows [32].

33

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-36494-3_14
http://dx.doi.org/10.1007/3-540-36494-3_14
http://dx.doi.org/10.1007/3-540-36494-3_14
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.1007/978-3-030-64834-3_24

Size of the enumeration tree. The cost of lattice enumeration is typically estim-
ated to be equal to the number of nodes visited by the algorithm. These nodes
form the “enumeration tree”. If we let Zk be the set of nodes on the kth level of
the tree (that is, at distance k from the root node), Hk be the expected cardinal-
ity of Zk for the enumeration tree of a random lattice basis and N the expected
total number of nodes in the tree visited by the algorithm, we have

N := E
random
tree T

[#T] = 1

2

n∑
k=1

E
random
tree T

[|Zk|] =
1

2

n∑
k=1

Hk,

where the 1/2 factor is due to exploiting lattices’ additive symmetry to avoid
visiting half of the tree. The cardinality of Zk depends on the pruning strategy
and on the geometry of the projective sublattices implied by the lattice bases,
and can be estimated using the Gaussian heuristic. For example, we have

Zk =

{
Ballk (⃗0, R) ∩ πn−k+1(Λ), using no pruning,
CR1,...,Rk

∩ πn−k+1(Λ), using cylinder pruning,

where CR1,... Rk
:= {(x1, . . . , xk) ∈ Rk |

∑
i≤j x

2
i ≤ R2

j for all j ≤ k} is the
intersection of cylinders of increasing dimension and non-decreasing radius, and
where the covolume of the projected sublattices πn−k+1(Λ) depends on the
quality of the input lattice basis B = (b1, . . . , bn), with covol(πn−k+1(Λ)) =∏n

i=n−k+1 ||b∗i || = covol(Λ)/
∏n−k

i=1 ||b∗i ||. where B∗ = (b∗1, . . . , b
∗
n) is the Gram-

Schmidt orthogonalisation of B.
Cost estimation for the algorithm then reduces to estimating Hk, as done

in [32,12], noting that logN ≤ log (n ·maxkHk/2) ∈ O(logmaxkHk). We pro-
ceed to illustrate how to estimate Hk in the case of non-pruned enumeration. We
will use these results, together with the analysis of [12], to numerically estimate
lower bounds for Hk in the case of cylinder pruning.

A.1 Computing Hk when no Pruning is Used

We start analysing the simpler case of non-pruned enumeration. We start by
recalling to common heuristics used in lattice cryptanalysis.

Heuristic 1 (Gaussian heuristic) Given a lattice Λ ⊂ Rn of rank n and a
nice enough set S ⊂ Rn, the Gaussian heuristic states that

|Λ ∩ S| ≈ vol(S)
covol(Λ)

.

For cryptanalytic purposes, often S is set to be an n-ball of radius R ≥ 1. By
choosing S to be the n-ball of unit radius, this gives an approximation for the
first minimum of Λ:

λ1(Λ) ≈
Γ (1 + n/2)

1/n

√
π

covol(Λ)1/n. (8)

34

Heuristic 2 (Geometric Series Assumption (GSA) for BKZ [72]) Let B =
(b1, . . . , bn) be a BKZ-β-reduced basis for a rank-n lattice λ, and let B∗ =
(b∗1, . . . , b

∗
n) be the corresponding Gram-Schmidt vectors. Let ||b∗1||, . . . , ||b∗n|| be

the basis profile. Then the basis profile follows a geometric series

||b∗i || ≈ αi−1
β ||b∗1||, where αβ ≈

(
(πβ)1/β

β

2πe

)−1/(β−1)

.

Furthermore, by an elementary computation using covol(Λ) =
∏n

i=1 ||b∗i ||, we
have

||b1|| ≈ (α
−1/2
β)n−1covol(Λ)1/n.

Heuristic 3 (BKZ-n-reduced inputs) Whenever we enumerate a lattice Λ
of rank n, we assume the input basis satisfies Heu. 2, that is that the norms of
the Gram-Schmidt vectors follow a geometric series with constant αβ.

We briefly justify making these assumptions in our setting. To simplify our
analysis, we will assume that quantum enumeration is being performed as a sub-
routine to the BKZ lattice reduction algorithm [73,74]. Heu. 1 is commonly as-
sumed, and considered to be accurate already in relatively small dimensions[22],
and asymptotically tight [11]. Regarding Heu. 2, while it is known that the out-
put of BKZ does not exactly match the output of the GSA due to fluctuations in
the head of the basis profile and a concavity due to the tail being HKZ-reduced,
the GSA practically “holds” for most of the basis profile. Regarding Heu. 3, in
practice it is known [22,37,50] that the quality of a lattice basis tends to converge
to the GSA within the first few tours. Since the runtime of enumeration improves
as the basis quality does, we will conservatively assume that in the first few tours
the GSA for BKZ-β is achieved, and that from then on all enumeration calls on
blocks of rank β satisfy Heu. 3.10 As we will see, this will imply an asymp-
totic cost of 2

β log β
8 +O(β) for enumeration. We note that in practice the β log β/8

exponent can indeed be achieved with appropriate local block preprocessing [3].

Armed with Heuristic Assumptions 2 and 3, we can now estimate the asymp-
totic cost of non-pruned enumeration as an SVP solver in rank n. We start
considering an arbitrary enumeration radius R. Let Ballk (⃗0, R) be the k-ball of

10 This is an overly optimistic assumption, both because it ignores the HKZ-shape of
the basis, that in practice causes a significant slowdown [3], and because we will rely
on this analysis for the case of cylinder pruning, where the basis is re-randomised,
causing a loss in reduction quality.

35

radius R centered at the origin. Using the Gaussian heuristic,

Hk = E
random
tree T

[
|Ballk (⃗0, R) ∩ πn−k+1(Λ)|

]
≈ vol(Ballk (⃗0, R))

covol(πn−k+1(Λ))

= vol(Ballk (⃗0, R)) ·
∏n−k

i=1 ||b∗i ||
covol(Λ)

= vol(Ballk (⃗0, R)) ·
||b∗1||n−kα

(n−k−1)(n−k)
2

n

covol(Λ)

=
Rkπk/2

Γ (k2 + 1)
· ||b

∗
1||n−kα

(n−k−1)(n−k)
2

n

covol(Λ)
. (9)

By letting R be the Gaussian heuristic for the first minimum of the lattice (8),
we have

Hk ≈ Rkπk/2

Γ (k2 + 1)

||b∗1||n−kα
(n−k−1)(n−k)

2
n

covol(Λ)

=
Γ (n2 + 1)k/n

πk/2
covol(Λ)k/n

πk/2

Γ (k2 + 1)

||b∗1||n−kα
(n−k−1)(n−k)

2
n

covol(Λ)

=
Γ (n2 + 1)k/n

Γ (k2 + 1)
||b∗1||n−kα

(n−k−1)(n−k)
2

n covol(Λ)k/n−1

=
Γ (n2 + 1)k/n

Γ (k2 + 1)
||b∗1||n−kα

(n−k−1)(n−k)
2

n

(
n∏

i=1

αi−1
n ||b∗1||

)k/n−1

=
Γ (n2 + 1)k/n

Γ (k2 + 1)
||b∗1||n−kα

(n−k−1)(n−k)
2

n ||b∗1||k−nα
(n−1)n

2
k−n
n

n

=
Γ (n2 + 1)k/n

Γ (k2 + 1)
α

k(k−n)
2

n .

Using Stirling’s approximation for the Γ function on R+,

Γ (x+ 1) =
√
2πx

(x
e

)x(
1 +

1

12x
+O

(
1

x2

))
,

we can further simplify the result as

Hk ≈
Γ (n2 + 1)k/n

Γ (k2 + 1)
·α

k(k−n)
2

n ≈
(πn)

k
2n

(
n
2e

) k
2

√
πk
(

k
2e

) k
2

·α
k(k−n)

2
n ≈ (πn)

1
2 (

k
n−1)

(n
k

) k
2 ·α

k(k−n)
2

n

(10)
In [32], it is observed that most of the nodes are located around level k ≈ n/2.

There, the approximation becomes N ≈ Hn/2 ≈ (πn)−
1
4 2

n
4 · α−n2

8
n . Using the

“rule of thumb” approximation α
− 1

2
n ≈ n

1
2n , the leading term in Hn/2 becomes

n
1
2n

n2

4 = 2
n
8 logn. Using Sagemath’s [77] find_fit function over the approxim-

ation derived from (10) for N = 1
2

∑n
k=1Hk (with αn as in Heu. 2) evaluated it

36

on {100, 200, . . . , 1000}, we find

logN ≈ 0.12463n log n− 0.25483n+ 0.35621 log n− 0.26238.

A.2 Computing Hk Lower Bounds when Cylinder Pruning is Used

The analysis for cylinder pruning is slightly more complex, since cylinder pruning
really indicates a potentially vast family of pruning strategies, depending on how
the pruning radii 0 < R1 ≤ · · · ≤ Rn = R are chosen. Gama et al. [32] propose
using either linear pruning, where R2

i = (i/n) · R2, for i = 1, . . . , n, piece-wise
linear functions, or numerically optimised ones. While for some choices, such as
linear pruning, it may be possible to find closed formulae for the volume of the
cylinder intersections CR1,...,Rk

, this is not necessarily possible in general.
In [12], Aono et al. propose a technique for computing lower bounds to the

complexity of cylinder pruning in general, for which they are able to give a
closed formula [12, Eq. 16], in terms of the inverse regularized incomplete beta
function and of the values for Hk in the case of no pruning. Aono et al. check
the tightness of their results, concluding that their results should be reasonably
tight. Given the ease of computing the lower bounds in [12] and their relative
tightness, we use them to estimate a lower bound to Hk numerically as part of
our cost estimations.

B Estimating the Size of Lattice Enumeration Subtrees

In this section we elaborate on the number of descendants of a node |Wk,h(g)|, in
general for h ≥ 1 and in particular for the number of children C(g) = |Wk,1(g)|.

B.1 Theoretical Analysis

We start by providing a proof of Lem. 1.

Proof (of Lem. 1). Let Z+ be the set of positive integers, and Q+ be the set
of positive rationals. We start by observing that the Wk,h(g) partition the set
Zk+h, since every element in the latter descends from a unique element g ∈ Zk.
By the definition of expectation,

E
g∼U(Zk)
rand. T

[|Wk,h(g)|] = E
random
tree T

∑
g∈Zk

|Wk,h(g)|
|Zk|

 = E
random
tree T

[
|Zk+h|
|Zk|

]
.

37

We then note that as random variables, the supports supp(Zk), supp(Zk+h)⊂Z+,
while supp(Zk+h/Zk) ⊂ Q+. We then proceed to compute

E
random
tree T

[
|Zk+h|
|Zk|

]
=
∑
r∈Q+

rPr

[
|Zk+h|
|Zk|

= r

]

=
∑
r∈Q+

r
∑
y∈Z+

Pr

[
|Zk+h|
|Zk|

= r | |Zk| = y

]
Pr [|Zk| = y] ,

=
∑
r∈Q+

∑
y∈Z+

1

y
ryPr [|Zk+h| = ry] Pr [|Zk| = y] ,

=
∑
y∈Z+

1

y
Pr [|Zk| = y]

∑
r∈Q+

ryPr [|Zk+h| = ry] ,

where the summations commute due to the summands being non-negative [68,
Cor. to Thm. 1.27]. We note that given any y ∈ Z+, we have y · Q+ = Q+,
meaning that we can simplify∑

r∈Q+

ryPr [|Zk+h| = ry] = E
random
tree T

[|Zk+h|] = Hk+h.

We also observe that

∑
y∈Z+

1

y
Pr [|Zk| = y] =

∑
y∈Z+

1

y
Pr

[
1

|Zk|
=

1

y

]
= E

random
tree T

[
1

|Zk|

]
≥ 1

E
random
tree T

[|Zk|]
=

1

Hk
,

where the last inequality is Jensen’s inequality applied to f(|Zk|) = 1/|Zk|.
Putting these two results together, we have

E
random
tree T

[
|Zk+h|
|Zk|

]
=
∑
y∈Z+

1

y
Pr [|Zk| = y]

∑
r∈Q+

ryPr [|Zk+h| = ry]

=
∑
y∈Z+

1

y
Pr [|Zk| = y]Hk+h ≥ Hk+h

Hk
.

⊓⊔

We then obtain an upper bound to the number of children of a node.

Lemma 2 (Upper bound of C(g)). Let R1 ≤ · · · ≤ Rn be the enumeration
radii in pruned enumeration. Let B be a basis of the lattice Λ of rank n. Let gj+1

be a guess for πj+1(v) on level k = n− (j+1)+1 of the enumeration tree . The
number of children of gj+1 on the tree is at most approximately ⌊x·Rk+1/||b∗j ||⌉ =
⌊x ·Rk+1/||b∗n−k||⌉, were x = 1 if k = 0 and 2 otherwise.

38

Proof. Recall Eq. (1):∣∣∣cj+∑
i>j

µi,j ci

∣∣∣ ≤ 1

||b∗j ||

√
R2

k+1 − ||πj+1(v)||2

=
1

||b∗j ||

√√√√R2
k+1−

n∑
r=j+1

(
cr+

n∑
i=r+1

µi,rci

)2

||b∗r ||2.

Guessing a value gj for πj(v) consists of picking cj ∈ Z satisfying Eq. (1) given
fixed values for ci for i > j and for Gram-Schmidt vectors and coefficients.
Letting RHS be the right-hand side of Eq. (1), cj ∈ [−RHS−

∑
i>j µi,j ci,RHS−∑

i>j µi,j ci] ∩ S where S = Z if k > 0 and S = Z≥0 if k = 0. The size of such
intersection, and hence the number of valid guesses for cj , is approximately
⌊x · RHS⌉ for x = 2 if k > 0 and x = 1 otherwise. Finally, we note that
RHS ≤ Rk+1/||b∗j ||, proving the result. ⊓⊔

Expected value of E[|Wk,h(g)|]. As part of our experiments on non-pruned
enumeration for verifying Lems. 1 and 2, we observed that Lem. 1 appears tight
for h ≈ 1. We present an attempt at a proof of this heuristic, pointing out the
argument that we are missing for completing it.

Heuristic 4 The lower bound of Lem. 1 is tight for h ≈ 1, i.e.

E
g∼U(Zk)

[|Wk,h(g)|] = E
random
tree T

[
|Zk+i|
|Zk|

]
≈ Hk+h

Hk
for h ≈ 1.

Proof. (of Heu. 4; incomplete) The first equality follows from the proof of Lem. 1.
The approximation follows from taking the expectation of the Taylor series of x

y

evaluated at (x, y) = (E[|Zk+h|],E[|Zk|]) [Eq. 3.87-88][27].
The error term in the approximation is quadratic in (|Zk+h| − E[|Zk+h|])

and (|Zk|−E[|Zk|]). An argument that these estimates are tight would complete
the proof, however they would also imply tightness for general h, and not just
for h ≈ 1. E

B.2 Experimental Evidence

In the following, we provide experimental evidence for the accuracy of Heu. 4
when h = 1, as well as for the correctness of Lems. 1 and 2, in the setting
of lattice enumeration without pruning. To verify our heuristic arguments, we
modified a copy of fplll version 5.4.2 [76] to record the average number of
children per node during enumeration, as well as the average size of subtrees
Wk,h(g) rooted at some given level k, and of height h. We run experiments on
lattices build using the primal attack embedding by Bai and Galbraith [15]11

11 Positioning the q-vectors at the beginning of the basis.

39

on learning with errors (LWE) instances estimated to be solved using BKZ with
block size β = 60. Given the first minimum λ1 of the blocks being enumerated,
the enumeration radius is set to R = 1.1 · λ1. We list the parameters in Tab. 7.

Since Lem. 1 requires computing Hk, we run our experiments on trees gen-
erated by enumeration without pruning, to avoid the issue of having to compute
the volumes of the cylinder intersections used in pruned enumeration as part
of the Gaussian heuristic. While this means that our predictions for the lower
bound are easier to compute, it also means that we run experiments only up to
block size β = 40.

Table 7: LWE parameters used in lattice reduction experiments. The standard
deviation σ was used for instantiating discrete gaussian samplers for errorr and
secret vector coefficients.

secret dimension n modulo q std. dev. σ samples m

72 97 1.0 87

Remark 4. Our theoretical treatment of lattices happens in a generous model
where lattice bases achieve the GSA corresponding to BKZ-β reduced-ness at
all basis indices. Experimentally, this is not easily achievable. To account for this
we take a few precautions:

– We inspect experiment results starting at 10 completed tours of BKZ-β, in
order to give some time for the basis profile to approach the GSA.

– We inspect experiments happening on blocks located approximately half-way
through the basis, in order to protect them from GSA deviations:
• Towards the initial bases vectors due to the presence of several q-vectors;
• Towards the final β bases vectors due to these being HKZ reduced, caus-

ing a clear deviation from the GSA.
– We select the highest possible block sizes fplll would successfully execute

within a reasonable time, to enter the Gaussian heuristic “regime” as much as
possible; unfortunately due to checking heuristics for enumeration without
pruning this means attempting relatively small block sizes.

– As an extra show of caution we over-impose the a plot showing the basis
profile on the block being enumerated for every experiment, and the [22] sim-
ulation of the corresponding block.

Results on C(g) = |Wk,1(g)|. We observe close agreement between our
heuristics and the measurements at block size β = 40. In Fig. 5, we provide two
example plots of a characteristic measurement.

40

41

5 10 15 20 25 30 35 40
k

1

2

3

4

5

[C(g∈Zk)] using [CN11]
[C(g∈Zk)] using GS
C(g∈Zk) upper bound
Measured C(g∈Zk) average

basis profile:

(a) n = 72 (cf. Tab. 7), block size β = 40, 10th tour, block π80(b80, . . . , b80+β−1).

5 10 15 20 25 30 35 40
k

1

2

3

4

5
[C(g∈Zk)] using [CN11]
[C(g∈Zk)] using GS
C(g∈Zk) upper bound
Measured C(g∈Zk) average

basis profile:

(b) n = 72 (cf. Tab. 7), block size β = 40, 15th tour, block π70(b70, . . . , b70+β−1).

Figure 5: Plots displaying our predictions and measurements for the number of
children C(g) of a node g ∈ Zk as a function of k. The green dots are the averages
we measure during the call to enumeration. The blue dashed line is our upper
bound for C(g) given by Lem. 2. Red and black dashed lines are E[C(g)] based
on Heu. 4 using the measured ||b∗k|| and a prediction based on the [22] simulator,
respectively. In the sub-plot, the green dashed line is the BKZ simulator’s [22]
prediction for the basis profile log ||b∗k||, the blue line is our measurement.

Results on |Wk,h(g)|, when h > 1. In Figs. 6 to 8, we provide example
plots of characteristic measurements. In order to imitate the combined classical-
quantum methodology from § 3, we pick subtrees reaching towards the lowest
level on the tree. This means fixing a height h ∈ {20, 30}, and picking k = β−h
when measuring statistics.

We compute Lem. 1 three times per experiment: using the measured basis
profile, using a simulated basis profile following [22], and using the geometric
series assumption, in order to observe how much the predictions can differ. We
observe that our experiments deviate from the expected results more than in the
case of C(g).

Given the caveats listed in Rmk. 4, we believe that the measured data should
be compared to the prediction for the lower bound obtained using the measured
basis profile. Out of the cases presented, those where k = 10, h = 30 satisfy
the lower bound in Lem. 1 using the measured profile. This is not always the
case for the k = h = 20 case, where some deviation can be seen, although
the general shape seems to be captured by the predictions. We don not believe
that this should be considered contradiction of Lem. 1, but rather an inherent
limitation of computing Lem. 1 using the Gaussian heuristic while having to run
experiments in the low-dimensional regime where the heuristics may not be fully
precise.

42

10 15 20 25 30 35 40
k+ h0

2

4

6

8

10

12 [Hk+ h]/ [Hk] gsa
[Hk+ h]/ [Hk] sim
[Hk+ h]/ [Hk] gs

measured avg. Sk, h

(a) n = 72 (cf. Tab. 7), block size β = 40, 10th tour, block π80(b80, . . . , b80+β−1), k = 10.

20 25 30 35 40
k+ h0

0.2

0.4

0.6

0.8

[Hk+ h]/ [Hk] gsa
[Hk+ h]/ [Hk] sim
[Hk+ h]/ [Hk] gs

measured avg. Sk, h

(b) n = 72 (cf. Tab. 7), block size β = 40, 10th tour, block π80(b80, . . . , b80+β−1),
k = 20.

Figure 6: Plots displaying our predictions and measurements for the number of
descendants |Wk,h(g)| on level k+h of a node g ∈ Zk as a function of k+h. The
blue dots are the averages we measure during the call to enumeration. The blue
dashed line is our lower bound for C(g) given by Lem. 1, computed using the
measured ||b∗k|| to evaluate Hk and Hk+h using the Gaussian heuristic. Green
and black dashed lines are the same lower bound computed using the BKZ
simulator’s [22] simulator and the geometric series assumption, respectively. In
the sub-plot, the green dashed line is the BKZ simulator’s [22] prediction for the
basis profile log ||b∗k||, the blue line is our measurement.

44

10 15 20 25 30 35 40
k+ h0

2

4

6

8

10 [Hk+ h]/ [Hk] gsa
[Hk+ h]/ [Hk] sim
[Hk+ h]/ [Hk] gs

measured avg. Sk, h

(a) n = 72 (cf. Tab. 7), block size β = 40, 10th tour, block π90(b90, . . . , b90+β−1), k = 10.

20 25 30 35 40
k+ h0

0.2

0.4

0.6

0.8

[Hk+ h]/ [Hk] gsa
[Hk+ h]/ [Hk] sim
[Hk+ h]/ [Hk] gs

measured avg. Sk, h

(b) n = 72 (cf. Tab. 7), block size β = 40, 10th tour, block π90(b90, . . . , b90+β−1),
k = 20.

Figure 7: Continuation of Fig. 6.

45

10 15 20 25 30 35 40
k+ h0

1

2

3

4

5

6

7

8 [Hk+ h]/ [Hk] gsa
[Hk+ h]/ [Hk] sim
[Hk+ h]/ [Hk] gs

measured avg. Sk, h

(a) n = 72 (cf. Tab. 7), block size β = 40, 15th tour, block π80(b80, . . . , b80+β−1), k = 10.

20 25 30 35 40
k+ h0

0.2

0.4

0.6

0.8

[Hk+ h]/ [Hk] gsa
[Hk+ h]/ [Hk] sim
[Hk+ h]/ [Hk] gs

measured avg. Sk, h

(b) n = 72 (cf. Tab. 7), block size β = 40, 15th tour, block π80(b80, . . . , b80+β−1),
k = 20.

Figure 8: Continuation of Fig. 6.

C Experiments on the Multiplicative Jensen Gap

In § 5, we presented approximate lower bounds on the cost of combined classical-
quantum enumeration, identifying values of the multiplicative Jensen gap for
which the attacks would achieve certain threshold complexities. We displayed
these in Tab. 6, with more present in Tab. 9 in App. F.

In this appendix, we present some experiments run on pruned enumeration
trees using fplll version 5.4.2 [76], on the same lattices used in App. B. We
measured the multiplicative Jensen gap for subtrees of height h rooted on level k
for varying k, for every enumeration tree explored during BKZ reduction. Unlike
in App. B, in this case we do not need to predict Hk, meaning that we can use
pruned enumeration as set by default in fplll. This means that we can run
experiments for block sizes β > 40.

We present our measurements in Figs. 9 and 10. We observe that the Jensen
gap in the experiments we have attempted seems to be around 2z ≤ 2. While
our experiments are in low dimension and therefore cannot be extrapolated into
cryptanalytic claims, they also suggest that the possibility of enumeration tree
subtrees achieving small multiplicative Jensen gaps cannot be immediately dis-
regarded.

Remark 5. As the block size increases, more rerandomisation is performed by
fplll’s default pruning strategy, consequently resulting in a denser dataset for
β = 70 than for β = 50.

46

47

20 40 60 80 100 120 140
k

1

2

3

4

5

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

(a) n = 72 (cf. Tab. 7), block size β = 50, 10th tour, h = 20.

20 40 60 80 100 120 140
k

1

2

3

4

5

6

7

8

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

(b) n = 72 (cf. Tab. 7), block size β = 60, 10th tour, h = 20.

20 40 60 80 100 120 140
k

2

4

6

8

10

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

(c) n = 72 (cf. Tab. 7), block size β = 70, 10th tour, h = 20.

Figure 9: Measurement on the Jensen gap of subtrees of height h = 20 in pruned
enumeration experiments. The height h is reduced in the last few blocks of the
basis of dimension smaller than h. Blue dots are the squared root of the average,
green dots are the average of the squared root.

48

20 40 60 80 100 120
k

0.5

1.0

1.5

2.0

2.5

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

(a) n = 72 (cf. Tab. 7), block size β = 50, 10th tour, h = 30.

20 40 60 80 100 120
k

0.5

1.0

1.5

2.0

2.5

3.0

3.5

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

(b) n = 72 (cf. Tab. 7), block size β = 60, 10th tour, h = 30.

20 40 60 80 100 120
k

1

2

3

4

5

6

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

(c) n = 72 (cf. Tab. 7), block size β = 70, 10th tour, h = 30.

Figure 10: Measurement on the Jensen gap of subtrees of height h = 30 in pruned
enumeration experiments. The height h is reduced in the last few blocks of the
basis of dimension smaller than h. Blue dots are the squared root of the average,
green dots are the average of the squared root.

D Instantiation of W

In this appendix, we add a few more details to the analysis done in § 4.

D.1 Components of W

Given a tree T of height h, Montanaro [55] defines the operator W using two
operators RA and RB , the first acting on all nodes with even distance from the
root, and the second on all nodes with odd distance. The implementations of the
two operators are nearly identical, and as such we will only capture the original
description of RA [55, Alg. 3] by decomposing it into the following operators:

USetup: quantum operator that prepares the quantum state by advancing the
variable assignment (i.e., level k of the tree), and ensures that the operator
acts on the correct set of nodes (i.e., even or odd levels for USetup(RA) or
USetup(RA), respectively).

Uα,S: quantum operator that generates a superposition of children of a node,
performing the map |0⟩ 7→ |ϕα,S⟩, where S is the set of all children of a node.

UP: quantum operator that computes the norm of the projected lattice point
being inspected, and compares the length of the projection with the pruning
bound Ri. The predicate is executed to identify the children of a node.

U0: reflection through |0⟩. Together with the operator Uα,S it performs the the
diffusion operation I − 2 |ϕα,S⟩ ⟨ϕα,S |.

UUncompute: quantum operator to uncompute the ancillary states and the in-
version of the setup step USetup.

D.2 Quantum Arithmetic

Smallest known arithmetic circuits. The quantum arithmetic literature contains
many design proposals for integer and floating point adders and multipliers. Gen-
erally, most algorithms are either “ports” of classical designs [26,35,36,59,57], or
they rely on the quantum Fourier transform (QFT) to evaluate these opera-
tions [69,45]. As not all papers work using the same metrics or even quantum
computing architectures, direct comparisons and trade-off evaluations can be
difficult. For example, Pham and Svore [61] claim additions in constant depth
and multiplications in logarithmic depth, however this seems to require a spe-
cifically designed quantum architecture. For a rule-of-thumb estimation of our
attack costs, we opt to chose potentially more common asymptotics for adders
and multipliers achieving the smallest T counts and depths in our literature
review (other than [61]). We report these in Tab. 1, and ignore constants and
lower order terms hidden by the O. Whenever numbers of different bit lengths
are multiplied, we conservatively assume both to have the smaller length, since
we have not found sources describing quantum circuits for unbalanced multi-
plication. For the “x ≤ y” comparison operator, we use a circuit with the same
asymptotic size of an adder [26].

49

Floating point numbers. We also define a value ξ that equals the amount of float-
ing point precision required to store the coefficient of the basis vectors bi. The
literature on this topic either proposes algorithms for estimating the required pre-
cision [65,25], appearing this to be about Θ(n), or uses double precision [38]. We
notice that while the fplll library [76] includes support for arbitrary precision
floating point numbers, often experiments use double- or quadruple-precision
floating point numbers. As a conservative choice, we observe that any setting
where quantum-enumeration would be advantageous would likely result in re-
quiring more than double-precision, since otherwise cheap classical implement-
ations are available, and therefore consider ξ = 53 to be a lower bound on the
required precision.

D.3 Arithmetic Cost

Table 8: Assumed cost of arithmetic operations in Umin
P . Each operations has

input numbers of bit length xi and outputs numbers of size xi+1

Operation Input bit lengths T-Depth GCost

(ci, (⃗bi)j) 7→ ci(⃗bi)j x0 = min(b, ξ) log2(x0) h2 · x0 log(x0) log(log(x0))

(ci(⃗bi)j)i 7→
∑

i ci(⃗bi)j x1 = b+ ξ log h · log(x1) h2 · x1∑
i ci(⃗bi)j 7→ (

∑
i ci(⃗bi)j)

2 x2 = b+ ξ + log h log2(x2) h · x2 log(x2) log(log(x2))

((
∑

i ci(⃗bi)j)
2)j 7→ ||

∑
i ci⃗bi||

2 x3 = 2(b+ ξ + log h) log h · log(x3) h · x3

||
∑

i ci⃗bi||
2 ≤ R2 − ||g||2 x4 = 2(b+ ξ + log h) + log h log(x4) x4

Depth and cost estimation of W. Given a tree T of height h, Montanaro [55]
defines the operator W using two operators RA and RB , the first acting on
all nodes with even distance from the root, and the second on all nodes with
odd distance. The implementations of the two operators are nearly identical,
and as such we will only capture the original description of RA [55, Alg. 3] by
decomposing it into the following operators:

In our setting, quantum enumeration is being performed on a tree T(g ∈ Zk)
of height h = n − k, where n is the dimension of the full lattice Λ being enu-
merated. This process would require performing arithmetic using the projected
lattice basis vectors (πn−k+1(bk+1), . . . , πn−k+1(bn)) of Λ. In an attempt to un-
burden notation, in this paragraph we temporarily relable these as (b1, . . . , bh),
and consider them to be h-dimensional by applying an appropriate rotation. Our
estimate for the cost of each component of Wmin is then:

USetup: sets up the states, we assume GCost(USetup) = T-Depth(USetup) = 0.
Umin
α,S : generates a superposition of the children of a node. At a bare min-

imum, this requires a uniform superposition
∑q−1

i=0 |i⟩ which is computed

50

by a single (parallel) layer of Hadamard gates. Since we are only accounting
for T , we assume T-Depth(Umin

α,S) = T-Depth(Umin
P) and GCost(Umin

α,S) =

GCost(Umin
P), as Hadamard gates don’t contribute T gates.

Umin
P : evaluates the predicate P which identifies projected vectors v ∈ πn−ℓ+1(Λ)

such that ||v|| ≤ Rℓ and πn−k+1(v) = g, for all levels k < ℓ ≤ n. In order to
lower-bound the cost of this operation, we only consider the case of evaluat-
ing this inequality at ℓ = n, where the condition becomes checking whether
||
∑

i≤h ci⃗bi||2 ≤ R2−||g||2.12 The cost of the operation needs to account for
at least the cost of the following operations (summarised in Tab. 8):
1. Parallel multiplication of h2 pairs (ci, (⃗bi)j) 7→ ci(⃗bi)j , of b- and ξ-bit

length, outputting numbers of bit length b+ ξ.
2. Addition of coefficients (c1(⃗b1)j , . . . , ch(⃗bh)j) 7→

∑
i ci(⃗bi)j for j ∈ [h].

These additions can be run in parallel over j. For a fixed j, the corres-
ponding sum is run by adding terms in pairs, forming a binary tree of
sums. Each

∑
i ci(⃗bi)j output is b+ ξ + log h bits long.

3. Squaring the
∑

i ci(⃗bi)j sums in parallel (output bit length 2(b+ξ+log h))
and adding them in a binary-tree fashion to obtain ||

∑
i≤h ci⃗bi||2 =∑

j(
∑

i ci(⃗bi)j)
2 of bit length 2(b+ ξ + log h) + log h.

4. The last operation is the comparison with the (adjusted) pruning bound
R2 − ||g||2.

We depict the implementation of the minimal Umin
P implementation in Fig. 11.

U0: the quantum operator computing 2 |0⟩ ⟨0|−Id which requires mult-controlled-
Z gates, we estimate requiring at least one T gate.

UUncompute: we conservatively assume that uncomputation does not require T
gates, as in the case of measurement-based uncomputation of AND gates
in [39], and assume T-Depth(UUncompute) = GCost(UUncompute) = 0.

12 In classical implementations, this computation benefits from extensive caching of
Gram-Schmidt orthogonalisation operations and results [76]. Asymptotically, the
number of individual arithmetic operations is the same as if computing directly
from the basis (b1, . . . , bh).

51

52

T-depth: log2 min(b, ξ)

T-depth: log h · (b+ ξ)

T-depth: log2(b+ ξ + log h)

T-depth: log h · log(2(b+ ξ + log h))

T-depth: log(2(b+ ξ + log h) + log h)

∣∣∣ci, (⃗bi)j〉
UMult

∣∣∣ci, (⃗bi)j〉
|0⟩

U Binary
Addition

Tree

∣∣∣ci(⃗bi)j〉
|0⟩

USquare

∣∣∣∑i ci(⃗bi)j
〉

|0⟩
U Binary

Addition
Tree

∣∣∣(∑i ci(⃗bi)j)
2
〉

|0⟩
UCmp

∣∣||∑i cibi||
2
〉

|0⟩
∣∣||∑i bici||

2 ≤ R2 − ||g||2
〉

Figure 11: Minimal quantum circuit of Umin
P .

E Results from Kyber Parameters

E.1 Figures for the Query-based Result

In this section we present the figures from our estimations of the cost of quantum
enumeration that we have not reported in § 5. For all cost estimations the
quantum operator GCost(W) and TDepth(W) are estimated as in § 4.1 and
with DF (W), QD(W), WQ(T ,W) as in § 3,

– Figure 12 is the cost estimation for Kyber-512 with T-Depth(QPE(W)) ≤
264

– Figure 13 shows the cost estimation without any MaxDepth constraint on
T-Depth(QPE(W))

– Figure 14 shows the cost estimation for Kyber-768 and Kyber-1024 with
T-Depth(QPE(W)) ≤ {240, 264, 296} respectively.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumerationz=0
Cost=118

k=83
y=53

z=13
Cost 92

k=64
y=58

z=14
Cost 90

k=59
y=54

Quantum GCost
Total GCost
Classical GCost
QRACM

Figure 12: Cost estimation for Kyber with MaxDepth = 264 with the instanti-
ation for operator W as in § 4.1 and with DF = 1, QD = 1, b = 1 (see § 3).

53

54

0 10 20 30 40 50 60
Log(Jensen's Gap) z

26

76

126

176

Lo
g

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=92

z=1
Cost 91

z=9
Cost 83

Expected cost of quantum enumeration

(a) Cost estimation for Kyber-512 without MaxDepth restrictions.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

101

151

201

251

301

Lo
g

Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=167

z=1
Cost 166

z=52
Cost 115

Expected cost of quantum enumeration

(b) Cost estimation for Kyber-768 without MaxDepth restrictions.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

147

197

247

297

347

397

447

497

Lo
g

Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=265

z=1
Cost 264

z=9
Cost 256

Expected cost of quantum enumeration

(c) Cost estimation for Kyber-1024 without MaxDepth restrictions.

Figure 13: Cost estimation for Kyber with the instantiation for operator W as
in § 4.1 and with DF = 1, QD = 1, b = 1 (see § 3).

55

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

Quasi-Sqrt(classical cost)
Expected cost of Grover on AESTarget security of Kyber

Expected cost of classical enumeration

z=0
Cost=293

k=216
y=35

z=51
Cost 192

k=114
y=33

z=57
Cost 180

k=106
y=34

z=64
Cost 166

k=77
y=5

Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-768, MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES
Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=488

k=327
y=32

Quantum GCost
Total GCost
Classical GCost
QRACM

(b) Kyber-1024, MaxDepth = 240.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=269

k=183
y=57

z=39
Cost 192

k=114
y=57

z=52
Cost 166

k=77
y=29

z=57
Cost 156

k=77
y=39

Quantum GCost
Total GCost
Classical GCost
QRACM

(c) Kyber-768, MaxDepth = 264

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES
Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=464

k=295
y=57

Quantum GCost
Total GCost
Classical GCost
QRACM

(d) Kyber-1024, MaxDepth = 264.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumerationz=0
Cost=238

k=120
y=51

z=23
Cost 192

k=77
y=35

z=36
Cost 166

k=77
y=61

z=56
Cost 126

k=44
y=47

Quantum GCost
Total GCost
Classical GCost
QRACM

(e) Kyber-768, MaxDepth = 296

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=433

k=227
y=53

Quantum GCost
Total GCost
Classical GCost
QRACM

(f) Kyber-1024, MaxDepth = 296.

Figure 14: Cost estimation for Kyber-768 under different MaxDepth restrictions
with the instantiation for operator W as in § 4.1 and with DF = 1, QD = 1,
b = 1 (see § 3).

E.2 Figures for the Circuit-based Results

In this section we present the figures from our estimations of the cost of quantum
enumeration that we have not reported in § 5. For all cost estimations the
quantum operator GCost(W) and TDepth(W) are estimated as in § 4.2 and
with DF (W), QD(W), WQ(T ,W) as in § 3,

– Figure 15 shows the cost estimation without any MaxDepth constraint on
T-Depth(QPE(W))

– Figure 16 is the cost estimation for Kyber-512 with T-Depth(QPE(W)) ≤
264

– Figure 17 shows the cost estimation for Kyber-768 and Kyber-1024 with
T-Depth(QPE(W)) ≤ {240, 264, 296} respectively.

56

57

0 10 20 30 40 50 60
Log(Jensen's Gap) z

50

100

150

Lo
g

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=116

z=26
Cost 90

z=33
Cost 83

Expected cost of quantum enumeration

(a) Cost estimation for Kyber-512 without MaxDepth
restrictions.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

114

164

214

264

314

Lo
g

Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=193

z=1
Cost 192

z=27
Cost 166

Expected cost of quantum enumeration

(b) Cost estimation for Kyber-768 without MaxDepth
restrictions.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

147

197

247

297

347

397

447

497

Lo
g

Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=291

z=28
Cost 263

z=35
Cost 256

Expected cost of quantum enumeration

(c) Cost estimation for Kyber-1024 without MaxDepth
restrictions.

Figure 15: Cost estimation for Kyber with no MaxDepth restriction and the
instantiation for operator W as in § 4.2 and with DF = 1, QD = 1, b = 1 (see
§ 3).

58

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES
Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=172

k=187
y=52

z=23
Cost 127

k=96
y=49

z=29
Cost 116

k=79
y=44

z=42
Cost 90

k=63
y=52

Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-512, MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=149

k=111
y=64

z=11
Cost 128

k=79
y=56

z=29
Cost 92

k=54
y=63

z=30
Cost 90

k=46
y=55

Quantum GCost
Total GCost
Classical GCost
QRACM

(b) Kyber-512, MaxDepth = 264

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumerationz=0
Cost=118

k=46
y=59

z=25
Cost 91

k=46
y=64

z=33
Cost 83

k=46
y=64

Quantum GCost
Total GCost
Classical GCost
QRACM

(c) Kyber-512, MaxDepth = 296

Figure 16: Cost estimation for Kyber-512 under different MaxDepth restrictions
with the instantiation for operator W as in § 4.2 and with DF = 1, QD = 1,
b = 1 (see § 3).

59

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

Quasi-Sqrt(classical cost)
Expected cost of Grover on AESTarget security of Kyber

Expected cost of classical enumeration

z=0
Cost=324

k=396
y=56

Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-768, MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES
Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=518

k=873
y=0

Quantum GCost
Total GCost
Classical GCost
QRACM

(b) Kyber-1024, MaxDepth = 240.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=301

k=206
y=61

z=55
Cost 192

k=106
y=63Quantum GCost

Total GCost
Classical GCost
QRACM

(c) Kyber-768, MaxDepth = 264

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES
Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=497

k=324
y=63

Quantum GCost
Total GCost
Classical GCost
QRACM

(d) Kyber-1024, MaxDepth = 264.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=270

k=140
y=61

z=40
Cost 191

k=77
y=54

z=53
Cost 165

k=62
y=56

Quantum GCost
Total GCost
Classical GCost
QRACM

(e) Kyber-768, MaxDepth = 296

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g Quasi-Sqrt(classical cost)

Expected cost of Grover on AES

Target security of Kyber

Expected cost of classical enumeration

z=0
Cost=466

k=240
y=53

Quantum GCost
Total GCost
Classical GCost
QRACM

(f) Kyber-1024, MaxDepth = 296.

Figure 17: Cost estimation for Kyber-768 and Kyber-1024 under different
MaxDepth restrictions with the instantiation for operator W as in § 4.2 and
with DF = 1, QD = 1, b = 1 (see § 3).

F Beyond Lower Bounds for DF, QD, WQ

We recall in Fig. 18 the quantities representing the number of calls of the
FindMV, DetectMV, quantum phase estimation and W procedures, such that
the depth and gate-cost of FindMV amounts to

T-Depth(FindMV(T)) = DF(T) · QD(T) · WQ(T ,W) · T-Depth(W)

GCost(FindMV(T)) = DF(T) · QD(T) · WQ(T ,W) · GCost(W).

Quantum backtracking
[55, Alg. 2 and §2.3] FindMV DetectMV QPE W := RARB

DF(T) times QD(T) times WQ(T,W) times

Quantum circuit

Figure 18: Overview of Montanaro’s marked vertex (MV) finding backtracking al-
gorithm [55]. Only part of the algorithm (QPE) needs to run within MaxDepth.

Let the tree T being searched be of depth h and the degree of each node be
bound by C.

DF(T). As mentioned in § 3.1, the analysis in [13] assumes an implicit trans-
formation of T into a binary tree of depth h log C. DetectMV is then called on
the root level, in order to detect whether marked vertices are in the tree. If no
marked vertices are found, no more calls are required, and DF(T) = 1. If there
are, further calls are made to identify the path from the root to the marked leaf,
akin to a binary search. In total, in order to identify one marked leaf in T (or
return error),

DF(T) =

{
1, T contains no marked leaves,
h log C contains at least one marked leaf.

In the setting of combined classical-quantum enumeration, most of the Hk/2
y

trees T(g) explored will not contain any marked leafs. Given how the quantum
GCost is estimated in (6) as

Hk

2y
·E[GCost(FindMV(T(g)))] = Hk

2y
·E[DF(T(g))·QD(T(g))·WQ(T(g),W)·GCost(W)],

we could set DF(T(g)) =
(
Hk

2y − 1 + h log C
)
· 2y

Hk
with h = n− k+1 during cost

estimation, to capture how when the enumeration radius is short enough, h log C
calls will likely be made on only one of the subtrees, and one call will be made
to the remaining Hk

2y − 1 many subtrees.
This discussion implicitly assumes the correctness of DetectMV, which

however can return incorrect results, increasing the complexity of an estimation
on DF. One option would be running DetectMV multiple times per level,

60

with the amount of repetition depending on analysis of the specific DetectMV
implementation, as well as the noise model of the quantum computer.

A simpler analysis would be to estimate the failure probability of FindMV
when calling DetectMV once per level, assuming a tight failure probability
upper bound for DetectMV(T) of δDMV. Then, the success probability of
FindMV would be about (1−δDMV)

DF(T), which is O(1) if δDMV ≈ 1/DF(T).13
Since a priori we don’t know whether T contains a marked vertex, this would
mean implementing DetectMV such that δDMV ≈ (h log C)−1, to account for
the in-principle h log C successful calls required to detect the marked vertex in
its subtree. We proceed to do this next.

QD(T). The way DetectMV [55, Alg. 2] is computed is by performing multiple
times, say K many, quantum phase estimation (QPE) on the W operator.

Let Xi be a random variable valued 1 when the ith call to QPE(W) returned
an eigenvalue 1, and valued 0 otherwise, and let YK =

∑
i∈[K]Xi. The Xi are

then i.i.d. Bernoulli random variables. Let MV denote the event that a marked
vertex is contained in T and MV the opposite event. The core idea around
DetectMV is that whenever a marked vertex exists, QPE(W) will tend to
return 1, and 0 otherwise. Indeed, from [55, Proof of Lemma 2.4] we have that
p1 := Pr[Xi = 1 | MV] ≤ 1/4 and p2 := Pr[Xi = 0 | MV] ≤ 1/2. In order to
decide whether a tree contains a marked vertex, we run K instances of QPE on
W, and then check whether enough instances returned 1: for some fixed α ∈ (0, 1]
to be determined, we return “marked vertex exists” if and only if YK ≥ αK.

As seen in the previous paragraph on DF(T), we may want to fix a target
failure probability δDMV for DetectMV, which can be achieved by picking K
high enough. We start assuming we have found α, and use Chernoff bounds
to estimate upper bounds on the “false positive/negative” probabilities Pr[Y ≥
αK |MV] and Pr[Y ≤ αK |MV]. By direct computation of the bound, recalling
that the Xi are i.i.d., we have

Pr[YK ≥ αK |MV] ≤ exp(−tαK)E [exp(tYK)] = exp(−tαK)E

[
K∏
i=1

exp(tXi)

]

= exp(−tαK)E [(exp(tX1))]
K

=

(
1 + p1(exp(t)− 1)

exp(αt)

)K

,

for any t > 0. For Pr[YK ≤ αK] a similar computation on the left tail gives

Pr[YK ≤ αK |MV] ≤
(
exp(t) + p2(1− exp(t))

exp(αt)

)K

, for any t < 0.

We then identify values of α and ε such that infy>0

(
1+p1(exp(t)−1)

exp(αt)

)ε
≤ 1/2

and infy<0

(
exp(t)+p2(1−exp(t))

exp(αt)

)ε
≤ 1/2. From a numerical search, and picking

13 Specifically, it approaches e−1 as δDMV → 0.

61

the smallest possible ε returned, we observe a valid pair at α = 0.369017 and
ε = 20.14

Finally, we compute

Pr[YK ≥ αK |MV] ≤ inf
y>0

(
1 + p1(exp(t)− 1)

exp(αt)

)K

≤ (1/2)K/ε,

and similarly for Pr[YK ≤ αK | MV], suggesting that to get an overall failure
probability of at most δDMV, one should choose K/ε ≥ log(1/δDMV). Therefore,
it should be sufficient to choose

QD(T) = K = ⌈20 log(h log C)⌉ ≥ ε log(1/δDMV).

WQ(T ,W). As used inside of DetectMV, QPE needs to be run with precision
b/
√

#T · h, for some constant b > 0, returning after ≈
√

#T · h/b evaluations of
W. In [19, Sec 4.1], it is shown that the constant b > 0 can be bound using
p1 ≤ 2

√
b(1 + o(1)) where p1 := Pr[Xi = 1 | MV], and setting p1 as low as

possible. In our case, this is p1 ≤ 1/4, which implies using at least b ≥ 1/64.
Since we require evaluating W approximately ≈

√
#T · h/b times and 1/b ≤ 64,

to be safe we would need to pick

WQ(T ,W) ≈ 64
√

#T · h .

F.1 Results from More Bounds

We replicate the analysis performed in § 5.2, estimating the cost of a combined
classical-quantum attack as described in § 3.2 and 3.3. In Tab. 9 we summarize
the values for the Jensen’s gap 2z at crossover points of our combined classical-
quantum enumeration attacks against Kyber and different “success metrics” to
claim an attack.15 The cost of Grover’s search against AES is taken from [39,
Tables 10 and 12]. Tab. 9 corresponds to attacks in the settings for W as in § 4.1
and § 4.2 with DF (W), QD(W), WQ(T ,W) as in App. F.

Overall, comparing Tab. 9 with Tab. 6 it would appear that in terms of
increased costs, compared to a setting with strict lower bounds (§ 3.1) in the
query-based model of W, using the results from App. F in the query-based model
increases costs less than using the circuit-based model and the lower bounds from
§ 3.1.

14 In particular, our value of α is quite close to the 3/8 = 0.375 proposed in [55]. This
latter value would however imply ε = 22.

15 We remark that exact crossovers happen at fractional values of z. In these tables
we take the smallest value z such that the total cost is less than the corresponding
quantity and give the level k for which this is achieved.

62

63

Table 9: Summary of the values for the Jensen’s gap 2z at crossover points of
our combined classical-quantum enumeration attacks against Kyber and different
“success metrics” to claim an attack. We remark that exact crossovers happen
at fractional values of z. In this table we round down threshold values of z. The
cost of Grover’s search against AES is taken from [39, Tables 10 and 12]. The
results are estimated from the bounds DF(W) = 1, QD(W) = ⌈20 log(h log C)⌉,
b = 1/64.

more likely to be feasible less likely to be feasible
logE[GCost] (with W as in § 4.1) below. . . logE[GCost] (with W as in § 4.2) below. . .

MD Kyber Target security Grover on Quasi-Sqrt Target security Grover on Quasi-Sqrt
AES{128,192,256} 1/b

√
#T · h AES{128,192,256} 1/b

√
#T · h

-512 z ≥ 13, k ≤ 92 z ≥ 19, k ≤ 83 z ≥ 32, k ≤ 59 z ≥ 29, k ≤ 96 z ≥ 35, k ≤ 79 z ≥ 48, k ≤ 63
-768 z ≥ 57, k ≤ 114 z ≥ 63, k ≤ 106 z > 64 z > 64 z > 64 z > 64240

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-768 z ≥ 45, k ≤ 114 z ≥ 63, k ≤ 77 z ≥ 58, k ≤ 77 z ≥ 61, k ≤ 106 z > 64 z > 64
-512 z ≥ 1, k ≤ 92 z ≥ 19, k ≤ 64 z ≥ 20, k ≤ 59 z ≥ 17, k ≤ 79 z ≥ 35, k ≤ 54 z ≥ 36, k ≤ 46264

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 40 z ≥ 14, k ≤ 46 z ≥ 7, k ≤ 46 z ≥ 1, k ≤ 58 z ≥ 39, k ≤ 46 z ≥ 31, k ≤ 46
-768 z ≥ 29, k ≤ 77 z ≥ 62, k ≤ 44 z ≥ 42, k ≤ 77 z ≥ 46, k ≤ 77 z > 64 z ≥ 59, k ≤ 62296

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k = 0 z ≥ 15, k = 0 z ≥ 7, k = 0 z ≥ 0, k = 0 z ≥ 39, k = 0 z ≥ 32, k = 0
-768 z ≥ 0, k = 0 z ≥ 58, k = 0 z ≥ 7, k = 0 z ≥ 7, k = 0 z > 64 z ≥ 33, k = 0∞

-1024 z ≥ 15, k = 0 z > 64 z ≥ 7, k = 0 z ≥ 41, k = 0 z > 64 z ≥ 34, k = 0

G Lower-Bounding Additive and Multiplicative Jensen
Gaps

Let X be the random variable for #T with support supp(X) ⊂ [1,+∞), µ =
E[X], σ2 = V[X]. In this section, we explore two different derivations for lower
bounds of the additive (

√
E[X] − E[

√
X]) and multiplicative (

√
E[X]/E[

√
X])

Jensen’s gaps of X.
As part of our derivations, we will use the notion of Hölder continuity, which

we recall.

Definition 2 (Hölder continuity). A real function f : R → R is α-Hölder
continuous over an interval (a, b) ⊂ R if for any x, y ∈ (a, b), there exists M > 0
such that |f(x)− f(y)| ≤M · |x− y|α.

G.1 Bounding the Additive Jensen’s Gap.

We start by proving that the square root function
√
x is 1

2 -Hölder continuous.

Lemma 3.
√
x is 1

2 -Hölder continuous over (0,∞) with M ≥ 1.

Proof. Let x, y ≥ 0. First we write

|
√
x−√

y| =
|
√
x−√

y| · |
√
x+

√
y|

|
√
x+

√
y|

=
|x− y|√
x+

√
y
=
√

|x− y| ·
√
|x− y|√
x+

√
y
.

Now, note that

|x− y| ≤ |x|+ |y| = x+ y ≤ x+ y + 2
√
xy = (

√
x+

√
y)2

Since
√
x is strictly increasing over (0,∞),

|x− y| ≤ (
√
x+

√
y)2 ⇐⇒

√
|x− y| ≤

√
x+

√
y. ⇐⇒

√
|x− y|√
x+

√
y
≤ 1.

Hence,

|
√
x−√

y| =
√
|x− y| ·

√
|x− y|√
x+

√
y
≤
√

|x− y|,

which concludes the proof. ⊓⊔

Lemma 4. The additive Jensen gap of X is in absolute value |E[
√
X]−√

µ| ≤√
σ.

64

Proof. Following [33, Eq 1.1],

|E[
√
X]−√

µ| =

∣∣∣∣∣∣
∑

x∈supp(X)

√
xPr[X = x]−√

µ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

x∈supp(X)

(
√
x−√

µ) Pr[X = x]

∣∣∣∣∣∣ (by
∑

x∈supp(X)

Pr[X = x] = 1)

≤
∑

x∈supp(X)

∣∣√x−√
µ
∣∣Pr[X = x]

≤
∑

x∈supp(X)

√
|x− µ|Pr[X = x] (by Lem. 3)

= E
[√

|x− µ|
]

(by definition of E)

≤
√
E [|x− µ|] (by Jensen’s inequality)

≤ E
[
(x− µ)2

]1/4 (by Jensen’s inequality)

=
√
σ. (by definition of σ)

This concludes the proof. ⊓⊔

Lemma 5. E[GCost(QPE(W))] ≥
√
h
(√
µ−

√
σ
)
·GCost(W), where h is the

height of T(gr).

Proof. From Lem. 4,

|E[
√
X]−√

µ| ≤
√
σ ⇐⇒ −

√
σ ≤ E[

√
X]−√

µ ≤
√
σ

=⇒ E[
√
X] ≥ √

µ−
√
σ.

Combine with

GCost(QPE(W)) = WQ(T(gr),W) · GCost(W),

and with Simpl. Assm. 1, letting X = #T(gr). ⊓⊔

G.2 Bounding the Multiplicative Jensen’s Gap.

We start by proving that the natural logarithm function ln(x) is 1
2 -Hölder con-

tinuous and that ln
√
x is 1

2 -Hölder continuous.

Lemma 6. ln(x) is 1
2 -Hölder continuous over [1,∞) with M ≥ 1.

65

Proof. Let p = 2. Noting d
dx lnx = 1

x , and that x, y ≥ 1

| lnx− ln y| =
∣∣∣∣∫ y

x

dt

t

∣∣∣∣ ≤ ∫ max(x,y)

min(x,y)

∣∣∣∣1t
∣∣∣∣ dt

≤

(∫ max(x,y)

min(x,y)

12dt

)1/2(∫ max(x,y)

min(x,y)

∣∣∣∣1t
∣∣∣∣2 dt

)1/2

(by Hölder’s inequality)

= |y − x|1/2
(∫ max(x,y)

min(x,y)

1

t2
dt

)1/2

≤ |y − x|1/2
(∫ ∞

1

1

t2
dt

)1/2

≤ |y − x|1/2 ·
[
− 1

x

]∞
1

= |y − x|1/2 .

⊓⊔

Lemma 7. ln
√
x is 1

2 -Hölder continuous over [1,∞) with M ≥ 1/2.

Proof.

| ln
√
x− ln

√
y| = 1

2
| lnx− ln y| ≤ 1

2
|x− y|1/2,

where the second inequality follows from Lem. 6. ⊓⊔

Lemma 8. Given a multiplicative Jensen’s gap 2z such that E[
√
x] = 2−z

√
E[x],

then z ≤ 1
2 ln 2

√
σ.

Proof. First we take logarithms,

E[
√
x] = 2−z

√
E[x] ⇐⇒ lnE[

√
x] = −z ln 2 + ln

√
µ.

Then we upper bound z as

z =
1

ln 2
(ln

√
µ− lnE[

√
x])

≤ 1

ln 2
(ln

√
µ− E[ln

√
x]) (by Jensen’s inequality, E ln ≤ lnE)

=
1

ln 2

∑
supp(X)

(
ln
√
µ− ln

√
x
)
Pr[X = x]

≤ 1

ln 2

∑
supp(X)

∣∣ln√µ− ln
√
x
∣∣Pr[X = x]

≤ 1

ln 2

∑
supp(X)

1

2
|µ− x|

1/2

Pr[X = x] (by Lem. 7)

=
1

2 ln 2
E[|µ− x|1/2] (by definition of E)

≤ 1

2 ln 2
E
[
(x− µ)2

]1/4
=

1

2 ln 2

√
σ (by applying Jensen’s inequality twice)

⊓⊔

66

Lemma 9. E[GCost(QPE(W))] ≥ 2−
1

2 ln 2σ
√
µ · h ·GCost(W), where h is the

height of T(gr).

Proof. Using Lem. 8,

E[
√
X] = 2−z√µ ≥ 2−

1
2 ln 2

√
σ√µ.

Combine with

GCost(QPE(W)) = WQ(T(gr),W) · GCost(W),

and with Simpl. Assm. 1, letting X = #T(gr). ⊓⊔

G.3 Experimentally Estimating
√
σ

Unfortunately, we are not aware of any techniques to estimate the variance of
#T(g) for an element g ∈ Zk of a pruned enumeration tree. Therefore, we have
implemented an extension to the experiments from App. C originally used to
experimentally measure some multiplicative Jensen’s gaps. This extension lets
us measure the unbiased sample variance s2 of the number of nodes #T(g). Using
s2 as an estimate for the variance σ2 of the distribution, we then plot 4

√
s2 as an

estimate for
√
σ in Figs. 19 and 20.

Our results seem to indicate that
√
σ increases with the dimension of the tree

β and with the level k where g is chosen, suggesting that shallower subtrees are
more exposed to variations in their size compared to deeper trees. The value of
the measured estimates 4

√
s2 seems also to stay relatively low (in absolute value)

in our experiments, peaking at around 20. In any case, these experiments are no
more or less conclusive than those in App. C, and hence this analysis does not
seem to significantly improve on the methodology used in § 5.2 for estimating
the cost of the attack, that is testing multiple values of possible Jensen’s gaps.

67

68

20 40 60 80 100 120 140
k

1

2

3

4

5

6

7

8

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

measured 4
√
s2(T(g∈Zk))

(a) n = 72 (cf. Tab. 7), block size β = 50, 10th tour, h = 20.

20 40 60 80 100 120 140
k

2

4

6

8

10

12

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

measured 4
√
s2(T(g∈Zk))

(b) n = 72 (cf. Tab. 7), block size β = 60, 10th tour, h = 20.

20 40 60 80 100 120 140
k

5

10

15

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

measured 4
√
s2(T(g∈Zk))

(c) n = 72 (cf. Tab. 7), block size β = 70, 10th tour, h = 20.

Figure 19: Measurement on the Jensen gap of subtrees of height h = 20 in pruned
enumeration experiments. The height h is reduced in the last few blocks of the
basis of dimension smaller than h. Blue dots are the squared root of the average,
green dots are the average of the squared root.

69

20 40 60 80 100 120
k

0.5

1.0

1.5

2.0

2.5

3.0

3.5

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

measured 4
√
s2(T(g∈Zk))

(a) n = 72 (cf. Tab. 7), block size β = 50, 10th tour, h = 30.

20 40 60 80 100 120
k

1

2

3

4

5

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

measured 4
√
s2(T(g∈Zk))

(b) n = 72 (cf. Tab. 7), block size β = 60, 10th tour, h = 30.

20 40 60 80 100 120
k

1

2

3

4

5

6

measured
√
T(g∈Zk)

measured
√
T(g∈Zk)

measured 4
√
s2(T(g∈Zk))

(c) n = 72 (cf. Tab. 7), block size β = 70, 10th tour, h = 30.

Figure 20: Measurement on the Jensen gap of subtrees of height h = 30 in pruned
enumeration experiments. The height h is reduced in the last few blocks of the
basis of dimension smaller than h. Blue dots are the squared root of the average,
green dots are the average of the squared root.

	Quantum Lattice Enumerationin Limited Depth

